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Abstract

We analyze tournaments of heterogeneous players from an organizer’s perspective.
Using a simple model of a noisy tournament, we demonstrate how the likelihood of
selecting the best player, here termed the “predictive power” of a tournament, de-
pends on the tournament format, the distribution of players’ types, and the overall
noise level. We formalize the organizer’s decision problem for varying time and mea-
surement costs and compare the predictive power of three widely used tournament
formats – contests, binary elimination tournaments, and round-robin tournaments.
We show which formats are preferred in the various scenarios and find that for cer-
tain parameter constellations, certain formats are not viable.
Keywords: tournaments, design, predictive power
JEL Classification: C73, C90, D21

Abstrakt

Analyzujeme turnajové střetnut́ı heterogenńıch hráč̊u z perspektivy organizátora
turnaje. S použit́ım jednoduchého modelu turnajové hry s informačńım šumem
ukazujeme, jak pravděpodobnost výběru nejlepš́ıho hráče, označovaná zde jako
predikčńı schopnost turnaje, zálež́ı na struktuře hry, distribuci typ̊u hráč̊u a předevš́ım
na úrovni šumu. Formulujeme problém organizátora pro rozd́ılné časové a měř́ıćı
náklady a srovnáváme předv́ıdaćı schopnost u tř́ı často použ́ıvaných typ̊u her (současný
zápas, dvoustranné vylučovaćı turnaje a turnaje “každý s každým”. Ukazujeme,
které struktury jsou preferovány před ostatńımi v rámci r̊uzných scénář̊u a zároveň,
že v jistých př́ıpadech nejsou některé struktury realizovatelné.
Kličové slova: turnaj, design, predikčńı schopnost
JEL klasifikace: C73, C90, D21
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1 Introduction

Agents (individuals or teams) are usually rewarded based on their performance. Often it

is the relative performance that matters. As a means of assessing the relative performance

of agents, principals extensively use tournaments.

A tournament is a procedure that ranks a set of agents. Such a ranking can be

constructed in various ways. Prominent examples are contests, binary elimination tour-

naments, and round-robin tournaments. Contests are essentially one-shot all-pay auctions

where submission of the highest contribution (effort) does not necessarily lead to a win.

Properties of contests have been widely discussed in the literature.1 In contrast, binary

elimination tournaments and round-robin tournaments are polar cases of tournament for-

mats that compare agents pairwise and sequentially in various degrees of completeness.

These formats allow (most) agents to perform repeatedly, typically against a stream of

ever-changing opponents. A binary elimination tournament is an incomplete multi-stage

pairwise matching format whose exact realization, and efficiency, depends on the ini-

tial seeding and the history of play.2 A round-robin tournament is a complete pairwise

matching format where the winner is determined by point counting.3

Sport events provide us with a simple and useful language to describe tournaments.

Competing agents are typically called players ; possible pairwise comparisons of players

1For a theoretical discussion, see e.g., Tullock (1980), Lazear and Rosen (1981), Green and Stokey
(1983), Taylor (1995), Moldovanu and Sela (2001), Hvide (2002), Baye and Hoppe (2003), Cornes and
Hartley (2005); for empirical results, see e.g., Knoeber and Thurman (1994), Eriksson (1999); for experi-
mental results, see e.g., Schotter and Weigelt (1992), Gneezy et al. (2003), Orrison et al. (2004). See also
reviews by Lazear (1999), Prendergast (1999), Frick (2003), Szymanski (2003), and papers in Lockard
and Tullock (2001).

2Binary elimination tournaments model the competition of workers in hierarchical organizations, see
e.g., Rosen (1986), O’Flaherty and Siow (1995). For empirical results on elimination in sports, see Ehren-
berg and Bognanno (1990), Bognanno (2001). For various other aspects, see also Horen and Reizman
(1985), Knuth (1987), Gradstein (1998), Gradstein and Konrad (1999), Groh et al. (2004).

3Round-robin tournaments have been discussed in the context of public choice models such as voting
schemes and decision rules in committees (see, e.g., Levin and Nalebuff 1995, Ben-Yashir and Nitzan
1997, Esteban and Ray 2001). In mathematics, round-robin tournaments have been studied as complete
directed graphs (see Harary and Moser 1966 for a review; Moon and Pullman 1970 for a discussion of
tournament matrices). Importantly, Rubinstein (1980) shows that the point counting scheme that assigns
1 point to the winner and 0 to the loser of a match and then sums up every player’s points across all
matches he or she played is a very “good” point counting scheme in the sense that it satisfies certain
natural axioms. Rubinstein (1980) also shows that it is the only such scheme.
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are called matches. In every match, there is a winner and a loser, or there is a tie. We

use this terminology throughout the paper.

Noise affects the performance of players either positively or negatively. In the presence

of noise, a tournament can be thought of as a probabilistic device whose output, the

ranking, is a statistic of the “true” ordering of the set of players. Such an ordering

identifies, in particular, who is the best player ex ante.

In terms of organizers’ objectives, we focus on the informational utility of tourna-

ments. We leave the incentive provision problem aside and essentially view tournaments

as estimators of the unobserved ranking of players. We characterize such estimators quan-

titatively by their predictive power – a measure of how reliably a tournament identifies

better players. This view of tournaments is relatively new in the literature, although orga-

nizers’ objectives stemming from it are important in many applications. In situations such

as recruitment and promotion in firms or selection of public finance projects, a reasonable

organizer’s objective would be maximization of the predictive power. In sports, where

uncertainty and upsets increase the “entertainment value” of tournaments for spectators,

organizers may tend to minimize the predictive power.

