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Abstract

In this paper | sudy the behavior of free-good producers (TV broadcediers) on a market
where every consumer (TV viewer) perpetudly makes a decison whether to consume and
which product (TV channd) to consume contingent on the dtractiveness of the currently
consumed product. Every producer optimaly dlocates atime period where a product with
higher atractiveness (TV program) is replaced by a product with lower atractiveness
(advertigng). While products with higher atractiveness represent producers cogts, products
with lower atractiveness bring in revenue thet is proportiond to the audience reech. |
assume that consumers choose among products and the outsde option following a Markov
process where probabilities of trangtion reflect various dtractiveness of the products Given
symmetricd pogtions of the producers, | prove thet therr optima drategy is to put ther
commerdd bresks into the same or very dose times. For some sdtting of the parameters,
the bresks will overlap perfectly. Given the perfect overlap, both broadcegters are better off
if they fragment their bresks into shorter bregks kegping the total amount of commercid
timethesame

V tomto déanku studuji chovani tdeviznich stanic natrhu dedovanodti, kde e kazdy divak
rozhoduje zdaa kterou danic dedovat v z&vidodi na araktivite prave dedovaného
programu. Kazdaz tdeviznich ganic optimdne vybirg, ve kterém case produkt s vyS
araktivitou (televizni program) nahredit produktem s niZ§ atraktivitou (reklama). Zatimco
tdevizni program predstavuije néklad pro tdevizni ganidi, reklama je zdrojem prijmu, které
jsou Umerné jgi dedovancdti. Predpokladam, Ze divéci se pohybuji mezi jednatlivymi
kandy a stavem, kdy tdlevizi nededuji, néhodne pode Markovova procesuy, ve kterém
pravdepodobnosti prechodu odréZgi atraktivitu daného programu Pokud jsou na trhu dve
Saniceamgi symetrické postaveni, jgich optiméni srategii jetakové necasovani reklamy,
pri kterém s jgich reklamni bloky prekryvgi. Pro urcité nestaveni parametru je optimani
prekryv 100%-ni. Pri takovém prekryvu by navic tdevizni sanice mdy rozddit svyj
cdkovy reklamni casdo co ngmendich bloku
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1. Introduction

Nowadays, aimost all the goods we buy are not produced by a craftsman in our
neighborhood but by a number of varioudly distant producers. Thus, we do not know the
producers personally and each of them needs to persuade us to buy his or her particular
product. Advertising is a traditional direct way of such a persuasion. As television
became the most frequent medium of information and entertainment, it also became the
most influential medium of advertising. TV broadcasters operate on two markets. The
first one is the advertising market on which they sell their commercia time. The second
one is the audience market on which they strive for viewers. On both markets the TV
broadcasters compete with each other, as well as with other advertising media; e.g.,
internet, newspapers, radio. Note that the two markets are linked together; i.e., the higher
audience watches a channel, the higher impact of the advertising on this channel and thus
the higher price advertisers are willing to pay for their spots.

Setting the price, the timing and the amount of commercials represents a
complicated game. This paper focuses on the final decision broadcasters make in this
game; i.e., the timing of their breaks relative to the competitors breaks. A brief remark
on commercial time fragmentation will also be made. Hence, this paper shows that given
a fixed amount of commercial time, broadcasters are better off if they divide the current
commercial time into shorter but more frequent breaks and coordinate the timing of these
breaks.

The paper is organized as follows. In Section 1 | explain intuition behind the
model, show an example of legal framework and review the literature. In Section 2 atwo-

period symmetric model is presented. In Section 3 | describe a general continuous-time



model and in Section 4 the model is solved for 2 symmetric broadcasters. In Section 5 |

make aremark on commercial time fragmentation and in Section 6 | conclude the paper.

