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Escape Dynamics: A Continuous—Time
Approximation

Dmitri Kolyuzhnov, Anna Bogomolova, and Sergey Slobodyan∗

CERGE-EI†

Politických vězň̊u 7, 111 21 Praha 1,
Czech Republic

Abstract

We extend a continuous—time approach to the analysis of escape dynamics in economic mod-
els with adaptive learning with constant gain. This approach is based on applying results
of continuous—time version of large deviations theory to the diffusion approximation of the
original discrete—time dynamics under learning. We characterize escape dynamics by analyt-
ically deriving the most probable escape point and mean escape time. The continuous—time
approach is tested on the Phelps problem of a government controlling inflation while adap-
tively learning the approximate Phillips curve, studied previously by Sargent (1999) and Cho,
Williams and Sargent (2002) (henceforth, CWS). We compare the results with simulations
and the results obtained by CWS. We express reservations regarding applicability of escape
dynamics theory to characterization of mean escape time for economically plausible values of
constant gain in the model of CWS. We show that for these values of the gain simple consider-
ations and formulae generate much better mean escape time results than the large deviations
theory. We explain it by insufficient averaging near the point of self—confirming equilibrium
for relatively large gains and suggest two changes which might help the approaches based on
large deviation theory to work better in this gain interval.

Abstrakt

Rozšǐrujeme časově spojitý přístup v analýze únikové dynamiky v ekonomických modelech s
adaptivním učením a konstantním přínosem. Tento přístup je založen na aplikaci výsledk̊u
časově spojité verze teorie velkých odchylek při aproximaci limitního časově spojitého procesu
(difuze) u originálního diskrétního modelu ve verzi s učením. Únikovou dynamiku charakter-
izujeme analytickým odvozením nejpravděpodobnějšího bodu úniku a pr̊uměrné doby úniku.
Časově spojitý přístup je testován na Phelpsově problému vlády kontrolující inflaci při je-
jím adaptivním učení přiblížení se Phillipsově křivce, dříve zkoumaném Sargentem (1999) a
Cho, Williams a Sargentem (2002) (dále jen CWS). Porovnáváme výsledky se simulacemi
a výsledky, ke kterým dospěli CWS. Vyjadřujeme výhrady ohledně aplikovatelnosti teorie
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únikové dynamiky při charakterizaci pr̊uměrné doby úniku u ekonomicky přijatelných hod-
not konstantního přínosu v modelu CWS. My ukazujeme, že pro tyto hodnoty přínosu posky-
tují jednoduché úvahy a rovnice o mnoho lepší výsledky ohledně pr̊uměrné doby úniku než
teorie velkých odchylek. Vysvětlujeme to nedostatečným pr̊uměrováním v blízkosti bodu
„samopotvrzujícího“ bodu rovnováhy pro relativně velké přínosy a navrhujeme dvě změny,
které by mohly pomoci přístup̊um založeným na teorii velkých odchylek fungovat lépe tomto
intervalu.

JEL Classification: C62, C65, D83, E10, E17

Keywords: constant gain adaptive learning, E—stability, recursive least squares, large
deviations theory
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1 Introduction

The aim of this paper is to extend the continuous—time approach to the analysis of

escape dynamics in economic models with adaptive learning and to test it on the Phelps

problem of a government controlling inflation while adaptively learning the approximate

Phillips curve, studied previously by Sargent (1999) and Cho et al. (2002). The idea

to extend the continuous—time approach is motivated by the restricted applicability

and computational intensity of the approach used to derive theoretical characteristics

of escape dynamics in the recent economic literature. Theoretical analysis of escape

dynamics in economic models with adaptive learning allows to theoretically characterize

diverse economic phenomena such as currency crises, inflation episodes, endogenous

collusion in oligopoly, cycles of economic activity, see Cho and Kasa (2003); Williams

(2001, 2002, 2003, 2004); Bullard and Cho (2005); Cho et al. (2002); and Kasa (2004).

Escape dynamics also was used to study large mutations in evolutionary games, see

Kandori, Mailath and Rob (1993); and Binmore and Samuelson (1997).

In this literature, these phenomena are modeled as a result of escape dynamics in

economic models with boundedly rational economic agents who use adaptive learning

in a form recently summarized in Evans and Hohkapohja (2001) to update their beliefs

about economic models. Among the literature devoted to this form of adaptive learning

are Bray (1982); Bray and Savin (1986); Fourgeaud, Gourieroux and Pradel (1986);

Marcet and Sargent (1989); Evans and Honkapohja (1994a); Evans and Honkapohja

(1994b); Evans and Honkapohja (1995); Marimon (1997); and many others. In this

literature, agents are considered as econometricians who estimate forecasting models

using standard statistical procedures, such as recursive least squares, stochastic gra-

dient, or Bayesian learning, and form beliefs about an economic model. The beliefs

thus formed are then used to generate agents’ actions, and thus influence the realized

values of economic variables which are taken as a new data point by the agents. In the

next period, the agents update their beliefs with the new data. New beliefs then affect

actions and economic variables, and this process repeats period after period.

Combined dynamics of parameters describing agents’ beliefs and of observed eco-

nomic variables form a stochasic recursive algorithm (SRA). Under some regularity

conditions, the SRA corresponding to a particular adaptive learning process converges

to the rational expectations equilibrium (REE) of the model,1 and thus limit dynamics

1or one of the REE in multiple equilibria models
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under adaptive learning is the same as that under rational expectations. Stability un-

der adaptive learning which guaranteed such convergence has been considered a very

important characteristic of the REE in recent monetary policy literature, c.f., Evans

and Honkapohja (2003) or Bullard and Mitra (2002).

Beyond using adaptive learning as a de facto equilibrium selection mechanism or

a tool for designing policy rules, one could concentrate on the dynamics of the model

under adaptive learning as such, in particular, in a case of adaptive learning with

a constant gain.2 In this case, convergence of the learning process to REE is only in

distribution: there are persistent fluctuations around the REE caused by such learning,

and thus rare events – large distance movements called “escapes” – may occur with

nonzero probability. During an escape, agents’ beliefs about the model move away

from nearly rational expectations. As a rule, their actions and the values of realized

economic variables also deviate from those observed in the REE.

The analysis of such escape dynamics caused by the adaptive learning process is

possible using the theory of large deviations by Freidlin and Wentzell (1998) (FW

henceforth); Dupuis and Kushner (1989); and others. Depending on what version of

the large deviations theory – continuous—time by FW or discrete-time by Dupuis and

Kushner (1989) – one wants to utilize, there are two possible approaches to the the-

oretical analysis of escape dynamics: the discrete—time approach and the continuous—

time approach. The discrete—time approach, which has received wider attention in

the literature, is based on the analytical derivation of escape dynamics for the orig-

inal discrete—time SRA used to describe a learning process. In the continuous—time

approach, a continuous—time diffusion approximation of the discrete—time SRA is de-

rived, and then escape dynamics is studied for this approximation.3

The first approach was used in the majority of the papers cited above, in particular

in Cho et al. (2002) (henceforth CWS). These papers work directly with discrete—time

SRA processes and use the recent results of Williams (2001), who derived numerically

the action functional for a linear—quadratic case when the state variable process is

autoregressive with Gaussian noise.

There are three basic problems associated with the above approach. First, if the

state variable process is subject to unbounded (for example, Gaussian) shocks, the

2Constant gain learning discounts the past by assigning more weight to more recent data.
3The idea of approximating discrete—time learning with continuous—time process in order to apply

FW large deviations theory results is due to Kasa (2004) who considered a simple one—dimensional
model.
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discrete time version of large deviations theory does not contain theoretical results al-

lowing for a full description of escape dynamics. In particular, the most probable point

of escape from the neighborhood of convergence point (as stated above, this point is

usually a REE) and the expected time until escape, are unavailable, see CWS, The-

orem 5.3. Second, characterizing escape dynamics for the discrete—time process in a

way proposed by Williams (2001) implies numerical calculation of a functional in a

calculus—of—variation problem that leads to a system of non—linear differential equa-

tions with numerically derived right hand side functions. For complicated problems

(many lags, high dimensionality) this approach can become numerically intractable.

Finally, analytical solution for escape dynamics of a discrete—time process can be de-

rived only for a restrictive form of learning processes, such as recursive least squares

with a constant gain or stochastic gradient learning.

The continuous time approach developed here resolves these problems. Since a dif-

fusion is a natural approximation for a difference equation with Gaussian noise and

since FW have developed the theory of large deviations for diffusions, the problem of

insufficient theoretical results is removed. The second and the third problems are par-

tially alleviated because the diffusion, derived by approximation around REE – the

stationary point of the SRA, is linear. In the large deviations theory, all escape dynam-

ics characteristics – expected time until the beliefs escape any given neighborhood D,

the point through which this escape is most likely, and probability of leaving D within

a given amount of time – are obtained by minimizing a so—called action functional on

the boundary of the neighborhood, ∂D. Given our choice of a linear approximating

diffusion, this is a standard linear control theory problem, and the problem of mini-

mizing the action functional is reduced to the trivial task of finding a minimum of a

quadratic form on ∂D.

