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Abstract 
 

The paper analyzes the essential properties of bidder equilibrium strategies in the 
multi-unit uniform-price auction. In the auction the seller offers several identical units 
for sale, specifies a minimum accepted bid (reservation price) and sets maximum 
number of bids that any bidder can submit. Under these restrictions bidders use strictly 
increasing strategies in a symmetric equilibrium more often, and in many cases the 
reservation price increases the bidder's strategy which is typical in single-unit auctions. 
Such an auction procedure implies a unique equilibrium strategy in some cases. Thus 
the number of bid restriction and reservation price present in real-life multi-unit 
auctions restore some properties of equilibrium strategies typical for single-unit 
auctions. 

 
Abstrakt 

 
Studie analyzuje základní vlastnosti rovnovážných strategií pro účastníky více-

objektové aukce s jednotnou cenou. V této aukci aukcionář nabízí na prodej několik 
jednotek stejného zboží, stanoví nejnižší nabídku, kterou přijímá (maximální výnos), od 
účastníků aukce a stanoví nejvyšší počet jednotek, na kolik může každý účastník podat 
nabídky. Takováto aukční procedura zajístí, že rovnovážná strategie je v některých 
případech jednoznačná. Zavedením těchto dvou omezení na rovnovážné strategie, které 
se často objevují v běžných pravidlech více-jednotkových aukcí s jednotnou cenou, 
mohou způsobit, že vlastnosti těchto rovnovážných strategií účastníků těchto aukcí se 
více přibližují vlastnostem rovnovážných strategií typickým pro aukce jedné jednotky 
zboží. 
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1. Introduction

Recently auctions have attracted much more attention of practitioners and

researchers than before. The theoretical results on multi-unit auctions are less

straightforward and less powerful than in the single-unit case. Several studies

have been devoted to uniform-price auctions showing some basic properties of

equilibrium strategies, and addressing the question of efficiency of the final al-

location and revenue raised by the seller. In Ausubel and Cramton (2002) it is

shown that no uniform-price auction is efficient. The asymptotic results with

large number of bidders were discussed in Swinkels (2001) and Engelbrecht-

Wiggans and Kahn (2005). In an multi-unit auction an important policy tool

is a reservation price. In Ausubel and Cramton (2004) a multi-unit Vickrey

auction with perfect resale market is analyzed and argued that if the seller

uses a reservation price an auction is efficient and revenue maximizing for any

number of bidders. The auction results with small finite number of bidders

are analyzed in Engelbrecht-Wiggans and Kahn (1998), Engelbrecht-Wiggans

(1999). These studies show that in the multi-unit, uniform-price auction equi-

libria in which the auction price is zero exists.

This paper is focused on an uniform-price auction in which the seller sets

a positive reservation price and restricts each of the bidders to buy less than a

specific fraction of all units for sale. Then no bids at the reservation price are

submitted. Moreover, a reservation price increases the bid each bidder submits

in symmetric equilibrium given his valuation. In addition, the underrevelation

illustrated in Ausubel and Cramton (2002), and Draaisma and Noussair (1997)

diminishes. Next, the so called “pooling” and “multiplicities of equilibria”

mentioned in Engelbrecht-Wiggans and Kahn (1998) are often not present. In

general, when the seller uses these policy tools in real-life he improves bidder’s

equilibrium behavior in the sense that more revenue is collected in expectation

and auction inefficiency occurs less often.
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Intuitively submitted bids in an auction effect probability of winning units

and auction price paid for units. Consider the case in which the bidder sub-

mits two bids in the uniform price auction. I will call the first unit bid an

introductory bid and the second unit bid a successive bid. The strategic con-

siderations on the introductory bid are similar to the single-unit, second-price

auction. The introductory bid effects only the probability of winning and does

not influence the price the bidder pays for the introductory unit. Therefore

the bidder has an undominated strategy in the uniform-price auction to bid

the true value on their introductory unit. The strategic consideration on a

successive bid takes into account the case of being the first rejected bid. In

other words this bid determines the price of one additional preceeding unit of

this bidder. The successive bid increases both the probability of winning the

unit and the price paid for the introductory unit in this case when the bid is

the first-rejected one. This is similar to the single-unit, pay-your-bid auction.

In this single-unit auction (see McAfee and McMillan (1987), Lizzeri and Per-

sico (2000)) it is a standard result for symmetric equilibrium that the higher

the private value or reservation price, the higher bid each bidder submits.

It seems that the uniform-price auction outcome is more sensitive to proper

reservation price setting and the number of bids each bidder can submit

than the pay-your-bid auction, which requires more information gathering and

strategic considerations from the seller to design the auction properly. It elim-

inates some of the unfavorable equilibria from the point of view of auction

efficiency and the seller’s revenue. The conlusion drawn from this paper may

be an argument as to why the seller should specify a reservation price and a

limit on the number of units each bidder is allowed to bid as is observed in

real-life, uniform-price auctions.

The structure of the paper is as follows. In the first section I specify a

model of the uniform-price auction and discuss some essential properties of the
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equilibria. Since the bidders use strictly increasing strategies in equilibrium,

no bidder bids at the reservation price with positive probability. Then I focus

on symmetric equilibria in which each bidder submits at most two bids. Then

the reservation price increases the bidders’ strategies if one imposes simple

restrictions on the distributions of values.

2. The Uniform-price Auction Game

I describe a model of multi-unit auctions with risk-neutral bidders having

continuous distributions of private values. Let us consider a seller who plans

to sell k (k ≥ 1) identical units to n (n ≥ 1) bidders each of whom submits

l bids. I assume that each bidder receives l private values vi = [vi,1, · · · , vi,l]

where vi,j is the value of the jth unit that agent i wins (1 ≤ j ≤ l ≤ k,

1 ≤ i ≤ n). The marginal value from winning an additional unit weakly

decreases for each bidder; i.e. vi,j ≥ vi,j′ if j < j′. Symbol × means the

Cartesian product. Let Hi (vi) that has support on an interval Vi = ×
l
j=1 [0, v̄j]

denote the probability distribution function of the private values vi,j where v̄j’s

(v̄1 ≥ · · · ≥ v̄l) are the upper bounds of the support. The index −i represents

the set of indices {1, · · · , i− 1, i+ 1, · · · , n} . To guarantee the existence of

equilibrium, I assume that the values of vi of one bidder are independent of

opponent values realization v−i. Moreover for any i = 1, · · · , n, the marginal

density function of the introductory unit hi,1 (vi,1) exists.

I impose the following technical condition on the distribution of values.

C�������� C1. For j = 1, · · · , l−1 and for every v > 0, there is a number

ε > 0 such that for any valuation vj P (vj+1 < v|vj) > ε.

In other words, condition C1 means that no matter whatever vj is, there is

some chance that vj+1 is close to 0. This condition is valid if any open subset

of Vi has a positive measure.

The Game. Before the auction the seller announces a number of units

for sale and the reservation price R ∈ [0,∞). Each bidder submits l sealed
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finite bids bi,1, · · · , bi,l ∈ [0,∞) that are denoted as bi. If more than k bids are

submitted above the reservation price, then the seller chooses k highest bids

that win a unit in the auction. A tie occurs when kth and k+1st highest bids

are equal and the seller breaks such a tie randomly. Note the possibility that

other bids may be also tied with kth and k + 1st highest bids. The auction

price that each bidder pays for winning each unit is equal to k + 1st highest

bid. If less than k + 1 bids are submitted above or equal to the reservation

price, then each of them wins a unit and pays the price R.

