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Abstract

The least squares estimator is probably the most frequently used estimation
method in regression analysis. Unfortunately, it is also quite sensitive to data
contamination and model misspecification. Although there are several robust
estimators designed for parametric regression models that can be used in place
of least squares, these robust estimators cannot be easily applied to models con-
taining binary and categorical explanatory variables. Therefore, I design a robust
estimator that can be used for any linear regression model no matter what kind
of explanatory variables the model contains. Additionally, I propose an adaptive
procedure that maximizes the efficiency of the proposed estimator for a given

data set while preserving its robustness.
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Abstrakt

Metoda nejmensich ¢tverct je jednou z nejcastéji pouzivanych
metod v regresni analyze. Jeji hlavni nevyhodou je velké citlivost
vi¢i chybné specifikaci modelu a kontaminaci dat. Toto TeSi tak
zvané robustni odhady, kterych existuje pro linedrni regresni
model celd fada. VetSinu robustnich odhadi vSak neni mozno
pouzit v pripadé, ze model obsahuje diskretni proménné. V tomto
¢lanku proto navrhuji robustni odhad, ktery je mozno aplikovat v
libovolném linedrnim regresnim modelu bez ohledu na charakter
vysvétlujicich proménnych. Nezanedbatelnou ¢asti je i ndvrh a
studium adaptivni metody, kterd maximalizuje i¢innost odhadu

pii zachovani jeho robustnosti.
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1 Introduction

Estimation tasks that involve discrete dependent or discrete explanatory vari-
ables are quite natural in econometrics. The former is represented, for example,
by any member of the wide class of discrete-response models. The latter is almost
omnipresent in econometrics and occurs when we deal with various categorical
variables that are used to represent non-continuous characteristics such as an in-
dividual’s gender or education, or to characterize a general nonlinear relationship
between regressors and the corresponding dependent variable. Thus, reliable and
efficient estimation methods for models containing these kinds of variables are of
considerable interest. In this paper, I concentrate on the second case, namely on
the classical linear regression model with discrete explanatory variables.

Linear regression models are in most cases estimated using techniques based
on the least squares principle. Although the least squares method is frequently
used in regression analysis, mainly because of its simplicity and ease of use, it is
quite sensitive to data contamination and model misspecification. Therefore, it
is a bit surprising that some more reliable methods are not more widely spread,
especially because it is not necessary to abandon a classical parametric model and
its advantages in order to gain more robustness. The methods of robust statistics
retain standard parametric assumptions but take into account possible misspec-
ification and data contamination and their impact on estimation procedures in
order to design misspecification- and data-contamination-proof estimators. For
example, Orhan, Rousseeuw, and Zaman (2001) demonstrate the use of robust
regression methods on three classical macroeconomics models estimated in the
past by the least squares method. The main result is that the use of robust

methods is highly recommended even in the case of a simple linear regression,



because their use together with careful analysis of data sets lead to significantly
different results than the least squares regression, at least in the case of the data
sets analyzed by these authors.

On the other hand, although the asymptotic and robust properties of various
robust estimators have been studied for several decades, at least in the case of
regression with one explanatory variable, it is understandable from some points
of view that robust estimation methods are not used more frequently in econo-
metrics. There are several reasons for this and I will document them on the
least trimmed squares (LTS) estimator (see Section 4.1 for more details), which
was used by Orhan, Rousseeuw, and Zaman (2001). The first reason is compu-
tational: it is possible to compute LTS only approximately and even obtaining
an approximation is relatively time consuming; moreover, a good approxima-
tion algorithm did not previously exist. However, the recent availability of a
good and fast approximation algorithm (see, for example, Rousseeuw and Van
Driessen (1999)), faster computers, and the presence of this algorithm in some
widely-spread statistical packages' have made LTS more attractive.

The second reason is more troublesome: whereas discrete regressors do not
cause any particular problems to standard estimation procedures (e.g., the least
square or the maximum likelihood methods) if some regularity assumptions hold,
the situation is completely different in the case of many robust regression meth-
ods. The main reason is that some robust methods completely reject a subset of
observations. In other words, they completely ignore some observations and can
consequently exclude a group of observations defined by categorical variables from
regression estimation; this results in the problem of singular matrices, and con-

sequently, some variables do not have to be identifiable. Given the significance

!For example, R, S-plus, TSP, and XploRe include procedures for the computation of LTS.



of discrete and categorical explanatory variables in econometric practice, this
is a serious shortcoming that was already addressed by Hubert and Rousseeuw
(1997), for instance. Nevertheless, the existing remedies do not represent an opti-
mal solution—above all because they are limited only to a certain class of models
(see Section 3)—and that is why I present here a new solution to this problem.