In order to compare the performance of the two approaches of deriving escape-

dynamics characteristics, the continuous—time approach is tested on the model where

the escape dynamics characteristics were already derived using the discrete—time ap-

proach. This is the Phelps problem of a government controlling inflation while adap-

tively learning the approximate Phillips curve, studied previously by Sargent (1999)

and CWS.4

4CWS show that under a constant—gain recursive least squares algorithm, the self—confirming
equilibrium (SCE) – a unique set of beliefs corresponding to a time—consistent Nash equilibrium of
the RE version of the model – is weakly stable. In this equilibrium, the government believes in strong
inflation—unemployment tradeoff. Attempts to exploit this tradeoff, combined with the private sector’s
rational expectations, lead to high average inflation. However, inflation periodically performs large
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The rest of the paper is organized as follows. We briefly describe the dynamic and

static versions of the model of CWS in Section 2. We develop the continuous—time

approach in Section 3. In Section 4, we present the results of testing the continuous—

time approach developed in Section 3 on the model of CWS and compare the approach

prediction results with the results of simulations. In Section 5, we discuss the results

presented in Section 4 and compare them with the results of CWS, and Section 6

concludes.

2 The model

2.1 Setup: Two Versions of The Model

The economy consists of the government and the private sector. The government uses

the monetary policy instrument xn to control inflation rate πn and attempts to minimize

losses from inflation and unemployment Un. It believes (in general, incorrectly) that

an exploitable tradeoff between πn and Un (the Phillips curve) exists. The true Phillips

curve is subject to random shifts and contains this tradeoff only for unexpected inflation

shocks. The private sector possesses rational expectations bxn = xn about the inflation

rate, and thus unexpected inflation shocks come only from monetary policy errors.

Un = u− θ (πn − bxn) + σ1W1n, u > 0, θ > 0, (1a)

πn = xn + σ2W2n, (1b)

bxn = xn, (1c)

Un = γ1πn + γT−1Xn−1 + ηn. (1d)

Vector γ =
¡
γ1, γ

T
−1
¢T
represents government’s beliefs about the Phillips curve. W1n

andW2n are two uncorrelated Gaussian shocks with zero mean and unit variance. ηn is

the Phillips curve shock as perceived by the government, believed to be a white noise

uncorrelated with regressors πn and Xn−1. Following CWS, we consider two versions

of the model: “dynamic” and “static” ones. In the “dynamic” model, vector Xn−1

contains two lags of inflation and unemployment rates and a constant,

Xn−1 =
¡
Un−1, Un−2, πn−1, πn−2, 1

¢T
, (2)

deviations, or “escapes”, from a neighborhood of the RE Nash equilibrium toward the low inflation
time—inconsistent Ramsey outcome of the RE version of the model. This happens when a sequence of
stochastic shocks makes the government learn that there is very little tradeoff between unemployment
and inflation. These beliefs about the Phillips curve force the government to set inflation low and
thus approach the Ramsey outcome.
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while only the constant is present in Xn−1 in the “static” version. In other words,

the only difference between the two versions of the model lies in the structure of the

government’s beliefs (1d), which are more “sophisticated” in the dynamic model. In

the sequel, we concentrate on the dynamic model and consider the static one only in

Section 6.

Given beliefs γ, the government solves

min
{xn}∞n=0

E
P∞

n=0 β
n
¡
U2
n + π2n

¢
, (3)

subject to (1b) and (1d). This Linear—Quadratic problem produces a linear monetary

policy rule

xn = h(γ)TXn−1. (4)

2.2 Nash, Ramsey, and Self—Confirming Equilibria

CWS identify three beliefs consistent with the model. Belief 1, γ =
¡
−θ, 0, 0, 0, 0, u(1 + θ2)

¢T
,

generates policy function xn = θu. In a model where the government knows the true

Phillips curve (1a), this is the Nash, or discretionary equilibrium of Sargent (1999) and

Barro and Gordon (1983). Beliefs 2 of the form γ = (0, 0, 0, 0, 0, u∗)T lead to xn = 0

and zero average inflation for any u∗: Ramsey, or the optimal time—inconsistent equi-

librium of Kydland and Prescott (1977). Finally, Beliefs 3 where γ1+γ4+γ5 = 0 (sum

of coefficients on current and lagged inflation is zero) asymptotically lead to xn = 0:

this is an “induction hypothesis” belief, see Sargent (1999).

In the model with learning, equilibrium is defined as a vector of beliefs at which

the government’s assumptions about orthogonality of ηn to the space of regressors are

consistent with observations:

E
h
ηn · (πn, Xn−1)

T
i
= 0. (5)

CWS call this point a self—confirming equilibrium, or SCE: despite the fact that gov-

ernment believes in an incorrect Phillips curve (1d), a particular assumption about it,

exemplified by (5), turns out to be true. Williams (2001) shows that the only SCE in

the model is Belief 1.

2.3 Adaptive Learning and SRA

In a period n, the government uses its current vector of beliefs γn to solve (3), assum-

ing the beliefs will never change. The generated monetary policy action xn is correctly
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anticipated by the private sector and produces Un according to (1a). Then the gov-

ernment adjusts its beliefs about the Phillips curve coefficients γn and their second

moments matrix Rn in an adaptive learning step. Define ξn =
£
W1n W2n XT

n−1
¤T
,

g(γn, ξn) = ηn ·
¡
πn,X

T
n−1
¢T

, andMn(γn, ξn) =
¡
πn,X

T
n−1
¢T ·¡πn,XT

n−1
¢
. Next period’s

beliefs γn+1 and Rn+1 are given by

γn+1 = γn + �nR
−1
n g(γn, ξn), (6a)

Rn+1 = Rn + �n (Mn(γn, ξn)−Rn) . (6b)

Equations (6) represent a specific form of a recursive learning algorithm. When the

gain sequence �n is given by 1/n, an appropriate choice of γ0 and R0 generates OLS

in a recursive form. When �n = const, this is a constant gain learning or tracking

algorithm.5

As Un = u− θσ2W2n + σ1W1n and πn = h(γn)
TXn−1 + σ2W2n, the evolution of the

state vector ξn can be written as

ξn+1 = A(γn)ξn +BWn+1, (7)

where Wn+1 =
£
W1n+1 W2n+1

¤T
, for some matrices A(γn) and B. Finally, stack

lower—triangular elements of the symmetric matrix Rn into a vector, vech(Rn), and

form the parameter vector

θ�n =
£
γTn , vechT (Rn)

¤T
(8)

and the right—hand side vector

H(θ�n, ξn) =
h
(R−1n g(γn, ξn))

T
, vechT (Mn(γn, ξn)−Rn)

iT
. (9)

Then the dynamics of the model under constant—gain learning can be written as

θ�n = θ�n + �H(θ�n, ξn), (10a)

ξn+1 = A(γn)ξn +BWn+1, (10b)

which is the standard SRA form.6

5Constant gain algorithm’s assigning more weight to recent data makes sense when agents suspect
the world around them to be non—stationary. Presence of sudden breaks in data generating processes,
for example as a result of an unpredicted change in the the government policy, also calls for track-
ing algorithms such as constant gain learning. See Evans and Honkapohja (2001) for an extensive
discussion of constant gain learning and its relation to decreasing gain learning such as OLS.

6Note that vector θ is 27—dimensional, with 6 components representing the government’s beliefs γ,
and the remaining 21 its beliefs about the second moments matrix of γ.
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3 Continuous—Time Approach

3.1 Convergence of SRA and Diffusion Approximation

Define the approximating ordinary differential equations corresponding to our SRA as

·
γ = R−1g(γ) = R−1E[g(γ, ξn)], (11a)
·
R = M(γ)−R = E[Mn(γ, ξn)]−R. (11b)

Vector γ that forms Belief 1 and corresponding 2nd moments matrix R are the only

equilibrium of the above ODE. This equilibrium is stable. CWS show that under some

assumptions, the continuous—time process θεt defined as θ
ε
t = θ�n for t ∈ [nε, (n+ 1) ε)

converges weakly (in distribution) to θ(t, a) = [γT , vechT (R)]T , solution of the ODE

(11), where a = θ (0) is the initial condition for the ODE (11), and starting point of

the process θεt . This solution is also called the “mean dynamics trajectory” of the SRA

(10), with the right—hand side of (10) being the “mean dynamics”.

Because of the constant gain learning, the convergence of θ�n to the mean dynam-

ics trajectory θ(t) is only weak (in distribution). This implies persistent fluctuations

around the trajectory θ(t, a) and its stationary point θ. Large deviations theory stud-

ies the probability of rare events, during which these fluctuations force the stochastic

process θ�n out of any given region around the converging trajectory θ(t, a). Freidlin and

Wentzell (1998, p.6) state that the probabilities of these rare events “have asymptotics

of the form exp {−Cε−2} as ε→ 0 (rough asymptotics, i.e., not up to equivalence but

logarithmic equivalence)”.

