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Abstract

We build a dynamic duopoly model that accounts for the empirical obser-
vation of monopoly persistence in the long run. More specifically, we analyze
the conditions under which it is optimal for the market leader in an initially
duopoly setup to undertake pre-emptive R&D investment (“strategic preda-
tion”) that eventually leads to the exit of the follower firm. The follower is
assumed to benefit from the innovative activities of the leader through R&D
spillovers. The novel feature of our approach is that we introduce an explicit
dynamic model and contrast it with its static counterpart. Contrary to the
predictions of the static model, strategic predation that leads to the persis-
tence of monopoly is in general the optimal strategy to pursue in a dynamic
framework when spillovers are not large.
—————————————————————————————————–

V tomto článku konstruujeme dynamický model duopolu, který souh-
laśı s empirickým pozorováńım stálosti monopolu v dlouhodobém horizontu.
Konkrétně analyzujeme podmı́nky, v kterých je pro v̊udce trhu s p̊uvodně
duopolńım uspořádańım optimálńı preventivně investovat do výzkumu a roz-
voje (dále R&D – research & development), což má za následek odchod
druhé firmy (následovńıka) z trhu (strategie “strategického predátorstv́ı”).
U následovńıka se předpokládá, že źıskává výhodu z inovačńıch aktivit v̊udce
přes R&D spillover. Náš př́ıstup je novátorský v tom, že zavád́ıme explicitńı
dynamický model a porovnáváme ho s jeho statickým protěǰskem. V pro-
tikladu s predikcemi statického modelu, strategické predátorstv́ı vedoućı k
stálosti monopolu je obecně optimálńı strategíı, která by měla být v dynam-
ickém konceptu uplatňována pokud spillover neńı př́ılǐs rozsáhlý.
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1 Introduction

Is monopoly an environment conducive to innovation? Is there persistence of mo-

nopoly, or is there a change in the identity of the innovating firm (“leapfrogging”)?

These kinds of questions are not new among economists, but recently they seem to

have been rekindled. In a recent issue of The Economist (2004), the authors of the

already celebrated column “Economics Focus” in their provocatively entitled article

“Slackers or Pace-Setters: Monopolies may have more incentives to innovate than

economists have thought” claimed that monopolies may have a far more promi-

nent role in generating innovation than previously thought. The authors further

expressed doubts about the prevailing economic theory according to which “a mo-

nopolist should have far less incentives to invest in creating innovations than a firm

in a competitive environment.” Apparently, there is some controversy regarding the

role of market power and monopolies in creating innovations, and the key to resolv-

ing it lies in the underlying incentives to engage in innovation. Recent empirical

evidence seems to support these Schumpeterian allegations from The Economist:

there is a positive relationship between market power and intensity of innovation

(see, for instance, Blundell et al., 1999; Carlin et al.; 2004, Aghion and Griffith,

2004). Commenting on this empirical evidence, Etro (2004) stated that it “is con-

sistent with pre-emptive R&D investment by the leaders.” As a consequence of such

strategic behavior, there may be only one firm at the end of the day, but this firm

would display far more competitive behavior than the standard monopolist; it would

generate a higher flow of R&D, charge a lower price, and produce more.

There are many real-world examples of monopolistic or dominant firms that in-

vest more in innovation and R&D than their rivals (see Etro, 2004), and that survive

over a long period of time. AT&T, a giant American telecommunications company

publicly listed on the New York Stock Exchange under the ticker symbol T, is a

good case in point. Founded in 1885, the company is one of the largest telephone

companies and cable television operators in the world. AT&T provides voice, video,

data, and Internet telecommunications services to businesses, consumers, and gov-

ernment agencies. After becoming the first long-distance telephone network in the

US, AT&T made huge investments in research and development. As a result, the

company obtained near monopoly power on long-distance phone services. Heavy in-

vestments in R&D together with aggressive behavior on the market allowed AT&T

to acquire crucial inventions and to spread its near monopoly power to other mar-

kets. The company both bought patents for significant innovations1 and undertook

1For instance, during the early 1920s, AT&T bought Lee De Forest’s patents on the “audion”,
the first triode vacuum tube, which let it enter the radio business.
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innovations itself2. Only after a suit against AT&T in 1982 followed by the breakup

of the company into several local independent units called “Baby Bells” in 1984,

did the US telephone industry become competitive, with other companies entering

the market. And yet, although it lost part of its market power on long-distance

telephone services, the company has continued its aggressive investments in R&D.

In 2004, AT&T introduced a new technology allowed businesses to securely run their

private networks without interruption on AT&T’s leading global Internet Protocol

network. This move assuredly keeps the company a leader in IP networking. In the

words of corporate promoters, “backed by the research and development capabilities

of AT&T labs, the company is a global leader in local, long distance, Internet and

transaction-based voice and data services.”

The above observations on the relation between innovation, leadership, and mar-

ket power motivate our paper in that we aim to describe and analyze a particular

setup in which the persistence of monopoly can arise in the long run. More specif-

ically, we study the situation in which the market leader undertakes pre-emptive

R&D investment (or, in our words, adopts “strategic predation”), that eventually

leads to the exit of the follower firm and/or prevents or limits the entry of new firms,

and we contrast this situation with one in which the leader (within the same setup)

“accommodates” the follower, that is, co-exists with the follower in a duopoly mar-

ket structure. This comparison will enable us to study both positive aspects (for

instance, which strategy yields higher R&D intensity or R&D stock) of the two

main strategies – accommodation and strategic predation, and normative aspects

(social welfare implications) of the two resulting market structures: duopoly versus

(constrained or unconstrained) monopoly. The latter aspect, as we will see, carries

important policy implications.

The novel feature of our approach is that we utilize an explicit dynamic model

and contrast it with its static (or quasi-dynamic) counterpart. This comparison

can be considered as the topic per se of our paper. Since strategic innovations are

inherently dynamic phenomena, we argue that a suitable model aimed at capturing

both accommodating and pre-emptive or predatory behavior of the dominant firm

should be explicitly dynamic. Furthermore, to emphasize the role of the leader we

assume that the leading firm is the only one that invests in innovation, while the

follower imitates through R&D spillovers. The rationale for introducing spillovers

stems from the fact that innovations, in general, are subject to R&D spillovers for

which the recipients need to have the so-called “absorptive capacity,” that is, the

“ability to identify, assimilate, and exploit knowledge from the environment and

2Notably, the first commercial communications satellite, Telstar I, was commissioned by AT&T
in 1962.
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to apply it to commercial ends” (Cohen and Leventhal, 1989 and 1990).3 The

importance of R&D spillovers, imitations, and their economic implications seems to

be well and broadly documented both in the theoretical and empirical literature (see,

for instance, Griliches, 1992). However, most of the theoretical models are static

in nature, and focus on the accommodation strategies. That is, strategic predation

is simply ignored or precluded by assumptions (so that it is never optimal). In

such situations unilateral R&D spillovers create disincentives to invest in R&D and,

consequently, hamper innovations. However, as we will see, in most cases in which

strategic predation is optimal, the economic implication of R&D spillovers is exactly

the opposite. They enhance the incentive to invest in R&D.

A static (or quasi-dynamic) simple two-stage duopoly model will serve as a bench-

mark for our subsequent dynamic analysis. This should come as no surprise since

the concept of two-stage (or n-stage) competition used to be a standard tool to

tackle the above-mentioned types of strategic interactions. The concept of two-

stage competition concentrates on identifying “strategic effects” that influence first-

period behavior and aims to characterize the resulting strategic rivalry. It has been

proven successful in that the same strategic principles (e.g., “overinvestment” or

“underinvestment”) apply in many economic environments, and the comparative

static results from static oligopoly theory can be used to provide information about

strategic behavior (see Fudenberg and Tirole, 1984; Tirole, 1990; Shapiro, 1989; and

Etro, 2004). However, such a concept relies on an artificial time structure, since the

final (i.e., second or n-th) period is essentially one of static oligopoly (see Shapiro,

1989). From the perspective of the full-fledged dynamic model, it gives at best the

“steady state values” of the true underlying dynamic game. Thus, it is lacking the

explicit motion of the strategic variables over time and its accompanying compar-

ative dynamics. More importantly, the set of strategies available to firms may be

richer than in the corresponding static model. Moreover, the dynamic adjustment

process is neglected in n-stage competition games.

In order to contrast the standard static two-stage competition approach with its

dynamic counterpart, we first construct a specific two-stage game and then build

its explicit dynamic version. More specifically, the benchmark model is a two-stage

asymmetric duopoly game in which one firm (Firm 1) has a strategic advantage in

the form of prior (first-stage) investment in R&D that leads to a unit cost decrease,

while the second firm benefits from R&D spillovers. In the second stage the two

firms compete in quantities. Thus both firms are assumed to be initially sustainable

3For an alternative approach that focuses on the incumbent’s absorptive capacity see Wiethaus
(2005). Under certain plausible conditions, Wiethaus (2005) demonstrates that a monopolist is
able to retain its persistence by strategically investing in excess absorptive capacity.
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in the market. We then construct an explicit dynamic counterpart of that game.

To concentrate on the strategic aspects within the dynamic model we push the

tactical decision (i.e., selecting the optimal quantity) to the background and deal

with the so-called reduced-form profit function, making the firms’ flows of profits a

function of unit costs. Unit costs of the firms serve as so-called “state variables”

that are governed through the “control” variable, namely R&D expenditures. An-

other important feature here is that passage from a two-stage model to a dynamic

one requires the introduction of a specific adjustment parameter that captures the

speed with which the R&D investments translate into the unit cost reduction (see,

for example, Fersthman and Kamien, 1987; and Stenbacka and Tombak, 1993 for

utilization of a similar approach). This makes our model more realistic because now

it mimics the unavoidable time delay between R&D investment and corresponding

R&D output. The dynamic approach also enables us to study the behavior of the

strategic variable over time and some of its comparative dynamic effects, as well as

the adjustment process, all of which are missing in the simple two-stage framework.

Finally and most importantly, in an explicit dynamic model we can analyze how

the optimal strategy of a firm that possesses a strategic advantage may lead to a

change in market structure over time and thus create persistence of monopoly. This

phenomenon is not possible in a static two-stage game. In other words, the strategic

advantage of Firm 1 would enable it to exhibit pre-emptive behavior (or strategic

predation) on its rival, turning the initial duopoly market structure into a monopoly.

Our analysis provides the following new insights:

a) Strategic predation becomes an even more attractive strategy to pursue when

the adoption of new technology accelerates. More specifically, the parameter

space in which strategic predation is optimal increases with the speed of the

adjustment parameter and soon becomes a dominant part of this region. The

intuition is that during the predation period (up to certain time T ), the firm

might be willing even to incur losses in order to enjoy monopoly profit from

time T onward. Thus, unlike a static game, in a fully dynamic model the

costs of predation last only for a limited period and have to be contrasted to

the infinite stream of monopoly profit afterwards. As a consequence, Firm 1

displays more aggressive behavior compared to its behavior in the two-stage

game. Moreover, the innovative effort and output are usually bigger (and the

price is lower) compared to the situation in which the leading firm adopts an

accommodation strategy. This in turn results in larger generated social welfare

in a monopoly than in a related duopoly setup. However, for a comparison of

these two strategies (accommodation versus strategic predation) to be possible,
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both strategies have to be initially feasible, and that in turn requires the level

of R&D spillovers not to be “too large”. Thus, our model generates results

that are consistent with recent empirical findings reported in the “Economic

Focus” (The Economist, May 2004).4

b) The underling dynamic optimization problem in the case of strategic predation

is rather different than in the case of duopoly, where firms maximize their dis-

counted profit over an infinite time horizon. In the case of strategic predation,

Firm 1 aims to minimize the time that leads to the expulsion of Firm 2 from

the market. The idea here is that Firm 1 may even bear temporary losses

in order to enjoy the monopoly position later on. Imposing an upper bound

on the sustainable strategic losses that Firm 1 is willing to sacrifice over the

period from zero till T suffices to determine the lower bound on the minimum

time to force the exit. This approach formalizes the “long-purse” story.

c) The time pattern of R&D investment crucially depends on the equilibrium

strategy: If accommodation is the optimal strategy, then Firm 1 commits to

the R&D path which steadily increases over time towards the unique steady-

state value. When, on the other hand, strategic predation is the optimal

strategy, the time profile of R&D is reversed: that is, the shorter the target

time, T , at which Firm 2 is forced to exit, the higher the “predatory” level

of R&D investment has to be. In other words, the level of optimal R&D

investment decreases with the increase in the target time. (Note that to force

an immediate exit of Firm 2 is not viable since it would require an infinite

amount of R&D, when the speed of adjustment is finite.)

d) As a finding of independent interest, we show that the steady-state values of

R&D investment in a dynamic model can be interpreted as generalized values

of the equilibrium values obtained in the two-stage approach. If the adjustment

is instantaneous (meaning that there is no time delay between R&D input and

its output) as implicitly assumed in a two-stage game, or if the rate of time

preference (or interest rate) is neglected, then these two sets of values coincide.

