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Abstract

We propose a computational model to study (the evolution of) post-secondary
education. �Consumers� who differ in quality shop around for desirable colleges
or universities. �Firms� that differ in quality signal the availability of their
services to desirable students. Colleges and universities, as long as they have
capacity, make offers to students who apply and qualify.
We study the dynamics and asymptotics for three nested variants of this

matching model: the Þrst variant replicates the Vriend (1995) model, the second
stratiÞes both Þrms and consumers by quality, while the third variant of our
model additionally equips some Þrms with economies of scale. The third variant
of our model is motivated by the entry of for-proÞt providers into low-quality
segments of post-secondary education in the USA and empirical evidence that,
while traditional nonproÞt or state-supported providers of higher education do
not have signiÞcant economies of scale, the new breed of for-proÞt providers
seems to capture economies in core functions such as advertising, informational
infrastructure, and regulatory compliance. Our computational results suggest
that this new breed of providers is likely to continue to move up the quality
ladder.
Our model also lends itself to the study of such issues as the consequences

of opportunistic behavior of Þrms (admittance of unqualiÞed students for Þs-
cal reasons) and the emergence of behaviorally different consumers (traditional
�patronizers� vs �hoppers�), among others. Our computational results suggest
that opportunism is a poor long�run strategy and that consumers are rather
heterogenous in their shopping behavior but that the mix of behaviorally differ-
ent consumers is unaffected by the presence of for�proÞts or opportunistically
behaving Þrms.



1 Introduction

Post�secondary education in the USA, formerly known there as higher educa-
tion, has undergone dramatic changes over the past decade (Ortmann 1997).
The new label reßects new realities such as the increasing orientation of tra-
ditional higher education providers toward vocationalism (Breneman 1994),
and the emergence of a new breed of higher education providers � publicly
traded, degree�granting providers of post�secondary education (Ortmann 2001),
(Ortmann 1998), and (?) that we shall call for�proÞts from here on. These
for�proÞt �mutants� now represent about 10 percent of the post�secondary ed-
ucation institutions in the USA1.
That for�proÞts have managed to invade the higher education sector as we

knew it is little short of sensational. Higher education in the USA was, and
for the most part still is, a heavily subsidized industry whose private not�for�
proÞt and public segments were, and still are, subsidized through signiÞcant tax
and regulatory breaks, (Facchina, Showell, and Stone 1993), as well as signiÞcant
donations. In addition, not�for�proÞt and public institutions of higher education
in the USA do not have to pay investors a reasonable return. For�proÞts were,
and are, thus clearly handicapped. How then could they succeed? This is the
Þrst question we address below.
For�proÞts invaded higher education initially by providing services to market

niches such as information technology training and continuing education/workplace
training for adults, see (Ortmann 1998). In terms of the classiÞcation proposed
by (Zemsky, Shaman, and Iannozzi 1997), for�proÞts entered post�secondary ed-
ucation through segments in which one typically also Þnds community colleges.
Over the past few years, for�proÞts have successfully moved up to segments in
which one typically also Þnds state universities. It is thus an interesting ques-
tion whether this invasion of ever higher segments of higher education through
for�proÞt �mutants� can be stopped, or whether for�proÞts will ultimately in-
vade the �brand�name segments�. In other words, could a liberal arts college �
arguably the paragon of the brand-name segment � be organized as a for�proÞt
institution?2 This is the second question we address below.

1The major publicly traded, degree-granting providers of post-secondary education in the
USA (by way of their stock market symbols, APOL, UOPX, CECO, COCO, DV, EDMC, ESI,
STRA, WIX) will generate in excess of $4 billion in revenue in 2002 which represents about 2%
of the higher education market as traditionally understood. The divergence between market
share in terms of number of institutions and revenue reßects the particularities of the ways
for-proÞts operate: Typically they have centralized administrative and curricular development
facilities. Indeed, teachers� curricular liberties are severely restricted and teachers� role may be
best described as learning facilitators. �Campuses�/learning centers are no frills and located
for easy access. For more details, see Ortmann (1998, 2001) and Ruch (2001).

2We are agnostic on the issue of whether a liberal arts college should be organized as a
for-proÞt institution. The issue, however, is of some relevance as rudimentary forms of liberal
arts education offered by for-proÞt providers such as Edison Schools, Mosaica Education,
and Chancellor Beacon Academies have made, for better or worse, inroads into primary and
secondary education (?).
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In addition to understanding how for�proÞts managed to invade higher edu-
cation as we knew it, and what the future of these �mutants� is, we are interested
in studying the consequences of opportunistic behavior of colleges and univer-
sities (e.g., admittance of unqualiÞed students for Þscal reasons), viable quality
improvement strategies for such Þrms, the emergence of behaviorally different
consumers (traditional �patronizers� versus �hoppers�), and various other issues
explained below.3

Toward those ends, we propose a computational model that we ultimately in-
tend to calibrate with data from post�secondary education in the USA (e.g., the
data on which the VIRTUAL U simulation is based)4. Our model is a progres-
sion of three increasingly reÞned (�nested�) variants. Following exhortations in
the literature to concatenate new computational models with predecessors, e.g.,
(Axelrod 1997), the Þrst variant of our model �reverse�engineers� and somewhat
generalizes (especially the classiÞer system) an inßuential model of decentralized
markets consisting of locally interacting boundedly rational and heterogeneous
agents (Vriend 1995). This variant of our model is meant to establish a baseline
and reference point that ties the other two variants of our model to the litera-
ture by using his basic set�up and parameterization. Indeed, we have been able
to replicate reasonably well Vriend�s results (e.g., the service ratio approaching
1, approximately one third of consumers patronizing previously attended Þrms,
etc.) Since his model presented a decentralized market with buyers and sellers
not stratiÞed by quality (as buyers and sellers of post�secondary education in
the USA surely are), we introduce in our second variant (from here on �Q�
model�) stratiÞcation by quality both of buyers and sellers. Our third variant
(from here on �QES�model�) adds to the Q�model a new kind of Þrm that is
distinguished from other Þrms by its cost conÞguration, namely economies of
scale. The QES� and Q�models are the computational laboratories in which we
study the invasion into traditional higher education by publicly traded, degree�
granting providers, their likely future trajectories, and the various other issues
already mentioned.
The paper is structured as follows: Section 2 presents the matching model,

a discussion of our computational agents, and the details of experimental de-
sign and implementation. Section 3 presents, among other things, Þndings on
the equilbrium distributions of Þrms across the quality spectrum under various
treatments. Section 4 provides a brief discussion of related literature. In Sec-
tion 5 we proffer some concluding remarks addressing objections to agent-based
modeling and summarizing what we have accomplished and what remains to
be done. Appendices contain an analysis of an analytically tractable simpliÞed
version of our model and the pseudo�code of one of our programs.

3While our study is motivated by recent developments in post-secondary education in the
USA, similar developments can also be observed in countries such as Germany that historically
were much less open to curricular and other educational innovations.

4 ... but haven�t yet. VIRTUAL U is an ambitious attempt to build a Sim City like
simulation of higher education in the US. It draws on real-world data in parameterizing the
underlying simulation machines. See http://www.virtual-u.org/ for more details. Here we
simply propose a computational laboratory, explore its properties, and relate it to the simple
theoretical model shown in Appendix A.
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2 Structure of the matching model

2.1 Summary of the matching model

Buyers (prospective students and/or their parents) and sellers (colleges and uni-
versities) of post-secondary education try to match optimally in a decentralized
market for a number of periods.5 In the Þrst period, buyers are randomly and
uniformly distributed along a quality spectrum that is normalized to the inter-
val [0, 100]. Likewise, in the Þrst period sellers are randomly and uniformly
distributed along a quality spectrum that is normalized to the interval [0, 100].
Buyers and sellers are modelled as boundedly rational decision makers that

sometimes �tremble�, i.e. they select actions that, in their experience, worked
best but they select these actions probabilistically. Buyers and sellers are char-
acterized by preferences and internal states, behavioral rules (= rules for se-
lecting actions out of the current choice set), the number of behavioral rules,
internal rules (= rules for selecting and modifying rules), and speciÞcations of
the decision makers� interactions with the world. Table 1 summarizes these
characteristics which are discussed in more detail below.