The theoretical results of FW on escape dynamics characteristics in continuous

time can be applied to the continuous—time approximation of the original discrete—

time SRA. This is the essence of the proposed continuous—time approach.7 Evans and

Honkapohja (2001, Prop. 7.8) show that as ε→ 0 the process Uε
t =

θεt−θ(t,a)√
ε

converges

(weakly) to a following diffusion:

dU �
t = Dθp(θ (t, a))U

�
t dt+ Σ1/2 (θ (t, a)) dWt, (12)

whereWt is a multi—dimensional Brownian process with dimensionality equal to that of

θ. p(θ) is the mean dynamics vector, and Σ the matrix whose elements are covariances

of different components of the mean dynamics vector, both with respect to the unique

7The advantages of the continuous—time approach are discussed in the introduction.
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invariant probability distribution Γθ(dy) of the state vector X:8

p(θ) =

Z
H(θ, y)Γθ(dy), (13)

Σij =
P∞

k=−∞Cov [Hi(θ,Xk(θ)),Hj(θ,X0(θ))] . (14)

This result is used to get continuous—time approximation of SRA, given any intitial

condition:

dθεt = Dθp(θ (t, a)) [θ
ε
t − θ (t, a)] dt+

√
εΣ1/2 (θ (t, a)) dWt. (15)

Williams (2001, Theorem 3.2) shows that the above results can be used to derive a local

continuous—time approximation of the SRA around the limit point θ (stable point of

the associated ODE (11), SCE):

dϕt = Dθp(θ̄)ϕtdt+
√
�Σ1/2(θ̄)dWt, (16)

where ϕt = θt − θ are deviations from the SCE. The 6×6 upper left corner of Σ(θ̄)
equals the fourth moments matrix Q of CWS evaluated at θ. Matrices Dθp(θ̄) and

Σ(θ̄) need to be evaluated only at the SCE. This could be performed analytically (the

technical appendix with these derivations is available from the authors upon request).

Diffusion (16), used in this paper, approximates a highly nonlinear multidimensional

SRA only at the stationary point of the mean dynamics. Dembo and Zeitouni (1998,

p. 223) argue that “the rationale here is that any excursion off the stable point has

an overwhelmingly high probability of being pulled back there, and it is not the time

spent near any part of ∂D that matters but the a priori chance for a direct, fast exit

due to a rare segment in the Brownian motion’s path.”

3.2 Action Functional and Escapes

Suppose that we have a stochastic process, for example some diffusion. The basic idea of

the theory of large deviations for paths of stochastic processes is that the probability

of a stochastic process’s deviating from a given path along a specific trajectory can

be determined by the value of a certain functional (called action functional) on this

trajectory. Action functional I0T (ϕ) represents the costs associated with moving along

some trajectory ϕ for a period of time [0, T ]. Cost function I (T, x, y) = min
ϕ0=x,ϕt=y

I0t (ϕ)

8State vector ξn has a unique invariant probability distribution: it contains stationary Gaussian
random variables W1n and W2n, a constant, and a stable 4—dimensional AR(1) variable. This distri-
bution can be calculated explicitly.
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is the minimal cost required for transition from x to y in time T . Quasipotential

I (x, y) = inf
T>0

I (T, x, y) is the minimal cost necessary to move from x to y given

arbitrary (potentially infinite) time. The idea here is that the system moves in the

direction along which it incurs the least cost.

Suppose that such a functional exists. We are given some neighborhood D of a

stationary point of the diffusion’s drift, O. Under certain assumptions one can derive

the probability that a stochastic process belongs to D from the minimum value of the

quasipotential I (O, y) on the boundary of D, {y : y ∈ ∂D}. The most probable point
at which the stochastic process leaves (escapes) D, is the point where I (O, y) has a

minimum. The minimum of I (O, y) also allows one to derive asymptotic behavior of

the mean escape time, i.e., the expected time needed for the stochastic process to cross

the boundary of D for the first time.

The exact results on the mean exit time and the dominant escape point are given

in Dembo and Zeitouni (1998, Theorem 5.7.11). In particular, the limiting behavior of

the mean escape time, Ex (τ
ε) , is given by

lim
�→0

ε lnEx (τ
ε) = I, (17)

where Ī is a minimum value of the quasipotential on ∂D. The most probable escape

point is an extremal of the quasipotential on ∂D, see Appendix A for exact definitions.

3.3 Minimizing the Action Functional

For a diffusion dϕt = Aϕtdt +
√
�BdWt, Dembo and Zeitouni (1998, p. 214) provide

the following expression for the action functional:

I0T (ϕ) = inf
1

2

Z T

0

¯̄̄
·
gt

¯̄̄2
dt, (18a)

s.t.
·
ϕt = Aϕt +B

·
gt, (18b)

ϕ0 = 0, (18c)

where a stationary point of the drift O is assumed to be the origin. Minimization is

performed over all possible trajectories of
·
gt = ut which take the system from the origin

to ϕT in exactly T time units. In the approximating diffusion (16) the matrix A equals

Dθp(θ̄), and B = Σ1/2(θ̄).

The only complication with this formulation stems from the fact that matrix B =

Σ1/2(θ̄) can be singular.9 As a result, there might be points in the state space that

9It turns out that it is singular in the model of CWS. Singularity comes from collinearity of
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could not be reached in any time using any control trajectory {ut}∞t=0: the system
(A,B) is not necessarily reachable. The way to proceed with the control problem for

an unreachable system is to transform the state space so that first k new coordinates

(z1) form the basis of the reachable subspace, where the remaining n−k (z2) coordinates
all equal zero. In these coordinates, the system’s evolution on the reachable subspace

is governed by
·
z1 = A1z1 +B1u, (19)

where z1 = T T
1 ϕ, T1 is the basis of the reachable subspace, and the system (A1, B1)

is by construction reachable, see Dahleh, Dahleh and Verghese (2004, Ch. 22) for the

construction. The action functional (18) is then rewritten as

I0T (z1) = inf
1

2

Z T

0

¯̄̄
·
gt

¯̄̄2
dt, (20a)

s.t.
·
z1 = A1z1 +B1

·
gt, (20b)

z1(0) = 0. (20c)

To find Ī, one has to minimize I0T (z1) over the time to escape T and all points

z1,D such that T1z1,D ∈ ∂D. In other words, the problem of finding minimum value

of the action functional over all trajectories starting at the origin and terminating on

∂D in an arbitrary time is split into two separate problems: first, find the minimum

norm control path,
·
gt, which takes the linear control system from the origin to z1,D in

arbitrary time, and then minimize over all possible terminal points z1,D.

The first problem is a standard control problem with the following solution:

I(z1,D) =
1

2
zT1,D ·G

−1 · z1,D, (21)

where G is Gramian of the reachable subsystem. See Appendix B for details and

definition of matrices T1 and G. The problem of finding the minimum value of the

action functional then becomes a trivial one: minimize the quadratic function of z1,D

on {z1,D : T1z1,D ∈ ∂D}. By solving this problem, we find the most probable point of
escape, T1z1,D, and the rate of convergence, I, that characterizes the limiting behavior

of the mean escape time by the limit expression (17).

regressors at the SCE: Inflation rate and unemployment rate equal a constant plus i.i.d. noise. As a
result, 14 out of 21 entries in R are constants which do not depend on the noise magnitude, and the
rank of matrix Σ equals 27− 14 = 13.
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4 Testing the Approach on the Phelps Problem

4.1 Simulations and Reduced Dimensionality of the Model

In this section, we present the results of applying the continuous—time approach devel-

oped in the previous section to the Phelps problem studied previously by CWS who

exploited the discrete—time approach. All the model parameters are taken to be the

same as in CWS in order to guarantee the possibility of comparison between the re-

sults.10 Before applying the theory, we first run simulations of the model to have an

initial picture of dynamics in the system.

Following CWS, we plot simulation runs in two—dimensional plane, where the ab-

scissa is set to be the “inflation slope coefficient” (the sum of beliefs coefficients before

inflation and lagged inflation, γ1 + γ4 + γ5) in order to see how the system moves to-

wards the “induction hypothesis” plane, γ1+ γ4+ γ5 = 0. In contrast to CWS, we use

as an ordinate the intercept coefficient summed with the “lagged unemployment slope

coefficient” multiplied by the average unemployment rate, γ6 + u · (γ2 + γ3), rather

than the intercept coefficient, γ6, alone. The exact algebraic form of the coordinates

used is explained by the following consideration.

Suppose that the government’s beliefs are fixed for a number of periods at γn, so

that the state dynamics become stationary, with unconditional expectation of Un being

u and that of πn being some eπ. What is the expected value of ηn? ηn = Un − γ1πn −
γT−1Xn−1, and so

E[ηn] = u− (γ1 + γ4 + γ5)eπ − (γ2 + γ3)u− γ6. (22)

This back—of—the—envelope calculation suggests that from the government’s point of

view, linear combinations γ1+γ4+γ5 and (γ2+γ3)u+γ6 rather than the whole vector

γ matter. As it is exactly a perceived error ηn which matters for the adjustment of θ

in (6), one presumes that coordinates

(eγ1,eγ2) = ¡ γ1 + γ4 + γ5, u · (γ2 + γ3) + γ6
¢

(23)

are useful in thinking about the model.

The above coordinates are used to plot a typical simulation run started at SCE with

� = 0.001, including an escape towards an “induction hypothesis” belief (Belief 3 of

CWS) and very low inflation. In the (eγ1, eγ2) plane, all simulation points are very close
10Throughout the paper, we use the same parameter values as in CWS: σ1 = σ2 = 0.3, u = 5,

θ = 1, β = 0.98. All the figures are for simulations with � = 0.001, unless otherwise noted.
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to a one—dimensional curve (a straight line). Very similar graphs are obtained in all

1000 runs, which strongly suggests that we could use coordinates (eγ1, eγ2) to effectively
reduce the dimensionality of the system.