2 The Two-Stage Competition

The basic static model is a two-stage game (see, for instance, Žigič 1998, 2000).

In the first stage, Firm 1 chooses its R&D expenditure x that, at the same time,

4Etro (2004) developed an alternative model that is also consistent with the above stylized
facts. In his model, the persistence of monopoly requires a large number of potential entrants.
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represents the level of R&D investment. In the second stage, the firms compete in

quantities. Firm 1 has unit costs of production c1 such that:

c1 = c0 −√gx, x ≤ c2
0

g
, (1)

where the parameters g and c0 describe the efficiency of the R&D process and pre-

innovative unit costs, respectively. The expression
√

gx is an “R&D production

function,” where, as in Chin and Grossman (1990), g ∈ (0, 4) (the upper bound of

this interval is determined by the required positivity of the monopoly output).

Firm 2 benefits through spillovers from the R&D activity carried out by Firm 1.

Its unit cost function is

c2 = c0 − β
√

gx, β ∈ [0, 1], (2)

where β denotes the level of spillovers (which, say, reflects the strength of intellectual

property rights [IPR] protection).

We assume the linear inverse demand function: p = A−Q. Parameter A captures

the size of the market (where A > c0), variables q1 and q2 denote the quantities of

the two firms’ productions, and Q ≡ q1 + q2 represents the aggregate supply.

In the second stage, given Firm 1’s R&D investment, the two firms engage in

Cournot-Nash competition. Firm 1 maximizes profit net of the R&D expenditures.

The first-order conditions of firms’ profit maximization yield

c1 = A− 2q1 − q2, c2 = A− q1 − 2q2. (3)

Solving the “reaction functions” yields the Cournot equilibrium outputs and price

as functions of R&D investment:

q1 =
A− 2c1 + c2

3
, q2 =

A + c1 − 2c2

3
, p =

A + c1 + c2

3
. (4)

Substituting expressions (4) into the profit function yields Firm 1’s profit function

expressed in terms of R&D investment:

π1(x) =
(A− 2c1 + c2)

2

9
− x = q2

1 − x. (5)

In the first stage of the game, Firm 1 selects x to maximize its profit. By substituting

expressions (1) and (2) for c1 and c2 into (5) and maximizing with respect to R&D
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investment,5 we obtain:

x∗ =
(A− c0)

2(2− β)2g

(9− (2− β)2g)2
. (6)

It is straightforward to check that Firm 1’s R&D effort decreases with an increase

in spillovers, that is, ∂x∗
∂β

< 0.

Since spillovers are in general imperfect (β < 1), there is a critical value of R&D

efficiency g̃d (leading to critical unit cost asymmetry between two firms, which in

turn leads to zero profit of Firm 2), defined as a function of β by

g̃d(β) =
3

(1− β)(2− β)
, (7)

such that for g > g̃d duopoly ceases to exist (see Figure 1)6. Equivalently, for any

given g, there exists a critical value β̃d below which duopoly is not viable. This

critical value is simply obtained by inverting (7).

When R&D efficiency exceeds g̃d two possibilities may occur: unconstrained

monopoly and monopoly constrained by the credible threat of entry by Firm 2 (or

shortened “constrained monopoly”). To see this, let us look first at the optimal

quantity, R&D expenditures, and price if unconstrained monopoly emerges. Firm

1, which is now assumed to be a monopolist, maximizes

max πm = (A− qm)qm − c1qm − x. (8)

The first-order condition for a maximum yields A−2qm−c1 = 0. Solving for qm and

substituting in (8) yields πm(x). Substituting expression (1) for c1 into the πm(x)

and maximizing with respect to the R&D investment (x), we obtain

x̃m =
(A− c0)

2g

(4− g)2
(9)

with the corresponding price

p̃m =
A(2− g) + 2c0

4− g
(10)

(note that spillovers play no role in the case of monopoly).

5We assume that c0 is sufficiently large in all cases to ensure that the non-negativity constraint
on c1 does not bind. The second-order condition is satisfied for all permissible values of parameters,
so the optimal expenditure x∗ is always positive.

6We use ˜ (tilde) sign to mark static values, while in the dynamic model tilde is omitted in
congruent variables.

8



To find the parameter values which allow for pure monopoly to exist, we have to

evaluate the reduced profit function of Firm 2, that is, π∗2(x), at Firm 1’s optimal

R&D investment level expressed in terms of parameters, and determine the region

of parameters that leads to π∗2(x̃m) ≤ 0. Equivalently, for Firm 1 to acquire an

unconstrained monopoly position, it is necessary that p̃m ≤ c0 − β
√

gx̃m. Such

a post-innovative situation is that in which “drastic innovation” takes place (see

Tirole, 1990). By substituting for p̃m and x̃m in the above expression we obtain the

critical efficiency g̃p as a function of β:

g̃p(β) =
2

1− β
, (11)

such that for g > g̃p the equilibrium market form is unconstrained monopoly. The

critical spillover level below which Firm 1 gains an unconstrained monopoly position

is labeled as β̃p.

However, if we compare this critical condition with the one required to sustain

an asymmetric duopoly, we see that there is a region of parameters β and g where

there is neither pure monopoly nor sustainable duopoly (the area between g̃p and g̃d

in Figure 1).

Insert Figure 1 HERE

If the degree of spillovers and the efficiency of cost reductions happen to be in

this region, Firm 1 exhibits so-called “strategic predation,” (i.e., it chooses R&D

expenditures in such a way as to cause q∗2 = 0 in equilibrium and thus induces the

exit of Firm 2). Note that efficiency parameter g in this situation is in the range of

3

(1− β)(2− β)
≤ g ≤ 2

1− β
(12)

whereas β stays below 1
2
. There are two useful corollaries resulting from the above

discussion: Firm 1 can enjoy the monopoly position only if spillovers are “small”

(β < 1
2
) and the R&D efficiency is rather high; more specifically, g ≥ g̃p(β) has to

hold. Second, since strategic predation is an option always available to Firm 1, this

strategy is optimal only if spillovers and R&D efficiency are in the region described

by (12). Note that the region is rather small. Furthermore, the optimal R&D level

is given by

x̃∗p =
(A− c0)

2

(1− 2β)2g
, (13)
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where subscript p stands for predation. Notably, in the region of optimality of

predation x̃∗p increases in β.

3 Dynamic Counterpart of the Static Model: The

Case of Duopoly

3.1 Setting of the Problem

We first consider the setup in which both firms operate over an infinite time horizon.

Firm 1 aims to determine its optimal R&D path that maximizes its discounted

stream of profit (or, equivalently, its market value) over time. In doing so it takes

into account the effect of R&D spillovers on its competitor’s unit costs. As already

mentioned in the introduction, it is more practical to analyze this issue by relying

on the reduced form profit function, which depends only on the firms’ respective

unit costs. The unit costs are in turn the function of the central strategic variable,

R&D investment, or expenditures7. In order to build a genuine dynamic model,

we assume that it takes time for R&D investment to transform into a decrease

in unit costs (otherwise the problem would be inherently static; see discussion in

footnote 15). Thus, there is a “speed of adjustment” coefficient that captures the

above-mentioned time delay (more precisely, the inverse of it). In this respect our

model closely follows that of Stenbacka and Tombak (1993) (see also Fershtman and

Kamien, 1987 for a similar approach).

Technically, the problem for Firm 1 is represented as an infinite horizon optimal

control problem with two state and one control variable. More specifically, the

problem is given by

max
x(t)

I(x(t)) =

∫ +∞

0

[Π1(c1(t), c2(t))− x(t)]e−rt dt, (14)

subject to

(a)
dc1

dt
= µ(c0 − c1(t)−

√
gx(t)),

(b)
dc2

dt
= µ(c0 − c2(t)− β

√
gx(t)),

with initial conditions c1(0) = c2(0) = c0, where x(t) is the control variable (R&D

expenditures), c1(t) and c2(t) are the state variables (costs of production).8,9

7In the text, we use interchangeably ’R&D expenditures’ and ’R&D investment’.
8Subscript 2 refers to Firm 2; subscript 1 refers to Firm 1 and will be omitted in what follows.
9Our model can be easily adapted to capture the effect of R&D subsidization by introducing a

new term sx in the objective function, where s ∈ [0, 1] is the subsidization rate: maxx(t) I(x(t)) =

10



Note that the laws of motions (a) and (b) require sufficient perpetual investments

in order to prevent the costs from increasing. If the investment is not sufficient, the

costs tend to revert back to their initial value c0. In particular, when there is no

investment in R&D, the costs will converge to c0. This can be interpreted as some

kind of depreciation of knowledge or skills.10

At each point in time, the gross profit function (that is, R&D costs are not

subtracted) is given by

Π1(c1, c2) = (p− c1)q1 = (A− (q1 + q2)− c1)q1, (15)

with q1(t) and q2(t) denoting quantities of good produced, while constants c0 (pre-

innovative unit costs) and β ∈ [0, 1] (the level of spillovers) are equivalent to those in

the static model. New parameter µ > 0 represents the speed of adjustment, while g,

the efficiency of R&D process, now belongs to the interval (0, 4ρ) with some ρ ≥ 1,

due to the requirement for monopoly output to be positive in the dynamic context

(see Section 4.4 or Vinogradov and Žigič, 1999). Parameter ρ can be viewed as a

so-called “generalized discount factor” and is defined in the following subsections.

Symmetrically to Π1, instantaneous gross profit function for Firm 2, Π2 is defined

as

Π2(c1, c2) = (p− c2)q2 = (A− (q1 + q2)− c2)q2.

If Πi are maximized at each point in time, we can obtain q1 and q2 as functions of

c1 and c2 from the first-order conditions (which are the same as in the two-stage

model),11 and yield the quantities and price as given by (4). Then Firm 1’s profit

becomes

Π1 =
1

9
(A− 2c1 + c2)

2 = q2
1. (16)

Thus the linear transformation as given by (4) brings the optimal Π1 into symmetric

diagonal quadratic form in the (q1−q2) plane.

Now we are in a position to re-formulate the initial problem. Applying transfor-
∫ +∞
0

[Π1(c1(t), c2(t))−x(t)+sx(t)]e−rt dt. Qualitatively, little will change in our analytical approach
(developed further in Sections 3 and 4) though.

10The expression µ(c0 − ci(t)) then corresponds to the depreciation rate (with i = 1, 2).
11Here we implicitly assume that Firm 1 and Firm 2 form a duopoly irrespective of the value of

x. However, later in Lemma 1 it will be shown that the duopoly is not necessarily sustainable.
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mation (4), state equations (14a) and (14b) read as follows:

q̇1 = µ(B − q1 + γ1

√
x), (17)

q̇2 = µ(B − q2 + γ2

√
x), (18)

where B = 1
3
(A − c0), γ1 = 1

3
(2 − β)

√
g, γ2 = 1

3
(2β − 1)

√
g. Similarly, the price

pattern can be described by the following differential equation

ṗ = µ ((B + c0) + p(t)− (γ1 + γ2)
√

gx) . (19)

With state equations (17)–(18), the optimal control problem (14) loses one state

dimension and takes the form

max
x(t)

I(x(t)) =

∫ +∞

0

(q2
1 − x(t))e−rt dt, (20)

subject to
dq1

dt
= µ(B − q1(t) + γ1

√
x(t)). (21)

3.2 Optimal Solution

3.2.1 The First-Order Conditions

The first-order conditions from the Hamiltonian function associated with the above

problem yield the following differential equation (see Appendix for details):12

ẋ = 2(r + µ)x− 2γµq
√

x. (22)

Equation (22) determines the dynamics of the optimal R&D path. Let us introduce

the new control variable z ≡ √
x. Since ẋ = 2zż, the substitution x = z2 linearizes

the equation of motion of the control variable x (22); thus ż = (r + µ)z − γµq.

Finally, the joint dynamics of the state and control variable is given by the following

system of linear differential equations

ż = (r + µ)z − γµq, (23)

q̇ = µ(B + γz − q), (24)

which is investigated in detail in the remaining part of this section.