In the present paper, we explore theoretically (analytically and by way of computa-

tional simulations) the predictive power of three prominent tournament formats: contests,

binary elimination tournaments, and round-robin tournaments.4 We explore predictive

power as a function of noise level, number of players, and distribution of players’ abili-

ties. Using a simple model of organizational costs, similarly to Bolton and Dewatripont

(1994) andGradstein (1998), we analyze the decision problem of an organizer who selects

an optimal tournament format.

Our paper contributes to the literature by analyzing and comparing the probabilistic

properties of the three tournament formats and by studying their properties across what

4These issues have been partly addressed earlier by the operations research and statistics community,
see, for example, Searls (1963), Appleton (1995), McGarry and Schutz (1997). See also Harbaugh and
Klumpp (2005), Klumpp and Polborn (2005) regarding the probability of the best players advancing in
tournaments in the contexts of, respectively, sports and presidential elections. Our study, however, has
a different focus.
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we consider the most prominent distributions of players’ abilities. The investigation of the

three formats is an important step towards solving the problem of optimal tournament

design.5

The paper is organized as follows. In Section 2, we specify a model of a noisy tourna-

ment of heterogeneous players and formulate the organizer’s decision problem. In Section

3, we calculate the predictive power of the three tournament formats. In Section 4, we

present and discuss the dependence of the predictive power of the three formats on the

number of players and the noise level for different distributions of players’ abilities. In

Section 5, we illustrate the solution to the organizer’s decision problem and show how the

organizer will switch between the three tournament formats as costs change. Section 6

concludes.

2 The model

In this Section we present the model of a noisy tournament of heterogeneous players that

we use for our subsequent analysis. The model includes the following ingredients: (i) a

tournament format; (ii) players; (iii) noise; (iv) costs; (v) organizer’s decision problem.

2.1 Tournament formats

A tournament format is an institutionally defined set of rules by which players are matched

and the winner is determined. We consider three prominent tournament formats:6

Contests, where all players perform simultaneously only once, and the player with the

best performance is the winner.

Binary elimination tournaments, where players are matched pairwise, and the losers of

each pair are eliminated, while the winners are again matched pairwise, and so on,

5See Ryvkin (2005) for a general approach to the tournament design problem; see Roth (2002) for a
more general discussion of how simulations with artificial agents and experiments with human subjects
can extend theoretical models, which become too complex in engineering-like situations.

6These three tournament formats are the benchmark formats in sports. More complex formats usually
include these three as building blocks (see Ryvkin 2005 for details).
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until only one player, the winner, remains.

Round-robin tournaments, where players are matched pairwise in all possible matchings,

the winner of every match gets one point, and the player with the highest total score

is the winner.

2.2 Players

We assume that there are N players who are participants in the tournament. The players

are characterized by abilities x = (x1, . . . , xN) taken from a known distribution with a

probability density function (pdf) f(·). For our illustrative calculations and computa-

tional simulations, we have chosen three prominent distributions of players’ abilities: the

uniform, the normal, and the Pareto distribution. The uniform and normal distributions

are useful and frequently used benchmarks and need no further justification as such. Em-

pirical evidence (e.g., Reed 2001; see also Hertwig et al. 1999, or Harrison 2005) suggests

in addition that the Pareto distribution is a widespread and pervasive phenomenon.

We further assume that the incentives are set in such a way that the players do not

strategically choose their efforts but always perform at the highest possible effort level,

proxied here by ability. We abstract from the players’ effort choice problem in order to

isolate the influence of tournament formats, noise, and distributions of players’ abilities

from the effect of the prize. This is a simplification that we believe to be inconsequential:

sufficiently high prizes and players’ non-zero probability of winning a tournament are

likely to extract maximal effort. For example, at high-level sports tournaments, such as

the Olympics, the value of winning even a single match or stage, let alone the first prize,

is so high that the assumption of maximal effort seems plausible. For the case of firms,

one can think of final rounds of hiring or promotion tournaments, where the remaining

candidates all have already invested a significant effort to reach the current stage, and

hence are likely to do their best.
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2.3 Noise

We introduce uncertainty into the model by assuming that at every stage s player i’s

output is given by

yis = xi + εis, i = 1, . . . , N ; s = 1, . . . , S.

Here εis are zero-mean idiosyncratic random shocks, i.i.d. across players and across stages;

S is the number of stages. A similar specification was used, for example, by Lazear and

Rosen (1981), Nalebuff and Stiglitz (1983), Green and Stokey (1983). We denote the

pdf and the cumulative density function (cdf) of εis as φ(·) and Φ(·), respectively. For

illustrative calculations and computational simulations, we use the zero-mean normal

distribution with a variance σ2, which determines the noise intensity. Thus, the level of

noise is characterized by one parameter. We choose the normal distribution because of

its theoretically and empirically established property of being the asymptotic distribution

of noise in large samples under fairly general assumptions. The rationalization stems,

essentially, from the central limit theorem.

2.4 Costs

We associate two types of costs with a given tournament format: (i) time costs, and (ii)

measurement costs. Time costs Et, introduced here similarly to Gradstein (1998) and

Bolton and Dewatripont (1994), are proportional to the number of stages S, Et = ctS,

where ct denotes the unit of time costs. Contests always have one stage, therefore their

time costs are independent of the number of players N unless N = 1, Et = ct(1 − δN1).

Binary elimination tournaments of N = 2R players have S = R stages, i.e., Et = ctR =

ct log2 N . Round-robin tournaments of N players are conducted in N or N − 1 stages

if N is, respectively, even or odd. In what follows we consider only even values of N ,7

7Although contests and round-robin tournaments permit an arbitrary number of players, and the
theory presented below for these two formats has no limitations on N , the binary elimination format,
at least in its “pure” form, only admits a number of participants that is a positive integer power of 2.
Therefore, for further comparisons across the three formats we restrict the analysis to the case of N = 2R,
where R is a positive integer. In a more general setting, any initial number of participants can be reduced
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Figure 1: Time (left) and measurement (right) costs of contests (C), binary elimination
(BE) tournaments and round-robin (RR) tournaments as functions of the number of
players N (logarithmic base 2 scale).

therefore Et = ct(N − 1).

