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Abstract
Performance in retailing is usually evaluated by routine use of ratio anal-

ysis, but due to the univariate nature of this simple management tool there
are many drawbacks to the obtained results. Therefore, the aim of this study
is to demonstrate successful employment of parametric and non–parametric
methods for evaluating technical performance in retailing. We also show how
to utilize DEA results, when parametric methods do not satisfactorily per-
form due to their strict distributional assumptions. Results of this study
are used to optimize the retail chain of a European mobile telecommunica-
tion network operator by providing estimates of and recommendations for
improvements in the productive efficiency of the chain operations. Estimates
of store–level technical and scale efficiency indicate that a majority of stores
are operating in the decreasing returns to scale region of the production po-
ssibility set. The employed methodology allows us to identify input excesses
and to address a means of reducing them.

Abstrakt
Technická efektivnost je obvykle hodnocena pomocí analýzy vstupně–

výstupních poměrů, avšak tento přístup selhává v případe produčkního pro-
cesu s více vstupy a výstupy. Proto je cílem této studie demonstrovat použití
parametrických a neparametrických přístupů k odhadu technické efektivnosti.
V této studii ukazujeme využití výsledků neparametrického přístupu v pří-
padě selhání parametrické metody v důsledku jejích striktních předpokladů.
Výsledky této studie byly použity při optimalizaci prodejní sítě operátora
mobilní telefonní sítě. Odhady technické efektivnosti a efektivnosti rozsahu
operací indikují, že vetšina obchodů se nachází v oblasti klesajících výnosů
z rozsahu. Použitá metodologie umožňuje identifikaci neefektivního využití
vstupů při hledání možností pro zvýšení efektivity.
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1 Introduction

Even while increasing market penetration may set a limit on the future revenue

growth of mobile network operators, high earnings expectations can still persist

on the side of shareholders. And it is these expectations which fuel incentives for

improving the productivity of operators’ resources. Therefore, to secure optimal

allocation of operators’ resources, managers are often interested in supporting their

decisions by the use of academic methodologies.

When analyzing the productivity of their operations, retailers usually rely on

aggregate measures like sale per unit of size or unit of labor. In operations research

literature (e.g. Athanassopoulos and Ballantine 1995; Beamon 1999; Reynolds

2004), it is argued that the use of ratio analysis (common for managerial eval-

uation of performance) is not sufficient to properly assess the performance of an-

alyzed decision making units because the major limitation of ratio analysis is its

univariate nature. To deal with this drawback, our study applies a more comprehen-

sive framework for assessing the performance of retail network units by comparing

the results of non–parametric production frontier methods, parametric production

frontier methods, and ratio analysis. Parametric methods are capable of handling

single output–multiple input technology, and require specification of the produc-

tion function form. The non–parametric method used in this work, however, allows

for multiple input–multiple output technologies and does not require specification

of the production function form. Moreover, the non–parametric method supplies

information on returns to scale on an individual level. The use of parametric meth-

ods (Corrected Ordinary Least Squares – COLS and Stochastic Frontier Analysis

– SFA) along with a non–parametric method (Data Envelopment Analysis – DEA)

provides a means of assessing the robustness of estimated efficiency levels.

The retail units have only limited control over their outputs, which are mostly

determined by the sales potential of the unit’s location. Therefore, the appropriate
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behavioral objective for retail network managers would be input minimization,

rather than output maximization. To determine the efficiency of retail network

units, production frontier analysis assesses the actual levels of inputs with respect

to the estimated optimal levels of inputs. This input–oriented efficiency measure

detects managerial failures to minimize use of inputs for a given level of output.

Moreover, this approach gives an indication of the possible gains from exploiting

technical and scale efficiencies.

This technical efficiency and returns to scale study supports a wider scope

project on the optimization of a mobile network operator retail chain. We focus

on identifying returns to scale, because mobile network operators in environments

with a high rate of change are constantly forced to grapple with competitors by

creating economies of scale. Further, according to the managerial literature (e.g.

Stabell and Fjeldstadt 1998) on chain value creation, key determinants of costs of

the retail chain are capacity utilization and scale of operations.

This paper is organized as follows. Section two gives details of the retail tech-

nology and discusses the input–output specification used to model the production

frontier. Section three lays out the theoretical DEA framework and specifies the

linear programming problem used to evaluate the technical and scale efficiency of

the retail units. It also provides a review of the parametric methodologies (COLS

and SFA) used to test the hypothesis of constant returns to scale of the employed

technology. The fourth section reports ratio analysis and production frontier re-

sults, and the fifth section concludes with a summary of policy implications.

2 Retail technology

A formulation of the DEA problem and specification of the production function

form requires an understanding of the production process and the identification

of production inputs and outputs, respectively. This section briefly describes the
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production function of the retail outlets and defines the corresponding measures of

production inputs and outputs.

The key function of retail outlets of a mobile network operator is acquiring

new subscriptions to services provided by the operator. The acquisition of a new

customer involves the sale of a SIM card1, a mobile phone (and accessories), and

the selection of a price plan suiting the subscriber’s preferences. While revenues

reported by a store are derived from the sale of equipment (and prepaid credit

vouchers), these are not considered to be the key output of the unit.2 Rather,

definition of a key unit’s output is motivated by the store’s primary acquisition

function. Once a customer signs up for one of the price plans (or purchases a

prepaid card) he starts using the services provided by the network operator and

he generates revenues that are collected either via a monthly bill or via the sale of

prepaid vouchers. In fact, this revenue is also used to cover the costs of running

retail stores; thus revenues collected from acquired subscribers represent the key

(financial) benefit derived from the operation of retail stores. Therefore the number

of SIMs sold and the monthly revenue generated by the number of subscribers

acquired in a store were chosen as output measures for this study.

In total we use three different production output specifications. For two one–

output models we use either the number of SIM cards sold to customers or the

revenue generated by these customers, respectively. In the case of the two–output

models (DEA only) we describe outputs together as SIM cards sold and revenue

generated by customers using the sold SIM cards.

The mobile phone operator at the time of this study was running a retail network
1SIM, a Subscriber Identity Module, is a card commonly used in a GSM phone. The card

holds a microchip that stores information and encrypts voice and data transmissions. The SIM
card also stores data that identifies the caller to the network service provider.

2The biggest revenue item (from total revenue reported by a store), the handset revenue, would
be a misleading output indicator as phones sold together with activation of a tariff plan are sold
at subsidized prices and the margins (difference between retail and wholesale price) are hence
in these cases negative. The negative handset margin is thus treated by the operator and the
industry as a component of the Subscriber Acquisition Cost (SAC) rather than as revenue derived
from providing services.
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with over forty outlets across the country and was considering closing or relocating

some of the existing units as well as opening additional units at new locations.

Some key questions management faces when setting up a retail outlet are: What

should the size of the sales area be? How many sales people are required to achieve

the sales potential in that unit’s sales area? These two factors appear to be the

key determinants of outlet performance, in addition to the regional and location

aspects.3 At the same time, the costs of these two production factors represent 98%

of the units’ total operating costs.4 Therefore the number of sales representatives

(employees) and the sales area of the store were identified as the production inputs.

This specification of inputs is used for all models.