Bidder i’s ex post payoff depends on the number of units he wins, Ji, the

realization of his winning values, vi, · · · , vJi , his bids, bi, opponent bids, c, and

the reservation price, R.

π̂i (vi, bi, c,R) =

Ji∑

j=1

(vi,j − p (bi, c, R)) , (2.1)

where p (bi, c,R) is the auction price for winning each unit. Since the seller

orders bids after submission, I can assume that the vector of opponent bids

c is ordered; i.e. cj is the jth highest opponent bid. Similarly I assume

without loss of generality that each bidder submits an ordered l-tuple of bids

bi,1 ≥ · · · ≥ bi,l. The set of all these l-tuples I denote as Bi.

I will assume that bidders are symmetric and omit index i if no new con-

fusion arises when referencing to a general agent i. I denote v− realization of

all opponent values and their strategies as b− (·).

A pure strategy is a list of submitted bids based on the observed information

that bidder i knows before the auction, including his private values, reservation

price, the distribution of all bidder values, the number of units for sale, and

the number of opponents. For the sake of simplicity I will write the pure

strategy as a function of private values only. Then the pure strategy is a

mapping b (·) : V → B (b(v) = [b1(v1, · · · , vl), · · · , bk(v1, · · · , vl)]) such that

each component bj (v) is a weakly increasing function in every argument vj′
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(for 1 ≤ j′ ≤ k), and bj (v) ≥ bj+1 (v) for 1 ≤ j ≤ k − 1. The set of all these

strategies I denote as B.

When opponents use strategies b− (·), then the ex ante pointwise payoff to

bidder i, whose values are v and who bids b, is

π (v, b|b− (·)) = E (π (v, b, c, R)) . (2.2)

The expectations are taken over by the opponent values v−. The probability

measure of π (v, b, R) is induced by the opponent strategies b− (·) , and the

random tie-breaking rule if a tie occurs with positive probability.

When the bidder i uses pure strategy b (·), then his ex ante pure strategy

payoff is

π (b (·)) = E (π (v, b (v))) , (2.3)

where the expectations are taken over v. The word payoff I use to mean the

ex ante payoff if no new confusion arises.

Example 1. Let me derive the payoff π (v1, v2, b1, b2) of the bidder who bids

b1, and b2 for values v1 and v2 given the opponent strategies b− (·). For q = 1, 2

j = 0, 1 I denote Pk+1−q (b) the probability that at most k − 2 − q opponent

bids are above b given the opponent strategies.

If a bidder submits b1 ≥ R and such that no tie occurs, then the bidder wins

an introductory unit if his bid b1 is above the kth highest opponent bid denoted

as ck. His payoff increases by v1 · Pk (b1|b1 ≥ R) . In the case that b2 < R the

expected auction price the bidder pays in the auction is max (ck, R) . Therefore

his payoff is

π1 =

∫ b1

−∞

(v1 −max (ck, R))·dPk (ck|b1 ≥ R) = (v1 − b1)·Pk (b1)+

∫ b1

R

Pk (ck) dck.

In the case that the bidder submits b2 ≥ R and such that no tie occurs, then

the bidder wins a successive unit if his bid b2 is above k − 1st opponent bid.

6



His payoff increases by v2 · Pk−1 (b2) . At the same time the expected auction

price the bidder pays in the auction changes by

p2 = −

(∫ b2

−∞

ck · dPk (ck)

)
+ b2 · (Pk (b2)− Pk−1 (b2)) (2.4)

+2 ·

(∫ b2

−∞

max (ck−1, R) · dPk−1 (ck−1)

)
.

The formula (2.4) is intuitive. If the bidder has been bidding b2 < R, then

the auction price paid for the introductory unit would have been max (ck, R) .

Now when bidding b2 ≥ R, then the auction price is the same if b2 is neither

winning nor the first-rejected bid. On the other hand, if b2 is winning or the

first rejected bid (b2 > ck−1), the bidder will not pay max (ck, R) but pays b2 if

b2 is the first rejected bid or 2·max (ck−1, R) if b2 is the winning bid (b2 > ck−1).

The term Pk (b2)− Pk−1 (b2) is the probability that b2 is the first rejected bid.

Therefore the payoff increase from the successive bid is

π2 = v2 · Pk−1 (b2) + p2 = (v2 − b2) · Pk−1 (b2) + 2 ·

∫ b2

R

Pk−1 (ck−1)

If the bidder submits such a bid that a tie occurs, the seller uses a random

rule that breaks qth tied unit into the favor of bidder with probability αq where

0 < αq < 1. Therefore bidders payoff is (vq − bq) · αq · P (bq = ck+1−q) .

All cases analyzed above can be summarized in the following payoff formula

(
(v1 − b1) · (Pk (b1) + α1 · P (b1 = ck)) +

∫ b1

max(b2,R)

Pk (ck) dck

)
· I (b1 ≥ R)

+

(
(v2 − b2) · (Pk−1 (b2) + α2 · P (b2 = ck−1)) + 2 ·

∫ b2

R

Pk−1 (ck−1)

)
·I (b2 ≥ R)

(2.5)

In Bresky (1999) it is shown that if each bidder submits k bids, then equi-

librium exists. It implies the following lemma, which is proved in the Appendix

that equilibrium also exists when bidders are restricted to submit less than k

bids and reveal its value in his introductory bid.
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Lemma 1. Consider the uniform-price auction game defined in Section 2.

Then there exists an equilibrium in pure strategies such that b1 (v,R) = v1.

Although I focus on pure weakly increasing strategies, it seems that they

can be generalized to measurable strategies as well as a mixed strategy when

the bidder mixes over a superset of weakly increasing strategies B.1 The

intuitive reason is that if the bidder is mixing or bidding nonmonotinically

in equilibrium over some range of bids, then bids submitted into this range

has the same probability of winning and the same effect on the auction price.

Moreover any mixed best response strategy m can be rearranged to strategy

b (·) that places probability 1 on one pure weakly increasing strategy and gives

the bidder the same payoff. For more details see McAdams (2006) or Bresky

(1999).

Let me illustrate the game on a simple example.

Example 2. Suppose two units are auctioned, each of two bidders can submit

two bids (k = l = 2 = n). The density function of the introductory and

successive value is h (v1, v2) =
2
v̄2

if v̄ ≥ v1 ≥ v2 ≥ 0 and otherwise h (v1, v2) = 0

where v̄ = v̄1 = v̄2 is the upper bound of the value support. Then it can be

verified that the following is a symmetric Nash equilibrium strategy

b1 (v1, v2, R) = v1 and b2 (v1, v2, R) =





R if v2 > R

0 if v2 ≤ R
. (2.6)

The same strategies form an equilibrium for any other distribution of values if

h1 (v1) is weakly increasing.

