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Abstract
The round-robin tournament format for N players is a scheme that matches players with
one another in all possible N(N − 1)/2 pairwise comparisons. A noisy round-robin tour-
nament adds the possibility of upsets, or noise, and hence reduces the power of the tour-
nament to reveal the true ranking of the players. In this article we study theoretically
(analytically and by way of computational simulations) the predictive power of noisy
round-robin tournaments for three prominent distributions of players’ abilities, as a func-
tion of the level of noise and the number of players. At first sight, some of our results (e.g.,
non-monotonicity as a function of the number of players N , which makes some ranges of
N non-optimal) are quite counterintuitive but should be of help to a tournament designer
who tries to maximize, or maybe minimize, the probability of the best player winning.
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Abstrakt
Turnajový formát “každý s každým” pro N hráč̊u je schéma, kde se odehraje všech
N(N −1)/2 možných srovnáńı. Př́ıitomnost šumu (která umožńı i v́ıtězstv́ı slabš́ıho hráče
nad silněǰśım) snižuje śılu, se kterou turnaj dokáže odhalit správný rank jednotlivých
hráč̊u. V článku studujeme teoreticky (analyticky i výpočetńımi simulacemi) predikčńı
śılu turnaj̊u typu “každý s každým” s šumem pro tři nejvýznamněǰśı rozděleńı hráčských
dovednost́ı jako funkci úrovně šumu a počtu hráčǔ v turnaji. Některé naše výsledky (např.
ztráta monotonicity v závislosti na počtu hráčǔ, která čińı některé intervaly počtu hráčǔ
neoptimálńı) jdou na prvńı pohled proti běžné intuici, ale měly by pomoci tv̊urc̊um tur-
naj̊u přui jejich snaze maximalizovat (či jindy minimalizovat) pravděpodobnost v́ıtězstv́ı
toho nejlepš́ıho.

1We thank Dirk Engelmann for his comments.
2dmitry.ryvkin@cerge-ei.cz
3andreas.ortmann@cerge-ei.cz or aortmann@yahoo.com

1



1 Introduction

Agents (individuals or teams) are usually rewarded based on their performance.

Often it is the relative performance that matters. As a means of assessing the

relative performance of agents, principals extensively use tournaments.

A tournament is a procedure that ranks a set of agents. Such a ranking can be

constructed in various ways. Prominent examples are “contests”, round-robin tour-

naments, and elimination tournaments. Contests are essentially one-shot all-pay

auctions whose properties have been widely discussed in the literature [e.g., theoret-

ically by Lazear and Rosen (1981), Green and Stokey (1983), Taylor (1995), Hvide

(2002); empirically by Knoeber and Thurman (1994); experimentally by Schotter

and Weigelt (1992), Gneezy et al (2003); see also reviews by Lazear (1999) and

Prendergast (1999)]. In contrast, round-robin tournaments and elimination tour-

naments are polar cases of schemes that compare agents pairwise and sequentially

in various degrees of completeness. These schemes allow (most) agents to perform

repeatedly, typically against a stream of ever changing opponents. A round-robin

tournament is a complete pairwise matching scheme. An elimination tournament is

an incomplete multi-stage pairwise matching scheme whose exact realization, and

efficiency, depends on the initial seeding and the history of play [see Ryvkin (2004)].

Sport provides us with a simple and useful language to describe tournaments.

Competitors are typically called players, and pairwise comparisons are called matches.

In every match, there is a winner and a loser, or there is a tie. Below we will use

this terminology.

In the presence of noise which affects the performance of players either positively

or negatively, a tournament can be thought of as a probabilistic device whose output

- the ranking - is a statistic of sorts of the “true” ordering of the set of players. Such

an ordering identifies who is the best player ex ante.
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In the present paper, we analyze theoretically (analytically and by way of com-

putational simulations), the properties of round-robin tournaments as a function

of noise level, number of players, and distribution of players’ abilities. In Ryvkin

(2004), employing essentially the technology laid out here, we analyze similarly elim-

ination tournaments. In future work, we will compare the properties of these two

polar matching schemes, as well as variants thereof.