The reason for such almost “one—dimensionality” of the dynamics can be found by

looking at the parameterical structure of the SRA. Consider equation (6a). At the

SCE,11 the largest eigenvalue of R
−1
is λ1 =3083.8 and the next largest λ2 =29.1, less

that 1% of λ1.12 Therefore, if one writes g(γn, ξn) as a linear combination of eigen-

vectors of R
−1
, then the projection of g(γn, ξn) onto v1, the eigenvector corresponding

to λ1, is magnified 100 times as strongly as the projection onto v2. The dynamics

described by R
−1
g(γn, ξn) is, thus, almost 1—dimensional. In coordinates (eγ1, eγ2), v1

is approximately proportional to (1,-5)´. Fig. 1 shows that indeed, all the simulation

run points are aligned along this vector.

One cannot help noticing the striking similarity between our Fig. 1 and Fig. 6

of CWS, which uses coordinates (bγ1,bγ2)=¡ γ1 + γ4 + γ5, γ6
¢
. In (bγ1, bγ2) space v1

is proportional to (1,-7.86)´, which is again sufficiently close to the line drawn by

simulation run points of CWS. Therefore, straight lines drawn in different coordinates

by CWS and by us in this paper are nothing but projections of the “largest” eigenvector

of R
−1
, v1, onto different hyperplanes.13

It is possible to neglect dynamics of R in considering escapes because the covari-

ance matrix Σθ = cov[H(θ,X(θ))] contains R
−1
in its upper—left corner, and its largest

eigenvalue’s eigenvector ev1 is proportional to (1,-5)´ in (eγ1, eγ2) coordinates. The para-
meterical structure of Σθ is close to block—diagonal, so there is very little interaction

between RHS terms of (11), R−1n g(γn, ξn) and Mn(γn, ξn) − Rn, which influence the

components of γ and of R, at least for the “largest” eigenvectors which determine the

dynamics of the model.14

After reducing the dimensionality of the model, it is possible to analyze the behavior

11SCE is a starting point of the process for all simulations and theoretical derivations.
12This dramatic difference is due to the fact that u is so large. Entries of R are of order u2, u, and

1. Large u leads to significantly different entries of R and thus to a large λ1/λ2 ratio. For u = 1, the
ratio λ1/λ2 drops to 5.17.
13The fact that simulation run points plot almost an ideal straight line suggests that the matrix R

does not change much along the typical escape path, preserving the ratio of the largest to the second
largest eigenvalue and the direction of the “largest” eigenvector. This conjecture turns out to be
correct for relatively large values of �.
14Matrix Σθ is close to being block—diagonal, similarly to R(θ) in Evans and Honkapohja (2001, Eq.

14.6), in the following sense: If one takes one “largest” eigenvector of 6 × 6 upper left corner of Σθ
and two “largest” eigenvectors of 21× 21 lower right corner and pads them with zeros appropriately,
the resulting vectors are almost undistinguishable from the three largest eigenvectors of the whole Σθ
(for a block—diagonal matrix, they should be exactly equal).
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of the mean and the stochastic part of dynamics using the simulations results. Several

trajectories of the mean dynamics of the model, given by (11), are presented in Fig. 2 in

(eγ1, eγ2) coordinates. The region around the SCE where the mean dynamics points back
towards it is very small; if initial deviation from the SCE is relatively large, the mean

dynamics trajectory treks towards Belief 3, or the “induction hypothesis” plane, whereeγ1=0. After spending some time in the neighborhood of eγ1=0, the trajectory slowly
returns back to the SCE. The right panel of Figure 2 tracks several mean dynamics

trajectories as they travel to the “induction hypothesis” plane. The paths are almost

indistinguishable at this scale: Away from the immediate neighborhood of the SCE,

mean dynamics trajectories are rapidly converging to the line connecting the SCE with

(0,5).

To understand the relation between the mean and the stochastic parts of the dy-

namics of (6), consider Fig. 3. It plots a ratio of the relative magnitude of the stochastic

dynamics, given by kR−1 {g(γ, ξn)−E[g(γ, ξn)]}k averaged over 4000 realizations of
ξn, and of the mean dynamics kR−1E[g(γ, ξn)]k. The ratio is evaluated at different
points θ along the eigenvector ev1. For large deviations from the SCE, the mean dy-

namics dominates the stochastic part. In the small region around SCE where the

mean dynamics points back towards it, stochastic dynamics is on average hundreds

and thousands times larger than the mean dynamics.

Using the theoretical derivations and the knowledge of the system obtained through

simulations, we think about escapes in the following way. Consider a small neighbor-

hood D of the SCE. After the trajectory crosses the boundary ∂D, we assume that

the stochastic dynamics does not play any role, and the model’s behavior is deter-

mined exclusively by its mean dynamics (11). Arguments presented in the previous

paragraph allow us to claim that this is a very good approximation far from the SCE.

Moreover, as all mean dynamics trajectories are very close in this region, one does not

need to know the exact escape point to predict the most likely behavior of the system

during travel to the low inflation outcome. A process of excursion towards eγ1 = 0 is,
therefore, split into two parts: first, stochastic “escape” from D, and second, almost

deterministic movement to eγ1 = 0 and back to the SCE. If our selection of ∂D is such

that after crossing it the mean dynamics points towards eγ1 = 0, there is no additional
contribution to the quasipotential as the system does not need any additional energy

to move away from the SCE. Therefore, we concentrate on the first part, the stochastic

“escape” from the set D, such that after the escape the mean dynamics points away
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from the SCE.

4.2 Analytical Results vs. Simulations: Point of Escape

We select the set D and its boundary ∂D in several ways. The first way is to use

a cylinder: a sphere in a six—dimensional γ space, and no binding restrictions in 21—

dimensional space of components of R. This approach is similar to the road taken

by CWS. The theoretical results of the problem of minimizing action functional on

the cylinder are presented in Appendix B. This simple calculation does not replicate

the behavior observed in simulations for gain value � = 0.001:15 no matter what the

cylinder’s radius is, the escape from the SCE is predicted to occur in the approximate

direction (1,-6.5)´ in (eγ1,eγ2) coordinates. When one selects the cylinder’s radius so that
the cylinder crosses ev1 at eγ1=-0.985 (more on this choice below), the distance between
the mean of observed escape points and the theoretically derived escape point, d1,

equals 100% of the distance from the SCE to the theoretical escape point. Fig. 5

presents a histogram of observed escape directions.16 As is easy to see, the theoretical

prediction of approximately -6.5 is way off the mode of the empirical distribution,

which is -5. Fewer than 1% of simulation runs result in escape in the direction with

tangent less than -6. Therefore, we conclude that the cylinder is not a good choice

for the escape region D, at least at this value of �. Additionally, simulation runs show

that many of the “escapes” generated in this way violate our basic assumption: mean

dynamics paths, initiated at the escape point, do not deviate towards Belief 3, see Fig.

6, where such points are marked by green crosses.

Our second way of selecting the boundary of the set D is the curve in (eγ1, eγ2) space,
defined numerically as a path “separating” trajectories coming back to the SCE from

those which first travel to the “induction hypothesis” plane under the mean dynamics.17

We derive this curve as follows. Find two points on the eigenvector ev1, such that one
of them generates a trajectory of (11) immediately coming back to the SCE, while

another starts an excursion toward the induction hypothesis plane. Using a sequence
15Gain value � = 0.001 is chosen for a comparison of simulations with analytical results as the lower

boundary for economically plausible values of �. Large deviation theory has to work for 0.001 if it
works for economically plausible values of � ∈ [0.001, 0.01] at all.
16These tangents are obtained as follows. For a given simulation run, determine the point of escape

from the cylinder and project it into (eγ1, eγ2) space. Write the vector which starts at the SCE and
points towards the escape point as (1, Tg)́. Then Tg is a simply tangent of the angle between (1,0)´
and (1, Tg)́. Fig. 2 shows the histogram of Tg.
17This surface is not a separatrix in the strict sense of the word, as all trajectories eventually return

back to the SCE and asymptotically converge to it. However, there is a sensitive dependence on the
initial conditions in the neighborhood of this surface.
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of binary bisections, shrink the interval between two such points to any desired small

number. Starting from this point, solve (11) forward and backward in time. Project

the resulting trajectory into (eγ1,eγ2) space and call this curve ∂D. In the left panel of
Figure 2, we plot two trajectories that turn back to the SCE (two leftmost lines), and

two paths travelling to the “induction hypothesis” plane first and then coming back

(two rightmost lines). The “separating” curve is plotted as a dashed line. At the point

where the “separating” curve intersects with eigenvector ev1, eγ1approximately equals
-0.985. Radius of the cylinder, described above, was selected in such a way that it

intersects ev1 at the same point as the “separating” curve.
Deriving a “separating” surface has the advantage of taking into account some

information about behavior of the mean dynamics away from the SCE. The linear

approximating diffusion (16) discards this information by taking into account only

Dθp(θ̄) rather than Dθp(θ). On the other hand, this procedure is very simplistic and

heuristic: assuming that such a separating surface exists in the original 27—dimensional

space, there is no particular reason to believe that its projection into two—dimensional

(eγ1, eγ2) space coincides with, or is concentrated around, the projection of one particular
path. Nevertheless, Figure 6 shows that empirically the separating curve does a good

job at least in some respects: consider projections of all 1000 simulated points of escape

from the cylinder described above. We use these escape points as initial values for the

trajectory of (11). If this trajectory comes back to the SCE, projection of the escape

point is plotted using a ’+’ symbol in Figure 6. If the path first travels to the “induction

hypothesis” plane, the corresponding projection is marked as ’o’. Escape points with

projections to the left of the separating curve tend to start converging trajectories

while those projected to the right of the curve initiate an excursion towards Belief 3.

