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Abstract
An elimination tournament matches players pairwise and promotes the winners to a subsequent
round where the procedure is repeated. In the presence of idiosyncratic noise the tournament
turns into a probabilistic mechanism that reveals the ranking of players imperfectly. I assess
theoretically the power of such a mechanism to determine the ex ante best player as the win-
ner, as a function of the number of players, their distribution of type, and the noise level. I
consider also various seeding strategies and show that for large and small noise (as compared
to the variance of ability distribution among players), seeding and other control parameters of
tournament design tend to play no role, whereas for intermediate noise level the predictive power
depends strongly on the control parameters and therefore can be systematically manipulated by
the principal.

Keywords: elimination tournaments, noise, seeding, ability distributions, design eco-
nomics
JEL Classification: C73, C90, D21 ==
==
==
==
Abstrakt
Ve vyřazovaćım turnaji se hráči utkávaj́ı ve dvojićıch a v́ıtěz postupuje do daľśıho kola, kde se
procedura znovu opakuje. Z př́ıtomnosti idiosynkratického šumu se z turnaje stává pravděpodob-
nostńı mechanismus, který nedokáže vždy zcela odhalit správné pořad́ı jednotlivých hráč̊u. V
závislosti na počtu hráč̊u, rozděleńı jejich typ̊u a intenzitě šumu hodnot́ım śılu jednotlivých
mechanismů ustanovit ex ante nejlepš́ıho hráče v́ıtězem. Uvažuji r̊uzné nasazovaćı strategie,
které se ukazuj́ı podstatnými při ovlivňováńı predikčńı śıly mechanismu. Rovněž ukažuji že pro
př́ılǐs vysoké i př́ılǐs ńızké úrovně šumu (ve srovnáńı s varianćı rozděleńı hráčských dovednost́ı)
nasazováńı i daľśı kontrolńı parametry designu turnaje hraj́ı pouze zanetbatelnou roli, zat́ımco
pro středńı urovně šumu předikčńı śıla velmi záviśı na kontrolńıch parametrech a tedy může být
systematicky ovlivňována organizátorem.

1E-mail: dmitry.ryvkin@cerge-ei.cz. Address: P.O. Box 882, Poĺıtických vězň̊u 7, 11121 Prague 1,
Czech Republic. The author thanks Andreas Ortmann and Dirk Engelmann for their helpful comments.
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1 Introduction

It is often unavoidable to rank agents. Prominent examples are governmental agencies that

seek to allocate money to the best research group, or managers who want to promote the

best worker, or employers who want to hire the best candidate. In such cases, principals

extensively use tournaments.

A tournament is a mechanism that belongs to a special class of principal-agent games,

or games of asymmetric information, which necessarily involve comparisons rather than

cardinal measurements of players’ performance. In a tournament, incentives are created by

prizes that are usually fixed in advance (for an exception, see Baye and Hoppe 2003), with

the allocation of prizes being based on the ex post ranking of players. The tournament,

therefore, reveals the ranking of its participants.

There are various reasons why tournaments are often preferred to other forms of

incentive provision (such as piece-rate compensation): filtering out common productivity

shocks, low monitoring costs, the ability to measure relative performance when absolute

performance is difficult to evaluate. For a review on tournaments in labor markets, see

Prendergast (1999) and Lazear (1999). For a discussion of rent-seeking and innovation

tournaments, see Taylor (1995), Fullerton and McAfee (1999), Baye and Hoppe (2003).

Tournaments are also the essence of sporting events (for a recent review see Szymanski

2003).

The problem of optimal tournament design, which belongs to the newly emerging

field of design economics (see e.g. Roth 2002), arises naturally in the various contexts

mentioned above. This problem usually includes the design of the following elements:

(i) the tournament format, i.e. the rules by which players are matched and the ranking

is determined; and (ii) the prizes, i.e. how many prizes should be awarded, and what

their values are. The solution, of course, depends on the organizer’s objectives and the

characteristics of the participating players.

In economic environments, the organizer’s objectives usually are the maximization of
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total output or maximization of total effort (Gradstein and Konrad 1999). In sporting

tournaments, especially in team sports, some other objectives are often present, such as

win maximization, or competitive balance maximization (see Szymanski 2003). Players

usually differ by their ability (or productivity), and hence their disutility of effort.

In most of the existing literature the issue of the selection of the optimal tournament

format is ignored. Authors mostly consider contests, i.e. tournaments where all players

perform only once. In contest tournament models, it is usually of interest what the

optimal prize structure is under various forms of heterogeneity of players. The analogue

of a contest in sports is, for example, a marathon race. Also, perfectly discriminating

contests are, in fact, equivalent to what is known as all-pay auctions.