I essentially take the LTS estimator as the starting point and create a smoothed
version of this estimator, removing thus the complete rejection of observations,
the main cause of the problem. As we see later, this solution adds some further
improvements to the LTS estimator, such as an increase of efficiency while pre-
serving the robustness of LTS. The extent to which efficiency is improved and
robustness is decreased depends heavily on the smoothing scheme used. Thus,
I define first the smoothed LTS estimator in a general way and study its prop-
erties for a general smoothing scheme. Later, I propose a class of smoothing
schemes and a rule that allows us, for a given data set, to adaptively find a
smoothing scheme that maximizes the efficiency of the estimator while preserv-
ing its robustness properties. This is achieved by searching for an optimal choice
among smoothing schemes defining smoothed LTS estimators ranging from the
least trimmed squares (“most robust” option) to the least squares (“most efficient”
option). Thus, given a data set, I try to come as close as possible to the least
squares estimator without losing robustness of LTS, that is, without letting data
anomalies significantly affect the estimate.

In the rest of this paper, I first describe basic concepts of robust statistics
(Section 2). Later, I review the existing attempts at robust estimation in the
presence of discrete and categorical explanatory variables (Section 3) and propose
a smoothed version of the least trimmed squares estimator (Section 4). Next,

the proofs of consistency and asymptotic normality are presented together with



some elementary assertions that underlie one scheme for an adaptive choice of
smoothing parameters (Section 5). Finally, the features of the proposed estimator

are documented using Monte Carlo simulations (Section 6).

2 Robust statistics

Robust statistics aims to study the behavior of parametric estimators under de-
viations from the standard assumptions of parametric models and to develop
estimators that behave well not only under correct parametric specification, but
also in the presence of “small” deviations from the parametric assumptions. In
other words, robust estimation methods are designed so that they are not easily
endangered by the contamination of data. As a result, a subsequent analysis
of regression residuals coming from a robust regression fit can hint at outlying
observations. In addition, the use of a parametric model contributes efficiency,
while features of these estimators ensure sufficient robustness. There are two
main approaches to the formalization of robust statistics, namely Huber’s mini-
maz approach (Huber (1964), Huber (1981)) and Hampel’s infinitesimal approach
based on the influence function (Hampel et al. (1986)). Because of the advan-
tages of the latter (see, for example, Hampel et al. (1986) and Peracchi (1990))?, a
more detailed description of robust statistics in the next section follows Hampel’s

approach.

2.1 Principles of robust statistics

Robust statistics formalizes certain desirable requirements for the behavior of var-

ious statistical procedures under deviations from parametric assumptions. This

2Most importantly, Hampel’s approach can be generalized to any parametric model, while
Huber’s minimax strategy cannot.



is an important topic since the assumptions of parametric models are valid only
“approximately” in many situations.® There are several reasons for this “approx-
imate validity” of parametric models, which are summarized and exemplified in

Hampel et al. (1986):

1. Nearly any data set contains some amount of gross errors, i.e., infrequent
observations that are for some reason “wrong” (e.g., because of copying
or computational errors; alternatively, these errors can be caused by an
incorrect model specification or by a transitory phenomenon that affects

only a few observations in the data set).

2. Frequently, data exhibit “small” deviations from the assumed parametric
distribution, caused, for example, by rounding (data have always a limited
accuracy), or by an approximate validity of asymptotic properties in finite

samples.

3. The assumption of independence among observations is not “completely”

satisfied.*

Unfortunately, these facts are usually not reflected by standard parametric meth-
ods, which is definitely one of the reasons for their sensitivity to even mild devia-
tions from the model assumptions (see, for example, Tukey (1960)).> Therefore,

the theory of robustness and robust procedures, that is, procedures that take into

3Tt is quite possible that observations in a given data sample do not precisely follow a given
parametric specification, but, on the other hand, the behavior of the majority of observations is
relatively close to this parametric specification. Therefore, it is often not necessary to completely
reject the classic parameterization of a given model, even in case of nonlinear models (see Gerfin
(1996)).

4See Hampel et al. (1986) for a discussion of the meaning of “wrong,
pletely.”

5Here, the sensitivity of classic parametric estimators does not cover only a possible incon-
sistency, but also a possible efficiency loss.

” “small,” and “com-
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account not only standard parametric specifications but also possible deviations
from them, has been developed. The main goals of the theory of robustness, as

summarized in Hampel et al. (1986, page 11), are:

1. To describe the structure best fitting the bulk of the data.

2. To identify deviating data points (outliers) or deviating substructures for further

treatment, if desired.

3. To identify and give a warning about highly influential data points (“leverage

points”).

4. To deal with unsuspected serial correlations, or more generally, with deviations

from the assumed correlation structures.

A description of the main concepts used to formalize the above mentioned goals
follows in Subsection 2.2. Examples of robust procedures are presented in Sub-

section 2.3.