Measurement costs Em are related to the number of elementary measurements (binary

comparisons) needed to determine the best player. In a contest one needs N − 1 such

comparisons, Em = cm(N − 1). In a binary elimination tournament, it is the same,

Em = cm(N − 1). Finally, in a round-robin tournament Em = cmN(N − 1)/2. Here cm

is the unit of measurement costs. Figure 1 illustrates the dependence of the time and

measurement costs on the number of players N for the three tournament formats.

2.5 Organizer’s decision problem

We assume that the tournament organizer’s objective is to select the best player. Let ρ

denote the probability that the ex ante best player wins the tournament. We will call ρ

the predictive power of the tournament (for a more formal definition, see below). The

higher the predictive power, the more certain the organizer can be that the tournament

will reveal the best player as the winner.

We further assume that the organizer gets a payoff of V if the best player is selected,

and zero payoff otherwise. This is a serious restriction, because the organizer could also

to N = 2R through qualifying rounds (see Ryvkin 2005).
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benefit (although less) from selecting players ranked 2 and lower.8 There are, however,

situations when this step-like profit function is a useful approximation of reality. In

general, this happens when the best player is significantly better than all other players,

which is a manifestation of the distribution of players’ abilities having a long tail (such as

the Pareto distribution). Other examples are situations in which finishing first is crucial,

such as innovation races or formation of a national Olympic team.

Thus, we write the organizer’s expected payoff as

π = V ρ− Et − Em, (1)

where Et and Em are the time and measurement costs introduced above. Without loss of

generality, we set V = 1. The units of the organizational costs Et and Em, therefore, will

be the same as the units of probability ρ.

3 Predictive power

In this section we calculate the predictive power of contests, binary elimination tourna-

ments and round-robin tournaments of N players. For contests the resulting expression

is tractable by numerical integration software. For binary elimination and round-robin

tournaments, we will use Monte Carlo simulations to evaluate the resulting expressions

for large N . The simulations agree with the analytical results for small N .

Conditional predictive power. We define the conditional predictive power, ρ(x), as the

probability for the best player to be the winner of the corresponding tournament given

all players’ abilities x = (x1, . . . , xN).

8The organizer might also benefit from tournament formats not selecting the best players if it increases
the “entertainment value” of the tournament for spectators. Such objectives seem of some importance
in sports. For example, in the Four Hills ski jump competition, an annual winter event taking place in
Austria and Germany, the best 30 jumpers out of 50 are selected in the following manner: 50 jumpers
are split randomly into 25 pairs, and the winner of each pair advances. Additionally, 5 out of 25 losers
with the best results advance. This modification of the rules (as compared to the previous grand contest
format, where simply jumpers with the 30 best results advanced) led to the “spectacular” elimination of
the 4 top ranked jumpers in 2005.
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Unconditional predictive power. We define the unconditional predictive power, or simply

predictive power, as the conditional predictive power averaged over a given distribution

f(·) of players’ abilities in the population. In the averaging procedure, it is still assumed

that player 1 has the highest ability, x1 > xk, k = 2, . . . , N . Such averaging of an arbitrary

function A(x) takes the form

〈A〉f = N
∫ ∞

−∞
dx1f(x1)

∫ x1

−∞
dx2f(x2) . . .

∫ x1

−∞
dxNf(xN)A(x). (2)

In the remainder of this section, the unconditional predictive power for contests, binary

elimination tournaments, and round-robin tournaments is given by three theorems.

3.1 Contests

In a contest all performance levels yi of participating players are compared, and the player

with the largest yi is the winner.

Theorem 3.1. The predictive power of a contest is

ρc = N
∫ ∞

−∞
dz1f(z1)

∫ ∞

−∞
dzφ(z − z1)

[∫ z1

−∞
dz2f(z2)Φ(z − z2)

]N−1

. (3)

Proof. For a given vector of abilities x, the joint pdf of players’ performance levels

yi, i = 1, . . . , N , is
∏N

i=1 φ(y − xi). Introduce new variables y′1 = y1, y′2 = y1 − y2, ...,

y′N = y1−yN . The inverse transformation is given by y1 = y′1, y2 = y′1−y′2, ..., yN = y′1−y′N

and has a unitary Jacobian; therefore, the conditional predictive power is

ρc(x) = Pr{y′2 > 0, . . . , y′N > 0|x} =
∫ ∞

−∞
dz1φ(z1 − x1)

N∏

i=2

∫ ∞

0
dziφ(z1 − zi − xi),

=
∫ ∞

−∞
dzφ(z − x1)

N∏

i=2

Φ(z − xi). (4)

After averaging ρc(x) according to Eq. (2), we obtain Eq. (3). Q.E.D.
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Figure 2: The binary tree representation for an elimination tournament of N = 8 = 23

players and R = 3 stages. The players are enumerated by binary numbers. Symbol “x”
denotes unknown bits of advancing players. In each match the key differing bits are shown
in bold.

3.2 Binary elimination tournaments

In a binary elimination tournament, N = 2R players compete sequentially in R stages. At

each stage, the players are matched pairwise, and the winners are promoted to the next

stage. This tournament format can be conveniently represented in the form of a binary

tree. Figure 2 shows the tree representation for an elimination tournament of 8 players.