1.1 Intuition behind the M odel

The model is based on the very simple and intuitive assumption that viewers prefer
watching a TV program to watching advertising and that the longer a commercia break
is, the fewer people watch it. TV broadcasters are aware of this and thus attract viewers
by programs, which represent broadcasters costs, and interrupt the programs by
advertising which bring in revenue.

Of course, the audience reach of a given channel depends aso on the
attractiveness of competitors programs. This raises an interesting question whether the
TV stations should place their commercial breaks into the same times; i.e., whether there
is an equilibrium period when all the broadcasters on the market air their commercials.
The theoretical result presented below is more complicated and depends on the
parameters of the model.

One can object to the idea that TV broadcasters can set the length of commercial
breaks such that it maximizes their revenue. The legal system usualy imposes limitations
on the amount of advertising aired during a TV program. Naturally, we can expect that
this limit is shorter than the amount of commercials optimally chosen by the broadcasters.
Such limitations obviously increase the price of advertising and make the broadcasters
decision process smpler; i.e., they have to decide about the optimal broadcasting time
only. On the market there is usually a public-service broadcaster, a state body that bears

certain socia functions and that is more restricted in advertising than commercial



broadcasters. The social function can be considered as a restriction on the attractiveness
of the broadcaster’ s program. Naturally, we can ask how much revenue the public-service
broadcaster 1oses due to restrictions on its advertising and programming. This asymmetry
is an interesting topic for research; however, this paper focuses on the symmetrical

position of the broadcasters.

1.2 Legal Framework

As mentioned above, broadcasters on TV markets are legally restricted. | will
demonstrate these restrictions in the following summary of the Czech legal framework as
it is described in Act No. 468/1991. The law classifies broadcasters into public-service
broadcasters and licensed commercial broadcasters. While there is one state organization
operating two channels as the public-service broadcaster on the Czech TV market, there
are more commercia broadcasters and their number grows.

The public-service broadcaster must not alocate more than 1% of total
broadcasting time to advertising, and in the time period from 7 p.m. to 10 p.m.
advertisng must not exceed 6 minutes in one hour. The total advertising time can be
expanded up to a total of 10% by airing direct offers to sell, buy or rent goods and
services (TV shopping) with a limit of one hour a day. Commercial broadcasters
advertising time is limited by 10% of the total broadcasting time that can be expanded up
to 20% by TV shopping. Total advertising time on a commercial channel must not exceed

12 minutes in any hour and TV shopping must not exceed one hour a day.



1.3 Literature Review

There is very little economic literature published on timing of commercials. Fortunately,
some relevant sources can be found in operations research and management science
literature. Some papers like Gabszewicz, Laussel and Sonnac (1999) focus on some
aspects of TV broadcasters' behavior but the only work modeling timing of commercials,
| found, was Epstein (1998). Nevertheless, the assumptions of my model are different
from Epstein’s and my modeling approachis original.

Gabszewicz, Laussel and Sonnac (1999) produced an interesting paper on the
competition of TV broadcasters. Unlike my paper, they focus on program competition
and length of the commercias in a three-stage game. They assume that there exist two
types of programming (e.g., entertainment and culture), each viewer has his own most
favorite mixture of these types and there are two channels on the market. Thus the two
broadcasters have to determine an optimal mixture of their programs. This Hotteling-type
competition predicts that the two channels always mix their programs, the mixtures are
different and the viewers can be classified into three groups. One group of viewers only
watch channel 1, another group of viewers only watch channel 2 and the third group
watches a combination of both. Regarding the length of commercials, they introduce
advertising saturation level as an exogenous variable such that if the length of
commercias exceeds this level, viewers don’t watch the channdl at all. Finally they prove
that the broadcasters set the amount of commercials equal to this saturation level.