2.2 Main concepts

Hampel et al. (1986) formalizes the aims of robust statistics by specifying a
local measure of robustness—the influence function—and a global measure of
robustness—the breakdown point. The influence function characterizes the sen-
sitivity of an estimator 7' to infinitesimal contamination placed at a given point
x € RP: it is defined as a derivative of the estimator 7" taken as a functional
on the space of distribution functions in the direction of z.° For example, one

finite-sample measure, the sensitivity curve introduced by Tukey (1977), which

6 A single point € R? corresponds in the space of distribution functions to a degenerated
distribution function.
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in most cases converges to the asymptotically defined influence function, can be

expressed as

SCR(JJ) =n- (Tn(xla .. .,xn,1,$) — Tnfl(xla .. .,.’L'nfl))

for an estimator 7}, evaluated at sample z1, ..., z,_1. There are also several other
measures of robustness derived from the concept of the influence function, for
example, the sensitivity to gross-errors, defined as the supremum of the influence
function over all points z € RP.

On the other hand, the global measure of robustness—the breakdown point—
indicates how much contamination can make an estimate completely “useless”.”
This can be again illustrated using a finite-sample definition of the breakdown

point for an estimator 7}, at a sample zy, ..., z, (Hampel et al. (1986)):

max sup \Tn<z1,...,zn>|<+oo}, 1)

|
€, = —Mmaxq{m
Lyeenbm gy, ym

n

where sample z1, ..., z, is created from the original sample x4, .. ., z, by replacing
observations z;,,...,z; by values y,...,¥,. The breakdown point usually does
not depend on the sample x4, ..., x,. To give an example, it immediately follows

from the definition that the finite-sample breakdown point of the arithmetic mean
equals 0 in a one-dimensional location model, while for the median it is equal to
1/2. Actually, the breakdown point equal to 1/2 is the highest one that can be
achieved at all; if the amount of contamination is higher, it is not possible to
decide which part of the data is the correct one. Such a result is proven, for

example, in Rousseeuw and Leroy (1987, Theorem 4, Chapter 3) for the case of

"For example, how much contamination can make the Euclidean norm of a given estimator
higher than any given real constant.
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regression equivariant estimators (the upper bound on €}, is actually ([(n—p)/2]+
1)/n in this case, where [z] denotes the integer part of z).

These two concepts are of a different nature. The influence function, which
is defined as a derivative of an estimator, characterizes the behavior of the es-
timator in a neighborhood of a given parametric model, in which the effect of
contamination can be approximated by a linear function. On the contrary, the
breakdown point specifies how far from the parametric model the estimator is
still useful, in the sense that it produces usable results. In other words, while the
influence function provides mainly an asymptotic tool that allows us to charac-
terize and design, in some sense, asymptotically “optimal” estimators that exhibit
certain robustness properties,® the breakdown point determines the robustness of
the same estimators with respect to outliers and other deviations from the para-
metric model both asymptotically and when they are applied to real data.® As
some kind of asymptotic optimality (e.g., asymptotic efficiency) of an estimator
might be worthless if the robustness of the estimator is not high enough, a suf-
ficiently high breakdown point is an important property of the estimator. Thus,
the influence function and the breakdown point can be viewed as complementary

characteristics.

2.3 Examples of robust estimators

The theory of robustness offers two main approaches for developing new estima-

tors. First, estimators can be designed primarily to achieve a maximum possible

8The reason is that the influence function of an estimator does not characterize only one kind
of robustness of the estimator, but is also related to the asymptotic variance of the estimator,
see Hampel et al. (1986).

9Usually, the breakdown point €, is “quite close” to the limit lim,,_,, €}, for any n € N; for
example, estimators that achieve the upper bound ([(n — p)/2] + 1)/n have their breakdown
point “quite close” to 1/2.
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breakdown point (which in general cannot be higher than 1/2). Second, the
theory of robustness also supplies some “optimality” criteria that allow the con-
struction of most efficient estimators with certain robustness qualities. One of
them is B-robustness, which is defined as a finite sensitivity to gross errors. An
optimally B-robust estimator is then defined as the most efficient estimator (ac-
cording to its asymptotic variance) that has its sensitivity to gross errors lower or
equal to some fixed upper bound. Examples of robust estimators of both classes,
relevant for the presented research, are mentioned in this subsection.