In economics, round-robin tournaments have been discussed in the context of

public choice models such as voting schemes and decision rules in committees [see,

e.g., Levin and Nalebuff (1995), Ben-Yashir and Nitzan (1997), Esteban and Ray

(2001)]. In mathematics, round-robin tournaments have been studied as complete

directed graphs [see Harary and Moser (1966) for a review; Moon and Pullman

(1970) for a discussion of tournament matrices]. Importantly, Rubinstein (1980)

shows that the ranking that assigns 1 point to the winner and 0 to the loser of a

match, and then sums up every player’s points across all matches he or she played,

is a very “good” ranking scheme in the sense that it satisfies certain natural axioms.

Rubinstein (1980) also shows that it is the only such scheme. Below we will make

use of this result.

Our paper contributes to both literatures by analyzing theoretically the prob-

abilistic properties of a round-robin tournament and by studying these properties

across what we consider the most prominent distributions of player abilities. The

investigation of round-robin tournaments is an important step towards solving the

problem of optimal design [see Moldovanu and Sela (2004) for a theoretical study of

“contest architecture”; see more generally Roth (2002), for a discussion of how sim-

ulations with artificial agents and experiments with human subjects serve to extend

simple theoretical models, which become too complex in engineering-like situations].

The present paper is organized as follows: In Section 2 we present the general

setup. In Section 3 we discuss a model underlying the parametrization of winning
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probabilities. In Section 4 we calculate analytically the predictive power. In Section

5 we present and discuss our results. We conclude in Section 6.

2 General setup

Let P = {1, . . . , N} be a set of N players. A round-robin tournament on the set P
consists of all M = N(N − 1)/2 possible pairwise matches (i, j), 1 ≤ i < j ≤ N , of

the players.

Every match (i, j) has one of the two allowed outcomes: either i → j (player i

defeated player j) or j → i (player j defeated player i) 4. We introduce a variable

pij such that

pij = 1 if i → j, pij = 0 otherwise (1)

Since the ordering of matches is not important (all matches are assumed to be sta-

tistically independent) we will, for convenience, adopt the following (lexicographic)

ordering m = 1, . . . , M :

(i, j) : (1, 2) . . . (1, N) (2, 3) . . . (2, N) . . . (N − 1, N)

↓ ↓ ↓ ↓ ↓ ↓
m(i, j) : 1 . . . N − 1 N . . . 2N − 3 . . . M,

which can be described by

m(i, j) = N(i− 1)− i(i + 1)

2
+ j. (2)

The outcome of the tournament can then be represented by an M -bit binary

4We ignore the possibility of ties. We did so because the literature [e.g., Rubinstein (1980)]
does not provide us with a consistent point counting scheme. Introducing ties would have required
us to build a different model. We believe that such a model would not materially affect the results
that we are interested in: the effect of noise and distribution of players’ abilities.
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number b = 〈b1 . . . bM〉, where bm(i,j) = pij. There are 2M possible tournament

outcomes, ranging from 〈00 . . . 0〉 to 〈11 . . . 1〉.
The result of the tournament is an N -dimensional vector of scores s = (s1, . . . , sN)

where every player’s score is the number of wins she has, i.e. players start with a

score of 0 and then add 1 point for each win. Since every player plays N−1 matches

and the total number of matches is M , for any score vector s the follwing constraints

hold:
∑N

i=1
si = M, 0 ≤ si ≤ N − 1. (3)

Note that properties (3) are necessary but not sufficient for a vector s to be a score

vector. For example, not more than one component of s can equal 0 or N −1; many

other constraints can be identified.

If the outcome of the tournament, b, is known, then the score vector can be

calculated directly, using the function S, whose components are given by

Si(b) =
∑i−1

j=1
(1− bm(j,i)) +

∑N

j=i+1
bm(i,j), i = 1, . . . , N. (4)

The winners of the tournament are the players with maximal scores. There

may be more than one such player, and then an additional rule (perhaps another

tournament) has to be applied if one needs to determine the best among them. In

the present paper, we do not adopt any additional rules and consider all players

with a maximal score to be winners.

Assume now that the outcomes of the matches are random, i.e. in a match (i, j)

the result is i → j with some probability wij and j → i with probability wji = 1−wij.

