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Abstract

The usual conclusion in the literature is that sunspots reduce welfare because of the
agents� risk aversion. However, if sunspots can lead to escape from an inferior steady
state (poverty trap), this conclusion does not necessarily hold. Escaping trajectories
can have much higher welfare than those remaining in the poverty trap. The ex�post
welfare effect can be positive for initial conditions such that the probability of escape is
sufficiently close to one. Numerical simulations of the model support this conjecture.

The distance from the poverty trap boundary to the initial condition point is
of critical importance where the escape is concerned. I consider a model in which
government has an inßuence on the exact location of the boundary. Implementing a
policy that moves the boundary to the initial condition point greatly increases both
the probability of escape and the expected welfare gain.

Abstrakt

Ekonomické koncepty popsané v literatuÿre obvykle tvrdí, ÿze tzv. �sunspoty� sniÿzují
bohatství protoÿze hráÿci jsou aversní vûuÿci riziku. To v�ak nemusí platit, pokud sunspoty
vedou k úniku z inferiorního stacionárního stavu (pasti chudoby). Únikové trajektorie
mohou vést k mnohem vy��ímu bohatství neÿz trajektorie pasti chudoby. Ex post vliv
na bohatství mûuÿze být znaÿcný pro poÿcáteÿcní podmínky, pÿri kterých se pravdÿepodob-
nost úniku blíÿzí jedné. Numerické simulace modelu toto tvrzení potvrzují.

Vzdálenost mezi poÿcáteÿcním bodem a hranicí pasti chudoby hraje dûuleÿzitou roli
pÿri úniku z pasti chudoby. V popsaném modelu vláda ovlivÿnuje hranici pasti chudoby
a pokud svou politikou pÿresune tuto hranici do poÿcáteÿcního bodu, výraznÿe zvý�í jak
pravdÿepodobnost úniku z pasti chudoby, tak vzrûust bohatství.
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1 Introduction

�Sunspot equilibria� are �rational expectations equilibria in which purely extrin-

sic uncertainty affects equilibrium prices and allocations�, see Woodford (1990).

�Purely extrinsic uncertainty� denotes some random variable which has no ef-

fect on preferences, endowments, or technology. If this random variable and

the resulting allocations and prices are stationary, one speaks about station-

ary sunspot equilibria, or SSE. In discrete time, one of the ways in which SSE

are constructed is by randomization among different non�sunspot equilibria or

deterministic trajectories converging to a steady state. This procedure can be

performed when a non�sunspot steady state is locally indeterminate. Indeed, in

a simple OLG economy with a constant supply of money, as in Azariadis (1981),

a necessary condition for the existence of a particular kind of SSE is exactly the

condition for the local indeterminacy of the non�sunspot rational expectations

equilibrium (REE), see Woodford (1990). This connection between indetermi-

nacy of a REE and the existence of some SSE (known as �Woodford�s Conjec-

ture�) was established for a broad class of discrete time models, for example

in Woodford (1986); Grandmont (1986); and Spear, Srivastava, and Woodford

(1990).

The usual conclusion in the sunspot literature is that sunspots reduce wel-

fare because of the agents� risk aversion. Following the sunspot variable results

in a less smooth consumption path. On average, one should see a lower in-

tertemporal welfare. However, if sunspots can lead to escape from an inferior

steady state (poverty trap) as is posited in Slobodyan (2001), this conclusion

does not necessarily hold. Escaping trajectories can have much higher welfare

than those remaining in the poverty trap, especially if the escape happened
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early, thus increasing ex�post expected intertemporal welfare in the presence

of sunspots. The model described in Slobodyan (2001) included two competing

inßuences on the expected intertemporal welfare functional. One could expect a

positive inßuence to prevail for the initial conditions, guaranteeing high escape

probability. Conversely, a low escape probability might mean a negative ex�post

contribution from self�fulÞlling beliefs to the intertemporal welfare.

Two factors play a major role in determining the net result of the two ef-

fects. First is the difference between welfare accumulated along trajectories

originating �just inside� of the trap and �just outside� of it. For example, if

convergence to the steady state is fast and contemporary utility is signiÞcantly

different in the steady states, then one would expect a rather large step be-

tween �just inside� and �just outside� trajectories. The other major factor is

escape probability. When the initial point implies a high escape probability,

the expected intertemporal welfare should be higher, all other parameters being

equal.

The Þrst major factor, the �step� in intertemporal welfare, is not large in

the Slobodyan (2001) model for the simple reason that for realistic values of the

increasing returns to scale, two eigenvalues with negative real parts are complex.