The stores’ sizes and their locations were determined by the retail chain manager

at the outset of the retail network roll out on the basis of the initial sales potential

estimates of individual regions. The size of each location allows for a variable

number of employees, up to the point of its capacity given by the sale area. The

total headcount per individual store is decided jointly by the local store manager,

regional manager, and central retail network manager. Based on the observed

traffic pattern, the store manager is able to adjust the capacity of the sales force

by drawing on part–time staff. Store opening hours are set so as to reflect the sales

potential of the location; i.e. stores in shopping malls are open whole weekends,

while stores in other locations are e.g. open for limited hours on Saturdays. As

one employee represents 40 working hours per week, the measure of the number of

employees captures the differences in opening hours across stores.

Following the literature on retail productivity, other criteria relevant for retail

productivity were considered: employees’ personal characteristics such as training

level and motivation (e.g. Bush et al. 1990; Lusch and Serpkenci 1990); wage

rate (Bucklin 1978) and attitudes (MecKenzie, Podsakoff, and Fetter 1993); and
3The regional aspects and sales potential of individual sales areas were assessed in a separate

study and are beyond the scope of this paper.
4Utilities and site maintenance represent remaining units’ costs.
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behavioral outcomes such as service quality (Parasuraman, Zeithaml, and Berry

1994) and assortment differences (Grewal et al. 1999). However, as explained below

there is no evidence that these factors differ across the studied retail stores and

employees; thus these characteristics are not helpful in explaining productivity

variation across stores in our sample.

At the time of this study, strong market growth and increasing penetration

had forced operators to allocate their resources primarily in acquiring subscribers.

Acquisition is thus seen as the primary goal of the retail stores, and the work effort

of the sales persons is stimulated by the incentives that reflect this goal. Because

the incentives and overall reward scheme of the sales staff is centrally designed

and is homogeneous across stores, the variable pay of the sales staff is driven by

the number and value of the SIMs sold. The value of the SIM is measured by the

(expected) revenue the sold SIM will generate, which in turn is proxied by the price

tariff the customer with the given SIM subscribes to.

The time spent with an individual customer purchasing a specific service does

not differ from location to location, but does differ from customer to customer due

to the differences in tariffs being sold. The key discriminator here is the payment

type associated with the tariff sold. The prepaid tariffs (also known as ’pay as you

go’ tariffs) take a shorter time to sell than do postpaid tariffs. Consumers with

prepaid tariffs, as the name indicates, pay for the services in advance, i.e. before

the services are consumed. Postpaid tariffs, by contrast, allow the subscribers to

consume services before being charged for them. Postpaid fees are collected from

these subscribers via invoices that are sent to their home addresses. This system

requires that the customer register personal data with the operator (and often also

finalization of the term specific service contract) and thus requires longer sales time.

Postpaid tariffs bind subscribers to paying a regular monthly fee, thus guaranteeing

the operator recurring monthly revenues which, as a consequence, increases the

value of the postpaid customer above the prepaid one (it is common knowledge that
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mobile subscribers on prepaid tariffs generate on average lower monthly revenue

than do postpaid subscribers). This fact is captured by the incentive scheme, and

the longer time spent acquiring a postpaid subscriber is rewarded by the higher

number of points earned by the sales staff for the acquiring of this type of customer.

However, the busiest locations may produce a perverse effect despite this feature

of the incentive scheme. The extreme workload (high number of incoming shoppers)

at these busy locations can cause the sales staff to go after quantity rather than

quality of customers, as the number of incentive points earned is very high under

these conditions. As a consequence the busy locations may sell a high volume of

SIMs, though their average value may be lower compared to SIMs activated by

other less busy stores whose locations show a smaller sales potential. We capture

this specific feature of the retail sale technology in one of the DEA models by using

two output measures: number of SIMs sold and total revenue generated by the

store.

Even though some time of the sales staff is spent on serving the current sub-

scribers, this is not seen as the primary goal of the store and does not take a big

share of staff time; hence it is not reflected by the incentive scheme. Based on staff

and store manager experience and on a comparison across stores, the share of time

spent on service activities is minor and approximately the same in all stores (and

varies across stores by about +/-5%).

All sales persons must pass the same sales skills training so that the high qua-

lity of service is homogeneous and preserved across stores.5 Quality of service is

measured regularly, and quality assurance test results from the time period of this

study indicate that there is very small variation in key quality indicators across

stores and sales persons. The consistently high and homogeneous quality of sales

staff thus precludes this as a possible explanations for the varying degree of ef-
5Quality of both sale and product skills are ensured. Moreover, each introduction of new

products or services by the operator is coupled with the appropriate product/service specific
knowledge training of the sales staff.
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ficiency across stores. Homogeneity of the other service attributes (e.g. types of

offered handsets) is ensured by the systems and technology supporting the seamless

operation of all stores (e.g. central inventory system).

While the output potential (number of shoppers coming to the store) is as-

sumed to be given and determined by the regional characteristics and intensity

of the operator’s nationwide advertising campaigns, the realization of that output

potential is (assumed to be) the function of the input mix (quality of inputs is

assumed homogeneous) and it is the optimum input mix we seek to identify for

each location.

2.1 Data description

Table 1 in the Appendix summarizes the descriptive statistics of inputs and outputs

used to specify the production mix. Stores in our sample were observed over a

3–month of steady mobile market growth. The 42 stores represent the total number

of the operator’s stores, and the number of SIMs reported are those sold over the

period of one quarter of the year. The revenues reported were accounted for in

the third month of the quarter following the sale (acquisition) period. The number

of employees are cumulative over the 3–month period and thus reflect total man-

hour capacity devoted to sales activity in the time period we study. All variables

are measured with minimum error as the information systems in place provide

automatic data collection and their accuracy has been tested over time prior to the

study period.

Figure 1 (see Appendix) presents the matrix of scatter plots for each pair of

input and output variables. The high positive correlation between number of em-

ployees and both measures of output is clearly visible. However, the relationship is

less clear when sales area is considered. While output seems to increase with num-

ber of employees, it does not seem to measure up with increasing sale area size.

This observation clearly corresponds to the actual flexibility of input adjustments.
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The number of employees can be adjusted fairly flexibly to reflect the varying de-

mand conditions of each store. However the size of the sale area is fixed over the

time of the lease, and once the location and size of the store is decided (based on

the initial estimates of the location’s sales potential) there is limited possibility to

adjust this production input.

This study (efficiency and input slack estimates) thus gauges the quality of

two separate skills: the ability of the central manager to determine optimum size–

location and total retail chain headcount mix, and the ability of individual retail

store managers to optimally schedule employees. The identified labor input slacks

can thus be directly translated into a reduction of employee working hours. The

size of sale areas are, however, more difficult to adjust in practice. It is up to

the manager to consider the possibilities for store size adjustment or alternative

solutions in addressing low incoming customer traffic if slacks are small. When

slacks are substantial, store relocation may be inevitable to avoid further wasteful

consumption of resources.

3 Methodology

There is no single widely accepted approach to assessing retail store productivity

(Donthu and Yoo 1998). However, in recent retailing studies (e.g. Donthu and

Yoo 1998; Reynolds 2004) production frontier methodologies are most frequently

used. In this paper we use both parametric and non–parametric production frontier

methods to create a comprehensive framework for technical efficiency analysis.

In their original paper on production frontier methods, Marschak and Andrews

(1944) sketched out the terms “technical” and “economic efficiency” (paragraph 1

and 11) of a firm. Later, Farrell (1957) defined the efficiency of a decision ma-

king unit (DMU), which consists of two components: technical efficiency (TE) and

allocative efficiency (AE). In Farrell’s efficiency concept, overall efficiency (OE) is
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defined as the multiplicative combination of technical and allocative efficiency, so

that OE=TE*AE. Allocative efficiency expresses the extent to which an analyzed

DMU uses its inputs in proportions which minimize the costs of production, assum-

ing that the unit is already fully technically efficient. Technical efficiency measures

the extent to which inputs are converted to outputs relative to the best practice

frontier.