5For the remainder of the text we use as synonyms the words buyers, consumers, and
students, on the one hand, and sellers, Þrms, and colleges and universities, on the other hand.
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Table 1
CONSUMERS FIRMS

PREFERENCES
∆F ∆C

INTERNAL STATES
Weights; own Q, Weights; own Q, demand,
Þrm attended last period, avg. Q of consumers,
list of schools that are desirable target number of consumers,

proÞt, average proÞt

BEHAVIORAL RULES
IF (SAT, no SAT, indifferent to SAT) (production, signal)
AND (INFO, no INFO, indifferent to INFO)
THEN (PATR, KNOWN, RAND)

NUMBER OF RULES
18 (27 ) 20

INTERNAL RULES
Rules for Selecting Rules Rules for Selecting Rules
stoch. auction; reinforcement stoch. auction; reinforcement

Rules for Changing Rules
production and signaling
adjustment, GA

MATCHING PROTOCOL
SpeciÞcation of Þrm SpeciÞcation of consumer
selection selection

The preferences of buyers and sellers are deÞned by the minimal quality of
a counterpart they are willing to consider: Buyers will go only to Þrms that
meet a given quality threshold (deÞned as own quality Q minus ∆F ); sellers are
interested only in those consumers who meet a given quality threshold (deÞned
as own quality minus ∆C).
The internal states of buyers and sellers are deÞned as follows: Buyers keep

track of the �strengths� (to be explained presently) of their behavioral rules (also
to be explained presently), their own quality Q6 , the index of the Þrm which

6Currently, our consumers do not change their quality, i.e., exactly what school they attend
has no consequence for their educational outcomes. Firms thus face a Þxed distribution of
consumers in quality space. Given our current focus nothing seems lost through this restriction
which could be relaxed easily. We note that there is quite some discussion about the value
that colleges and universities add to human capital formation, see (Altonji and Dunn 1996),

4



they attended last period, and a list of schools that are desirable (i.e., have a
minimum quality Q − ∆F ); sellers analogously keep track of the �strengths�
of their behavioral rules, their own quality Q7, the number of consumers in
their market niche, the realized demand for their services, and current as well
as (trailing) average proÞt.
Turning to behavioral rules, buyers maintain lists of rules, each with a condi-

tional and an action part (a ClassiÞer System). The conditional part determines
if a rule will be activated (to be explained below) given the current state of the
world while the action part encodes possible actions. SpeciÞcally, rules have the
following form: �IF (SAT, not SAT, indifferent to SAT)AND (INFO, not INFO,
indifferent to INFO) THEN (PATR, KNOWN, RAND)�. Here SAT means sat-
isfaction (served) last period, and INFO a presence of signals from Þrms in a
current period. Buyers have three actions available to them: they can try to
patronize the Þrm they attended (PATR) or go to a Þrm that signalled them
(KNOWN) or randomly choose some Þrm (RAND) with probability 1

Nfirms
.8

If a buyer has to take into consideration the Þrm�s quality, as in our Q� or
QES�models, the RAND action does not apply and is not available. Buyers
who are not able to take the PATR, KNOWN, or RAND actions (because Þrms
do not accept them), do not get matched. Buyers start with a complete set
of 3 × 3 × 2(3) = 18(27) rules which remain unchanged over the course of our
computational experiments.
Sellers also maintain lists of rules. However, unlike the classiÞer system

representing the behavior of buyers, the behavioral rules for sellers encode pairs
of integer numbers, one representing the number of units produced and the other
the number of signals to be sent. Every integer is coded by a bitstring of length
10; therefore, numbers from 0 to 1023 can be coded. Each period sellers produce
slots which they then signal to prospective (and desirable) buyers. Note that
rules in this sense translate directly into actions. There are twenty such rules
that are initialized randomly (for every bit in a string, a fair coin is tossed to
determine whether it is 0 or 1) so as to represent various production�signaling
combinations.9

(Behrman, Rosenzweig, and Taubman 1996), and (Tamura 2001).
7A Þrm�s quality is updated according to the following rule, Q = w1 ·Qavg +w2 · π, where

Q is the Þrm�s quality, Qavg the average quality of its consumers, π the Þrm�s proÞts, and
w1 and w2 are weights. Since the weight on proÞts is rather low, we essentially model the
quality of a college or university as the average of the quality of its students. This follows
well�established precedence in the literature, e.g., (?), (?). We conjecture that factoring in the
quality of faculty would not affect our qualitative results for all reasonable parameterizations.

8 (Adelman 2000) is an eminently readable sketch of the emerging �parallel universe of
postsecondary credentials ... an education and training enterprise that is transnational and
competency�based, confers certiÞcations not degrees, and exists beyond governments� notice
or control.� We note that competency�based certiÞction is also propagated by institutions
such as Western Governors University which has made considerable headlines by offering its
prospective students that skills and knowledge acquired at other universities, on the job, or
just through life may be counted toward one�s WGU degree. What all these developments
point to is a new kind of student � �hoppers� we call them � who takes classes here and
there and then consolidates her or his portfolio at a school of her or his choice. In our model,
hoppers are modelled as consumers who never use the PATR action.

9Thus, we initialize with widely off�equilibrium quantity�signalling pairs, because both
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The internal rules of buyers and sellers � the rules for selecting and modifying
rules � are deÞned and explained in the next subsection.
Table 2:

FIRMS CONSUMERS
� make production and
signaling decisions
� signal

� choose Þrms,
apply to one

� accept or reject
consumers

� if rejected, choose
another Þrm

. . . . . .
� calculate proÞts,
adjust quality

Table 2 details top�down the timeline of interactions of sellers and buyers,
or matching protocol, in each period. Every period, Þrms Þrst make production
and signalling decisions. Next, Þrms signal potential buyers by picking a ran-
dom buyer (with replacement) and checking its quality. Only those buyers get
signalled that are within a pre�speciÞed range of quality ([Q−∆C , Q+∆F ]),
up to the pre�determined number of signals that the Þrm has chosen to send
in that period. This reßects the practice of colleges and universities to admit
only those students that fulÞll certain minimum quality standards and to dili-
gently track the yield of various advertising and recruiting channels (i.e., not to
waste recruiting efforts on candidates that can be expected to be out of reach
or undesirable.)
Consumers then choose their Þrm from among the offers. Only those Þrms

become candidates that are above a pre�speciÞed quality that equals buyers�
own quality minus ∆F . This reßects the practice of the overwhelming number
of students not to go to colleges and universities that are signiÞcantly worse
than they are. It can also be interpreted as the result of decision making under
constraints such as time or knowledge.
Since typically a student will be signalled by several colleges or universities,

the question arises how he or she prioritizes among multiple offers. We assume
that consumers collect all their offers and put those Þrms that satisfy a minimum
quality on the list of desired Þrms. For consumers who PATRonize, this list
consists of only one Þrm whose quality they do not check because they must
have done so at some point in the past10 and because quality changes typically
do not happen suddenly.

number of slots and number of signals are drawn from an initial distribution whose support
is the integers between 0 and 1023, but the number of buyers per Þrm is set to 100, and we
have not observed a Þrm serving more than 200 consumers in equilibrium.
10Consumers are forced to take a KNOWN action in the initial period; hence they are able

to PATRonize from the second period on.
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All consumers (including those who PATRonize) then �apply� to their de-
sired Þrm(s). This matching process involves two random processes, as follows:
First, a consumer is randomly drawn. Second, that consumer then randomly
draws a Þrm from her list of desired Þrms. As soon as such a Þrm can and
wants to provide, a match is accomplished and it is another randomly drawn
consumer�s turn 11. Firms do not discriminate between consumers who patron-
ize or those responding to offers.12

2.2 Experimental implementation: Stochastic auction, re-
inforcement, and evolution of rules

Recall that buyers and sellers are modeled as boundedly rational decision makers
that sometimes �tremble�, i.e. they select their best actions only probabilisti-
cally. How do they do it? In a nutshell, buyers and sellers select probabilistically
a rule from the sets of rules available to them. This probabilistic selection is im-
plemented in all variants of our model through a stochastic auction into which
all relevant rules are entered. However, these rules are not entered equally
weighted. Rather, their weights reßect their past �success�: the better they
performed in the past, the more weight they get.
When participating in such an auction, every rule submits a total �bid�

equal to b1 times its weight or �strength�, w, plus a random number, ε, drawn
from the normal distribution. The basic bid b1 × w may be thought of as a
stake that a rule is willing to sacriÞce for the right to be chosen in the auction.
This stake will be higher, the higher a rule�s weight is (b1 is just a scaling
parameter). Following (Holland 1992), the winning rule pays an activation fee
equal to its basic bid. With a small probability we call discard probability, every
rule�s total bid can be discarded. This procedure makes sure that the �best� rule
typically wins the auction but that inferior rules have a small chance of winning,
too. In the following the winning rule is called the active rule. Our procedure
operationalizes the fact that real�life buyers and sellers are boundedly rational
and make their decisions under incomplete information, time pressure, or other
cognitive constraints (Gigerenzer, Todd, & the ABC Research Group 1999);
(Todd and Gigerenzer 2000); (Payne, Bettman, and Johnson 1988). Obviously
that implies that they do not always make the optimal decision.
11Think of a student who collects all the information she gets in a large folder and on D�day

takes the Þrst one that fulÞlls her or his aspiration level. If this attempt fails, the student
randomly selects another Þrm of sufficiently high quality out of the folder. Other procedures
are, of course, thinkable. For example, rather than selecting Þrms randomly, consumers might
call on schools according to their quality. We doubt, however, that the majority of students
make their selections with that kind of high�level rationality or that they have the information
that would allow them to optimize in such a sophisticated manner, see (Boylan 1998). In any
case, these speciÞcs of the matching process should not matter in equilibrium. Note that this
latter statement is easily veriÞable in our set�up.
12This is, in a sense, in contrast to (Kirman and Vriend 2001) where loyal customers could