The trajectory converging to the positive steady state does so in an oscillatory

fashion. In particular, the trajectories that start just above the poverty trap

boundary spend a long time eating up capital stock, behaving exactly like the

trajectories in the trap. Accumulation of the capital which eventually leads to

higher contemporary utility starts relatively late, when the discount factor e−ρt

is already signiÞcantly lower than one. BeneÞts of being out of the trap are

diminished as a result.
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The second major factor, probability of escape, was extensively studied in

Slobodyan (2001). There exists a band of initial conditions below the trap

boundary, such that trajectories initiated in this band have a non�negligible

probability of escape. This probability increases as the initial condition ap-

proaches the boundary. Therefore, only for initial conditions very close to the

boundary is the effect of sunspot ßuctuations expected to be positive on average.

For the rest the result will be zero or negative.

The degree of risk aversion also contributes to the expected sign and magni-

tude of the sunspot�s inßuence on welfare. A high degree of risk aversion might

mean that the negative impact prevails even in the region where the probability

of escape is reasonably high.

To obtain some insights into the relative strength of those competing inßu-

ences as a function of model parameters, I performed numerical simulations of

the SDE derived in Slobodyan (2001), and calculated the welfare along different

stochastic trajectories. The main result is relatively pessimistic. Even though

a non�negligible probability of escape exists for initial consumption levels 10

to 20 percent lower than the boundary value, ex�post expected welfare in this

region is essentially the same as in the deterministic case. The negative effect

of the sunspot ßuctuations is close to zero. For initial conditions (capital and

initial consumption) very close to the boundary, expected welfare in the sunspot

case starts to dominate the deterministic one. It is impossible to quantify to

what degree risk aversion inßuences welfare, because the expected welfare gain

depends on it in a very complicated way.

Results of the current paper and of Slobodyan (2001) suggest that the dis-

tance from the poverty trap boundary to the initial condition point is of critical
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importance where the escape is concerned. I consider a model in which gov-

ernment has an inßuence on the exact location of the boundary. Implementing

policy that moves the boundary to the initial point greatly increases both prob-

ability of escape and the expected welfare gain.

Section 2 of this paper gives numerical results for the effect of sunspot shocks

on the ex�post expected intertemporal welfare in the model studied in Slobodyan

(2001). Section 3 uses analytical results on escape probability to estimate ex-

pected welfare gains or losses. Section 4 slightly modiÞes a model in which the

government can change the parameters of the tax regime. I consider whether

government actions could change the location of the poverty trap boundary so

that the economy becomes closer to the boundary. If this is possible, then the

government could conduct a policy aimed at increasing the probability of escape

under the inßuence of sunspot ßuctuations. This opens up a channel of inßuence

for the government, which is otherwise non�credible and unable to coordinate

agents� beliefs on the trajectory converging to the welfare maximizing steady

state.

2 Inßuence of Sunspots on Welfare � Numeri-
cal Results

The model studied in this paper is the same as that used in Slobodyan (2001),

and represents a version of the Benhabib and Farmer (1994) model. This deter-

ministic continuous�time model with inÞnitely lived agents is characterized by

increasing social returns to scale due to externality in the production function

of which the agents are assumed to be unaware. There are two steady states;

one with zero capital and zero consumption (the origin), the other with posi-
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tive levels of both capital and consumption. For some parameter values, both

steady states are indeterminate, and the whole state space is separated into two

regions of attraction of the steady state. The origin�s region of attraction is a

development trap. For the derivations, please refer to Slobodyan (2001).

The economy consists of a large number of identical consumers seeking to

maximize
∞Z
0

(
C1−σ

1− σ −
N1−χ

1− χ )e
−ρtdt,

subject to
·
K = (r − δ)K +wN −C,

where C is consumption, K capital, N work effort, r interest rate, and w the

wage rate. There are a large number of identical Þrms with the production

function

Y = KaNbK
α−a

N
β−b

, (1)

where a+ b = 1, α > a, β > b, and K and N are economy�wide averages of K

and N per Þrm, which are taken as given by every individual Þrm. The solution

to the problem in log variables is given by the following system of equations,

nearly equivalent to the one derived in the original Benhabib and Farmer (1994)

model:

·
c = [

a

σ
exp(w − vk + uc)− δ + ρ

σ
], (2a)

·
k = [exp(w − vk + uc)− exp(c− k)− δ]. (2b)
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where w, v, and u are given by

w = − β log(b)

β + χ− 1 ,

v =
β − (1− α)(1− χ)

β + χ− 1 , (3)

u =
σβ

β + χ− 1 .

After the changes of variables given below,

x = exp(w − vk + uc), (4a)

y = exp(c− k), (4b)

the system transforms into

·
x = x[(

a

σ
u− v)x+ vy + vδ − uδ + ρ

σ
], (5a)

·
y = y[((

a

σ
− 1)x+ y + δ − δ + ρ

σ
)]. (5b)

The steady states of (5) are

A = (
δ + ρ

a
,
δ + ρ

a
−δ), B = (0, 0), C = (0, δ + ρ

σ
−δ), and D = (

u δ+ρσ − vδ
a
σu− v

, 0).