Some assumptions of Gabszewicz, Laussel and Sonnac (1999) do not seem to be
realistic. For instance, | find the saturation level of viewers to be an artificial instrument

to obtain reasonable results. Obvioudly, no such level exists, as there are infomercials on



some markets. The infomercials air commercias only and have positive audience reach.
This instrument can be interpreted as a need for state regulations; given the setting of the
model and no saturation level the broadcasters will air purely commercials and thus the
channels will become infomercials. They aso assume that viewers are uniformly
distributed on an interval [0,1] where O represents willingness to watch entertainment
only and 1 willingness to watch culture only. The results would be more convincing if
they can be shown to be robust for other settings.

Epstein (1998) focuses on the same question as this paper; i.e., the timing of
commercias of two competing channels. He sets up a model where broadcasters’ payoffs
are determined by the average number of viewers watching the channel and this number
is a linear function of the starting and ending times of the commercials. Under these
simplified and linearized assumptions, he proves that broadcasters optimal strategy is
perfect cooperation; i.e., perfect overlap of their commercials. Epstein supports his
theoretical findings by an empirical analysis studying four U.S. networks (NBC, ABC,
CBS, and FOX). The null hypothesis that al the networks break for commercials at the
same time cannot be rejected.

The theoretical part of Epstein’s paper contains assumptions that can be criticized.
For example, the assumption that an infomercial channel would not be watched by any
viewers is not realistic. Furthermore, the broadcasters payoff function is rather smple
and seems to be constructed just to give the expected results. Nevertheless, these
simplifications, although unredlistic, give intuitive and straightforward results which are

supported by the empirical study. While Epstein creates the broadcasters payoff function



artificialy, | derive the payoff from the number of viewers watching the commercials,

assuming that viewers choose among the channels following a Markov process.

2. Symmetric 2-Period M odel

First, a symmetric 2-period model will be presented. The purpose of this model is to
illustrate the concept applied in this paper in a simple environment, and thus, to provide a

better insight into a more sophisticated model in Section 3.

2.1 Set up: Markov Processin Discrete Time

Let's assume a discrete-time model with 2 TV broadcasters and a large population of
agents (viewers). The viewers can be in 3 states; i.e., each of them is watching one of 2
channels (states 1 and 2) or not watching TV at all (state 0). The broadcasting scheme of
both channels consists of TV programs and commercials. After a TV program there is
aways a commercial break and vice versa. The length of the TV program and the
commercia break are the same. Without loss of generality let this length be 1. Assume
that the probabilities of switching from one state to another equal p for state O and the
channels broadcasting TV programs, and equa r for the channels broadcasting

commercials. Hence, the Markov probability matrices are

gé-Zp p P o
P,=¢c p 1-2p p =
& p p 1-2pg

for the case of no commercials,
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for the case of acommercia break on TV 1,

@-2p P P o
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for the case of acommercial break on TV2 and

for the case of commercia breaks on both TV1 and TV2. Let O<p<r<0.5; i.e, let al
probabilities be well defined and viewers prefer watching TV programs to advertising.

Broadcasters' revenue is given by the audience reach of the commercial break. |
assume that the block (TV program, commercials) or (commercias, TV program) repeats
many times a day. Therefore, | consider a fixed-point distribution; i.e., the distribution at
timet is the same as the distribution at time t+2. The Markov process as defined above
guarantees uniqueness of such a fixed point and fast convergence to it irrespective of the
initial distribution. Under this setting, the problem reduces into a two-period model with
a fixed-point distribution where the broadcasters have two options; to place TV programs
and commercials into the same time units or to air the TV program during the
competitor's commercial time.

The audience reach of one TV channel as a function of time is illustrated in
Figure 1. Note that this figure is derived for the fixed-point distribution. Thus we can

focus ssimply on the first two periods and study whether the opponent’ s best response is to



do the same or to start with a commercial break in the first period and follow with a TV

program.
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2.2 Solution to the Discrete-Time Symmetric M odel

As was discussed above, we focus on comparing only two cases. The first one is
perfect coordination; i.e., both channels broadcast commercials at the same time. In
Figure 1, this corresponds to a situation where both stations air TV program during odd
units and commercials during even units. The second case is a contra strategy; i.e, the
commercia breaks do not overlap. In Figure 1, this corresponds to a situation where one
station airs commercials during even units and the other during odd units.

