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Abstract
A methodology to calibrate multifactor interest rate model for transition

countries is proposed. The usual methodology of calibration with implied
volatility cannot be used as there are no markets for regularly traded deriva-
tives. The existence of such a markets is essential for this calibration. The
paradigm used is the Brace-Gatarek-Musiela model of interest rates (Brace,
Gatarek and Musiela (1997)), which models the evolution of LIBOR (London
InterBank Offered Rate) market interest rates, together with the Orthogo-
nal GARCH model proposed by Alexander (2002), and further generalized
by van der Weide (2002). The estimated model is used for the analysis of
interest rate markets with shorter-end maturities in the 4 Visegrad countries
(Slovak Republic, Czech Republic, Poland and Hungary).

V tomto článku je navrhnutá metodológia vhodná na kalibráciu viacfak-
torových modelov úrokovej miery pre tranzit́ıvne krajiny. Metodológia kalibrá-
cie použit́ım implikovanej volatility, ktorá sa bečne použ́ıva, v tomto pŕıpade
je nevhodná, keďže v týchto krajinách nie je rozvinutý trh s derivátmi. Ex-
istencia takéhoto trhu je nevyhnutná pre takúto kalibráciu. Použitý model
úrokových mier je model Brace-Gatarek-Musiela (Brace et al. (1997)), ktorý
popisuje vývoj LIBOR úrokových mier, spolu s Ortogonálnym GARCH mod-
elom, navrhnutým v Alexander (2002) a zovšseobecneným v van der Weide
(2002). Táto metodológia je použitá na analýzu trhov s úrokovou mierou v
krajinách Visegrádskej štvorky.
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†CERGE-EI, P.O.BOX 882, Politických vězn̊u 7, 111 21 Prague 1, Czech Republic; telephone:
+420 224005167; fax: +420 22421374; e-mail: martin.vojtek@cerge-ei.cz.

‡A joint workplace of the Center for Economic Research and Graduate Education, Charles
University, and the Economic Institute of the Academy of Science of the Czech Republic.



1 Introduction

Theory about modelling the term structure of interest rates has evolved over the
last 30 years, and since then a number of different approaches have been developed.
This theory represents one of the most dynamic parts of the study of finance,
where a lot of research is still going on with interesting practical applications, and
therefore is widely used by both academics and practitioners1.

The term structure of interest rates concerns the relationship among the yields
of default-free zero-coupon bonds that differ only with respect to maturity. His-
torically, three competing theories of the term structure have attracted attention.
These are known as the expectations, the liquidity preference, and the hedging-
pressure of preferred habitat theories of the term structure. According to the
expectations theory, the shape of the yield curve can be explained by investors’
expectations about future interest rates. The liquidity preference theory argues
that short-term bonds are more desirable than long-term bonds because the for-
mer are more liquid. The last theory explains the shape of the term structure
by the assumption that if an investor is risk-averse, he can be tempted out of his
preferred habitats only with the promise of a higher yield on a bond of any other
maturity.

Among the main uses of the interest rates models is their application to the
pricing of derivatives of interest rates. To correctly determine the price of deriva-
tives, one needs to have the model correctly calibrated to the market, which means
estimating various parameters of the model in such a way that the model is able to
reveal market development. A lot of work has been done in this field to calibrate
interest rate models to the markets of developed countries2. However, such work
for the markets of transition countries is very rare and has been done only in the
private commercial sphere. The main problem is that the calibration methodology
used for developed countries’ markets cannot be used (reasons for this claim are
described below).

One can assume that the number of various derivatives and the volume of
trades in these derivatives will increase sharply in the coming years in the tran-
sition economies as the need for hedging of various risks is increasing with the
development of these economies. Exact pricing methods are thus life-important,
not only for business and traders, but also for the regulators of markets to avoid
market failures.

In this paper the interest rates markets in transition countries are analyzed
1For a basic survey of research in this area, see Rebonato (1998). For more recent survey see

techreport by Rebonato (2003)
2See the literature review section for some of the citations.

1



from the point of view of the interest rate model of Brace et al. (1997). The
main contribution of this paper is that it proposes to use GARCH modelling for
the calibration of IR models and applies it to the emerging markets (where the
standard techniques cannot be used). Also the issues connected with estimating
the parameters of the mentioned interest rate model are analyzed. The analysis is
done on daily data of 4 Visegrad countries (Poland, Slovakia, Hungary and Czech
Republic), i.e., transition countries where the institutional reforms of economies
are the most advanced.

In what follows I will depict the motivation for the research in this area, the
aim of the research, main literature dealing with the area of research, proposed
methodology and the estimation results and their analyses. Readers not famil-
iar with the stochastic models of interest rates can find short descriptions and
derivations in the appendix.

2 Motivation for studying models of the term struc-

ture

Since the eighties and nineties the number and the volume of traded derivatives has
increased sharply in the western fixed income markets. The number of products
to satisfy the needs of users has developed. The general reason for the formation
of new derivatives has been the need to hedge the interest rate risks of investors.
Investors needed to insure against excessive increases or decreases in these rates
and against twists in the shape of the yield structure. Therefore the main goals in
modelling interest rates (IR) are to find a robust, credible model for the pricing
of derivatives and a methodology of calibrating this model to the market data.
When introducing a new class of derivatives, there is no benchmark price on the
market. A model of interest rates can help retrieve this price from the market
data only if it describes correctly the evolution of interest rates and if it is not
misspecified with wrong values of parameters.

There is no single interest rate for the economy and in addition the structure
of interest rates is interdependent. The interest rate is in general affected by a lot
of factors and one of these, which impacts the interest rate for a particular security
and which is fundamental in the modelling of interest rates, is the maturity, i.e.,
the date in the future when a bond is to be repaid. The relation between yield
on zero-coupon bonds and maturity is referred to as the term structure of interest
rates. In the following text I will refer to the models of interest rates sometimes
also as models of term structure as these terminologies are equivalent. The analysis
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of term structure is crucial in the analysis of interest-rate-dependent derivatives
and among its applications belong the following:

• The analysis of fixed income contracts with varying maturity; it has the
biggest influence on the profitability of a portfolio in an environment with
volatile interest rates.

• The forecasting of future interest rates.

• The pricing of derivatives and other contracts with fixed payments- in pricing
financial bonds. It is important to look at yields of alternative investing
opportunities with a similar length of commitment, and the term structure
(or yield curve) gives information about these alternative yields.

• The pricing of options on assets with fixed income. This pricing requires the
modelling of the development of the term structure of interest rates.

• The arbitrage possibility between various maturity bonds; the analysis of
term structure can be useful in the comparisons of yields of these bonds.

• The expectations about the economy; it seems that the shape of the term
structure curve has an influence on future economic activity, including in-
vestment and consumption and can incorporate useful information about
future inflation.

There are a few of theories explaining the dynamics of the term structure
of interest rates. In recent years, a new way of modelling the term structure
has evolved entitled the stochastic process modelling of the term structure. This
approach requires several assumptions: the term structure and bond prices are re-
lated to certain stochastic factors, these underlying factors are assumed to evolve
over time according to a particular hypothesized stochastic process, and the in-
terest rates and bond prices that result must satisfy no-arbitrage conditions. In
addition, the valuation of options on fixed income securities all require some as-
sumptions about the term structure generating process. Much of the research on
the term structure field has been stimulated by the need to value such contingent
claims.

The next step after setting up the model is to calibrate this model to the
market data, which means to estimate the parameters of the model (usually the
volatilities of interest rates and the correlations between various maturity interest
rates). A lot of research has been done in the field of calibrating various models
of IR to market data of developed countries (see next section); however; there is
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a gap in the field of calibrating models of IR to the transition countries’ markets.
There are a few reasons why this work has not been done yet: the models of IR
usually contain strong assumptions about the efficiency of IR markets, there is
a problem with access to the data (due to frequent changes in the recording of
statistics), and so on.

The main reason for the failure of the calibration of more complex and compli-
cated models of IR to transition markets is that these models are usually calibrated
to exactly match the prices of some frequently traded derivatives, as for example
swaptions or caps and floors3. But there is no market for these derivatives in
transition countries, or at least these derivatives are traded very rarely and thus
their prices are not reliable and the researchers cannot take them as benchmark
prices. Therefore alternative techniques for the calibration of the models of IR or
for the estimation of their parameters are needed.

As previously explained, the practitioners and the policymakers in transition
countries have no access to the more complex pricing methods of IR derivatives.
Everybody can agree that the number of various derivatives and the volume of
trade in these derivatives will increase sharply in the coming years. This insight
is based on the fact that hedging of an opened position is almost a necessity and
with the development of markets various firms will demand such possibility. Exact
pricing methods is thus life-important, not only for business and traders, but also
for the regulators of markets to avoid market failures. This research would help
to accomplish the goal of the precise calculation of derivatives prices. Also, the
research should answer the question to what extent are these models reliable for
pricing derivatives in transition markets. To achieve this, a method for calibrating
multi-factors models of term structure for transition markets is proposed in this
paper.