If the following conditions hold,

β + χ− 1 > 0,

a(1 +
ρ

δ + ρ

β + χ− 1
1− χ ) < α < 1, (6)

(σ − 1)β + (1− α)(1− χ) > 0,

then the positive steady state A is indeterminate. Under those conditions,

steady state D lies in the second quadrant and is of no interest, B is stable (in-
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determinate), and C is a saddle1. In addition, application of the Dulac criterion

shows that (5) does not have limit cycles. The phase portrait of the model is

presented in Figure 1. The whole Þrst quadrant is divided into two regions of

attraction2. The only trajectories that diverge to inÞnity are those that start

on the vertical axis above C. The stable manifold of C serves as a separatrix

between the regions of attraction. In logged consumption and capital, the phase

portrait is given by Figure 2. All trajectories that start above the transformed

stable manifold of C converge to the positive steady state A. Trajectories with

the initial conditions below it diverge to minus inÞnity. In the original (C ,K )

variables (Figure 3), the phase portrait looks very similar to that of (5), the only

difference being that now the separatrix of the two regions of attraction starts

at the origin rather than on the vertical axis. The stable manifold approaches

the origin as a ray of constant positive tangent, while any other trajectory of the

system which approaches the origin behaves asymptotically as C ∼ K exp(−ρt).

The distance between the stable manifold and any such trajectory expressed as

a percentage of actual consumption level grows exponentially over time. The

trivial solution of (5) �the origin� corresponds to a poverty trap, or imploding

economy. To estimate numerically welfare gains or losses under the inßuence of

sunspot ßuctuations considered in Slobodyan (2001), I use a numerical scheme

similar to the one used in that work (see Appendix D of Slobodyan (2001)).
1 Steady states B and C both represent trajectories with different asymptotic behavior that

diverge to (−∞,−∞) in the (c,k ) space. The change of variables collapses inÞnity points from
the lower half of the (c,k ) space onto the vertical half-axis in the (x,y) space. Trajectories
with different asymptotic behavior at minus inÞnity are mapped onto different points at the
axis.

2There were previous attempts to obtain the region of stability of the positive steady
state in this model; see, for example, Russell and Zecevic (1998) for the Lyapunov function
approach. The approach used here is much broader, as it enables me to study the global
dynamics of the model instead of the compact neighborhood of the steady state, as in the
reference.
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Figure 1: Phase portrait of the transformed system in (x,y) variables
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Writing the value of intertemporal welfare as a differential equation with initial

value 0, I arrive at the following:

dc = [
a

σ
exp(w − vk + uc)− δ + ρ

σ
]dt+ eσdWt,

dk = [exp(w − vk + uc)− exp(c− k)− δ]dt, (7)

dV = e−ρt
·
exp(c(1− σ))

1− σ − exp(n(c, k)(1− χ))
(1− χ)

¸
dt.

The system is three-dimensional, and there is an explicit dependence on time in

the third equation. An explicit dependence of labor effort n on the consumption

and capital can be derived from Þrst-order conditions of the model and substi-

tuted here. The numerical scheme used in Slobodyan (2001) needs only one
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Figure 2: Phase portrait in log capital and log consumption
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modiÞcation because of explicit dependence on time, L0f = ∂f
dt + bf

0 + 1
2σ

2f 00.

I ran batches of 100 trajectories starting from initial points (cg(k)−d, k) where
cg(k) is the value of log consumption on the trap boundary and d = 0.01...0.20.

To decrease the time needed to run simulations I increased the discount rate for

all models from 0.02 to 0.06. Numerical simulations were run up to t = 100.

Time step ∆ = 0.1 was used for all simulations. It was assumed that sunspot

noise stops after the sample path consumption exceeds the boundary value by

0.01, therefore reducing escape probabilities. As explained above, the welfare

accumulated along the trajectory that starts �just in� the trap is not very dif-
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Figure 3: Dynamics of the system in original, nonlogged variables
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ferent from the welfare for the �just outside� trajectory. Requesting an extra

0.01 over the boundary allowed me to make this difference larger. Welfare levels

for deterministic trajectories with the same initial conditions were calculated

and used as reference values.

The results can be presented in two ways. One is to plot the average welfare

gain (loss) as a function of initial c and k. This plot facilitates comparisons with

the analytical results obtained in the next section. Another way to look at the

welfare gain (loss) is to derive the value of initial consumption that produces

the same welfare in the deterministic case, without the sunspot ßuctuations.
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Figure 4: Average welfare gain (loss) as a function of the distance to the trap
boundary, Model 1
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Figure 4 plots the difference between average welfare achieved under sunspot

ßuctuations and the value accumulated without ßuctuations, but with the same

initial conditions. As in Slobodyan (2001), there is no observable dependence

on the initial level of capital k. Therefore, I aggregated the results for different

initial k and the same initial distance to the boundary. Surprisingly, I was

unable to Þnd a region where sunspots signiÞcantly lower the welfare. Even

for an initial distance d of about 0.20 (initial consumption approximately 20%

lower than the boundary value) where the probability of escape is about 0.5%,
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the welfare is essentially the same. The welfare cost of sunspot ßuctuations

far from the boundary is essentially zero. Yet when d reduces to 0.10 or less,

there is a noticeable increase in the average welfare gain. Translating this gain

into initial consumption, which under deterministic conditions yields the same

welfare, gives a 2.8% positive difference at peak value.