Consider a binary tree with N = 2R terminal nodes. Enumerate the terminal nodes by

R-bit binary numbers b(k) = 〈b(k)
1 ...b

(k)
R 〉, where b(i)

r ∈ B = {0, 1} are digits, i = 1, . . . , N ,

r = 1, . . . R.

For convenience, we enumerate stages backwards in time.9 At stage R, matches

(b(1), b(2)), (b(3), b(4)),..., (b(N−1), b(N)) are played. Note that within every match the players’

binary numbers differ only in the R-th bit (cf. Fig. 2).

Without loss of generality, we assume that at the beginning of the tournament, at

stage R, player i is assigned to terminal node b(i), i = 1, . . . , N .10 The winners of stage

9It is common in sports to call the stages close to the root of the tree by the number of matches
(“brackets”) in them, e.g., the final (r = 1, 21−1 = 1 match), semifinals (r = 2, 22−1 = 2 matches),
quarterfinals (r = 3, 23−1 = 4 matches), etc.

10We assume here that the organizer does not have any a priori knowledge of players’ abilities and
ignore the possibility of seeding, which plays an important role in tournament design (see e.g., Groh et
al. 2004, and references therein) and, of course, affects the predictive power.
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R’s matches are promoted to stage R− 1, where they are matched according to the flow

along the branches of the tree towards the root. Formally, the matching occurs as follows:

two players at stage R − 1 are matched if and only if the first R − 2 bits of their binary

numbers coincide and the (R− 1)-th bits are different (see Fig. 2).

The procedure is repeated recursively. At stage R−r the winners from stage R−r+1

are matched. Within each match the first R−r−1 bits of players’ binary numbers coincide,

and the (R− r)-th bits are different. The tail bits are not important for matching, since

R − r bits suffice to enumerate the remaining players at stage (R − r). Those bits,

however, have to be dragged behind in order to preserve the initial “identities” of all

surviving players. At stage 1 there is just one (final) match. The players of this match

necessarily have different first bits. The winner of the final match (the only participant

of “stage 0”) is the winner of the whole tournament.

Suppose the players’ abilities x are given. Then every match of players i, j is a contest

of two players, and the probability for player i to win is given by Eq. (4) with N = 2:

w(xi, xj) =
∫ ∞

−∞
dzφ(z − xi)Φ(z − xj). (5)

Let Pr(b
(i)|x) denote the probability for the player seeded as b(i) to advance to stage r.

At stage r player b(i) can only be matched with a player whose binary number has the

following properties: (i) the first r − 1 bits are the same as in b(i); (ii) the r-th bit is

different from that of b(i). Thus, the players who can potentially be matched with player

b(i) at stage r have a binary number of the form 〈b(i)
1 . . . b

(i)
r−1b

(i)
r cr+1 . . . cR〉. Here the

overline denotes a flipped bit: 0 = 1 and 1 = 0; cs ∈ B are arbitrary bits. Also, the player

to be matched with b(i) needs herself to survive until stage r. This reasoning leads to the

following result.

Theorem 3.2. The predictive power of a binary elimination tournament is ρe = 〈P0(b
(1)|x)〉f ,

11



where P0(b
(1)|x) is a solution of the recurrence relation

Pr−1(b
(i)|x)

Pr(b(i)|x)
=

∑

cr+1,...,cR∈B
Pr(〈b(i)

1 . . . b
(i)
r−1b

(i)
r cr+1 . . . cR〉|x)w

(
xb(i) , x〈b(i)1 ...b

(i)
r−1b

(i)
r cr+1...cR〉

)

(6)

with i = 1 and the initial condition PR(b(i)|x) = 1, i = 1, . . . , N . Here w(·, ·) is given by

Eq. (5).

Proof. Recurrence relation (6) is very intuitive. The probability of advancing to the

next stage is the sum of probabilities of beating all possible candidates for the match

multiplied by their corresponding probabilities of reaching this point in the game. The

initial conditions simply state that all N players with probability 1 start the tournament

at stage R. The R ×N numbers Pr(b
(i)|x) completely define the probabilistic properties

of the tournament conditional on abilities x. The predictive power is then calculated by

averaging [cf. Eq. (2)]. Q.E.D.

3.3 Round-robin tournaments

In a round-robin tournament, players are matched in all possible M = N(N − 1)/2

pairwise matchings (i, j), 1 ≤ i < j ≤ N . Every match (i, j) has one of the two allowed

outcomes: either i → j (player i defeated player j) or j → i (player j defeated player i).11

We introduce a variable pij such that

pij = 1 if i → j, pij = 0 otherwise (7)

Since the ordering of matches is not important (all matches are assumed to be statistically

independent) we will, for convenience, adopt the following (lexicographic) ordering m =

11We ignore the possibility of ties. We do so because the literature (e.g., Rubinstein 1980) does not
provide us with a consistent point counting scheme. Introducing ties would have required us to build
a different model. We believe that such a model would not materially affect the results that we are
interested in.
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1, . . . , M :

(i, j) : (1, 2) . . . (1, N) (2, 3) . . . (2, N) . . . (N − 1, N)

↓ ↓ ↓ ↓ ↓ ↓
m(i, j) : 1 . . . N − 1 N . . . 2N − 3 . . . M,

which can be described by

m(i, j) = N(i− 1)− i(i + 1)

2
+ j. (8)

Any outcome of the tournament can then be represented by an M -bit binary number

b = 〈b1 . . . bM〉, where bm(i,j) = pij. There are 2M possible tournament outcomes, ranging

from 〈00 . . . 0〉 to 〈11 . . . 1〉.
Any result of the tournament is an N -dimensional vector of scores s = (s1, . . . , sN)

where every player’s score is the number of wins she has, i.e., players start with a score

of 0 and then add 1 point for each win. Given an outcome b, the score vector is s = S(b),

with

Si(b) =
i−1∑

j=1

(1− bm(j,i)) +
N∑

j=i+1

bm(i,j), i = 1, . . . , N. (9)

The winner of the tournament is the player with a maximal score. There may be more

than one such player, and then an additional rule has to be applied to determine the best

among them. In the present paper, we assume that the winner is chosen randomly among

the players with maximal scores.