12For simplicity we drop the subscript 1 in further text.
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3.2.2 Existence of the Equilibrium (Steady-state) in Duopoly

Let us define ρ as ρ = r
µ
+1. Parameter ρ can be interpreted as a generalized discount

factor, that is, as the interest rate corrected by the speed-of-adjustment coefficient:

given r, the higher the level of µ is, the faster R&D investment materializes, and

the more important the future becomes.

System (23), (24) has a unique equilibrium (steady-state):

z∗ =
Bγµ

r + µ(1− γ2)
=

Bγ

ρ− γ2
=

(A− c0)(2− β)
√

g

9ρ− g(2− β)2
, x∗ = (z∗)2, (25)

q∗ =
B(r + µ)

r + µ(1− γ2)
=

Bρ

ρ− γ2
=

3(A− c0)ρ

9ρ− g(2− β)2
. (26)

Since z(t) must be non-negative, the equilibrium may arise only in the positive

quadrant (i.e., z∗ > 0, q∗ > 0). Therefore, the equilibrium exists if and only if

γ2 < ρ, or, equivalently, if and only if r + µ(1 − γ2) > 0, or (2 − β)2 < 9ρ
g
, or

g < 9ρ
(2−β)2

.

It is straightforward to show that values (25) and (26) coincide with the static

equilibrium values in the corresponding two-stage game13 if ρ = 1, which in turn

requires that either discount rate is zero or that the impact of R&D investment is

instantaneous (that is, the speed of adjustment is infinite, µ = ∞). This is a more

general result than the one obtained by Kobayashi (2001), where in his somewhat

different approach the steady-state values collapse to the corresponding two-stage

game equilibrium only if the discount rate is zero.14 Moreover, the steady-state

value of investment monotonically increases with µ, since

∂z∗

∂µ
=

Bγr

(r + µ(1− γ2))2
> 0.

Note that similar to the two-stage game, the equilibrium values of R&D expen-

ditures and the quantity of good produced by Firm 1 both are decreasing functions

of spillovers β:

∂z∗

∂β
=

∂

∂β

(
(A− c0)(2− β)

√
g

9ρ− g(2− β)2

)
=

(
−(A− c0)

√
g(9ρ + g(2− β)2)

(9ρ− g(2− β)2)2

)
< 0,

13E.g., see equation (6) for equilibrium R&D in a static version of our model.
14Kobayashi (2001) made a differential game version of the D’Aspremont and Jacquemin (1988)

two-stage game, where the dynamics of the model stems from a depreciation of R&D stock rather
than from the speed of adjustment.
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thus ∂x∗/∂β = 2z∗ · ∂z∗/∂β < 0. Moreover,

∂q∗

∂β
=

∂

∂β

(
3(A− c0)ρ

9ρ− g(2− β)2

)
=

(
−3(A− c0)ρ · 2g(2− β)

(9ρ− g(2− β)2)2

)
< 0.

3.2.3 The Dynamics of R&D and Output

The existence of a unique equilibrium also implies the existence of an optimal path

of R&D and output converging to this equilibrium (in particular, the existence of

the “optimal control” path for x), as we show below.

Lemma 1. If γ2 < ρ (i.e., g < 9ρ
(2−β)2

) then there exists a unique optimal path of x,

converging to the steady-state.

Lemma 2. For any γ, the optimal control always exists if either (i) g < 9
4
ρ, or (ii)

µ < 9
7
r.

For proofs of Lemmas 1 and 2 see the Appendix.

Let us now assume that in what follows the inequality γ2 < ρ always holds true.

Next we determine the analytical solution to system (23)–(24). Straightforward

computations imply the following closed-form solution for output and R&D (see the

Appendix for technical details):

qopt(t) = − Bγ2

ρ− γ2
e

1
2

(
ρ−1−

√
(ρ+1)2−4γ2

)
µt

+ q∗, (27)

zopt(t) = − Bγ2

ρ− γ2
· 2γ

ρ + 1 +
√

(ρ + 1)2 − 4γ2
e

1
2

(
ρ−1−

√
(ρ+1)2−4γ2

)
µt

+ z∗. (28)

Then, the price pattern induced by investments zopt is

popt(t) =
Bγ(γ + γ2)

ρ− γ2
e

ρ−1−
√

(ρ+1)2−4γ2

2
µt + p∗, (29)

where

p∗ = (B + c0)− (γ + γ2)
√

gz∗ = A− (A− c0)
6ρ− g(2− β)(1− β)

9ρ− g(2− β)2
(30)

is the steady-state price. Note that if adjustment takes place instantaneously (µ =

∞), then

q(t) ≡ q∗, z(t) ≡ z∗,

14



as predicted by the static model.15 In this case, Firm 1’s maximal profit is

∫ ∞

0

[(q∗)2 − (z∗)2]e−rt dt =
(q∗)2 − (z∗)2

r
=

(A− c0)
2

(9− g(2− β)2)r
. (31)

Also note that the optimal R&D investment monotonically increases and the

price monotonically decreases over time towards their steady-state values.16 As

noted earlier, the steady-state value of investments is higher with higher values of µ

and coincides with its static counterpart when µ →∞. In this case, the adjustment

becomes instantaneous, and the speed of convergence (as measured by the absolute

value of the exponent in (27), (28)) monotonically increases.17 The rationale is

that a higher rate of transformation of R&D inputs into lower unit costs (higher µ)

decreases the time gap between the R&D investment and its benefits expressed in

terms of future profits. As a consequence, for higher µ, the convergence of R&D

investments towards the steady-state is faster. For illustration, Figure 2 displays

time paths of R&D levels, while Figure 3 plots the growth rates of R&D expenditures

(the speed of convergence of R&D to the steady-state values), for different µ.

Insert Figure 2 HERE

Insert Figure 3 HERE

3.3 Feasibility of Duopoly

Let us now address the issue of feasibility of a duopoly. In a duopoly scenario, quan-

tities of goods produced by both firms must be strictly positive: q(t) > 0, q2(t) > 0

for all t ≥ 0. (Recall the initial conditions: q(0) = q2(0) = 1
3
(A− c0) = B.)

It can be easily shown (see lemma below) that Firm 1 always produces a positive

quantity of goods. For Firm 2 to operate, however, it is sufficient (but not necessary)

that β > 1
2
. In other words, neither strategic predation nor unconstrained monopoly

are viable in this β-region: given the upper bound of technological efficiency (g <

4ρ), high technological spillovers prevent the critical gap in unit costs for monopoly

to occur.

Lemma 3. q(t) > 0 for all t ≥ 0 and all feasible β, g.

15Alternatively, we can find the optimal solution under the instantaneous adjustment scenario
by applying so-called Euler’s equation: See the Appendix for details of derivation.

16Obviously, the exponent is negative, since ρ > γ2.
17Note that due to the condition γ2 < ρ = 1 + r

µ , the inequality γ < 1 is necessary in order to
have the set of feasible values of µ unbounded.
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Lemma 4. If β ∈ (1
2
, 1), then q2(t) > 0 for all t ≥ 0 (no matter what the value of

g is).

For proofs of Lemmas 3 and 4 see the Appendix.

If the steady-state value of q2 were non-positive, q∗2 ≤ 0, it would indicate that

Firm 2 cannot compete with Firm 1 in the long run. Thus the inequality q∗2 ≤
0 implies that the duopoly is not sustainable in the long run and the strategic

predation may become the optimal strategy. In other words, if there exists T such

that q2(T ) = 0 then Firm 2 may not be capable of survival after time T (T can be

either finite or infinite). If Firm 1 eliminates Firm 2 at (finite) time T , we say that

Firm 1 exhibits strategic predation.

Let us define

gd =
3ρ

(1− β)(2− β)
. (32)

Technically speaking, the condition of non-sustainability of duopoly can be formal-

ized as follows:

Lemma 5. For q∗2 to be non-positive, it is necessary that β < 1
2

and sufficient that

g ≥ gd.

For proof of Lemma 5 see the Appendix.

From Lemma 4 and Lemma 5 we conclude that Firm 1 coexists with Firm 2 if

β > 1
2
, and Firm 1 eliminates Firm 2 if g ≥ gd. Note that for g ≤ 4ρ these conditions

cannot hold simultaneously, since β > 1
2

implies gd > 4ρ (see also Figure 6). The

border case β = 1
2

requires an additional comment. If β = 1
2

then Firm 2 always

produces the fixed quantity (equal to B) of the good, with no attention to R&D

activity performed by Firm 1. If g < gd and β ≤ 1
2

then constrained monopoly may

emerge.

The following proposition summarizes our findings:

Proposition 1. Let β ≥ 0. Then in the steady-state the following statements hold:

1. The condition β > 1
2

implies that duopoly is sustainable.

2. The condition g ≥ gd implies that duopoly is not viable in the long run.

The equality g = gd represents an upper boundary on values of g where duopoly

is feasible. It is easy to observe that gd decreases in µ and becomes 3
(1−β)(2−β)

as

16



µ → ∞. Interestingly, this is the same critical value as in the static model (see

expression (7)).

Note also that condition g ≥ gd can be rewritten as a condition for β, in the form

β ≤ 1
2

(
3−

√
1 + 12ρ

g

)
. Furthermore, observe that viability of duopoly implies the

existence of the optimal control (but not vice versa) and that the range of parameters

in which dynamic duopoly is viable is broader than in its static counterpart due to

the fact, that the difference in unit cost of the two firms does not occur immediately,

and due to the fact that the discount rate is in general positive.

4 Achieving Monopoly Position

4.1 Phase I: Strategic Predation

Instead of dealing with an infinite-horizon problem, let us consider a time-optimal

problem with a horizontal terminal line. The objective of Firm 1 now is to reach the

target of eliminating of Firm 2 in the minimum amount of time and gaining a position

of constrained monopolist. The time-optimal nature of the problem is conveyed by

the objective functional maxx(t)

∫ T

0
−1 dt, subject to the following constraints and

terminal conditions:

q̇ = µ(B − q + γ
√

x), q(0) = B, q(t) ≥ 0, (33)

q̇2 = µ(B − q2 + γ2

√
x), q2(0) = B, q2(T ) = 0, T is free, (34)

given that the optimal control x lies within the interval [0, xu] (the value of xu is to

be computed later; this is the so-called “big-bang control”).

Since Lemma 3 implies that q(t) > 0 for all t, and q(0) = q2(0) = B, the

constraints in (33) do not bind. Therefore, after substituting z for
√

x, the time-

optimal problem reads as follows:

max
z(t)

∫ T

0

−1 dt (35)

subject to

q̇2 = µ(B − q2 + γ2z),

q2(0) = B, q2(T ) = 0,

T is free and z ∈ [0, zu].
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Solution of the above problem (see the Appendix for details) yields

T = − 1

µ
ln

(
B + γ2z

u

γ2zu

)
. (36)

Note that the positivity of T demands that both the numerator and the denominator

be negative: B + γ2z
u < 0 and γ2z

u < 0. Again, this observation is consistent with

the fact that predation can only take place with β < 1
2

and q∗2 ≤ 0.

We can also invert (36) and express zu as a function of T :

zu(T ) = − B

(1− e−µT )γ2

=
A− c0

(1− 2β)
√

g(1− e−µT )
. (37)

Once zu(T ) is known, it also becomes possible to evaluate optimal output in strategic

predation from the equation

q̇ = µ(B − q + γzu(T )). (38)

Equation (38) has a closed-form solution (recall the initial condition q(0) = B):

q(t) = γzu(T )(1− e−µt) + B =
A− c0

3

(
1 +

2− β

1− 2β
· 1− e−µt

1− e−µT

)
. (39)

This also implies that the output of Firm 2 (which can be obtained after substitution

of (37) into (64)) is:

q2(t) =
A− c0

3
· 1− e−µ(T−t)

1− e−µT
.

Interestingly, this pattern is independent of parameters β and g. However, the

optimal predation time might depend on them (see Section 5.2).

In particular, at time t = T , when Firm 2 is eliminated, we get

q(T ) = (A− c0)
1− β

1− 2β
(40)

and q2(T ) = 0. Note that q(T ) is positive if and only if β < 1
2
. Hence only β < 1

2

allows for predation. On the other hand, if β ≥ 1
2
, the only feasible market structure

is duopoly (see also Proposition 1).