Figure 5: Welfare gain (loss) measured as additional consumption needed to
generate the same welfare in the deterministic case, Model 1
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The certainty equivalent consumption gain peaks at d = 0.03 rather than

very close to the boundary. The reason for this is as follows. Suppose that

the welfare difference between the �just in� and �just out� trajectories, which

differ by d = 0.01 in their initial conditions, is given by ∆. Assume that two
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trajectories in the trap with the same difference in initial conditions, d = 0.01,

have a welfare difference of approximately 0.2∆. Then for a trajectory in the

trap whose initial conditions imply a probability of escape at 50%, one should

expect a welfare gain of approximately 0.5∆, equivalent to approximately a 2.5%

increase in the initial consumption. On the other hand, a trajectory that starts

essentially at the boundary with probability of escape close to 1 cannot have the

welfare gain more than ∆, meaning that at most a 1% increase in the certainty

equivalent consumption will be achieved.

Figure 6: Average welfare gain (loss) as a function of the distance to the trap
boundary, Model 2
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Figures 6 and 7 present the results for a model in which σ = 0.9, denoted
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Figure 7: Welfare gain (loss) measured as additional consumption needed to
generate the same welfare in the deterministic case, Model 2
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Model 2. Additionally, the level of increased returns to scale wis reduced to

β = 1.5 and α = 0.5 versus β = 1.67 and α = 0.83 for the previous model.

The remainder of the model�s parameters is the same in Model 1 and Model

2. The results are very similar to those of Model 1. However, the peak in the

certainty equivalent consumption gains is achieved farther from the boundary

(at d = 0.06), the peak itself is much higher at 5.8%, and there is no region with

an average welfare loss because of sunspots. All three features occur because of

the large increase in intertemporal welfare once the trap boundary is crossed,

as is clear from Figure 8. Expected beneÞts of even rare escapes from the trap
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are huge in this case.

Figure 8: Intertemporal welfare as function of the distance to the trap boundary,
no sunspots, Model 2
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Similar simulations were performed for σ as low as 0.5. The following table

summarizes the parameter values of the models presented here. Parameter

values not mentioned in the table are the same as in Models 1 and 2.

Note that the degree of increasing returns to scale is not constant for Models

1 through 6. It is impossible to Þnd α and β such that for σ ranging from 0.5

to 0.99 the positive steady state remains indeterminate. For example, α = 0.83,

β = 1.66 and σ = 0.90 imply an explosive positive steady state. As was discussed

in Slobodyan (2001), for the model used here the explosive positive steady state
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Model α β σ eσ
1 0.83 1.66 0.99 0.024
2 0.50 1.50 0.90 0.026
3 0.50 1.50 0.80 0.026
4 0.50 1.50 0.70 0.021
5 0.50 1.50 0.60 0.0117
6 5/12 4/3 0.50 0.015

Table 1: Summary of the models used

means that no trajectory stays Þnite outside of the development trap. Note

also that the magnitude of self�fulÞlling belief noise does not stay constant. For

each model this magnitude was calibrated to generate a standard deviation of

the log consumption equal to 14% for ßuctuations outside of the trap. This

magnitude depends on the strength with which the drift term in equation (7)

pushes consumption back to its steady state value, and is probably a complicated

function of the model parameters3.

Certainty equivalent consumption gains for Models 3 through 6 are presented

in Figures 9�12. Consumption gain as high as 6.5% is achieved. Even for large

distances from boundary d there is no signiÞcantly negative effect of sunspots

on welfare. It is possible that I observe what is called a �bunching effect� in

Christiano and Harrison (1999): �The increasing returns means that by bunch-

ing hard work, consumption can be increased on average without raising the

average level of employment�4. The fact that certainty equivalent consumption

gain is almost everywhere positive means that the �bunching effect� dominates
3This magnitude should depend on the Lyapunov exponent of the stochastic ßow around

the positive steady state. Calculating the exponents is outside of the scope of this paper.

4This reference uses a discrete time version of the model used here. �Bunching hard work�
for a trajectory that never leaves the trap means wandering closer to the boundary earlier
rather than later.
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Figure 9: Welfare gain (loss) measured as additional consumption needed to
generate the same welfare in the deterministic case, Model 3
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the negative inßuence of the convex utility function, and yet both those effects

are very small. To demonstrate the smallness of the inßuence of sunspots on

welfare in the region where escape probability is negligible, I plot the calculated

average welfare gain together with 95% conÞdence bands. The plot is presented

in Figure 13. Even for batches of 1500, conÞdence band for the welfare gain

includes zero in the region where probability of escape is very low5.