3. No Bidding at Positive Reservation Price with the Restricted

Number of Submitted Bids

When there is zero reservation price in Example 2, Engelbrecht-Wiggans

and Kahn (1998) (cf. also Ausubel (2002)) discuss that it is fairly common to

1One can consider a set of measurable strategies with bounded variation for that the

mixed strategy space exists.
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bid 0 in the uniform-price auction. These type of equilibria is fairly unfavorable

for the seller in terms of revenue. In addition, efficiency loss in the final

allocation of units often occurs. I will demonstrate that if the seller sets a

small positive reservation price, then in equilibrium no bidder bids at a positive

reservation price on the jth unit for j ≤ k+1
2

(up to the measure 0 set of values).

In other words, if the seller restricts the bidders to buy at most k+1
2

units and

sets a positive reservation price, then every bidder bids above R for values

above R in symmetric equilibrium.

In section 1 I defined a tie from the seller’s point of view. From the bidder’s

point of view, if a tie occurs with a probability of 0 in equilibrium, then it does

not influence the bidder’s payoff. When discussing ties in this context I always

consider only the ties that occur with positive probability for given opponent

strategies.

Example 3. Suppose that each of the two bidders can submit two bids (l = 2)

as in Example 2 and also the distribution of bidder valuations is the same.

But three units are auctioned (k = 3). Then any symmetric Nash equilibrium

strategy satisfies

b2 (v1, v2, R) =
(v2 −R)2

(v̄ −R)
+R for v2 > R and (3.1)

b1 (v1, v2, R) = v1 for v1 > R, (3.2)

up to a measure zero subset of values. It is a unique symmetric equilibrium

strategy in the sense that bids below the reservation price on values below the

reservation price do not influence the auction outcome.

After just adding one unit for sale there is a dramatic difference in equi-

librium strategy. The additional unit for sale introduces a tie if the bidders

would bid at R with positive probability. Since each bidder prefers to win the

tied unit, he has an incentive to compete by submitting higher bids that is
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greater than the incentive not to increase the bid due to the decrease in the

auction price for the introductory unit.

The same mechanics are present in a single-unit, pay-your-bid auction up

to the fact that a bid on a unit influences the price of that unit. That is why

no bidder bids reservation price R which has a value above R given that R is

positive and the bidders are restricted to buy less than one half of the total

number of goods for sale.

At first let me demonstrate that the strategy with a tie for a given opponent

strategy is not the best response if the bidder bids below his value. Assume

that the reservation price is 0 and consider a tie in strategies at bi,j that occurs

with positive probability (see Figure 1). In the tie the opponent k + 1 − jth

highest bid is equal to bi,j. If the bidder with value vi,j > bi,j bids bi,j + ε

instead of bi,j, he wins the tied unit surely and slightly increases the price if

his bid is the first rejected one. For small ε his ex post and therefore ex ante

payoff increases (by a jump). To use the weakly increasing strategy the bidder

increases his strategy for slightly higher values but for sufficiently small ε the

set of these values is arbitrarily small. It has a negligible effect on the ex post

and therefore ex ante auction price paid for any of his unit. Therefore the

bidder’s best response cannot be with a tie. The formal proof is presented in

the Appendix.
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Figure 1: Increase in strategy by ε.

001

jth bidck+1−j

Strategy of the bidder on the jth unit.The inverse distribution ck+1−j.

Mass point in

F−1 (ck+1−j) b̄j (v)

bj (v)

bεj (v)

v̄ v1

bj + ε

bj

Tie

Lemma 2. Consider any given opponent strategies b− (·) ∈ B− in the uniform-

price auction game defined in Section 2. If the bidder uses such b (·) that a

bid on jth bid is tied with positive probability with an opponent’s bid and for

any mass point v ∈ V the bidder does not bid his value (bj (v) �= vj), then a

better response strategy bε (·) ∈ B exists for the bidder.
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Corollary 1. Assume that condition C1 is valid, each bidder is restricted to

submit at most l bids where l satisfies n·l > k > 2·(l − 1) ≥ 2, and none of the

bidders have a mass point in probability distribution of a value at reservation

price R that is positive Then in no symmetric equilibrium bidders bid R with

positive probability.2

It shows that the number of bids each bidder can submit influences bid

submission at the positive reservation price. The importance of the condition

l ≤ k+1
2

is illustrated in Example 2 equation (2.6). The importance of the

assumption R > 0 can be seen from Example 4 in Section 4. The seller can

easily eliminate equilibria by bidding at the reservation price.

The restriction l ≤ k+1
2

on the number of submitted bids is known from

real-life, multi-unit, uniform-price auctions (e.g. Treasury bills). The seller

typically restricts the bidders to buy at most one half or one third of the

total amount for sale. In addition, the restriction n · l > k (or
∑

i li > k in

asymmetric case) is similar to the requirement that each bidder must submit

several bids.

It seems that the seller who restricts the bidders to order a maximum

share of the total amount for sale eliminates bidding at the reservation price

in a uniform-price auction. Note also that in Example 3 the seller gains more

revenue from each unit and sells more units than in Example 2.

4. The Reservation Price Increases Equilibrium Strategy

In this section I focus on symmetric bidders and symmetric equilibrium

strategies when each bidder can submit two bids (l = 2). At first I briefly

discuss why the symmetric equilibrium strategy on the introductory unit is

2If one considers asymmetric bidders and equilibrium strategies, then for any reservation

price R ∈ (0, v̄l) there is no equilibrium in which two bidders bid R with positive probability.

The restriction n · l > k can be relaxed to
∑
li > k where li is the maximum number of bids

each bidder i can submit and k > 2 · (l − 1) to k > li + li′ − 2 for any i, i′.
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unique. Finally I show that the reservation price increases the continuous

strategy.

In Lemma 1 is shown the existence of an equilibrium in which bidders

submit their introductory value as an introductory bid. The reasons why this

is a unique symmetric equilibrium strategy in most cases are similar to the

Vickrey auction or the second-price auction. The introductory bid influences

only the probability of winning and not the auction price the bidder pays for

a unit. Consider such a realization of values of all bidders that k − 1 bids

are high and win, introductory values of the two bidders in the middle of the

support compete for the kth unit, and remaining bids are low and loose. If the

first of the two bidders submits b1 > v1 and the second’s value v′1 is between

b1, v1, then the second bidder cannot bid above b1 otherwise he wins a unit for

the price higher than his valuation. But if the second bidder bids his valuation

v′1, he anticipates that the first bidder anticipates this and will not bid above

v′1 having valuation v1. Therefore the second bidder wins a unit for the price

below his value and is better off when revealing his value. Since this is true for

all v′1 between b1, v1 the first bidder cannot bid b1 above his value v1. Similar

reasoning can be used to exclude the case that b1 < v1.

This idea is summarized in the following two lemmas formally proved in

the Appendix.

Lemma 3. If the number of bidders is greater than the number of units for

sale and H1 (v1) is strictly increasing for v1 ∈ [R, v̄1] , then in any symmetric

equilibrium b1 (v1, v2, R) = v1 for all values with v1 ≥ R up to a measure zero

subset.

Lemma 4. Consider a uniform-price auction in which condition C1 is satisfied

and assume that n ≤ k ≤ 2 · n − 1, in addition, b2 (·) is continuous if k =

2 · n − 2, 2 · n − 1. Let me denote the highest successive bid in a symmetric
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equilibrium as b̄2 = b2 (v̄2). Then the introductory equilibrium strategy is

b1 (v1, v2, R) = v1 for all v1 ∈
[
R, b̄2

]
up to a measure zero subset.