The model is symmetric and so are the payoffs. The payoff of each TV

broadcaster in perfect coordination caseis

p(- 2+2p+7)
6p?- r+p(- 5+3r)’




while in the contra strategy case the payoff is

p(2- 3r)
- 3p? +r+p(5- 6r)°

The difference perfect coordination - contra strategy equals

p(2- 3p)(r- p)2p+r)
(r+p(5- 6p- 3))r +p(5- 3p- 6r))

Given 0<p<r<0.5, the difference is a quotient of two products of positive numbers,
hence, the difference is positive too. Therefore, perfect coordination is the optimal

strategy of both channels.

3. General Modd in Continuous Time

In this section, a general continuous-time model for n broadcasters is presented.
Unfortunately, this model cannot be solved in this general set-up because it leads to too
extensive and inconclusive formulas. Therefore, it is solved in Section 4 in a symmetric

set-up for 2 channels.

3.1 Viewers Behavior asa Markov Processin Continuous Time

Let’'s assume that there are n TV broadcasters on the market and a large population of
agents (viewers) who can be in n+1 sates; i.e., each of them is watching one of n
channels (states 1,..., n) or not watching TV at al (state 0). The key assumption of my
model is that the numbers of agents in particular states change over time as if the agents
follow a homogeneous Markov process in continuous time. Denote St) as the state of a
specific agent at timet, p;; asthe probability of transition from statei to state j and g as

the trangition rate from state i to statej; i.e,
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pij (DY) = PLSt+D)=j [ S0)=i], 1j=0, ..., n,

. p;D)-p;(0
qi,j = pﬂ:j(0+):D|!(Q?)+ l( ?:)t J( ) '

Hence,
n —_ on
i {01...n} G, =- a qi,j :
j=0
Jri
Let P(t)=( pi, (t)) be the matrix of probabilities, Q=( g;;) be the matrix of rates and d(t) be

the distribution of agents among states at time t. Then,

dt)=QTd(t)

defines the system of differential equations. The solution is

d(t) = (e*)" d(0) = v .Diag{e"* €+*,....e '} V-1d(0)
where V is amatrix formed by the eigenvectorsof Q, | *sare corresponding eigenvalues

and Diag stands for a diagonal matrix.*

3.2 Advertising
Assume that at time t the distribution of viewers among states is given by vector d(t) and

that a commercia break starts on channd k. Thus, the viewers will leave this channel at

~

higher rates; i.e., there will be new rates q wchthat|(“jk’j|3 |qk’j|and g .=q foritk

1] 1, ]
This will lead to continuous decline in the audience reach of channel k unless the
parameters change; e.g., channel k stops the commercial break or another channel starts

airing commercials.

! See Appendix I.
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Assume that the price of one commercia time unit is proportional to the number
of viewers watching it. Hence, TV broadcasters revenue maximization can be considered
as the maximization of the audience watching commercials. There are two natural ways
we can define broadcasters' revenues from a commercial break. The first is an integral
over the number of viewers watching the channel from the start of the commercia break
until itsend; let’s call it integral payoff. The second is the length of the commercial break
multiplied by the minimum audience reach during this break; let’s call it minimum payoff.
The integral payoff means that either the price of advertising differs within one
commercia break, which is not realistic, or that the price is determined by the average
audience reach. Thus, some advertiser would pay for more viewers than would actually
watch their ads. On the other hand, the minimum payoff approach implies that the price is
the same for al ads within one block and each advertisement is watched by at least as
many viewers as corresponds to its price.?

Integral and minimum payoffs are illustrated in Figure 2. While area A represents
minimum payoff, integral payoff is represented by area A+B. Due to the aspects of the
integral payoff stated above, | assume in this paper that the price of advertising is defined
by the minimum payoff. Comparing our results with the integral payoff approach may be

an interesting issue for future research.