For a fixed vector of abilities x, player i wins a match against player j with prob-

ability w(xi, xj) given by Eq. (5). Then every pij becomes a Bernoulli random variable

with probability of success w(xi, xj) and a tournament outcome b becomes a multivariate

Bernoulli vector with independent components. The probability of outcome b is

α(b|x) =
N−1∏

i=1

N∏

j=i+1

w(xi, xj)
bm(i,j) [1− w(xi, xj)]

1−bm(i,j) . (10)
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Also, the score vector s becomes a random vector. The distribution of s is non-trivial

since its components are not independent. For example,
∑N

i=1 si = M . The pdf of s can

be written as

π(s|x) =
∑

b∈{0,1}M

α(b|x)δ[s− S(b)]. (11)

Here the δ-function12 is M -dimensional; summation goes over all M -bit binary numbers;

S(b) is determined by Eq. (9); α(b|x) is given by Eq. (10). We are now in a position to

calculate the predictive power.

Theorem 3.3. The predictive power of a round-robin tournament is ρr = 〈ρr(x)〉f , where

the conditional predictive power is given by

ρr(x) =
∑

b∈{0,1}M

α(b|x)
∏N

i=2 H[S1(b)− Si(b)]

1 +
∑N

k=2 δS1(b)Sk(b)

. (12)

Here H(z) is the step function defined as 1 for z ≥ 0 and 0 for z < 0; δij is the Kronecker

δ-symbol defined as δij = 1 if i = j and 0 otherwise; α(b|x) is given by Eq. (10); S(b) is

given by Eq. (9).

Proof. The conditional predictive power is defined as the probability that player 1 has

a maximal score. Additionally, if several players have a maximal score, the probability

should be divided by the number of such players, because the winner is chosen randomly

among them. In Eq. (12) we sum over all mutually exclusive tournament outcomes. For

each tournament outcome, we divide the probability that player 1’s score is greater than

or equal to all other players’ scores by the number of players who have the same score as

player 1. The former probability, similarly to Eq. (4), is given by

Pr{s1 ≥ s2, . . . , s1 ≥ sN |b,x} =
∫ ∞

−∞
dz1

∫ ∞

0
dz2 . . .

∫ ∞

0
dzNα(b|x)δ[z− S(b)],

12The one-dimensional Dirac delta-function δ(x) can be defined in many equivalent ways, one of which,
δ(x) = limε→0(2πε2)−1/2 exp[−x2/(2ε2)], is the zero-variance limit of the normal probability density. The
delta-function δ(x) can be visualized as a very high but narrow peak of area 1 centered at x = 0. Its key
property is that for any continuous function g(x), the integral

∫ v

u
dxδ(x−x0)g(x) = g(x0) when u < x0 < v

and 0 otherwise, i.e., the delta-function ”cuts” a particular point out of any continuous function, with
which it is convoluted. The M -dimensional delta-function is a product of M one-dimensional delta-
functions.

14



which yields, after integration, the numerator in Eq. (12). The number of players with

the same score as player 1 is in the denominator of Eq. (12). Q.E.D.

4 Results for predictive power

We use the results of Section 3 for illustrative calculations and computational simulations

of the predictive power of contests, binary elimination tournaments and round-robin tour-

naments. For comparisons across the three formats we have chosen the number of players

to take on the values N = 2, 4, 8, 16, 32, 64, 128, 256, i.e., powers of 2 ranging from 1 to

8. These values of N are admissible for all three formats. The restriction to powers of

2, obviously, comes from the binary elimination format. The upper bound of N = 256 is

set by computational resources. We also believe that, for practical purposes, it covers the

most interesting situations.

We have explored the normal, Pareto, and uniform distributions of players’ abilities.

Parameters of the distributions have been selected so that all three distributions have unit

variance, Var(x) = 1:

Normal f(x) = (2πΣ2)−1/2 exp [−x2/(2Σ2)] , Σ = 1, (13)

Pareto f(x) = px−(p+1)I[1,∞](x), p ≈ 2.8393,

Uniform f(x) = (1/a)I[0,a](x), a = 2
√

3.

Here I[a,b](x) denotes the indicator function equal to 1 within the specified interval and 0

outside of it.

Given our choice of distribution parameters, it makes sense to distinguish three noise

regimes: (i) small noise, where noise intensity is much smaller than the variance in players’

ability, σ ¿ 1; (iii) intermediate noise, where noise intensity is comparable to the variance

of players’ ability, σ ∼ 1; (iii) large noise, where noise intensity is much larger than the

variance of players’ ability, σ À 1. To cover all the regimes, we let σ vary with step size
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0.1 from 0.1 to 2.0. In addition, we considered values of σ = 3, 4, 5, 10.

For contests, we calculated the predictive power using Eq. (3). For the binary elimi-

nation format, we used the recurrence relation (6) to find the conditional predictive power

for given players’ abilities x, and averaged over the realizations of x using simulations.

For the round-robin format, we used Eq. (12) with the subsequent simulation-based av-

eraging for N = 2, 4, 8, and relied on the simulations entirely (i.e., also simulated the

individual matches) for larger N . Here simulations become very efficient because Eq. (12)

has exponentially many terms in the sum, but most of the terms are negligible.