An important feature of the retailing network in a competitive market is that

the retail stores must meet the demand for their services but are not able to choose

the level of output they will offer due to competition limitations. Further in our

case, we have to abstract from the role of prices of mobile network services because

the retail units do not affect these prices; all retail units are offering the same

services for the same prices. Regional and location aspects (demographic, social,

economic and competitive supply patterns of towns/districts) that determine the

sales level of mobile network services by retail units are considered to be beyond the

unit’s control. These facts provide a rationale for considering the levels of outputs

as given by local characteristics and by the general operator’s sales strategy. Given

the exogeneity of the output levels, the retail network maximizes profit simply by

minimizing the levels of used inputs for producing a given level of output.

We also abstract from the role of prices in allocation of resources because rent

and size of the retail unit is predominantly affected by location characteristics and

availability of space for rent. Due to these restrictions, we do not assume that the

unit’s location and size is chosen with respect to allocative efficiency. Therefore,

rather than considering the cost or profit efficiency level of retail units, we focus

our analysis on the technical efficiency of units, especially input efficiency.

The following sections review input–oriented DEA methodology and two para-

metric methods (COLS and SFA) used to search for the production frontier that

allows us to evaluate technical and scale efficiency of retail stores.
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3.1 Non–parametric frontier approach: DEA

Using Farrell’s (1957) concept, Charnes, Cooper, and Rhodes (1978) introduced

the first DEA model to evaluate technical efficiency in a multi input–output envi-

ronment. Since then, the CCR model and its modifications have become a widely

used tool for operations analysis and production frontier search in many sectors

including schools, hospitals and banks. The DEA models measure the efficiency

of DMUs by identifying the best performing units. These best performing units

are then used to construct the “best practice frontier” through a piecewise linear

envelopment of observed data. Therefore the efficiency scores estimated by the

DEA models are relative measures of efficiency within the sample of the analyzed

DMUs.

The DEA approach assumes that each of the considered DMUs is described by

a vector xj, xj = (x1j, . . . , xmj)
T of m inputs amounts that are used to produce s

outputs in amounts described by vector yj, yj = (y1j, . . . , ysj)
T . To aggregate these

vectors into matrices of inputs and outputs the following notation will be used:

matrix of inputs vectors Xm×n = (x1, . . . , xn)

ith row of “input” matrix X ix = (xi1, . . . , xin), i = 1, . . . , m

matrix of outputs vectors Yr×n = (y1, . . . , yn)

rth row of “output” matrix Y ry = (yr1, . . . , yrn), r = 1, . . . , s.

When using the DEA approach to search for the “best practice frontier”, it

is assumed that the set of production mixes used by DMUs is described by the

production possibility set

T = {(x, y)| using inputs x ≥ 0 outputs y ≥ 0 are produced}

and it is assumed that the technology set has the following properties:

1. Convexity: If (xj, yj) ∈ T, j = 1, . . . , n and λ ∈ Rn
+, ⇒ (Xλ, Y λ) ∈ T.

2. Inefficiency property: If (x, y) ∈ T and x̄ ≥ x, then (x̄, y) ∈ T.
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If (x, y) ∈ T and ȳ ≤ y then (x, ȳ) ∈ T.

3. Minimum extrapolation: T is the intersection of all sets satisfying the conve-

xity and inefficiency property such that each of the observed production mix

(xj, yj) ∈ T, j = 1, . . . , n.

4. No free lunch: (0, y) 6∈ T, for y > 0.

The production frontier (“best practice frontier”) determines the minimum level

of inputs needed to produce a given level of outputs. The input–oriented DEA

models examine the levels of inputs needed for the production of a DMU’s output

mix, and the efficiency measure indicates whether the DMU under consideration

uses the minimum necessary level of inputs. The simplest input–oriented efficiency

score of the DMUj measures the maximum proportional reduction of inputs that

allow production of the same output mix as the examined DMUj. However, due to

its simplicity, this measure fails to uniquely identify efficient units. Therefore, we

will use a more complex efficiency measure, described later.

We use the input–oriented DEA models to evaluate the input–oriented pure

technical efficiency and scale efficiency score of the DMUj, for j = 1, . . . , n which

are characterized by the following general linear programming problem:

min
λj ,θj ,ej ,sj

θj − ε(1T ej + 1T sj) (1)

s.t. θjxij − ixλj − eij = 0, i = 1, . . . ,m;

ryλj − srj = yrj, r = 1, . . . , s;

ϕ(1T λj) = ϕ;

λj, ej, sj ≥ 0,

where λj ∈ Rn
+ (intensity variable), θj ∈ R+ (proportional input reduction),

ej ∈ Rm
+ (non–proportional input excess), sj ∈ Rs

+ (output slack), ϕ takes the

value 0 for the CCR input–oriented model introduced by Charnes, Cooper, and
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Rhodes (1978) and 1 for the BCC input–oriented model by Banker, Charnes, and

Cooper (1984).6 Formulation of these models as in Problem 1 is referred to as

envelopment form because the optimal solution (θ∗j , λ
∗
j , e

∗
j , s

∗
j) ∈ R1+n+m+s

+ identifies

the projection of DMUj on the envelopment surface (“best practice frontier”) in the

direction of proportional inputs reduction.

θ∗j expresses the minimal, proportionally reduced, levels of inputs for the DMUj

while keeping the outputs at the same levels, in order to improve the technical

efficiency of this unit.7 Low value of θ∗j indicates excessive use of all inputs in

the production mix. This property of θ∗j provides a rationale for using θ∗j as an

efficiency measure. Due to the fact that this measure ignores non–proportional

reduction of inputs, additional conditions on input excess and output slack are

needed to identify efficient units.

The constant ε in Problem 1 is a non–Archimedean infinitesimal that allows

the problems of the search for maximal input reduction and the search for fron-

tier projection to be condensed into a single optimization problem. In a chap-

ter on computational aspects of the DEA, Charnes et al. (1994) argue that the

value of ε should be determined by an analyzed sample. Therefore, we choose

ε = 10−6 minj=1,...,n 1/(
∑

i=1,...,m xij) for our analysis. This choice of ε means that

proportional input reduction effectively preempts the optimization that involves

non–proportional slacks ej and sj. The DEA models as stated in Problem 1 are

solved by implementing the primal–dual interior point method designed by Mehro-

tra (1992).8

The elements eij express the input excess for each of the inputs, and the vector

ej ∈ Rm
+ is formed to express the non–proportional input excess for DMUj’s input–

output mix. At least one element of e∗j (part of the optimal solution) should be

zero, otherwise there exists the possibility of proportional input reduction. Likewise
6Here, R+ denotes the set of positive real numbers and 1 is a column vector of ones.
71− θ∗j expresses the maximal proportional input reduction of input levels.
8To analyze sensitivity of solutions with respect to the choice of ε, we used ε = 0 to calculate

new efficiency scores. No significant changes in efficiency scores were recorded.
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for outputs, the outputs slacks srj form a vector of outputs slacks sj ∈ Rs
+ and s∗j

expresses the possible output augmentation. Further, individual slack analysis can

help retail managers allocate resources more effectively and improve performance.