Finally, I would like to compare the welfare gain from sunspot ßuctuations

with some estimates of the welfare cost of business cycles. In Lucas (1987)
5For this particular model, less than 0.5% of trajectories escape if d > 0.10.

18



Figure 10: Welfare gain (loss) measured as additional consumption needed to
generate the same welfare in the deterministic case, Model 4
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and Imrohoroglu (1989) this cost was estimated to be very small: a represen-

tative consumer would give up from 0.17% to 1.3% of consumption in every

period to live in an environment without business cycles. For non�standard

recursive utility Dolmas (1998) obtains much larger welfare costs, as much as

23% in the extreme case and 2�5% of consumption for a moderate degree of

risk aversion. The certainty equivalent consumption gain achievable in the cur-

rent model under sunspot ßuctuations is of the same order of magnitude as the

largest estimates of the welfare costs of business cycles6.
6 I used historical performance of developing countries to calibrate the sunspot noise mag-

nitude. Standard deviation of consumption in the developing countries was 1.5�3 times larger
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Figure 11: Welfare gain (loss) measured as additional consumption needed to
generate the same welfare in the deterministic case, Model 5
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3 Analytical Estimates of theWelfare Gain (Loss)

Empirical results presented in the previous section demonstrate that there is

almost no inßuence of sunspots on intertemporal welfare if the trajectory does

not leave the trap. This result allows me to construct an approximation of the

expected welfare gain caused by the sunspot ßuctuations.

Fix the initial level of capital at k0. Suppose the trajectory starts at (k0, c0),

where cg − c0 = d and cg(k0) denotes the value of initial consumption on the

than in the developed ones. If Lucas and Imrohoglu used developing countries data for their
calculations, welfare costs of the business cycles would be larger.
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Figure 12: Welfare gain (loss) measured as additional consumption needed to
generate the same welfare in the deterministic case, Model 6
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stable manifold (the trap boundary). Without sunspots a trajectory with ini-

tial conditions (k0, c0) will accumulate intertemporal welfare V (k0, c0). Make

two other simplifying assumptions. First, assume that expected intertemporal

welfare for the trajectories that do not leave the trap is given by V (k0, c0). This

assumption can be justiÞed on empirical grounds, as Figures 4 and 6 demon-

strate that the average welfare for such trajectories is very close to V (k0, c0).

Further assume that the trajectory which escapes the trap accumulates welfare

equal to V (k0, cg) + ∆ = Vg + ∆. This is a very crude approximation, be-

cause in general the welfare depends on the time of escape, Td. Using the two
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Figure 13: Average welfare gain (loss) under the sunspot ßuctuations with con-
Þdence bands, Model 4
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assumptions, write the expected welfare under sunspots, E[V (k0, c0)|eσ], as
E[V (k0, c0)|eσ] = P (Td+² <∞)(Vg +∆) + (1− P (Td+² <∞))V (k0, c0). (8)

Notice that I use Td+² instead of Td, because the trajectory escapes (the sunspot

variable stops) only after reaching (c−k)g+² in numerical simulations. Figure 10

demonstrates that V (k0, c0) is a linear function of the distance to the boundary,

V (k0, c0) = Vg − λd. Probability of escape, P (Td+² < ∞), was calculated in
Slobodyan (2001) and is given in Eq. (21) in that paper,

P [Td+ε <∞] = exp
·
−2(δ + ρ

σ
− δ)(d+ ε)(1− e

−d−ε)eσ2
¸
. (9)
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Substitute P (Td+² <∞) into (8) and subtract the value of the welfare without

sunspots, V (k0, c0) = Vg − λd, to obtain an estimate of the expected welfare
gain,

E[V (k0, c0)|eσ]− V (k0, c0) = (∆+ λd)P (Td+² <∞). (10)

Note that the expected gain is proportional to the probability of escape and

is increasing in a nearly linearly fashion in ∆7. One should expect, then, that

the logarithm of the average welfare gain is approximately inversely proportional

to the square distance to the boundary, because 1 − e−d−ε ≈ d + ε for small

d+ ε. A plot of the log expected gain versus (d+ ε)(1− e−(d+ε)) is presented in

Figure 14. Only those data points where the average welfare gain is signiÞcantly

different from zero are plotted on the graph. The dependence is close to linear

as implied by the formula above. As it is impossible to derive analytically the

dependence of ∆ �welfare gain from escaping� on σ, I cannot say anything

about the functional form of the dependence of the expected welfare gain on σ.

4 Increasing the Probability of Escape

It was demonstrated in the previous sections that if the economy is trapped

and follows a sunspot random variable, getting the initial conditions as close to

the trap boundary as possible is clearly beneÞcial. This increases the expected

welfare gain from following the sunspot variable and the probability of escape

from the trap. In the original Benhabib and Farmer (1994) paper the mecha-

nism that could be used to adjust any of the model parameters is absent. The

economy coordinates on some trajectory inside the trap and learns to believe
7For all the models studied here, ∆ is much larger than λd in the area where the escape

probability is not negligible, ∆À λd.
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Figure 14: Average welfare gain (loss) under the sunspot ßuctuations, compar-
ison with analytical results, Model 4
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in a Wiener sunspot process. There is nothing capable of changing the initial

condition and/or the poverty trap boundary.