receive more or less preferential treatment. The implications of loyalty on the part of sellers
remains an issue for future research. Again, we believe that this issue is not of material
relevance for the issues we are interested in here.
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Selection of the initial strength of a rule, its possible range (from zero to
one in our case), the standard deviation of the auction�s error term, ε, the
speed with which that standard deviation decreases over time13 , and the discard
probability, all inßuence two characteristics of the stochastic process generated
by the stochastic auction: expected number of active rules (not more than three
or four in our case) and the variance of the number of rules that will be called
to duty on a regular basis.
As can also be seen from the pseudo�code in Appendix B, strengths of rules

are restricted to [0,1]. This, together with the discard probability and the
decreasing standard deviation of the auction�s error term, ε, is done to prevent
early in the simulation the emergence of �runaway� rules that might lead to
premature convergence.
After the stochastic auctions have determined the actions to be performed by

buyers and sellers in the current period, matching is implemented as described
in the previous subsection and payoffs to buyers and sellers are realized. For a
buyer, the payoff equals one if she is served this period and zero otherwise. For
a seller, the payoff equals the ratio of the current proÞts to average proÞts over
the last 200 periods14, times δ, where 1 > δ > 0 .15 Next, each buyer�s and
seller�s payoff is multiplied by (1− b2 ) and this product is added to the active
rule�s weight.16

Note that the stochastic auction and reinforcement mechanism described
above closely resembles various forms of probabilistic enforcement learning re-
cently proposed in the literature, e.g., (Goeree and Holt 2001), (Goeree and
Holt 1999); (Camerer, Ho, and Chong 2001); see also (Bush and Mosteller 1951),
(Bush and Mosteller 1955); but see also (?), as an approach that formalizes ex-
perimental results on human decision making.
However, our evolutionary programming technique is more than simple in-

dividual reinforcement learning. To model the behavior of Þrms, we used a
combination of the Steepest�Ascent Hill�Climbing algorithm and GENITOR
algorithm17. This evolutionary technique is arguably the simplest program-
13This is being done by Vriend (1995) to reduce stochastic disturbances of the system as

time progresses.
14This is motivated, Þrst, by the parameterization in (Vriend 1995) and, second, by our

desire to stabilize our computational model within a reasonable runlength.
15Multiplication by δ means that rules which consistently produce proÞts equal to the

average cannot achieve the maximum strength of �1�; instead, they converge to δ. This
construction is meant to reßect the never ending emergence of strategies that aim to beat the
average performance. In our set�up, no seller rule will be used forever and eventually new
combinations of (production, signalling) pairs will be experimented with. This �new broom
effect� facilitates adjustment to a rapidly changing environment if other Þrms are behaving in
an out�of�equilibrium manner.
16The remainder of the payoff, payoff times b2, goes to the previous active rule (�bucket

brigading�; see Holland 1992)
17 In the GENITOR algorithm, rules are ranked according to their Þtness, and the prob-

ability of selecting a particular rule is proportional to its rank. Every n − th period, two
evolutionary operators (crossover and/or mutation) are applied to produce a new rule, which
is inserted into the existing ranking and replaces an old rule. One of the advantages of the
GENITOR algorithm, according to (Chattoe 1998) and (Whitley 1989), is the relative stabil-
ity of the ranking, which results in stable actions. (Chattoe 1998) argues furthermore that the
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ming technique and as such is a desirable baseline, e.g., see (Chen, Duffy, and
Yen 2002) and the critique of (Valente 2002).
The Steepest�Ascent Hill�Climbing part of our algorithm is implemented

as follows: Þrms update both parts of their rules in every period, taking into
account such perceived characteristics of the relevant market niche as actual
demand and maximally possible demand.18 If a Þrm�s demand (number of con-
sumers that applied to a Þrm in the current period) differs from its production,
production is adjusted by 10% of the difference or 1 unit if 10% of the gap is less
than 1. To adjust the number of signals, Þrms ignore PATRonizers and assume
that consumers who showed interest were signalled in this period. Firms cal-
culate the expected marginal revenues of additional signals and their marginal
costs. To avoid making occasional losses, Þrms cap the number of signals by a
value that allows them to break even, assuming that every unit that is produced
is sold. Firms adjust towards their optimal expected signal 10% of the gap if
their demand in this period is insufficient (less than production). If the current
demand is higher than current production, Þrms cut 5% of the current signal
level19.
The GENITOR part of the algorithm is implemented by generating one

completely new rule every 50 periods. Every Þrm�s rules are ordered by their
weight and two �parent� rules are selected from the top quarter (top Þve rules).
A standard uniform crossover operator is applied to the binary strings�parent
rules�and one of the two �children�, randomly selected, is retained. Then, we
mutate every bit of the child string and replace a randomly selected rule from
the bottom half (bottom ten rules) with the child which is assigned a weight
equal to the average of its parents� weights.
Since consumers� classiÞer system is complete, there is no need to evolve it

further. Unlike Þrms, consumers have a set of rules that does not change. (Of
course, the strengths of the rules might well change.)
After buyers and sellers have been matched, Þrms compute their revenues,

costs, and proÞts. They also update their quality as the weighted average of the
quality of students who have chosen to enroll and current proÞts, with weight on
proÞts being relatively small.20 While this approach to determining the quality
of colleges and universities � essentially deÞning the quality of a school as the
average of the quality of the students that it attracts � is admittedly simplistic,
it captures the most important aspect of what determines the quality of an
institution. SpeciÞcally, it allows us to study the trade�off any typical college

GENITOR algorithm closely resembles the real�world decision�making process in companies
and humans.
18Adjustment of production was implemented in Vriend (1995), while signal adjustment is

introduced by us.
19As can be veriÞed by looking at the FOCs of the proÞt function, the derivative of proÞt

with respect to signals is negative if demand is greater than production (although is does not
give us quantitative guidance); if demand is less than production then the FOC allows us to
compute the optimal adjustment.
20The formula for updating the quality is Q = w1 ·Qavg+w2 ·π. w1 = 0.95 in all simulations,

and w2 is calibrated by requiring the average Þrm quality to be equal to 50 which produces
w2 ≈ 0.1. Other ways of calibration are, of course, possible but seem less natural.
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faces on the margin of admitting a rich but not so smart instead of a poor but
brilliant student. Below we call such admittance of unqualiÞed students for
Þscal reasons opportunistic behavior.
This process repeats round after round. The matching process, in other

words, is a dynamic process that evolves over a number of periods. The dynamic
process is deÞned algorithmically in terms of the behavioral rules of our agents,
their internal states and preferences, their repeated interactions, and � through
internal behavioral rules that govern how rules are selected and changed � the
evolution of rules toward some stable outcome.
The program code consists of 10 modules: MAIN.CPP, PARAMETER.H;

RULE.H, RULE.CPP; AGENT.H, AGENT.CPP; CONSUMER.H, CONSUMER.CPP;
FIRM.H, FIRM.CPP.
Consumers and Þrms are deÞned (= declared) in the respective .H modules

and implemented in the respective .CPP modules. Both, consumers and Þrms
are instantiations of the Agent class declared in AGENT.H and implemented
in AGENT.CPP. This super�class declares data components of agents such as
the given number of rules and their initial weights (parameterized in PARAME-
TER.H) and implements them.
The RULES modules deÞne and implement the data components (such as

the number of segments = actions, and the number of bits per segment) as well
as the functions components (such as the crossover and mutation operators).

2.3 Experimental design: Parameters and treatments

Following exhortations in the literature to concatenate new computational mod-
els with predecesors, e.g., (Axelrod 1997), we parameterize our baseline Q�model
almost completely with the parameters Vriend (1995) chose, with one notable
but inconsequential modiÞcation (signaling cost). Table 3 below details all rel-
evant parameters common to our three treatments (the Q�model, the Q�model
with moral hazard, and the QES�model) and also relates these parameters to
those employed by (Vriend 1995).
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Table 3

Run-length 3000 Vriend (1995)
Production cost CY (maximal quality) .25 � · � · �
Signal cost CS (maximal quality) .025 Vriend = .08
Price P (maximal quality) 1 Vriend (1995)
Average number of consumers per Þrm 100 � · � · �
Maximum acceptable quality gap, consumers 10 NA
Initial rule weight, Þrms 0.3 Vriend (1995)
Initial rule weight, consumers 0.5 � · � · �
Steady state weight δ of an average rule, Þrms 0.65 NA
Stand dev of the auction error term, 0.075→0.03 Vriend (1995)
Þrms, N(0, R)
Stand dev of the auction error term, 0.00875 � · � · �
consumers, N(0, R)
Parameter b1, Þrms 0.25 � · � · �
Parameter b1, consumers 0.1 � · � · �
Parameter b2, Þrms 0.4 � · � · �
Parameter b2, consumers 0.1 � · � · �
Mutation probability 0.01
Uniform crossover probability 0.50
Discard probability 0.025 Vriend (1995)