Currently, there are many procedures with breakdown points close to 1/2,
most of which are designed for the linear regression model. These high breakdown
point estimators serve several purposes: (1) a reliable estimation of unknown
parameters, which is possible because of their high breakdown point; (2) detection
of outliers and leverage points (using the analysis of the residuals) so that they can
be used as diagnostic tools; (3) a robust initial estimate for iterative estimation
procedures. Examples of existing techniques designed for the linear regression
model are the least median of squares (Rousseeuw (1984)), the least trimmed
squares (Rousseeuw (1985)), and the S-estimators (Rousseeuw and Yohai (1984)).
Recently, the least trimmed squares estimator became more preferred to the least
median of squares because it features better asymptotic performance and a fast
and reliable approximation algorithm (Rousseeuw and Van Driessen (1999)). All
these estimators can withstand a high amount of contamination including outliers
(observations that are distant in the direction of the dependent variable) and
leverage points (observations outlying in the space of explanatory variables).l?
Unfortunately, they all have inherent problems with estimation which includes

both continuous and categorical variables. Existing robust methods designed for

10Tf the meaning of terms “outliers” and “leverage point” are not intuitive or apparent enough,
check, for example, the classification of outlying points in Rousseeuw (1997).
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the estimation of such models are discussed in Section 3.

On the other hand, there is already a class of robust estimators that can be
applied in models with categorical variables, which has been studied from the
standpoint of the optimal B-robustness concept: the M-estimators (generalized
maximum likelihood estimators). The main idea is to replace the maximum
likelihood scores (or their integrals) with a general function of observed data
points and unknown parameters. By choosing a suitable function, optimally B-
robust M-estimators were developed in a rather general setup that covers many
linear and nonlinear regression models. Unfortunately, they have an important
disadvantage once they are applied in the multiple regression framework—a low
breakdown point,!' which cannot exceed 1/p, where p is the dimension of the
corresponding parameter space (Maronna, Bustos, and Yohai (1979)); moreover,
they are often quite sensitive to leverage points. Thus, the global robustness
of M-estimators becomes rather low when there are more parameters involved.
Finally, M-estimators are usually not invariant with respect to scale (residuals
have to be studentized in most cases), and hence, they are rather sensitive to
its initial estimate. Altogether, this means that in most cases it is necessary to

combine them with an estimator with a high breakdown point.

3 Existing approaches to robust estimation with
discrete explanatory variables

There are several estimators that are robust in some way and can cope with

discrete and categorical variables. The most obvious one is the least absolute

HUTow compared to the breakdown point of the estimators discussed in the previous para-
graph. Note that the breakdown point of MLE under the assumption of normally distributed
errors is equal to zero.
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deviation (L;) estimator. However, it is not directly comparable with the high
breakdown-point estimators discussed in Section 2.3, because, despite being re-
sistant to outliers, it is not robust against leverage points. Therefore, new high
breakdown point estimators for linear regression model with binary and categori-
cal variables were designed—first for the special case of distributed intercept (see
Hubert and Rousseeuw (1996)), later for a linear regression model with contin-
uous and binary variables, where binary variables enter the regression equation
only additively (Hubert and Rousseeuw (1997)). The best (from the viewpoint
of robustness and the speed of convergence) from several proposed estimators is
the so-called RDL; estimator (Robust Distance and L; regression). RDL; is a

three stage procedure:

1. The minimum volume ellipsoid (MVE) estimator (Rousseeuw (1985)) of lo-
cation and scatter matrix is applied on the set of all continuous explanatory

variables, and based on it, robust distances are computed.

2. Using the robust distances, strictly positive weights w; are defined in such
a way that observations having a large distance from the center of data
are down-weighted (distances are computed only in the space of continuous
variables, because all categorical variables are encoded as dummy variables,
which cannot be outlying by their nature). Then regression parameters are

estimated by a weighted L; procedure with the constructed weights w;.

3. The scale of residuals is estimated by the median absolute deviation (MAD)
estimator applied on the vector of residuals coming from the L, regression

in point 2.

This estimator achieves a high breakdown point, because the influence of lever-

age points is reduced by weights that are indirectly proportional to the robust
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distances of these points and the robustness against outliers is obtained by us-
ing the L; estimation method. On the other hand, the procedure has several
disadvantages. One of them is the lack of efficiency in most usual cases caused
by the use of the L; estimator; as a possible remedy, Hubert and Rousseeuw
(1997) propose a four stage procedure that adds as the fourth step computing
a weighted least squares estimator with weights based on studentized residuals
from RDL; estimator. Another disadvantage is that this estimator, which is de-
fined for linear regression models with dummy variables entering a model only
additively, can hardly be generalized to more complicated models: for example,
to general regression models with dummy and categorical variables (including
cross-effects); to instrumental variable and similar models, for which results con-
cerning least-squares-like estimators are readily available, but often missing for
other types of estimators; or to nonlinear models, in which it is hard to predict
the effect of large values of different variables, and thus, a simple down-weighting
proportional to distances in space of explanatory variables does not make sense.
Finally, RDL; can be relatively easily influenced by misspecification occurring in
dummy and categorical variables simply because it does not treat dummy vari-
ables in any special way (this is documented in Section 7). Such an effect is
naturally bounded so it does not affect the breakdown point as defined by (1),

but it suffices to make the estimator inconsistent.