With q(T ) given by (40), the firms’ costs at time T are c1(T ) = A− 2q(T ) and

c2(T ) = A − q(T ). Interestingly, none of these values depends on time T . Hence,

regardless of when Firm 2 is eliminated, Firm 1 has the same starting point18 as a

18I.e., the unit costs and quantities of both firms do not depend on T .
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(constrained or unconstrained) monopolist.

Note that the optimal time profile of R&D investments is declining with T . The

shorter the desired time for the elimination of the competitor is, the larger the

R&D investment should be. This functional relationship between zu and T can be

depicted as in Figure 4. This result deserves special emphasis, for on the one hand

(37) enables us to find the optimal level of R&D expenditures needed to eliminate

Firm 2 after any given point in time T , and on the other hand it establishes the

relationship between the static model and its dynamic counterpart, proving once

again that the static model is in a sense just a limiting case of the dynamic one.

Insert Figure 4 HERE

Further note that, contrary to the case of duopoly, we now have dzu/dβ > 0

and dzu/dµ < 0. The first inequality implies that in order to eliminate the rival in

a given time T , Firm 1 needs to invest more in R&D when the spillovers higher.

With higher spillovers, Firm 2 adopts a larger part of Firm 1’s technology and the

difference between their costs is therefore smaller. As a consequence, the elimination

of Firm 2 requires a higher R&D effort. In this sense spillovers support R&D invest-

ments. The second inequality states that the quicker the speed at which the R&D

investment materializes in the unit cost reduction, the lower are the predatory ex-

penditures that lead to expulsion of Firm 2. Intuitively, higher speed of adjustment

causes the reduction of costs to be more rapid and thus allows Firm 1 to eliminate

the rival earlier. Therefore, the same targeted time of elimination requires smaller

investments.19

In particular, if the speed of adjustment is unlimited (µ →∞), then for any T ,

zu converges to the optimal value of R&D predicted by the static model (cf. Žigič,

1998):

x̃∗p = lim
µ→∞

(zu)2 =
(A− c0)

2

(1− 2β)2g
.

The above analysis can be read as a formalization of the “long-purse” story (see,

for instance, Sherrer and Ross, 1990; and Tirole, 1990) in a distinctive way since

the result is not based on information asymmetry nor imperfections in the financial

markets (cf. Tirole, 1990; Telser, 1966; Bolton and Scharfstein, 1990; etc.).

Finally note that in order for strategic predation to be feasible (in our model),

it is necessary that c1(T ) ≥ 0. In other words, the costs do not become negative in

19Note that technically, zu(T ) is a decreasing function of µT . Therefore, a percentage increase
in the speed of adjustment µ yields the same level of R&D investments as an identical percentage
increase in the targeted elimination time T .
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the predation phase. This condition can be equivalently formulated as

β < β̄ ≡ 1− A

2c0

. (41)

The above restriction is also supported empirically by Griliches (1992) who, in his

review of the empirical work on R&D spillovers, finds that typical values of β range

between 0.2 and 0.4. Note that β̄ < 1
2

due to condition A > c0.

4.2 Constrained and Unconstrained Monopoly

Suppose that Firm 2 is eliminated at time T > 0. At this point, Firm 2’s unit

costs become equal to the equilibrium price. From then, it will not be active in

the market, if Firm 1 sets a price not exceeding Firm 2’s unit costs. However,

Firm 2 still remains a threat and may potentially (if the price exceeds its costs)

re-enter the market later. Obviously, without such a threat, Firm 1 would set the

(unconstrained) monopoly price

pm =
A + c1

2
, (42)

which comes from maximization of gross instantaneous profit Π1 = (p− c1)(A− p).

Price pm corresponds to setting the monopoly quantity qm = 1
2
(A − c1), which is

actually a best response to the rival’s quantity q2 = 0. Technically, if Firm 1 wants

to keep Firm 2 out of the market, it maximizes the gross instantaneous profit subject

to the constraint p ≤ c2. Two possibilities arise:

1. If pm < c2, then Firm 1 is free to set the monopoly price pm which does not

allow Firm 2 to re-enter the market. In this case we say that Firm 1 is an

unconstrained monopolist.

2. If pm ≥ c2, Firm 1 can set c2 as the highest price that will keep Firm 2 out of

the market.20 In this case, we say that Firm 1 is a constrained monopolist.

It is crucial to understand that although Firm 2 is not active in the market, Firm 1’s

behavior depends on the state at which Firm 2 could re-enter the market. Therefore,

we need to specify the process followed by Firm 2’s costs when it is inactive. We will

assume that, after Firm 2 is eliminated, its costs c2(t) follow the standard equation

of motion ċ2 = µ(c0− c2(t)−β
√

gx(t)) with no spillovers available any further, that

is, with β = 0, i.e.,

ċ2 = µ(c0 − c2(t)). (43)

20The profit of Firm 1 is increasing in p on the interval [0, pm].
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This reflects the fact that an inactive firm does not acquire any new technology

via spillovers and its costs behave as if there were no spillovers, i.e., there is some

depreciation of knowledge, skills, etc.21 As a consequence, Firm 2’s costs actually

increase after time T .

Since c2 is now independent of Firm 1’s R&D investments, we can solve equation

(43) with the initial value c2(T ) = c2T = A− q(T ) = A− (A− c0)
1−β
1−2β

. The solution

can be written as

c2(t) = Ke−µt + c0, where K =
c2T − c0

e−µT
= − (A− c0)β

(1− 2β)e−µT
. (44)

Recall that c2(t) increases over time and converges to c0 as T → ∞. Further note

that at time T we have c2(T ) = A − q(T ) = 1
2
(A + c1(T )) = pm(T ), i.e., the

unconstrained and constrained monopoly prices are the same.22 At this point, if

Firm 1’s R&D investments are high enough, so that the monopoly price pm does

not exceed c2 (or, equivalently, its costs do not exceed 2c2−A), then the price pm is

sufficient to keep Firm 2 out of the market. Firm 1 then becomes an unconstrained

monopolist. On the other hand, if the R&D investments are low, the resulting

monopoly price pm may be higher than c2 and is hence not sufficient to keep Firm

2 out of the market. In this case Firm 1 becomes a constrained monopolist.

4.3 Phase II: Constrained Monopoly Optimization Problem

As argued earlier, if Firm 1 becomes a constrained monopolist, it sets price pcm(t) =

c2(t). This price corresponds to quantity qcm(t) = A − c2(t) and yields Firm 1’s

instantaneous gross profit

Πcm = (c2(t)− ccm(t))(A− c2(t)).

21There could be other ways to determine how the unit costs of Firm 2 may change after time
T . The first alternative would be to assume that they do not change at all, i.e., c2(t) = c2(T ) for
t ≥ T . Essentially, this condition states that the inactive firm is “frozen” and can enter the market
in the same state as it exited the duopolistic competition. Another plausible specification would
be to consider c2(t) following the same equation of motion after time T as before (with unchanged
spillovers), i.e., ċ2(t) = µ(c0− c2(t)−β

√
gx(t)). Such a setting can be interpreted as if Firm 2 still

acquires new technology via spillovers at the same rate as before and “waits” for the right time to
enter the market again. Nevertheless, the results of our model would not change quantitatively if
we replaced the current specification of Firm 2’s unit cost function after time T with any of the
specifications mentioned here.

22Equivalently, qm(T ) = q(T ) since the monopoly quantity qm is the same as the best response
to the rival’s quantity 0.
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The corresponding optimization problem then is

max
x(t)

I(x(t)) =

∫ +∞

T

[(c2(t)− ccm(t))(A− c2(t))− x(t)]e−rt dt, (45)

subject to
dccm

dt
= µ(c0 − ccm(t)−

√
gx(t)),

dc2

dt
= µ(c0 − c2(t)).

Note that the post-predatory price, which is c2(t), is now increasing over time. This

is consistent with the empirical observation that the leader’s price increases after

the predation phase has been completed.

The solution to the above optimization problem is derived in the Appendix. As

a result we get

zcm(t) =
(A− c0)µ

√
g

2

(
1

r + µ
+

βe−µ(t−T )

(1− 2β)(r + 2µ)

)
. (46)

Observe that xcm(t) = (zcm(t))2 is monotonically decreasing over time and converges

to x∗cm = (z∗cm)2 =
(A− c0)

2g

4(1 + r/µ)2
as t → ∞. The latter reflects the fact that as Firm

2’s costs get closer to the initial value c0, less investment is necessary to keep Firm

2 out of the market.

4.4 Phase II: Unconstrained Monopoly Optimization Prob-

lem

If Firm 1 becomes an unconstrained monopolist, it sets the (unconstrained) monopoly

price. This price equals pm(t) = 1
2
(A + cm(t)) and corresponds to the quantity

qm(t) = 1
2
(A− cm(t)). Thus Firm 1’s optimal instantaneous gross profit function is

derived as

Πm = (pm(t)− cm(t))qm(t) = (qm(t))2.

The latter is maximized subject to the standard constraint dcm

dt
= µ(c0 − cm(t) −√

gx(t)). As in the case of duopoly (Section 3.1), the optimization problem can be
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rewritten into the following form identical to (20)–(21):

max
x(t)

I(x(t)) =

∫ +∞

0

(q2
m − x(t))e−rt dt, (47)

subject to
dqm

dt
= µ(Bm − qm(t) + γm

√
x(t)), (48)

with Bm = 1
2
(A − c0) and γm = 1

2

√
g. However, the initial condition now becomes

qm(T ) = q(T ). Using a similar procedure as in Section 3.2, we obtain a system of

two differential equations analogous to (23)–(24). The equilibrium values in this

system are derived as

z∗m =
Bmγm

ρ− γ2
m

=
(A− c0)

√
g

4ρ− g
,

q∗m =
Bmρ

ρ− γ2
m

=
2(A− c0)ρ

4ρ− g
.

These are to be positive, if and only if g < 4ρ. Note that the derivation of equi-

librium values is independent of the initial conditions and even of the predation

time T . Therefore, the same equilibrium values would be obtained if Firm 1 had a

monopolistic position from the very beginning (see Section 3.1 and Vinogradov and

Žigič, 1999).

Finally, using the above initial condition, the optimal solutions are

qm(t) =
(A− c0)(2ρ− g(1− β))

(1− 2β)(4ρ− g)
eλmµ(t−T ) + q∗m, (49)

zm(t) =
(A− c0)(2ρ− g(1− β))

(1− 2β)(4ρ− g)
·

√
g

ρ + 1 +
√

(ρ + 1)2 − g
eλmµ(t−T ) + z∗m, (50)

where λm = 1
2

(
ρ− 1−

√
(ρ + 1)2 − g

)
. Note that the condition g < 4ρ implies

g < (ρ + 1)2 and λm < 0. The resulting price can th en becomputed as pm(t) =

A − qm(t). Depending on the sign of 2ρ − g(1 − β), the R&D investment may be

decreasing or increasing over time. Then, the monopoly quantity qm(t) is moving

in the same direction, whereas the monopoly price pm(t) is moving in the opposite

direction reflecting the fact that higher R&D investments lead to lower unit costs

for Firm 1 and consequently to a lower monopoly price.

4.5 Sustainability of Constrained and Unconstrained Monopoly

In order for unconstrained monopoly to be sustainable, it is necessary that Firm 2

not re-enter the market after time T . This is the case when pm(t) < c2(t). Note that
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the unconstrained monopoly optimization problem does not take at all into account

the path of Firm 2’s costs. In order to prevent Firm 2 from entering the market

it is especially necessary that the above inequality is satisfied for the steady-state

values, i.e., that A− q∗m ≤ c0. The latter can be equivalently rewritten as

g ≥ 2ρ. (51)

Thus for g ≤ 2ρ, Firm 1, by following the optimal path of investments, gives Firm

2 a chance to re-enter the market at some point in time Tr ≥ T .

On the other hand, constrained monopoly is sustainable when pcm(t) ≤ pm(t).

Otherwise, it is profitable for Firm 1 to lower the price to the unconstrained monopoly

level, which still prevents Firm 2 from entering the market. Again, it is necessary

to satisfy the above inequality in the steady-state (with the steady-state values

in constrained monopoly), i.e., c0 ≤ 1
2
(A + c0 −√gx∗cm). Upon substitution of the

steady-state value of x∗cm derived in Section 4.3, we arrive at an equivalent inequality

g ≤ 2ρ, which is the reverse of (51). Proposition 2 below summarizes the necessary

conditions of sustainability of constrained and unconstrained monopoly:

Proposition 2. Assume that Firm 2 is eliminated at time T . Then:

1. For unconstrained monopoly to be sustainable, it is necessary that g ≥ 2ρ.

2. For constrained monopoly to be sustainable, it is necessary that g ≤ 2ρ.

This proposition draws a line between constrained and unconstrained monopoly.