The efficiency of DMUj is evaluated using the optimal solution (λ∗j , θ
∗
j , e

∗
j , s

∗
j) of

Problem 1 under the assumption of the selected returns to scale (RTS) type. In the

DEA literature (Charnes et al. 1994; Banker, Charnes, and Cooper 1984; Sueyoshi

1997) the efficiency of DMUj is evaluated according to the following theorem:

Theorem 1. Efficient DMUj : The DMUj is DEA efficient if both of the following

conditions are satisfied: 1) θ∗j = 1; and 2) All values of slacks are zero: 1T e∗j = 0

and 1T s∗j = 0. Otherwise DMUj is inefficient.

If DMUj is identified as inefficient according to Theorem 1, the optimal values

of slacks e∗j , s∗j and the optimal value θ∗j identify the sources and levels of present in-

efficiency.9 To take into account the presence of proportional and non–proportional

slacks we use the efficiency measure introduced by Tone (1993) to evaluate efficiency

in a comprehensive yet simplified fashion by defining the following input–oriented

efficiency measure:

χj =

(
θ∗j −

1T e∗j
1T xj

)
1T yj

1T Y λ∗j .
(2)

This efficiency measure has the following properties:

1. χj = 1 ⇔ The DMUj is efficient

2. χj = θ∗j ⇔ The values of all slacks are zero

3. 0 ≤ χj ≤ 1

4. χj is a units invariant measure
9According to Theorem 1, θ∗j = 1 is a necessary condition but not sufficient to evaluate the

DMUj as efficient. Consider the case of DMU6 in Figure 2, where θ∗6(V RS) = 1 but because
e∗j > 0 this unit is dominated in efficiency by DMU4.
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5. χj is monotonically increasing in inputs and outputs of DMUj

6. χj is decreasing in the relative values of the slacks.

The first efficiency measure property guarantees that this efficiency measure uniquely

identifies the efficient DMU while the fourth, fifth and sixth properties provide a

rationale for use of this measure to create an efficiency ranking for analyzed DMUs.

Further, after identifying efficient DMUs and identifying projections onto the

production frontier (potential efficiency improvements), we use the DEA method-

ology to examine scale efficiencies of DMUs. Scale efficiency measures the extent to

which DMUj can take advantage of returns to scale by a change in its size towards

the optimal scale, characterized by the constant returns to scale property.10

Charnes et al. (1994) and Sueyoshi (1997) provide an extensive summary of

the relationships between various DEA model specifications and estimated types

of efficiency (technical, pure technical, scale, cost, and allocative). Following the

outlined methodology, we estimate the pure technical efficiency of DMUj using the

BCC model (setting ϕ = 1 in Problem 1), and the technical and scale efficiency by

utilizing the CCR model (setting ϕ = 0 in Problem 1). Because of the multiplicative

nature of technical efficiency, the scale efficiency of production frontier elements

can be evaluated by breaking down the technical efficiency score into a scale of

operations component and a “pure” technical efficiency score.

We also estimate the model under the assumption of non–increasing returns to

scale (NIRS). Such a model is derived from Problem 1 by replacing the intensity

variable constraint with inequality 1T λj ≤ 1. For these input–oriented DEA models

the following property for optimal solution θ∗j holds:

0 < θ∗j (CRS) ≤ θ∗j (NIRS) ≤ θ∗j (V RS) ≤ 1. (3)

10As defined in the glossary of the Steering Committee for the Review of Commonwealth/State
Service Provision (1997).
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The amount of scale inefficiency can be imagined as the distance between the

constant returns to scale (CRS) and the variable returns to scale (VRS) frontier,

because this distance is determined by the scale efficiency component of technical

efficiency. Figure 2 illustrates the comparison of the CRS frontier (CCR model)

with the VRS frontier (BCC model). In Figure 2, the VRS frontier and production

possibility set are divided according to the RTS type of frontier elements into

subsets of increasing returns to scale (IRS, dashed line), scale efficient (bold solid

line) and decreasing returns to scale (DRS, dot–dash line). Elements from the

horizontally–shaded area can be projected in the input reduction direction onto

the part of the frontier with the IRS property, and from the vertically–shaded area

onto the part of the frontier with the DRS property. Projections of elements from

the cross–shaded area belong to the scale efficient part of the production frontier.

Figure 2 thus illustrates the situation in which DMU2 and DMU3 are scale efficient

units, whereas the rest of the analyzed units are scale inefficient due to the presence

of either IRS or DRS.

As illustrated above, the analyzed DMUj can be identified as operating in the

region of the production possibility set with a) increasing RTS, b) decreasing RTS

or c) scale efficiency property. In addition to quantifying the scale efficiency level we

also determine for each unit the type of RTS region it operates in. The literature on

RTS identification presents various approaches to extracting qualitative information

on returns to scale of the frontier. Löthgren and Tambour (1996) summarize four

different (but equivalent) approaches to estimating returns to scale using a primal or

dual solution to the DEA models stated in Problem 1. To determine the RTS type

for an individual retail unit we employ the scale efficiency method. The concept of

the scale efficiency method introduced by Färe and Grosskopf (1985) is discussed

in detail by Zhu and Shen (1995) and can be given as the following theorem from

Löthgren and Tambour (1996):

Theorem 2. Scale efficiency method: For the specific DMUj let define scale ef-

16



ficiency measure SEj =
θ∗j (CRS)

θ∗j (V RS)
. Then SEj = 1 iff the DMUj exhibits CRS (the

DMUj is scale efficient); if SEj < 1, then θ∗j (CRS)

θ∗j (NIRS)
= 1 iff the DMUj exhibits IRS;

if SEj < 1, then θ∗j (CRS)

θ∗j (NIRS)
< 1 iff the DMUj exhibits DRS.

An important part of the DEA analysis is the test for sensitivity of results to

the selection of inputs and outputs for productivity mix description and returns

to scale assumption. For this purpose efficiency scores are calculated using al-

ternative model specifications. Besides the descriptive statistics comparison, the

sensitivity of efficiency rankings constructed according to the efficiency measure of

Tone (1993) is examined by use of the Spearman rank correlation coefficient. The

rank correlation coefficient and statistics by Spearman (1904) test the hypothesis

of rank independence. Spearman (1904) correlation coefficient is commonly used

to compare rankings in statistical studies.11

3.2 Parametric frontier approach: COLS

Further, to assess the robustness of efficiency and RTS estimates, we comple-

ment the DEA methodology with results of the parametric production frontier

approach using corrected ordinary least squares (COLS) and stochastic frontier

(SFA) methodology. Winsten (1975), in his discussion of Farrell’s (1957) paper,

suggested a parametric alternative to DEA that is based on a two–stage estimation

of production frontier, known as corrected ordinary least squares.

The deterministic production frontier of Cobb–Douglas production technology

with variable returns to scale is represented by the following model:

ln(yj) = β0 +
m∑

k=1

ln(xjk)βj − uj, (4)

where the inputs xjk ∈ R+ are used to produce single output yj ∈ R+ for j = 1, . . . , n

11For implementation details of the Spearman rank correlation coefficient and statistics, see
the manual by Stata Corporation (2003). For properties of the correlation coefficient see Kendall
(1955).
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and inefficiency component uj ≥ 0 is assumed to be iid distributed with non-

negative mean and constant variance. Equation 4 is in the first stage estimated

by OLS, which produces the unbiased and consistent slope parameters estimates

of the frontier model. In this stage, a consistent but biased estimate of intercept

parameter β0 is obtained.