Figures 3, 4 and 5 show the predictive power of, respectively, contests, binary elimi-

nation tournaments and round-robin tournaments as a function of the number of players

N and noise level σ for the three distributions of players’ abilities. The discussion of our

results in the remainder of this section draws on these figures. As seen from the figures,

the behavior of the predictive power of the three tournament formats is, with some no-

table exceptions, qualitatively very similar. This leads us to conjecture that there are

certain “universal” features of predictive power. We discuss these common features first

and then proceed with a discussion of format-specific and distribution-specific features

the predictive power displays.

4.1 Universal properties of the predictive power

4.1.1 Small-N behavior

The predictive power for one player (N = 1) always equals 1. Therefore, across all

tournament formats and ability distributions, predictive power should decrease initially

when additional competitors join the tournament except for the trivial case of no noise.

This is indeed what we see. For larger N , the behavior might become non-monotonic; if

and when non-monotonicities occur depends on the details. For example, for the Pareto

distribution and small noise, the predictive power starts rising with N immediately after

N = 2.
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4.1.2 Small-noise behavior

For all tournament formats and ability distributions, predictive power behaves qualita-

tively the same in the small-noise regime. Small noise adds a small probability of upsets

(i.e., situations in which a stronger player performs worse than a weaker player). No dis-

continuity in predictive power can be expected when going from zero to non-zero noise:

since predictive power equals its maximal possible value of 1 for zero noise, it must nec-

essarily decline for small noise. Clearly, this result is universal, i.e., it holds for arbitrary

numbers of players N ≥ 2 and all distributions of players’ abilities f(x). How fast and

how far predictive power will decline depends on N and the specific shape of f(x). Recall

that noise is defined as small relative to the fixed variance of the ability distribution. An

alternative strategy would be to fix the noise level: the small-noise regime then corre-

sponds to large variance in ability relative to noise, i.e., the players’ abilities are very

different and therefore easily distinguishable, hence the predictive power is close to 1.

4.1.3 Large-noise behavior

Across all tournament formats and ability distributions, predictive power behaves also

qualitatively the same for the large-noise regime. For any given N the predictive power

converges from above to 1/N as σ → ∞. This is intuitive: as noise increases, ability

becomes less important in determining the outcome of the tournament while chance be-

comes increasingly important. As in the small-noise regime, we could fix the noise level

and interpret the large-noise regime as the one in which variance in ability is small, i.e.,

the players are hard to distinguish and hence in fierce competition. As a result, predictive

power tends to its “indifference” limit 1/N .

4.1.4 Behavior for uniformly distributed abilities

The predictive power of all three tournament formats behaves similarly for the case of

the uniform distribution of players’ abilities. As seen from the third rows of Figures 3, 4

and 5, predictive power is a monotonically decreasing function of both N and σ. Indeed,
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for a fixed σ with increasing N , the “density” of players’ abilities increases uniformly

everywhere, and competition between the top-ranked players becomes tighter, as it be-

comes more likely that players appear whose abilities are close to that of the best player.

Also, for a fixed N with increasing σ, the probability for upsets increases uniformly for all

players (except, of course, the top-ranked player). This result also implies, however, that

the probability of outperforming a lower-ranked player decreases (except, of course, for

the lowest-ranked player), possibly neutralizing the net effect. This neutralization will be

complete only for the median player, and will happen partially for other “interior” play-

ers (i.e., players other than the top-ranked and lowest-ranked players). In fact, interior

players to the right of the median player will experience a negative effect because relative

to the median player there is more mass of the distribution to their left (and hence more

chances of being upset, and fewer chances of upsetting). Likewise, interior players to the

left of the median player will experience a positive effect because relative to the median

player there is less mass of the distribution to their left (and hence fewer chances of being

upset, and more chances of upsetting).

4.2 Non-universal properties of predictive power

Maybe unsurprisingly, the small-noise and large-noise properties of predictive power are

universal. These extreme regimes, however, are not of much interest from the institutional

design point of view because there is not much a designer can do to influence the situation.

Indeed, when noise is small (or, in other words, when players have very diverse abilities),

design efforts are not necessary because the ex ante top-ranked player will almost surely

win the tournament anyway. On the other hand, when noise is large (when players are

almost identical in ability), there is not much a designer can do against pure chance, and

there is not much a designer would be willing to do because she is nearly indifferent about

who the winner is. Of most interest is the regime of intermediate noise, when the players’

abilities vary on the same scale as the noise level. In this regime, tournament design can

substantially affect predictive power and hence the organizer’s payoff.
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Predictive power has very intuitive and universal behavior for the uniform distribution

of abilities because the players are affected uniformly by an increase in N and σ. In most

real-life cases, however, the distribution of abilities is non-uniform. We explored two

empirically prominent non-uniform distributions, the normal and Pareto ones. In both

cases, players are differentially affected by an increase in N and σ, leading to non-trivial

and counter-intuitive behavior of the predictive power, such as non-monotonicity.

4.2.1 Non-monotonocity of ρ as a function of N

As seen from Figures 3, 4 and 5, predictive power can be a non-monotonic function of the

number of players for a given non-zero noise level σ. As illustrated by the relevant right

panels, contests and binary elimination tournaments display non-monotonicity in N for

the Pareto distribution of abilities, while round-robin tournaments also display it for the

normal distribution. Thus, one question is where non-monotonicity comes from at all,

while another question is why the behavior for the normal and Pareto distributions can

be different for different formats.

The decaying upper tail of the Pareto distribution implies that relative to the low-

ability players the average “distance” between the top-ranked players increases in N ,

which affects the predictive power positively. The countervailing effect comes from an

increase in the probability of upsets with N . Which of the two effects prevails depends

on N and σ. For small noise, the positive effect should prevail already for small N ; for

larger noise, the negative effect prevails for smaller N while for larger N the positive

effect eventually wins. As a result, for larger noise there appears a minimum in predictive

power as a function of N . The value of N at the minimum corresponds to the turning

point where noise becomes small relative to the average distance between the top-ranked

players.