The Þrst of the three treatments that we used (from here on T1) employs
the Q�model in order to generate baseline equilibrium distributions of Þrms
across the quality spectrum. It was, importantly, used to calibrate our other
treatments. The second of the three treatments (from here on T2) still employed
the Q�model but inserted a small fraction of opportunistic Þrms in the set�up.
Such Þrms accepted consumers whose minimum quality was 12 rather than 10
points below their own quality. In other words, ∆C was 12 rather than 10 for
these Þrms. The last treatment (T3) employs the QES�model to study the
emergence of for-proÞts in post�secondary education. SpeciÞcally, to recall,
we equip a subset of Þrms with economies of scale once they have reached a
minimum efficient scale.21

Since scaling effects are notorious, we controlled for them by implement-
ing treatments T1 through T3 with combinations of 10 Þrms/1000 consumers
(Scale0 from here on), 12 Þrms/1200 consumers (Scale1) and 24 Þrms/2400
21The exact proÞt function for a normal Þrm is

π = (P ·min(Y,D)−CY · Y − CS · S) · Q
100

,

where Y is the Þrm�s production, D the realized demand, S the number of signals, and Q the
Þrm�s quality. For a for�proÞt mutant, the cost term CY ·Y +CS ·S is multiplied by MES

Y
·0.8

where MES = 50 for all runs reported in this paper. Following (?), we do not handicap our
for�proÞts with taxes although doing so would very likely not change our qualitative results;
it would, however, slow down their moving up the quality ladder.
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consumers (Scale2). Table 4 below summarizes our 3x3 design, detailling the
number of runs in each cell and the number of mutants for treatments T2 and
T3 across all scales.

Table 4
treatments\scales 10 Þrms/1000 consumers 12 Þrms/1200 cons 24 Þrms/2400 cons
T1: Q�model 20 runs 20 runs 20 runs
T2: T1 + MH 20 runs (1 mutant) 20 runs (1 mutant) 20 runs (3 mutants)
T3: QES�model 20 runs (1 mutant) 20 runs (2 mutants) 20 runs (3 mutants)

3 Results

For the most part we refrain from too detailled a summary and restrict ourselves
to what we consider the essential characteristics of all runs in a treatment cell.
A set of Þgures presenting all 180 runs may be obtained from the authors upon
request.

3.1 Equilibrium distributions of Þrms across the quality
spectrum

We Þrst look at the distribution of Þrms after 3000 iterations.22 As we will
see, Þrms occupy well�deÞned �slots� in the quality spectrum, or market niches
characterized by quality ranges, which we shall call, following (Zemsky, Shaman,
and Iannozzi 1997), �segments�. As we will also see, these segments are typically
occupied by clusters of Þrms. We shall use the terms �segments� and �clusters�
interchangeably throughout the remainder of this manuscript.
Baseline treatment T1. In Appendix A we show that, theoretically, we should

have 6 clusters for all Þrm numbers modulo 6.23 We also show that other
numbers of Þrms (such as 10 in Scale0) lead to less stable conÞgurations of
clusters for small numbers of Þrms.
Looking at 10 Þrms and 1000 consumers (Scale0), we Þnd indeed that Þrms

�ßock� into 6 to 8 clusters, with the clear mode being 7, as in Figure 1, and 8 be-
ing a not too distant second, as in Figure 2. Switching to Scale1 (12 Þrms/1200
22As we document in the following subsection, convergence to relatively stable conÞgurations

occurs in T1 within the Þrst few hundred iterations. Even in T2 and T3, the distribution of
Þrms stabilizes between 500 and 700 iterations (in a sense that we shall make more precise
below). Recall that we initialize production randomly on [0,1023] and therefore far off the
equilibrium of 100 units per Þrm. We could, alternatively, initialize production randomly on
[0,255] speeding up convergence signiÞcantly to not more than 200 periods (which could be
thought of as semesters or trimesters or quarters or some such time unit). Doing runs of
3000 allows us to estimate the likelihood of disturbances and switching behavior. More details
below.
23We note that this number is a function of the width of the quality range and the width

of the segment (to be made precise later). Ceteris paribus, increasing the quality range leads
monotonically to higher number of clusters. We speculate that this relation can be described

by the formula
h

[Q]

∆F+∆C

i
+ 1, where [] denotes taking an integer part and [Q] denotes the

quality range.
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consumers) and Scale2 (24 Þrms/2400 consumers) we observe 6 clusters of 2
and 4, as theoretically predicted, see Figures 3, 4. The number of Þrms in each
cluster is eseentially constant, with occasional eruptions and displacements re-
ßecting the probabilistic nature of our modeling technique, Figure 5. Inter-
estingly, but in light of our calculations in Appendix A not surprisingly, such
displacements regularly result in an exchange of members of adjacent clusters.
We note that similar results pertain for exploratory runs with scales of 20/2000
Þrms/consumers, as well as 40/4000, 48/4800, and 120/12000. This suggests
that the design laid out in Table 4 is sensible. We note, Þnally, that clusters are
distributed approximately equidistantly, again as predicted by the calculations
in Appendix A. This result is also independent of scale.
From the above it follows that scale is important in two respects. First,

only scales modulo 6 can be accurately described by our symmetric steady state
calculations. In other words, there is a large degree of freedom for scales that are
not of modulo 6, especially if the number of Þrms is rather small. As we increase
the number of Þrms, it becomes less important whether the number of Þrms is
modulo 6 or not. This is good news because it means that the computational
model that we propose here is rather insensitive to integer constraints. Second,
as we increase scales, we Þnd � somewhat contradicting our initial intuition �
a rather stable conÞguration of six clusters or segments which attract whatever
number of Þrms populate our computational laboratory.
Moral hazard treatment T2. Looking at 10 Þrms and 1000 consumers (Scale0),

we Þnd that a sole opportunistic Þrm almost never increases its position in the
quality spectrum after the initial adjustment process. In fact, Þrms roughly
maintain their position, as in Figure 6, or drift down in the quality spectrum
with about equal probabilities, as in Figure 7. In Scales 1 and 2 the opportunistic
Þrms never manage to markedly increase their position in the quality spectrum
after the initial adjustment process. In fact, these Þrms roughly maintain their
position of drift down in the quality spectrum with about equal probabilities
(but they sometimes do so quite dramatically, see Figure 8). We note that this
detrimental effect is particularly pronounced for Þrms that start with very high
quality. We observed instances of Þrms losing 60 quality points. We note also
that drift downward is truncated for Þrms that start with low quality, hence
for all scales Þrms actually are somewhat more likely to drift down than to
maintain their position. The results reported here emerge from the very mild
parameterization of moral hazard that we chose; increasing the moral hazard
parameter systematically shifts more weight to downward drift. In fact, if the
moral hazard parameter is doubled (i.e., decreasing the quality of the worst stu-
dent from Q− 12 to Q− 14) in Scale2, the offending Þrm nearly always (more
90%) goes to the bottom of the quality spectrum.
For�proÞt invasion treatment T3. Looking at 10 Þrms and 1000 consumers

(Scale0), we Þnd that a sole for�proft Þrm never lowers its position in the quality
spectrum after the initial adjustment process. In fact, for�proÞts increase their
quality 80% of the time, often dramatically so, as in Figure 9. In three of the
four cases where they did not, they started out being the Þrms with the lowest
quality; in the remaining case the one with the second lowest. Looking at Scale2
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(24 Þrms, 2400 consumers, three mutants), we Þnd that the for�proÞts always
move to the top cluster, displacing in the process incumbent high quality Þrms.
The key difference lies in the timing; some for�proÞts take longer than others
� in a few cases nearly the complete run, as in Figure 10. More often than
not, though, they move up the quality spectrum with amazing speed (within a
couple of hundred iterations). Looking at Scale1 (12 Þrms, 1200 consumers, two
mutants), we Þnd that about three out of four for�proÞts move all the way to
the top, with the remainder almost always moving up but often getting trapped
in segments below the top.
There are various metrics that could quantify the trends above. Table 5

summarizes one such metric.