In the existing research there are two types of models of IR: models of short-
rate and models of whole term structure. The former models are older and are
based on the modelling of the interest rate over the smallest possible time interval,
so-called the short rate. The whole term structure one can obtain from predicted
future paths of the short-rate. The latter models are modelling the whole term
structure at one time and thus are more complex and have more accurate pricing
implications (Rebonato (1998)). They also allow various twists in the shape of the
term structure, while the models of short-rate allow only increases or decreases
of the whole term structure curve. The most freqeuntly used models of this class
are Heath-Jarrow-Morton (Heath, Jarrow and Morton (1992)) and Brace-Gatarek-
Musiela (Brace et al. (1997)) models. As already mentioned, the usual method

3In other words, the models are calibrated to implied volatility.
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of calibrating the BGM model is to calibrate it to the prices of caps. The BGM
model offers a closed solution for the price of caps, where the parameters are
volatilities of some forward rates. By inverting this formula, one can obtain the
implied volatilities from the prices of the cap.

If, however, the researcher has no access to the prices of caps, the volatilities
and correlations of various interest rates have to be estimated using other sources
of data, but they have to be consistent with the market. So, the goal is to find a
methodology to obtain consistent parameters from the market data available.

3 Literature review

The main streams of research in term structure modelling are the (general equilib-
rium) models of short rate, the stochastic volatility modelling and the no-arbitrage
models of term structure.

The first to use a general equilibrium approach was Merton (1973) to derive
a model of discount bond prices. His model was simply a Brownian motion with
constant drift. The next to use a model of IR was Vasicek (1977), and his model
belongs to the most used models of IR using this approach. Vasicek made the
following assumptions: (A.1) The instantaneous (spot) interest rate follows a dif-
fusion process; (A.2) the price of a discount bond depends only on the spot rate
over its term; and (A.3) the market is efficient. Under these assumptions, he
showed by means of an arbitrage argument that the expected rate of return on
any bond in excess of the spot rate is proportional to its standard deviation. This
property is then used to derive a partial differential equation for bond prices. The
solution to that equation is given in the form of a stochastic integral representa-
tion.

This general equilibrium model has a big disadvantage in that it allows for
negative interest rates due to a constant coefficient for volatility. This setting was
changed by Cox, Ingersoll and Ross (1985), who use an inter-temporal general
equilibrium asset pricing model to study the term structure of interest rates. In
this model, anticipations, risk aversion, investment alternatives, and preferences
about the timing of consumption all play a role in determining bond prices. The
volatility of the short rate depends on its value. Many of the factors traditionally
mentioned as influencing the term structure are thus included in a way which is
fully consistent with maximizing behavior and rational expectations. The model
leads to specific formulas for bond prices which are well suited for empirical testing.

Calibration methodologies for these models are known and widely used. One
of the approaches is the estimation of parameters of models using the Generalized
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Method of Moments, in this context pioneered by Chan, Karolyi, Longstaff and
Sanders (1992). They found for U.S. treasury data that the models most successful
in capturing the dynamics of the short rate are those that allow the volatility of
IR changes to be highly sensitive to the level of these riskless rates. It is clear
that these results have important implications for the use of the different term
structure models in valuing interest rate’ dependent derivatives. The problem is
that the GMM method can give imprecise results. That was the motivation of
Nowman (1997), who proposed a method of estimation based on the Gaussian
estimation method of continuous time dynamic models (which means a method
based on using the maximum likelihood technique). He found that for U.K. data,
the findings of Chan et al. (1992) are not valid and that the volatility of the
short rate is not sensitive to the level of rate in this case; for the U.S. data these
findings are similar to Chan et al. (1992). Nowman (1997) uses another method of
estimation, as his model allows the use of an exact maximum likelihood estimator,
which can help reduce some of the temporal aggregation bias.

The next approach to modelling the IR is called no-arbitrage pricing. It evolved
from the previous approach. One of the differences is that this approach describes
the whole term structure, not only one of its point (as does the short rate in the
previous text). It has two purposes in relation to the term structure of interest
rates. The first is to price all zero coupon bonds of varying maturities from a
finite number of economic fundamentals, called state variables. The second is
to price all interest rate sensitive contingent claims, taking as given the prices
of the zero coupon bonds. Heath et al. (1992) presented a unifying theory for
valuing contingent claims under a stochastic term structure of interest rates. This
methodology, based on the equivalent martingale measure technique, takes as given
an initial forward rate curve and a family of potential stochastic processes for its
subsequent movements. A no-arbitrage condition restricts this family of processes,
yielding valuation formulae for interest rate sensitive contingent claims, which do
not explicitly depend on the market prices of risk.

In most developed markets, caps and floors are the most traded derivatives. A
cap is a strip of caplets each of which is a call option on a forward rate. Market
practice is to price the option assuming that the underlying forward rate process is
lognormally distributed with zero drift. Consequently, the option price is given by
the Black-Scholes formula (Black and Scholes (1973)). In an arbitrage free frame-
work, however, forward rates over consecutive time intervals are related to one
another and cannot all be lognormal under one measure. Brace et al. (1997) show
that the mentioned market practice can be made consistent with an arbitrage-free
term structure model.
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Calibration of these models to the market data is much more problematic than
in the case of short rate models. These models are driven by more independent
factors and each forward rate has its own volatility parameters for these factors,
which are interdependent. The correlation matrix of forward rates is also impor-
tant in these models. All these parameters (volatilities and correlation matrix)
have to be estimated from the market data consistently in order to preserve all re-
lationships. The calibration methodology based on the prices of caps is described
by Rebonato (1999). It can be extended to numerical simulations for determining
the prices of path-dependent derivatives that are sensitive to interest rates.

However, no literature about the calibration of the models of IR to transition
markets is available. The pricing approach of Rebonato (1999) cannot be used
for transition countries as it is based on prices of caps and the volatility implied
by these caps, and as mentioned in the previous section, these products are either
not traded or their prices have often no explanatory power. The methodology of
the calibration of short-rate models can be used without exceptions to calibrate
the models for transition countries’ data because they are based only on levels of
interest rates.

The last approach to the modelling of the term structure is based on the
so-called stochastic volatility assumption. It means that the volatility of the
stochastic process itself follows a stochastic process. This method allows one to
estimate a short rate process without loss of efficiency and consistency and uses
the quasi-maximum likelihood method. The first to apply this approach is Ait-
Sahalia (1996). Ball and Torous (1999) estimate a stochastic volatility model of
short-term riskless interest rate dynamics. Estimated interest rate dynamics are
broadly similar across a number of countries and reliable evidence of stochastic
volatility is found throughout. In contrast to stock returns, interest rate volatility
exhibits faster mean-reverting behavior, and innovations in interest rate volatility
are negligibly correlated with innovations in interest rates. The less persistent
behavior of interest rate volatility reflects the fact that interest rate dynamics are
impacted by transient economic shocks such as central bank announcements and
other macroeconomic news.

4 Models and methodology

The first step is to get data about the interest rates from various transition coun-
tries and to calculate of the term structure over certain time periods. The param-
eters of the BGM model 4 are possible to obtain either using the prices of traded

4They are volatilities and correlations of interest rates with various maturities.
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derivatives 5 or using the information on conditional volatilities extracted using
some model of conditional volatility (such as various types of GARCH models).
In this work it is proposed to use the (G)O-GARCH model and describe how it
can be used to achieve the calibration of parameters of the BGM model. GARCH
models are based on the works of Engle (1982) and Bollerslev (1986) and are very
popular in finance and more than suitable in capturing the changes in volatilities
in models with high frequency data. The next subsections describe the basic the-
ory of interest rate modelling and the calibration of the BGM model using the
(G)O-GARCH model.

4.1 Definitions and relationships

The most basic contract based on the interest rate is an agreement to borrow a
particular amount now in exchange for a promise to repay a bigger amount later.
In general, the value of such agreement depends on the credibility of the debtor
and factors other than the time value of money. However, in this paper it is not
in our interest to find answers to these questions (credibility of debtor and so on),
and thus it will be assumed that there is no possibility of default. Let us now
define the basic concepts:

Let T ∗ > 0 be a fixed time horizon for all activities in the market. Under
discount bond with maturity T ≤ T ∗ let us mean the contract which pays out the
owner of a unit of cash in the fixed time T in the future. The price of the discount
bond will be denoted as P (t, T ). Clearly, P (T, T ) = 1. For every maturity T will
be assumed that the price of bond P (., T ) follows a stochastic, strictly positive
process.

The curve P (t, .) describes the price of the whole spectrum of bonds with var-
ious maturities. Let us define process R(t, T ), called yield to maturity. Formally,

R(t, T ) = − 1
T − t

ln P (t, T ) ∀t ∈ 〈0, T ).