2 The minimum payoff is also consistent with a more advanced setting where viewers can learn the timing
of commercials and thus adjust. By adjusting | mean that viewers who leave a commercial break in the
middle are better off if they leave immediately at the start of the break and return when the commercials are
over. That meansthat all commercials within one break are watched by an equal number of viewers.

12
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Of courseg, this is just the smplest illustration of a broadcaster’s behavior under
the unchanged parameters of the other channels. The purpose of my model is to study the
dynamics of the system if more broadcasters start their advertising blocks at the same or

very close times.

4. Solution to the Symmetric Model in Continuous Time

4.1 Set-up of the Model

Assumethat n=2; i.e., there are two TV broadcasters on the market and thus the viewers
can be in one of three states: not watching TV, watching TV 1, or watching TV2. Assume
that all transition rates among states equal p if there are no commercias and that they are
k-times higher for the channel broadcasting commercials. Hence, the matrices of

trangition rates are
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for the case of no commercials,

@2p P PO
Qi =¢kp -2kp kp =
Ep P -2pp

for the case of acommercia break on TV1,

® 2p p p
Q,=¢cp -2p p *
Ekp kp - 2kpg

-0

for the case of acommercial break on TV2 and

8e2p p P o
Q,=ckp -2kp kp =
Skp kp - 2kpg

for the case of commercial breaks on both TV1 and TVZ2. Let p>0 and k>1,; i.e, let
transition rates be positive and viewers prefer TV programs to advertising.

Further assume that the broadcasters place their commercial breaks of length L
into atimeinterva T and they repeat the same action for every interval; naturally, O<L<T.
Without loss of generdlity, let TV1 start its commercial breaks at time O, T, 2T, 3T, ... .
TV2 can place its commercial break overlapping the commercia break of TV1 or after it.
The aim is to study the environment in the long run when the process reaches its fixed
point. Hence, we can focus our analysis on one cycle of length T where the distribution of
viewers at time 0 equals the distribution at T. For fixed parameters p, k, L, T, such a

distribution exists, is unique and the system converges to it irrespective of the starting
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distribution.® The idea of a fixed point is necessary because the time between two
commercial breaks is not sufficient for the process to converge to its stationary levels and
we assume that the broadcasters repeat the same action each cycle. Imagine, for instance,
that a broadcaster airs 18 minutes of a program followed by 2 minutes of commercials.
This program scheme is fixed and repeated forever; then, T=20 and L=2.

Next, | will analyze the optimal timing of commercials. For this purpose, | need to
distinguish two cases. First, | will consider the no overlapping case where TV2 darts its
commercia break after the end of TV1's commercias; thus, the breaks do not overlap.
Second, | will focus on the overlapping case where the two breaks overlap at least

partially.

4.2 No overlapping
TV1'scommercia break lastsfromtimeOtotimelL and TV2's commercias start at time
L+t and end at 2L+t. In other words, TV2's commercials start t after the end of TV2's
commercials. Let’'s find the optimal t for both TV's. Denote
M. (s) = es? foril {n,1,2, b}.
Then, the distribution d(0) at time 0 must satisfy
M n(T-2L-t).M2(L).Mp(t).M1(L).d(0)= d(O).

Analogoudly, we could derive al d(s) for O<s<T.

Considering the minimum payoff approach, TV1's revenue equals dx(L).L and

TV2 srevenueis ds(2L+t).L.