In this Þnal section I want to explore a model, based on Benhabib and

Farmer (1994), which includes a government that can tax economic agents.

My goal here is to look at different policy interventions, like a decrease in the

total level of taxes collected, or changed progressiveness of the tax system.

The situation will be very clear if some intervention achieves two objectives at

the same time: decreasing the ordinate of the steady state C in Figure 1 and

decrease the slope of the stable manifold at C. If some simple intervention can
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achieve both objectives, then for any initial condition in the development trap

the intervention lowers the distance between initial condition and the trap8.

To predict the results of such an intervention it is necessary to assume that

agents in the economy maintain the same level of consumption, thus leaving

y = C/K unchanged. The level of the work effort supplied by the agents jumps

to the new level deÞned by the Þrst order conditions. It is unclear what other

assumptions could be maintained. For example, I could consider coordinated

changes of consumption and labor effort that leave the instantaneous utility

unchanged. However, the policy intervention will most likely change the level of

the intertemporal utility that could be achieved by the economy in the steady

state. It is unclear then on what grounds one could consider iso�utility changes.

The model used in this Section is a variant of Guo (1999). There is a

continuum of identical households maximizing the utility

∞Z
0

(logC −AN
1−χ

1− χ )e
−ρtdt, A > 0, (11)

where C and N are household consumption and working hours. Households

own capital that is rented to Þrms, and the budget constraint is given by

·
K = (1− τk)(r − δ)K + (1− τn)wN −C, K(0) given, (12)

with r being the interest rate, w the wage rate, and K the household�s capital

stock. Tax rates are given by the following expressions:

τk = 1− ηk
µ
yk
yk

¶φk
, ηk ∈ [0, 1], φk ∈ [0, 1), (13)

τn = 1− ηn
µ
yn
yn

¶φn
, ηn ∈ [0, 1], φn ∈ [0, 1), (14)

8This will be true for small x, but x is very small for realistic values of k inside the trap
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where yn = wN and yk = (r − δ)K are the household�s taxable labor and

interest income. Tax code includes depreciation allowance. Parameters φi and

ηi, i = k, n determine the slope and the level of taxes. φ not equal to 0

means �progressive� tax, because in this case the marginal tax rate is higher

than the average. In a departure from Guo (1999) where yk and yn were the

steady state values of the of the taxable interest and wage income, in this paper

they will represent economywide averages of respective incomes. The difference

means that in a symmetric equilibrium where every household has the same

amount of capital and supplies the same number of hours, tax rates will not

depend on the current output. In the original paper, the symmetric equilibrium

average tax rates were decreasing in the average level of output, thus generating

countercyclical government spending. In the variant used here the average tax

rate in the symmetric equilibrium does not depend on the business cycle stage,

which more closely resembles the reality.

There is also a continuum of identical Þrms with the production function

Y = KaNbK
α−a

N
β−b

, (15)

where a + b = 1, α > a, β > b, and K and N are economywide averages of K

and N per Þrm, which are taken as given by every individual Þrm. From the

proÞt maximization, the interest rate and the wage rate are given by

wN = bY, (16)

rK = aY. (17)

The government balances its budget at every point in time. Therefore, there

is no government debt in the model.

In a symmetric perfect foresight equilibrium every household has the same
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amount of capital, supplies the same number of hours, and every Þrm employs

the same quantity of capital and labor. Using capital letters to denote aggregate

values, I write the following current value Hamiltonian as

H = logC −AN
1−χ

1− χ + µ(ηk
µ
Y k
Yk

¶φk
(r − δ)K + ηn

µ
Y n
Yn

¶φn
wN −C). (18)

Taking corresponding derivatives, one gets the necessary conditions:

1

C
= µ, (19)

AN−χ = (1− φn)µηn
µ
Y n
Yn

¶φn
w, (20)

·
µ = µρ− µ(1− φk)ηk

µ
Y k
Yk

¶φk
(r − δ), (21)

lim
t→∞e

−ρtK
C

= 0, (22)

together with the capital accumulation equation

·
K = ηk(r − δ)k + ηnwN −C, K(0) given. (23)

Substituting (19) into (20) and (21), recalling that by deÞnition in the sym-

metric equilibrium Y n = Yn = wN, Y k = Yk = (r − δ)K, and substituting in

(16) and (17), one obtains the following set of equations:

ACN1−χ = (1− φn)ηnbY, (24)
·
C

C
= (1− φk)ηk

aY − δK
K

− ρ, (25)

·
K

K
= ηk

aY − δK
K

+ ηnb
Y

K
− C

K
, (26)

Y = KαNβ, (27)

lim
t→∞e

−ρtK
C

= 0. (28)

Switching to logs, c = log(C), k = log(K), y = log(Y ), and using (24) and

(27) to obtain y as a function of c and k, I arrive at the following 2-dimensional
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system of differential equations

·
c = (1− φk)ηk(a exp(w + uc− vk)− δ − ρ), (29)

·
k = (aηk + bηn) exp(w + uc− vk)− ηkδ − exp(c− k), (30)

where

w =
β

β + χ− 1(log(A)− log(ηn(1− φn))− log(b)),

v =
β − (1− α)(1− χ)

β + χ− 1 , (31)

u =
β

β + χ− 1 .

