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Projection Methods

for Economies with Heterogeneous Agents∗

Radim Boháček and Michal Kejak†

Abstract

In this paper we develop a general methodology for solving models with heteroge-
neous agents by projection methods. Our approach is solely based on the functional
forms of agents’ optimal policy rules and on a functional condition on the endoge-
nous stationary distribution. Solving simultaneously the optimal policy rules and
the distribution, this paper provides a new methodology for computing equilibria
in which the distribution of wealth and income is a part of a social planner’s opti-
mization problem. We do not impose any additional restrictions or assumptions on
the equilibrium allocations. Compared to other computational methods, it does not
suffer from the curse of dimensionality and provides an efficient tool for computing
models of economies with a continuum of heterogeneous agents with several en-
dogenous and exogenous state variables. We illustrate the algorithm on a standard
model with uninsurable idiosyncratic risk from labor income. The approximate so-
lution is highly accurate, especially for the distribution function. This method can
be used to compute equilibria in economies with heterogeneous agents in which the
distribution of wealth and income is a part of a government’s optimization problem.

∗This version: June 2003
†Contact: CERGE-EI, Politickych veznu 7, 111 21 Prague 1, Czech Republic. Email:

radim.bohacek@cerge-ei.cz, michal.kejak@cerge-ei.cz.
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Abstrakt

V této práci navrhujeme obecnou metodologii pro řešeńı modelǔ s heterogenńımi
agenty projekčńı metodou. Náš př́ıstup je založen na optimálńıch rozhodovaćıch
pravidlech agentǔ vyjádřených výlučně ve formě funkcionálu a na fukcionálńı
podmı́nce pro endogenńı stacionárńı rozložeńı . T́ım, že řeš́ıme současně op-
timálńı rozhodovaćı pravidla a rozložeńı , navrhujeme zde novou metodologii, která
umožňuje výpočet rovnovážných řešeńı problémǔ, ve kterých je rozložeńı bohat-
stv́ı a př́ıjmu součást́ı optimalizačńıho problému sociálńıho plánovače. Přitom na
rovnovážnou alokaci nejsou kladena žádná dodatečná omezeńı ani předpoklady. Ve
srovnáńı s jinými výpočetńımi metodami je naše metoda odolněǰśı vǔči problému
dimenzionality (curse of dimensionality) a poskytuje tak účinný nástroj pro pro
výpočet modelǔ ekonomik s kontinuem heterogenńıch agentǔ s několika endogenńımi
a exogenńımi stavovými proměnnými. Algoritmus je ilustrován na standardńım
modelu s nepojistitelným idiosynkratickým rizikem v pracovńım př́ıjmu. Aproxi-
mované řešeńı zvláště pro funkci rozložeńı je vysoce přesné. Tato metoda mǔže
být také užita pro výpočet rovnovážných řešeńı v ekonomikách s heterogenńımi
agenty, ve kterých je rozložeńı bohatstv́ı a př́ıjmu součást́ı vládńıho optimalizačńıho
problému.

JEL Classification: C61, C68, D30, D58
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1 Introduction

Models with heterogeneous agents have become a standard part of modern macroeco-

nomic theory. Recent developments in computer technology have allowed economists

to formulate and numerically simulate economies in which agents differ in their levels

of accumulated assets, labor productivity, skills, education, age, or preferences. These

more realistic models are particularly important for analyzing the welfare implications of

government policies and their effects on wealth and income distribution.

In economies with endogenous distribution of heterogeneous agents, agents differ in

their endogenous individual state variable and in a realization of some uninsurable idiosyn-

cratic shock. The key feature that distinguishes these models from the representative-

agent economies is that the set of possible trades available for agents is restricted. As the

agents cannot write contracts contingent on their idiosyncratic shocks and, as in some

cases, cannot hold negative quantities of any asset, the standard aggregation results do

not hold. In general, the equilibrium prices and allocations depend on the distribution of

agents in the economy.

Computing equilibria in economies with heterogeneous agents have proven to be an

extremely difficult task. The problem is that distribution of agents across their individual

state becomes a state of the economy. In making decisions, agents have to forecast

future prices, and the law of motion of these prices depend on the law of motion of the

distribution of agents. Solving for a stationary recursive equilibrium requires finding a

fixed point in the space of functions from a set of measures into itself. The existing

computational methods are usually limited to discretization of the state space. These

methods suffer from the curse of dimensionality: simulating models with more than one

endogenous state variable is extremely burdensome and becomes quickly impossible as

the number of variables grows. Also, the usual quadratic-approximation methods cannot

be used because constraints are often binding.

Finally, solving for out-of-steady-state allocations with these methods is virtually im-

possible without knowing the law of motion for the whole economy, namely for the dis-

tribution of the individual state variables. The practice has been to reduce the dimen-

sionality of the problem by arbitrarily preventing the distribution of agents from affecting
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relative prices, transition between two steady states, and assuming bounded rationality

by using only partial information (usually moments of the distribution). Rios-Rull (1997)

provides a great survey of these methods and related computational issues.

In this paper, we offer a computational method that overcomes most of the problems

stated above and promises a way how to address the issues in the previous paragraph.