Few authors analyze more complicated tournament formats. Moldovanu and Sela

(2002) consider parallel contests, in which players are divided into t > 1 equal groups, and

compete for a prize V/t within each group (V is the total value of the prize). It is shown

that for sufficient heterogeneity and/or sufficient convexity of players’ effort cost functions

such an architecture is preferred to the contest where the single prize V is awarded. This

result shows that at least in some circumstances more complicated tournament formats

are superior, and therefore it makes sense to study them more carefully.

Clearly, the contest format cannot model tournaments in hierarchical organizations,

where winners are promoted to higher levels and compete in many stages. These formats,

known as up-or-out rules, are common e.g. for lawyers (see O’Flaherty and Siow (1995),

or in the academy. Rosen (1986) used the elimination format to study such a tournament.

The elimination (also known as knock-out or Olympic) tournament format is organized

as follows. There are R rounds. In the first round N = 2R players are matched in pairs,

and the winner of each pair advances to the next round. In the second round the remaining

2R−1 players are matched in pairs again, and the winners again advance to the next round.

The procedure is repeated R times until only one player is left, who is the winner of the

whole tournament. In sports, the rounds have names: the R-th round (where only one
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match is played) is the final ; in the (R − 1)-th round, two matches called semifinals are

played; in the (R− 2)-th round four matches called quarterfinals are played, etc.

In the model by Rosen (1986) all players of the elimination tournament get prizes (the

winner gets W1; the loser of the final gets W2 < W1; the losers of the semifinals get W3 <

W2, etc.). It is shown that in order to maintain a high effort level throughout all stages of

the tournament the principal has to increase the wage differential Wi−Wi+1 towards the

top. The increasingly high wage differentials at the top of hierarchical organizations are

also reported empirically by Bognanno (2001); Ehrenberg and Bognanno (1990) report

high prizes at the top of multistage sporting tournaments.

Gradstein and Konrad (1999) construct a fairly general format of a multi-stage tour-

nament, in which arbitrary groupings of winners occur at every stage. The probability to

be the winner of a group is modelled by the logit-like function of players’ effort levels (see

Tullock 1980; Rosen 1986 uses a generalized form of it for two players in every match).

It is shown that in order to maximize the total effort level in the tournament (i) within

each stage, group sizes must be equal, and (ii) the group size must be the same across

rounds. The optimal number of rounds is a corner solution, i.e. it is either maximal or

minimal possible (the elimination format or the contest format, respectively), depending

on the discriminatory power of the logit contest success function.

These results show that the elimination tournament is an important benchmark for-

mat, which might be preferred to other formats in some situations. In addition to creat-

ing incentives, tournaments provide principals with information on the ranking of agents.

This information is mainly ignored in the literature, notwithstanding its usefulness. I ar-

gue that there are situations where accurate ranking information might be the organizer’s

only concern.

When a tournament is used to create incentives for higher effort, and the organizer’s

objective is the total output (or effort) maximization, it is actually unimportant who

specifically is rewarded by the first prize. There will be no loss for the organizer if the
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revealed best agent is not indeed the best but performed better than others at that

particular time due to randomness. In such cases, a contest is probably the most efficient

solution. However, in some circumstances, especially when a tournament is used for

promotion purposes, it is the organizer’s objective to reward truly the best player, because

the long-term productivity of the firm is at stake. A natural objective for the organizer

then becomes the predictive power optimization.

The notion of predictive power can be easily understood if one thinks about a tourna-

ment as an estimator of the true ranking of players. Indeed, because of the heterogeneity

of abilities there exists an underlying (and unknown) true ordering of players by their

ability level, and it is this true ordering that the organizer wants to know, e.g. in order

to promote the best player. Due to many environmental factors that are impossible to

measure and take into account, the performance of players at each particular moment

fluctuates around their true effort levels (or ability levels, given the correspondence be-

tween the two). The ranking revealed by the tournament is, therefore, in general different

from the true ordering; it estimates the true ordering, with some bias and variance. If

the tournament is fair (in the sense O’Keeffe, Viscusi, and Zeckhauser 1984 use this term,

that is, the principal treats all agents equally), the estimator is clearly unbiased. The

variance is hard to define, because it is not clear what is the distance between two differ-

ent rankings, but for the purposes of this paper it is not necessary. I will concentrate on

the simplest case assuming that the principal only cares about estimating the best player

correctly, and her objective is therefore to maximize the probability for the best player to

win the tournament.