The second lemma shows that the uniqueness of the introductory strategy

depends on the successive strategy. And given the successive strategy the

bidder may not reveal his value in a bid only if he submits such an introductory

bid that has the same probability of winning as if bidding an introductory value

(see e.g. Vickrey (1961)). It is a unique introductory strategy in the sense that

such a change has no effect on the auction outcome. It is illustrated in the

following example.

Example 4. Suppose there are n ≥ 2 bidders with any distribution of values,

k = n units for sale and reservation price R = 0. Then it can be verified that

the following is a symmetric Nash equilibrium strategy:

b1 (v1, v2) = v̄ and b2 (v1, v2) = 0.

The bidder on the first unit bids above his value because he is sure he wins and

the auction price will be 0 anyway. In the case of n = k = 2 the equilibrium

strategy differs from the strategy in the case of R = 0 in Example 2. But the

auction outcome is the same.

Moreover if k = n− 1, . . . , 2 · n− 1 one can easily check that b2 (v̄2) = v̄2.

The reason is that if b2 (v̄2) < v̄2, then a bidder with value v̄2 − δ prefers to

bid above b2 (v̄2) because he surely wins a successive unit. It may also increase

the price he pays for the introductory unit (at most by b2 (v̄2) − b2 (v̄2 − δ))

but for sufficiently small positive δ the change is negligible with respect to a

gain from winning the successive unit (v̄2 − δ − b2 (v̄2)).

An implication of Lemma 3 and 4 is that without loss of generality one can

restrict attention to the introductory strategy of the form

14



b1 (v1, v2, R) =





v1 for v1 ∈

[
0, b̄2

)

v̄1 for v1 ∈
[
b̄2, v̄1

] where b̄2 =






v̄1 if 1 ≤ k < n

b2 (v̄2, R) if k = n

v̄2 if n < k < 2 · n

.

(4.1)

From now on, I often omit the dependence of strategy b2 (·) and payoff π (·)

on R and v1.

A bidder who submits a successive bid by positive sufficiently small ε below

his successive value is better off than if he bids his successive value. It decreases

the price he pays for the introductory unit when his bid determines the auction

price. The bidder also loses the successive unit more often but only when the

price is close to his successive value that would yield him almost zero ex post

payoff (see Lemma 6 in the Appendix). It implies that an introductory bid

does not restrict the set of choices the bidder considers for a successive bid.

• McAfee and McMillan (1987) show a standard result of the single-unit

pay-your-bid auction that in symmetric equilibrium a bidder’s payoff can

be expressed as a function of the bidder’s value and bid. The parallel ar-

guments for this are valid for the uniform-price auction model of this pa-

per. If all bidders are symmetric and use the symmetric strategies and bid

introductory value in the introductory bid, then Pk (·) can be expressed

as a function of b2 and v2 only. Now consider the case that all bidders

are symmetric and use symmetric strategies. Let u2 (b2) and u1 (b2) be

the opponent inverse bid functions defined as sup {u|b−2 (u) < b2} and

as sup {u|b−1 (u) < b2} . Then

Pk (b2) =
∑

2i2+i1≤k−1,
0≤i2,i1≤n−1

(n− 1)!

i2!i1!(n− 1− i2 − i1)!
Ai2 (b2)B

i1 (b2)H
n−1−i1−i2
1 (u1 (b2)) ,

(4.2)

where A (b2) = 1 − H2 (u2 (b2)) is the probability that the two bids of
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an opponent are above b2, B (b2) = H2 (u2 (b2)) − H1 (u1 (b2)) is the

probability that an opponent submits an introductory bid above and the

successive bid below b2, andH1 (u1 (b2)) is the probability that two bids of

an opponent are below b2. Note if the bidder uses the same strategy as his

opponents, then u2 (b2) = v2, and if the opponents bid the introductory

value in the introductory bid u1 (b2) = b2. Then Pk (·) is independent of

the opponent strategy b− (·) and that is why payoff can be expressed just

a function of b2 and v2.8

Therefore, without loss of generality, I consider the successive equilibrium

strategy that is independent of the introductory value

b2 (v1, v2, R) = b2 (v2, R) for v2 ∈ [R, v̄2] , b2 (v1, v2, R) = 0 for v2 ∈ [0, R) .

(4.3)

Now I discuss a sufficient condition on the distribution of a bidder’s values

that guarantees that every symmetric equilibrium strategy is continuous.

Example 5. Let us take the same setting as in Example 3 in the case R = 0

and v̄ = 1. Then the successive equilibrium strategy (3.1) simplifies to b2 (v2) =

v22 for v2 ∈ [0, 1] . Let us consider any weakly increasing strategy b′2 (·) that is

the same as b2 (·) for v ∈ [0, v2] and at b2 jumps up from v22 to b̌. Then for

any b2 ∈
[
v22, b̌

]
the difference in payoff is π (v1, b1, v2, , b2) − π (v1, b1, v2, v

2
2)

is − (b2 − v22) · (1−H2 (v2)) negative. It means that if the opponent uses this

strategy, payoff of the bidder strictly decreases for b2 ∈
[
b2 (v2) , b̌

]
. The reason

is that b2 increases the price the bidder pays for the introductory unit if b2 is the

first rejected bid and does not increase the probability of winning. Such a bid

b2 will defeat opponent’s successive bid with the same probability as b2 (v2) .

The reason for this is that the opponent uses a strategy with a jump and

although b2 defeats opponent’s introductory bid more often, the probability

that b2 is a winning bid is not changed. Therefore the bidder prefers to bid
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b2 (v2) than to bid b2. For v2+ δ where δ is small and positive the jump cannot

occur because payoff is continuous in v2.

When the payoff is differentiable, then the marginal payoff is ∂π(v2,b2)
∂b2

and

it is 0 if b2 is the best response. If for some v2 the opponent’s strategy jumps

from b̂ = b2
(
v−2
)
to b̌ = b2

(
v+2
)
, then π

(
v2, b̂

)
= π

(
v2, b̌

)
≥ π (v2, b) for any

b ∈
(
b̂, b̌
)
because the payoff is continuous in a successive value (see Lemma 8

in the Appendix). Therefore the relevant condition for a continuous equilibria

is:

C�������� C2. For any v2 ∈ (R, v̄2) and any b2 ∈ (R, v2)

∂π (v2, b2)

∂b2
= (v2 − b2)

∂Pk−1 (b2, v2)

∂b2
− Pk (b2, v2) + Pk−1 (b2, v2) ≤ 0. (4.4)

Lemma 5. Let there be more than two units for sale and condition C2 holds,

then in any symmetric equilibrium any successive bid between the two best

response bids is also the best response bid. In addition, if the inequality (4.4)

is strict, then every symmetric equilibrium strategy is continuous.

For the formal proof of the lemma see in the Apendix and let me show

some distributions that satisfy condition C2:

1. If exactly one bid does not win when all bids are above the reservation

price (k = 2n− 1) and h1 (·) > 0, then C2 is valid and every equilibrium

strategy is continuous.