Under the term structure let us mean the functional relationship of yield
R(t, T ) as a function of the maturity T . A forward contract is an agreement
negotiated in time t about paying out cash at some later time T1 and receiving the
payment back in time T2 > T1. This claim can be replicated in time t by buying
T2 bond and selling k units of T1 bonds. The initial costs are P (t, T2)− kP (t, T1)
in time t, debtor pays k in time T1 and he receives the 1$ payment in T2. To give

5That means to calibrate using implied or historical volatilities.
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this contract a zero value, k has to be equal to

k =
P (t, T2)
P (t, T1)

.

Let us call the adequate payoff a forward rate covering the period 〈T1, T2〉 and will
denote it as f(t, T1, T2). So,

P (t, T2)
P (t, T1)

= e−f(t,T1,T2)(T2−T1) ∀t ≤ T1 ≤ T2,

or
f(t, T1, T2) = − ln P (t, T2)− ln P (t, T1)

T2 − T1
.

If T2 → T1, we get an instantaneous forward rate

f(t, T ) = − ∂

∂T
ln P (t, T ),

or equivalently

P (t, T ) = exp
(
−

∫ T

t
f(t, u)du

)
∀t ∈ 〈0, T 〉. (1)

Let rt be an instantaneous interest rate over interval 〈t, t + dt〉. Then the
process Bt defined as

Bt = exp

(∫ t

0
rudu

)
∀t ∈ 〈0, T ∗〉

will be called a savings account.

4.2 The models of interest rates

The Heath, Jarrow, Morton (1992) model

The earlier models of the term structure were based on the explicit modelling
of short rate evolution. This approach has arisen from the need to price simple
derivatives of the term structure, as for example options or swaps, which depend
on one underlying bond. The approach by Heath et al. (1992), which models term
structure evolution, is, on the other hand, based on the explicit specification of
the dynamics of instant forward rates f(t, T ). This method is the generalization
of older models, as shown in Baxter and Rennie (1996).

Let W be d-dimensional Brownian motion defined on the filtered (in the sense
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of the Wiener filtration) probability space (Ω,F ,P). With the dot symbol (·) let us
denote the standard product of vectors. The HJM model is based on the following
assumptions.

(HJM.1) For the arbitrary fixed maturity T ≤ T ∗, the forward rate f(t, T ) is
evolving in the following manner:

f(t, T ) =
∫ t

0
α(s, T )ds +

∫ t

0
σ(s, T ) · dWs 0 ≤ t ≤ T, (2)

or in the differences

dtf(t, T ) = α(t, T )dt + σ(t, T ) · dWt, (3)

where the drift α and volatility σ are stochastic processes with values in R, resp.
Rd. Formally α : C×Ω → R, σ : C×Ω → Rd, where C = {(u, t); 0 ≤ u ≤ t ≤ T ∗}.

(HJM.2) For the arbitrary maturity T , processes α(., T ) and σ(., T ) are such
that ∫ T

0
|α(u, T )|du +

∫ T

0
|σ(u, T )|2du < ∞ P-almost everywhere.

The HJM model characterizes the term structure by the following theorem
(full treatment can be found in the appendix):

Theorem 1 For the arbitrary maturity T ≤ T ∗, under the assumption of non-
existence of arbitrage, the dynamics of the price of bond P (t, T ) under the risk-
neutral measure P∗ is

dP (t, T ) = P (t, T ) (rtdt− b(t, T )) · dW ∗
t (4)

and the forward rate f(t, T ) satisfies

df(t, T ) = σ(t, T )b(t, T )dt + σ(t, T ) · dW ∗
t , (5)

where b(t, T ) = − ∫ T
t σ(t, u)du.

The Brace, Gatarek, Musiela (1997) model

The common feature of earlier models of interest rates (up to the HJM model) is
the fact that (explicitly or implicitly) they include a specification of the stochas-
tic behavior of non-observable financial quantities, as for example instantaneous
forward rates. The calibration of these models to the set of market data thus
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needs some transformation of these data through the “black-box” of model to the
dynamics of non-observable quantities.

This picture has radically changed with the introduction of the BGM (Brace et
al. (1997)) model, which describes directly observable market quantities as discrete
LIBOR forward rates.

Let us fix a positive real number δ. Following the definition, the forward δ-
LIBOR rate L(t, T ) is a discrete forward rate over the interval 〈T, T + δ〉 and is
given by relationship

1 + δL(t, T ) =
P (t, T )

P (t, T + δ)
∀t ∈ 〈0, T 〉. (6)

It is possible to find in the appendix the derivation of the dynamics of L(t, T )
under the risk-neutral measure. The advantage of the BGM is that the L(t, T )
rates can be modelled as lognormal.

4.3 The calibration of the BGM model using the (G)O-GARCH

model

Let us discretize the BGM model in the following way (full derivation of this model
can be found in the appendix):

yt
i =

L(t + 1, Ti)− L(t, Ti)
L(t, Ti)

= µi(t)∆t +
r∑

k=1

aik(t)∆W k
t , (7)

where ∆W k
t is a increase at time t of the kth Brownian motion, aik(t) are instanta-

neous volatilities of the ith LIBOR rate belonging to the kth factor (or Brownian
motion), µi(t) is drift of the ith LIBOR rate.

Let us suppose that we have T observations yt
i on the returns of k interest

rate series with various maturities (i.e., one week, two weeks, one month, etc.).
(G)O-GARCH models are based on the so-called principal component analysis,
each component being a simple linear combination of the original returns series.
The weights in these linear combinations are determined by the eigenvectors of
the correlation matrix of the returns matrix. The principal components are or-
dered according to the size of eigenvalues (which are in fact variances of principal
components) so that the first principal component, the one corresponding to the
largest eigenvalue (i.e., the one with the largest variance), explains most of the
variation. If the system is highly correlated (as it is assumed for interest rates
with various maturities), only the first few eigenvalues will be significantly dif-
ferent from zero. This means that one can simplify the task by taking just few
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principal components into account to represent the original variables with a fairly
high degree of accuracy.

The following text is based on Alexander (2002). Let us have the original re-
turns in T × k matrix Y. One can normalize these k series into series with zero
mean and unit variance, to get matrix X. Now, let matrix W be the matrix of
eigenvectors of X′X/T , and Λ be the associated diagonal matrix of eigenvalues, or-
dered according to decreasing magnitude of eigenvalue. The principal components
of Y are given by the matrix P:

P = XW. (8)

It can be shown that the matrix P is orthogonal. Because of orthogonality of
matrix W, (8) can be rewritten as X = PW′, which means

xi = wi1p1 + · · ·+ wikpk

or
yi = µi + ωi1p1 + · · ·+ ωirpr + εr, (9)

where ωij = wijσi, µi, σi are the mean and standard deviation of yi and the error
term εi means the approximation from using only r out of the k principal factors.
When variances of (9) are taken into account, one gets

V = ADA′ + Vε,

where D = diag(V (p1), . . . , V (pr)) is a diagonal (because of orthogonality) co-
variance matrix of chosen r principal factors, A = (ωij) and Vε is the covariance
matrix of the errors. Ignoring the error term gives us the approximation that
forms the basis for the model of covariance matrix V

V ≈ ADA′.

Because matrix A is known, it is enough to model matrix D, which can be achieved
by running r simple GARCH models on the first r principal components from P.
This is the basis of the O-GARCH model.

The main limitation of this approach is that the principal components are
only unconditionally uncorrelated so the assumption that off-diagonal elements of
D are zero may be unnecessarily strong. This assumption has been relaxed by
van der Weide (2002), who develops a generalization of the model called General-
ized O-GARCH. In this model the univariate GARCH specifications are applied
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to transformed variables P∗ = PU, where U is an orthonormal matrix which can
be estimated using conditional information from the observed data.

Now, let us closely look at the specification (7) and (9). Because the series
p1, . . . , pr are generated from the series with zero mean and unit variance, one can
consider them as increases of r Brownian motions, so that estimates of coefficients
ωij are actually estimates of the conditional volatility belonging to the jth Brown-
ian motion. After obtaining these estimates (using (G)O-GARCH), the next step
is needed.

As these estimates are just averages of instantaneous volatilities, the researcher
needs to choose the appropriate functional form for the time profile of these volatil-
ities. As a suitable form, Rebonato (2002) recommends writing instantaneous
volatility aik(t, Ti) (redundant parameter Ti is added to better determine the rate
maturing at time Ti) as a product of a maturity specific term and of a time-to-
maturity specific term:

aik(t, Ti) = g(Ti)h(Ti − t).

Rebonato (2002) also recommends suitable possible functional form for both g, h

functions.
The last step in the calibration process is to perform numerical simulation of

future term structure evolution. One possible simulation algorithm is described
by Brace, Musiela and Schloegl (1998). These numerical simulations then can be
used for the construction of processes of derivatives as well as replicating portfolios
needed for their comparisons.