The probability for a particular player to advance in the elimination tournament

was calculated by Knuth (1987). Assumptions made in that paper are, however, very

restrictive. First, it is assumed that in any match where ranks differ by more than one,

the stronger player wins unambiguously. Second, the players are re-shuffled randomly

before every round, which means that the impact of seeding is ignored.
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The importance of seeding was noted by Rosen (1986), who, however, considered

only the averaged random seeding case. As I show, it is possible to analyze the problem

of seeding in a consistent manner. In fact, for three prominent distributions of players’

abilities, and N = 4, 8 players, I find numerically the optimal seeding, which maximizes

the probability of the best player winning.

Horen and Reizman (1985) showed that in general the predictive power maximizing

seeding only exists for N = 4 players. For N = 8 and larger (i.e. for tournaments of 3 or

more rounds) the optimal seeding depends on the configuration of players’ heterogeneity.

The present paper contributes to the literature on tournaments by (i) considering the

elimination tournament of heterogeneous players with arbitrary pairwise winning proba-

bilities; (ii) considering the new organizer’s objective, the predictive power, which I argue

to be important in applications; (iii) using a new approach to modelling the heterogeneity

of players, the ability distribution and noise generating the winning probabilities; (iv)

analyzing the influence of seeding on the tournament result as measured by the predictive

power.

The paper is organized as follows. In Section 2 the winning probabilities are discussed,

and a model is presented to parameterize them in terms of ability distribution and noise.

In Section 3 the elimination tournament model is set up, and the key questions to be

addressed are more precisely formulated. In Section 4 the recurrence relation for the

predictive power is obtained, which is the first major result of the paper. In Section 5, the

problem of optimal seeding is discussed. In Section 6, the results for the predictive power

for three prominent distributions of players’ abilities are presented and discussed, which

constitutes the second major result. In Section 7, the results for the same distributions

are presented for seeded players. Section 8 concludes.
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2 Distribution of abilities, noise, and winning prob-

abilities

In an elimination tournament, players are matched pairwise. Depending on seeding

and the way the tournament unfolds, there is a possibility that any two players i, j ∈
{1, . . . , N} are matched. The fundamental quantities that characterize the probabilities

of the advancement of players in the tournament are, therefore, the winning probabilities

wij defined as

wij = Pr{player i beats player j}. (1)

No ties are possible,2 so wij = 1−wji, and only N(N − 1)/2 of the winning probabilities

are independent.

The winning probabilities can be given exogenously, for example, through past statis-

tics, or they can be obtained through a Bayesian updating procedure. In either case, they

are statistically well-defined quantities. Parameterization of a tournament in terms of

winning probabilities is, however, too complex. Instead, it would be desirable to specify a

small number of intuitively interpretable parameters and derive the winning probabilities

from some underlying statistical model.

One way to model the winning probabilities is to specify a functional form (as done

by e.g. Rosen 1986 and many other authors) for wij as a function of effort levels and/or

abilities of players i and j. This approach is appealing for its simplicity, but there is no

obvious reason why a particular functional form (usually logit) should be chosen in the

present context. Another way to model wij is to assume, following e.g. Lazear and Rosen

(1981), that every player’s performance yi equals her effort level µi plus a random noise

term: yi = µi + εi. The optimal effort level for every player in such models is determined

through utility maximization, and it is assumed that players have heterogeneous costs of

2The elimination tournament format requires that be broken, as opposed to other formats, e.g. the
round-robin format.
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effort (or, equivalently, heterogeneous prize valuations). It is reasonable to assume that

heterogeneity in costs of effort in fact corresponds to the heterogeneity in abilities, and

under natural assumptions on the shapes of utility and cost functions the optimal effort

levels are determined uniquely by abilities. For example, in sporting events, issues of

asymmetric information are less important, and hence can be assumed away. Specifically,

it is likely that abilities and efforts are highly correlated (see, for example, the empirical

study by Ehrenberg and Bognanno 1990). Moldovanu and Sela (2002) set the performance

equal to effort, yi = µi, but assume the cost function of effort in the form C(µi) = ciγ(µi),

with some distribution of ci in the population, which, following the arguments above,

translates into a distribution of abilities. O’Keeffe et al. (1984) model the performance

as yi = Aiµi, where Ai is player’s ability, and directly assume a distribution of abilities

in the population. Given the correspondence between effort and ability, one of the two

characteristics is redundant. It is more appealing to use abilities because (i) they are the

underlying reason for different effort levels; (ii) it does not require any assumptions on the

shape of utility and cost functions; (iii) some natural and empirically testable assumptions

can be made about the distribution of abilities in the population. Reed (2001) proposed

a model that explains why the Pareto distribution might be observed in many seemingly

unrelated situations, with the ability distribution being one of them. Other “natural”

candidates and well-established benchmarks are the normal distribution, and the uniform

distribution.