For the normal distribution, the intuition stemming from the Pareto distribution

seems a useful point of departure. Note that ignoring the difference in tails of the two

distributions, the Pareto distribution is in a sense the upper half of the normal distribution.

19



Hence, we should expect qualitatively somewhat similar behavior. This, however, is not

the case for contests and binary elimination tournaments.

Let us first discuss why the predictive power of contests displays no non-monotonicity

for the normal distribution, while it does for the Pareto distribution. The Pareto dis-

tribution has a long tail, meaning that the probability of finding a value significantly

larger than the mean is very high compared to an exponentially decaying distribution

with the same variance. For example, for the distributions with the unit variance that

we use, Pr{x − E(x) > 3} (i.e., the probability of exceeding the mean by more than 3

standard deviations) is 0.00135 for the normal distribution and 0.0136 (nearly ten times

larger) for the Pareto distribution. As a result, when the number of players increases, the

top-ranked player’s ability also increases on average, but it increases much slower for the

normal distribution than for the Pareto distribution. Therefore, the concurrent increase

in the probability of upsets from less able players dominates for all values of N for the

normal distribution, as opposed to the Pareto distribution where it only dominates for

smaller N .

The difference between the normal and Pareto distributions is also observed for binary

elimination tournaments but not observed for round-robin tournaments. The round-robin

tournament format is very different from the other two formats in that it allows for losses.

Indeed, winning a contest or a binary elimination tournament of N players, in a very

simplified picture that ignores inter-player correlations, is similar to getting a maximal

score (i.e., winning all matches) in a round-robin tournament. We know, however, that a

player can sometimes win a round-robin tournament with a smaller score. Accommodation

of losses is the feature of the round-robin format that makes it qualitatively different from

the other formats where only “flawless” performance leads to a win. Besides, in a round-

robin tournament, players are matched a comparatively large number of times without

any elimination, i.e., they have many opportunities to upset one another. Interestingly,

an increase in the probability of upsets, for whatever reason, helps the top-ranked player

in that the players ranked 2 and lower upset one another more intensively, on average,
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than they upset the top-ranked player and lose more points as a result. This effect, in

turn, allows the top-ranked player to lose more points and still remain the winner.

The above arguments are very qualitative and by no means explain in full what

happens. The exact quantitative behavior of predictive power, as described in Section

3, results from a complex entanglement of combinatorial and statistical factors that are

hard to completely intuit. For example, although intuitively it seems that the round-robin

format is more “robust” than the binary elimination format where a single loss leads to

elimination, Table 1 shows that for N = 4 and σ = 1 the binary elimination format

predicts the best players at least as well as the round-robin format, and even better for

the uniform distribution of abilities. For larger N , however, the “intuitive picture” is

restored.

4.2.2 Non-monotonicity of ρ as a function of σ

This even more counter-intuitive feature can be seen in the left panels of Figure 5. It is

only observed for round-robin tournaments and for the normal and Pareto distributions

of players’ abilities. As seen from Figure 5, predictive power as a function of σ undergoes

a bifurcation for some critical value of N = Nc: for N below Nc predictive power is a

monotonically decreasing function of σ, while for N > Nc it acquires a local minimum

and a local maximum. For the normal distribution 128 < Nc < 256, while for the Pareto

distribution 64 < Nc < 128.

Obviously, as noise increases, so does the probability of upsets. However, as explained

above, a feature of the round-robin tournament is that upsets do not necessarily lead to

the overall loss of the best player, especially when N is large. This is precisely what we

observe: for N > Nc there is a range of σ where the predictive power increases in σ. In

this range of σ the top players ranked 2, 3, etc. (who are most likely to upset the best

player) compete among themselves and lose points more intensively than they upset the

best player. This leads to the surprising upward swing in predictive power as a function

of noise level σ for large N .

21



contest binary elimination round-robin
N Et

ct

Em
cm

ρ
(n)
c ρ

(p)
c ρ

(u)
c

Et
ct

Em
cm

ρ
(n)
e ρ

(p)
e ρ

(u)
e

Et
ct

Em
cm

ρ
(n)
r ρ

(p)
r ρ

(u)
r

4 1 3 .58 .50 .58 2 3 .60 .51 .60 3 6 .60 .51 .59
8 1 7 .46 .46 .42 3 7 .50 .49 .45 7 28 .55 .56 .49
16 1 15 .37 .48 .28 4 15 .42 .54 .31 15 120 .55 .68 .40
128 1 127 .22 .69 .06 7 127 .30 .73 .08 127 8128 .68 .85 .19

Table 1: Predictive power (ρ(n) for the normal, ρ(p) for the Pareto, and ρ(u) for the
uniform distribution of players’ abilities) and costs of the three tournament formats for
N = 4, 8, 16, 128 players and noise level σ = 1.

5 Optimal choice of the tournament format

Which format then would an organizer choose? For the most interesting case of inter-

mediate levels of noise, the organizer’s choice of tournament format depends significantly

on her objectives. We assume that the organizer maximizes her expected payoff given by

Eq. (1) with V = 1:

Contest πc = ρc(N, σ)− ct(1− δN1)− cm(N − 1),

Binary elimination πe = ρe(N, σ)− ct log2 N − cm(N − 1),

Round-robin πr = ρr(N, σ)− ct(N − 1)− cmN(N − 1)/2. (14)

Consider the organizer’s choice of tournament format for the case of intermediate noise

level σ = 1. We let N take on the values N = 4, 8, 16, and 128. Table 1 gives the values of

the predictive power and costs of the three formats for these parameter values. Depending

on the unit time and measurement costs ct and cm, the organizer will switch between the

three formats. Figure 6 shows the regions in the (ct, cm) plane where a particular format

is preferred to the other two.