5 Data description

In this research, data from the 4 Visegrad countries are used: Slovak Republic,
Czech Republic, Hungary and Poland. Various time spans have to be used as the
quotations vary across the countries. The data-sets for the Slovak Republic and
the Czech Republic come from the web pages of central banks, the data-sets for
Hungary and Poland come from Reuters’ databases. All interest rate series used
are the analogue of LIBOR (London InterBank Offeres Rates). In this work only
data for the shorter end of the term structure are used (the tenor with maturities
from 1 week to 1 year). There are a few reasons for such a restriction.

The markets in transition countries are often imperfect and non-developed
and the interest-rate market is not an exception. Although countries mentioned
in the previous paragraph have the most developed markets among the transition
countries, they are still not at the level of developed countries. The interest-rate
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market is a very good example as banking institutions lend and borrow mostly
money with the shortest maturities and official quotations of interest rates exists
only for maturities up to 1 year. The pricing of instruments with longer maturities
is based on swaps and rates calculated from swaps. These rates are quoted by
Reuters (except for the Slovak Republic), but as was mentioned above, with longer
maturities the market is even more imperfect. Mostly there exist only government
bonds with higher maturities; municipal or corporate bonds exist only rarely.

So the reasons for restricting the data-sets to maturities up to one year are
market imperfections and liquidity (no trading with longer maturities - the vol-
ume of trades is often zero for longer maturities) and data availability. These
estimations concentrate on the interbank offered rates, not on the rates which are
implied in the prices of government bonds. There are few reasons for that. Firstly,
the BGM model describes the evolution of interbank offered rates. Secondly, these
rates, although in general not risk-free (there is always a risk of bankruptcy of a
bank, which is incorporated in the rates), are used by banks and other financial
institutions as the lending and borrowing rates, and therefore they are used for
the pricing of derivatives.

The following data are used:

• Czech Republic - Prague InterBank Offered Rate (PRIBOR) - the analogue
of LIBOR rates, time span is from 2 January 19986 to 28 November 2003,
which comprises 1492 daily observations. In this case the 8 PRIBOR interest
rate time series with maturities from 1 week to 1 year are used. The time
evolution can be found in Figure 1. The basic characteristics of the data
are in Table 1. In Table 2 one can see the eigenvectors of the unconditional
variance matrix, i.e., the weights of respective interest rates in principal
factors. There are also the eigenvalues of the unconditional variance matrix
(equal to the unconditional variances of principal factors) and the fraction
of total variance explained by the concrete principal factor.

• Slovak Republic - Bratislava InterBank Offered Rate (BRIBOR) - the ana-
logue of LIBOR rates, time span is from 5 June 2000 to 28 November 2003
(earlier data are not usable as the rates were quoted only up to 6 months
maturity), which consists of 871 daily observations. The data used were 8
BRIBOR interest rates time series with maturities from 1 week to 1 year.
The time evolution can be found in Figure 4. The basic characteristics of

6Although it would be possible to use a longer time span, it would not be very useful. The
interbank market was underdeveloped and unstable before 1998 as there were few institutions
which needed large amounts of credit and they were able to unbalance the whole market. For
more information see Hájková, Hanousek and Němeček (2002).
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the data are in Table 4. Table 5 shows the eigenvectors of the unconditional
covariance matrix together with eigenvalues.

• Hungary - Budapest InterBank Offered Rate (BUBOR) - the analogue of
LIBOR rates, time span is from 2 May 2002 to 28 November 2003, which in-
cludes 406 daily observations. In the case of Hungary 7 interest rate time se-
ries with maturities from 1 week to 1 year are used(the series with 2 months’
maturity was not at disposal). The time span is much shorter than in the
previous cases. It is due to the fact that until May 2002 only rates for one,
three and six months maturity were quoted in the market. The evolution of
these rates and their basic characteristics are in Figure 7 and Table 7. Table
8 shows the eigenvectors and eigenvalues.

• Poland - Warsawa InterBank Offered Rate (WIBOR) - the analogue of LI-
BOR rates, time span is from 2 January 2001 to 28 November 2003 (again,
no quoting of longer rates occurred beforehand), which comprises 739 daily
observations. 6 interest rate time series with maturities from 1 week to 1
year were used (again, the series for 2 weeks’ and 2 months’ maturities were
not quoted). The evolution of these rates and their basic characteristics are
in Figure 10 and Table 10. Table 11 shows the eigenvectors and eigenvalues.

6 Estimation Techniques

For all currencies the original interest rate time series were transformed in or-
der to fit the BGM model specification. The time series used in estimations are
constructed as yields of these original interest rate processes. For all currencies
3 principal factors were chosen, as they explain more than 95% of variance in
all cases (except Poland, where it is 93%). Although the 3rd factor was some-
times relatively unimportant (e.g., Hungary, where it explained only 2.1 per cent
of variance), it was chosen for modelling to have uniform results and due to the
possibility of change in the shape of the term structure7.

The time series of principal factors were calculated using the procedure de-
scribed in the Methodology section. When there was the suspicion of autocorrela-
tion in the principal factors8, the correction for it was used in the mean equation

7From the tables of principal component weights one can see, as is usual in the principal com-
ponent analysis, that the first component directs the horizontal movements of the term structure,
the second one directs the changes in slope and the third directs the changes in curvature of the
term structure.

8For example, when the Ljung-Box statistics were sufficiently high for some of interest rates
time series.
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(using lags of dependent variable) for the O-GARCH model. All model specifica-
tions were tested using a battery of specification tests. The specification tests used
in the selection of the number of lags in the mean equations and the number of
parameters in the O-GARCH specifications were the Ljung-Box test, Likelihoood
ratio (LR) test and the Lagrange Multiplier (LM) test on squared standardized
residuals proposed by Engle (1982). Standardized residuals were also tested by
the Sign Bias test, the Negative Bias test and the Positive Bias test, proposed in
Engle and Ng (1993). These test are designed to examine whether the volatility
models are not misspecified in the sense that they are able to deal with the po-
tential asymmetry in the reaction to positive and negative shocks (Sign Bias test)
or the potential asymmetry in the reaction to the magnitude of shock (Negative
Bias test and Positive Bias test).

As the autocorrelation is present for the rates with higher maturities in the
Czech Republic, the correction for autocorrelation in the modelling of principal
factors is reasonable. The mean equation for the principal components is specified
with constant and one (for the first and third component) or two (for the second
component) lags. The conditional variances were specified as the GARCH(1,2)
processes for the second and third component and as the GARCH(1,1) process for
the first component, so that

pt = c + b1pt−1 (+b2pt−2) + µt, µt ∼ N(0,Ht), (10)

where the diagonal elements of Ht are described by

hi,t = α0 + α1µ
2
i,t−1 + β1hi,t−1 (+β2hi,t−2) , i = 1, 2, 3, (11)

and the off-diagonal elements of Ht are 09. The results of O-GARCH procedures
on these principal factors are in Table 3, as well as the values of the log-likelihood
function and the Schwarz Bayes Information Criterion. There are also the values
of Ljung-Box statistics for standardized residuals (Q10) and squared standardized
residuals (Q2

10) for 10 lags. They have χ2 distribution with 10 degrees of freedom.
The last row is the value of statistics for the LM test with 5 lags, the distribution of
these statistics is χ2 with 5 degrees of freedom10. All specifications of the model
that were used in estimation minimized the Schwarz criterion among all tested
specifications. Also, LR tests rejected the null hypothesis that some coefficient
has zero value. The Ljung-Box test based on the Q10 statistics does not reject

9The terms in brackets were added for the second factor.
10The critical values at 95% significance level are 18.31 and 11.07 for 10 and 5 degrees of

freedom for this distribution.
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the null hypothesis, thus there is no autocorrelation present in the standardized
residuals, i.e., more lags are not necessary in the mean equation. The Ljung-Box
test on squared standardized residuals is the test for the presence of second order
dependence in the residuals. From Table 3 one can conclude that the models are
well specified, so that there is no additional heteroscedasticity in the residuals.
This conclusion is further supported by the LM test of the null hypothesis that no
ARCH process is presented in the residuals. This hypothesis cannot be rejected
on any reasonable level of significance. All 3 specifications were tested using above
mentioned bias tests with the result that one cannot reject the hypothesis that
the volatility processes are not misspecified.

When taking the case of the Slovak Republic, it is possible to see that there
is a strong autocorrelation presented in the data (from the Q statistics in Table
4). The above mentioned specification tests were performed and 3 lags in the
mean equation and GARCH(1,1) for variance process were chosen as the optimal
specification for the second and the third factor. The first factor is much more
problematic. From the time evolution of interest rates in the Slovak case one can
see a sharp drop around the end of November in 2002, caused by a decrease in the
central bank’s discount rate. This drop is represented by extremely large values
in the first factor, which caused either some numerical instability in the GARCH
parameters estimation or even the impossibility of numerical estimation. Due to
numerical instability it is not possible to change this outlier as it would change
dramatically the estimated values of parameters. Under these conditions, the one
with 2 lags in the mean equation and GARCH(2,1) parametrization was chosen as
the best specification for the first factor. The results of the estimation are in Table
6. The Negative and Positive Bias tests show that the processes are not misspec-
ified. The Sign Bias test returns significant statistics for the third factor, where
the residuals are slightly asymmetric. The second order effects in the residuals are
however captured, and all other tests are positive for this specification.