Thus, I assume that there is a probability density function (pdf) f(x) of abilities x in

the population of players. Let F (x) denote the corresponding cumulative density function

(cdf). In order to set a scale of ability, suppose that f(·) is normalized so that Var[x] = 1.

N players with abilities x1, . . . , xN are drawn independently from the population. In

order to infer how a tournament estimates the ranking of players, it is convenient to order

players by their ability so that x1 > x2 > . . . > xN . It is further assumed that there

exists an idiosyncratic normally distributed noise εi with mean zero and variance σ2 that
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additively distorts the performance of players, so that in every match player i’s output

is yi = xi + εi. Then, given the abilities of players i and j, it is easy to calculate the

probability for player i to beat player j:

wij(xi, xj) = Φ

(
xi − xj

σ
√

2

)
. (2)

Here Φ(·) is the cdf of the standard normal distribution. Note that Eq. (2) is not an

arbitrary functional form for winning probabilities, but a consequence of an intuitively

appealing statistical model. The reason why exactly the normal density is most likely to be

the distribution of noise is, essentially, the central limit theorem. The probabilities (2) are

conditional on the given levels of ability xi and xj. In order to obtain the unconditional

winning probabilities, one needs to average over all possible realizations of x1, . . . , xN ,

taking into account the fact that the players are ordered by their ability:3

wij = N !
∫ ∞

−∞
dx1f(x1)

∫ x1

−∞
dx2f(x2) . . .

∫ xN−1

−∞
dxNf(xN)wij(xi, xj). (3)

It is shown in Ryvkin and Ortmann (2004) that Eq. (3) can be simplified to yield

wij = Kij

∫ 1

0
dz1

∫ z1

0
dz2(1− z1)

i−1(z1 − z2)
j−i−1zN−j

2 Φ

(
F−1(z1)− F−1(z2)

σ
√

2

)
. (4)

Here Kij = N !/[(i − 1)!(j − i − 1)!(N − j)!], and F−1(·) is the inverse cdf of abilities in

the population,

3As mentioned in Ryvkin and Ortmann (2004), there may be alternative ways to think about the
parameterization of the winning probabilities. For example, one can totally avoid the notion of the
average winning probability wij , and explore various tournament outcomes in terms of the conditional
probabilities wij(xi, xj), and only in the end average over all possible realizations of x1, . . . , xN . Still,
the average winning probabilities wij are well-defined real-world quantities, while modelling them is a
separate issue. One can think about the model parameters (e.g. in this case the distribution of players’
abilities, the noise level, and the number of players) as the ones generating a particular configuration of
average winning probabilities.
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Y ]000

Y ]001

Y ]010

Y ]011

Y ]100

Y ]101

Y ]110

Y ]111

Y ]0 x0

Y ]0 x1

Y ]1 x0

Y ]1 x1

Y ]0xx

Y ]1xx

Round 3

Round 2

Round 1

Winner

Round 0

Figure 1: The binary tree representation for an elimination tournament of N = 8 = 23

players and R = 3 rounds. The players are enumerated by binary numbers. Symbol “x”
denotes unknown bits of advancing players. In each match the key differing bits are shown
bold.

3 General setup

An elimination tournament of N = 2R players can be conveniently represented in the

form of a binary tree. Consider a binary tree with N = 2R terminal nodes. Enumerate

the terminal nodes by R-bit binary numbers b(k) = 〈b(k)
1 ...b

(k)
R 〉, where b

(k)
i ∈ B = {0, 1},

and k = 1, . . . , N . Let BR denote the set of the terminal nodes.

Let P = {1, . . . , N} be a set of N players. A seeding function fs : P → BR assigns

a terminal node to every player. From now on, I refer to players by their position in

the seeding (i.e., by the terminal nodes b(k) they are assigned to). In the end, the true

“identities” of players can be restored as i = f−1
s (b(k)).

The elimination tournament is a sequential procedure that consists of R rounds r =

R, . . . , 1.4 In the R-th round matches (b(1), b(2)), (b(3), b(4)),..., (b(N−1), b(N)) are played.