Then every pij becomes a Bernoulli random variable with the probability of success

wij, and the tournament outcome b becomes a multivariate Bernoulli vector with
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independent components. The probability of outcome b is

P (b) =
∏N−1

i=1

∏N

j=i+1
w

bm(i,j)

ij (1− wij)
1−bm(i,j) . (5)

Also, the score vector s becomes a random vector satisfying conditions (3) and

other related constraints. The distribution of s is non-trivial since its components

are not independent. The probability density function (pdf) of s can be written as

π(s) =
∑

b∈{0,1}M

P (b)δ[s− S(b)]. (6)

Here the δ-function5 is M -dimensional; summation goes over all M -bit binary num-

bers; S(b) is determined by Eq. (4); P (b) is given by Eq. (5).

We are interested in the probability ρ1 for a specific player (player 1, for con-

creteness) to be among the winners of the tournament, i.e. to have a maximal

score. We will calculate this probability both analytically and using computational

simulations.

Winning probabilities wij can be given exogenously, through past statistics or

rating data. Alternatively, we can calculate the winning probabilities using a simple

model in which it is assumed that every player has a power level (or ability) which

can be represented by a single real number. The power level is assumed to be dis-

tributed in the population of players with some known pdf f(·). The randomness is

introduced through the assumption that in every match the power levels of players

are distorted by additive noise, whose pdf g(·) is known. It is then possible to cal-

culate the average winning probabilities wij, where the indices indicate the ordering

5The Dirac delta-function δ(x) can be defined in many equivalent ways, one of which, δ(x) =
limε→0(2πε2)−1/2 exp[−x2/(2ε2)], is the zero-variance limit of the normal probability density. The
delta-function δ(x) can be visualized as a very high but narrow peak of area 1 centered at x = 0.
Its key property is that for any continuous function g(x) the integral

∫ b

a
dxδ(x − x0)g(x) = g(x0)

when a < x0 < b and 0 otherwise, i.e. the delta-function ”cuts” a particular point out of any
continuous function, with which it is integrated as a weight.
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of players by their power level6.

For actual calculations, we have chosen three prominent distributions of players’

abilities, or power levels: the uniform, the normal, and the Pareto distribution. The

uniform and normal distributions are useful, and frequently used, benchmarks and

need no further justification as such. Empirical evidence [e.g., Reed (2001); see

also Hertwig et al. (1999), or Harrison (2004)] suggests in addition that the Pareto

distribution is a widespread and pervasive phenomenon. In the next Section we

present the model that allows us to calculate wij.

3 Parametrization of the winning probabilities

Let f(x) be the pdf of the power levels in the population of players. Suppose N

players are drawn from that population and ordered by their power levels x1, ..., xN

so that x1 ≥ x2 ≥ ... ≥ xN .

Consider an arbitrary match (i, j). The performance levels of the players in this

match will be random numbers Yi = xi + εi and Yj = xj + εj, where ε’s represent the

noise, which is i.i.d. across players and across matches with pdf g(ε). Since (xi, xj)

are fixed numbers at this point, Y ’s will be distributed with pdf’s hi(y|xi) = g(y−xi)

and hj(y|xj) = g(y− xj). Therefore, the probability for player i to be the winner in

this match is

w̃(xi, xj) ≡ Pr{Yi − Yj ≥ 0|xi, xj} =

∫ ∞

0

dz

∫ ∞

−∞
dz′g(z + z′ − xi)g(z′ − xj). (7)

6Conceptually, there are several ways to think about parametrization of the winning probabil-
ities. One alternative may be to model the results of the tournament as stemming directly from
the distribution of players’ abilities and to avoid the intermediate stage of calculating the winning
probabilities. Exploratory calculations show that this approach yields qualitatively similar results
to the one used in this paper, the quantitative difference being a consequence of the difference in
averaging procedures. We would like to use the winning probabilities because they are statistically
well-defined quantities that, at least in principle, can be observed in the real world. All other
quantities, such as abilities or noise level, are not more than convenient model parameters that
cannot be measured or otherwise directly assessed empirically.
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Particularly, if g(ε) is normal with zero mean and variance σ2, one obtains

w̃(xi, xj) = Φ

(
xi − xj

σ
√

2

)
, (8)

where Φ(·) is the cumulative standard normal density.

Now we can average over all possible realizations of x1, ..., xN such that x1 ≥
x2 ≥ ... ≥ xN , to get the unconditional7 probability for player ranked i to win

against player ranked j:

wij = N !

∫ ∞

−∞
dx1f(x1)

∫ x1

−∞
dx2f(x2)...