In the second stage, the unbiased intercept is estimated consistently by:

β̂∗0 = β̂0 + max
j
{ûj}, (5)

and the OLS residuals are corrected according to:

−û∗j = ûj −max
j
{ûj}.

This correction makes all residuals non–negative and at least one of them zero.

The corrected residuals −û∗j are used to provide consistent estimates of technical

efficiency. The technical efficiency of producer i is calculated according to the

following function:

TE(COLS)j = exp(−û∗j).

Using the technical efficiency score TE(COLS)j we construct an efficiency ranking

and compare this ranking to the DEA efficiency ranking to evaluate the sensitivity

of our results.

3.3 Parametric frontier approach: SFA

The COLS approach, summarized in the previous section, does not take into ac-

count the possible effect of random shocks that may also cause variation in output.

Therefore, we also employ a method of stochastic frontier which accounts for ran-

dom shocks and technical inefficiency effect on variation in output. The stochastic

frontier analysis method (SFA) was first introduced by Meeusen and van den Broeck
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(1977) and Aigner, Lovell, and Schmidt (1977). Since then, SFA has become a very

popular tool that competes with the DEA approach in estimating production fron-

tiers.

Assuming that the production function is linear in logarithms, the stochastic

production frontier can be defined as follows:

ln(yj) = β0 +
m∑

i=1

βi ln(xij) + vj − uj,

where uj represents the non–negative technical inefficiency component and vj is the

symmetric two–sided random shock component.

Various specifications of the inefficiency term distribution lead to distinct fron-

tier models. The most popular are half–normal (uj iid N+(0, σ2
u)), truncated nor-

mal (uj is iid with N(µ, σ2
u) truncated at 0) and exponential model (uj iid ex-

ponentially distributed). We estimate these models by the maximum likelihood

method.

Based on Kumbhakar and Lovell’s (2000) remark on the low sensitivity of effi-

ciency ranking to inefficiency distributional assumptions (confirmed in our sample),

we estimate the stochastic production frontier under the assumption of a half–

normal distribution of the inefficiency term. Under this assumption the likelihood–

ratio test is used to test for the presence of an inefficiency component in the model.

This test compares values of likelihood functions under H0 : σ2
u = 0 against alter-

native hypothesis H1 : σ2
u > 0. For more details on one–sided likelihood–ratio test

statistics see Gutierrez, Carter, and Drukker (2001).

In addition to assessing the robustness of efficiency estimates, we use the deter-

ministic (COLS) and stochastic (SFA) frontier methods to validate the conclusions

of data envelopment analysis on returns to scale. To complete the parametric fron-

tier analysis, we test the null hypothesis that retail units employ CRS technology

by use of the Wald test (Kmenta 1990) to determine if the sum of production factor
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elasticities sums to 1 (testing restriction
∑m

k=1 βk = 1).

4 Results

In this section a summary of performance analysis results obtained by the DEA

and parametric production frontier methodology is presented. Ratio analysis is

discussed as well. For all technology specifications, inputs are described by the size

of the sales area and the number of employees. As mentioned in previous sections,

we use three different specifications of outputs to describe the retail technology of

mobile network services.12

To assess technical efficiency we constructed four output/input ratios and ranked

units according to these four productivity indicators. Results of this analysis are

summarized in Table 2. For each ratio four top, middle, and bottom performing

units are shown. There are two ratios per each output. We report the Spearman

rank correlation coefficients for each output ratio and a low consistency of rank-

ings is observed across ratio measures (0.2811 and 0.4661) with respect to choice

of output. These results illustrate the problem with the univariate nature of ratio

analysis. As mentioned in the introduction, ratio analysis is not capable of cap-

turing the multivariate nature of the considered retailing technology. These results

thus provide a rationale for using more complex measures of productivity.

Using three different specifications of outputs we first compute efficiency scores

by the input–oriented DEA models. Two models use a single output specification:

1) number of SIMs sold (referred to as SIMs model), and 2) revenue generated by

acquired subscribers (referred to as Revenue model). The third model uses two

outputs: number of SIMs sold and revenue generated by customers owning these

SIMs (referred to as SIMs&Revenue model). To estimate the production frontier

under the SFA and COLS approach, we use only the first and second one–output
12Descriptive statistics of the models’ inputs and outputs are summarized in Table 1.
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model specification.

Table 3 summarizes the descriptive statistics for the efficiency scores (χj), tech-

nical and scale efficiency (θCCR), pure technical efficiency (θBCC) and scale efficiency

for all three specifications of the DEA models. Table 3 shows that on average the

retail units are from 88 to 94 % scale efficient and that average pure technical ef-

ficiency (θ) ranges from 52 to 58% depending on model specification. This result

suggests that pure technical inefficiency is the main source of technical inefficiency

and that DMUs on average are operating close to full scale efficiency.

We used the efficiency score χj to create performance rankings of DMUs. We

assessed the sensitivity of results with respect to model specification by calculating

Spearman rank correlation coefficients and by testing statistics for significance of

rank correlation coefficients. To assess the extent of correlation we used Mortimer’s

(2002) review of studies on comparison of parametric and non–parametric methods

as a benchmark. From analysis of the relation between sample size and extent

of rank correlation in studies reviewed by Mortimer (2002), we were not able to

identify any bias in extent of correlation with respect to sample size. In general,

for values of Spearman rank correlation of 0.9 to 1, the correlation is considered

very strong; for values between 0.7 and 0.9, correlation is considered strong; and

for values between 0.5 and 0.7, correlation is considered moderate.

The robustness of results was also tested by recalculating scores after the units

identified as efficient and outlier units were removed from the full sample (42 obser-

vations). The sample of 39 observations used in the test focused on the consistency

of DEA results, where we removed 3 units from the full sample that were identified

as efficient by the 2 outputs–2 inputs models. Further, we removed the four busi-

est sales locations according to a complementary study on store location aspects,

where these four stores acquired a high number of customers (high number of SIMs

acquired) when compared to the rest of the stores. The decision to remove these

four units is also supported by hat matrix analysis, when these units are char-
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acterized by high values of leverage (0.1496–0.3536, the small sample cutoff 3p/n

suggested by Vellman and Welsch (1981), is 0.1428) and Cook’s distance (0.2276–

0.7083, while the cutoff 4/(n−k−1), suggested by Belsey, Kuh, and Welsch (1980),

is 0.1025).

Table 4 shows a summary of Spearman rank correlation coefficients for all con-

sidered models under either a CRS or VRS assumption. All estimated correlation

coefficients are significant, and the high values of correlation coefficients suggest

a low sensitivity of results to inputs and outputs specification among the con-

sidered models. Spearman’s ranking correlation coefficient for these DEA techni-

cal efficiency rankings ranges from 0.7543 to 0.9728 in the case of SIMs models,

0.7115− 0.9882 in the Revenue model and 0.7816− 0.9882 for the SIMs&Revenue

model.

The differences between θCCR and θBCC suggest that after eliminating pure

technical inefficiency (projecting observations onto the VRS frontier) inputs can

be reduced on average by an additional 4–8 % without affecting level of outputs

when CRS technology is used. Table 5 presents a detailed view on computed input

reduction parameters and scale efficiency scores. The results presented in Table 5

are consistent with ordering condition 3 on theta. Table 5 also shows the levels of

scale efficiency in the SE–score column.