3 Just imagine the system as aMarkov processin discrete time where one time unit corresponds to our
cycle of length T. The probability matrix iswell defined and the process is homogeneous, finite and
irreducible; thus, the stationary distribution exists and is unique. The convergence is satisfied aswell.
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1(d, (L).L) _ - 4e*er3n (a2 | 1)e®T . g)(k - 1)pL
qit - (1+2k)(— 4P + GP(2L(1+k)+3T) | 4Lp+3pT 4 odKp+3pT _ 4e4kLp+6pT)

Obvioudly, the numerator is negative. It can be shown that the denominator is
negative* too. Hence, the first derivative of TV1's revenue with respect to t is positive.
That means the greater t the higher TV1's revenue. However, O<t<T-2L. Therefore, the
optimal strategy for TV1, given that the commercia breaks do not overlap, is to place its

commercia break just after TV2's commercials.

f(dy(2L +1).L) _ 4ePlT-2-3) (o290 _ )T _ 1) - 1)pL
qit - (l+2k)(— 46" + GePRLK)3T) | qdLlp+3pT | o8Kp+3pT _ 4e4kLp+6pT)

No doubt, the numerator is positive. The denominator equals the previous
denominator; hence, the derivative is negative. Thus, the optimal strategy for TV2, given
that the commercial breaks do not overlap, is to place its commercial break just after
TV1 scommercials.

The result given above is intuitive. See Figure 3. As t decreases, the beginning of
TVZ2's advertising block gets closer to the end of TV1's commercias, TV2's audience
during commercials increases; thus, TV2's revenue (shaded area in the graph) increases.
Analogously, TV1's advertising block gets further from the end of TV2's commercials,”
TV1's audience during commercials declines, thus, TV1's revenue declines. This
intuition does not take into account the shift of the fixed-point distribution; i.e., the
distribution at time 0 is not considered to be affected by t. Of course, the formulas above
were calculated rigorously and they include the impact of a changein t on the fixed-point

distribution.

“ See Appendix I1.
® Note that the cycle of length T circulates and that time is relative here. Time O can be set arbitrarily; | set
it asthe beginning of TV1'scommercial break.
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To sum up, assuming that the commercial breaks do not overlap, both TV
broadcasters want to place their commercial breaks just after their competitor's
commercials. It seems that the broadcasters tend to place their commercials into one time;
i.e., they seem to be better off if their commercials overlap to a certain extent. Whether

this conclusion is true and to what extent will be shown in the following section.

4.3 Overlapping commer cials
TV1 starts its commercia break at time 0 and TV2 at time t, where O<t<L. This means
that from time O to time t only TV1 airs commercials, from time t to time L there are

commercials on both channels, from time L to time L+t only TV2 broadcasts
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commercials and from L+t to T there are no commercias. Then, the distribution d(0) at
time O must satisfy

M (T-L-t).M2(t).M p(L-t).M1(t).d(0)= d(O0).
Analogously we could derive al distributions d(s) for O<s<T.

Unfortunately, the formulas for TV1's and TV2's revenues and their first
derivatives with respect to t are too extensive. Therefore, it is not possible to conclude
whether they are positive or negative and | do not present them here. However, |
evaluated the derivatives for alarge range of values and | observed the following:

1. The revenue of TV2 isastrictly decreasing function of t on domain [O,L].

2. The revenue of TV1 is either a decreasing function of t or it has a unique loca
maximum a t on domain (O,L). Moreover, it appears that there exists a threshold K
such that for k<K the revenue is a strictly decreasing function of t and for k>K there
isamaximum at t . Figure 4 shows® the threshold K as a function of transition rate p.
The points in the graph above the line represent values (p,k) for which TV1's optimal
strategy is to place the commercial break t before TV2's commercia, and points
below the line represent values (,k) for which TV1's optimal strategy is a perfect

overlap.