2. For k = 3, n ≥ 2 the condition (4.4) is simple:

(v2 − b2) (n− 2)h1 (b2) (H2 (v2)−H1 (b2))

≤ (1−H2 (v2))H1 (b2) +
n− 2

2
(H2 (v2)−H1 (b2))

2
,

that can be easily satisfied if 2h1 (b2) ≤ h2 (b2) and h2 (b2) is weakly

increasing.3

3For n→∞ large the condition simplifies to 2g1 (b2) ≤
H2(v2)−H1(b2)

v2−b2
. Next realize that by
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3. For k = 2n− 3 ≥ 3 the condition is:

(v2 − b2) h1 (b2) (H2 (v2)−H1 (b2))

≤ H1 (b2) (1−H2 (v2)) +
n− 2

2
(H2 (v2)−H1 (b2))

2
.

If n ≥ 4 then the sufficient condition is that h1 (·) is weakly increasing.

The following density function satisfies all cases examples above

h (v1, v2) =






2v2
v2
1

for 0 ≤ v2 ≤ v1 ≤
1
2

8v2 for 0 ≤ v2 ≤
1
2
, 1
2
≤ v1 ≤ 1

0 otherwise





⇒

H1 (b2) = b2 for b2 ∈ [0, 1]

H2 (v2) = 2v2 for v2 ∈
[
0, 1

2

] .

In the following example I illustrate the intuition behind the fact that the

continuous successive equilibrium strategy is unique.

Example 6. Let us take the same setting as in Example 5 and consider how

the equilibrium best response b2 (·) changes when the opponent changes its

strategy b−2 (·) . Assume that the opponent uses another continuous strategy

that is above b−2 (·) in the right neighborhood of some v̂ ∈ (0, 1) > 0, e.g. for

some a > 0

b′−2 (v2) =






b−2 (v2) = v22 for v2 ∈ [0, v̂]

a · (v2 − v̂) + v̂2 for v2 ∈ (v̂, v̂ + δ]

any other weakly increasing strategy for v2 ∈ (v̂ + δ, 1] .

Then the marginal pay-off is

∂π (v2, b2)

∂b2
= (v2 − b2) ·

2

a

(
1−

b2 − v̂2

a
− v̂

)
−

(
1−

b2 − v̂2

a
− v̂

)2
. (4.5)

It is negative for a ∈ [2 · v̂,∞) , b2 ∈ [v̂
2, v̂2 + a · δ] and v2 ∈ [v̂, v̂ +min (v̂

2, δ)) .

Therefore if the opponent increases his strategy on the right neighborhood of

the mean value theorem for some b̃ ∈ [b2, v2]
H2(v2)−H1(b2)

v2−b2
= H2(v2)−H2(b2)

v2−b2
+ H2(b2)−H1(b2)

v2−b2
=

H2(b2)−H1(b2)
v2−b2

+ h2
(
b̃
)
.
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v̂, then the bidder’s best response must be constant on the right neighbor-

hood of v̂ or discontinuous at v̂. Hence no opponent strategy above b−2 (·)

yields a symmetric best response. Similarly for a ∈ (0, 2 · v̂) , v2 ∈ (v̂, v̂ + δ) ,

and b2 ∈ [v̂
2, v̂2 +min (((2v̂ − a) (1− v̂)) , a · δ)] the marginal pay-off (4.5) is

positive. Therefore if the opponent decreases his strategy on the right neigh-

borhood of v̂, then the bidder’ best response must jump to v̂.

A similar mechanic is present in the single-unit, pay-your-bid auction (see

e.g. Lizzeri and Persico (2000)). The following theorem, which is proved in the

Appendix shows that if one is sure that the equilibrium strategy is continuous

(or the payoff is constant in jumps), then the two equilibrium strategies cannot

cross.

Theorem 1. Let there be more than two units for sale, condition C2 holds,

and bidders use b1 (v1, v2, R) = v1, then for any value v2 and bid b̂ such that

v̄ ≥ v2 > b̂ ≥ R ≥ 0 there is at most one symmetric equilibrium strategy going

through point
[
v2, b̂

]
.

The intuitive reason of why the two continuous strategies cannot cross gen-

eralizes Example 6. Consider any two symmetric weakly increasing successive

strategies b2 (·) and b̄2 (·) that are different on the left neighborhood of v2 and

such that b̂ = limv′→v−
2
b2 (v

′) = limv′→v−
2
b̄2 (v

′) where v̄ ≥ v2 > b̂ ≥ R. Let me

denote the lower strategy on the left neighborhood of v2 as b̄2 (·) and without

loss of generality I assume that it is a symmetric equilibrium. It is sufficient

to show that if opponents employ strategy b2 (·) , then the bidder prefers to

bid b2 (v2) than b2 (v2 − δ) for values v2− δ slightly below v2 for positive small

enough δ. When the opponents use the strategy b2 (·) instead of b̄2 (·) , the

probability that bidder i wins the successive unit is higher on the left neigh-

borhood of b2 (v2) . Also the price paid in the auction increases on the left

neighborhood of b2 (v2) but the effect on price is much smaller and the bidder
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prefers to bid b2 (v2) instead of b2 (v2 − δ) for values v2−δ. Therefore no oppo-

nent strategy above b̄2 (·) on the left neighborhood of v2 enforces a symmetric

best response of the bidder. Similar logic can be used to show that no two

strategies emerge from
[
v2, b̂

]
(see the proof in the Appendix for more details).

The case k = 2 has been deeply analyzed in Engelbrecht-Wiggans and Kahn

(1998). They show examples with many symmetric continuous equilibria.

Corollary 2. If k = 2n − 1, then the successive equilibrium strategy is con-

tinuous and unique.

One simple implication of Lemma 1 is that the reservation price increases

any continuous equilibrium strategy.

Theorem 2. Assume that n ≥ 3, k = 3, · · · , 2 · n − 3, and conditions C1

and C2 are valid or k = 2 · n − 1 ≥ 3. Consider two symmetric equilibrium

strategies b2 (v2, R) and b2 (v2, R
′) for different reservation prices R′ > R ≥ 0.

Then b2 (v2, R
′) > b2 (v2, R) for any v2 ∈ [R

′, v̄] .

Proof. Since bidders bid strictly below their value above the reservation price

(see Lemma 6 in the Appendix), it must be that b2 (R
′, R) < R′. Moreover

R′ = b2 (R
′, R′), and for v2 > R′, the two continuous equilibrium strategies

cannot cross according to Theorem 1.

Q.E.D.

Examples 2 and 4 show that in some cases when R = 0 bidders may use

equilibrium in that they bid b2 (v2) = 0 for positive measure zero of values

(see also Engelbrecht-Wiggans and Kahn (1998), and Ausubel and Cramton

(2004)). But Lemma 1 shows that such behavior disappears if the seller sets a

positive reservation price because it affects both the introductory and succes-

sive strategy as is illustrated in the following example.
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Example 7. Let me continue with Example 4. Imagine the seller sets a pos-

itive reservation price. In equilibrium, the introductory bid strategy is to bid

below R if v1 is below R. By Theorem 1, the successive strategy is strictly in-

creasing for v2 > R and therefore b2 (v̄2, R) > R and by Lemma 4 the bidders

bid their introductory value for v1 ∈ (R, b2 (v̄2, R)) .