The differences between means of efficiency scores (χj) and means of propor-

tional reduction parameters (θj) within the model specification arise from the pres-

ence of non–proportional slacks when searching for efficiency improvements. As

mentioned in the methodology section, this information can be used to predict

additional performance improvement. To specify sources of this improvement, we

present summary statistics of non–proportional slacks in Table 6. From this sum-

mary it follows that adjustments in store size can be the most important driver of

possible performance improvements.

These results, as presented above, imply that retail network costs can be re-
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duced more if retail units were to emulate “best practice” rather than trying to

adjust for scale efficiency of operations. These results are in line with other retail

studies (Athanassopoulos and Ballantine 1995; Donthu and Yoo 1998) which con-

clude that reductions in cost arising from the realization of economies of scale are

less important than the costs saved when a retailing network undertakes improve-

ments in technical efficiency.

A summary of RTS identification by the DEA method is presented in Table 7.

These results reveal that a majority of retail units appears to be operating in the

decreasing returns to scale region of the production possibility set when the input

reduction objective is imposed. This conclusion indicates the presence of economies

of scale in the operation of individual retail stores.

The RTS identification results obtained by the DEA are supported by tests

of the hypothesis that retail units employ CRS retail technology. To do this, we

employed a parametric (COLS and SFA) technique. Two one–output models of

production frontier were estimated. As mentioned above, we used the same out-

puts as in the one–output DEA models; both inputs and outputs are expressed

in terms of logarithms (output was defined in terms of log of revenues and log of

number of SIMs acquired, respectively). Tables 8 and 9 present the results of this

estimation, while Table 10 summarizes the technical efficiency scores estimated by

the parametric method. The estimated input elasticities do not significantly vary

across the parametric methods. However, based on a log–likelihood ratio test we

have to accept the hypothesis of no presence of an inefficiency component for the

SFA model. As Schmidt and Sickles (1984) note, estimation of the cross–sectional

stochastic frontier model is based on strong distributional assumptions of statistical

noise and inefficiency components of the error term. Therefore, we attribute the

failure to identify the asymmetric inefficiency component under the SFA model in

this sample to the negligible skewness of inefficiency distribution.

Figure 3 illustrates the distribution of technical efficiency and compares para-
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metric (COLS) and non–parametric (DEA) methods. The density estimates reveal

patterns typical for efficiency scores from the DEA approach, where the peak close

to unity is due to efficient DMUs that are used to identify the production possi-

bility frontier. Therefore, it is more appropriate to compare rankings of technical

efficiency scores that result from parametric and non–parametric methods. These

results are presented in Table 11.

Table 12 reports the results of testing for the prevailing type of returns to

scale among retail units. Based on the Wald test, the null hypothesis of CRS was

rejected. The sum of the elasticities of output with respect to inputs generated an

estimated scale elasticity. The values of elasticities sums were less than one, which

supports the DEA results regarding the presence of decreasing returns to scale.

The fact that the DRS property prevails for the majority of retail stores suggests

that further expansion of units’ operation size would lead to a less than proportional

increase in outputs and that units may become even less effective. In this case,

contraction in the size of retail store operations may increase their efficiency levels

at the cost of a less than proportional reduction of achieved output levels.

To test the sensitivity of results to the presence of the busiest units, Table 13

and Table 14 present results of the parametric approach when a reduced sample

of 38 observations is used. With this reduced sample, based on the log–likelihood

ratio test we were able to reject the hypothesis of no presence of the technical

inefficiency component in the SFA model.

Table 15 summarizes the results of technical efficiency estimation using a re-

duced sample under the DEA, COLS and SFA approaches. Estimated average

technical efficiency ranges from 0.5253 to 0.6986. We report only the results for

technical efficiency scores under the VRS assumption because, according to test

results presented in Table 16, we were able to reject the hypothesis of CRS technol-

ogy. Figure 4 shows estimates of distributions of technical efficiency scores. Again,

to assess the consistency of technical efficiency results, we use ranking correlations.
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The ranking correlations for reduced sample ranks are summarized in Table 17. The

extent of rank correlation (Spearman rank correlation ranges from 0.67 to 0.98) and

the fact that we were able to reject the hypothesis of rank independence for all cases

(at 1% significance level) lead us to conclude that the technical efficiency rankings

are robust with respect to the choice of frontier approach.

Further, when comparing results for the reduced sample with results from the

full sample presented in Tables 3 and 10, we observe an upward shift in the average

and minimal technical efficiency score. This fact is consistent with the nature of

technical efficiency estimates used in this analysis. To analyze the sensitivity of

rankings, we compare rankings for the full and reduced sample by use of ranking

correlation coefficients. The ranking correlation coefficients for both samples are

summarized in Table 18. These results allow us to consider our results as robust

with respect to the choice of productivity frontier approach and to model specifi-

cation across the full and reduced samples.

Assessing Figure 5 and Figure 6, where type of returns to scale is drawn against

the level of input, we conclude that the overall DRS property of DMUs results from

the DRS property of size of store. This conclusion supports the ratio analysis results

indicating that sales per square meter decrease with size of the store. However, we

cannot make a straightforward conclusion about the prevailing returns to scale

property of labor input characterized by number of employees.

Finally, the relation between levels of inputs used for the production and effi-

ciency scores is illustrated in Figures 7 and 8. We observe that the highest efficiency

scores are attained by units with a relatively small size (Figure 7). Similarly, as in

the case of the relation of the RTS type to number of employees, we cannot draw

a straightforward conclusion about the effect the number of employees has on the

efficiency of retail store 8.

Figures 9 and 10 illustrate the ratio analysis of performance evaluation and

links it to the DEA approach to efficiency evaluation. These figures show DMUs
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in the space of the output per unit of input: SIMs sold per employee and SIMs

sold per square meter in Figure 9, and revenue generated per employee and revenue

generated per square meter in Figure 10. To link the ratio analysis of performance

evaluation with the DEA results, we labelled data points in Figures 9 and 10 with

the DEA efficiency scores. Figure 9 and Figure 10 reveal that units considered

highly performing according to ratio analysis also show high DEA efficiency scores.

Efficiency growth in this space is indicated by the thick arrow on the bottom of

each graph. Productivity ratios (output per unit of input) are highly correlated

with efficiency scores.

In general, the higher the output per square meter and/or output per employee,

the higher the efficiency score. Lines that divide the graph area into four parts are

meant to separate the units that are in the upper quartile of maximal level of

output per unit of input. Based on ratio analysis, units in the outer regions are

considered units with high efficiency. This reasoning is confirmed by the high DEA

efficiency score of these outer units.

5 Conclusion

The main objective of this paper was to demonstrate the use of a complex frame-

work for performance analysis by estimating technical and scale efficiency of indi-

vidual stores in the retail network of a mobile network operator. This framework

allowed us to overcome the shortcomings arising from the univariate nature of ratio

analysis. The goal of this technical efficiency study was to facilitate the optimiza-

tion of resource allocation so that retail units consume their inputs in an optimal

mix to provide retail services.

We quantified the possible efficiency improvements of inefficient retail stores,

using an equi–proportional input reduction approach. Efficiency improvements

can be driven by improvements in better operational practices (improvements in
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headcount planning, adjusting for variation in sales over time) or in adjustments of

the production mix (size of sales area per employee). We also identified the returns

to scale type of analyzed units as additional information for the adjustment of

production mix size. The information on the RTS type allows managers to decide

on future expansion or contraction in size of operations after the unit adopts the

practice of efficient production mix. Analysis of non–proportional slacks indicated

that reduction in store size can yield substantial improvements in technical (and

likely also in cost efficiency) for some of the larger stores. Robustness of the DEA

results is supported by results from parametric frontier methods (COLS and SFA).