Table 5
Qend −Qstart
min avg±std max

T1, average for all Þrms -3.0 3.1±4.2 9.8
Scale0 T2, opportunistic Þrm -20.3 -4.5±8.8 8.9

T3, for�proÞt mutant -0.3 24.0±20.1 68.3
T1, average for all Þrms -3.6 3.5±5.3 12.6

Scale1 T2, opportunistic Þrm -10.6 -0.4±3.4 5.3
T3, for�proÞt mutant -1.03 29.6±25.1 84.8
T1, average for all Þrms -9.0 1.8±5.0 14.2

Scale2 T2, opportunistic Þrms -56.7 -8.5±11.6 3.9
T3, for�proÞt mutants 0.5 40.9±25.7 85.6

Qend and Qstart denote average quality of a Þrm during the last 500 periods
and periods 100 � 500, respectively24; therefore Qend - Qstart is a measure of
the change of a Þrm�s position in the quality spectrum over time. This mea-
sure quantiÞes in particular the default outcome of opportunistic Þrms moving
down and for-proÞts moving up in quality for all investigated scales discussed
above. Compare, for example, row 1 of Scale0 with rows 2 and 3 respectively.
Clearly the average quality change for all Þrms in T1 (3.1) is larger than that
of opportunistic Þrms in T2 (-4.5) and smaller than that of for�proÞts in T3
(24.0). Along similar lines, note that the quality change range has increased
dramatically in for�proÞts, going from 9.8 to 68.3 at the upper limit. Similar
effects can be observed for Scale1 and Scale2.
Turning to the difference across Scale1 and Scale2 (in order to avoid the

confounding inßuence of integer constraints), the key result is that opportunistic
Þrms tend to fare much worse in Scale2 (lower end of range being -56.7) than
in Scale1 (lower end of range being -10.6). Relatedly, we see a stronger average
24We do not incorporate the Þrst 100 periods because several hundred periods are needed

for the initial noise to get worked out of the system. Including the frist 100 periods makes the
data noisier but does not change any of the qualitative results. Excluding more initial periods
would not leave enough periods for averaging before the increasing returns to scale regime of
for�proÞts takes effect in period 501.
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downward movement of opportunistic Þrms for Scale2 (-8.5; in contrast to -0.4
for Scale1). And somewhat analogously, we see a stronger upward movement of
for-proÞts for Scale2 (40.9; in contrast to 29.6 for Scale1).
The correlation between Þrms� mobility and scale has a straightforward ra-

tionale: when a Þrm, for some reason, manages to get more than its equilibrium
share of its segment, its increment in quality will be proportional to proÞts,
which are in turn proportional to the number of consumers. Grabbing an addi-
tional 5% of a segment with 300 consumers adds 0.18 quality units to an average
Þrm; an additional 5% of a segment with 100 consumers adds just 0.06 quality
units to an average Þrm. Analogously, competitive advantage (of for�proÞts) or
disadvantage (of opportunistic Þrms) translates readily into more pronounced
quality changes and hence into more turbulent environments as the number of
Þrms and consumers per segment increases. Less stability creates, of course,
more opportunities, both positive and negative, for mutants.

3.2 Convergence toward equilibrium distributions

Especially in baseline treatments T1, the segment in which a Þrm will Þnd itself
typically depends on its initial rank: If a Þrm is, to take the Scale2 example,
one of the top four Þrms initially, it is likely to end up in the top segment even
if its initial quality lies signiÞcantly below the predicted quality of the cluster.
The implicit adjustment process takes roughly between 200 (Scale1) and 400
(Scale2) iterations.
Thus, while convergence to the equilibrium location is relatively fast, we do

observe occasional eruptions and displacements in quality even in the absence of
opportunistic Þrms or entrants with economies of scale. A Þrm that moves up
or down the quality spectrum typically dislodges another Þrm from the segment
it invades. While the number and location of segments is relatively stable, there
is quite some jockeying going on for those segments.
Opportunistic Þrms (T2) or entrants with economies of scale (T3) compli-

cate the picture, generating more eruptions and displacements and slower con-
vergence toward the equilibrium distribution. In fact, we often see cascade�like
sequential convergence toward the equilibrium distribution, see Figures 10, 11.25

3.3 Signaling, production, and demand trends

Even though we initialize with widely off�equilibrium quantity�signalling pairs
(recall that both number of slots and number of signals are drawn from an initial
distribution whose support is the integers between 0 and 1023), production and
demand tend to converge to their equilibrium values (independent of scale 100
for slots, dependent on scale 450 � 950 for signals) within the Þrst 500 periods,
25We have computed a measure of deviations of Þrms from the theoretical equilibrium �

essentially the sum of squares of deviations � for all runs mentioned in Table 4. These
computations give a measure of convergence beyond our informal discussion above; they are
available from the authors upon request.
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both in the aggregate and for individual Þrms (see a typical aggregate picture
in Figure 12). Signaling, however, converges much more slowly and is much
more volatile: a typical stochastic ßuctuation in the Þrms� demand (10 to 15%)
can lead to a much larger change in the perceived optimal signal level. As
a result, adjustments to the signaling level are much larger than adjustments
in production. An additional source of uncertainty arises because of the local
nature of the information that Þrms collect. To calculate their optimal signal
level, Þrms have to estimate their �target audience�, or the number of consumers
who can potentially accept a Þrm�s offer. Even if the Þrm correctly knows the
consumers� preferences (the maximum acceptable quality gap), as we currently
assume, it still has to know the number of consumers in its segment to correctly
calculate the target. We assume that the Þrms know only the total number of
consumers and estimate the share of their �target audience� during the process
of signal allocation. This estimation introduces an additional error term into
the calculation of optimal signal level, which can be easily corrected if desired.

3.4 Consumers: �patronizers� versus �hoppers�

We now turn our attention to the emergence of behaviorally different consumers
(traditional �patronizers� versus �hoppers�.)
Rule weights versus rule usage. There is no real difference regarding rule

weights and rule usage across treatments (T1 � T3). SpeciÞcally, the same four
KNOWN and the same four PATRonizing rules have some signiÞcant, albeit
differing, weights and usage across all treatments as well as all scales.26

Rule weights and usage of KNOWN and PATRonizing rules. The usage
of PATRonizing rules decreases while the usage of KNOWN rules increases
with the number of Þrms. For large numbers of Þrms (such as Scale2 in our
computations), usage of PATRonizing and KNOWN rules bifurcates quickly but
is ultimately stable (at roughly .3 and .7).27 For smaller numbers of Þrms (such
as Scale0 and Scale1 in our computations), the usage of these two kinds of rules
converges more quickly than for larger numbers. Additionally, PATRonizing
rules are used more often.
Rule weights and usage of specialized and generic rules28. While the usage

of specialized and generic rules is apparently independent of scale, specialized
26Out of 18 rules, 10 include �not SAT�, �no INFO�, or both. These contingencies are very

rare. Average satisfaction rate is 0.96�0.97 across scales and treatments, leaving 3�4% to cases
of �not SAT�. The average number of signals per consumer varies between 4.5 for Scale1 and
9.5 for Scale2, so the likelihood that a consumer will not be signaled is slim. In a symmetric
steady state, since all consumers can be potentially served by a Þrm, it is just as improbable
that a consumer would Þnd herself outside of all Þrms� segments. The remaining 8 rules are
those actually used by the consumers.
27The same result was obtained for exploratory runs with 120 Þrms and 12000 consumers.

We note that this result coincides with that of (Vriend 1995) where consumers were patronizing
approximately 1/3 of a time. This is interesting because the stochastic auction in (Vriend 1995)
was skewed towards KNOWN rules (they were given two tries in a stochastic auction).
28We call a rule �specialized� if it is not indifferent to both SAT and INFO in its condition

part. If the condition part of the rule includes at least one �indifferent to. . . � statement, we
call such a rule �generic�.
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rules are used far less than generic ones (roughly 1 out of 5 times). This result
seems due to the fact that only eight rules are typically used, of which two are
specialized. The usage pattern, then, appears for the most part determined by
the relative number of relevant specialized and generic rules.
Heterogeneity of consumers as measured by rule usage. Some consumers

never use KNOWN and some never use PATRonizing rules. Some consumers
use one of the eight �good rules� about half of the time. This is true for all
treatments and all scales. The latter result is due to the rather small standard
deviation of the error term in the auction for consumers. A larger standard
deviation would lead to somewhat more varied rule usage.

4 Related literature

The computational matching model presented above has at least three reference
points in the literature.
First, there is the classic work by (Gale and Shapley 1962) on college admis-

sions and the stability of marriage and later related work on two-sided matching,
e.g., (Roth and Sotomayor 1990), (Roth and Xing 1994), (Roth and Xing 1997),
(?); (Simao and Todd 2002); (Pingle and Tesfatsion 2001); (Vriend 1995);
(Kirman and Vriend 2001); (Weisbuch, Kirman, and Herreiner 2000). This liter-
ature has theoretically illustrated the heavy mathematical machinery necessary
to model matching processes; it has also provided compelling evidence both
theoretically and empirically on the importance of institutional arrangements
that prevent, for instance, lower�ranked market participants from �jumping the
gun� on other (higher�ranked) market participants and, exploiting well�known
psychological phenomena such as loss aversion, pushing them into decisions that
they might come to regret. In the context of post�secondary education in the
USA, this issue is currently on the front burner as a number of colleges and
universities are considering throwing out their early admissions policies, see
(Schemo April 26, 2002).
Second, there is work that documents important changes in higher educa-