To do so we develop a general structure of equilibria in economies with a continuum of

heterogenous agents which can be expressed in the form of three classes of equilibrium

conditions: the first order conditions and the laws of motion; the stationarity condition on

the distribution function; and the aggregate conditions. These conditions form a system

of functional equations in the unknown policy and distribution functions which we solve

numerically using the projection methods. We look for a polynomial approximation of

the policy and distribution functions which solve these functional equations. The general

formulation of the equilibrium conditions enables us to develop a general algorithm for the

three most common projection methods (the collocation, Galerkin, and the least squares

methods) intended for models with a representative agent. The implemented algorithm

demonstrates a very good accuracy of the obtained approximate solutions, especially in

preserving the shape of the cumulative distribution function.

Our method provides an efficient tool for computing models of economies with a

continuum of heterogeneous agents with several endogenous and exogenous state variables.

As in the traditional use of the projection method, it exploits the functional form of agents’

policy rules and adds a functional condition for the distribution function that characterizes

the equilibrium allocations. It should be emphasized that our approach does not use any

additional restrictions or assumptions on the equilibrium allocations but is strictly derived

from the first order and envelope conditions and from the stationarity of the endogenous

distribution in the steady state.

We illustrate the projection method for heterogeneous agents on a standard model

of an economy with uninsurable idiosyncratic risk from labor income. In the economy,

agents are distinguished by their level of accumulated assets and labor income produc-

tivity shock. We simulate a stationary recursive competitive equilibrium in which the

endogenous distribution of agents over their individual states is stationary and the ag-

gregate levels and factor prices are constant. This model has been the foundation of
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important papers by Aiyagari (1994), Huggett (1993), Huggett (1997), Ventura (1999),

as well as the main model of the survey in Rios-Rull (1995). Many life-cycle studies, like

that of Huggett and Ventura (1999), are also based on this specification.

In our paper we draw extensively on the projection methods developed for compu-

tational economics with representative agent by Judd (1992)1. Various approximation

techniques and alternative approaches are described in Judd (1998). Judd, Kubler, and

Schmedders (2000) applied projection and perturbation methods to an asset pricing model

with incomplete markets and several types of agents. Their model does not, however, con-

sider a stationary equilibrium with endogenous distribution of resources in the economy.

Our methodology can be used in numerical simulation of richer and more realistic

economic environments needed for assessing the welfare and distributional implications

of government policies. For example, it can be extended to include asymmetric infor-

mation (as in Phelan and Townsend (1991) or Atkeson and Lucas (1995)), equilibrium

search (Alvarez and Veracierto (1999)), financial intermediation and occupational choice

(Bohacek (2002)), monetary policies (Lucas (1980)), unemployment (Hansen and Imro-

horoglu (1992)), or politico-economic equilibria (Krusell, Quadrini, and Rios-Rull (1997)).

The paper is organized as follows. Section 2 describes an economy with heterogeneous

agents and uninsurable idiosyncratic risk in labor income. Section 3 develops a general

structure of equilibria in such economies with heterogenous agents. Section 4 describes

a general algorithm for the projection methods. Section 5 demonstrates the algorithm

on the economy specified in section 2. Section 6 presents and compares the solutions

from three standard projection methods: the collocation, Galerkin, and the least squares

methods. Section 6 concludes.

1See also Kejak (2000) for an application of the projection method in endogenous growth theory using

a toolkit PROJEC in GAUSS.
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2 The Economy

The economy is populated by a continuum of infinitely lived agents on a unit interval.

Each agent has preferences over consumption given by a utility function

E

[ ∞∑
t=0

βtu(ct)

]
,

where β ∈ (0, 1) and u : R+ → R is bounded, strictly increasing and strictly concave, and

twice differentiable continuous function. We assume that the utility function satisfies the

Inada conditions.

In each period, each agent receives a stochastic labor productivity shock z ∈ Z = [z, z]

measured in efficiency units. The labor productivity shock is independent across agents

and follows a first-order Markov process with a transition function Q. We assume that

Q is monotone, satisfies the Feller property and Q(z, ·) > 0 for all z ∈ Z. Thus there is

uncertainty at the individual level but there is no uncertainty over the aggregate labor

supply.

All agents are initially endowed with a nonnegative stock of capital. In each period,

each agent supplies his realized labor endowment and accumulated capital stock k to

competitive firms operating a constant returns to scale production technologies. We

restrict the accumulated capital to be nonnegative, k ∈ B = [k,∞) where k = 0. Finally,

the capital stock depreciates at a rate δ ∈ (0, 1).

As usual, we consider a competitive equilibrium with a representative firm that uses the

aggregate capital stock K and the aggregate effective labor L in a production technology

F (K, L) = AKαL1−α. Profit maximization implies the following factor prices

r = FK(K,L) and w = FL(K, L). (1)

Thus in each period, an agent inelastically supplies his labor endowment at wage w, rents

capital stock at interest rate r, and maximizes his or her utility by choosing a level of

capital stock for the next period.