For Hungary, there is no autocorrelation presented as the Q statistics are sta-
tistically not significant. Thus in this case it is possible to use the mean equation
without lags of dependent variables. After the usual specification testing proce-
dure, one can conclude that the most appropriate model is GARCH(1,1) in all
cases. However, the LR tests and the Schwarz criterion indicated other feasible
specifications, but in order to have a more parsimonious model I decided for the
simple GARCH(1,1) process without lags in the mean equation. The other possi-
bility was the specifications with 2 or 3 lags in the mean equation and GARCH(2,0)
or GARCH(1,2) processes. The former mentioned specification can be used be-
cause not only the Sign Bias tests indicated that it is the correct specification but
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also the Ljung-Box and the LM tests have fairly low (insignificant) statistics. The
estimation results are in Table 9.

The rates for Poland show the significant presence of autocorrelation as the Q

statistics are statistically significant for all rates except the one with three month
maturity. However, after the specification testing procedure, one can decide to
employ one lag of the dependent variable on the RHS of the mean equation only
for the first and the third factor. For the second factor it was not necessary, as
was shown by the LR test and the Ljung-Box on the residuals. So, the changes in
a shape of the yield curve in this case does not depend on past observations. The
standard deviation of the changes in interest rates are higher than in the previous
cases. Also the weights of principal components are higher. These facts signalize
that the volatilities for interest rates in Poland are of higher levels than those for
the previous currencies: one could observe this mainly at the shortest examined
rate. The Sign Bias tests again do not show any misspecification of the model, as
the histogram of residuals is symmetric around 0.

7 Estimation results

7.1 Czech Republic

As expected, the constant coefficients in the mean equations are statistically unim-
portant. However, the sums of β coefficients for the second and the third factor
are large, showing that there are fairly persistent volatilities of components and
that these components in the Czech case are almost nonreactive to the inflow of
new information. The opposite case is the first factor. The constant term in the
GARCH specification is large together with the high value of α1 coefficient. It
follows that the volatility of the first factor is high and is very dependent on past
income of news. The higher shock is followed by the period of higher volatility.
This suggests that after the horizontal movement of the whole yield curve (which
is the consequence of a shock in the first factor) one can expect more intensive
trading in the next trading day. This result is consistent with the observed facts
that the interest rates in the Czech Republic show a very low level of volatility
and they remain relatively fixed for a number of days and the periods of relatively
higher volatilities follow mainly after the drops in the yield curve levels. This is
also supported by the levels of weights for the first principal component, whose
values vary at around 0.35, so only one third of the shock is translated into the
movement in the horizontal direction. The high minimal value of the variance of
shock in the first factor (i.e., α0) indicate that it is much more probable to have
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an unexpected shock in the horizontal movement of the yield curve than in the
change of its slope or shape.

Using the estimated results, it is possible to generate the time evolution of
instantaneous conditional covariance and correlation matrices. As an illustration,
the conditional correlation matrix of PRIBOR rates as seen on the market on 28
November 2003 can be found in Figure 2. Figure 3 shows the estimated instanta-
neous conditional volatility of the 1 month PRIBOR rate.

Both images are fairly consistent with the data. Although the overall volatility
level is low, the periods of “increased” volatility level in Figure 3 correspond to the
periods with higher market activity (mostly after significant drops in the interest
rate, which also confirms the conclusions from the previous paragraphs). Similarly,
the correlation surface calculated is consistent with the market development seen
around the end of November 2003.

From these facts is it clear that the calibration procedure is able to reveal the
true market development and as such can be used in the pricing of IR sensitive
derivatives. We are able to ascertain the development of conditional correlations
and volatilities among the rates, which are factors influencing the prices of such
derivatives.

7.2 Slovak Republic

The analysis of results is different from the previous case. The constant coefficients
are again statistically unimportant, as one may expect. What is more interesting
is the fact that the lag coefficient are (except the 2nd lag for the first factor)
negative. This means that greater changes (in absolute values) of the factors tend
to be followed by smaller changes of the opposite sign. So, for example, a higher
increase in the level of interest rates should be followed by a smaller decrease
of the level (or vice-versa), which is a correction often observable in financial
markets. For the first factor there is some autocorrelation left in the residuals,
as one can observe from the value of Q(10) statistics, however, using more lags
does not help. We are interested mainly in the volatility analysis. The LM test
statistics are fairly low in this case, similarly as are Q2(10) statistics, which is a
sign that heteroscedasticity or second order effects were well captured in this case.
From the estimation results one can observ that the processes for variances of the
shocks (hi,t) look like there are strong suspicions for unit root presence, as the
sum of α and β coefficients is very close to zero. The reaction to the inflow of
new information concerning the variance of the first component is very high, so
there is a high probability that a shock in the first component will influence the
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volatilities of interest rates significantly. The persistence of the variance is fairly
high for the last two components and thus the variance stays high for a longer
time after a high shock. All these results suggest that the volatility of the interest
rates in Slovakia could be fairly high after high shocks.

The next figure is the correlation surface as of 28 November 2003 (Figure 5).
The time evolution of volatility of the 1 month BRIBOR rate is in Figure 6. The
volatilities higher than 0.06 are not in this graph in order to increase the resolution
of the figure. Here it is possible to see the confirmation of the conclusions from
the previous paragraph that the high shock in the first factor will influence very
significantly the volatility of rates. The highest shock is dated 18 November 2002,
when the Slovak Central Bank lowered the discount rate (at that time the official
rate for the refinancing of banks) from 8% to 6.5%. Thus in the next few days
the conditional volatility was affected for all rates, as can be seen from Figure 4.
Otherwise, the conditional volatility is low, mostly under 1%. Due to this sharp
change in level, it would be more suitable to use some type of switching regime
GARCH. However, there are only 250 observations after the break, which are not
enough to ensure stability of estimated coefficients. This use of switching regime
would also be more reasonable from the pricing point of view. The estimated
volatility levels are unnecessarily high and it took some time for the shock to
disappear.

With the exception of this break in level of the interest rates, our approach is
able to reveal the market course of events. For example, the correlation surface
shows can reveal the fact that in the last examined trading days the longer matu-
rities (from 6 to 12 months) were stable, while the shorter ones were increasing.
This is in accordance with Figure 5, where there is a small negative correlation be-
tween short-term and long-term IR rates. Also to model is able to capture second
order effects of all factors, as the residuals show no evidence for heteroscedasticity.
However, the estimation problems and numerical instability are drawbacks in the
case of the Slovak Republic. This is mainly caused by the great change in the level
of interest rates.

7.3 Hungary

The results of the estimation are quite interesting. Both Q statistics are equal
almost to zero, similarly to the LM test statistics. This is a sign that there
is no autocorrelation hidden in the residuals as well as no second order effects.
Coefficients by innovation term (α1) are very high for all 3 estimated principal
components. This means that the impact of shocks to instantaneous variance in
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the next period is large. This fact can indicate that after significant shocks, the
intensity of trading increases. On the other side, the persistence of the variance
is even lower than in the case of the Slovak crown. The α0 coefficient for the first
factor, meaning the constant in the volatility process, is relatively high so that
the variance or volatility connected with the first coefficient should be higher than
with the previous currency. With the next figures, it is possible track the conse-
quences of these facts. The shocks are much more frequent than in the previous
cases, and they also do not have a long duration. Moreover the rates have higher
volatilities after the shocks (probably due to more intensive tradings). Also the
estimated correlations at the end of November 2003 are in line with the evolution
of the market (Figures 8, 9), where the rates are decreasing simultaneously. The
correlation between the shortest and the longest rate is around 0.6. Figure 9 is
again adapted in such a way that the volatilities higher than 0.2 are not shown in
this graph in order to increase the resolution of the figure.

The previously stated facts may cause problems when using this calibration
for pricing IR derivatives, as the external shocks to volatility are too high and too
frequent. When comparing the estimated periods of high volatility with Figure 7,
it is possible to conclude that the model is again able to capture the periods of
high volatility in the data, however, these periods may cause instability of prices
dependent on these factors.

7.4 Poland

From the results of the regression in Table 12, it is clear that in this case, there
is no suspicion for the presence of an unit root in the GARCH processes. The
first and the third components have a fairly persistent variance, however, the
second component shows a higher responsiveness to the random shocks. This
means that the trend in the changes in the level is stable (with small influences
from innovations), while the changes in the slope are more chaotic but last only
for a short time. This is also in accordance with the conclusion from the last
paragraph that the second factor does not account for autocorrelation and thus
does not depend on past movements. Total variance explained by the first factor
is relatively low in the case of Poland; it suggests that the volatility of rates are
more connected with higher factors. The high weights of the second factor for
the shorter maturities correspond with the observed volatile movements of these
maturities.