® The graph was derived for T=20 and L=2. This corresponds to a situation where a commercial break of 2
minutes repeats every 20 minutes; thus, commercials constitute 10% of total time. Note that the absolute
valuesof T, L and p do not play any role; i.e., the results for setting (T, L, p) are the same as for (c.T, c.L,
p/c) where ¢ is an arbitrary positive constant. For any (T, L) the graph of K is a decreasing and convex
function of p.
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The intuition in the overlapping case does not follow the theoretical results as
straightforwardly as if the commercials do not overlap. Asillustrated in Figure 5, as TV2
starts its break closer to the beginning of TV1's commerciad, it starts with a smaller
audience reach but faces a more favorable regime (the audience decline is more severe if
the other channel’s commercias have already finished). The numerical result shows that
the latter effect (a more favorable regime) preponderates the former (greater initia
audience). As TV1 starts airing commercials at a time closer to the beginning of TVZ2's
commercial break, it also faces a more favorable regime. However, there is a new aspect.
If k and t are sufficiently high, the audience reach of TV1 at time t is actually under a
stationary level in the regime where both channels air commercials; thus, TV1's audience
starts growing after t although the commercials are being broadcast. That is why perfect

overlap might not always be the optimal strategy, and the broadcaster is better off to start
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the commercials t* before its competitor. As in the no-overlapping case, this intuition
does not take into account the shift of the fixed-point; i.e., the distribution at time 0O is not
considered to be affected by t. However, the formulas above were calculated rigorously

and they include the impact of a changein t on the fixed-point distribution.
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To sum up, if the viewers are less sengitive to advertising, and thus k is small, the
optimal timing of both broadcasters is a perfect overlap; i.e., they start at the same time
and they are in equilibrium. However, there exists a sensitivity threshold K such that if
k>K, the optimal strategy is a partial overlapping where both broadcasters want to start t*
before the competitor. Obvioudly, the latter implies no equilibrium in pure strategies.

Let’s compare the results of the discrete-time model in Section 2 with the more

general continuous-time model in Section 4. The former predicts that the channels should
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perfectly overlap their commercia breaks given that they have only two options. perfect
coordination or contra strategy. The optimal behavior in the latter model can be either
perfect overlap or partial overlap because the set of feasible strategies is continuous.
Applying the results of the discretetime mode in the partialy overlapping
(disequilibrium) case in the continuous-time model, we can say that athough perfect

overlap is not the optimal strategy, it is still better than no overlap.

5. Remark on the Cycle Length

Although the optimal timing of commercia breaks is the primary interest of this paper, it
is not the only decision broadcasters have to make. The timing of commercials is in fact
the last stage of a game played by the broadcasters. Besides the supply-demand variables,
i.e., the price and the amount of commercias, the broadcasters have to decide the number
and the length of the breaks in which the commercials will be aired. Recall the set-up of
Section 4; i.e., the continuous-time symmetric model with 2 TV broadcasters. Then, the
broadcasters also set the length of cycle T and the length of commercial break L. In this
section the optimal cycle length will be briefly discussed.

Let's assume the Section 4 set-up where the commercial breaks perfectly
overlap.” Given that the broadcasters air commercial breaks of length L each cycle of
length T, they can achieve the same amount of commercial time if they air breaks of

length L/2 within acycle T/2. Thisisillustrated in Figure 6.

" The disequilibrium case where partial overlap is optimal is not analytically feasible. However, the results
arelikely to be the same.
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Figure 6

Now let's compare the revenue of the broadcasters® if they choose length T with a
revenue in cycle T/2. In terms of Figure 6, we compare area A with twice that of B. Let
R(p,k,L,T) be the revenue of perfect overlapping channels with given parameters. It can

be shown that

Wiw)  Cee- Q(T L)

L(k- 12%2 -%

R( p’ k1 L1T) - 2R(p1k! L/21T/2) = 3(2+ k)( Lp(2+k) - e 3p(T- L))

Hence, cutting the length of the cycle smultaneously to half is profitable for both
channels. This result suggests that greater fragmentation of commercials into uniformly
distributed very small breaks brings in higher revenue for both channels. However, in
reaity there are some limitations. The first limitation is the commercial spot itself. It

needs some time to have an impact on the viewer; i.e., to communicate the information to

8 Both broadcasters have the same revenue because of the symmetry of the set-up.
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the viewer without interruption. The second limitation is the program (e.g., a movie)
during which the commercial is aired. The more fragmented the program is, the less
enjoyable it is; thus, transition rate p changes while in the analysis p was assumed to be
fixed.