It shows that constrained monopoly is not sustainable if the efficiency of R&D

investments g is high enough. Intuitively, high efficiency of R&D allows Firm 1 to

decrease its costs below the level 2c2(t)−A and switch to unconstrained monopoly

price 1
2
(A + c1). On the other hand, unconstrained monopoly is not sustainable if

g is low enough. With low efficiency of R&D, keeping Firm 2 out of the market

requires high investments. Firm 1 may therefore prefer to reduce its investments

and switch to a constrained monopoly regime.23

23Note that the necessity of the sustainability conditions in Proposition 2 emerges from the
comparison of the steady-state values. Prior to reaching the steady-state, feasible strategy for Firm
1 after elimination of Firm 2 could be (multiple) switching between constrained and unconstrained
monopoly regimes. In particular, such a strategy might be optimal when g is close to 2ρ, i.e., the
difference between steady-state values is small. In further analysis we abstract from the possibility
of such switching. The latter means that in some cases our analysis might approximate a more
complex dynamics. Still, we believe that the approximation is fairly precise.
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5 Accommodation versus Strategic Predation

5.1 Choosing Optimal Strategy

Finally we are in a position to determine what would be the best strategy for Firm

1. It can opt for one of the two basic strategies:

1. Accommodation: Optimize its duopoly profit over time.

2. Strategic predation: In the first stage minimize the time needed to eliminate

Firm 2 for good (which incurs losses of profit) and then in the second round

enjoy (constrained or unconstrained) monopoly position.

The comparison is straightforward: in both situations it is technically feasible to

evaluate the overall profit and determine the optimal strategy. Note that for strategic

predation the profit is comprised of two parts corresponding to the predation phase

and constrained or unconstrained monopoly phase. However, depending on the

underlying parameters some of the strategies might not be sustainable.

5.2 Assessing Optimal Predation Timing

Since the equilibrium and the optimal paths in duopoly are discussed in detail in

Section 3, we focus here on the second strategy of Firm 1. Such a strategy initially

aims to eliminate the competitor (recall that we assume duopoly to be an initial

market structure); once the rival firm is crowded out from the market, Firm 1

enjoys the position of constrained or unconstrained monopolist afterwards.

We start by evaluating the profit (loss) Ip(T ) associated with the first phase of

the competition:

Ip(T ) =

∫ T

0

[(q(t))2 − (zu(T ))2]e−rt dt. (52)

When Firm 1 attempts to gain the position of monopolist by given time T , it sets

R&D expenditures at the (constant) level dictated by (37), and with q(t) defined by

(38). Substituting the closed-form solution (39) together with (37) into the profit
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function (52), we arrive at the explicit expression for Ip(T ):

Ip(T ) =

∫ T

0

[(γzu(T )(1− e−µt) + B)2 − (zu(T ))2]e−rt dt

= (γzu(T ))2 1− e−(2µ+r)T

2µ + r
−

− 2γzu(T )(γzu(T ) + B)
1− e−(µ+r)T

µ + r
+

+ ((γzu(T ) + B)2 − (zu(T ))2)
1− e−rT

r
.

The resulting expression is rather complicated. Note, however, that with instanta-

neous adjustment (µ →∞), the optimal predation profit becomes

(A− c0)
2

(1− 2β)2rg
[(1− β)2g − 1](1− e−rT ). (53)

In the constrained monopoly optimization problem discussed in Section 4.3, the

optimal R&D level was uniquely defined in equation (46). Thus the evolution of

costs ccm(t) in program (45) can be explicitly derived from the equation ċcm =

µ
(
c0 − ccm(t)−√gxcm

)
, with xcm = z2

cm, as given by (46). Using the boundary

condition ccm(T ) = c1(T ), we can obtain a closed-form solution and, together with

c2 as given by (44), substitute it into the profit function:

Icm(T ) =

∫ +∞

T

[(c2(t)− ccm(t))(A− c2(t))− xcm(t)]e−rt dt.

This equation uniquely defines the optimal constrained monopoly profit as a function

of time T when the position of constrained monopolist is gained. Since c2(t), zcm(t),

and since ccm(t) can be written as functions of (t − T ), the profit Icm(T ) can be

written in the form X ·e−rT , with X being independent24 of T . This is a consequence

of the fact that the initial values in the second phase (i.e., at time T ) do not depend

on T . Hence, the constrained monopoly profit depends on T only through the

discount factor and X can be interpreted as the present value of all future profits

at the time Firm 2 is eliminated.25 Note that when the adjustment is instantaneous

24The expressions involved in what follows are rather cumbersome. On the other hand, they
play secondary - if any - role in our analysis and thus are not presented explicitly, for the sake
of readability of the model. Technicalities of computations and simulations are available from the
authors upon request.

25Technically, we have Icm(T ) =
∫∞

T
f(t − T )e−rt dt = e−rT

∫∞
T

f(t − T )e−r(t−T ) dt. After
substitution s = t− T , the integral reduces to

∫∞
0

f(s)e−rs ds, which does not depend on T .
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(µ →∞), the optimal constrained monopoly profit becomes

(A− c0)
2g

4r
· e−rT . (54)

Finally, in order to find the optimal T (if any) that maximizes the total profit

of Firm 1 pursuing a predation strategy we have to solve the following univariate

unconstrained optimization problem:

max
T

[Ip(T ) + Icm(T )]. (55)

The above maximization problem represents the trade-off between incurring high

costs in order to eliminate Firm 2 early, or delaying (high) constrained monopoly

profits when Firm 2 is eliminated later. Recall that in the predation phase the

optimal R&D investments are decreasing in T . Hence early elimination (i.e., low T )

requires significant R&D investments in the predation phase. This may even lead

to instantaneous losses (i.e., the instantaneous profit is negative). These losses are

compensated later when Firm 2 is eliminated. On the other hand, when elimination

is delayed (i.e., T is high), Firm 1 invests less in R&D in the predation phase, but

at the same time delays high profits earned in the constrained monopoly phase (as

noted above, the present value of those profits X is independent on T ).

The optimal value of T can be computed from the first-order condition. However,

the resulting equation (with T as unknown) is not solvable analytically, unless µ →
∞. Till the end of this section, we mainly focus on the case of instantaneous

adjustment.

Intuitively, when the speed of adjustment increases, the unit costs decrease more

rapidly. As a consequence, Firm 1 will eliminate its rival earlier, i.e., the optimal pre-

dation time T decreases. Figure 5 supports this intuition and shows the dependence

of the optimal predation time T on the speed of adjustment µ.26

Insert Figure 5 HERE

When µ → ∞, from (53) and (54) we obtain that the profit from predation

strategy is decreasing in T whenever g < 2, i.e., (whenever) constrained monopoly

is sustainable27 (see the Appendix for details). Hence the optimal value of T is zero.

This reflects the fact that the instantaneous adjustment allows Firm 1 to eliminate

the rival immediately. In this case it has a profit given by (54) with T = 0.

26These results were obtained numerically. See Footnote 29 for more details on numerical simu-
lations.

27Note that ρ → 1 as µ →∞.

27



We can proceed in a similar manner when Firm 1 becomes an unconstrained

monopolist in the second phase. In this case the profit from the second phase is

Im(T ) =

∫ ∞

T

[
(qm(t))2 − (zm(t))2

]
e−rt dt,

with qm(t) and zm(t) given by (49)–(50). Again, the above equation uniquely defines

the optimal unconstrained monopoly profit as a function of time T when the position

of unconstrained monopolist is gained. Since qm(t) and zm(t) can be written as

functions of (t−T ), the profit Im(T ) can again be written in the form X ·e−rT , with

X being independent of T . When the adjustment is instantaneous (µ → ∞), the

optimal unconstrained monopoly profit becomes

(A− c0)
2

(4− g)r
· e−rT . (56)

In order to find the optimal predation time T that maximizes the total profit of

Firm 1 pursuing a predation strategy with unconstrained monopoly in the second

phase, we have to solve the following univariate unconstrained optimization problem:

max
T

[Ip(T ) + Im(T )] (57)

The first-order condition for this problem is an equation with T as unknown, which

is not solvable analytically. The dependence of the optimal predation time T on the

speed of adjustment µ, in the case of unconstrained monopoly is shown on Figure 5

(the upper curve). Drawing on the same intuition as in the constrained monopoly

case, the figure suggests that the optimal predation time decreases with increasing

µ.

Again when µ →∞, from (53) and (56) we obtain that the profit from predation

strategy is decreasing in T (see the Appendix for details). Hence the optimal value

of T is zero, which reflects the fact that when the adjustment is instantaneous, Firm

1 eliminates the rival immediately. Then its profit is (A−c0)2g
(4−g)r

, as given by (56) with

T = 0.

5.3 Long-Run Optimality

In order to assess the optimal strategy for Firm 1, we now compare its two possible

payoffs: accommodating strategy payoff (or duopoly payoff) defined by (14), and the

payoff that arises from dynamic strategic predation, with either constrained or un-

constrained monopoly in the second phase. Lemma 2 implies that both constrained

and unconstrained monopoly cannot be simultaneously sustainable (with exception
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of g = 2ρ, which the corresponds to a set of measure zero).

As g > gd yields a clear-cut prediction of monopoly (Proposition 1), β > 1
2

yields a clear-cut prediction of duopoly (see Lemmas 4–5 and Proposition 1 and

Section 4.1), we will further restrict our comparison of the accommodation and

predation strategies to the region

R = {(β, g) ∈ R2 : 0 ≤ β < 1
2
, 0 < g < gd}.

Further denote Rcm = {(β, g) ∈ R : g < 2ρ} the region where only constrained

monopoly can be sustained, and Rm = {(β, g) ∈ R : g > 2ρ} the region where only

unconstrained monopoly can be sustained. We then need to compare the profit from

duopoly to the profit from strategic predation with constrained monopoly (given by

problem (55)) in regionRcm, and the profit from duopoly to the profit from strategic

predation with unconstrained monopoly (which is given by problem (57)) in region

Rm. The regions are illustrated in Figure 6.28 As indicated, the curve represents

the equality g = gd, which is the upper boundary for duopoly to be feasible. As

mentioned in Section 3.3, this boundary shifts downwards with increasing µ. Thus as

speed of adjustment increase, the region below, at which duopoly is feasible, shrinks.

This is intuitive since a larger value of µ enables Firm 1 to attain cheaper and faster

the critical unit cost difference that eventually may lead to monopoly. The horizontal

line represents the equality g = 2ρ, which is the boundary between constrained and

unconstrained monopoly. Again, this line shifts downwards as µ increases. Thus,

unconstrained monopoly becomes easier to sustain than constrained monopoly (note

that the upper boundary g = 4ρ shifts downwards too). The intersection of these

boundaries, namely g = 2ρ and g = gd, is given by equation β2− 3β + 1
2

= 0, which

implies β = β0 ≡ 1
2
(3−√7) ≈ 0.1771.

Insert Figure 6 HERE

As mentioned in Section 4.1, our model of predation is feasible only if β < β̄ as

given by (41). However, note that in all cases the optimal values of q, z, and price

margins (defined as the difference of price and unit costs) are homogeneous of degree

1 in (A, c0). Moreover, they can be written in the form (A − c0) · X, where X is

independent of both A and c0. Therefore, in all cases the optimal profits, consumer

surplus, social welfare, and present value of R&D investment are homogeneous of

degree 2 in (A, c0) and can be written in the form (A − c0)
2 · Y , with Y being

independent of both A and c0. Hence, any comparison of those variables does not

28Regions Rcm and Rm are labeled as “CM/D” and “UM/D”, respectively.
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depend on A and c0; it can depend only on parameters β, g, µ and r. Since β̄

depends on A/c0, in order to facilitate the comparison for all values of A and c0, we

disregard the feasibility condition β < β̄ and consider 1
2

as the upper bound for β

(which is also the upper bound of β̄).

Using the simulation technique, we compare predation and accommodation in

region R (recall that duopoly is feasible in this region). We find that when the speed

of adjustment µ is small, accommodation is more profitable almost everywhere in

both regions Rcm and Rm, as shown in Figure 7. However, with increasing speed of

adjustment, predation (with either constrained or unconstrained monopoly in the

second phase) becomes likely; see Figures 8, 9.29

Insert Figure 7 HERE

Insert Figure 8 HERE

Insert Figure 9 HERE

Insert Figure 10 HERE

In Figures 8 and 9, the lower boundary represents the equality between Firm

1’s profits from accommodation strategy (duopoly) and strategic predation (with

constrained monopoly in region Rcm and unconstrained monopoly in region Rm).