Note that within every match the players’ binary numbers differ only in the R-th bit.

Indeed, every matched pair (b(2k−1), b(2k)), k = 1, . . . , 2R−1, in the binary representation

looks like (〈b(2k−1)
1 ...b

(2k−1)
R−1 0〉, 〈b(2k−1)

1 ...b
(2k−1)
R−1 1〉).

4For convenience, I enumerate rounds backwards in time. As mentioned earlier, it is also common in
sports to call the rounds close to the root of the tree by the number of matches (“brackets”) in them, e.g.
the final (r = 1, 21−1 = 1 match), semifinals (r = 2, 22−1 = 2 matches), quarterfinals (r = 3, 23−1 = 4
matches), etc., so that the exponents of 2 refer to the backward enumeration of rounds.

10



The winners of the R-th round’s matches are promoted to the next round, R − 1,

where they are matched according to the flow along the branches of the tree towards the

root. Formally, the matching occurs as follows: two players in round R − 1 are matched

if and only if their first R − 2 bits coincide, and their (R − 1)-th bits are different (see

Fig. 1).

The procedure is repeated recursively. In round R−i the winners from round R−i+1

are matched. Within each match first R− i− 1 bits of players’ binary numbers coincide,

and the (R − i)-th bits are different. The tail bits are not important for matching, since

R − i bits suffice to enumerate the remaining players in the (R − i)-th round. Those

bits, however, have to be dragged behind in order to preserve the initial identities of all

surviving players.

In round 1, there is just one (final) match. The players of this match necessarily

have their 1-st bits different. The winner of the final match is the winner of the whole

tournament.

Fig. 1 shows the tree representation for an elimination tournament of 8 players.

Following Ryvkin and Ortmann (2004) and Section 2, suppose every match (i, j)

(between players i and j in the original enumeration P) is a Bernoulli trial that defines

a random variable pij to be 1 with probability wij (player i beats player j) and 0 with

probability wji = 1−wij. Clearly, the winning probabilities wij can be translated into the

winning probabilities among the seeding-enumerated players: w(b(i)b(j))
s = wf−1

s (b(i))f−1
s (b(j)),

with the inverse transformation being wij = w(fs(i)fs(j))
s .

In this setting, it is possible to formulate all kinds of problems involving probabilities

of certain events. Here I will consider two such problems.

Problem 1. Given the winning probabilities wij and the seeding function fs(·), find the

probability Ai
r for player i to reach round r of the tournament. Particularly, find the

probability ρi ≡ Ai
0 of winning the tournament.

Problem 2. Given the winning probabilities wij, find the seeding function f i
s(·), such
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that the probability Ai
0 for player i to win the tournament is maximized. Particularly,

explore the existence and uniqueness of such a maximum.

4 The predictive power

Below I show how to calculate the probability for a player to advance up to a given round

of the tournament, including the probability to win the whole tournament (i.e. to advance

to round 0).

Let Ar(b
(i)) denote the probability for the player seeded as b(i) to advance to the r-

th round. In the r-th round player b(i) can only be matched with a player whose binary

number has the following properties: (i) the first r−1 bits are the same as in b(i); (ii) the r-

th bit is different from that of b(i). Thus, the players who can potentially be matched with

player b(i) in the r-th round have a binary number of the form 〈b(i)
1 . . . b

(i)
r−1b

(i)
r cr+1 . . . cR〉.

Here the overline denotes a flipped bit: 0 = 1 and 1 = 0; ck ∈ B are arbitrary bits. Also,

the player to be matched with b(i) needs herself to survive until the r-th round. Thus, the

following Theorem can be formulated.

Theorem. The probability Ar(b
(i)) for the player seeded b(i) to reach the r-th round

solves the recurrence relation

Ar−1(b
(i)) =

∑

cr+1,...,cR∈B
Ar(〈b(i)

1 . . . b
(i)
r−1b

(i)
r cr+1 . . . cR〉)w(b(i)〈b(i)1 ...b

(i)
r−1b

(i)
r cr+1...cR〉)

s (5)

with initial condition AR(b(i)) = 1.

This recurrence relation is very intuitive. The probability of advancing to the next

round is the sum of probabilities of beating all possible candidates for the match multiplied

by their corresponding probabilities of reaching this point in the game. The R×N numbers

Ar(b
(i)) completely define the probabilistic properties of the tournament.

The initial conditions simply imply that all N players with probability 1 start the

tournament in the R-th round.
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5 The optimal seeding problem

Suppose the tournament organizer has information about the ex ante ranking of players,

and her objective is to seed them so that the predictive power (i.e. the probability ρ1 for

player 1 to win the tournament) is maximized.