Finally, changing the coordinates to

x = exp(w − vk + uc), (32)

y = exp(c− k), (33)

I get the system of equations presented below,

·
x = x {[au(1− φk)ηk − v(aηk + bηn)]x+ vy − uρ− [u(1− φk)− v]ηkδ} ,·
y = y{[(1− φk)ηk − (aηk + bηn)]x+ y + φkηkδ − ρ}.

(34)

By construction, x and y are nonnegative, therefore only the Þrst quadrant

of the (x, y) space should be considered.

It is possible to carry on the same procedure as with the model used in

accompanying paper and show that the current model�s phase portrait is es-

sentially the one presented in Figure 1. If u > v then Jacobian at the positive

steady state has positive determinant and indeterminacy is possible. To get a

stable origin I need ρ > δηkφk. The latter condition also guarantees that the

steady stateC=(0, ρ−δηkφk) is located on the vertical half of the y axis and that

C is a saddle. The area beneath the stable manifold of C is the development

trap exactly as in the previous model.
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As mentioned previously I should consider two possible inßuences of any

policy intervention. One is the change in the �height� of the steady state C,

and another is the change in the initial slope of the stable manifold of C. In

order to make the calculations simpler assume that there is no difference between

labor and capital in the tax code, i.e. ηk = ηn = η and φk = φn = φ. The two

variables of interest are given by

y0 = ρ− δηφ, (35)

y1 =
(aφη + (1− a)η)y0

(u− v)δη + (u− v + 1)y0 . (36)

As mentioned previously, for realistic values of the capital (say, less than e−1

times the value at the positive steady state) the value of consumption that puts

the economy into the trap implies very low x9. In the Þrst approximation one

can disregard the effect of the policy intervention on y1 and concentrate on y0

instead.

If η = 1, φ = 0 then there are no taxes in this economy. The policy inter-

vention that lowers the stable manifold of C is a shift to progressive taxation,

φ > 0. In this case there still are no taxes in the symmetric equilibrium and

the change is revenue neutral. On the other hand, if the economy initially had

a ßat tax code, η < 1, φ = 0, then two interventions achieve the same goal �

increasing the progressiveness of the tax code and reducing the level of taxes

by increasing η. Those two interventions work for any tax code such that it is

not absolutely progressive (φ < 1) and taxes in the symmetric equilibrium exist

(η < 1).

9Variable x is proportional to the interest rate r in both the current model and the one
used in the accompanying paper. Pessimistic initial consumption means low work effort and
low productivity of capital, supressing interest rates.
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If ρ < δ then a very dramatic intervention becomes possible. When y0 =

ρ− δηφ = 0, the steady state C merges with the origin and moves to the lower

half of the vertical axis if one further increases η or φ. The origin in this case loses

stability and becomes a saddle. Figure 1 shows that in this case the development

trap disappears and every trajectory converges to the positive steady state A.

However, for ρ > δ this is impossible.

Using the same approximation to the stochastic process solving (34) and

calculating the probability of escape as in the previous paper, one gets

P [Td <∞] = exp
·
−2(ρ− δηφ)d(1− e

−d)eσ2
¸
. (37)

It is easy to see that any policy that reduces d and y0 increases the probability

of escape from the trap.

Summary of the effects of policy interventions is given in the following claim.

Claim 1 Assume that the level of consumption does not discontinuously change

through the policy intervention. Then the following policies lower the develop-

ment trap boundary and increase the probability of escape:

i) increasing progressiveness of the tax code (increasing φ);

ii) reducing the symmetric equilibrium tax rate (increasing η);

iii) combining i) and ii).

Moreover, if ρ < δ then moving to a very low tax rate (η ≈ 1) and very

progressive tax code (φ ≈ 1) eliminates the development trap altogether.

For completeness I will study the effect of changes in η or φ on y1. Taking the

derivative of y1 with respect to η and simplifying, I get the following expression

∂y1
dη

=
aφ+ 1− a

[(u− v)δη + (u− v + 1)y0]2
×

×[δη(u− v)δηφ+ (u− v + 1)y20] > 0.
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Therefore, the intervention that decreases y0 also increases y1. For large x the

effect of the policy intervention thus becomes ambiguous � it can increase or

decrease the distance to the trap boundary.