tion. What little is out there in academic journals has already been mentioned
in the introduction above; for the time being much of the relevant information
on those developments is currently available only in official SEC forms or in
research reports of investment houses; for details, see (Ortmann 1998). The
situation is slowly changing though, e.g., (?). Three other academic papers
deserve mention here. (?) study peer effects and show theoretically why it
is imperative for colleges and universities to give out need�based Þnancial aid.
Only by doing so, will they be able to attract those bright (but poor) students
that are an indispensable input in the production process of those students
that can pay (but are not so smart). There is thus nothing altruistic about
giving out need�based Þnancial aid. Not surprisingly, colleges and universities
routinely monitor the comparative attractiveness of their own Þnancial aid pack-
ages and those of their close competitors. This rather insightful paper motivated
our moral hazard treatment. (?) study theoretically and computationally the
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competition between tax�Þnanced, tuition�free public schools and competitive,
tuition�Þnanced private schools in primary and secondary education, the im-
pact of vouchers, and peer�group effects when students differ by ability and
income. The equilibrium of their model shows that schools stratify along the
quality spectrum and that students in private schools, dependent on their mar-
ginal productivity, either receive tuition discounts or have to pay tuition premia,
as suggested in (?). (?) also study the competition between public and private
schools in an agent�based model of school choice.
Third, there is a literature on modeling social processes through GAs and

related evolutionary programming techniques. (Arthur 1994), (Arthur 1991)
persuasively argues the case for agent�based models of interactions of bound-
edly rational and heterogeneous agents. (Arthur 1994) points out that such
models are grounded in plenty of evidence. Indeed, much of the recent evidence
in experimental economics, e.g., (Nagel 1995); (Stahl 1996); (Stahl 2000); (Stahl
and Wilson 1995); (Costa-Gomes, Crawford, and Broseta 2001) and experimen-
tal psychology, e.g., (Cosmides and Tooby 1996); (Gigerenzer, Todd, and ABC
Research Group 1999) has reinforced the impression that Arthur gets it right �
people (whether real or Þctitious, such as organizations) are �intuitive statisti-
cians� (Cosmides and Tooby) who inductively keep track of the performance of
a set of plausible, simple models of the world that they can cope with. When
it comes time to make choices, people act upon the most credible and possibly
most proÞtable one. The others they keep in the back of their mind, so to
speak (Arthur 1994, p. 407, sligthly edited). (Arthur 1991) makes a similar
argument but also stresses the importance of calibrating computational agents
so as to accurately reßect how human agents learn. Not much attention has
been paid during the last decade to this exhortation, although recent devel-
opments comparing the performance of human and computational agents in
more or less identical settings, e.g., (Chen, Duffy, and Yen 2002), (Pingle and
Tesfatsion 2001), are encouraging signs.
What (Arthur 1991) does not stress is the importance of embedding both

computational and human agents in environments that mimic the essential fea-
tures of the real�world situation that they attempt to study. (Plott 1987) has
proposed, in a different context, a �parallelism postulate� � the challenge to ex-
perimental economists, especially if they give advice to policy makers, to create
as test�beds small�scale versions of the situation that they study. (Simon 1956)
has captured the need to understand both � agents and environment � in his
metaphor of the two being like the blades of a pair of scissors; one without the
other is of little use.

5 Concluding remarks

We have proposed a computational model to study (the evolution of) post�
secondary education. Although our model is motivated by developments in the
USA, the insights it generates should be easily transferable to related develop-
ments in other countries. While we intend to calibrate our model with data
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from the USA (or other countries, for that matter), and while we believe that
our model captures key aspects of post�secondary education, we currently use
our model primarily as a computational laboratory. It is useful to conceptu-
alize such a laboratory as culture�dish, as (Tesfatsion 2002) does, that allows
us to explore how macro regularities might emerge through the repeated local
interactions of boundedly rational, heterogeneous agents from the bottom up.

5.1 Objections to agent-based modeling

A standard objection to agent-based modeling is, why not model the matching
process the good old-fashioned way, i.e. using an equilibrium search model with
perfectly rational agents? Our answer is two-fold. Firstly, drawing on Arthur�s
arguments and the experimental literature already mentioned, we believe it self-
evident that agents (including aggregate agents such as Þrms) are not perfectly
rational. Rather, they are boundedly rational in their reasoning and heteroge-
neous in their behavior. Secondly, we simply do not see a way to model the
issues we have addressed above in the good-old fashioned way. (That said, see
our analytic results in the appendix for a simpliÞed version of the problem we
analyze here.)
We do, however, acknowledge that the sensitivity of agent-based modeling

is an important question. This sensitivity has two aspects, that of external
validity and that of internal validity.
External validity, apart from the question of parallellism that we discussed

above, addresses the question of the basic behavioral assumption that goes into
our evolutionary programming, such as the way students make choices. One of
the nice features of our technique is that we can easily incorporate competing
behavioral assumptions, and that we can do so even by modelling various types.
Think of this feature as a list of assumptions that is initially given to a reader
who then might (dis)agree with their (un)reasonableness. To illustrate, recall
how we have presently conceptualized the consumer�s decision: Consumers ran-
domly draw a Þrm from their lists of desired Þrms that have signaled them.
One might argue in favor of a higher degree of rationality and have consumers
select the best Þrm instead. It is obvious that checking the sensitivity of the
model to this change in assumption would require only a couple of key strokes
and another set of runs.
Internal validity addresses the question of the speciÞcs of the evolutionary

modelling technique, such as the speciÞc parameter values of the standard devi-
ation of the auction�s error terms, the speed with which that standard deviation
decreases over time, and the discard probability. SpeciÞcally, a number of au-
thors such as (Michalewicz 1999), (Mitchell 1996), (Chattoe 1998), have voiced
concern that the degrees of freedom inherent in evolutionary modelling tech-
niques � similar to the degrees of freedom of the design and implementation
of human experiments � subject any computational model to the real danger
of being a mere example, an example for that matter that may be rather un-
representative as regards the complete set of sensible parameterizations. This
issue (which is basically that of replication) is admittedly an important and
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tricky one. For now, we have solved it by relying almost exclusively on the
implementation details in Vriend (1995).
(Axelrod 1997) has enumerated some of the problems that complicate repli-

cation of computational simulations (and re�engineering of extant model). Our
own experience supports Axelrod�s exhortation to make as unambiguous and
complete a model description and presentation of results as possible, and to
facilitate other researchers� attempts to re�engineer one�s model; see also the
related discussion in (Valente and Andersen 2002) although we have our own
reservations about the approach they propose. Replicability, in our view, is
the hallmark of good science among experimental economists and psychologists
alike ((?) and the commentaries on that article) and it seems worthwhile to es-
tablish it as a fundamental methodological tenet in agent-based modeling too29;
for other tenets see (Hollenbeck 2000).

5.2 What we have accomplished

In the introduction we enumerated the key questions that motivated our study.
These questions were prompted by recent developments in post�secondary ed-
ucation in the USA. If indeed our computational model speaks to that issue,
then preliminary answers to our initial questions are as follows:
For�proÞts were, and are, clearly handicapped. How then could they succeed?

Can the invasion of ever higher segments of higher education through for�proÞt
�mutants� be stopped, or will for�proÞts ultimately invade segments 1 � 3, i.e.
the �brand�name segment�?
The answer is clear: If Þrms manage to produce beyond their minimum

efficient scale, they are bound to move up in the quality spectrum. The speed
of this process is moderated by the initial quality of the mutant, by the degree
of economies of scale (and taxes), and by the degree of competitiveness of the
environment (what we called �scale� above).
What are the consequences of opportunistic behavior of colleges and univer-

sities (e.g., admittance of unqualiÞed students for Þscal reasons)?
The answer, again, is clear: Recall that opportunistic Þrms are those that

admit more than their fair share of unqualiÞed students for Þscal reasons. So
far we have observed that opportunistic Þrms tend to drift down the quality
spectrum. In fact, they do so remarkably quickly for what seems rather small
degrees of opportunism (e.g., already for a move from a maximum acceptable
gap of 10 to one of 12 and 14, i.e., by an increase of the admittance interval of
10% and 20%, respectively.) In the long run, the equilibrium level of quality for
opportunistic Þrms is at the bottom of the quality distribution.

29 In this spirit, we will make available our code to interested researchers.
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The computational model proposed here also improves on existing match-
ing models in the Evolutionary Programming literature e.g., (Vriend 1995);
(Kirman and Vriend 2001); (Tesfatsion 2001); (Pingle and Tesfatsion 2001) by
introducing differences in quality on both the demand and supply side.Our com-
putational laboratory enables us to do comparative statics exercises of changes
in key parameters like the degree of opportunism that colleges and universities
allow in their admission policies. Likewise, it allows us to understand better the
likelihood of for�proÞts making inroads into post�secondary education. Clearly,
our model lends itself to a wide range of such explorations.
We thus have proposed a computational model that allows us to investigate

a wide range of issues pertaining to the (evolution) of post-secondary education,
and we have explored its properties and related it to a simple theoretical model.