The reservation price forces bidders to bid strictly above the reservation

price if their value is above the reservation price. Moreover, since the two

strategies cannot cross it increases the strategy and improves revenue to the

seller. The multi-unit element can motivate bidders to bid at 0 with positive

probability, but the positive reservation prices eliminate such behavior. In

addition, it increases the bidder’s strategy and, hence, revenue to the seller.

These “well-behaved” features are typical for single-unit auctions. Moreover,

the reservation price may improve the allocation efficiency of auctioned units.

It is a question of future research to what extent are these effects present if

the bidders submit more than two bids or in other multi-unit auction types. In

the uniform-price auction when bidders submit more than two bids the bidders

jth bid can influence the price of his j − 1 units of the bidder and j + 1st bid

can influence the price of one more of his units. It seems the bidder has an

incentive to decrease his bid more on the j+1st unit than on his jth unit even

if the values on the jth and the j+1st unit are the same. Then in equilibrium

the bidders submitted bids are such that bj > bj+1. Therefore, if the strategies

on the other than jth unit are the same the two strategies on the jth unit

cannot cross and the reservation price increases the bidder strategy as well

and, hence, the seller’s revenue.

Finally, the following example illustrates that the reservation price can

prevent some kind of collusion of the bidders in repeated games.

Example 8. Consider the auction game of Example 4 with n = k = 4 but

assume that bidders use the following asymmetric strategies. In every even
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game two bidders submit b2 = b1 = v̄1 and the other two bidders bid 0. In

every odd game the two bidders swap their bidding strategies with the other

two bidders.

In each auction round the bidders who bid 0 have no incentive to deviate

because for any other strategy their payoff is nonpositive. But if the seller sets

R > 0 and the bidders use the same strategy, the bidders with values below

R have incentive to bid below R in each round. But if they do so, then the

two opponents with a value above R who bid 0 have incentive to bid above

R. Therefore in each round it is less likely that the auction price is R with a

probability 1.

5. Conclusion

The reservation price and the maximum number of submitted bids of each

bidder are essential policy tools of the uniform-price auction game. When

these two tools are applied in the auction, the bidders’ strategic behavior is

more similar to the one in single-unit auctions.

In a uniform-price auction the bidders often reveal their true value in their

introductory unit bid similarly as in the second-price auction. It is a conse-

quence of the fact that the introductory bid influences only the probability of

winning and not the price the bidder pays in an auction. When bidding on

successive units in a uniform-price auction a bid increase has positive effect

on the probability of winning the unit and the price paid for the introductory

unit when the bid is the first-rejected one. In addition, when opponents change

their equilibrium strategy, the effect on price is less significant than the effect

on the probability of winning. Similar reasoning can be applied for a single-

unit pay-your-bid auction except for the fact that a bid influences the price

of the unit it is submitted for. This analogy means that bidders bid higher

when they have higher value or the reservation price is higher similarly as in

the single-unit auctions (see McAfee and McMillan (1987), Lizzeri and Persico
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(2000)).

But this dependence is not the same for bids on all units for sale. Bids on

higher sold units influence the price paid for more predecessor units. Therefore

the effect on the price of higher unit bids seems to be much more significant

than the effect on the probability of winning. Therefore the equilibrium strate-

gies that are less favorable to the seller occur more often in the set of symmetric

equilibrium strategies.

When each bidder is restricted to submit no more than
⌈
k
2

⌉
units for sale,

the bidders use strategies that are strictly increasing above the reservation

price, and the effect on the seller’s revenue may not be significant because the

bids on
⌈
k
2

⌉
+1st and higher units are low anyway. The two mutually crossing

strategies are not the best responses (at least if each bidder submits two bids).

A consequence of this is that the reservation price increases the symmetric

equilibrium strategy.

Next, when the seller does not limit the bidders to submit a certain number

of bids and does not set a reservation price, the bidders have a tendency to bid

0 on the successive unit with positive probability. Then a positive reservation

price increases the bidders successive strategy and gives the bidders an incen-

tive to increase their bids strictly above the reservation price. Therefore, the

revenue to the seller increases. In addition, other studies (Ausubel and Cram-

ton (2002), Palfrey (1983)) show that the allocation of units is not efficient

in the uniform-price auction (the units are not allocated to those bidders who

value them most). If one treats the reservation price as additional bids, the

higher reservation price may improve not only the revenue but also efficiency.

This effect might be important in the case of small number of bidders. Exam-

ple 8 shows that positive reservation price improves the strategic behavior in

repeated auction games.

Applying a reservation price and a maximum number of bids restriction
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facilitates bidders’ equilibrium behavior that the seller prefers and that are

“common” for single-unit auctions. The seller who uses these two policy tools

can improve the uniform-price auction significantly both from his and the social

welfare point of view.
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6. Appendix

Proof of lemma 1. Consider the restricted game defined in Section 2 when

each bidder can submit l bids. Now consider another game G in which each

bidder can submit k bids. Let us assume that the distribution of values vj for

j = 1, · · · , l of each bidder is the same as in the restricted game from Section

2 and value vj is below the reservation price for j = l + 1, · · · , k. In addition,

assume that each bidder i pays a penalty fee when not revealing his true value

in his introductory bid, therefore his ex post payoff π̂i (vi, bi, c, R) is decreased

by the fee |vi,1 − bi,1| if he wins an introductory value. Note that with this

modified payoff the bidder is worse off if he bids bi,1 (v,R) �= vi,1 instead of

bi,1 (v,R) = vi,1 (cf. with the standard features of single-unit second-price

auction). Then by Bresky (1999) a pure strategy equilibriumm of the game G

exists in that bidders bid bj below the reservation price for j = l+1, · · · , k and

reveal their true value in the introductory bid. Now it is easy to check that m

is an equilibrium in the restricted game defined in Section 2. First note that

the seller does not satisfy the bids below the reservation price that have the

same effect on the strategic consideration of the bidders in the restricted game

where the seller does not accept these bids. Next, realize that if the penalty

is removed from an introductory bid by standard argumentation of single-unit

second-price auction, then the bidder is no better off if he bids bi,1 (v,R) �= vi,1

instead of bi,1 (v,R) = vi,1.

Q.E.D.

Proof of lemma 2. If bj is equal to k + 1− jth highest opponent bid with

positive probability and the bidder bids bj+ε (or bj−ε) for tied values vj > bj

(or vj < bj) and also for values slightly above (or below) the tied values, he

increases the payoff. The reason is that if the tie occurs, he is strictly better

off and if his bid bj + ε (or bj − ε) is the first rejected bid the price change can

be made arbitrarily small. Moreover, for ε sufficiently small the set of values
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above the tied values for that he bids bj + ε has almost measure 0 having

negligible effect on payoff.

Q.E.D.

Proof of corollary 1. If any bidder bids above R on a value not above R,

he may win and gets negative ex post payoff because the auction price is at

least R. Therefore using the condition C1 no bidder does so in equilibrium

because if all bidders have values which are not above R and some of them

bids above R, then at least some of these win and can improve when bidding

below R. Similarly if any bidder bids below R or R on a value above R, then

he may be better off when bidding above R because he gets a positive pay off

with positive probability.