There are several points well to the left of the separating curve which nevertheless start

excursions. These points represent very unlikely escapes, during which the structure

of the matrix R changes a lot; they are actually very far from ev1 in the original 27D
space.

Using a thus constructed boundary improves the match to simulations for gain value

� = 0.001. The theoretical escape calculated in this way occurs through the point that

lies in the approximate direction (1,-4)´ in (eγ1, eγ2) coordinates. The distance between
the average of empirical escape points and the theoretical escape point equals d2=31%

of the distance between the SCE and the theoretical point. Figure 7 shows that there

is some accumulation of the escape tangents towards -4; however, the majority tends
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to center on -5, exactly as in the case of escape from the cylinder.

According to point (b) of the Theorem A.1, as �→ 0, the probability of observing

the escape in the neighborhood of the point minimizing action functional converges to

one. This is not the behavior observed in our simulations: For both boundaries used

above, simulated escapes tend to occur close to points in (1,-5)´ direction rather than

the theoretically predicted (1,-6.5)´ or (1,-4)´.

The source of the discrepancy lies in the non—validity of continuous—time approx-

imation for the values of � used in the economic literature and for simulations in the

comparison above. To see it, one could compare the mean dynamics given by (11)

and the realizations of the stochastic process simulated in (6). As is mentioned above,

for θ near the SCE such that the mean dynamics points towards θ, mean dynam-

ics magnitude (R−1E[g(γ, ξn)]) is dramatically lower than the typical realizations of

R−1g(γ, ξn): the “noise—to—signal” ratio,
kR−1(g(γ,ξn)−E[g(γ,ξn)])k

kR−1E[g(γ,ξn)]k
, ranges from hundreds

to several thousand, depending on θ. Figure 3 plots this ratio for points along the

eigenvector ev1, averaged over 4000 realizations of (W1n,W2n) for every point. The hor-

izontal axis shows corresponding eγ1 values. Near the SCE, the noise—to—signal ratio
tends to be extremely high. In this situation, one expects (16) to be a good approxi-

mation of (6) only if the system stays in the neighborhood of every point θ long enough

to allow the average of R−1g(γ, ξn) to approach R−1E[g(γ, ξn)]. With noise—to—signal

ratios from 10 to 1000, this means hundreds and thousands of iterations near every

point θ. However, for the values of � used in CWS and commonly applied elsewhere

in the literature (�=0.001÷0.01), the expected escape time is measured in hundreds
of iterations: this is the time spent by the system near all points around the SCE.

Therefore, �=0.001÷0.01 is not small enough for the approximation (16) to be valid.
Given such large noise—to—signal ratio, one could simply disregard the mean dynam-

ics (set Dθp(θ) = 0) and repeat the minimization of the action functional. This is our

third way of deriving escape dynamics. The region D is the cylinder described above.

The theoretical results of the problem of minimizing action functional on the cyllinder

in the case of diffusion without drift term are presented in Appendix B. Theoretical

escape occurs in the direction of the largest eigenvalue of Σ, ev1.18 This way provides a
much better agreement between the theory and the simulations: for the same radius of

the cylinder as in the first approach, distance d3 between the mean of observed escape

18This escape direction could be derived more easily: take the largest eigenvector of R−1 and project
it into (eγ1, eγ2) space. The result is the same as the result based on the formula in Appendix B up to
the third decimal point.
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points and the theoretically predicted point is only 4.4% of the distance between the

SCE and the theoretical point. Fig. 5 shows that most runs end in escapes along the

direction (1,-5)´, which is the theoretically predicted one for this approach.

TABLE 1. Distance between the average of simulated escape points and the the-

oretically predicted escape points, expressed as a percentage of the distance between

the SCE and the theoretically predicted point.
Dynamic model Static model

� d1, % d2, % d3, % d1, % d3, %
2 · 10−5 75.45 86.72 99.99
3 · 10−5 81.56 73.65 72.25 24.82 244.93
5 · 10−5 88.50 70.69 40.95 29.37 229.23
1 · 10−4 93.04 57.73 20.39 40.91 189.36
2 · 10−4 92.78 45.68 22.75 54.73 141.64
4 · 10−4 95.83 35.26 7.61 67.41 97.85
1 · 10−3 99.65 30.98 4.35 81.02 50.82
1 · 10−2 99.39 127.86 11.87 93.78 6.77

To support further our claim that � = 0.001 is not low enough to guarantee suffi-

cient averaging, we have performed simulation runs for smaller values of �. Consider

Fig. 9, which plots a histogram of escape directions from the cylinder, for a 1000 sim-

ulations with � = 2 · 10−5. Comparison with Fig. 5 shows that one indeed observes an
accumulation of escape directions towards the theoretically predicted direction of -6.5,

but there is still a long way to go: A full 14% of escapes occur in the bin centered on

-5 with the width of 0.25, and only 66% of escape directions’ tangents are in bins with

centers below -5. Given that theoretically one expects a mode at -6.5, we calculated

the share of escapes in the bin centered at -6 and below it. Only 9.6% of escapes fall

in this category, which is still much better than less than 1% observed for � = 1 · 10−3.
In contrast, the performance of the second way of selecting ∂D does not improve

as � decreases.19 At � = 1 · 10−3, only 41% of escapes are at -5, and 26% escape at the
“correct” -4.5 or above (recall that the second way predicts a escape direction of -4).

19The reason for the failure of the second way for smaller � is clear: for large �, the majority of
escapes are concentrated along ev1, and we used a point on ev1 as a starting point in deriving the
trajectory which, after being projected into the (eγ1, eγ2) plane, became the separating curve. As a
result, we are relatively confident that this curve is a good description of the true 27—dimensional
separating surface for majority of escaping trajectories. As � decreases, more and more escapes start
to take place away from ev1 (and thus, away from the initial point used to derive the separating curve),
and the curve stops working as a result. We could use a point on the vector T1G

1/2
ξ derived in

Appendix B as the initial point for deriving the separating curve. We believe that this trajectory,
projected into the (eγ1, eγ2) plane, would have worked well for very small �, when almost all escapes do
occur in the direction prescribed by G.
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However, the percentage of “correct” escapes does not increase as � falls but fluctuates

between 25% and 28% for � = 2 ·10−4, 4 ·10−4, and 2 · 10−5. A large number of escapes
occur below -5 and below -6 (59% and 9.7% respectively at � = 2 · 10−5). In other
words, the distribution of the directions of escape from the region bounded by the

separating curve resembles the distribution of escapes from the cylinder, even though

theoretically we expected them to diverge.

4.3 Analytical Results vs. Simulations: Escape Time

To see how the proposed approach works in terms of predicting the mean escape time,

we exploited the relation (17). It implies that a plot of lnEx (τ
ε) vs. 1/� is a straight

line with the slope equal to the rate of convergence I. Note that τ ε, first escape time, is

given in continuous time units of the approximating diffusion (16), and is approximately

equal to � times the expected number of iterations of the discrete time process (10)

needed to observe the first escape. Fig. 8 shows that the straight line is not observed:

The slope decreases as one moves towards higher 1/� (lower �), and seems to converge

asymptotically to the solid line with the slope I only for the lowest considered values

of�.20

Table 2 shows the theoretically predicted values of the slope I for the first and

second way of selecting ∂D as well as empirically observed slopes (calculated at the

slope of the line connecting the last two observations in Fig. 8 and its analog for the

separating curve). For the first (second) way, the empirical slope almost converges

to (undershoots) the theoretically predicted value for � = 2 · 10−5. As explained in
footnote 25, our method is likely to produce the values of I which are higher than the

true ones, which explains observed undershooting.

20Though the limiting characteristics of mean escape time predicted by the large deviation theory
do not hold true for economically plausible region of gain �, the empirical distribution of escape times
follows the theoretically predicted exponential distribution even for “large” �: Fig. 4 shows that the
logarithm of the empirical cumulative distribution function, ln[Pr(τ ε ≥ T )], is approximately linear
in T , as expected for the exponential distribution.
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TABLE 2. A comparison of the theoretically derived value of the action functional

and empirically observed slope of lnEx (τ
ε) vs. 1/� line.