∫ xN−1

−∞
dxNf(xN)w̃(xi, xj). (9)

Here (N !)−1 = Pr{x1 ≥ x2 ≥ ... ≥ xN} =
∫∞
−∞ dx1f(x1)

∫ x1

−∞ dx2f(x2)...
∫ xN−1

−∞ dxNf(xN)

is the renormalization denominator, which arises because we fixed a specific permu-

tation of x’s.

The N -dimensional integral in Eq. (9) can be reduced (see Appendix A) to give

wij =
N !

(i− 1)!(j − i− 1)!(N − j)!

∫ ∞

−∞
dx1f(x1)

∫ x1

−∞
dx2f(x2)w̃(x1, x2)

×[1− F (x1)]
i−1[F (x1)− F (x2)]

j−i−1[F (x2)]
N−j. (10)

Alternatively, the winning probabilities can be simulated [see Appendix B for

a description of the simulation procedure]. The results of the simulations perfectly

coincide with those obtained by numerically integrating Eq. (10)8.

7Of course, probabilities wij remain conditional on the ex ante ordering of players.
8We use simulations for two reasons. First, it takes less computational time than the calcu-

lation of the double integral in (10). Second, since the predictive power is later simulated, exact
calculation of the winning probabilities would not add accuracy.
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4 The predictive power

Our main objective here is to calculate the probability ρ1 for a specific player (player

1) to be among the winners of the tournament, i.e. to have a maximal score. For a

score vector s this can be expressed as

ρ1 = Pr{(s1 ≥ s2) ∧ . . . ∧ (s1 ≥ sN)}. (11)

By introducing variables q1 = s1, q2 = s1 − s2, ..., qN = s1 − sN , we need to require

that they all be non-negative, i.e. ρ1 = Pr{q1 ≥ 0, ..., qN ≥ 0}. The transformation

s ↔ q has a unitary Jacobian, with the inverse transfromation being s1 = q1, s2 =

q1 − q2, ..., sN = q1 − qN . Therefore the joint pdf of q = (q1, ..., qN) is π(q1, q1 −
q2, ..., q1 − qN), and the probability that all qi are non-negative is

ρ1 =

∫ ∞

0

dq1...

∫ ∞

0

dqNπ(q1, q1 − q2, ..., q1 − qN), (12)

where function π is given by Eq. (6).

Then we write

ρ1 =
∑

b∈{0,1}M

P (b)H[S1(b)− S2(b)] . . . H[S1(b)− SN(b)]. (13)

Here H(z) is the step function defined as 1 for z ≥ 0 and 0 for z < 0. The result

is very intuitive: we sum over all mutually exclusive tournament outcomes and add

up the probabilities of those of them for which player 1’s score is maximal.

In Appendix B we describe computational simulations of the round-robin tour-

nament, whose results perfectly agree with the analytical result (13) for moderate

N . For large N , Eq. (13) becomes inapplicable practically, since its computational

time grows as 2N(N−1)/2.
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In Appendix C we calculate analytically the probability Ai
k for player i to get

k points in a round-robin tournament. This result is not of immediate relevance

for predictive power exploration, but it allows one to infer, for example, how many

points are sufficient (on average) to become a winner of the tournament.

In the limit of σ2 → ∞ (for a fixed number of players N) all the winning

probabilities wij → 1
2

independent of the ability distribution f(·). The predictive

power therefore has a limiting behavior ρ1 → ρ∞1 (N), where

ρ∞1 (N) =
1

2M

∑

b∈{0,1}M

H[S1(b)− S2(b)] . . . H[S1(b)− SN(b)]. (14)

For example, ρ∞1 (2) = ρ∞1 (3) = 1
2
, ρ∞1 (4) = 13

32
. Recall that we allow for several

winners, hence ρ∞1 (N) > 1/N for any N > 2.