In their performance evaluation of the retail units, managers can put too much

emphasis on measuring output levels alone. However, there may be well managed

stores whose performance can be negatively affected by exogenous factors, or a

poorly managed store helped by favorable environmental factors. Low levels of

outputs, therefore, are not sufficient to judge on retail unit efficiency; to make deci-

sions about units we hence assessed the efficiency level and outputs levels together

as two key performance measures.

To assess these performance measures together, we placed the retail units in an

outputs–efficiency space as displayed in Figure 11 and Figure 12. In both figures

the space is divided into four quadrants at mean values. Retail units located in the

“Stars” quadrant are those with the highest efficiency scores and which are proba-

bly operating in a favorable economic environment. Opposite to this is the “Cows”

quadrant, which contains low efficiency units probably located in an unfavorable

environment (area with low sales potential). The “Dogs” quadrant contains effi-

ciently operated retail units with lower levels of outputs, likely due to being located

in a low sales potential area. The “Sleepers” quadrant contains retail units that

show high levels of outputs, but this has more to do with favorable environmental

conditions than with good management. Units located in the “Sleepers” quadrant

are candidates for efficiency improvements that may lead to even greater profits.
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Managers should attempt to increase the efficiency of stores in these locations.

From a comparison of the extent of scale inefficiency and pure technical inef-

ficiency, we conclude that managers should implement the operational practices

of the technically efficient units rather than exploit economies of scale to improve

retail network performance. This conclusion is supported by the results of RTS

identification, which indicates that the majority of retail units is operating in the

DRS region.

We argue that the DEA and parametric production frontier study permits a

more thorough and complex understanding of the assessment of retail store perfor-

mance than does simple ratio analysis. Finally, the use of a “best practice” approach

to predicting the operations of retail stores allows managers to set realistic and in-

dividual goals based on a store–specific profile.
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A Figures and Tables

Variables Obs. Mean STD. Dev. Min Max
Inputs
Size (m2) 42 38.95 28.43 5 122
Employees 42 17.73 4.10 3 27
Outputs
SIM cards sold 42 2507.16 1428.56 793 6869
Sold SIM cards revenue 42 31.8033 19.6507 8.5255 92.6930

Table 1: Input–output summary
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Figure 2: Production frontier and returns to scale types

Rank SIMs per m2 SIMs per empl. Revenue per m2 Revenue per empl.
Top 4 DMU39 DMU33 DMU39 DMU33

DMU4 DMU31 DMU4 DMU4
DMU6 DMU4 DMU6 DMU31
DMU12 DMU24 DMU12 DMU30

Middle 4 DMU31 DMU13 DMU13 DMU14
DMU22 DMU29 DMU5 DMU17
DMU25 DMU22 DMU25 DMU13
DMU9 DMU17 DMU22 DMU12

Bottom 4 DMU2 DMU1 DMU27 DMU1
DMU32 DMU37 DMU29 DMU37
DMU8 DMU35 DMU8 DMU2
DMU15 DMU2 DMU15 DMU35

Rank correlation 0.28 0.47

Table 2: Ratio scores ranking
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Model Obs. Mean Std.Dev. Min Max
SIMs χ–CCR 42 .4474 .2235 .1510 1

θ–CCR 42 .5341 .2196 .1606 1
χ–BCC 42 .5394 .2312 .1962 1
θ–BCC 42 .5736 .2380 .2174 1
Scale efficiency 42 .9433 .1175 .4372 1

Revenue
χ–CCR 42 .3855 .2410 .1039 1
θ–CCR 42 .4555 .2358 .1560 1
χ–BCC 42 .4161 .2976 .0966 1
θ–BCC 42 .5253 .2675 .2049 1
Scale efficiency 42 .8830 .1261 .2600 1

SIMs&Revenue
χ–CCR 42 .3856 .2410 .1040 1
θ–CCR 42 .5377 .2193 .1606 1
χ–BCC 42 .4799 .2728 .1550 1
θ–BCC 42 .5841 .2414 .2174 1
Scale efficiency 42 .9333 .1152 .4372 1

Table 3: Efficiency scores (χ) and θ summary statistics

Model SIMs Revenue SIMs&Revenue
CCR BCC CCR BCC CCR BCC

SIMs CCR 1.0000
BCC 0.8802 1.0000

Revenue CCR 0.9115 0.8436 1.0000
BCC 0.8815 0.7979 0.9092 1.0000

SIMs&Revenue CCR 0.9109 0.8439 0.9994 0.9089 1.0000
BCC 0.8457 0.9436 0.8350 0.8246 0.8353 1.0000

Note: All coefficients are significantly different from 0 at 1% level.

Table 4: Spearman rank correlation
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Relative slacks Obs. Mean Std. Dev. Min Max
Employees – BCC 42 0.0009 0.0060 0 0.0395
Employees – CCR 42 0.0017 0.0112 0 0.0727
Size – BCC 42 0.0626 0.1281 0 0.5280
Size – CCR 42 0.1114 0.1547 0 0.5663

Table 6: Relative non–proportional slacks summary

RTS type
Model IRS Scale efficient DRS
SIMs 8 3 31
Revenue 10 3 29
SIMs&Revenue 8 3 31

Table 7: Returns to scale summary

COLS–SIMs

Source | SS df MS Number of obs = 42
-------------+------------------------------ F( 2, 39) = 14.43

Model | 4.55676971 2 2.27838485 Prob > F = 0.0000
Residual | 6.1590294 39 .157923831 R-squared = 0.4252

-------------+------------------------------ Adj R-squared = 0.3958
Total | 10.7157991 41 .261360954 Root MSE = .3974

------------------------------------------------------------------------------
lsimsacq | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lfte | .664571 .2136263 3.11 0.003 .232471 1.096671
lm2 | .1633477 .0889871 1.84 0.074 -.0166456 .3433411

_cons | 5.263163 .5035711 10.45 0.000 4.244594 6.281732
------------------------------------------------------------------------------

COLS–revenue

Source | SS df MS Number of obs = 42
-------------+------------------------------ F( 2, 39) = 7.13

Model | 3.36684954 2 1.68342477 Prob > F = 0.0023
Residual | 9.211201 39 .236184641 R-squared = 0.2677

-------------+------------------------------ Adj R-squared = 0.2301
Total | 12.5780505 41 .30678172 Root MSE = .48599

------------------------------------------------------------------------------
lrevenue | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lfte | .4894449 .2612503 1.87 0.069 -.0389837 1.017873
lm2 | .1776836 .108825 1.63 0.111 -.0424358 .397803

_cons | 11.62867 .6158328 18.88 0.000 10.38303 12.87431
------------------------------------------------------------------------------

Table 8: COLS – results for full sample
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SFA–SIMs

Stoc. frontier normal/half-normal model Number of obs = 42
Wald chi2(2) = 31.07

Log likelihood = -19.280665 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

lsimsacq | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

lfte | .664576 .2058572 3.23 0.001 .2611033 1.068049
lm2 | .1633458 .0857516 1.90 0.057 -.0047243 .3314159

_cons | 5.279347 1.060924 4.98 0.000 3.199975 7.358719
-------------+----------------------------------------------------------------

sigma_v | .382747 .0476542 .2998695 .48853
sigma_u | .0203664 1.184192 6.55e-52 6.33e+47
sigma2 | .14691 .0443624 .0599613 .2338587
lambda | .053211 1.207792 -2.314017 2.420439