Dynamic model Static model
� Way 1 Way 2 Way 1

Simulations 2 · 10−5 2.21 · 10−5 2.14 · 10−5
3 · 10−5 3.67 · 10−5 3.19 · 10−5 1.96 · 10−4
5 · 10−5 6.60 · 10−5 4.92 · 10−5 1.86 · 10−4
1 · 10−4 1.31 · 10−4 8.46 · 10−5 2.30 · 10−4
2 · 10−4 2.49 · 10−4 1.77 · 10−4 3.42 · 10−4
4 · 10−4 4.90 · 10−4 3.79 · 10−4 5.66 · 10−4
1 · 10−3 8.14 · 10−4 6.76 · 10−4 1.32 · 10−3

Theory 2.01 · 10−5 3.01 · 10−5 3.20 · 10−4

The theoretical formula for mean escape time in the third way of characterising

escape dynamics in the model can be derived using the formula for mean exit time of

one—dimensional Brownian motion, see Karatzas and Shreve (1991, Eq. 5.62, p. 345).

We derive the mean escape time for the projection of the process dϕt =
√
�Σ1/2

¡
θ̄
¢
dWt

onto the most probable direction of escape ev1, the “largest” eigenvector of Σ. The
formula for the mean escape time, derived in Appendix C, is given as Eτ ε = rad2

�λ
,

where λ is the largest eigenvalue of Σ, and rad is the distance between the SCE and

the point where the “largest” eigenvector of Σ crosses the cylinder described above. In

Table 3, we compare this formula’s predictions with averages from the simulations. The

formula performs very well, especially for � ∈ [0.001; 0.01], the range used previously
by CWS and others. Indeed, when we plot average simulated escape time vs. 1/�2

in Fig. 10,21 we see a straight line with the slope approximately equal to rad2

λ
for a

large range of �. The formula starts to lose precision once one moves to lower �, i.e.

into the region where the averaging is better as the system spends more periods in the

neighborhood of SCE, and so the large deviations theory becomes more applicable to

characterizing mean escape times.

21Observe that τε, first escape time, is given in continuous time units of the approximating diffusion
(16), and is approximately equal to � times the expected number of iterations of the discrete time
process (10) needed to observe the first escape, see the beginning of this subsection form an expla-
nation. Therefore, we divide the “continuous—time mean escape time” Eτ � by � to get the “mean
number of periods before escape”.
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TABLE 3. A comparison of the theoretically derived values of expected escape time

and empirically observed average escape times
Dynamic model Static model

� Simulations Theory, rad2

�2λ
Simulations Theory, rad2

�2λ

2 · 10−5 1.10 · 105 1.26 · 105
3 · 10−5 5.10 · 104 5.61 · 104 4.38 · 107 6.97 · 105
5 · 10−5 1.88 · 104 2.02 · 104 1.98 · 106 2.51 · 105
2 · 10−4 1.26 · 103 1.26 · 103 1.56 · 105 6.27 · 104
4 · 10−4 336.96 315.65 4928.00 3919.27
1 · 10−3 64.59 50.50 733.57 627.08
2 · 10−3 21.49 12.63 189.98 156.77
3 · 10−3 12.50 5.61 87.00 69.68
4 · 10−3 8.77 3.16 52.08 39.19
5 · 10−3 6.79 2.02 34.39 25.08
6 · 10−3 5.99 1.40 24.76 17.42
7 · 10−3 4.98 1.03 19.14 12.80
8 · 10−3 4.49 0.79 15.02 9.80
9 · 10−3 4.12 0.62 13.32 7.74
1 · 10−2 3.70 0.51 11.16 6.27

Simulation results for very low � tell a consistent story: one can use large deviations

theory estimates for escape time only for gain values � . 2 · 10−5; even � = 2 · 10−5

is still not low enough to observe the limiting behavior predicted by the theory. Note

that this is true for both continuous—time approach developed here and discrete—time

approach used by CWS.22 As for the continuous—time approach, one can avoid the

non—applicability of the large deviation theory for economically interesting values of �

by disregarding the mean dynamics altogether and following the third way of deriving

the escape dynamics, which works well for such �.

For the lowest � considered here, the large deviations theory just begins to work.

Is it possible to claim that empirically observed disinflations are, indeed, escapes from

the SCE generated by the model? At � = 2 · 10−5, the average number of simulation
periods needed to observe the first escape is about 1 · 105 (for cylinder) and 1.5 · 105

(for the separating curve). Add to these numbers the time needed to travel to the

induction hypothesis plane eγ1 = 0 (of order 104) and recall that the time period in the
Phelps model could not be much lower than a quarter. In this economy, one would

wait, on average, twenty thousand years or longer for the low inflation episode caused

22Even if one believes that our calculations overestimate the rate of convergence because of the
arguments presented in footnote 25 and the true I is closer to the numbers given in CWS, the
empirically observed slope at � = 0.001 is 40÷ 80 times larger than predicted. This result means that
both discrete— and continuous—time approaches fail at least for � ∼ 0.001.
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by adaptive learning with a constant gain equal to 2 · 10−5. It is immediately obvious
that the region of � values, for which large deviations theory estimates of mean escape

time start to be applicable in the dynamic model of CWS, is far removed from those

� values which lead to simulated escapes at empirically interesting times, such as 65

periods at � = 1 · 10−3.

5 Discussion

5.1 Better Averaging for Larger �

As we have shown in the dynamic model of CWS at empirically relevant values of the

constant gain parameter, the mean escape time can be easily characterized using a

simple formula for the expected exit time of one—dimensional Brownian motion, while

the large deviation theory predictions of mean escape time do not hold. This is due to

three facts. A large value of u leads to very large λ1/λ2, the ratio of the two largest

eigenvalues of the inverse second moments matrix at SCE. This fact makes the SRA

dynamics almost one—dimensional. Second, both static and dynamic models of CWS

have a very specific phase portrait: despite potentially global stability of the SCE,

the region where the mean dynamics points back to it is exceedingly small. Third,

the dominant eigenvalue λ1 is huge, which means that any stochastic deviation in the

“only” direction is strongly magnified. A combination of these three features of the SRA

in the dynamic CWS model makes “escape” easy and puts very tight requirements on

the values of � used in the constant gain learning algorithm. In particular, this means

that values of � commonly used in the literature are not small enough to guarantee

enough time for averaging, and therefore, methods of characterizing the mean escape

time, based on the theory of large deviations which relies on the mean (averaged)

dynamics, are not expected to work well in this particular setting. This argument is

applicable to both the continuous—time approach and to the discrete—time approach

used in CWS and elsewhere. Nevertheless, a version of the continuous—time approach

which disregards the mean dynamics, and in fact does not rely on the large deviations

theory to characterize the mean escape time, provides a very good fit to the simulations.

Lack of time for averaging near the SCE leads to the relative failure of our first

and second ways in deriving the properties of escapes. This failure could be tracked

down to the limited applicability of (11) and of approximating diffusion (16). With

better averaging, both large deviations theory characteristics of mean escape time and
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continuous—time approximation (16) improve. We have three suggestions on how to

achieve better averaging in this model for the empirically interesting region of �.

First, the matrix R
−1
should be more balanced: A lower value of λ1/λ2 effectively

increases the dimensionality of the problem and expands the volume of the state space

available to the system, thus increasing the expected escape time and producing better

averaging. In the current model, a more balanced second moments martix means lower

value of u. Second, having a stronger drift towards SCE under mean dynamics (this

probably implies a larger region of immediate attraction to the SCE) will help to achieve

better averaging around SCE and thus ensure that (16) approximates (6) reasonably

well. We conjecture that the smallness of the region where the mean dynamics points

towards SCE is due to the fact that at the SCE, the learning is not well specificed:

some of the regressors are perfectly collinear in both the static and dynamic models of

CWS. In other words, forcing the agents to use better specified learning might help.

Third, reducing the magnitude of λ1 while keeping fixed the SCE’s region of attraction

increases the time spent by the system in this region and provides better averaging,

at a potential cost of a higher expected escape time; as a result, the region of the

constant gain parameter � where large deviations theory’s asymptotic predictions start

to be valid is more likely not to include empirically interesting magnitudes of �.

5.2 A Static Model vs. A Dynamic Model

In order to test some of these conjectures, we repeated our analysis for the static model

of CWS. In contrast to the dynamic model analyzed previously, the government’s

beliefs do not take into account lagged inflation and unemployment rates, and the

vector Xn−1 contains only the constant.23 We expect the large deviations theory to

become applicable for larger values of � than with the dynamic model because the

phase portraits of the mean dynamics in the dynamic (in (eγ1, eγ2) coordinates) and
static models are very similar, but the largest “static” eigenvalue of R

−1
equals 26.09

and is much smaller than 3084 for the dynamic model. On the other hand, the ratio

of the first two eigenvalues, λ1/λ2, equals 7561 compared to 106. In other words, the

23The government’s problem (3) can be solved explicitly for the policy function h(γ). A preliminary
analysis of the static CWS model was performed in Evans and Honkapohja (2001, Section 14.4). In
particular, the matrix V derived on p. 358 is nothing else but the Gramian G of the 2—dimensional
problem which discards 3 elements of the covariance matrix. As stated by Evans and Honkapohja
(2001), one could do so because the matrix Dθp(θ̄) is block—lower—triangular and the matrix Σ(θ̄) is
block—diagonal. In order to preserve continuity with our analysis of the dynamic model, we analyze the
full 5—dimensional static problem, with two elements of the vector γ and 3 elements of the variance—
covariance matrix R.
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static model is even more one—dimensional than the dynamic one, but the system is

expected to spend more time in the neighborhood of the SCE before the first escape

and thus achieve better averaging than in the dynamic model.24

Based on the discussion in the previous Section, we do not consider the second way

of selecting ∂D and use only the first and the third one. The cylinder is chosen so that

it intersects with the “largest” eigenvector ev1 at γ1 =-0.975, using the same reasoning
as in the dynamic model case. Theoretically predicted directions of escape out of the

cylinder are (1,-7.5)´ and (1,-5)´ for the first and third way, respectively.