4 Smoothed least trimmed squares

Robust estimation of linear regression models with discrete and categorical ex-
planatory variables has received some attention recently, but there is still vast

area for improvement, as discussed in Section 3. In addition, the least trimmed
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squares estimator has been gaining more popularity because of its robustness and
relatively high efficiency, but also there is a need for improvement, as I discuss
below. Therefore, I define a smoothed version of the least trimmed squares esti-
mator that should preserve the robustness of LTS, and at the same time, allow
the estimation of general linear regression models with discrete explanatory vari-
ables and obtain better properties than the existing robust estimators in the area
of efficiency. In this section, the smoothed LTS estimator is defined for a gen-
eral smoothing scheme. An adaptive choice of smoothing, which should enable
us to obtain as high efficiency as possible while preserving the robustness of the
estimator, is discussed in more detail in Sections 6.2 and 7.

I first define the linear regression model used throughout this paper and de-
scribe the least trimmed squares estimator (LTS) introduced by Rousseeuw (1985)
in Section 4.1. In Section 4.2 I define the smoothed version of LTS. Finally, I
discuss the relation between the smoothed LTS and weighted least squares esti-

mators in Section 4.3.

4.1 Linear regression model and least trimmed squares

LTS is a statistical technique for estimation of the unknown parameters of a linear
regression model and provides a robust alternative to the classical regression
methods based on minimizing the sum of squared residuals. Let us consider a
linear regression model for a sample (y;, ;) with a response variable y; € R and

a vector of explanatory variables z; € RP:

yzzsz,B—i-sz, 121,,71 (2)
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The least trimmed squares estimator BTSLTS) is defined as

h
BT = argmin Y rfy(B), (3)
JE]S C——
where rﬁ](ﬁ) represents the ith order statistics of squared residuals r?(3), ..., 72(8);

ri(8) = y; — z1 3 and B € RP (p denotes the number of estimated parameters).
The trimming constant h has to satisfy 5 < h < n. This constant determines the
breakdown point of the LTS estimator since definition (3) implies that n—#h obser-
vations with the largest residuals do not affect the estimator (except for the fact
that the squared residuals of excluded points have to be larger than the hth order
statistics of the squared residuals). The maximum breakdown point is attained
for h = [n/2]+[(p+1)/2] (see Rousseeuw and Leroy (1987, Theorem 6)), whereas
for h = n, which corresponds to the least squares estimator, the breakdown point
is equal to 0. There is, of course, a trade-off: lower values of h, which are close
to the optimal breakdown-point choice, lead to a higher breakdown point, while
higher values of h improve efficiency (if the data are not too contaminated) since
more (presumably correct) information in the data is utilized. The most robust
choice of h is often employed when the LTS is used for diagnostic purposes. It
may also be favored when LTS is used for a comparison with some less robust
estimator, e.g., least squares, because a comparison of these two estimators can
serve as a simple check of data and a model—if the estimates are not similar to
each other, special care should be taken throughout the analysis. On the other
hand, it may be sensible to evaluate LTS for a wide range of trimming-constant
values and to observe how the estimate behaves with increasing h because this
dependence can provide hints about the amount of contamination and possibly

about suspicious structures in the studied data (for example, that the data ac-
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tually contain a mixture of two different populations, see Benéacek, Jarolim, and
Vigek (1998)).

Before proceeding further, I will discuss the existence of the estimator and
its statistical properties. First, the existence of the optimum in (3) under some
reasonable assumptions can be justified in the following way: the minimization
of the objective function in (3) can be viewed as a process in which we choose
a subsample of h observations and find some § minimizing the sum of squared
residuals for the selected subsample every time. Doing this for every subsample
(there are (}) of them), we get () candidates for the LTS estimate and the
one that commands the smallest value of the objective function is the final es-
timate. Therefore, the existence of the LTS estimator is basically equivalent to
the existence of the least squares estimator for all subsamples of size h.