In the region above the boundary (i.e., when R&D efficiency g is high), Firm 1 prefers

strategic predation whereas in the region below, Firm 1 prefers the accommodation

strategy. With increasing µ, this lower boundary shifts downwards as well, and

apparently more than the upper boundary, resulting in an ever-increasing parameter

space for which strategic predation is the optimal strategy. Figures 11 and 12

support this intuition.30 The figures show the dependence of the area where strategic

29The simulations were performed using the Mathematica 5.0 software. The program code can
be obtained from the authors upon request. In all presented simulation results we used the values
r = 0.05, A = 1, and c0 = 0.8 (however, due to the discussion above, the results do not depend
on values of A and c0). In this simulation, given the value of µ, Firm 1’s profits from duopoly and
strategic predation (for optimal T solving the problem (55) or (57)) were computed for values of
(β, g) taken from a grid with density 0.0025× 0.025 on the set [0, 1

2 )× (0, 4ρ). Figures 7, 8, and 9
show the results for values µ = 0.2, µ = 2, and µ = 20 respectively.

30The simulations have again been performed using the Mathematica 5.0 software, for the same
values of parameters r, A, and c0 as before. For each µ from the grid with density 0.5 on [0.5, 100],
we computed the area as integral of a piecewise linear function approximating the lower boundary
(in 100 points with an absolute error lower than 10−4).
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predation is optimal in regionsRcm andRm, respectively, on the speed of adjustment

µ. Hence if we think of the joint distribution of β and g to be roughly uniform, we

may say that predation is more likely when the speed of adjustment µ is higher.

Insert Figure 11 HERE

Insert Figure 12 HERE

Figure 10 shows the set of parameters where predation is optimal, when ad-

justment is instantaneous (i.e., µ → ∞). This can be obtained by comparing the

duopoly profit (31) with either (54) or (56). As opposed to the previous cases, here

it is possible to find an explicit formula for the lower boundary and compute the

area where predation is optimal. We obtain that Firm 1 chooses strategic predation

in the whole region Rm. In region Rcm, Firm 1 chooses strategic predation in about

71% of cases (again, provided the joint distribution of β and g is roughly uniform).

The lower bound is described by formula g = g∞ ≡ 9+
√

81−16(2−β)2

2(2−β)2
, which can be

obtained by equating profits (31) with (54).

It can be easily computed that with instantaneous speed of adjustment, region

Rm has area 0.2640.31 Figure 11 indicates that the area where predation is optimal

converges towards this value as µ →∞. Furthermore, the area of the whole region

Rcm is 0.9524,32 whereas predation is optimal inRcm in a domain with area 0.6773.33

This convergence is again indicated in Figure 12.

6 Welfare Analysis

In the previous section we found that Firm 1 in most cases prefers accommoda-

tion to predation when the speed of adjustment is small, but prefers the opposite

when the speed of adjustment is large. In this section we analyze the welfare effects

of predation. We are interested in a comparison of R&D investments, consumers

surplus and social welfare in strategic predation and in accommodation. From the

legal point of view, predatory behavior is mostly prohibited since it eliminates the

competing firm. However, from an economic perspective, strategic predation may

even be welfare enhancing. In particular, there may be significant gains from large

31The area of region Rm is
∫ 1/2

β0

[
3ρ

(1−β)(2−β) − 2ρ
]
dβ =

(
2−√7 + 3 log (4−√7)

)
ρ.

32The area of region Rcm is
∫ β0

0
3ρ

(1−β)(2−β) dβ +
∫ 1/2

β0
2ρ dβ =

(
− 2 +

√
7 + 3 log 4+

√
7

6

)
ρ.

33This area can be computed as difference of the area of region Rcm and
∫ 1/2

0
g∞ dβ = 1

4 (3 −
4
√

5 +
√

17)− 2 arcsin 2
3 + 2 arcsin 8

9 .
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R&D investments which are often disregarded by traditional competition policies.

Recent developments in European competition policy design suggest that thew eco-

nomic point of view may become more important in the future. In this sense our

paper contributes to the current debate surrounding efficiency defence clause, which

allows expulsion of rival firm(s) if it enhances consumer surplus and overall social

welfare.34 Here, the expulsion of a rival requires significant R&D investments in

order to lower the costs. This consequently increases the output, decreases the price

and hence increases consumer surplus. In line with this intuition we start by com-

paring R&D investments, although the analysis of R&D does not belong to welfare

considerations per se. Then we continue with comparison a of consumer surplus and

overall social welfare.

6.1 R&D Investment

Compared to the accommodation strategy, strategic predation requires significantly

higher R&D investments in the first phase. This way Firm 1 rapidly decreases its

own costs and, due to spillovers, also its rival’s costs. As a consequence, the firms

produce higher quantities which results in a lower price. However, as spillovers are

imperfect, Firm 2’s decrease in costs is less rapid and at time T its costs become equal

to the equilibrium price. The shorter the targeted predation time T is, the more

faster the decrease in unit costs is, and hence higher R&D investment is necessary.

After time T , Firm 2 is not able to compete with Firm 1, leaving it alone in the

market. However, Firm 2 still may remain a threat and can re-enter the market

later.

As shown in Section 3.2.3, when Firm 1 follows the accommodation strategy,

its optimal R&D investment continuously increases over time and converges to the

value x∗ = (z∗)2, where z∗ is given by (25). On the other hand, when Firm 1 follows

the strategic predation strategy, the R&D investment profile is rather different. In

the predation phase, R&D investment is constant over time and is equal to (zu(T ))2.

If Firm 1 gains the position of constrained monopolist in the second phase, then the

R&D investment profile is described by function xcm(t), which is decreasing over

time towards its steady-state value x∗cm. But if Firm 1 becomes an unconstrained

monopolist in the second phase, then the R&D investment profile is described by

function xm(t) converging towards the steady-state value x∗m, but may be either

decreasing or increasing over time, depending on parameters.35

34Etro (2006b) gives a nice summary of the controversy. See also Rey et al. (2005), and the
discussion paper on the reform of Art. 82 of the Treaty on exclusionary abuses by the European
Commission, 2005.

35See Sections 4.3 and 4.4 for details. Following previous notation, we define zcm = (xcm)2 and
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Comparing the investment levels in the predation phase to the levels for accom-

modation, we obtain

zu(T )

z∗
=

9ρ− g(2− β)2

g(2− β)(1− 2β)
· 1

1− e−µT
>

1

1− e−µT
> 1,

everywhere in region R. As we can see, R&D investment in the predation phase is

higher than steady-state investment in duopoly. Since R&D investment in duopoly

is increasing over time, then

zu(T ) > zopt(t), for t ∈ (0, T ], (58)

confirming our intuition that strategic predation requires higher R&D investments

during the predation phase.

On the other hand, the relation between the investment in duopoly and the

investment in constrained or unconstrained monopoly phase is not so clear-cut. It

can be easily shown that all steady-state values z∗, z∗cm, and z∗m are increasing in

g, meaning that higher R&D efficiency favors R&D investments in the long run.

A direct computation reveals that near the upper boundary where duopoly is still

feasible (i.e., when g → g−d ), the steady-state level of R&D in duopoly is higher

than the levels in constrained and unconstrained monopoly (whatever is feasible).

However, this relation becomes weaker as g becomes smaller, reflecting the fact that

duopoly is more responsive to changes in R&D efficiency. In particular z∗ < z∗cm,

when g → 0+.

As the investment level in the second phase of predation may be lower than

the steady-state investment level in duopoly, there is no straightforward relation

between the size of R&D investment in the strategic predation and accommodation

phases. In order to provide some insights, we compare their present values. The

present value of R&D investments for the accommodation strategy is defined as∫∞
0

x(t)e−rt dt. The present value of R&D investments for the predation strategy is

defined analogously, but consists of two parts: the present value in the predation

phase and the present value in the constrained or unconstrained monopoly phase.

As the expressions are rather complicated (we omit them here), for comparison we

used numerical simulations.

We perform the simulations in the same way and for the same parameter values

as we did for comparison of profits. Consistent with the above results, simulations

suggest that in most cases strategic predation indeed leads to higher R&D invest-

ment, despite the position of monopolist (constrained or unconstrained) in the sec-

zm = (xm)2.
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ond phase. This result is rather intuitive, since in the predation phase, Firm 1 makes

huge R&D investments in order to eliminate the rival. In line with Etro (2004) we

therefore conclude that a leader may have greater R&D incentives than traditional

economic theory suggests. According to our results, an aggressive leader engages in

significant R&D investments in order to pursue the predation strategy.

The simulations indicate that the above relation holds for all parameter values

(in region R) when the speed of adjustment µ is small. The situation does not

change significantly when µ becomes larger,36, 37 although for large enough µ, there

is a small region close to the upper boundary where the present value of R&D

investments for the accommodation strategy may become higher than the value in

predation. This region corresponds, in line with the above results, to high R&D

efficiency g which makes high R&D investment in duopoly profitable.

Insert Figure 13 HERE

Insert Figure 14 HERE

Insert Figure 15 HERE

6.2 Consumer Surplus

Now we turn our attention to the effects on consumers. As already argued, since

investment in R&D decreases the cost of production, it increases the quantity pro-

duced and hence lowers the market price. Therefore, intuitively we can predict that

higher investment in the predation phase should benefit consumers. When Firm 1

follows the predation strategy, its R&D investment lowers the price rapidly in the

first phase. If it becomes a constrained monopolist in the second phase, the price

will increase and converge to c0. On the other hand, if Firm 1 becomes an uncon-

strained monopolist in the second phase, the price will be monotone but may be

both increasing or decreasing, depending on parameters. Figures 16 and 17 show

the comparison of these time patterns to the price pattern for the accommodation

strategy.

36See Figures 13, 14, and 15 corresponding to µ = 2, µ = 20, and µ → ∞, respectively. The
shaded area represents those values of parameters where the present value of R&D investments in
accommodation is higher than the one in predation. The figures indicate that this region does not
increase significantly with increasing µ.

37When µ →∞, the present values of R&D investments have rather simple forms: (A−c0)
2(2−β)2g

[9−(2−β)2g]2r

for accommodation strategy, (A−c0)
2g

4r for predation with constrained monopoly, and (A−c0)
2g

(4−g)2r for
predation with unconstrained monopoly (recall that the optimal predation time is T = 0 in this
case). Figure 15 was obtained directly by comparing those values.
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Insert Figure 16 HERE

Insert Figure 17 HERE

For better exposition and in order to be able to evaluate the effects on social wel-

fare, we compare the present value of consumer surplus. First consider instantaneous

consumer surplus, which at any point in time t can be evaluated as

CS(t) =

∫ A

p(t)

(v − p(t)) dv =
1

2
(A− p(t))2 =

1

2
(q1(t) + q2(t))

2.

This is a classic form of consumer surplus for linear demand. Then the present value

of consumer surplus for the accommodation strategy is

CS∗ =

∫ ∞

0

CS(t) dt =

∫ ∞

0

(q1(t) + q2(t))
2e−rt dt.

Since the consumer surplus is negatively related to the price, our intuition suggests

that the consumer surplus should be higher, when Firm 1 follows the predation

strategy.

Insert Figure 18 HERE

Insert Figure 19 HERE

Insert Figure 20 HERE

Indeed, it can be shown that strategic predation yields a lower price than does

accommodation at any (positive) time in the predation phase. Moreover, if g ≤
3ρ/(2 − β), then strategic predation also yields a lower price at any time in the

constrained monopoly phase.38 As a consequence, if g ≤ 3ρ/(2 − β), then the con-

sumer surplus from strategic predation is higher that the one from accommodation.

Conversely, if g > 3ρ/(2 − β) then p∗ < c0, which means that the price in a con-

strained monopoly (converging to c0) exceeds the duopoly price (converging to p∗)

at some point in time. This reflects the fact that Firm 1 enjoys its high profits from

constrained monopoly and relaxes its R&D investments, which leads to higher unit

38See the Appendix for proof of both statements. Note also that 3ρ/(2− β) < 2ρ for any β ≥ 0.
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costs and a higher price. In this case we cannot make a direct inference about con-

sumer surplus. However, the intuition suggests that the difference between prices

becomes significant and the consumer surplus in accommodation may exceed the

one in predation, when g is sufficiently high.