5 Results and discussion

Figure 1 below illustrates the predictive power of a round-robin tournament to iden-

tify the best player, ρ1, as a function of noise level, σ2, and number of players, N , for

three distributions of players’ abilities. Specifically, we analyzed by way of compu-

tational simulations uniform, normal, and Pareto distributions of players’ abilities,

with the variance of all normalized to 1. This normalization defines a natural bench-

mark for the noise level, σ2. Specifically, it defines three noise regimes: (i) small

noise, σ2 ¿ 1; (ii) intermediate noise, σ2 ∼ 1; and (iii) large noise, σ2 À 1. The

Figure illustrates predictive power as a function of noise level, for selected numbers

of players (N = 2, 4, 8, 16, 32, 64, 128, 256), and as a function of number of players,

for selected noise levels, for the three distributions. The computation of the Figure

is detailed in Appendix B. [We restricted our computational explorations to those

values of N that can be observed in “real life” (e.g., we are not aware of round-robin
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Figure 1: The predictive power ρ1 as a function of noise level σ2 for various N ,
and of the number of players N for various σ2, for a normal, Pareto, and uniform
distribution of players’ abilities.
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tournaments that involve more than 256 individuals or teams). Also, we varied noise

level in a sufficiently broad range relative to the variance of the ability distributions.]

The following discussion of the key results draws on Figure 1. The predictive

power ρ1 displays qualitatively universal features for the small noise and large noise

regimes. We discuss those features and their intuition first. Next, we discuss the

behavior of ρ1 in the intermediate noise regime (which turns out to be non-universal

and displays non-trivial features) separately for the three distributions. Whenever

possible, we present basic intuition why certain behavior is observed, acknowledging,

however, that it is a consequence of a complicated interplay of various factors, such

as shape of the distribution and combinatorics, which are hard to completely intuit.

• The predictive power for one player (N = 1) always equals 1. Therefore, the

predictive power necessarily decreases initially when additional competitors

join the tournament. For larger number of players, the behavior might be-

come non-monotonic; if and when non-monotonicities occur depends on the

distribution of players’ abilities (and the noise level). More details below.

• Across all three distributions, the predictive power behaves qualitatively the

same for the small noise regime. Small noise adds small probability of upsets.

No discontinuity in the predictive power can be expected when going from

zero to non-zero noise. Since the predictive power equals its maximal possible

value 1 for zero noise, it must necessarily decline for small noise. Clearly, this

result is universal, i.e. it holds for arbitrary number of players N ≥ 2 and all

distributions of players’ abilities f(x). How fast and how far ρ1 will decline,

of course, depends on N and specific shape of f(x).

• Across all three distributions, the predictive power behaves qualitatively the

same for the large noise regime. For any given N the predictive power con-

verges to a constant which is a function of N only (and not the distributional
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specification). In effect, this result is a straightforward application of combina-

torics, as we demonstrated in Section 4. Note that for both N = 2 and N = 3,

the predictive power converges to 1/2 as the noise goes to infinity. For N = 4,

the predictive power converges to 13/32. However, for noise levels that are of

relevance for practical purposes, these results are of lesser importance. The ba-

sic intuition is worth re-iterating: As noise increases, ability becomes less and

less important in determining the outcome of a match, while chance becomes

increasingly important. This asymptotic behavior of ρ1 is also universal.

• The behavior of the predictive power becomes qualitatively non-universal in

the intermediate noise regime where the noise level is comparable with the

variance of the distribution of abilities. For uniform distributions of abilities,

predictive power is a monotonically decreasing function of noise and number

of players. The intuition for this result is straightforward: As the perfor-

mance fluctuations of equally distanced (in terms of ability) players increase,

the probability for upsets increases uniformly for all players (except, of course,

the top-ranked player). This result also implies, however, that the probabil-

ity of beating a lower-ranked player decreases (except, of course, the lowest-

ranked player), possibly neutralizing the net effect on the expected score. This

neutralization will be complete only for the median player, and will happen

partially for other “interior” players (i.e., players other than the top-ranked

and lowest-ranked players). In fact, interior players to the right of the median

player will experience a negative effect because relative to the median player

there is more mass of the distribution to their left (and hence more chances of

being upset, and less chances of upsetting). Likewise, interior players to the

left of the median player will experience a positive effect because relative to

the median player there is less mass of the distribution to their left (and hence
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less chances of being upset, and more chances of upsetting).

• The previous result illustrates a fundamental principle: Noise is a redistributor

of scores in that it gives from the “haves” to the “havenots”. Obviously this

distributional process is affected by the shape of the distribution of players’

abilities.

• For uniform distributions of abilities, competition at the top is tougher than

for normal and Pareto distributions (as it will be for all distributions with

falling upper tail) and therefore the predictive power is lower, the more so the

more competitors there are. This is true for all noise levels. The intuition

is clear: For uniform distributions interior players are symmetrically affected

in that players indexed i and N − i + 1 have the same net effect in expected

scores (albeit with opposite signs).