In Figure 12 one can see that in November 2003, the one month interest rate
had a higher volatility than the long-term average. This may be the reason for
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lower correlations of shorter interest rates (week and month) with the longer in-
terest rates, as is it observable in Figure 11. Also, the predicted behavior of the
volatility can be seen. The high persistence of the variance (showed by the large
values of β1 parameters) is visible, as periods with higher volatility alternate with
periods with lower volatility. This fact can be seen as a confirmation that in this
case the calibration methodology is suitable and the conditional parameters coin-
cide well with the market development. From all 4 countries the Polish market
seems to be the most suitable for the development of interest rate derivatives.
There are no sudden breaks in the levels, the estimation procedures work very
well in this case and the specifications of factor are very parsimonious.
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8 Conclusions

In this paper a new methodology is proposed for the calibration of the Brace-
Gatarek-Musiela (BGM) model of interest rates. The BGM model is chosen be-
cause it is one of the most sophisticated models of interest rates and it has very
good pricing implications. A new way to perform the calibration is needed in
cases where the standard calibration technique (calibrate to fit prices of caps or
swaptions, i.e., implied volatility) could not be used. The methodology is used
for the calibration of this model to the markets of 4 transition countries (Czech
Republic, Slovak Republic, Hungary and Poland) and an analysis of these markets
is carried out based on the calibration.

There are more reasons why to perform such research. The exact pricing
of derivatives is very important not only for business but also for policymakers.
An example of the importance of exact pricing for business is hedging. Hedging
based on derivatives can be successful only if correct prices of derivatives are
available; otherwise, there is a possibility of arbitrage. For the market regulator
it is essential that the correct pricing rules can be set up to avoid market failures.
Another notable outcome of the research is that it may help to start up trades
with derivatives in the emerging markets.

The estimation results and estimated evolution of conditional volatilities and
correlations (which are in fact the parameters of the BGM model) are generally
in correspondence with the true market development. However, only the Czech
and Polish markets are developed to such degree that it is possible to use the
calibrated interest rate model for pricing IR sensitive derivatives. The other two
countries (Slovakia and Hungary) do not have markets developed enough to use
such a strong model for pricing IR derivatives.
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A The models of interest rates

A.1 The Heath, Jarrow, Morton (1992) model

The HJM model is based on the assumptions (HJM.1) and (HJM.2). The
definition of forward rates f(t, T ) allows us to write the equation for the instant
interest rate rt = f(t, t). Then, the savings account satisfies following equation:

Bt = exp
(∫ t

0
f(u, u)du

)
∀t ∈ 〈0, T ∗〉. (12)

The following lema describes the dynamics of prices of bonds P (t, T ) under
the actual (real) probability measure P.

Lemma 1 The prices of bonds P (t, T ) satisfy relationship

dP (t, T ) = P (t, T ) (a(t, T )dt + b(t, T ) · dWt) , (13)

where a and b are defined as

a(t, T ) = f(t, t)− α∗(t, T ) +
1
2
|σ∗(t, T )|2, b(t, T ) = −σ∗(t, T ),

and for arbitrary t ∈ 〈0, T 〉 is

α∗(t, T ) =
∫ T

t
α(t, u)du, σ∗(t, T ) =

∫ T

t
σ(t, u)du. (14)

Proof: Let’s denote It = lnP (t, T ). From (1) and (2) we get

It = −
∫ T

t
f(0, u)du−

∫ T

t

∫ t

0
α(v, u)dvdu−

∫ T

t

∫ t

0
σ(v, u) · dWvdu.

From the Fubini theorem and technical conditions of HJM model follows that

It = −
∫ T

t
f(0, u)du−

∫ t

0

∫ T

t
α(v, u)dvdu−

∫ t

0

∫ T

t
σ(v, u) · dWvdu,

or equivalently

It = −
∫ T

0
f(0, u)du−

∫ t

0

∫ T

v
α(v, u)dvdu−

∫ t

0

∫ T

v
σ(v, u) · dWvdu+

+
∫ t

0
f(0, u)du +

∫ t

0

∫ t

v
α(v, u)dvdu +

∫ t

0

∫ t

v
σ(v, u) · dWvdu.
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The instantaneous interest rate can be written as

ru = f(u, u) = f(0, u) +
∫ u

0
α(v, u)dv +

∫ u

0
σ(v, u) · dWv. (15)

From this follows

It = I0 +
∫ t

0
rudu−

∫ t

0

∫ T

u
α(u, v)dvdu−

∫ t

0

∫ T

u
σ(u, v)dv · dWu.

Taking into account (14) one gets:

It = I0 +
∫ t

0
rudu−

∫ t

0
α∗(u, T )du−

∫ t

0
σ∗(u, T ) · dWu.

It is enough now to use the Ito theorem to yield the claim of the lemma. ¤

Let us now consider T as a particular fixed maturity. If one defines the dis-
counted bond process as Z(t, T ) = B−1

t P (t, T ), then it satisfies the following
equation:

dZ(t, T ) = Z(t, T ) (b(t, T ) · dWt + (a(t, T )− rt) dt) ,

Also let us define process γt as such a change of drift of process Z(t, T ) that it
becomes a martingale. Then with the help of the Girsanov theorem, there exists
a measure P∗ equivalent with the real measure P such that W ∗

t = Wt +
∫ t
0 γsds

is P∗-Brownian motion. These measure will be denoted as risk-neutral. Then the
process for the discounted bond can be written as

dZ(t, T ) = Z(t, T )b(t, T )dW ∗
t .

The dynamics of the bond prices is under the risk-neutral measure

dP (t, T ) = P (t, T ) (b(t, T )dW ∗
t + rtdt) . (16)

Let us assume, that there is a claim X, which pays in time S < T . Let us
define the process Et as P∗ martingale:

Et = EP∗
(
B−1

S X|Ft

)
.

Now, one can use the martingale representation theorem. This theorem states
that there exists F-predictable process φ such that

Et = E0 +
∫ t

0
φsdZ(s, T ).
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If one defines a replication portfolio formed with the T -bond and saving accountBt

such that the portfolio is replicating claim X in the time S. More concretely, in
time t one holds

• φt units of the T -bond and

• ψt = Et − φtZ(t, T ) units of saving account.

This portfolio has this value in time t:

Vt = φtP (t, T ) + ψtBt = φtP (t, T ) + (Et − φtZ(t, T ))Bt = BtEt

Vt = BtEP∗
(
B−1

S X|Ft

)
. (17)

So, if X is the payment of a derivative maturing in time S then its value in
time t is

Vt = EP∗
(

exp
(
−

∫ T

t
rsds

)
X|Ft

)
. (18)

However, the bond maturing in time S is the claim X = 1. Using (18), it follows
that its non-arbitrage value has to be BtEP∗

(
B−1

S |Ft

)
, respectively

P (t, S) = EP∗
(

exp
(
−

∫ S

t
rsds

)
|Ft

)
t ≤ S ≤ T. (19)

The discounted S-bond can be written than as

Z(t, S) = B−1
t P (t, S) = EP∗

(
B−1

S |Ft

)
.

It means that even process Z(t, S) is a martingale under P∗ measure. From
this fact follows that the process γt has to be equal for all maturities and thus it
is independent from T . If one rewrites the definition of the process γt and he uses
that ∂γt

∂T = 0 he gets

∫ T

t
α(t, u)du =

1
2
b2(t, T )− b(t, T )γt

α(t, T ) = σ(t, T ) (γt − b(t, T )) .

This proves the theorem 1. This theorem actually states that under the risk-
neutral measure the forward rates cannot have arbitrary drifts but only drifts
derived from the volatility process.
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A.2 The Brace, Gatarek, Musiela (1997) model

In this section the dynamics of L(t, T ) rates, defined in 6, is derived under the
risk-neutral measure. This derivation is based on the original Brace et al. (1997)
article. The advantage of the BGM is that the L(t, T ) rates can be modelled as
lognormal.

From (6) a (1) one gets

L(t, T ) =
exp

(∫ T+δ
T f(t, u)du

)
− 1

δ
. (20)

In (5) one want to choose the volatility σ(t, T ) such that it would be possible
to obtain the equation for L(t, T ) in the following form:

dL(t, T ) = (· · · )dt + L(t, T )γ(t, T ) · dW ∗
t

for some γ(t, T ). From (5) follows:

d

∫ T+δ

T
f(t, u)du =

∫ T+δ

T
df(t, u)du = (21)

=
∫ T+δ

T
σ(t, u)b(t, u)du +

∫ T+δ

T
σ(t, u)dW ∗

t =

=
∫ T+δ

T

1
2

∂b2(t, u)
∂u

du + [b(t, T )− b(t, T + δ)] dW ∗
t =

=
1
2

[
b2(t, T )− b2(t, T + δ)

]
dt + [b(t, T + δ)− b(t, T )] dW ∗

t .