Finally, I discuss various finite-sample and asymptotic properties of LTS as
well as some drawbacks related to the use of LTS. First, the least trimmed squares
is regression, scale, and affine equivariant'? (see, for example, Rousseeuw and
Leroy (1987, Lemma 3, Chapter 3)). I also already remarked that the breakdown
point of LTS reaches the upper bound ([(n — p)/2] + 1)/n for regression equivari-
ant estimators if the trimming constant A is equal to [n/2] + [(p + 1)/2] (p rep-
resents the number of unknown parameters). Furthermore, the y/n-consistency
and asymptotic normality of LTS can be proven for a general linear regression
model with continuously distributed disturbances, see Visek (1999a). Besides
these important statistical properties, there are also some less practical aspects.
One of them is the above mentioned complete rejection of observations. If dis-

crete variables are present in the regression model, complete rejection can lead

12An estimator T as a function of data is equivariant with respect to a family of
transformations F if and only if the estimator applied on any transformed data set is
equal to the transformation of the estimator applied on the original data set: (Vf €

EYVZ1, .. xn)(T(f(21),- ., f(2n) = fF(T (21, -, 20)))-
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to a situation where the parameters of interest are not identified in a subsample
of h observations included in the LTS objective function. Another disadvantage
directly follows from the discontinuity'?® of the LTS objective function. Because
of this, the sensitivity of the least trimmed squares estimator to a change in one
or several observations might sometimes be rather high (Visek (1999b)). This
property, often referred as high subsample sensitivity, follows from the fact that
high breakdown-point estimators search for a “core” subset of data that best fits
a certain model (with all its assumptions) without taking into account the rest of
the observations: a change in some observations may then lead to a large swing
in the composition of this core subset. These problematic aspects of LTS will be

fixed by the smoothed version of LTS proposed in the next section.

4.2 Definition of smoothed least trimmed squares

In this section, I define the smoothed least trimmed squares (SLTS) estimator.
Let us consider a linear regression model (2) for a sample (y;,x;),i = 1,...,n.

Moreover, let w = (wy, ..., w,) be a vector of weights such that w; > wy > ...

v

wy, > 0. Then the smoothed least squares estimator BéSLTS’w) is defined by

n

BSLTSw) = argmin Z wiTﬁ] (B), (4)

feB  im

where

e J € B C TR is a p-dimensional vector of unknown parameters and B C RP

is the corresponding parameter space,

° T[Qi](ﬂ), t = 1,...,n, represent the ordered sample of squared residuals

13The discontinuity of LTS refers here to the fact that residuals either enter the objective
function or not at all.
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72(8) = (4 — <79 for any § € B, and

e w is a weighting vector: wy > wy > ... > w, > 0.

The estimator is quite similar to the weighted least squares (WLS) estimator with
one important difference: weights are assigned to the order statistics of squared
residuals instead directly to the residual. Clearly, the behavior and properties of
the SLTS estimator are given entirely by the choice of weights. Let me provide

two simple and one complex examples:

1. wy =...=w, = 1: SLTS is equivalent to the least squares estimator;

2. wy =...=w, =n/hfor § <h<nandwy =...=w, =0: SLTS is

equivalent to the least trimmed squares estimator;

3. w = f(Lwi,...,wy) forall i = 1,...,n, where f(z;wi,...,wn) is a real-
valued function on (0, 1) parameterized by wy,...,w,; € R™: in this case,
weights follow a function f(z;wi,...,w,) and are actually given by the
parameters wy, . . .,w,,. For example, such a function can be defined as

1
fz;w)

- 1+ ew(z—1/2)

for all z € (0,1) and one parameter w € (0, 00). Then we have a smoothing
scheme w; = f (%,w) for any given, but fixed value of w, and moreover,
we can choose among such smoothing schemes by selecting a suitable value
of parameter w. Note that this smoothing scheme converges to the one
introduced in point 1 (least-squares weights) for w — 0 (as then w; — 1)
and also to the smoothing scheme in point 2 (LTS weights) for w — 400

(w; — 1 for ¢ < h, = [2] and w; — 0 for ¢ > h,, = [2]).
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Apparently, this estimator can share its robustness properties (namely a high
breakdown point) with the already reviewed LTS, at least for choices of weights
like in point 2 and in point 3 for w > 1. Additionally, once we restrict our
attention only to strictly positive weights, i.e., wy > wy > ... > w, > 0, we
obtain an estimator that does not reject any observation completely. This means
that all observations are included in the regression and binary and categorical
variables do not cause problems anymore; moreover, removing the discontinuity
of the objective function significantly reduces the sensitivity of SLTS to small
changes of data. On the other hand, there are many similarities between LTS and
SLTS. SLTS can still eliminate the effect of outliers and other data-contaminating
observations in the same way as LTS does as long as weights are properly chosen,
that is, if the effect of large residuals on the SLT'S objective function is sufficiently
reduced. Further, as I show later, the computation of SLTS could be done by
using the weighted least squares (WLS) method with weights w = (wp,, ..., wp,)
for each of n! permutations P = (Py,..., P,) of {1,...,n} and taking as the final
estimate the WLS estimate for the permutation that controls the minimum sum
of squared residuals. Therefore, if the WLS estimator exists for all permutations
of weight vectors, then SLTS also exists (it is the minimum of a finite number of
values).