We will model the economy in a stationary recursive competitive equilibrium. Such

an equilibrium exhibits constant factor prices, constant levels of aggregate variables and a

stationary distribution of agents over their individual states. An agent’s individual state
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is a pair (k, z) ∈ B ×Z denoting his or her accumulated stock of capital and the realized

labor productivity shock, respectively. Taking the factor prices (w, r) as given, an agent

(k, z) solves the following dynamic programming problem

v(k, z) = max
c,k′

{
u(c) + β

∫
v(k′, z′) Q(z, dz′)

}
(2)

subject to a budget constraint

c + k′ ≤ wz + rk + (1− δ)k, (3)

and

c ≥ 0, k′ ≥ 0. (4)

A probability measure λ defined on subsets of the state space is a natural way of

describing the heterogeneity of the agents in their individual state (k, z). Let (B ×
Z,B(B×Z), λ) be a probability space, where B(B×Z) is the Borel σ-algebra on B×Z.

We interpret λ as a probability measure describing the fractions of agents with the same

individual state.

The policy function for next-period capital k′(k, z) and the Markov process for the

productivity shock generate a law of motion

λ′(B′, Z ′) =

∫ ∫

{(k,z)∈B×Z: k′(k,z)∈B′}
Q(z, Z ′) λ(k, z) dk dz (5)

for all B′ and Z ′. According to this law of motion, the fraction of agents that will begin

next period with capital stock in the set B′ and a productivity shock in the set Z ′ is given

by all those agents that transit from their current shock z ∈ Z to a shock in Z ′ and whose

optimal decision for capital accumulation belongs to B′.

Definition 1 A stationary recursive competitive equilibrium consists of constant factor

prices (r, w), a value function v(k, z), policy functions c(k, z) and k′(k, z), a probability

measure λ, and aggregate levels (K, L), such that

1. the factor prices (r, w) solve equation (1),

2. at prices (r, w), the policy functions c(k, z) and k′(k, z) solve the value function

v(k, z) for each (k, z) ∈ B × Z,
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3. the probability measure λ is time invariant,

4. the capital and labor markets clear,

K =

∫ ∫
k′(k, z) λ(k, z) dk dz, (6)

L =

∫ ∫
z λ(k, z) dk dz, (7)

5. and the aggregate feasibility constraint holds at equality,
∫ ∫

{c(k, z) + k′(k, z)}λ(k, z) dk dz = F (K, L) + (1− δ)K.

Note that the aggregate feasibility constraint is implied from the other market clearing

conditions by the Walras’ law. The proof of existence and uniqueness of the equilibrium is

now standard and the reader is referred to Stokey, Lucas, and Prescott (1989) for details.

3 Projection Methods for Models with Heterogenous

Agents

In this section we develop a general methodology for applying projections methods to

stationary equilibria in economies with a continuum of heterogenous agents. The whole

structure is based on the following three classes of equilibrium conditions:

1. The first order conditions and the laws of motion;

2. Stationarity condition on the distribution function; and

3. Aggregate conditions.

Let x ∈ Rn be a vector of endogenous state variables, s ∈ Rp be a vector of exogenous

shocks, q be a vector of policy functions q : Rn×Rp −→ Rm, and µ be a joint distribution

function of state variables µ : Rn×Rp −→ [0, 1]. Let X = Rn stands for a vector of values

of the endogenous economy-wide state variables. Because we consider no economy-wide

shocks, there are no exogenous economy-wide state variables and prices are only functions

of the endogenous economy-wide state variables. Now we can specify each class of the

equilibrium conditions in the following way:
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The first order conditions and the laws of motion This class of conditions con-

tains the first order conditions and the laws of motion for individual endogenous state

variables after the substitution of envelope conditions, individual budget constraints, and

equilibrium prices. These conditions form a system of m functional and n difference

equations

E {f (q(x, s), x, s,X, q(x′, s′), x′, s′)} = 0, (8)

d(q(x, s), x, s,X) = x′, (9)

where f is a m-vector function with fi : Rm × Rn × Rp × Rn × Rm × Rn × Rp −→ R for

i = 1, . . . , m. The laws of motion for the endogenous state variables are specified by a n-

dimensional vector function, d, where di : Rm×Rn×Rp×Rn −→ R for i = 1, . . . , n. The

expectational operator E , with implicitly defined transition functions for the exogenous

shocks, is conditional on an agent’s individual state, (x, s), and prices.

Stationarity condition on the distribution function The second class of conditions

forms one functional equation for the stationarity condition on the joint distribution

function of the state variables:

A{g (µ(x, s), µ(x′, s′)) |e (q(x, s), x, s,X, x′) = 0} = 0 (10)

where g : [0, 1]× [0, 1] −→ R, and A is an operator on the space of continuous functions

defined on measurable spaces of endogenous and exogenous state variables, Rn and Rp,

respectively. The function e is defined as e : Rm × Rn × Rp × Rn × Rn −→ Rn × Rp,

specifying additional conditions expressed in the implicit form related to the operator A.

To illustrate the stationarity condition, consider the model specified in the previous

section with only one endogenous and one exogenous individual state variables, k ∈ B,

z ∈ Z, respectively. Then according to equation (5), the stationarity condition (10) can

be expressed as

λ(B′, Z ′) =

∫ ∫

{(k,z)∈B×Z:k′=(1−δ+r(K))k+w(K)z−c(k,z);k′∈B′}
Q(z, Z ′) λ(k, z) dk dz.