The restrictions imposed so far on the winning probabilities regard their being con-

ditioned on the ex ante ranking of players. Thus, it is required that for all i, j, k ∈ P

(a) wij ≥ wik for j > k; (b) wij ≥ 1/2 for i < j. (6)

Condition (6a) implies that any player i has a higher probability of winning against a

weaker player. Condition (6b), in fact, is a definition of the term “stronger”: it means

that a stronger player in a match wins with a probability not less than 1/2.

Note that N players can be seeded in N ! various ways, of which, however, only

ns = N !/2N−1 are non-trivially different. In what follows, by “seeding” I mean the whole

set of equivalent seedings.

Horen and Reizman (1985) show that for an elimination tournament of N = 4 players

conditions (6a,b), and additional no-tie condition wij + wji = 1, imply that the prob-

ability of the best player winning (the predictive power) is maximized by the seeding

{(1, 4), (2, 3)}, 5 i.e. there exists a universal optimal seeding for 4 players.

5This can be proven by a direct check. For 4 players, there are three non-trivially different seedings:
{(1, 2), (3, 4)} [seeding (1)], {(1, 3), (2, 4)} [seeding (2)], and {(1, 4), (2, 3)} [seeding (3)]. The probability
to win the tournament for player 1 equals for the three seedings ρ

(1)
1 = w12(w13w34 + w14w43), ρ

(2)
1 =

w13(w12w24 + w14w42), and ρ
(3)
1 = w14(w12w23 + w13w32). Then, it follows from conditions (6) and the

identity wij + wji = 1 that

ρ
(3)
1 − ρ

(1)
1 = w14w12

[
w32

(
w13

w12
− 1

)
+ w34

(
1− w13

w14

)]
≥ 0,

ρ
(3)
1 − ρ

(2)
1 = w14w13

[
w24

(
1− w12

w14

)
− w23

(
1− w12

w13

)]
≥ 0.

These two inequalities constitute the proof. Also, Horen and Reizman (1985) show that (i) the optimal
seeding for 4 players is fair, i.e. the better a player is the higher is her probability of winning the
tournament (in our notation, ρ1 ≥ ρ2 ≥ ρ3 ≥ ρ4); (ii) the optimal seeding maximizes the probability that
players 1 and 2 meet in the final under the necessary and sufficient condition that w14/w13 ≥ w24/w23;
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A natural generalization of the optimal seeding for 4 players to the case of N players

is

{(1, N), (N − 1, N − 2), (N − 3, N − 4), . . . , (3, 2)}. (7)

Seeding (7) looks appealing because it matches player 1 with weakest possible players at

earlier stages, leaving better players for later stages, and thus, decreasing their survival

probabilities. On the other hand, the better players meet their most powerful rivals at

earlier stages.

Unfortunately, the situation becomes more complicated for N > 4 players. Already

for N = 8, Horen and Reizman (1985) find that there is no universal optimal seeding, and

seeding (7) is optimal only in some situations. Specifically, they show that there are 8

seedings,6 seeding (7) being one of them, that can be optimal, depending on the structure

of the matrix of winning probabilities wij. This somewhat counterintuitive result arises

because of the multi-round structure of the tournament. For example, it may be optimal

(in terms of ρ1) to modify seeding (7) by bringing some of the better players to the upper

half of the tree in exchange for increasing the probability of meeting weaker players at

later stages.7

Another reason why there is no single optimal seeding for R ≥ 3 rounds is that con-

ditions (6) are too general. Indeed, it is not a coincidence that seeding (7) looks very

appealing. All examples given by Horen and Reizman (1985) which fail (7) as the optimal

seeding for 8 players, involve a violation of something that can be loosely called “smooth-

ness” of the winning probabilities wij. For example, seeding {(1, 8), (7, 5), (6, 4), (3, 2)},
which differs from seeding (7) by the swap 5 ↔ 6, is optimal for w12 = w13 = 0.5,

(iii) if the teams have “values” v1 ≥ v2 ≥ v3 ≥ v4, then the optimal seeding maximizes the expected
value of the winner

∑4
i=1 ρivi.

6The 8 seedings are {(1, 8), (7, 6), (5, 4), (3, 2)}, {(1, 8), (7, 5), (6, 4), (3, 2)}, {(1, 8), (6, 5),
(7, 4), (3, 2)}, {(1, 7), (6, 5), (8, 4), (3, 2)}, {(1, 7), (6, 5), (8, 3), (4, 2)}, {(1, 8), (6, 5), (7, 3), (4, 2)},
{(1, 8), (7, 5), (5, 3), (4, 2)}, and {(1, 8), (7, 6), (5, 3), (4, 2)}.