• For Pareto distributions, players are differentially affected by increasing noise.

Specifically, the probabilities of upsets will be lower for the top players because

lower-ranked players are bunched more tightly and hence have more chances

to score upsets. Of course, the decreased probability of beating a lower-ranked

player possibly neutralizes the net effect on the expected score. However, now

the net effect of noise on the expected score is determined by the number of

players in a more complicated fashion.

• For the two non-uniform distributions that we studied, and probably for all

non-uniform distributions with falling upper tail, the predictive power displays

a bifurcation-like behavior as a funcion of the noise level, σ2. Specifically, for

N below a critical value Nc (which depends on the distribution) the predictive

power decreases monotonically, while for N above Nc, the predictive power

displays both a local minimum and a local maximum. Take, for example, the
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Pareto distribution. For N = 8, the predictive power falls monotonically; for

N = 64, it has a minimum at about σ2 = .5, and a maximum at about σ2 = 1;

with Nc = 32 being approximately the switching point.

• So, what intuition then drives the unintuitive behavior of the predictive power

for large N (such as 64)?

As N increases the long tail of the Pareto distribution implies that relative

to the low-ability players the top-ranked player moves away from the second-

ranked player ever more. Therefore, for sufficiently small noise, the predictive

power drops less for larger N . This trend is countered by a countervailing

trend as noise increases. Let us distinguish the cases of small N and large

N . Obviously, as noise increases, so does the probability of upsets. However,

this increase in probability is decreasing as we move up the ranking since the

distance between players increases, on average. When N is small the increase

in the probability of upsets is the only effect. When N is large then the top-

ranked players score increases relatively to the lower-ranked players’ because

the lower-ranked a player is, the more ferocious competition that player faces.

This result leads to the surprising and initially unintuitive upward swing in

the predictive power as a function of noise for large N .

• For normal distributions, the intuition stemming from the Pareto distribution

is a useful point of departure. Note that, ignoring for the time being the

difference in tails, the Pareto distribution is in a sense the upper half of the

normal distribution. Hence, we should expect qualitatively somewhat similar

behavior. And indeed, for low noise (roughly up to σ2 = 1) we see very sim-

ilar behavior. (Of course, the quantitative behavior differs somehow.) Now

look at the median player in the normal distribution. As the performance

fluctuations of every player increase, the probability for upsets increases (but
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not uniformly) for all players (except, of course, the top-ranked player). But

note that this result also implies that the probability of beating a lower-ranked

player decreases (except, of course, the lowest-ranked player), possibly neutral-

izing the net effect on the expected score. This neutralization will be complete

only for the median player, and will happen partially for other “interior” play-

ers (i.e., players other than the top-ranked and lowest-ranked players). This,

of course, is an argument similar to the one we made above for the case of the

uniform distribution. Qualitatively, the net effect of this balancing act is neg-

ative for players to the right of the median player, and positive for players to

the left of the median players, for the same rationale laid out for the uniform

distribution above. The difference in behavior stems from the fundamental

difference in the gestalt of the tails of the distribution.

6 Conclusion

In the present paper, we studied analytically and by way of computational sim-

ulations, the properties of round-robin tournaments as a function of noise level,

number of players, and distribution of players’ abilities. For moderate N we could

use analytical results to verify our simulations, whereas for large N we had to rely

on simulations. Perfect agreement of the analytical results with simulations for

moderate N suggests that the simulation results are correct.

A planner who has decided to conduct a round-robin tournament might benefit

from our insights in a number of ways: If he or she knows, or at least has some

inkling, about the distribution of abilities, and if the distribution happens to be one

of the three that we studied, then the planner can estimate from the probabilities of

upsets the noise level σ2 for our model. In fact, the planner could infer the properties

of a distribution from the probabilities of upsets which, in principle, are observable.
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We note that these assumptions are not quite as far fetched as they seem: most

professional sports have ranking schemes. Some of these schemes are based on the

statistics of upsets in various ways [e.g., in chess, table tennis, soccer, and American

football)].

If the planner knows distribution and noise, then he can identify the optimal

number of players. This decision, obviously, requires the definition of an objective

function such as the maximization, or minimization, of the probability of the best

team winning. But once that decision has been made, our results suggest interesting

choices. For the maximization case, as regards the Pareto distribution at σ2 = 3 and

moderate N , it makes sense to decrease the number of participants. For the mini-

mization case, with the same distribution but σ2 = 1, the number of players again

should be decreased. The planner, generally, wants to keep in mind that for non-

uniform distributions of abilities the predictive power depends non-monotonically

on N .