------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000

SFA–revenue

Stoc. frontier normal/half-normal model Number of obs = 42
Wald chi2(2) = 15.35

Log likelihood = -27.733185 Prob > chi2 = 0.0005
------------------------------------------------------------------------------

lrevenue | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

lfte | .4894459 .251747 1.94 0.052 -.0039691 .982861
lm2 | .1776832 .1048665 1.69 0.090 -.0278513 .3832177

_cons | 11.63776 .9571444 12.16 0.000 9.761789 13.51373
-------------+----------------------------------------------------------------

sigma_v | .4682589 .0517822 .377013 .5815884
sigma_u | .0114784 .9416534 1.70e-72 7.76e+67
sigma2 | .2193982 .049804 .1217841 .3170123
lambda | .0245129 .95139 -1.840177 1.889203

------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000

Table 9: SFA – results for full sample

Model Obs Mean Std. Dev. Min Max
COLS–SIMs 42 0.4479 0.1807 0.1500 1.0000
COLS–Revenue 42 0.3960 0.1976 0.1474 1.0000
SFA–SIMs 42 0.9839 0.0003 0.9828 0.9848
SFA–Revenue 42 0.9909 0.0001 0.9907 .9911

Table 10: Parametric methods: Technical efficiency summary
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Ranking COLS–SIMs COLS–Rev. DEA–Rev. VRS DEA–SIMs VRS
COLS–SIMs 1.0000
COLS–Revenue 0.9316 1.0000
DEA–Revenue VRS 0.6018 0.6562 1.0000
DEA–SIMs VRS 0.8550 0.8128 0.8071 1.0000
Note: All coefficients are significantly different from 0 at 1%.

Table 11: Spearman rank correlation coefficients COLS–DEA (42 obs.)

Model Sum of elasticities F( 1, 39) Prob > F
COLS–SIMs 0.8279 0.9300 0.3416
COLS–Revenue 0.6671 2.3200 0.1359
Model Sum of elasticities chi2(1) Prob > chi2
SFA–SIMs 0.8279 1.0000 0.3178
SFA–Revenue 0.6671 2.5000 0.1140
Note: Reduced sample

Table 12: Wald test for hypothesis H0: CRS production function

0
.5

1
1.5

2
2.5

De
ns

ity

.2 .4 .6 .8 1
Technical efficiency

DEA    − SIMs

DEA    − SIMs&Rev.

COLS − SIMs

0
.5

1
1.5

2
2.5

De
ns

ity

.2 .4 .6 .8 1
Technical efficiency

DEA    − Rev.

DEA    − SIMs&Rev.

COLS − Rev.

Density estimates
Technical efficiency scores

Figure 3: Comparison of density estimates (42 obs.)
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COLS–SIMs

Source | SS df MS Number of obs = 38
-------------+------------------------------ F( 2, 35) = 11.33

Model | 2.32361108 2 1.16180554 Prob > F = 0.0002
Residual | 3.59035357 35 .102581531 R-squared = 0.3929

-------------+------------------------------ Adj R-squared = 0.3582
Total | 5.91396465 37 .159836882 Root MSE = .32028

------------------------------------------------------------------------------
lsimsacq | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lfte | .4473402 .17792 2.51 0.017 .0861433 .8085371
lm2 | .1535561 .0747587 2.05 0.048 .0017879 .3053244

_cons | 5.827332 .4230969 13.77 0.000 4.968399 6.686264
------------------------------------------------------------------------------

COLS–revenue

Source | SS df MS Number of obs = 38
-------------+------------------------------ F( 2, 35) = 4.61

Model | 1.49073594 2 .74536797 Prob > F = 0.0167
Residual | 5.66231177 35 .161780336 R-squared = 0.2084

-------------+------------------------------ Adj R-squared = 0.1632
Total | 7.15304771 37 .193325614 Root MSE = .40222

------------------------------------------------------------------------------
lrevenue | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lfte | .2320428 .223436 1.04 0.306 -.2215564 .6856419
lm2 | .1732971 .0938837 1.85 0.073 -.0172969 .363891

_cons | 12.2748 .5313346 23.10 0.000 11.19614 13.35347
------------------------------------------------------------------------------

Table 13: COLS – results (38 obs.)
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SFA–SIMs

Stoc. frontier normal/half-normal model Number of obs = 38
Wald chi2(2) = 46.78

Log likelihood = -6.9128045 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

lsimsacq | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

lfte | .5718647 .1427028 4.01 0.000 .2921724 .851557
lm2 | .0786142 .0637068 1.23 0.217 -.0462489 .2034772

_cons | 6.126882 .2915422 21.02 0.000 5.55547 6.698295
-------------+----------------------------------------------------------------

sigma_v | .094448 .059624 .0274055 .3254973
sigma_u | .4983721 .0871752 .3537216 .7021759
sigma2 | .2572952 .0806131 .0992963 .415294
lambda | 5.276685 .1319612 5.018046 5.535325

------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01) = 4.36 Prob>=chibar2 = 0.018

SFA–revenue

Stoc. frontier normal/half-normal model Number of obs = 38
Wald chi2(2) = 7.850e+08

Log likelihood = -13.671618 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

lrevenue | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

lfte | .3801373 .0000816 4658.74 0.000 .3799774 .3802972
lm2 | .0293778 6.84e-06 4294.70 0.000 .0293644 .0293912

_cons | 12.90372 .000208 . 0.000 12.90331 12.90413
-------------+----------------------------------------------------------------

sigma_v | 9.10e-09 2.37e-06 7.6e-231 1.1e+214
sigma_u | .6934945 .0795493 .5538645 .8683255
sigma2 | .4809346 .110334 .264684 .6971853
lambda | 7.62e+07 .0795493 7.62e+07 7.62e+07

------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01) = 8.15 Prob>=chibar2 = 0.002

Table 14: SFA – results (38 obs.)

Model Obs Mean Std. Dev. Min Max
DEA–SIMs 38 0.6800 0.2369 0.2174 1.0000
DEA–Revenue 38 0.5921 0.2825 0.2083 1.0000
DEA–SIMs&Rev. 38 0.6986 0.2485 0.2174 1.0000
COLS–SIMs 38 0.5777 0.1666 0.2189 1.0000
COLS–Revenue 38 0.5263 0.1985 0.2262 0.9999
SFA–SIMs 38 0.6979 0.1767 0.2727 0.9578
SFA–Revenue 38 0.6110 0.2293 0.2023 0.9999

Table 15: Parametric methods: Technical efficiency summary
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Model Sum of elasticities F( 1, 35) Prob > F
COLS–SIMs 0.6008 6.9500 0.0124
COLS–Revenue 0.4053 9.7800 0.0035
Model Sum of elasticities chi2(1) Prob > chi2
SFA–SIMs 0.6504 10.3100 0.0013
SFA–Revenue 0.4095 6.2e+07 0.0000

Table 16: Wald test for hypothesis H0: CRS production function (38 obs.)
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Figure 4: Comparison of density estimates (38 obs.)
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Figure 7: Size of store and efficiency score
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Figure 8: Number of employees and efficiency score
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Figure 9: SIM efficiency measure in per employee–per m2 space

Figure 10: Revenue efficiency measure in per employee–per m2 space
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Figure 11: SIMs acquired and efficiency score

Figure 12: Revenue and efficiency score
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