Then

dL(t, T ) = d
exp

(∫ T+δ
T f(t, u)du

)
− 1

δ
(22)

=
1
δ

exp
(∫ T+δ

T
f(t, u)du

)
d

∫ T+δ

T
f(t, u)du +

+
1
2δ

exp
(∫ T+δ

T
f(t, u)du

)(
d

∫ T+δ

T
f(t, u)du

)2

=

(21)
=

1
δ

[1 + δL(t, T )]
[
1
2

[
b2(t, T + δ)− b2(t, T )

]
dt+

+ [b(t, T )− b(t, T + δ)] dW ∗
t +

1
2

[b(t, T )− b(t, T + δ)]2 dt

]

=
1
δ

[1 + δL(t, T )] [b(t, T )− b(t, T + δ)] [−b(t, T + δ)dt + dW ∗
t ] .
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If one defines now the process λ(t, T ) as:

λ(t, T )L(t, T ) =
1
δ

[1 + δL(t, T )] [b(t, T )− b(t, T + δ)] , (23)

he obtain

dL(t, T ) = −λ(t, T )L(t, T )b(t, T + δ)dt + λ(t, T )L(t, T )dW ∗
t . (24)

Equation (24) can be conveniently rewritten as

dL(t, T ) = λ(t, T )L(t, T ) [−b(t, T + δ)dt + dW ∗
t ] . (25)

If one combines the previous condition (24) with the Girsanov theorem, he obtains

dL(t, T ) = λ(t, T )L(t, T )dW T+δ
t , (26)

where for all t ∈ 〈0, T + δ〉

W T+δ
t = W ∗

t −
∫ T+δ

0
b(u, T + δ)du. (27)

The process W T+δ
t is Brownian motion under the measure PT+δ ∼ P∗, defined

with the help of the Radon-Nikodym derivative as

dPT+δ

dP∗
= exp

(∫ T+δ

0
b(u, T + δ) · dW ∗

u −
1
2

∫ T+δ

0
|b(u, T + δ)|2du

)
. (28)

Let us denote the measure PT+δ as the forward rate connected with the maturity
T +δ. Musiela and Rutkowski (1998) show that if the price of some tradable asset
(with no dividends and coupons), expressed in P (t, T ) units, is martingale under
the PT measure, so as numeraire under this measure is the price of a bond maturing
in the time T .

In the following part the model of forward LIBOR rates for the case of discrete
time tenor will be constructed, based on the following assumptions:
(LR.1): For the arbitrary maturity T ≤ T ∗ − δ, is given bounded, deterministic
function λ(·, T ) ∈ Rd, which represents the volatility of the forward rate L(·, T )
process.
(LR.2) Let us assume the existence of a strictly decreasing and positive initial
term structure P (0, T ), T ∈ 〈0, T ∗〉, which means also the existence of the initial
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curve L(0, T ) of forward rates.

L(0, T ) = δ−1

(
P (0, T )

P (0, T + δ)
− 1

)
∀T ∈ 〈0, T ∗ − δ〉.

Discrete tenor

Let us assume that the time horizon T ∗ is a multiple of δ; let us say T ∗ = Mδ for
some natural M . In this subpart we will concentrate on the forward LIBOR rates
with maturities in discrete time tenor {0, T(M−1)δ, T(M−2)δ, · · · ,

Tδ, T
∗}, where Tmδ = T ∗ −mδ for m = 1, 2, · · · ,M − 1. This procedure is based

on backward induction, when one begins with the definition of the LIBOR rate
with the longest maturity possible, L(t, Tδ). Let us assume that we have specified
lognormal volatilities λ(t, Tmδ) for m = 1, 2, · · · ,M − 1. Let us postulate that
the rate L(t, Tδ) is under the probability measure PT ∗ driven by the following
stochastic differential equation:

dL(t, Tδ) = L(t, Tδ)λ(t, Tδ) · dW T ∗
t , (29)

with initial condition

dL(0, Tδ) = δ−1

(
P (0, Tδ)
P (0, T ∗)

− 1
)

. (30)

Because the initial term structure is strictly decreasing, it is clear that L(t, Tδ)is
positive and for fixed t ≤ T ∗ − δ the random variable L(t, Tδ) has the lognormal
distribution under PT ∗ . This way the dynamics of LIBOR rates with maturity in
the last date of our tenor is defined.

In the next step the forward LIBOR rate for the date T ∗2δ with the use of (23)
will be defined, where T = Tδ, so that mean and volatility are specified as

λ(t, Tδ) =
1 + δL(t, Tδ)

δL(t, Tδ)
[b(t, Tδ)− b(t, T ∗)]

µ(t, Tδ, T
∗) =

δL(t, Tδ)
1 + δL(t, Tδ)

λ(t, Tδ), (31)

where as µ(t, T, T + δ) is denoted b(t, T )− b(t, T + δ). Let us define process W Tδ
t ,

corresponding with the date Tδ as

W Tδ
t = W T ∗

t −
∫ t

0
µ(u, Tδ, T

∗)du ∀t ∈ 〈0, Tδ〉.

This process is connected with the date Tδ (due to (27), it describes the rela-
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tionship between Brownian motions under measures PT+δ a P∗)
Because µ(t, Tδ, T

∗) is bounded from the Girsanov theorem the existence of this
process is clear and probability measure associated to it PTδ

∼ PT ∗ under which
process WTδ

is an Brownian motion. It is given by Radon-Nikodym derivative

dPT δ

dPT ∗
= exp

(∫ Tδ

0
µ(u, T + δ) · dW T ∗

u − 1
2

∫ Tδ

0
|µ(u, T + δ)|2du

)
.

From (28) one can see that it is the forward rate connected with maturity Tδ. Now
it is possible to specify the dynamics of LIBOR rate for the maturity T2δ under
the measure PT δ. Analogically as in (29) let’s define

dL(t, T2δ) = L(t, T2δ)λ(t, T2δ) · dW Tδ
t , (32)

with the initial condition

L(0, T2δ) = δ−1

(
P (0, T2δ)
P (0, Tδ)

− 1
)

. (33)

From (23) we get the value of the needed change of Brownian motion W Tδ
t in order

to get to the values connected with the date T2δ:

µ(t, T2δ, Tδ) =
δL(t, T2δ)

1 + δL(t, T2δ)
λ(t, T2δ) = b(t, T2δ)− b(t, Tδ).

If we have defined the process µ(t, T2δ, Tδ), we can define the pair (W T2δ ,PT2δ
),

connected with the maturity T2δ, and so on. With backward induction to the
first relevant date T(M−1)δ, we can construct the class of forward LIBOR rates
L(t, Tmδ), m = 1, · · · ,M − 1. With this procedure lognormal distribution of
each process L(t, Tmδ) is assured under corresponding forward probability measure
PT(m−1)δ

. We have for all m = 1, · · · ,M − 1

dL(t, Tmδ) = L(t, Tmδ)λ(t, Tmδ) · dW
T(m−1)δ

t , (34)

where dW
T(m−1)δ

t is a Brownian motion under PT(m−1)δ
.

This finishes the derivation of the lognormal model of forward LIBOR rates
under discrete tenor. Before the end, let us bring in the explicit relationship among
the Brownian motions connected with the adjacent maturities:

W
Tm−1δ

t = W Tmδ
t +

∫ t

0

δL(u, Tmδ)
1 + δL(u, Tmδ)

λ(u, Tmδ)du. (35)
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Figure 1: Time evolution of PRIBOR rates
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Figure 2: Estimated correlation surface of CZK as of 28 November 2003
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Figure 3: Estimated conditional volatility of 1 month PRIBOR rate
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Figure 5: Estimated correlation surface of SKK as of 28 November 2003
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Figure 6: Estimated conditional volatility of 1 month BRIBOR rate
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Figure 7: Time evolution of BUBOR rates
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Figure 9: Estimated conditional volatility of 1 month BUBOR rate
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Figure 12: Estimated conditional volatility of 1 month WIBOR rate
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Series Mean Std. Dev. Minimum Maximum Sum Q10 stat
Y WEEK -0.00132 0.00883 -0.112 0.0798 -1.978 9.59

Y 2W -0.00132 0.00877 -0.109 0.0915 -1.982 8.99
Y M -0.00135 0.00916 -0.107 0.1101 -2.018 22.1
Y 2M -0.00136 0.00860 -0.107 0.1031 -2.036 11.4
Y 3M -0.00137 0.00838 -0.103 0.0832 -2.044 15.9
Y 6M -0.00135 0.00848 -0.084 0.0853 -2.024 28.8
Y 9M -0.00133 0.00822 -0.079 0.0724 -1.990 72.3
Y Y -0.00131 0.00842 -0.079 0.0726 -1.956 83.4

Table 1: Characteristics of time series for CZK

Component 1 2 3 4 5 6 7 8
Y WEEK 0.322 -0.495 0.411 -0.249 0.012 0.133 0.631 0.050