In reality we can observe that commercial breaks are fragmented. However, the
fragmentation is not infinite and both limitations mentioned above are in effect. The first
is natural: no single commercial spot is split into smaller parts. Nevertheless, the spot
itself is not the only actual limitation because we can aso observe more spots in one
commercia break. This grouping occurs in order to not decrease the attractiveness of the

program; i.e., the second limitation.

6. Conclusion

In this paper | assume that TV viewers switch among channels as if according to a
homogeneous Markov process. However, the parameters of the process depend on the
type of broadcasting. If there is a commercia break on a particular channel, viewers leave
this channel at higher rate than if there is a movie. The broadcasters are aware of this, and
thus, they place their commercials in order to maximize their revenue.

The solution to the symmetric model with 2 players in discrete time suggests that
broadcasters optimal strategy is coordination; i.e., they are better off if they air their
breaks at the same times.

In the symmetric continuous-time model with two broadcasters, equal
rates of switching and a fixed length of commercial breaks, | have shown that the

broadcasters will place their commercials to the same or very close times. Moreover, if
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the viewers senditivity to commercias is low, the commercial breaks will perfectly
overlap; i.e., there is equilibrium in pure strategies in which the broadcasters start and
finish advertising at the same times. We have aso shown that broadcasters tend to
fragment the commercials into more breaks. Nonetheless, they are limited in the extent of
fragmentation by the length of one spot and by the displeasure caused to the viewers.
Unfortunately, the extensive formulas of the analytical results heavily restricted
the number of questions which were intended to be answered by this model. Calibrating
the model using a real data set or ssimulations run for more general cases are definitely

interesting directions for future research on this topic.
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Appendix |
Lemma:

d(t) = (€2*)" d(0) is asolution t o d(t) = Q" d(t)

Proof:

%d(t) =Q"(€) d(0)=Q"d(v). QED.

Lemma:

d(t) = V.Diag{e'*,e'?*,....e'™*} vV 1.d(0) isasolutiont o d(t) =QT d(t)
Proof:

Denote v; as eigenvectors of Q" and | ; as corresponding eigenvalues. Then,

n+l

dt)=8 c.€ ‘v

i=1

where ¢; are such that d(t) satisfy the initial condition.

n+l n+1
—d(t) a ce ™l v =Q".8c.e v, =QTd(t)
=1 i=1

Hence, it is also a solution to the system of differential equations.

&C 0

QC :

dt)=(v, Vv, .. V,.)Diag{e" e, g2

§n+1a
0 0
Co s ot

d)=V¢ * P ¢ T=Vv-d(0)p d(t) = V.Diag{e'*',€",....e ™'}V "d(0)

(écnﬂa gcnﬂa

QED.
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Appendix 11
Lemma:

- 4e’ +6€p(2L(l+k)+3T)+e4Lp+3pT 4+ @HMPH3PT | gtKp6pT

Proof:
Solve the inequality for k. First, substitute x for € and solve it as a quadratic equation.

NG (ea PT _ 4eb pT)+ X 6P(2L+3T) 4 @P(AL+3T) | 4080 — g
P)
D = 362P2LHT) _ 4(e3pT _ 48P Xep(4L+3T) ) 4e4Lp):16e4Lp+3pT (e3pT ) 1)

1' 2e—l5pT 1+ 2e— 15pT
X =€ e %= e

1- 2¢° 1+2e"°
Obvioudly, x; < -€®- and 0 < x; < &, For x = & the expression equals -4e*"-(e¥'-1)
which is negative. Hence, for al x > €~ it must be negative too which means that for all

k>1 the inequality holds. QED.
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