As can be seen from Figure 6, the boundary between the contest and binary elimina-

tion formats for N > 2 has the shape of a vertical line parallel to the cm-axis. The reason

is, as seen from Eq. (14), that the two formats have the same measurement costs. The

switching value of ct between the two formats is given by the equation πc = πe, which
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yields

cc−e
t =

ρe(N, σ)− ρc(N, σ)

log2(N/2)
. (15)

The predictive power of binary elimination tournaments dominates the predictive power

of contests. The difference between the two, which appears in the numerator of Eq. (15),

is the predictive power gain from using the more complex (and costly) binary elimination

format as compared to the basic contest. The critical value of ct at which the organizer will

switch between the two formats is proportional to this gain, and decreasing logarithmically

in the number of players. For N = 2 there is no difference between the two formats, hence

the critical value of ct tends to infinity.

The boundary between the binary elimination and round-robin formats is determined

by the equation πe = πr, which gives

ce−r
m =

ρr(N, σ)− ρe(N, σ)

(N − 1)(N/2− 1)
− N − 1− log2 N

(N − 1)(N/2− 1)
ct. (16)

Equation (16) describes a downward sloping linear boundary for N > 2 and ρr > ρe. Note

that ρr(4, 1) ≤ ρe(4, 1), as seen from Table 1, therefore the round-robin format never arises

as the optimal choice for N = 4 and σ = 1.

Contests are the least costly in terms of time and have the same measurement costs

as binary elimination tournaments. Round-robin tournaments are the most costly in all

respects. Unsurprisingly, the same is true, albeit with some exceptions, for predictive

power, which makes the optimization meaningful. For sufficiently small marginal costs of

time and measurement, the organizer always prefers the round-robin tournament as the

most accurate. As the marginal costs increase, the organizer will switch to the binary

elimination format. Eventually, when the marginal cost of time reaches a threshold value,

the contest format becomes the optimal choice. Interestingly, for N = 4 players and σ = 1

the round-robin format is dominated by the binary elimination format and never arises

as the optimal choice.

For other organizer’s objectives, such as the maximization of the “entertainment
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value” of a tournament, the results could be totally different. As Terry Bradshaw13 put

it, “I am always for the underdog,” and so seem to be most sport spectators. Organizers,

therefore, may think about minimizing rather than maximizing predictive power. More

generally, there is evidence that some sort of “competitive balance” needs to be sustained

in sports (see Szymanski 2003).

6 Conclusions

We have investigated three prominent tournament formats – contests, binary elimination

tournaments and round-robin tournaments – in terms of their predictive power to select

the best player as the winner. We formulated and solved the decision problem of an orga-

nizer whose objective is to choose among the three tournament formats one that reveals

the best player most accurately. In our model of a noisy tournament of heterogeneous

players, the predictive power, defined as the probability of the player with the highest

ability to win the tournament, is a function of the number of players N , overall noise level

σ, the distribution of players’ abilities f(x), and the tournament format.

Noise determines the probability of upsets and acts as an equalizer of players’ abilities.

It is clear intuitively, and supported by our calculations and computational simulations,

that in the small-noise regime (when players have very diverse abilities) the predictive

power approaches 1, while in the large-noise regime (when players’ abilities are difficult

to distinguish) it tends to the “indifference” limit 1/N . In the intermediate-noise regime,

when noise varies on the same scale as the players’ abilities, the behavior of the predictive

power is non-universal, and it is in the organizer’s interest to extract information about

players’ ranking from their noisy performance. We have found that predictive power can

be non-monotonic as a function of the number of players N . This counter-intuitive feature

can be observed for non-uniform distributions of players’ abilities. We observe it for all

13Terry Paxton Bradshaw is a former American football quarterback with the Pittsburgh Steelers in the
American National Football League (NFL), a current football analyst and co-host of FOX NFL Sunday
(Wikipedia).
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three tournament formats when f(x) is a power law, and for round-robin tournaments

also when f(x) is normal. Remarkably, for round-robin tournaments predictive power can

also be non-monotonic as a function of σ.

The organizer’s optimal choice of tournament format is determined by balancing pre-

dictive power and organizational costs. We introduced two types of such costs, those

related to time and measurements. Time costs are associated with the number of stages

a tournament has, while measurement costs are proportional to the number of “elemen-

tary ranking measurements” (binary comparisons) an organizer has to implement. With

increasing marginal costs of time and measurements, the organizer will switch from the

round-robin format to the binary elimination format, and eventually to the contest for-

mat. Interestingly, for some parameter values some formats never arise as the optimal

choice.

The major contribution of our paper is the formulation of a unified framework that

allows us to analyze and compare the predictive power of arguably the most important

tournament formats and their variants (e.g., involving seeding and qualifying rounds).

Important findings are the non-desirability of some tournament formats for some param-

eterizations and the non-monotonicity of predictive power as a function of N and σ.

Our results can conceptually inform the decision-makers of recruiting committees,

research and public project funding agencies and other principals whose objective is to

select the best agent. In principle, it should be possible to calibrate our model with

historic or experimental data. This endeavor is part of our research agenda.
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Figure 3: Predictive power ρc of the contest format as a function of noise level σ and
number of players N .
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Figure 4: Predictive power ρe of the binary elimination format as a function of noise level
σ and number of players N .
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Figure 5: Predictive power ρr of the round-robin format as a function of noise level σ and
number of players N .
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Figure 6: Regions in the (ct, cm) plane where each of the three tournament formats (con-
tests – C, binary elimination tournaments – BE, round-robin tournaments – RR) is chosen.
The results refer to the case of σ = 1.
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