In Ryvkin (2004) we analyze similarly elimination tournaments, and in later

papers we will compare the properties of these two polar matching schemes, as well

as variants thereof. We will also analyze the robustness of the present results to

different (asymmetric, heteroscedastic) specifications of the noise. We conjecture

that such modification will have quantitative effects but will not change the results

reported here in any fundamental manner.
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Appendix

A Winning probabilities

In this section of the Appendix we show how the expression (10) is obtained. The

variables in the ordered integral in Eq. (9) are assumed to change in the following

ranges:

x1 ∈ (−∞,∞), x2 ∈ (−∞, x1), ..., xN ∈ (−∞, xN−1).

However, they can be rearranged so that

xi ∈ (−∞,∞), xj ∈ (−∞, xi),

x1 ∈ (xi,∞), x2 ∈ (xi, x1), ..., xi−1 ∈ (xi, xi−2),

xi+1 ∈ (xj, xi), xi+2 ∈ (xj, xi+1), ..., xj−2 ∈ (xj, xj−1),

xj+1 ∈ (−∞, xj), xj+2 ∈ (−∞, xx+1), ..., xN ∈ (−∞, xN−1).

This reordering corresponds to the following integral:

wij = N !

∫ ∞

−∞
dxif(xi)

∫ xi

−∞
dxjf(xj)w̃(xi, xj)

×
∫ ∞

xi

dx1f(x1)

∫ x1

xi

dx2f(x2) . . .

∫ xi−2

xi

dxi−1f(xi−1)

×
∫ xi

xj

dxi+1f(xi+1)

∫ xi+1

xj

dxi+2f(xi+2) . . .

∫ xj−2

xj

dxj−1f(xj−1)

×
∫ xj

−∞
dxj+1f(xj+1)

∫ xj+1

−∞
dxj+2f(xj+2) . . .

∫ xN−1

−∞
dxNf(xN).

In the last three lines, the integrals are easily calculated, and we obtain Eq. (10).

B Simulations

In this section of the Appendix we describe how the simulations were done. The

whole procedure consisted of two stages: (i) simulating the winning probabilities

wij; (ii) simulating the predictive power ρ1.
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Winning probabilities. The algorithm for this simulation was the following:

1) Populate the matrix Zij with zeros;

2) Independently draw N numbers x1, . . . , xN from the distribution f(·) and order

them so that x1 > x2 > . . . > xN ;

3) Populate the matrix pij for all 1 ≤ i < j ≤ N according to the following rule:

take xi and xj such that i < j, draw independently two noise terms εi and εj, let

yi = xi + εi and yj = xj + εj, and set pij = 1 if yi > yj and pij = 0 if yi < yj;

4) Add the matrix pij from step 3 to Zij;

5) Go to step 2.

The whole procedure is to be repeated a large number of times, T , and the average

over realizations matrix pij will be the matrix of winning probabilies:

wij = 〈pij〉 =
Zij

T
. (15)

Predictive power. The algorithm for this simulation was the following:

1) Set a counter c = 0;

2) Populate the matrix pij for all 1 ≤ i < j ≤ N according to the following rule:

take i < j, draw a uniform random number r from interval (0, 1); set pij = 0 if

r > wij and pij = 1 if r < wij;

3) Calculate the scores of players as si =
∑

j 6=i pij;

4) If player 1 has a maximal score, i.e. s1 ≥ si for all 1 < i ≤ N , then increment c

by 1;

5) Go to step 2.

The whole procedure is to be repeated a large number of times, T , and then the
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share of times when the counter was incremented gives the predictive power:

ρ1 =
c

T
. (16)

The winning probabilities and the predictive power (the latter only for moderate

N) were also calculated analytically using Eqs. (10) and (13). The results perfectly

agree with those of the simulations.

C Individual distribution of scores

In this Section of the Appendix we obtain a result, which is not of immediate

relevance for the predictive power analysis, but is interesting from the theoretical

point of view. It answers the following question: what is the probability for player

with ex ante rank i to get k points in a round-robin tournament.