To complete the discussion, we again perform numerical simulations. The simu-

lations conform to the above intuition. In particular, they show that for low values

of µ, consumer surplus from predation is always larger than the one from accommo-

dation. However, similarly as for R&D investments, when the speed of adjustment

µ is large enough, there is, consistent with the above intuition, a small region where

consumer surplus from accommodation is higher; see Figures 18 and 19.39 When

µ →∞, this region covers a substantial part of region Rm, but only a small part of

region Rcm, as shown in Figure 20.40

6.3 Social Welfare

Social welfare consists of consumer surplus and firms’ net profits (after subtracting

the R&D costs). As the complexity of the problem does not allow (with the exception

of small domains) us to make a clear comparison of social welfare for accommodation

and predation strategies, nevertheless, as in previous cases, we compare social welfare

using a simulation technique. We perform the simulations in the same way and for

the same parameter values as we did for comparison of profits.

The most conspicuous finding that our analysis offers is that strategic predation

becomes not only the privately optimal strategy to pursue but also the strategy

that turns out to be, in general, socially optimal when the speed of adjustment is

high.41 This observation sheds new light on those technologically leading firms that

display fast absorption of technological progress (large µ), and which in turn makes

them aggressive market leaders through large investment in R&D. In other words,

the resulting high market shares are not necessarily associated with dominance, but

may be the outcome of competition for the market through innovations (see also

Etro, 2006b).

39The shaded area represents those values of parameters where consumer surplus in accommo-
dation is higher than the one in predation.

40Again, when µ → ∞, the present values of consumer surplus have a rather simple
form: (A−c0)

2[6−(1−β)(2−β)g]2

2[9−(2−β)2g]2r for accommodation strategy, (A−c0)
2

2r for predation with constrained

monopoly, and 2(A−c0)
2

(4−g)2r for predation with unconstrained monopoly (again, recall that the optimal
predation time is T = 0 in this case). Figure 20 was obtained directly by comparing those values.

41As revealed by Figures 22, 22, and 23, with increasing µ the region in which accommodation
is socially optimal (shaded area) shrinks. Moreover, when the speed of adjustment unlimitedly
increases and turns instantaneous (µ → ∞), strategic predation becomes socially optimal, with
the exception of a small region (see Figure 24).
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Intuitively, as µ increases, the positive effect of R&D investment takes place ear-

lier, which leads to increases of social welfare in both accommodation and strategic

predation. Moreover, as the optimal predation time is decreasing in µ (see Fig-

ure 24), this effect is even stronger in case of the strategic predation. Therefore,

social welfare in predation is more responsive to increases in µ than social welfare

in accommodation. Consequently, for large values of µ, predation is socially opti-

mal even when Firm 1 chooses accommodation. Thus in such a situation strategic

predation should be supported by appropriate government policy, like investment

subsidies (see footnote 9 for a possible specification).

Besides that, there is also a small region where Firm 1 prefers predation, but

where accommodation is more desirable outcome from social point of view. This

region corresponds to high values of R&D efficiency, near the upper boundary for

feasibility of duopoly (i.e., when g is close to gd). Section 6.2 suggests that for high

values of g, the consumer surplus in predation is higher than the consumer surplus

in accommodation. Therefore, it is not surprising that this relation also holds for

social welfare.

Insert Figure 21 HERE

Insert Figure 22 HERE

Insert Figure 23 HERE

Insert Figure 24 HERE

7 Conclusion

The empirical findings and stylized facts concerning the relation between innovation,

leadership, and market power have motivated our paper in that we aim to describe

and analyze a particular setup in which the persistence of monopoly is likely to arise

in the long run. More specifically, we study the situation in which the market leader

undertakes pre-emptive R&D investment (“strategic predation”) that eventually

leads to the exit of the follower firm. It is also important to stress that we allow

the follower to benefit via R&D spillovers from the R&D activity of the leader.

We then, within the same basic setup, contrast the outcomes of strategic predation
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with the outcomes in which the leader “accommodates” the follower in a duopoly

market structure. This comparison enables us to study positive aspects of the two

main strategies of the leader — accommodation and strategic predation — as well

as social welfare implications of the two resulting market structures, duopoly and

(constrained or unconstrained) monopoly.

In studying the above phenomenon, we first start with static analysis and sub-

sequently develop a corresponding dynamic model. While the very comparison be-

tween the static model and its dynamic counterpart is an insightful exercise per se,

we argue that, due to the inherently dynamic nature of innovation activity, a dy-

namic model is better suited at capturing both accommodating and pre-emptive or

predatory behavior of the leader, and consequently, it fits better with observed em-

pirical findings about the persistence of monopoly and its high intensity of innovative

activity.

While monopoly appears as amarginal market structure in a static environment

and is therefore often excluded from such an analysis by assumptions (e.g., by re-

strictions on parameters), in a dynamic setup when there is fast adoption of new

technology, on the contrary, this marginal market structure becomes the prevalent

one and strategic predation turns out to be the dominant market strategy in general.

The quicker the time of innovation adoption, the larger the range in which predation

becomes the optimal strategy. Both R&D intensity and R&D stock are likely to be

larger in predation strategy than in accommodation strategy. Put together, these

two facts yield a testable prediction in that the most aggressive innovative firms –

those that commercialize their investment in innovation quickly – are the ones likely

to use strategic predation through investing large sums of money into innovative

activity (cf. AT&T, Microsoft, etc.).

As for the social welfare considerations, strategic predation as the prevalent mar-

ket strategy may be socially preferable as well, since it might lead to both higher

consumer surplus, and (even more often) to higher social welfare generated, despite

the fact that only one firm (the leader) remains in the market in the long run. This

all bears important competition policy implications. First, the size of market share

per se might not be a sufficient condition for a legal offence and, second, abuses of

dominant positions may not even be an issue in dynamic markets where competi-

tion takes place through investments in R&D rather than through static pricing and

where the very presence of competitors constrains the behavior of market leaders.

The challenge for the design of antitrust policy against predation is related to the

ability of the antitrust authority to distinguish between a price that is low for other

predatory purposes from a price that might be set very low as part of an efficiency-

enhancing process that in turn results in enhanced competition leading in the end
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to the exit of competitors but also to the enhancement of both consumer surplus

and social welfare. For instance, in the presence of network effects or learning effects

it would be legitimate and consistent with vigorous competition that firms set very

low prices when they are introducing new products, when they are targeting new

customer segments or rivals, installed bases, or when they are in the first phase of the

learning curve. Thus, a competition authority with limited knowledge of industry-

and firm-specific data faces a complex problem when attempting to identify those

circumstances under which loss-inducing predatory prices cause harm to competi-

tion. For that reason the antitrust authorities have to be fully aware of the risks

of misclassification when approaching a predation case. Nevertheless, our model

clearly favors still controversial proposition of the efficiency defences that allows for

otherwise abusive strategy for the dominant firm if it creates a net efficiency gains

which benefits consumers. On the other hand, our results also suggest that accom-

modation, when chosen by the leader, may also be inefficient. The logic indicates

that such inefficiency calls again for appropriate policy interventions. In order to

increase social welfare, an appropriate policy should support the leader’s predatory

behavior, for example, in the form of subsidies.

However, our results concerning both private and social optimality of strategic

predation are obtained under the assumption of the homogeneity of goods. As we

know (at least from Dixit, 1979), product differentiation makes strategic predation

more difficult and more costly for the leader. Moreover, strategic predation in

this case leads to fewer product varieties in the market, and this in turn harms

consumers. However, by the continuity argument, it is pretty safe to claim that our

findings would also hold in the situation when the degree of product differentiation

is not “large”; that is, when the goods are “close” substitutes.

Another policy concern that can arise from the above setup might be that policy

makers worry of having only one firm in the market, as was recently the case with

the General Electric and Honeywell banned merger. This could be an issue if there is

no credible threat of entry from any other firm because the size of the entry barriers

is high; but this again leads to Etro’s remark (2006a) that the barriers to entry

should be targeted rather than market leaders. In the technical sense, our analysis

could be further extended in several directions. The speed of adjustment could

be “endogenized” as a function of the R&D intensity or R&D stock, for instance.

Furthermore, we could model the last, quantity competition stage between the leader

and follower explicitly by relying on the concepts of state dependent strategies and

Markov perfect equilibria. This approach could make the game even more “dynamic”

with possibly additional insights.
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A Appendix: Proofs and Derivations

A.1 Derivation of equation (22). The Hamiltonian function associated with

problem (20) is set up as

H(q1, x, λ) = (q2
1 − x(t))e−rt + λ(t)µ(B − q1(t) + γ1

√
x(t)).

The first-order conditions (from now on we drop the subscript 1 for convenience)

are

Hx = −e−rt +
λµγ

2
√

x
= 0, (59)

Hq = 2qe−rt − λµ + λ̇ = 0, (60)

and the transversality condition is

lim
t→+∞

λ(t)q(t) = 0.

Equation (59) relates λ to x, so we can eliminate λ and λ̇ from the system (60),

(21):

λ =
2
√

x

γµ
e−rt, λ̇ =

ẋ

γµ
√

x
e−rt − 2r

√
x

γµ
e−rt,

and thus equation (60) becomes

ẋ = 2(r + µ)x− 2γµq
√

x.

A.2 Proof of Lemma 1. Introducing the new time scale dτ = µdt, the system

(23)–(24) reads in matrix notation as

dY

dτ
= ΓY + ∆, (61)

where Y =

(
z

q

)
, Γ =

(
ρ −γ

γ −1

)
, ∆ =

(
0

B

)
.

For matrix Γ the following statements hold:

• Tr(Γ) = ρ − 1 = r
µ

> 0, which implies that the sum of eigenvalues λ1, λ2 is

always positive.
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• Det(Γ) = −ρ + γ2 < 0, which means that the product of the eigenvalues is

negative.

• D = (Tr(Γ))2 − 4Det(Γ) = (ρ + 1)2 − 4γ2 > (ρ + 1)2 − 4ρ = (ρ − 1)2 ≥ 0,

which means that the eigenvalues are real.

Therefore, if γ2 < ρ then the eigenvalues are real and of opposite sign (i.e., the

equilibrium is a saddle). The latter proves the existence of a unique trajectory

converging to the steady-state (a stable arm of a saddle).42

Q.E.D.

A.3 Proof of Lemma 2. (i) Inequality γ2 < ρ can be re-arranged as

β > 2− 3
√

ρ√
g

. (62)

Since β is always positive, (62) holds true when the right-hand side of (62) is neg-

ative, i.e., for g < 9
4
ρ. Moreover, by construction the generalized discount factor

ρ ≥ 1. As µ (the speed of adjustment) tends to infinity, ρ monotonically declines

to 1, and min ρ = 1. Therefore, with g < 9
4
min ρ = 9

4
the right-hand side of (62)

always remains negative for any constellation of β, µ and r.

(ii) Since max γ = 4
3
, the condition µ < 9

7
r guarantees that ρ = r

µ
+ 1 > 16

9
=

max γ2. Therefore, ρ > γ2, for any γ.

Q.E.D.

A.4 Derivation of the analytical solution to system (23)–(24). The eigen-

values of Γ are

λ1,2 =
ρ− 1±

√
(ρ + 1)2 − 4γ2

2
=

1

2µ

(
r ±

√
(r + 2µ)2 − 4γ2µ2

)
, λ1 < 0 < λ2,

and the eigenvectors corresponding to λ1 and λ2 are evaluated as

U1 =




2γ

ρ+1+
√

(ρ+1)2−4γ2

1


 , U2 =




2γ

ρ+1−
√

(ρ+1)2−4γ2

1


 .

42Loosely speaking, an equilibrium (z∗, q∗) is

1. unstable focus, if D < 0 (λ1,2 are complex) and Tr(Γ) > 0 (Re(λ1,2) > 0); holds true for
γ > ρ+1

2 ;
2. unstable node, if D ≥ 0 (λ1,2 are real) and Det(Γ) ≥ 0 (λ1, λ2 ≥ 0); holds true for

√
ρ ≤

γ ≤ ρ+1
2 ;

3. saddle, if D ≥ 0 and Det(Γ) < 0 (λ1 < 0 < λ2); holds true for γ2 < ρ.

However, in our model the first two options are ruled out due to non-negativity of z.
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Therefore, the general solution to (61) becomes

Y (τ) = C1U1e
λ1τ + C2U2e

λ2τ + Yp,

where C1, C2 are arbitrary constants and the particular solution Yp is a constant

solution satisfying the equation ΓYp + ∆ = 0, i.e.,

Yp =

(
z∗

q∗

)
.