Consider an equilibrium in which two bidders 1 and 2 bid R with positive

probability on the jth unit (j = 2, · · · , l) having the value above R. Then

their bids b1,1, · · · b1,j−1, b2,1, · · · b2,j−1 are not below R and bids b1,j+1, · · · , b1,lj ,

b2,j+1, · · · , b2,lj are not above R. Using the assumption C1 there is a positive

probability that exactly k−(j1 − 1)−(j2 − 1)−1 opponents’ values, and hence

the bids, are above R when R > 0. This implies that b1,j1−1 and b2,j2 are tied

and it cannot occur in equilibrium by Lemma 2.

Q.E.D.

Lemma 6. If condition C1 is valid and 2 ≤ k < 2n, then in any symmetric

equilibrium for any v2 ∈ (R, v̄2) , the best response b2 (v2) ∈ (R, v2) .

Proof.For any value v2 ∈ (R, v̄2) it is obvious that bidding slightly above

R is better than bidding below R. Moreover by Lemma 1 bidding above R is

better than bidding at R otherwise there is a tie at R above 0. Then for any

successive value v2 ∈ [b2 (v̄2) , v̄2) the statement of the lemma is trivial because

b2 (·) is increasing.
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It remains to check that for any v2 ∈ (R, b2 (v̄2)) the best response is below

v2. By the way of contradiction assume that a bidder bids v2 in equilibrium

and consider the sequence of bids b2 → v−2 from below such that there is no

tie when bidding b2 along the sequence. Such a sequence exists because there

is at most countably many mass points in the opponents bid distribution. For

bids b2 > R along this sequence substitute (2.5) into

π (v1, v2, b1, v2)− π (v1, v2, b1, b2)

v2 − b2
=

− (Pk−1 (b2))−

∫ v2
b2

Pk (ck) dck

v2 − b2
+ 2 ·

∫ v2
b2

Pk−1 (ck−1) dck−1

v2 − b2

In the limit as b2 → v−2 one gets

lim
b2→v

−

2

∂π (b2)

∂b2
= Pk−1 (v2)− Pk (v2) =

=
∑

2i2+i1=k−1,
0≤i2,i1≤n−1

(n− 1)!

i2!i1!(n− 1− i2 − i1)!
Ai2 (b2)B

i1 (b2)H
n−1−i1−i2
1 (u1 (b2)) . (6.1)

The summation term in the equation (6.1) is the probability that the bid-

der’s successive bid is the kth highest bid from all submitted bids. I show

that this probability is positive for any successive value v2 from (R, b2 (v̄2)) .

For any v2 ∈ (R, b2 (v̄2)) there is a positive probability that any introductory

bid is above v2 or below v2 by Lemma 3 and 4. In addition, there is positive

probability that any successive bid is below or above v2. Then all factors of

the summation term are positive that finishes the proof.

Q.E.D.

Proof of Lemma 3. During the proof the statements are valid up to a

measure zero set. Let me consider an introductory equilibrium strategy in

which v1 > b1 for a positive measure set of values. Consider opponent bids

assuming that opponent introductory values are between b1, v1. If the lowest of

the opponent’s introductory bids is below b1, then the opponent can improve
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upon his payoff by bidding his introductory value. When all opponents do

so, b1 is losing and the bidder can improve upon his payoff by bidding above

the opponent highest introductory bid (but not above his introductory value).

Since this is true for all opponent introductory values arbitrarily close to v1,

the bidder cannot bid below v1.

Similarly if b1 > v1, opponent introductory values are between b1 and v1,

opponent winning (introductory and successive) bids cannot be above b1 in

equilibrium otherwise the bidders prefer to decrease bids. Since according to

the previous paragraph, opponents do not bid below their introductory value

b1 is a winning bid and the bidder pays the price above v1. But then the bidder

with value v1 prefers to bid below the lowest opponent’s introductory bid (but

not below his introductory value). Since it is true for opponent introductory

values arbitrarily close to v1, the bidder cannot bid above his value. Therefore

b1 = v1.

Q.E.D.

Proof of Lemma 4. Consider the n −
⌊
k
2

⌋
bidders’ introductory values

below b̄2. Using C1 fix the successive bids of other
⌊
k−1
2

⌋
bidders above the

highest of the n−
⌊
k−1
2

⌋
bidders’ introductory values and if k is even, fix the

introductory value of one bidder above the highest of the n −
⌊
k−1
2

⌋
bidders’

introductory values and his successive value below the lowest of the n−
⌊
k−1
2

⌋

bidders’ introductory values. Now repeat the same arguments as in Lemma

3 to show that the group of n−
⌊
k−1
2

⌋
bidders must reveal their introductory

value in their introductory bid. Realize that n −
⌊
k−1
2

⌋
≥ 2 bidders compete

for one unallocated unit when the bids fixed close to b̄2 win.

If b2 (·) is continuous and k ≤ 2 ·n−1, then n−
⌊
k−1
2

⌋
= 1 bidder competes

for one not allocated unit with the opponent successive bids.

Q.E.D.
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Lemma 7. For any v2 ∈ (R, v̄2] the set of successive best responses is the

same for any v1 ∈ [v2, v̄1]. The successive strategy can be characterized by

(4.3).

Proof. Consider v2 ∈ (R, v̄2] with two different v1 and v′1 above v2. Using

similar arguments as in Lemma 3 and 4, the bidder cannot submit a successive

bid strictly above his successive value in symmetric equilibrium.

From Lemma 6 any best response satisfies v2 > b2. By the formula in

Lemma 1 we can see that the set of choices for b2 which maximize the bid-

der’s payoff is independent of the introductory value because min (b1, b
′
1) =

min (v1, v
′
1) ≥ v2 > b2. Since bidders use weakly increasing strategies the best

response may not be unique only in jumps. There is at most countably many

jumps and therefore b2 is independent of v1 up to a measure zero subset.

Q.E.D.

Lemma 8. Assume that h2 (v2) > 0 for v2 ∈ (0, v̄2) almost surely. For any

given opponent strategy denote b2 (·) as the best response of the bidder if it

exists. Then the pointwise best response payoff is a continuous function of

successive value

lim
w→v+

2

π (v1, w, b1, b2 (w)) = lim
w→v−

2

π (v1, w, b1, b2 (w)) = π (v1, v2, b1, b2 (v2))

(6.2)

and no bid b is a better response than b2 (v2)

π (v1, v2, b1, b2 (v2)) ≥ π (v1, v2, b1, b) for any b ∈ [0,∞) . (6.3)

Proof. At first note that limw→v−
2
π (v1, w, b1, b2 (w)) ≤ π (v1, v2, b1, b2 (v2)) ≤

limw→v+
2
π (v1, w, b1, b2 (w)) because if the bidder bids the same for two different

successive values, his expected payoff is higher for the higher value. Therefore

the best response payoff from some value is at least as high as the best response

payoff from any value below.
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By contradiction, assume that limw→v+
2
π (v1, w, b1, b (w)) < π (v1, v2, b1, b)

for some b ∈ [0,∞) . Then if a bidder with value v2+δ submits bid b, his payoff

is almost the same as π (v1, v2, b1, b) for sufficiently small δ > 0 because payoff

is continuous in v2.
4 The proof is the same for w → v−2 up to the fact that

δ < 0. That completes the proof of the equality (6.2) and also (6.3) is obvious.