The implicit condition e—only 1-dimensional here—defines a set of all pairs (k, z) ∈ B×Z,

i.e. the domain of integration, that implies next period states (k′, z′) ∈ B′ × Z ′.
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Aggregate conditions The last set of l > n + 1 conditions is composed of n aggre-

gate conditions on endogenous state variables, l − (n + 1) market clearing conditions on

additional endogenous variables h, and of one condition on the probability distribution,

respectively,

I {x′, µ(x, s)} = X, (11)

I {h, µ(x, s)} = H, (12)

I {1, µ(x, s)} = 1, (13)

where I stands for integration. The aggregate conditions (11)-(12) can be illustrated in

our model by using equations (6)-(7). The condition (13) captures the condition on the

probability density function. For our modelled economy,

K =

∫

Z

∫

B

k′(k, z) λ(k, z) dk dz,

L =

∫

Z

∫

B

z λ(k, z) dk dz,

1 =

∫

Z

∫

B

λ(k, z) dk dz.

4 Algorithm for Projection Methods

In this section we describe a general algorithm for the projection methods for models with

heterogenous agents. The algorithm is based on the following steps:

Step 1 Define operators N composed of functional equations expressing the first two

classes of equilibrium conditions (8)-(10),




N1(q)

N2(q)
...

Nm(q)

Nm+1(q, µ)




=




0

0
...

0

0




, (14)

where the unknown functions are m policy functions qi and the distribution function µ.

The third class, the aggregate conditions (11)-(12), are not functional equations and thus
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are not part of the operator equations. They will be included into the projection algorithm

as a set of special conditions later.

Step 2 The solution of the above functional equations, a m-dimensional policy function

q and a joint distribution function µ, are the zeros of the operators Ni. Standard approx-

imation methods transform this infinite-dimensional problem into a finite-dimensional

one. To do this we first choose a base of multidimensional approximation polynomials2,

{Φi}∞i=1, where Φi : Y ⊆ Rn × Rp −→ R, and approximate the unknown policy and

distribution functions by

q̂i(x, s; ai) ≡
N∑

j=1

ai
jΦj(x, s) for i = 1, . . . , m, (15)

µ̂(x, s; am+1) ≡
M∑

j=1

am+1
j Φj(x, s), (16)

where N and M are the number of polynomial terms3 used in the approximation of the

policy functions and the distribution function, respectively. Part of this step is also the

specification of the domain of approximation, Y .

Step 3 In general, our operators Ni, i = 1, . . . , m + 1, are integral operators and we

use standard quadrature techniques4 to approximate them by N̂i. As the aggregate con-

ditions (11)-(13) contain integrals we apply the quadrature techniques for them too. The

quadrature techniques employed in this paper will be briefly discussed in the next section.

2The multidimensional polynomial base, {Φi}∞i=1, is formed by the tensor products of univari-

ate polynomials, {φk}∞k=0, i.e. Φi(x, s) =
{∏n

j=1

∏p
l=1 φkj (xj)φkl

(sl)|kj , kl = 0, 1, 2, . . .
}

, where

(k1, . . . , kj , . . . , kn) and (k1, . . . , kl, . . . , ks) form vectors of the degrees of polynomial multidimensional

approximation in the endogenous and the exogenous state variables, respectively. Each element of the

vector represents the degree of approximation in a particular dimension.
3For higher dimensional problems it is more convenient to use a subset of tensor product, e.g. a

complete polynomial base.
4See Judd (1998) for a survey on the approximation techniques for integrals.
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Step 4 Using the approximation specifications of the policy and distribution functions

and of the integral operators, the residual functions can be defined as




R1(x, s; a)

R2(x, s; a)
...

Rm(x, s; a)

Rm+1(x, s; ã)




≡




N̂1(q̂(x, s; a))

N̂2(q̂(x, s; a))
...

N̂m(q̂(x, s; a))

N̂m+1(q̂(x, s; a), µ̂(x, s; am+1))




(17)

for all (x, s) ∈ Y and for vectors of approximation parameters ai ∈ RN , i = 1, . . . ,m, and

am+1 ∈ RM where a = (a1, a2, . . . , am)T and ã ≡ (aT , am+1)T .

We need to guess values for the economy-wide endogenous state, X, and non-state, H,

variables necessary for the calculation of factor prices. Thus the content of this step is,

given a parameter guess ã and the aggregate guesses X and H, to calculate approximations

of q̂i, i = 1, . . . , m, µ̂ and the residual functions Ri, using formulas (15)-(16) and (17),

respectively.

Step 5 Ideally, the residual functions should be uniformly equal to zero. In practical

situations, however, this is not achievable and we limit the problem to a finite number of

conditions, the so called projections, whose satisfaction will guarantee a reasonably good

approximation. The aim of this step is—for the parameter guess ã and the guesses for X

and H—to calculate the projections of the residual function.

There are many possibilities how to define the projections5, however, for the purpose

of this paper we limit our attention to three basic projection methods: the collocation

method, the Galerkin method, and the least squares projection method.