On several dimensions, the first way produces more favorable results when applied

to the static model. First, at � = 1 · 10−3, only 22% of escapes happen in the -5 bin,

compared to 56% for the dynamic model. At � = 2·10−4, this number drops to 6.7% for
the static model, but still stands at 49% in the dynamic one. At � = 3·10−5 in the static
model a full 34% of the escapes happen at the direction -7 or below and 100% of them

are below -5. As is clear from Table 1, the distance to the escape point theoretically

predicted by the first way declines very fast as � decreases in the static model, but

it decreases only slightly in the dynamic one. Finally, already at � = 1 · 10−4, the
empirically observed slope of the lnEx (τ

ε) vs. 1/� line is lower than the theoretically

predicted one, see Table 2.25

As for the third way, we see that it works well in predicting the point of escape (see

Table 1) and in predicting the mean escape time (see Table 3). However, the simplified

continuous—time approximation (without drift term) and the simple mean escape time

formula based on it are valid for the region of � shifted to a larger � compared to the

one for the dynamic model, see Fig. 10. This is explained by better averaging for larger

� in the static version of the model.
24This prediction is borne out by the simulations: at � = 1 · 10−2, 1 · 10−3, and 2 · 10−4, the average

escape times out of the cylinder with intersects ev1 at -0.985 are 3.7, 64.6, and 1255 periods for the
dynamic model, while for the static one the corresponding numbers are 5.6, 265.6, and 6903 periods,
respectively.
25Recall that I, which determines this slope, is called quasipotential. It measures the energy needed

to get the system out of region D around the point O. The reason one needs to spend energy at all
is the drift, or non—stochastic component of the diffusion, which points back towards O. We have
selected our region D in such a way that the drift pointing inwards becomes very weak near the
boundary ∂D. However, as the approximation to (6) is made at point O, it overestimates the strength
of the drift which has to be overcome in order to cross ∂D, and so overestimates I. The argument
from Dembo and Zeitouni (1998), cited in Section 2.1, persuades us that this upward bias is not likely
to be very large.
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5.3 Comparisons with CWS

Comparing the predictions of our most succesful (third) way of deriving the most prob-

able escape point and the mean escape time for an economically plausible region of gain

values in both dynamic and static versions of the CWS model with the CWS predic-

tions, we see that our estimates of magnitudes of mean escape times fit simulations

very well whereas the mean escape times’ limiting behavior predicted by the large devi-

ations theory used by CWS is not confirmed by simulations. The reason for this failure

(and for the failure of our first and second ways of describing the mean escape time for

economically interesting gain values) is bad averaging as discussed above.

In terms of the escape point, all three ways used in this paper have the same escape

point as understood by CWS:26 escaping trajectories hit the “induction hypothesis”

plane very close to the point prescribed by the largest eigenvalue’s eigenvector of R
−1
,

the inverse second moments matrix of beliefs evaluated at the SCE. We explain this

by the fact that this “escape” is for the most part a deterministic movement along the

mean dynamics trajectory, and all such trajectories are very close to each other, see

Fig. 2.

We have to address three technical considerations that could potentially influence

our comparison. The first is “Kushner critique”: can one guarantee that the escape dy-

namics generated by a continuous—time approximating process is a valid approximation

of the escape dynamics of the original discrete—time learning process? Kushner (1984)

proposed that this question could be answered by checking whether the action func-

tional of a discrete—time process converges to the action functional of its continuous—

time approximation. Checking the convergence is very hard to do taking into account

that the action functional for a discrete—time process in the CWS model depends on a

numerically derived function. Therefore, the only way of judging the performance of

the large deviations theory approach based on a continuous—time approximation of the

discrete—time SRA is to compare the predictions of this approach to the predictions of

the discrete—time approach and to simulation results.

Second, the CWS approach ignores the cross effects of the second moments matrix

R for the dynamic version of the model due to numerical complications, while we fully

take them into account. We estimate that the influence of this assumption is not large

as the matrix Σ is close to being block diagonal, see footnote 14 for a discussion. We

believe that if one were to implement the CWS approach without ignoring the cross

26Escape out of a cylinder with radius 66 times as large as in our paper.

26



effects of R, the results obtained would be more valid than those obtained here. This

path, however, might be blocked by computational complications.

Third, the discrete—time version of large deviations theory does not contain the-

oretical results for the most probable point of escape and mean escape time in the

case of unbounded (for example, Gaussian) shocks, see CWS, Theorem 5.3. The result

which is available for unbounded shocks is that “the probability of observing an escape

episode is exponentially decreasing in the gain with the rate given by the minimized

value of the cost function S”, see CWS, p. 13. The extent to which this lack of the-

oretical results influences numerical predictions is not generally known, but has been

shown to be small in some situations: CWS use both normal (unbounded) and binomial

(bounded) shocks in the static model and obtain the values of S (I in our notation)

which are numerically very close to each other; predicted most probable escape paths

also are very similar.

6 Conclusion

We extended a continuous—time approach for the analysis of escape dynamics in eco-

nomic models with adaptive constant gain learning. Foundations of this approach were

laid down by Kasa (2004), Evans and Hohkapohja (2001, Ch. 14), andWilliams (2001).

This approach is based on applying the results of FW’s continuous—time version of large

deviations theory to the diffusion approximation of the original discrete—time learning

process.

When applied to the Phelps problem of government controlling inflation using an

approximate Phillips curve, deriving escape dynamics characteristics for the “original”

diffusion approximation with a drift term did not generate results compatible with the

results of simulations in terms of the mean escape time. This is due to the limited

validity of such an approximation for economically plausible values of the constant

gain parameter �. Limited validity of the approximation, in turn, is caused by bad

averaging in the CWSmodel. To account for high “noise—to—signal” ratio near the SCE,

we used a “modified” diffusion approximation without the drift term and the formula

for the mean exit time of one—dimensional Brownian motion, rather than limiting

characteristics provided by the theory of large deviations. We managed to predict the

values of mean escape times with high precision for the “modified” approximation.

All our ways of deriving escape dynamics chracteristics work well in predicting
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the final point of escape: Escape occurs in the small neighborhood of the SCE, then

mean dynamics moves the system along the largest eigenvector of the inverse second

moments matrix evaluated at the SCE towards the “induction hypothesis” plane. As

for predicting the most probable point of “initial” escape out of a small neighborhood

of the SCE, the ways based on an “original” continuous—time approximation did not

work well for an economically plausible region of � because the approximation has

limited validity at such �. Considering an escape out of a separating surface on which

the mean dynamics changes its direction, thus taking into account some information

about the behavior of the mean dynamics away from the SCE, provides better results

for the point of “initial” escape.

As another result of this paper, we express reservations regarding the applicability

of escape dynamics theory for the characterization of mean escape time for economically

plausible values of gain in both versions of the CWSmodel. We show that for the region

of gain values used in the economics literature, simple considerations and formulae work

much better than large deviations theory’s results. This, again, is explained by bad

averaging for a relatively large � in this model.

We suggest two changes to help the approaches based on large deviation theory

work to better in terms of characterizing the mean escape time for the model and gain

values considered: to set a lower mean unemployment rate, in order to construct a more

balanced second moments matrix, and to use better specified learning of agents. The

same changes will help our “original” continuous—time approximation to become valid

for larger gain values. In general, one has to look for economically sensible models

with better averaging for economically plausible gain values in order to apply large

deviations theory characteristics of the mean escape time.

Finally, we believe that utilizing a continuous—time approximation can be used

to analyze escape dynamics in more complicated models, where it is not possible to

derive analytical characteristics of escape dynamics in discrete time. For example,

the model with a dynamic Phillips curve can be studied as a possible extension of

the approach proposed here. The question, however, remains whether large deviations

theory predictions of mean escape time would be valid in this model for economically

plausible �, or whether one would have to employ something resembling our reliance

on the “modified” approximation and the mean exit time result for one—dimensional

Brownian motion. This is the focus of our current research.
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A Large deviations theory

Action functional for a diffusion dϕt = Aϕtdt+
√
�BdWt is defined as

I0T (ϕ) = infn ·
ϕt=Aϕt+B

·
gt
o 12 R T0 ¯̄̄ ·gt ¯̄̄2 dt (see Dembo-Zeitouni, p. 214).

The results on the mean exit time and dominant escape path are given in Dembo

and Zeitouni (1998, Theorem 5.7.11).

Consider the system dxεt = b (xεt) dt+
√
�σ (xεt) dWt, xεt ∈ Rd, xε0 = x.

Assumption A1 The unique stable equilibrium point in D (open, bounded do-

main) of the d-dimensional ODE
·
xt = b (xt) is at O ∈ D and x0 ∈ D =⇒ ∀t > 0,

xt ∈ D and lim
t−→∞

xt = O.