Q.E.D.

Proof of lemma 5. Consider the symmetric equilibrium strategy b2 (·) . As-

sume that there is a jump at v2 from b̂ = limw→v−
2
b2 (w) , b̌ = limw→v+

2
b2 (w) .

Since there are no ties, if the opponents play equilibrium strategy, the distri-

bution of k − 1st highest opponent bid is continuous weakly increasing and

therefore differentiable almost everywhere that implies differentiability of the

payoff.

Payoff from bidding any b2 ∈
[
b̂, b̌
]
can be expressed as

π (v2, b2) =

∫ b2

b̂

∂π (v2, c)

∂b2
dc+ π

(
v2, b̂

)
.

In symmetric equilibrium v2 = u2 (b2) and therefore ∂u2(b2)
∂b2

= 0 that implies

Pk (b2)−Pk−1 (b2) = Pk (b2, v2)−Pk−1 (b2, v2) and
∂Pk−1(b2)

∂b2
= ∂Pk−1(b2,u2)

∂u2

∂u2(b2)
∂b2

+

∂Pk−1(b2,u2)

∂b2
= ∂Pk−1(b2,u2)

∂b2
. Hence (4.4) implies that ∂π(v2,c)

∂b2
≤ 0. Since by Lemma

8 π
(
v2, b̂

)
= π

(
v2, b̌

)
, it must be that

∫ b2
b̂

∂π(v2,c)
∂b2

dc = 0 which completes

the first part of the Lemma. Moreover if the inequality (4.4) is strict, then

∂π(v2,c)
∂b2

< 0 and therefore b̌ = b̂.

Q.E.D.

Proof of Theorem 1. Consider any two symmetric weakly increasing suc-

cessive strategies b2 (·) and b̄2 (·) that are different on the left neighborhood of

v2 and such that b̂ = limw→v−
2
b2 (w) = limw→v−

2
b̄2 (w) where v̄ > v2 > b̂ ≥ R.

4Since h2 (v2 + δ) > 0 for v2 + δ the bidder could have been strictly better off for a

positive measure of subsequent values.
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Let me denote the lower strategy on the right neighborhood of v2 as b̄2 (·) and

without loss of generality I assume that it is a symmetric equilibrium. I show

that if opponents employ strategy b2 (·) , then the bidder prefers to bid b2 (v2)

than b2 (v2 − δ) for values v2 − δ.

Since k > 2 then there cannot be mass points in the distribution of op-

ponent bids by Lemma 2. To simplify the notation, I will write b2 instead of

b2 (v2 − δ) . Consider the following inequality 0 < π̄ (v2 − δ, b2)− π̄
(
v2 − δ, b̂

)
.

If it is true for all δ ∈ (0,∆0) for some ∆0 > 0, then no strategy below b2 is

the best response including b̄2 (v2 − δ) .5

Therefore it must be that

0 ≥ π̄ (v2 − δ, b2)−π̄
(
v2 − δ, b̂

)
= π̄ (v2, b2)−π̄

(
v2, b̂

)
−δ·

(
P̄k−1 (b2)− P̄k−1

(
b̂
))

.

(6.4)

Let me show that the payoff difference from bidding b2 and b̂ decreases

when the opponents use b2 (·) instead of b̄2 (·)

π̄ (v2, b2)− π̄
(
v2, b̂

)
= π (v2, b2)− π

(
v2, b̂

)
+(v2 − b2) ·

(
P̄k−1 (b2)− P̄k−1 (b2)

)

(6.5)

+2

∫ b̂

b2

(
P̄k−1 (c)− Pk−1 (c)

)
dc−

∫ b̂

b2

(
P̄k (c)− Pk (c)

)
dc.

Since Pk, Pk−1, P̄k, P̄k−1 are weakly increasing functions the integrals can

be approximated by

2 ·
(
b2 − b̂

)
·
(
P̄k−1 (b2)− Pk−1 (b2)

)
−
(
b2 − b̂

)
·
(
P̄k (b2)− Pk (b2)

)
.

Therefore, for δ close to 0, b2 is close to b̂, and integrals are negligible with

respect to the (v2 − b2) ·
(
P̄k−1 (b2)− Pk−1 (b2)

)
because v2 > b̂ and Pk (·) ,

Pk−1 (·) , P̄k (·) , and P̄k−1 (·) are bounded functions.6 Therefore for b2 slightly

5It implies that for all µ ≥ δ : 0 < π̄ (v, b2)− π̄
(
v̂, b̂
)
+ µ ·

(
P̄ (b2)− P

(
b̂
))
.

6Note that (v2 − b2)·P̄k−1 (b2)+2·
(
b2 − b̂

)
·P̄k−1 (b2)−

(
b2 − b̂

)
·P̄k (b2) is approximately

(v2 − b2) · P̄k−1 (b2) because P̄k−1 (b2) if v2 > b2. Similarly for Pk−1 (·) , Pk (·) .
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above b̂ (6.4) implies

0 ≥ π (v2, b2)−π
(
v2, b̂

)
+(v2 − b2)

(
P̄k−1 (b2)− Pk−1 (b2)

)
−δ·

(
Pk−1 (b2)− Pk−1

(
b̂
))

= π (v2 − δ, b2)− π
(
v2 − δ, b̂

)
+ (v2 − b)

(
P̄k−1 (b2)− Pk−1 (b2)

)
.

Since (v2 − b2)
(
P̄ (b2)− P (b2)

)
is positive for δ ∈ (0,∆0) then 0 > π (v2 − δ, b2)−

π
(
v2 − δ, b̂

)
.7 That contradicts the assumption that b2 = b2 (v2 − δ) is the

best response because for positive measure values v2 − δ the bidder can im-

prove upon his payoff. Therefore no opponent strategy above b̄2 (·) on the

left neighborhood of v2 enforces a symmetric best response of the bidder. By

Lemma 6 v2 > b2 (v2) ≥ R for v2 ∈ (R, v̄) that implies that two symmetric

continuous equilibrium strategies can touch only at v2 = b̂ = v̄. Similar logic

can be used to show that no two continuous strategies can emerge from any
[
v2, b̂

]
except if v2 = b̂ = R.

Q.E.D.

Proof of Corollary 2. If k = 2 · n − 1, then each bidder wins the intro-

ductory bid above reservation price unit surely using any strategy without ties

because at most one submitted bid above the reservation price is not satisfied.

Therefore for any such strategy, the bidders’ payoff is the same as if they reveal

their introductory value in an introductory bid. Then by Lemma 5 and the

discussion below, the successive equilibrium strategy is continuous. Since the

proof of Lemma 1 is valid even for v2 = b̂ because P̄k (c) = Pk (c) = 1, there

is at most one continuous successive equilibrium strategy. Then by Lemma 4

for v1 ∈ [R, b2 (v̄2)] introductory strategy is unique.

Q.E.D.

7Recall that b (v̂) = b̄ (v̂) and b (v̂ + δ) > b̄ (v̂ + δ) for positive small δ.
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