The crucial point is, of course, the choice of weights. There are several possi-

bilities how weights can be chosen:

1. A fixed smoothing scheme, such as the least squares one (w; = ... =
wy, = 1): the only advantage of this option is that we can use the resulting
estimator in linear regression models with discrete explanatory variables
if all weights are positive. However, in such a case, the robustness of the

estimator suffers.
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2. A data-dependent smoothing scheme: weights are based on data statistics.
If we want to be on the safe side, the weights can be defined, for example,
so that the smallest weights are inversely proportional to the distance of
the point most distant from the center of data; or they can be based on

some robust distances as in the case of the RDL; estimator.

3. An adaptive choice from a given class of smoothing schemes: given a class
of smoothing schemes f(z;wi, ..., wn) parameterized by wy, .. ., wy, and re-
quirements on robustness, we try to find an optimal choice of parameters

wi, - .., Wy for a given data set.

There are certainly many possibilities how weight vectors can be defined. A
fixed choice of a smoothing scheme (point 1) is neither robust, nor flexible. The
strategy described in point 2 is also not suitable because we do not assign weights
directly to residuals and because usual weight choices provide sufficient robustness
only under some additional assumptions about a model. Therefore, the strategy
that I would like to discuss in this paper is the adaptive choice of weighting
scheme described in point 3. Consider, for example, such a weighting scheme

i
n’

defined by one parameter: w; = f(%,w), where w € R and f is chosen so that
the corresponding SLTS estimate converges to the least squares for some values
of parameter w (e.g., for w — 0) and to the least trimmed squares for other ones
(e.g., w — 00). Then we can by means of this single parameter w choose how far
or close the corresponding SLTS estimator is to LTS and LS. In other words, we
control the balance between the robustness of the estimator and the amount of

information it employs from data. See Section 5.2 and 6 for more information on

this topic.
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4.3 Relation between SLTS and WLS estimators

Now, I derive a lemma describing the relation between the SLTS and weighted
least squares (WLS) estimator. This result will be useful not only for a better
understanding of the behavior of SLTS, but also for computation of the SLTS
estimator.

We observed in Section 4 that the SLTS estimator corresponds to a weighted
least squares estimator with specially assigned weights. Let us make this assertion

more precise.

Lemma 1 Let (y;,x;)", be a fized realization of random sequence (y; = x¥ 3% +

i, i)y and w = (wy, - .., wy,) be a weighting vector, wi, > Way > ... > Wy, > 0.
Consider
n
BEHTSY) = argmin »  wiry(B), (5)
peB =1

where 1;(8) = y; — x1 B. Let ki(8) : R — {1,...,n} be a function such that
k;(B) is the index of the observation with the ith largest squared residual at 3,

rzi(ﬂ)(ﬁ) = 7“[21.](5). Define now weights Vg (LTS )y = Wi for alli =1,...,n.

Then the weighted least squares estimator with weights v;,1 =1,...,n,
BWLSY) — arg min Z v;r;(B) = arg min Z v; 2 (6)
peB o peB i

15 equal to the smoothed least trimmed squares estimator: 5(SLTS“’ B (WLSw),

Proof: 1 prove the lemma by contradiction. Let B°X"5™) 2 BWES®)  Then

it follows from the definition of weights v and estimates BS“"") and MW %5
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(SLTS,w) -

(ordering of squared residuals r2(3) at B is given) that

S (X, Yoy w3 IS0 = S,y (X, Vo, 03 BEET59)) > 8, (X, Yoy 03 APVESD)
(7)

Since the objective function of the weighted least squares estimator can be rewrit-

ten as ({£2(8),- > kn(8)} = {1, ,n} for any f)
Sw (Xn, Yna v, BﬁWLS’U)) == Z VT (B(Wst )

= ka (,B(WLS ENA k (/B(WLS v)) (B(WLSU)>

= ZU (WLSv) 2 (B,(LWLS’E)>

and the sets of weights {v;}? , and {w;}?_, are identical, it follows that

n
Sw (Xn,Yn,U;B,(LWLS’U)) = kai(B£WLS’”))T[2i] ( WLS”)) Zw T ( WLS”)) .

®)
The argument behind this result is simple: if weights Uy, (3 LSy are sorted in
descending order, that is Vg (BWES) > ... > Vg (B ES0)Y then the sums in (8)
are equal; otherwise, we just order weights Vs B&WLS,U)),Z' =1,...,n, decreasingly

to get vector w, and thus, put more weight on smaller squared residuals and less

weight on larger squared residuals. Consequently, we get

Sy (X Yoy BEITS0) > 8, (X, Yo, 03 BIVESD)

> Zw, (BES0) = 5, (X, Yoy w; AVES)

26



and this is the contradiction: BA,SSLTS’W) does not minimize S (X, Yy, v; 5). O
Lemma 1 actually states that the SLTS estimator corresponds to a weighted
least squares estimator with specially assigned weights. These weights are a per-
mutation of the weight vector w defining SLTS. However, this permutation is
specific to a given realization of random variables, so we get a different permuta-
tion of weights (and thus a different WLS estimator) for every sample (y;, z;)™ ;.
Unfortunately, it is not possible to easily find out, which permutation defines a
WLS estimator equivalent to SLTS in a given sample. Nevertheless, this lemma
is very important for the rest of this paper in two ways: it helps us to understand
the asymptotic results concerning SLTS and it provides a way (although not a

straightforward one) to compute the SLTS estimator.