Collocation Method The idea behind the collocation method is to assign the value

of the residual function to zero only at a set of prespecified points. We follow the well

known results of the approximation theory and use a set of zeros associated with the

chosen polynomial base. Let {y0
k ≡ (x0

k, s
0
k)}P

k=1 be composed of the “zeros” of the P th

member of the multidimensional polynomial6 base and let P stand for the number of

5For an excellent survey and description of these methods see Chapter 11 in Judd (1998).
6The multidimensional “zeros” are composed of the zeros of univariate polynomials φi.
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polynomial terms used in the approximation of a function. If the basis elements are

orthogonal with respect to the inner product the collocation method is called orthogonal.

Since the chosen degree of approximation of the policy functions was N , we use N

zeros of the Nth base polynomial to generate N projections. Similarly, we produce M

projections for the distribution function. Thus, the original functional equations problem

is transformed into a m×N + M nonlinear algebraic equations in m×N + M unknown

approximation parameters




R1(x
0
N , s0

N ; a)

R2(x
0
N , s0

N ; a)
...

Rm(x0
N , s0

N ; a)

Rm+1(x
0
M , s0

M ; ã)




≡




0

0
...

0

0




, (18)

where

Ri(x
0
N , s0

N ; a) ≡ (
Ri(x

0
1, s

0
1; a), Ri(x

0
2, s

0
2; a), . . . , Ri(x

0
N , s0

N ; a)
)T

for i = 1, . . . , m, and

Rm+1(x
0
M , s0

M ; ã) ≡ (
Rm+1(x

0
1, s

0
1; ã), Rm+1(x

0
2, s

0
2; ã), . . . , Rm+1(x

0
M , s0

M ; ã)
)T

,

together with x0
P ≡ (x0

1, x
0
2, . . . , x

0
P )T and s0

P ≡ (s0
1, s

0
2, . . . , s

0
P )T .

Galerkin Method The Galerkin method constructs the projections using the inner

product of the residual functions (17) and particular elements of the polynomial base

{Φi}∞i=1. If the inner product of functions f and g on the functional space is defined by

〈f, g〉 ≡ ∫
f(y)g(y)w(y)dy, with a weighting function w, then we obtain the following

system of nonlinear algebraic equations,




P1(a)

P2(a)
...

Pm(a)

Pm+1(ã)




≡




0

0
...

0

0




, (19)
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where

Pi(a) ≡ (〈Ri(x, s; a), Φ1(x, s)〉, 〈Ri(x, s; a), Φ2(x, s)〉, . . . , 〈Ri(x, s; a), ΦN(x, s)〉)T

for i = 1, . . . , m, and

Pm+1(ã) ≡ (〈Rm+1(x, s; ã), Φ1(x, s)〉, . . . , 〈Rm+1(x, s; ã), ΦM(x, s)〉)T .

The computation of the inner product includes integration for which we use the usual

quadrature techniques. Again, the outcome of m × N + M projections are m × N + M

nonlinear algebraic equations in m×N + M unknown approximation parameters.

Least Squares Projection Method The least squares projection method is slightly

different from the above two projection approaches as it looks for parameters ã that

minimize the sum of weighted squared residuals,

min
ã∈Rm×N+M

m∑
i=1

〈Ri(x, s; a), Ri(x, s; a)〉+ 〈Rm+1(x, s; ã), Rm+1(x, s; ã)〉. (20)

Up to now we omitted in our discussion a set of the aggregation conditions in (11)-

(13). It is clear that these are the additional conditions which must be satisfied in the

stationary recursive equilibrium. However, this addition leads to an overidentified system

with m × N + M + l nonlinear equations in m × N + M unknown parameters. Though

the overidentified system can be handled by the least square method, it causes a problem

for the collocation and the Galerkin methods. In principle, there are two ways how to

proceed: We either overwrite a subset of the l projection conditions from (18) or (19) by

the additional conditions and solve a regular nonlinear equation problem. Or we solve the

original problem as an overidentified system using the nonlinear least squares method.

Step 6 In this step we calculate the new values of the economy-wide endogenous state

and non-state variables according to the aggregation conditions (11)-(12).
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Step 7 We iterate on steps 4-6 and look for a parameter value ã and levels X and H

which set all the projections equal to zero. We update the guess for the economy-wide

endogenous states and non-states by a simple linear combination of the previous guess

and the aggregate values calculated in step 6.

As the collocation and Galerkin methods represent standard nonlinear equation prob-

lems we can use any of the existing methods to solve the problem of finding the appropriate

parameter values ã. One of the most common method is the Newton method7. Since the

least squares projection method sets up an optimization problem we can use standard

methods of numerical optimization, e.g. the Gauss-Newton or the Levenberg-Marquardt

methods. Again, the discussion of these methods is not the aim of our paper.

5 Approximate Solution by Projection Methods

In this section we illustrate the projection methods by applying the general algorithm

developed in the previous section to our model with a continuum of infinitely-lived het-

erogenous agents. For the sake of simplicity we will consider here a version of the model

with discrete shocks. Of course, the same approach can be used in a more general case

with continuous shocks.