The effect of changing φ on y1 is ambiguous. The derivative is given by

∂y1
dφ

=
η

[(u− v)δη + (u− v + 1)y0]2
×

×[ay0((u− v)δη + (u− v + 1)y0)− (aφ+ 1− a)(u− v)δ2η2].

It is impossible to sign the derivative in the general case. Some limit cases can

be studied, however.

Assume that y0 = ρ− δηφ = 0. In this case

∂y1
dφ

= −ηaδη(u− v)δηφ+ (1− a)(u− v)δ
2η2

[(u− v)δη]2 < 0.

At the point where the steady state C merges with the origin ∂y1
dφ is negative.

By continuity ∂y1
dφ is negative also in some neighborhood of the point (η∗,φ∗)

where ρ− δη∗φ∗ = 0. In this neighborhood a policy that increases the tax code

progressiveness (raising φ) decreases both the intercept and the slope of the

stable manifold.

Consider now ∂y1
dφ |φ=0. This derivative is proportional to

aρ2(u− v + 1) + a(u− v)ρδη − (1− a)(u− v)(δη)2. (38)

This is a quadratic equation in ρ
δη . For

ρ
δη = 0, (38) is negative and therefore is

negative in some neighborhood of this point. ρ
δη is small when η is large (low tax

rate) and ρ is low relative to δ. However for ρ ≈ δ, which is a usual assumption

in the literature, (38) is likely to be positive.

The above analysis demonstrates that second order effect of the policy di-

rected to increased escape probability is likely to be negative. The only case
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where it is likely to be positive is when y0 = ρ− δηφ is very low and the devel-

opment trap is small. As observed previously, for realistic values of the initial

capital second order changes will be negligible because x is very small.

5 Conclusion

In this paper I used numerical simulations of stochastic differential equations to

study the inßuence of self-fulÞlling beliefs driven ßuctuations on the expected

intertemporal welfare of a representative agent. I expected to see 2 major in-

ßuences - a negative effect because of convexity of the utility function, and a

positive one related to the signiÞcantly higher welfare achievable along the tra-

jectories that escape from the poverty trap. I demonstrated that for the sunspot

speciÞcation used both here and in the accompanying paper, Slobodyan (2001),

there is no discernible negative effect on the average welfare if the ßuctuations

do not lead to escape from the poverty trap. The positive effect related to the

positive contribution from escaped trajectories can be rather large. If I want

to Þnd a deterministic trajectory producing the same welfare as the average

quantity generated by a batch of sunspot�driven paths starting from the same

initial conditions, then I need to start the deterministic trajectory with con-

sumption level up to 7% higher. For the model used here sunspot ßuctuations

are unambiguously positive. They either leave the welfare unchanged on aver-

age, or increase it rather signiÞcantly if there is signiÞcant probability of escape

from the poverty trap because of sunspots. The effect depends on the initial

difference between consumption and its boundary value.

As mentioned above, sunspots are not very beneÞcial in the current model.

The main reason for this is the fact that welfare difference between the trajectory
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immediately inside the trap and the one immediately outside is not large. The

behavior along the two paths remains similar for a long period of time, and

agents just eat up the remaining capital. I can imagine 2 possible ways in

which this behavior can be changed. The Þrst approach is to shift to stochastic

processes that are not continuous. For example, one could model the sunspot

as a Poisson process � continuous time stochastic process with jumps10 . In

this case a successful jump far outside from the trap will put the system on a

very beneÞcial trajectory which is impossible under my speciÞcation. Another

approach is to look at the models of the development trap where the behavior

is different and a trajectory after the escape changes the behavior dramatically.

For example, in Gali (1995) it is possible to have 3 steady states, with �low�

and �high� ones being saddles, and the �middle� one a sink11. The region of

stability of the �middle� steady state is the development trap in this model. The

region is bordered by two stable manifolds, one of them converging to the �low�

steady state, and another to the �high� one. If the escape from the trap occurs

when the sunspot-driven trajectory hits a stable manifold, then the trajectory

making escape towards the �high� steady state immediately starts accumulating

extra capital and welfare.

Finally, I looked into the possible role of a government in the model allowing

indeterminate poverty trap. Both current and the accompanying papers clearly

demonstrated how important the distance between the initial condition and

the boundary of the poverty trap is. If the initial condition is relatively hard
10This approach is close to the one used in the literature. Both Drugeon and Wigniolle

(1996) and Shigoka (1994) use continuous time stochastic process with jumps to model the
sunspot variable. In the discrete time literature, the sunspot variable has jumps by deÞnition.

11This case is presented on Figure 4 of the reference.
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to move (it might be determined by habit formation or cultural norms), then

moving the poverty trap boundary instead can help the economy. In a version

of the model studied here that allows taxation of the income, reducing the tax

rate or increasing progressiveness of the tax code lowers the trap boundary for

realistic initial conditions, thus increasing the probability of belief driven escape

and expected welfare gain from sunspot ßuctuations.
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