7Horen and Reizman (1985) show that if player 1 has to be matched with the winner of a match
between two other players, weakening the better of the two increases the probability of player 1 winning,
but weakening the worse player of the two may actually decrease player 1’s chances. Also, weakening
both players may decrease player 1’s chances.

14



w14 = w15 = w16 = 0.9, w17 = w18 = 1; w23 = w24 = 0.5, w25 = w26 = 0.9, w27 = w28 = 1,

etc. In this example one can see that for every player, all other players can be divided

into two distinct groups: the players of practically same ability, and the players who are

almost surely defeated. Also, there is lack of transitivity. Players 1 and 2 are of the same

ability, but player 1 beats player 4 with probability 0.9, while players 2 and 4 are again

equal.

All other examples of seeding (7) being non-optimal, as provided by Horen and Reiz-

man (1985), they have the same “degenerate” features. This suggests that if certain

regularity conditions are imposed on wij, seeding (7) may become the only optimal seed-

ing, at least for the case of 8 players. The question of what these regularity conditions are

remains open. It is relatively straightforward, albeit cumbersome, to write down some

sufficient conditions for any particular R, but of a much more considerable interest would

be fairly simple, necessary, and sufficient conditions for arbitrary R. If such conditions

exist, and what they are, is a challenging mathematical problem.

Section 7 presents the results of a numerical exploration of how seeding affects the

predictive power in elimination tournaments. For the winning probabilities generated, as

described in Section 2, by three prominent distributions of players’ abilities and noise, I

show that seeding (7) is optimal for N = 8 players for all values of noise intensity σ2. I

further show that for N = 16, 32, 64, 128 and 256 players, the predictive power calculated

using seeding (7) is consistently larger than the average predictive power calculated for

random seeding. In general, it is shown that for intermediate noise levels (not too large,

and not too small compared to the variance of the ability distribution) seeding significantly

affects the predictive power.

6 Results: no seeding

Here I start the analysis of the results with the no seeding case. Since the predictive power

depends dramatically on seeding, the notion of “no seeding” implies “random seeding”,
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Figure 2: The predictive power ρ1 as a function of the number of players N and noise
intensity σ2 for three ability distributions. There is no seeding. The figures are obtained
using Eq. (5) averaged over a large number of random seedings.
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or, strictly speaking, averaging over all possible seedings with equal weights. As already

mentioned, out of N ! various seedings for N players only a small fraction are non-trivially

different. The number of non-trivially different seedings, ns = N !/2N−1, is still a very

large number for large N . It is possible to go through all the different seedings for N = 4

(ns = 3) and N = 8 (ns = 315), but not for N = 16 (ns = 638, 512, 875) and larger.

Therefore in calculations the averaging over seedings has to be done approximately, i.e.

by randomly generating a large number K of different seedings and calculating the average

over them. For sufficiently large K the relative statistical error of this approximation will

on average decrease as K−1/2.

In this Section I discuss the random seeding results for the predictive power ρ1 as

a function of the number of players N and the noise intensity σ2 for three prominent

distributions of players’ abilities f(x): normal, Pareto, and uniform. The dependence of

ρ1 on the parameters is shown in Fig. 2. The winning probabilities wij are calculated

for each constellation of parameter values using Eq. (4). The predictive power is then

obtained using recurrence relation (5). All three distributions are chosen so that their

variance equals 1, to establish a unified scale of ability variations. It is therefore natural

to distinguish three cases: (i) small noise, σ2 ¿ 1, (ii) intermediate noise, σ2 ∼ 1, and

(iii) large noise, σ2 À 1.

In the small noise case there is little uncertainty as to who is the winner in every

match or in the tournament as a whole, i.e. ρ1 is close to 1. This is reflected in the results

(see Fig. 2). Of course, as N increases, the predictive power more and more differs from

1.

For the other extreme case, large noise, the winning probabilities wij all converge to

1/2, and the difference in ability among players does not matter any more. As a result,

the predictive power goes to its “indifference” limit ρ1(σ
2 →∞) = 1/N , also in agreement

with the calculations.