5.3 What remains to be done: A roadmap

We prefer to think of our computational model as a mere representation of
existing or actual processes rather than an accurate model of post�secondary
education. We do believe that our computational agents� decision making is
a reasonable approximation of real agents� decision making. Rendering our
computational model a more reliable laboratory of post�secondary education
requires, in our view, not so much a more reÞned calibration of our compu-
tational agents as a more reÞned mapping of post�secondary education to our
computational model.
Toward such a mapping, we shall implement in future work a distribution

of consumer quality that mirrors more closely the distribution of students in
the USA (which surely is not uniform, as we have assumed so far; we intend to
proxy it through measures of quality distribution such as GRE or SAT scores
that are readily available in the literature.) One interesting observation will be
how different distributions of consumer quality affect rankings of Þrms. And,
how in turn these rankings will affect the distribution of consumers if we were
to endogenize quality.
Another reÞnement we plan to introduce is a turnover in buyers and sellers,

especially continued entry and exit of buyers. While sellers in higher education
tend to exist for remarkably long periods of time, it would be useful to allow
Þrms to switch their status. In the current set-up, however, the outcomes of
such reÞnements are fairly predictable.
Varying population size, in contrast, does not strike us as a problem worth

pursuing since enrollments � while steadily growing � are rather stable, even
through business cycles.
Yet another reÞnement we intend to study is the effect of (differential) levels

of knowledge. We are particularly interested in understanding what happens if
Þrms do not know consumers� quality or preferences (as parameterized by ∆F )
well, or if consumers systematically overestimate their own quality, a psycholog-
ical fact for individuals well�documented in the literature. We could also have
more complicated situations of asymmetric information such as Þrms or buyers

21



with heterogeneous perceptions. All of these studies are easily implementable
in our current computational laboratory.
Extensions of our model would, however, be required for other intriguing

issues such as early admission: Exploring such jumping-the-gun strategies might
require an increase of the dimensionality of the action space for both buyers and
sellers, and thus deÞnitely would change, and complicate the matching protocol.
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A Theoretical equilibrium conÞgurations

In the following we describe the symmetric steady state of the Q�model. �Sym-
metric steady state� denotes situations where every Þrm serves the same number
of agents, where every Þrm has the same proÞt share (which is indeed what we
observe empirically), and where quality of the Þrm equals average quality of
its consumers. We calibrate the model so that average Þrm quality Q equals
average consumer quality of 50 (which given our assumption of uniform distri-
bution of consumers along the quality spectrum [0,100] is what we can expect
on average.) We note that symmetric steady state implies Q = 50 but that the
reverse implication does not necessarily hold. Since Þrm quality is deÞned as
a weighted sum of both average consumer quality and proÞts, we begin with
the proÞt weight calibration before proceeding with an analysis of the equilib-
rium number of clusters and, in fact, the exact location of the clusters (cluster
conÞguration).

A.1 ProÞt weight calibration

A Þrm�s quality is updated according to the following rule,

Q = w1 ·Qavg +w2 · π, (1)

where Q is the Þrm�s quality, Qavg the average quality of its consumers, π the
Þrm�s proÞts, and w1 and w2 are weights. Symmetric steady state proÞts are
given by

π =
N

[Q]
αQ,

where N is the number of consumers per Þrm (100 in all runs), [Q] the quality
range (100 in all runs), and α the proÞt share (average α is 0.46 − 0.48 for
different conÞgurations, with a standard deviation 0.02− 0.03). Note that α is
determined experimentally.
The requirement that Q = Qavg amounts to Q(1 − αw2) = Qw1, or w2 =

(1−w1)/α. The empirical value of w2 which prompts Q = 50 is indeed very close
to the one just derived. For example, with 24 Þrms and α = 0.48, w1 = 0.95,
the derived value w2 = 0.107, while Q ≈ 50 requires an empirical value of
w2 ∼0.104.

A.2 Equilibrium number of clusters

In this subsection we show why the conÞguration that we observe in most runs
with number of Þrms modulo 6 (6 relatively tight clusters of Þrms) is a stable
symmetric steady state for our choice of the quality range. For the sake of ar-
gument, assume that Þrms� quality is adjusted according to (1) with w1 = 1
and w2 = 0, i.e., a Þrm�s quality equals the average quality of its consumers.
(Runs with this quality adjustment rule reveal the same distribution of 6 rela-
tively tight clusters of Þrms.) Additionally assume that if a given number of T
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consumers can be served by n Þrms, then T/n of them will be served by every
Þrm, that is, competition leads to even distribution of consumers among Þrms
in equilibrium. A Þrm will accept customers who are at least of quality Q−∆,
where Q is the Þrm�s quality. A customer will accept a Þrm that has at least
quality of Qcust −∆ where Qcust is the customer�s quality. Therefore, a Þrm
with quality Q can serve only customers in the quality interval [Q−∆, Q+∆].
Assume that all Þrms are in steady state. Assume next that one of them

has, by some random disturbance, its quality adjusted upwards by dq. The Þrm
under consideration loses some consumers at the lower end of its segment at
quality Q−∆ but also obtains some consumers at the upper end of its segment
at quality Q + ∆. If n other Þrms are competing at the lower end and n + j
other Þrms can serve consumers at the upper end, the number of consumers lost
and obtained are respectively 1

n+1
dq
[Q]Ntot and

1
n+j+1

dq
[Q]Ntot, where Ntot is the

total number of consumers. Thus, the new average quality of the Þrm if given
by

eQ = P
Q− 1

n+1
dq
[Q]Ntot · (Q−∆) + 1

n+j+1
dq
[Q]Ntot · (Q+∆)

N − 1
n+1

dq
[Q]Ntot +

1
n+j+1

dq
[Q]Ntot

,

where
P
Q is the sum of the Þrm�s consumers� quality in steady state and equal

to Q ·N by assumption. Dividing the numerator and denominator by
P
Q and

N respectively and using the fact that 1+x1+y ≈ 1+ x− y for x ¿ 1, y ¿ 1, one
obtains

eQ ≈ Q+ dq

[Q]

Ntot
N

½
Q+∆

n+ j + 1
− Q−∆
n+ 1

− Q

n+ j + 1
+

Q

n+ 1

¾
,

or

dq0 = eQ−Q ≈ dq

[Q]

Ntot
N

·∆ · n+ 1+ n+ j + 1
(n+ 1) (n+ j + 1)

.

The steady state is stable if random ßuctuations in quality are dampened
over time, or |dq0| < |dq|30. Therefore, stability of the steady state depends on
the magnitude of the following term

∆

[Q]
Nf · n+ 1+ n+ j + 1

(n+ 1) (n+ j + 1)
, (2)

where Nf = Ntot

N is the number of Þrms in the economy.
Let us consider some special cases of (2). Suppose that a Þrm in steady state

does not have any competition at the lower end of its segment, n = 0. Then
(2) becomes ∆

[Q]Nf · 2+j1+j , and for parameter values (∆ = 10, [Q] = 100) this
expression is greater than one for any j > 0, and any Nf > 10. In other words,
any steady state that implies no competition at the lower end is not stable,
because a random upward quality movement is ampliÞed. Similarly, suppose
that there is no competition at the upper end of a Þrm�s segment. In this case,
30 In other words, we want the eigenvalue of the difference equation Qn+1 = f(Qn), lin-

earized around the steady state, to be less than one. It is always positive, therefore an
oscillating dynamics around the steady state is impossible.
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j = −n, and (2) is ∆
[Q]Nf · 2+n1+n which is again greater than one for any n > 0,

and any Nf > 10. Therefore, a steady state involving zero competition at the
upper end cannot be stable.
The preceding result demonstrates that steady states with fewer than Þve

clusters are unstable, because they necessarily involve zero competition either at
the lower or at the upper end of the quality segment. How about Þve segments
then? Assume a steady state with Þve Þrm clusters, numbered in ascending
quality order. Given the parameter values that we used for our treatments,
∆ = 10, [Q] = 100, the Þve Þrm clusters will be located at qualities 10, 30,
50, 70, and 90. Suppose now that clusters number 2 and 4 move down and
up, respectively. In this case, a Þrm from cluster 3 that randomly increased its
quality by dq will have dq0 > dq, while the one that had its quality decreased by
dq will have |dq0| > |dq|. (Recall that dq0 is the deviation from steady state after
one iteration.) In other words, cluster 3 will be torn apart by any non�negligible
simultaneous movements of clusters 2 and 4. Therefore, a conÞguration with
5 clusters is stable but the associated basin of attraction is very small. In
numerical simulations with Nf = 10 we have observed stable constellations
with 5 clusters of Þrms only once or twice every 100 runs.
Why, then, do we observe constellations of 6 clusters for runs with large

number of Þrms, say 24 and 48? And why do we observe constellations with
between 6 and 8 clusters for runs with 10 Þrms? Compare two steady states,
one with C clusters and another with C + 1, where 10 > C > 5. A Þrm that
moved up by dq faces the same competition at its lower end from members of
its own cluster and the lower one, with the total number of other Þrms given by
Nf

C −1+ Nf

C (disregarding integer constraints). On the other hand, at the upper
end of its segment competition from members of its own cluster disappears, and
only that from the upper cluster remains. Therefore, j = 1 − Nf

C . (2) is now

proportional to ∆
[Q]Nf ·

3
Nf
C +1

2
Nf
C ·

³
2
Nf
C +1

´ or
∆

[Q]
Nf · C · (3Nf +C)

2Nf · (2Nf +C) . (3)

The partial derivative of the preceding expression with respect to C is propor-
tional to

2Nf ·
³
6N2

f + 4CNf +C
2
´

4N2
f · (2Nf +C)2

,

which is always positive. Therefore, the movement to a higher number of clusters
implies a larger eigenvalue, and hence a less stable steady state.31

Summarizing the results, we see that conÞgurations with 4 clusters are un-
stable and those with 5 clusters are likely to be destroyed even by small ßuc-
tuations. Furthermore, conÞgurations with more than 6 clusters are less stable
than those with 6, and indeed they are increasingly less stable as the number of
31A similar result is true for any number of clusters. The math, however, becomes tedious.
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clusters goes up. Therefore, in numerical simulations one is likely to observe a
conÞguration with 6 clusters.
Finally, observe that with C = 6, (3) equals 0.42 for Nf = 12, 0.433 with

Nf = 24, and approaches 0.45 as Nf →∞. This means that conÞgurations of 6
clusters are always stable for any number of Þrms.