Y 2W 0.332 -0.477 0.316 -0.024 0.037 -0.056 -0.742 -0.074
Y M 0.365 -0.245 -0.303 0.730 -0.169 -0.342 0.183 0.010
Y 2M 0.376 -0.058 -0.521 -0.021 0.206 0.729 -0.064 0.015
Y 3M 0.376 0.057 -0.423 -0.577 0.162 -0.558 0.019 -0.007
Y 6M 0.361 0.327 0.097 -0.143 -0.791 0.115 -0.080 0.292
Y 9M 0.350 0.408 0.238 0.082 0.045 0.036 0.073 -0.798
Y Y 0.339 0.432 0.334 0.206 0.522 -0.052 -0.011 0.517

Eigenvalue 6.314 1.142 0.262 0.099 0.068 0.051 0.030 0.030
Total variance expl. 0.789 0.932 0.964 0.977 0.985 0.992 0.996 1.000

Table 2: Principal components weights for CZK
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Component First Second Third
Coefficient t-stat Coefficient t-stat Coefficient t-stat

Constant -0.033 -0.269 0.024 1.297 0.004 0.319
b1 0.414 2.548 0.214 2.780 0.081 2.025
b2 - - 0.077 2.084 - -
α0 3.952 2.921 0.006 0.502 0.007 1.335
α1 0.905 2.486 0.069 0.831 0.187 2.651
β1 0.011 0.217 0.268 2.298 0.059 1.547
β2 - - 0.658 6.792 0.743 13.534

Log Likelihood -3368.12 -1975.57 -877.21
Schwarz B.I.C. 3386.58 2001.14 899.12

Q10 stat 10.8 17.9 9.68
Q2

10 stat 0.472 10.8 6.11
LM test stat 0.309 9.37 2.78

Table 3: Regression results for CZK

Series Mean Std. Dev. Minimum Maximum Sum Q10 stat
Y WEEK 0.000221 0.0298 -0.161 0.1661 0.193 72.9

Y 2W -0.000064 0.0179 -0.179 0.1101 -0.056 53.8
Y M -0.000300 0.0095 -0.187 0.0616 -0.261 34.6
Y 2M -0.000352 0.0092 -0.193 0.0615 -0.307 63.3
Y 3M -0.000365 0.0093 -0.179 0.0694 -0.317 65.5
Y 6M -0.000443 0.0084 -0.141 0.0675 -0.386 189
Y 9M -0.000490 0.0088 -0.158 0.0978 -0.427 180
Y Y -0.000503 0.0090 -0.159 0.0992 -0.438 165

Table 4: Characteristics of time series for SKK

Component 1 2 3 4 5 6 7 8
Y WEEK 0.196 -0.646 0.294 -0.155 0.151 -0.256 0.582 0.083

Y 2W 0.256 -0.586 0.123 -0.039 0.059 0.212 -0.720 -0.085
Y M 0.373 -0.224 -0.502 0.442 -0.550 0.137 0.203 -0.020
Y 2M 0.395 0.102 -0.479 -0.057 0.388 -0.644 -0.184 0.044
Y 3M 0.399 0.138 -0.256 -0.446 0.328 0.633 0.221 0.012
Y 6M 0.381 0.231 0.269 -0.543 -0.610 -0.216 -0.099 0.072
Y 9M 0.386 0.231 0.363 0.297 0.129 -0.020 0.087 -0.743
Y Y 0.383 0.228 0.384 0.439 0.154 0.096 -0.044 0.652

Eigenvalue 5.604 1.763 0.314 0.123 0.081 0.048 0.039 0.027
Total variance expl. 0.701 0.921 0.960 0.976 0.986 0.992 0.997 1.000

Table 5: Principal components weights for SKK
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Component First Second Third
Coefficient t-stat Coefficient t-stat Coefficient t-stat

Constant -0.017 -0.215 0.074 1.297 0.011 0.900
b1 -0.245 -1.277 -0.115 2.780 -0.079 -1.714
b2 0.077 0.413 -0.248 2.084 -0.115 -2.501
b3 - - -0.157 2.084 -0.011 -0.239
α0 0.259 1.601 0.004 0.502 0.003 1.308
α1 0.325 1.431 0.037 0.831 0.066 2.427
α2 0.264 0.822 - - - -
β1 0.405 2.382 0.957 6.792 0.919 27.134

Log Likelihood -1404.41 -1219.72 -426.24
Schwarz B.I.C. 1428.10 1243.40 449.92

Q10 stat 28.2 14.5 6.58
Q2

10 stat 2.09 14.2 7.07
LM test stat 0.656 6.917 6.410

Table 6: Regression results for SKK

Series Mean Std. Dev. Minimum Maximum Sum Q10 stat
Y WEEK 0.00201 0.0487 -0.404 0.620 0.815 7.63

Y 2W 0.00183 0.0431 -0.389 0.506 0.746 10.6
Y M 0.00163 0.0371 -0.321 0.313 0.663 16.6
Y 3M 0.00129 0.0274 -0.197 0.204 0.524 16.6
Y 6M 0.00104 0.0229 -0.184 0.179 0.425 17.3
Y 9M 0.000997 0.0216 -0.180 0.150 0.404 13.9
Y Y 0.000966 0.0218 -0.190 0.127 0.392 7.42

Table 7: Characteristics of time series for HUF

Component 1 2 3 4 5 6 7
Y WEEK 0.337 -0.509 0.593 0.114 0.018 0.488 -0.155

Y 2W 0.367 -0.445 0.109 -0.015 0.029 -0.785 0.196
Y M 0.389 -0.282 -0.570 -0.595 -0.144 0.245 -0.095
Y 3M 0.414 0.035 -0.435 0.596 0.518 0.113 -0.030
Y 6M 0.401 0.277 0.007 0.243 -0.613 0.144 0.554
Y 9M 0.380 0.393 0.114 0.046 -0.281 -0.227 -0.745
Y Y 0.352 0.481 0.329 -0.464 0.505 0.029 0.255

Eigenvalue 5.567 1.219 0.142 0.040 0.012 0.011 0.008
Total variance expl. 0.795 0.969 0.990 0.996 0.997 0.999 1.000

Table 8: Principal components weights for HUF
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Component First Second Third
Coefficient t-stat Coefficient t-stat Coefficient t-stat

Constant -0.238 -1.990 0.105 1.147 0.023 0.507
α0 1.040 1.255 0.074 0.956 0.010 0.554
α1 0.585 7.438 0.537 5.420 0.626 0.956
β1 0.386 4.738 0.451 4.512 0.351 0.539

Log Likelihood -825.01 -472.68 -1.061
Schwarz B.I.C. 837.02 484.69 13.074

Q10 stat 0.06 0.89 0.704
Q2

10 stat 0.05 0.09 0.096
LM test stat 0.021 0.037 0.041

Table 9: Regression results for HUF

Series Mean Std. Dev. Minimum Maximum Sum Q10 stat
Y WEEK -0.00127 0.0298 -0.166 0.196 -0.938 27.0

Y M -0.00163 0.0113 -0.0811 0.0543 -1.207 40.3
Y 3M -0.00160 0.00816 -0.0523 0.0540 -1.183 8.9
Y 6M -0.00154 0.00755 -0.0455 0.0516 -1.140 32.0
Y 9M -0.00151 0.00741 -0.0431 0.0544 -1.118 55.7
Y Y -0.00148 0.00755 -0.0326 0.0573 -1.097 66.1

Table 10: Characteristics of time series for PLZ

Component 1 2 3 4 5 6
Y WEEK 0.259 0.717 -0.590 0.254 -0.060 0.003

Y M 0.387 0.453 0.418 -0.659 0.182 -0.001
Y 3M 0.445 0.060 0.539 0.507 -0.499 0.025
Y 6M 0.451 -0.201 0.029 0.360 0.782 0.112
Y 9M 0.442 -0.326 -0.264 -0.169 -0.142 -0.760
Y Y 0.429 -0.357 -0.337 -0.288 -0.285 0.639

Eigenvalue 4.091 1.154 0.331 0.194 0.154 0.074
Total variance expl. 0.682 0.874 0.930 0.962 0.988 1.000

Table 11: Principal components weights for PLZ

Component First Second Third
Coefficient t-stat Coefficient t-stat Coefficient t-stat

Constant 0.063 .929 0.055 1.472 -0.048 -0.269
b 0.168 3.617 0.072 1.224 -0.125 -2.465
α0 0.203 1.636 0.365 2.598 0.015 0.767
α1 0.115 2.577 0.399 2.579 0.071 1.146
β1 0.831 13.233 0.363 2.477 0.878 7.223

Log Likelihood -1458.68 -1053.24 -591.38
Schwarz B.I.C. 1475.19 1066.45 607.89

Q10 stat 10.8 3.56 8.74
Q2

10 stat 8.69 6.09 6.42
LM test stat 0.575 1.439 2.993

Table 12: Regression results for PLZ
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