Interestingly, for the Pareto distribution of abilities, ρ1 exhibits nonmonotonicity as
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a function of the number of players N : when the number of players grows beyond a

certain threshold, the strongest player (player 1) compensates her loss (on average) in the

winning probability incurred by additional players by a gain from her ability “increasing”

(on average) sufficiently due to the long tail of the Pareto density.

7 Results: seeding

In this Section I present and discuss the results for seeding scheme (7) introduced in

Section 5. First, in order to illustrate numerically that for the “smooth” winning prob-

abilities generated from the three distributions of players’ abilities, seeding (7) is indeed

the optimal seeding, I present the results for predictive power ρ1 for all possible seedings.

Of course, this can only be done for small N , such as 4 and 8. For N = 4, seeding (7)

is known to be optimal for arbitrary wij satisfying conditions (6), therefore I concentrate

here on the case of N = 8.

Figure 3 shows the predictive power ρ1 for N = 8 players. The 315 non-trivially

different seedings are ordered along the X-axes by predictive power. The (red) dashed

lines show the predictive power calculated for seeding (7), ρc
1, which are also given in the

panels. It is seen that seeding (7) indeed yields the highest predictive power for all σ2.

It is seen from the figures that for small noise the variation in the predictive power

is small. This result reflects the general fact that the uncertainty is low, and therefore

seeding (or any other control parameter) is not really significant. The variation in the

predictive power also becomes small in the large noise limit, because the players are

effectively equalized by noise, and it matters less and less how they are seeded. The

variation, however, is very significant in the intermediate noise regime, σ2 ∼ 1. In this

regime seeding becomes an important control instrument in an organizer’s hands.

The influence of seeding, as opposed to the no seeding case, is summarized in Figure 4,

which presents the difference between seeding (7) and random seeding predictive powers,

ρc
1 − ρrnd

1 , as a function of N and σ2. The difference exhibits a universal behavior as a
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Figure 3: The predictive power ρ1 for N = 8 players, three distributions of players’
abilities, and various values of noise intensity σ2. All 315 different seedings are ordered
by their predictive power along the X-axes. The theoretical values of ρc

1 for seeding
{(1, 8), (7, 6), (5, 4), (3, 2)} are shown by dashed (red) lines and given in the graphs.

19



Figure 4: The difference in predictive power between seeding (7) and the average seeding,
ρc

1 − ρrnd
1 , as a function of the number of players N and noise intensity σ2 for three

distributions of players’ abilities. Note that ρc
1 − ρrnd

1 exhibits a universal behavior as a
function of σ2: it starts from nearly zero at small noise intensities, rises to a maximum,
and then drops. The reasons are explained in the text.
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function of the noise intensity. It starts from zero in the small noise limit, and in the large

noise limit it falls off gradually, depending on the number of players. In the intermediate

noise regime the difference ρc
1 − ρrnd

1 has a single well-defined maximum, which becomes

more pronounced as N increases.

Note that seeding scheme (7) does not look appealing in terms of competitive balance

since it favors the ex ante strongest player too much, and hence confers a dispropor-

tional burden on other players. Alternative seeding schemes may be used to induce more

balanced results.

8 Conclusions

The present paper is a step towards understanding optimal tournament design. A new

quantity, the predictive power, is defined, which is a measure of how well a particular

tournament reveals the true ability ordering of players. It is argued that in many contexts

maximizing the predictive power is an important real-world objective, whose discussion is

missing in the literature. Here I consider a non-trivial tournament format, the elimination

tournament; it is the second step (the first one being Ryvkin and Ortmann 2004 on round-

robin tournaments) in a series of papers whose ultimate goal is to systematically address

the optimal tournament format construction and selection problem. Independently, I

argue that the distribution of ability in the population is a plausible model of heterogeneity

of players (at least for the purposes at hand). The approach proposed here allows one to

avoid choosing specific shapes of utility and cost functions. The uncertainty of outcomes

is naturally modelled as noise that distorts players’ performance, which, without noise, is

assumed to be equivalent to ability.

The predictive power of an elimination tournament is calculated through a recurrence

relation. It is shown that for the no seeding case it exhibits nonmonotonicity as a function

of the number of players for the Pareto distribution of players’ abilities. This has imme-

diate implications, for example, for an organizer who seeks to minimize the predictive
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power, in terms of the optimal number of players.

The role of seeding in an elimination tournament is also explored. It is shown that

for intermediate noise intensities, seeding plays a very significant role and is, therefore, a

powerful instrument that allows the organizer to manipulate the outcome of a tournament.

In contrast, in the small noise and large noise regimes, seeding plays practically no role.

More generally, all design issues are only significant in the intermediate noise regime.
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