A.3 Cluster conÞgurations

Having established theoretically the most likely distribution of clusters, we next
calculate their exact location in the symmetric steady state with C clusters.
We assume that there is an equal number of Þrms in each cluster. Under the
symmetric steady state assumptions spelled out in the previous subsection, cal-
culations are the same for one or n Þrms in a cluster; we thus restrict our
discussion to one Þrm per cluster.
Order quality locations in a symmetric steady state in ascending order from

Q1 to QC . For 10 > C > 5, the Þrst Þrm (remember we restrict our discussion to
one Þrm per cluster) has no competition at its lower end and competition from
the second Þrm only at the upper end. Denote as D the density of customers
per unit of quality. Then the Þrst Þrm will serve customers located in [0, Q2−∆]
alone and those in [Q2 − ∆, Q1 + ∆] together with the second Þrm. Since in
symmetric steady state the average quality of consumers equals its own quality,
we have

Q1 =

D
Q2−∆R
0

QdQ+ 1
2D

Q1+∆R
Q2−∆

QdQ

D
Q2−∆R
0

dQ+ 1
2D

Q1+∆R
Q2−∆

dQ

=

1

2

(Q2 −∆)2 + (Q1 +∆)2
Q2 −∆+Q1 +∆ =

(Q2 −∆)2 + (Q1 +∆)2
2 · (Q2 +Q1) . (4)

Consider now the second Þrm. It is the sole provider to consumers in [Q1+
∆, Q3 −∆] and a joint provider with Þrst and third Þrm in [Q2 −∆, Q1 +∆]
and [Q3−∆, Q2+∆], respectively. The symmetric steady state condition then
becomes

Q2 =

1
2D

Q1+∆R
Q2−∆

QdQ+D
Q3−∆R
Q1+∆

QdQ+ 1
2D

Q2+∆R
Q3−∆

QdQ

1
2D

Q1+∆R
Q2−∆

dQ+D
Q3−∆R
Q1+∆

dQ+ 1
2D

Q2+∆R
Q3−∆

dQ

=

(Q3 −∆)2 + (Q2 +∆)2 − (Q2 −∆)2 − (Q1 +∆)2
2 · [(Q3 −∆) + (Q2 +∆)− (Q2 −∆)− (Q1 +∆)] . (5)

After some algebra, (5) transforms into

Q2 =
Q1 +Q3

2
, (6)
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which says that the symmetric steady state location of the second Þrm is exactly
between the Þrst Þrm and the third Þrm. It is trivial to show that a similar result
will obtain for all other Þrms located in the interior of the quality spectrum,

Q3 =
Q2 +Q4

2
, (7a)

Q4 =
Q3 +Q5

2
, (7b)

. . . (7c)

QC−1 =
QC−2 +QC

2
. (7d)

Finally, for the last Þrm C, the symmetric steady state condition is given by

QC =
2 · [Q]2 − (QC −∆)2 − (QC−1 +∆)2

2 · [Q]−QC−1 −QC . (8)

Combining (6) and (7) we obtain Q4 = 3Q2 − 2Q1, Q3 = 2Q2 − Q1 or
Q3 = Q2 + (Q2 −Q1) , Q4 = Q3 + 2 (Q2 −Q1) . In other words, Þrms are
located at equal distance δ = (Q2 −Q1) from each other. The problem of
Þnding symmetric steady state locations is thus reduced to solving a system of
two quadratic equations, (4) and (8), in two unknowns, Q1 and δ (remember
that Q2 = Q1 + δ, QC−1 = Q1 + (C − 2) · δ, QC = Q1 + (C − 1) · δ). The
solution can be found numerically when C, the number of clusters in symmetric
equilibrium, is given.
In the previous subsection we have argued that given our parameter values∆

and [Q] , the symmetric steady state with 6 clusters should be the most stable
one. Steady state positions with 6 clusters are given by [8.48; 25.09; 41.70;
58.30; 74.91; 91.52].
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B Pseudo code

The following pseudo code presents our matching model in a manner more palat-
able to programmers. Subroutines and parameters are in CAPITAL LETTERS
while variables programming language commands are expressed in lower case.

program MAIN;
begin
CREATE_FIRMS, CREATE_CONSUMERS
for iteration 1 to RUNLENGTH do

RESET_FIRMS_AND_CONSUMERS
FIRMS_CALCULATE_PRODUCTION_AND_SIGNALING
FIRMS_SIGNAL_DESIRABLE_CONSUMERS
CONSUMERS_SELECT_DESIRABLE_FIRMS
FIRMS_ACCEPT/REJECT_CONSUMERS
FIRMS_COMPUTE_PROFITS
FIRMS_COMPUTE_AVE_CONSUMER_QUALITY
FIRMS_UPDATE_QUALITY
FIRMS_REINFORCE_WEIGHTS
CONSUMERS_REINFORCE_WEIGHTS
if iteration modulo 50 then run_GA on Þrms� rules

end

CREATE_FIRMS
proÞt[0:MEMORY_SIZE]=0.
rules[1:NUM_FIRM_RULES].weight=INIT_FIRM_WEIGHT
RANDOMLY_GENERATE_RULES [PRODUCTION_&_SIGNALING_PAIRS]
RANDOM_QUALITY[0:99]

CREATE_CONSUMERS
rules[1:NUM_CONS_RULES].weight=INIT_CONS_WEIGHT
rules[1] = �IF not SAT AND no INFO THEN PATR�
rules[2] =�...
rules[5] = �IF not SAT AND INDIFFERENT to INFO THEN PATR�
rules[6] = �...
rules[18] = �IF INDIFFERENT to SATAND INDIFFERENT to INFO

THEN KNOWN�
RANDOM_QUALITY[0:100]

RESET_FIRMS_AND_CONSUMERS
ADJUST_WEIGHTS_TO_[0,1]
RESET_DESIRED_FIRMS_LIST
RESET_SATISFACTION
WRITE_THE_STATE_VECTOR

FIRMS_CALCULATE_PRODUCTION_&_SIGNALING
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SELECT_RULE (stochastic auction)
CALC (production, number_of_signals)

FIRMS_SIGNAL_DESIRABLE_CONSUMERS
for i = 1 to number_of_signals

SELECT_RANDOM_CONSUMER
if MIN_CONS_QUAL ≤ CONS_QUAL ≤ MAX_CONS_QUAL
then SEND_SIGNAL

CONSUMERS_SELECT_DESIRABLE_FIRMS
SELECT_RULE (stochastic auction)
if action = �PATR� then Þrm_selected = last_Þrm
if action = �KNOWN� then

Þrm_selected = �NONE�
for i = 1 to NUM_FIRMS

SELECT_FIRM_FROM_AMONG_THOSE_THAT SIGNALED
if FIRM_QUAL ≥ MIN_FIRM_QUAL then

Þrm_selected = i
Þrm_desired[i] = true

end
end
last_Þrm = Þrm_selected

end

FIRMS_ACCEPT/REJECT_CONSUMERS
stock = production
demand = 0
for i = 1 to NUM_CONSUMERS

for j = 1 to NUM_FIRMS
if CONS.Þrm_desired = Þrm and Þrm.quality =>MIN_FIRM_QUAL

then
demand = demand + 1
if stock > 0 then

SERVE
stock = stock - 1
last_Þrm = Þrm

end
end

end
end

FIRMS_COMPUTE_PROFITS
proÞt = {price*min (production, demand) - cost(production, number_of_signals)}*qual

FIRMS_COMPUTE_AVERAGE_CONSUMER_QUALITY
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FIRMS_UPDATE_THEIR_QUALITY
quality = weight_quality*ave_consumer_quality + weight_proÞt*proÞt

FIRMS_REINFORCE_WEIGHTS

CONSUMERS_REINFORCE_WEIGHTS

RUN_GA
For k = 1 to NUM_FIRMS

SELECT_TWO_PARENTS_FROM_TOP 25%_OF_RULES
DO_CROSSOVER
DO_MUTATION
REPLACE_RULE_FROM _BOTTOM_HALF
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6

34



0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100
Firm Quality, Smoothed, Q + MH2, 10firms, Run 10

Time Period

Fi
rm

 Q
ua

lit
y

Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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