Assumption A2 All the trajectories of the deterministic ODE
·
xt = b (xt) starting

at x0 ∈ ∂D converge to O as t −→∞.
Assumption A3 I

def
= inf

y∈∂D
I (O, y) <∞.

Assumption A4 An M <∞ exists such that, for all ρ > 0 small enough and all

x, y with |x− z|+ |y − z| ≤ ρ for some z ∈ ∂D ∪ {O}, there is a function u satisfying

||u|| < M and ϕT (ρ) = y, where ϕt = x +
R t
0
b (ϕs) ds +

R t
0
σ (ϕs)usds and T (ρ) −→ 0

as ρ −→ 0.

Definition A1 τ ε
def
= inf {t > 0: xεt ∈ ∂D} .

Theorem A1 (Dembo and Zeitouni (1998, Theorem 5.7.11))

Assume A1-A4

(a) For all x ∈ D and all δ > 0,

lim
ε−→0

Px

³
e(I+δ)/ε > τ ε > e(I−δ)/ε

´
= 1.

Moreover, for all x,

lim
ε−→0

ε lnEx (τ
ε) = I.

(b) If N ⊂ ∂D is a closed set and inf
z∈N

I (O, z) > I, then for any x ∈ D,

lim
ε−→0

Px

¡
xετε ∈ N

¢
= 0.

In particular, if exists z∗ ∈ ∂D such that I (O, z∗) < I (O, z) for all z 6= z∗, z ∈ ∂D

, then

∀δ > 0,∀x ∈ D, lim
ε−→0

Px

¡¯̄
xετε − z∗

¯̄¢
= 1.

Part a) of the theorem characterizes the escape probability and the mean escape

time, and part b) gives the dominant escape path.
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B Minimizing the action functional

We need to solve the problem

min
1

2

Z T

0

kutk2 dt,

subject to
·
ϕt = Aϕt +But,

ϕ(0) = 0, ϕ(T ) ∈ ∂D

We know that matrix B is singular, and therefore, the system (A,B) is not reachable.

Such systems are usually converted into the standard form as follows:27 change the

coordinates so that ϕ = Tz:

z = T−1ϕ =

∙
z1
z2

¸
,

where dimension of z1 is r, dimension of the reachable subspace. In the new coordinates,

we get

T
·
z = ATz +Bu, or
·
z = T−1AT| {z }

Ā

z + T−1B| {z }
B̄

u.

The matrix T is constructed as [T1 |T2 ] , where T1 consists of columns that form the basis
of the reachable subspace (it is convenient to select columns of T to be the [orthonormal]

basis of Gramian G in initial problem. T1 are the columns corresponding to the nonzero

eigenvalues of G, therefore they constitute the basis of reachable subspace). Columns

of T2 form (orthonormal) basis of the complement to the reachable subspace. By

construction, matrix T is invertible.

Let us find the structure of Ā and B̄. Look at AT = A [T1 |T2 ] = [T1 |T2 ]A.
Reachable space is invariant for all controls including u = 0, therefore range of [T1 |T2 ]A
should not include vectors from T2. This could be achieved if

A =

∙
A1 A12
0 A2

¸
.

Similarly, no control should push the system out of reachable subspace, this means

that

B = [T1 |T2 ]B = [T1 |T2 ]
∙
B1

0

¸
.

27See the details in Dahleh, Dahleh, and Verghese (2003) and Boyd (2004).
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With this, we can now write our system as

·
z = T−1ATz + T−1Bu =

∙
A1 A12
0 A2

¸ ∙
z1
z2

¸
+

∙
B1

0

¸
u.

As we are interested in the movement from initial point z(0) = 0, unreachable dimen-

sions z2 cannot influence dynamics of z1:

·
z1 = A1z1 +B1u.

This system is called reachable subsystem of the original one.

Let us find Ā1 and B̄1. T−1AT = Ā, or
∙
T T
1

T T
2

¸
[A] [T1 |T2 ] =

∙
A1 A12
0 A2

¸
. There-

fore, T T
1 AT1 = A1. For B1, T

−1B = B̄ ⇒
∙
T T
1

T T
2

¸
B =

∙
B1

0

¸
=⇒ T T

1 B = B1.

In the new variables our problems transforms into

min I0T =
1

2

Z T

0

kutk2 dt,

subject to
·
z1 = A1z1 +B1u,

z1(0) = 0, T1z1
¡
T
¢
∈ ∂D.

(Note that z2 stays zero under our dynamics, therefore Tz = [T1 |T2 ]
∙
z1
0

¸
= T1z1).

This problem is easily solved, as the system
¡
A1, B1

¢
is reachable by construction.

Standard result is that I = 1
2
zT1,des · G

−1 · z1,des, where G is Gramian in the reduced

problem, given as a solution of the matrix Lyapunov equation A1G+GA
0
1+B1B

0
1 = 0,

and T1z1,des ∈ ∂D.

In case when the set ∂D is surface of the cylinder – a sphere of radius R in γ

space, kγk = R, and no restrictions in space of components of R, – the problem of

minimizing action functional becomes

min
1

2
zT1 ·G

−1 · z1,

s. t.
¡
I627T1z1

¢T · I627T1z1 = R2,

where I627 is 27×27 zero matrix with 6×6 identity matrix in the upper left corner. After
defining v = G

−1/2 · z1, it is straightforward to get solution φdes = ± R
λ1
T1G

1/2
ξ, where

ξ is the unit eigenvector of matrix Γ = G
1/2

T T
1 I

6
27T1G

1/2
corresponding to the largest

eigenvalue, (λ1)
2. Note that if matrix Σ is block—diagonal, as in the static model, the

eigenvector ξ coincides with the “largest” eigenvector of G, and eigenvalue λ1 coincides

with the largest eigenvalue of G.
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For the problem when ∂D is given numerically, one has to find min
z1∈∂D

1
2
zT1 ·G

−1 ·z1. All
the points on the boundary are given parametrically by 2—dimensional function ε (t),

where t is the index number of the point in (γ̃1, γ̃2) space. Write Fz1 = ε (t), where F

transforms 13 dimensions of z1 into 2—dimensional space (γ̃1, γ̃2). Define v = G
− 1
2 z1.

Then the problem becomes

min
1

2
kvk2

s. t.

FG
1
2v = ε (t)

and the solution of this problem is vt = pinv
³
FG

1
2

´
·ε (t), and t̄ = argmin

°°°pinv ³FG 1
2

´
· ε (t)

°°°.
ε (t̄) is the predicted point of escape in (γ̃1, γ̃2) space. To transform this point into orig-

inal 27—dimensional space of beliefs, use the following transformation:

z1t̄ = G
1
2 · pinv

³
FG

1
2

´
· ε (t̄) =⇒ ϕ = T T

1 G
1
2 · pinv

³
FG

1
2

´
· ε (t̄) .

For the third way problem (disregarding the mean dynamics), we set A = 0 and,

using the general result above, get I = 1
2
zT1,des · G

−1 · z1,des. In this case G is defined

for arbitrary time T as G
−1
=
³
B1B

0
1

´−1
1
T
=
¡
T T
1 BB

TT1
¢−1 1

T
= T1

¡
BBT

¢−1
T T
1
1
T
=

T1
¡
Σ
¡
θ̄
¢¢−1

T T
1
1
T
, where T1 is the basis of spectral decomposition of Σ

¡
θ̄
¢
, and at the

same time the orthonormal basis of the reachable subspace. For any T the solution of

the problem on the cyllinder is expressed by the formula for escape out of the cyllinder

written above, where instead of G one uses T1Σ
¡
θ̄
¢
T T
1 . In the model of CWS the

resulting direction almost coincides with the eigenvector corresponding to the largest

eigenvalue of Σ
¡
θ̄
¢
.

C Formula for the Third Way of Deriving Mean
Escape Time

The third way of deriving escape dynamics characteristics is based on the “modified”

continuous—time approximation without drift term, dϕt =
√
�Σ1/2(θ̄)dWt. To find the

projection of the process on the most probable direction of escape ev1, the “largest”
eigenvector of Σ, we multiply the above expression by this eigenvector from the left.

The resulting diffusion is dϕprojection
t =

√
�λdWt, where λ is the largest eigenvalue

of Σ. Then we use formula for the mean exit time for one—dimensional Brownian

motion in Karatzas and Shreve (1991, Eq. 5.62, p. 345). For a process Yt = x +
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Z t

0

σ (Ys) dWs, the mean exit time Ta,b(x) = inf {t ≥ 0;Yt /∈ (a, b)} is expressed as

ETa,b(x) =

Z b

a

(min(x,y)−a)(b−max(x,y))
b−a · 2dy

σ2(y)
. In our case x, the starting point of the

projection of the process of deviations from the SCE, is zero, σ(y) is replaced by
√
�λ,

and the interval (a, b) is given by (−rad, rad), where rad is the distance between the
SCE and the point where the “largest” eigenvector of Σ crosses the cylinder used in the

first and third way of deriving the escape dynamics. After plugging these values into

the expression for the mean exit time and evaluating the integral, we get the formula

for the mean escape time: Eτ ε = rad2

�λ
.
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Figure 2: The mean dynamics trajectories
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