The transversality condition demands C2 = 0 (in other words, the optimal solution

must be bounded). The constant C1 is determined from the initial condition q(0) =

B, which implies C1 = − Bγ2

ρ−γ2 .

Finally, we find the optimal control path as

qopt(τ) = − Bγ2

ρ− γ2
eλ1τ + q∗,

zopt(τ) = − Bγ2

ρ− γ2
· 2γ

ρ + 1 +
√

(ρ + 1)2 − 4γ2
eλ1τ + z∗,

or, restoring the original time scale,

qopt(t) = − Bγ2

ρ− γ2
e

ρ−1−
√

(ρ+1)2−4γ2

2
µt + q∗,

zopt(t) = − Bγ2

ρ− γ2
· 2γ

ρ + 1 +
√

(ρ + 1)2 − 4γ2
e

ρ−1−
√

(ρ+1)2−4γ2

2
µt + z∗.

Q.E.D.

A.5 Optimal solution to (20)–(21) with µ →∞, by applying Euler’s equation.

Under the instantaneous adjustment scenario, as µ →∞, equation (21) becomes

q(t) = B + γz,

and the optimization problem (20) degenerates to

max
z2(t)

∫ ∞

0

((B + γz(t))2 − z2(t))e−rt dt.

Euler’s equation associated with this problem reduces simply to

∂

∂z
((B + γz(t))2 − z2(t))e−rt = 0,
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which has to be satisfied at each point in time. It yields

zopt =
Bγ

1− γ2
.

Therefore, in the limiting case the optimal level of R&D expenditures is constant

over time and coincides with the equilibrium value of z∗ in (25) evaluated at µ →∞.

A.6 Proof of Lemma 3. We have q̇ = µ(B − q + γz). Therefore q̇ + µq = f(t)

with f(t) = µB + µγz(t) > 0 for all t ≥ 0. The solution to the latter equation is

q(t) = e−µt

(
B +

∫ t

0

f(τ)eµτ dτ

)
,

which is always positive.

Q.E.D.

A.7 Proof of Lemma 4. Since γ2 > 0 for β ∈ (1
2
, 1), the proof repeats that of

Lemma 3.

Q.E.D.

A.8 Proof of Lemma 5. Necessity follows from Lemma 4. To prove sufficiency,

first note that q∗2 = B + γ2z
∗. Thus non-positivity of q∗2 implies B + γ2z

∗ ≤ 0, which

is equivalent to

B ≤ 1

3
(1− 2β)

√
g · B · 1

3
(2− β)

√
g

ρ− 1
9
(2− β)2g

.

The latter inequality simplifies to

1 ≤ (1− 2β)(2− β)

9ρ
g
− (2− β)2

and can be further re-arranged as

3ρ

g
≤ (2− β)(1− β), or g ≥ 3ρ

(2− β)(1− β)
≡ gd.

Given that ρ ≥ γ2 = 1
9
(2− β)2g, the latter inequality implies that

1

9
(2− β)2g · 3

g
<

3ρ

g
≤ (2− β)(1− β).

Therefore, 1
3
(2−β)2 < (2−β)(1−β), i.e., β < 1

2
is necessary for q∗2 to be non-positive.

Q.E.D.
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A.9 Solution to the optimal predation problem. The Hamiltonian function

associated with this problem is

H = −1 + λ(µ(B − q2 + γ2z)).

If λ > 0 then the optimal zo = zu, and if λ < 0 then zo = 0. The equation of motion

is

λ̇ = −∂H
∂q2

= µλ,

which integrates to λ(t) = κeµt, κ is an arbitrary constant. The transversality

condition reads as [H]t=T = 0, i.e.,

−1 + λ(µ(B + γ2z
o)) = 0. (63)

If λ < 0 then zo = 0 and (63) has no solution. Therefore, λ > 0, which yields κ > 0

and zo = zu.

With zo = zu for all t we can express the equation of motion of the state variable

as

q̇2 + µq2 = µ(B + γ2z
u),

which has the solution

qo
2(t) = (qo

2(0)−B − γ2z
u)e−µt + B + γ2z

u = B + γ2z
u(1− e−µt). (64)

Therefore, given qo
2(T ) = 0 we obtain B + γ2z

u(1 − e−µT ) = 0, which is equivalent

to (36).

Alternatively, the optimal predation problem can be also solved as follows. In

order to eliminate Firm 2, Firm 1 must lower its price below the costs of production

of Firm 2, i.e., the following condition must hold:

A− q1(t) ≤ c2(t).

In other words, at the very moment the price of Firm 1 falls below the costs of

Firm 2, Firm 1 becomes a constrained monopolist. Therefore, the corresponding

optimization problem for Firm 1 is very similar to that elaborated earlier: the

condition for becoming a constrained monopolist reads as A− q1(T ) = c2(T ), or, in
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other words, q1(T ) + c2(T ) = A. With two equations of motion of q1 and c2 in hand

q̇1 = µ(B − q1 + γ1z),

ċ2 = µ(c0 − c2 − β
√

gz),

we can introduce the new variable (say, ξ), ξ = q1 + c2, which must satisfy the

boundary conditions ξ(0) = q1(0) + c2(0) = B + c0, ξ(T ) = A, and is subject to the

following equation of motion:

ξ̇ = µ(B + c0 − ξ + (γ1 − β
√

g)z).

Therefore, with a few modifications, the optimization problem under consideration

replicates problem (35):

max
z(t)

∫ T

0

−1 dt (65)

subject to

ξ̇ = µ(B + c0 − ξ + (γ1 − β
√

g)z),

ξ(0) = B + c0, ξ(T ) = A,

T is free, and z ∈ [0, zu].

There is little wonder that the solution of (65) will be identical to (36) and (37).

A.10 Derivation of optimal solution in constrained monopoly. With c2(t)

given by (44), the objective functional in (45) expands to the sum

∫ +∞

T

[ccm(t)(c2(t)− A)− x(t)]e−rt dt +

∫ ∞

T

[c2(t)(A− c2(t)]e
−rt dt

in which the second term integrates to a constant, say, K, which does not depend

on the control variable and thus can be discarded. For that reason optimization

problem (45) reduces to

max
x(t)

I(x(t)) =

∫ +∞

T

[ccm(t)(Ke−µt + c0 − A)− x(t)]e−rt dt, (66)

subject to
dccm

dt
= µ(c0 − ccm(t)−

√
gx(t)).

In order to solve the above problem, we form Hamiltonian H = [ccm(t)(Ke−µt +

c0−A)− x(t)]e−rt + λ(t)µ(c0− ccm(t)−
√

gx(t)) with first-order conditions Hx = 0

and Hccm = −λ̇ and transversality condition limt→∞ λ(t)ccm(t) = 0. These yield the
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equation of motion of the optimal control variable:

ẋ(t) = 2(r + µ)x(t) + (Ke−µt + c0 − A)µ
√

g
√

x(t)

or, in new variable z(t) =
√

x(t),

ż = (r + µ)z +
µ
√

g

2
(Ke−µt + c0 − A) (67)

Equation (67) has the general solution

zcm(t) = Ce(r+µ)t +
(A− c0)µ

√
g

2(r + µ)
− Kµ

√
g

2(r + 2µ)
e−µt.

The transversality condition demands boundedness of the optimal solution. There-

fore C = 0 and

zcm(t) =
(A− c0)µ

√
g

2

(
1

r + µ
+

βe−µ(t−T )

(1− 2β)(r + 2µ)

)
.

A.11 Derivation of optimal predation time when µ →∞. First note that

ρ → 1 as µ → ∞. Therefore, the feasibility condition g < 4ρ becomes g < 4 and

sustainability condition g < 2ρ becomes g < 2.

In the case of constrained monopoly, Firm 1’s profit from strategic predation

becomes

(A− c0)
2

4(1− 2β)2rg

[
4
(
(1− β)2g − 1

)
+

(
(1− 2β)2g2 − 4(1− β)2g + 4

)
e−rT

]
,

when µ →∞. The coefficient at e−rT is positive if and only if

(1− 2β)2g2 − 4(1− β)2g + 4 > 0.

We will show that this inequality holds for all β ∈ [0, 1
2
] and g ∈ [0, 2]. Obviously

it holds for g ≤ 1, since then (1 − 2β)2g2 − 4(1 − β)2g + 4 ≥ −4(1 − β)2 + 4 ≥ 0.

On the other hand, for g > 1, we rewrite the inequality in an equivalent form

(2− g)2 + 4g(2− g)β − 4g(1− g)β2 > 0, which clearly holds when 1 < g < 2.

With unconstrained monopoly in the second phase Firm 1’s profit from strategic

predation becomes

(A− c0)
2

(1− 2β)2rg

[
(1− β)2g − 1 +

(2− (1− β)g)2

4− g
e−rT

]2

,

when µ → ∞. As g < 4, the coefficient at e−rT is positive. Hence the profit is
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decreasing in T .

A.12 Comparison of prices in Section 6.2. First we show that the predation

strategy yields a lower price in the predation phase, i.e., for t ∈ (0, T ]. Obviously,

both prices are the same and equal to 1
3
(A + 2c0) at time t = 0. For t > 0, both are

described by a differential equation of the form (19), or

ṗ = µ ((B + c0) + p(t)− (γ1 + γ2)
√

gz(t)) ,

where z(t) = zopt(t) for the accommodation strategy and z(t) = zu(T ) for the

predation strategy. According to (58), the latter is higher, yielding a lower price.

This is easy to see, when we consider the difference d between the duopoly price

and the predation price, which follows the differential equation ḋ = µ[d(t) − (γ1 +

γ2)(zopt(t) − zu(T ))], with initial condition d(0) = 0. Obviously d(t) > 0, since

γ1 + γ2 = 1
3
(1 + β) > 0 and zopt(t)− zu(T ) < 0.

Now it remains to show that for g ≤ 3ρ/(2 − β), predation yields a lower price

in the constrained monopoly phase. Since the price is decreasing in duopoly and

increasing in constrained monopoly, it is sufficient to show the inequality for their

limits (steady-state values), i.e., that p∗ ≥ c0. This is straightforward since substi-

tution of (30) yields an equivalent form g ≤ 3ρ/(2− β).
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B Appendix: Figures

0 1�2 1
Β

3�2
2

4

g

g�d

g�p

Figure 1: Region of “strategic predation”

0 1 2 3 4 5
t

0.02

0.04

x

Μ=0.4

Μ=2

Μ=20

Figure 2: R&D pattern in duopoly for different values of µ: µ = 0.4, 2, 20
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Figure 3: Growth rates of R&D in duopoly for different values of µ: µ = 0.4, 2, 20
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Figure 5: Dependence of the optimal predation time T on µ in constrained monopoly
(β = 0.33, g = 1) and unconstrained monopoly (β = 0.33, g = 2.1)
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Figure 6: Feasibility and sustainability regions
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Figure 7: Strategic predation (simulation results for µ = 0.2)
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Figure 8: Strategic predation (simulation results for µ = 2)
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Figure 9: Strategic predation (simulation results for µ = 20)
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Figure 10: Strategic predation when µ →∞
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Figure 11: Dependence of area where predation is preferred to duopoly on µ, in
region Rcm (simulation results)
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Figure 12: Dependence of area where predation is preferred to duopoly on µ, in
region Rm (simulation results)
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Figure 13: Comparison of present values of R&D investments (simulation results for
µ = 2)

Remark. Here and in all subsequent figures, the shaded area represents the param-
eters where the corresponding value in accommodation is higher than the value in
strategic predation.
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Figure 14: Comparison of present values of R&D investments (simulation results for
µ = 20)
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Figure 15: R&D investment comparison when µ →∞
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Figure 16: Pattern of price over time with constrained monopoly (µ = 2, β = 0.33,
g = 1)
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Figure 17: Pattern of price over time with unconstrained monopoly (µ = 2, β = 0.33,
g = 2.1)
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Figure 18: Consumer surplus comparison (simulation results for µ = 2)
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Figure 19: Consumer surplus comparison (simulation results for µ = 20)
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Figure 20: Consumer surplus comparison when µ →∞
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Figure 21: Welfare comparison (simulation results for µ = 0.2)
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Figure 22: Welfare comparison (simulation results for µ = 2)
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Figure 23: Welfare comparison (simulation results for µ = 20)
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Figure 24: Welfare comparison when µ →∞ (partial simulation results)
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