The idiosyncratic productivity shock z takes on values in a finite set of real numbers,

z ∈ Z = {z1, z2, . . . , zJ} and J > 1. Let Q(z, z′) = Prob(zt+1 = z′|zt = z) be a first-order

Markov chain. Then the recursive problem of each agent in (2)-(4) can be written as

v(k, z) = max
k′

{
u((1 + r − δ)k + wz − k′) + β

∑

z′∈Z

v(k′, z′) Q(z, z′)

}
. (21)

The first order and the envelope conditions are

u1(c) = β
∑

z′∈Z

v1(k
′, z′) Q(z, z′), (22)

and

v1(k, z) = u1(c)(1 + r − δ), (23)

7See the Chapter 5 in Judd (1992).
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respectively. We now adapt the three classes of equilibrium conditions to the discrete

version of the economy.

The first order conditions and the law of motion From the first order and the

envelope conditions we derive the Euler equation. The law of motion is given by (3).

Thus the first class of conditions (8) is composed of m = 1 functional equation for the

consumption policy function

β
∑

z′∈Z

u1(c(k
′, z′))(1 + r(K)− δ) Q(z, z′)− u1(c(k, z)) = 0, (24)

and n = 1 equation for the law of motion of the individual stock of physical capital,

(1 + r(K)− δ)k + w(K)z − c(k, z) = k′. (25)

Because agents inelastically supply their labor productivity shock z, the aggregate labor

supply is a fixed number, L. Thus, the equilibrium factor prices, r(K) and w(K), are

functions of the economy-wide endogenous state K only.

Due to the discrete character of shocks it is advantageous to assign to each level of

shock a particular policy function and a distribution function. We consider these one

dimensional functions of the individual state variable k rather than working with two-

dimensional functions in k and z as in the original problem.8

For this specification, define a family of policy and distribution functions,

{ci(k), λi(k)}J
i=1, for each shock value z1, z2, . . . , zJ . We interpret the policy function ci

as the consumption function of an agent who was hit by the shock level zi. Analogously,

the distribution function λi is the distribution of agents with the shock zi. Equations

(24)-(25) can be rewritten as the following 2× J conditions

β

J∑
j=1

u1(cj(k
′(k, zi)))(1 + r(K)− δ) Q(zi, zj)− u1(ci(k)) = 0, (26)

(1 + r(K)− δ)k + w(K)zi − ci(k) = k′(k, zi) (27)

8Although the introduction of discrete shocks is used in the discretization methods in order to avoid

the “curse of dimensionality”, here we introduce the discrete shock model for the sake of simplicity of

our explanation. The projection method approach, as we discussed above, can handle higher dimensional

problems much more effectively than the traditional methods.
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for i = 1, . . . , J . After the substitution of the individual budget constraint (27) into

the individual Euler equation (26), both associated with the same level of the id-

iosyncratic shock zi, we obtain a functional equation for consumption policy functions

Ni(c1(k), . . . , cJ(k)). Doing it for all shock values gives us a set of J functional equations

Ni(c(k)) ≡ Ni(c1(k), . . . , cJ(k)), where i = 1, . . . , J .

Stationarity condition on the distribution function Having defined a family of

distribution functions associated with each individual shock level, the single stationarity

condition (10) is transformed to a set of J stationarity conditions

λj(k
′) =

J∑
i=1

∫

{k∈B:k′=(1+r(K)−δ)k+w(K)zi−ci(k)}
Q(zi, zj) λi(k) dk (28)

where j = 1, . . . , J . Since there is a unique pair9 of current period states (k, zi) for each

pair of next period states (k′, zj) at given prices, the set of integration collapses into a

point, k = k(k′) ∈ B, and the integration disappears. A set of J stationarity conditions

is now

λj(k
′) =

J∑
i=1

k(k′)Q(zi, zj) λi(k(k′)) (29)

and forms the second set of J functional equations

Nj+J(c, λ) ≡ Nj+J(c1(k), . . . , cJ(k), λ1(k), . . . , λJ(k)),

where j = 1, . . . , J .

Aggregate conditions Aggregate conditions (11)-(13) of the model with discrete

shocks are given by

K =
J∑

i=1

∫

B

k′(k, zi) λi(k) dk, (30)

9In this model there is only one solution k of the implicit equation (1+r(K)−δ)k+w(K)zi−ci(k)−k′ =

0 for all k′,K, zi, zj and policy function ci. To be aware that the solution depends on the policy function

ci one might prefer to write k = k(k′,K, zi, zj ; ci) ≡ k(k′).
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L =
J∑

i=1

∫

B

zi λi(k) dk, (31)

1 =
J∑

i=1

∫

B

λi(k) dk, (32)

where the next period capital as a function of the current state, k′(k, zi), is expressed

in (27). Since there is no labor choice the aggregation condition (31) can be computed

from the stationary distribution of shocks limt→∞ Qt and included directly into the model

parameters instead of the equilibrium projection conditions.

Having specified the system of functional equations given by N , the next step is to

choose the polynomial base, the degrees of approximation, and the interval of approxi-

mation. We follow the best practice in the approximation theory and choose the orthog-

onal Chebyshev polynomial base10 {Ti(x)}∞i=0 defined for x ∈ [−1, 1]. Let the interval

of approximation be [k, k̄] and the degree of approximation for the consumption policy

functions, c, and the distribution function, λ, be M ≥ 2 and N ≥ 2, respectively. The

linear transformation11 ξ : [k, k̄] → [−1, 1] is necessary if we want to use the Chebyshev

polynomials on the proper domain. Then, we obtain

ĉi(k; ai) ≡
N∑

j=1

ai
jφj(k) for i = 1, . . . , J, (33)

λ̂j(k; aj) ≡
M∑

l=1

aj
l φl(k), for j = J + 1, . . . , 2J, (34)

where φi(k) ≡ Ti−1(ξ(k)).