Throughout the tournament, every player i plays N − 1 matches with players

P \ i. Every match (i, j) is a Bernoulli trial with the probability of success wij. In

case of success, player i gets 1 point. In a match (i, j), the number of points player

i gets can be represented by a discrete random variable pij [cf. Eq. (1)] with pdf

φij(p) = wijδ(p− 1) + (1− wij)δ(p).

The total score player i will get is si =
∑

j 6=i pij. Let B−i
N denote a set of

(N − 1)-bit binary vectors b = (b1, ..., bi−1, bi+1, ..., bN), whose every component is 0

or 1. The pdf of the total score for player i can then be written as

πi(s) =
∑

b∈B−i
N

∏
j 6=i

[bjwij + (1− bj)(1− wij)] δ(s−
∑

j 6=i
bj). (17)

It is clear that actually the pdf for si has the form

πi(s) =
∑N−1

k=0
Ai

kδ(s− k), (18)
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where Ai
k is the probability for player i to get k points. Eq. (17) allows for the

calculation of those probabilities.

Theorem. Let w−i = (wi1, ..., wi,i−1, wi,i+1, ..., wiN) be a (N−1)-dimensional vector

of winning probabilities for player i. Then the probability for player i to get k points

in a round-robin tournament of N players is

Ai
k =

∑N−1

l=k
(−1)l−kCk

l Ql(w
−i). (19)

Here Ck
l are the binomial coefficients; the polynomials Ql are defined as follows. Let

u = (u1, ..., un) be a vector of n real numbers, and

Qn
0 (u) = 1,

Qn
1 (u) = u1 + ... + un,

Qn
2 (u) = u1u2 + u1u3 + ... + u1un + u2u3 + ... + u2un + ... + un−1un,

...

Qn
k(u) =

∑
j1<...<jk

uj1uj2 ...ujk
,

...

Qn
n(u) = u1u2...un. (20)

Proof. The only place i enters the right-hand side of Eq. (19) is through QN−1
k (w−i),

but the polynomials Qn
k are completely symmetric with respect to permutations of

their arguments, therefore we only need to prove the theorem for any particular

i, for example i = 1. We prove by induction over the number of players N . The

induction base, N = 2, is obvious [it can be directly calculated using Eq. (17)]. Now

assume that Eq. (19) holds for N players. Suppose we add one more player, N + 1

(again, using the symmetricity of Qn
k , we can always assume that the added player

occupies the last ranking position), with the winning probability for player 1 over
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her being w1,N+1. Then A1
j(N + 1) can be expressed as follows:

A1
j(N + 1) = A1

j(N)(1− w1,N+1) + A1
j−1(N)w1,N+1. (21)

Indeed, there are only two mutually exclusive ways to get j points: to get j points

playing with the former N − 1 players and to lose to the new player (first term),

and to get j − 1 points and win against the new player (second term), respectively.

Note that the polynomials Qn
k have the following property:

Qn+1
k (u1, ..., un, un+1) = Qn

k(u1, ..., un) + un+1Q
n
k−1(u1, ..., un), (22)

if we set Qn
n+1 = Qn

−1 = 0.

From Eq. (19) (that holds for N by the induction assumption) we have

A1
j−1(N)−A1

j(N) =
∑N−1

k=j−1(−1)k−j+1Cj−1
k QN−1

k (w−1)−∑N−1
k=j (−1)k−jCj

kQ
N−1
k (w−1) =

=
∑N−1

k=j (−1)k−j[−Cj−1
k − Cj

k]Q
N−1
k (w−1) + QN−1

j−1 (w−1) =

=
∑N−1

k=j (−1)k−j+1Cj
k+1Q

N−1
k (w−1) + QN−1

j−1 (w−1) =

=
∑N−1

k=j−1(−1)k−j+1Cj
k+1Q

N−1
k (w−1).

Therefore, using Eqs. (19), (21) and (22), one obtains

A1
j(N + 1) = A1

j(N) + w1,N+1[A
1
j−1(N)− A1

j(N)] =

=
∑N−1

k=j (−1)k−jCj
kQ

N−1
k (w−1) + w1,N+1

∑N−1
k=j−1(−1)k−j+1Cj

k+1Q
N−1
k (w−1) =

=
∑N

k=j(−1)k−jCj
kQ

N
k (w−1, w1,N+1),

which completes the proof of the induction iteration. Q.E.D.
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