Using the equations (26)-(27) and (29), the residual functions become

Ri(k; a) = β

J∑
j=1

u1(ĉj((1 + r(K)− δ)k + w(K)zi − ĉi(k)))(1 + r(K)− δ) Q(zi, zj)

− u1(ĉi(k)) = 0, for i = 1, . . . , J (35)

Rj+J(k′; ã) = λ̂j(k
′)−

J∑
i=1

k(k′)Q(zi, zj) λ̂i(k(k′)) (36)

10The details on Chebyshev polynomials can be found in Judd (1992), Judd (1998) or in any book on

numerical mathematics.
11It is straightforward to show that ξ(k) = 2(k − k)/(k̄ − k)− 1.
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for j = 1, . . . , J . To make the expressions above shorter we used the abbreviated notation

ĉi(k) ≡ ĉi(k; ai) and λ̂j(k) ≡ λ̂j(k; aj).

The next step is to generate projections which give us the necessary number of alge-

braic equations in the unknown parameters.

Orthogonal Collocation Method According to step 5 in section 4 (see equation

(18)), the collocation method assigns the residual functions Ri, i = 1, . . . , J , and Rj+J ,

j = 1, . . . , J , from (35) and (36) to be equal zero

Ri(k; a) = 0, (37)

Rj+J(k; ã) = 0, (38)

at k’s that are the N zeros of φN+1 for Ri and the M zeros of φM+1 for Rj+J , respectively.

Galerkin method The Galerkin method produces projections of the above residual

functions by the use of the inner product

〈Ri(k; a), φu(k)〉 ≡
∫ k̄

k

Ri(k; a)φu(k)w(k)dk (39)

〈Rj+J(k; ã), φv(k)〉 ≡
∫ k̄

k

Rj+J(k; ã)φv(k)w(k)dk (40)

where the weighting function is given by w(k) ≡
(

1−
(
2k−k

k̄−k

)2
)−1/2

and i = 1, . . . , J ,

j = 1, . . . , J , u = 1, . . . , M and v = 1, . . . , N . We use the Gauss-Chebyshev quadrature

for numerical computation of the integration. It gives a simple formula for the Galerkin

projections

∑

k

Ri(k; a)φu(k) = 0, (41)

∑

k

Rj+J(k; ã)φv(k) = 0, (42)

with k’s being the zeros of the polynomial φ of a degree greater than M + 1 for Ri and

greater than N + 1 for Rj+J , respectively.
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Least Squares Projection Method According to (20), the least squares projection

method looks for parameters ã that minimize the sum of weighted residuals,

J∑
i=1

∫ k̄

k

R2
i (k; a)w(k)dk +

J∑
j=1

∫ k̄

k

R2
j+J(k; ã)w(k)dk, (43)

where we used the definition of the inner product as in (39)-(40). After approximating

the integrals by the Gauss-Chebyshev quadrature, we obtain a minimization problem

min
ã∈RJ×N+J×M

J∑
i=1

∑

k

R2
i (k; a) +

J∑
j=1

∑

k

R2
j+J(k; ã) (44)

with k’s being the zeros of the polynomial φ of a degree greater than M +1 for Ri greater

than N + 1 for Rj+J , respectively.

Both the collocation and the Galerkin projections provide us with a system of

J × (N + M) nonlinear algebraic equations in J × (N + M) unknown approximation

parameters. The next task is to include the aggregate conditions (30) and (32) into the

set of projection conditions. Before that the two aggregate conditions must be approxi-

mated by the Newton-Cotes quadrature formulas12

S1(ã) ≡ K − h

J∑
i=1

∑

k

[(1 + r(K)− δ)k + w(K)zi − ĉi(k)]λ̂i(k), (45)

S2(ã) ≡ 1− h

J∑
i=1

∑

k

λ̂i(k), (46)

where the step of integration is h, and k’s are the midpoints of the intervals. Following

the discussion at the end of section 4, in order to keep the number of conditions the same

as the number of parameters, we substitute them for two arbitrarily chosen projection

conditions.

In case of the least square projection method the number of conditions does not have

to be equal to the number of unknown parameters. Thus we add the squared conditions

(45)-(46) to the minimization problem (44)

min
ã∈RJ×N+J×M

J∑
i=1

∑

k

R2
i (k; a) +

J∑
j=1

∑

k

R2
j+J(k; ã) +

2∑

l=1

S2
l (ã). (47)

12See Chapter 7 on numerical integration in Judd (1998).
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6 Results

In this section we numerically solve the economy described in section 2 using the colloca-

tion, Galerkin, and least squares projection methods. We perform the standard accuracy

checks and compare these methods in terms of the approximated policy functions, aggre-

gate allocations and distribution of assets.

We parameterize the economy in the standard way used in the macroeconomic lit-

erature. We assume a utility function u(c) = log c and a Cobb-Douglas technology

F (K, L) = AKαL1−α with A = 1 and α = 0.34. We set the discount factor β = 0.9

and the depreciation rate δ = 0.1. The shock structure is limited to J = 2, i.e., two

shocks zL = 0 and zH = 1, with a transition matrix Q(zL, zL) = 0.6, Q(zL, zH) = 0.4 and

Q(zH , zL) = Q(zH , zH) = 0.5. This specification of the transition matrix implies that,

in the steady state, 44% of agents realize the high productivity shock and the remaining

56% have the low productivity shock. Finally, the choice of the approximation domain

k ∈ [0.001, 6.8] allows for an endogenous upper bound of the stationary distribution.

For each projection method, we choose a degree of approximation for the consump-

tion policy functions, nC , and a degree of approximation for the cumulative distribution

functions, nL. The latter degree of approximation is higher as the cumulative distribution

function exhibits a greater curvature. We report results for three different combinations

of (nC , nL) for each projection method in Table 1. As the initial guess of the aggregate

capital stock we always use K0 = 1.2 which turns out to be 15% below the equilibrium

level (the results are the same if we started above). We used the Newton algorithm for

solving systems of nonlinear equations and the Levenberg-Marquardt algorithm for op-

timizations. In general, the convergence of all projection methods was very good and it

took less than five hundred iterations to converge13.

Table 1 shows the largest errors associated with the Euler equations (35) and the

stationarity conditions on the distribution function (36) for each level of the productivity

13We have found that the equilibrium of the discretized economy does not exist in a purely mathematical

sense and thus the implied equilibrium conditions can be taken only as an approximation of the continuous

economy. Actually, the convergence performance of all three projections methods has been negatively

influenced by the properties of such equilibria. However, we still consider such computations worth of

the effort and document them as reasonably good approximations.
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shock. The Gallerkin and OLS methods performs better than the collocation method.

Except for the latter method, the errors generally decline as we increase the degree of

approximation. We consider the results from the Galerkin projection method with the

seventh- and twelfth-degree approximation for consumption and distribution functions,

respectively, as our best approximation. The errors are relatively small with respect to

the complexity of the problem: the approximation implies that agents make at most a

$3.90 mistake for every $1,000 they spend.

In Figure 1 we compare our reference Galerkin projection method to an “exact” so-

lution of the stationary competitive equilibrium computed over 800 equally spaced grid

points of the capital stock.14 In the top panel, we plot in solid lines the approximated

consumption policy functions, cH and cL, and in the bottom panel, we show the approxi-

mated cumulative distribution functions, λH and λL. Compared with the exact solutions

in dashed lines, the overall fit of the consumption policies is excellent.15 The fit of the

distribution functions is a little bit worse but what is important, the approximated distri-

bution functions are able to replicate the convex part at low levels of capital, the inflection

point as well as the concave part of the distribution functions at higher capital levels.

Since a majority of agents live below the inflection point, the fit at the low levels of

capital stock is what matters the most for the stationary recursive competitive equilibrium.

Indeed, the approximated aggregated capital stock matches very well the exact level (with

an error equal to 0.16%). The equilibrium prices are correspondingly close.

7 Conclusions

In this paper we have developed a general methodology how to use the projection methods

for computing stationary recursive equilibria with heterogeneous agents. We have focused

on a general description and a standard example that, we hope, illustrate the applicability

of this approach to a wide range of interesting economic problems for which the existing

methods cannot be used at the current (and future) state of computer technology.

14Adding more grid points does not change the policy functions nor the stationary distribution.
15Our results are very good especially at the lower levels of capital stock. For a comparison, see Judd

(1998), Chapter 11, or McGrattan (1999).
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We have not dealt with several issues that are potentially very important: aggregate

shocks and out-of-steady-state allocations. Adaptation of our projection method to the

case of continuous shocks seems to have rather serious implications for the macroeconomic

models with heterogeneous models in general. These topics are left for future research.

Finally, the functional approach developed in this paper can be used to study models

in which the distribution of agents is a part of a government’s optimization problem. In

other words, we believe that this method can be used to compute equilibria in economies

with heterogeneous agents in which the distribution of wealth and income is an endogenous

policy choice.
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Euler and Stationary Distribution Equation Errors

Degree of Projection Method

Approximation Function Collocation Galerkin OLS

cL 0.0080 0.0125 0.0070

nC = 5 cH 0.0252 0.0129 0.0072

nL = 7 λL 0.0028 0.0039 0.0025

λH 0.0033 0.0023 0.0025

cL 0.0127 0.0291 0.0088

nC = 5 cH 0.0402 0.0056 0.0065

nL = 10 λL 0.0158 0.0025 0.0019

λH 0.0212 0.0023 0.0019

cL 0.0039 0.0024 0.0024

nC = 7 cH 0.0072 0.0039 0.0053

nL = 12 λL 0.0084 0.0029 0.0023

λH 0.0207 0.0025 0.0024

Table 1: Euler and Stationary Distribution Equation Errors.
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Notes: Exact solution using grid points (dashed lines) and approximation by the
Galerkin Projection Method with nC = 7 and nL = 12 (solid lines).

Figure 1: Consumption Policy and Cumulative Distribution Functions.
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