5 Properties of smoothed least trimmed squares

In this section, I first introduce the assumptions necessary for proving consis-
tency and asymptotic normality of the proposed estimator and then I derive
these important asymptotic results in Section 5.1. Later, I discuss some elemen-
tary properties of the SLTS estimator, its objective function and corresponding
regression residuals as functions of weights (Section 5.2). This will be useful
for designing rules driving the proposed adaptive choice of smoothing schemes
(Section 6.2).

Before doing so, let us introduce the assumptions and notation used in the
theoretical part. Consider a linear regression model (2) for a sample (y;, z;) with

a response variable y; and a vector of explanatory variables z;:
I & -
yi = x; B+ &4, i=1,...,n. 9)

27



Let us denote Y, = (y1, . ..,y,)" and X,, = (z1,...,2,)7T; similarly, E, = (e1,...,,)%.

Moreover, let 1,, represent n-dimensional vector of ones, 0,, be n-dimensional vec-
tor of zeroes, and I,, be the n x n identity matrix of dimension n.
(SLTS,w)

Further, let 5° represent the true value of regression parameters and Bn
g

the SL'TS estimator defined by

BIFTSY) = argmin ) wirfy(B) (10)

peB o

for weights w = (wy,...,w,). The objective function of SLTS at 3 is further
referred to by Ss(X,, Y, w;8) = >0, wir[%.] (B); if it is written without weights,
w = 1, is assumed, and thus, S;(Xy, Ya; 8) = 221, r5(8) = oL, 77(B) is the ob-
jective function of the least squares estimator at 5. The objective function of the
weighted least squares estimator at J is denoted Sy, (X, Yo, w; 8) = >0 wir?(B)
and again Sy, (Xn, Ya; 8) = D0, r2(8).

Further, we discussed the possibility to define weights for the SLTS by means
of a real function in Section 4.2. To make this concept more precise, let us consider
a real-valued non-increasing function f(-;wi,...,wm) € L1({0,1)) parameterized
by w1, - .., wm € R™ (L1(C) represents the space of all absolutely integrable func-

tions on C) such that f(z;wi,...,wy,) > 0 for all z € (0,1). For the given values

of parameters wy, .. .,wy,, it is possible to define weights

2i —1
wz-=f< ;wl,---,wm>

2n

foralli =1,...,n.** Then the function f(-;w, ..., wn) is the generating function

of the SLTS smoothing scheme parameterized by wy, ..., w,, and the weights are

MFraction 2;;1 is used instead of the simple > in order to obtain evenly spread values inside

the open interval (0,1).
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generated by the function f. In the following analysis, I focus only on strictly
positive generating functions, which prevent a complete rejection of observation.
Moreover, I discuss mainly the so-called stepwise generating functions:*® f(z) is
a stepwise function on (0, 1) if there are £y € N and real constants 0 = ap < a; <
... <ag,=landecy,..., ¢ € Rsuchthat f(z) = ¢; forall ;_; <2 < o; and all
t=1,...,ks. Because we require that w; > wy > ... > w, > 0 for a weighting
vector w = (wy,...,wy,), it has to hold ¢; > ¢ > ... > cr, > 0 for values of a
stepwise generating function. Additionally, we can always assume without loss of
generality that constants a; and ¢; are chosen such that ¢; > co > ... > ¢ ;> 0.

Finally, note that if we assume that weights w = (wy, ..., w,) are generated
by a stepwise function defined by constants kf, 0 = ap < oy < ... < ap, = 1,

and ¢; > ¢ > ... > ¢, > 0, we can rewrite the definition (10) of SLTS as'®

kffl

S = argmin 3 72(8) + | Y- (6 = e 1(2(6) < vy (B)) +
€ i=1 j=1

(11)
To obtain this formula, one has to realize that the [ajn] smallest residuals are
assigned weight ¢, the [aon] smallest residuals have weight ¢, < ¢;, and so on.
Moreover, for a given value of § € B, the set of the [a;n] smallest squared

residuals corresponds to a set of those residuals that satisfy r7(8) < 7, ,,(8)."7

15This allows me to employ existing asymptotic results for LTS.

6By I(property describing a set A) we denote the indicator of the set A.

"Tn general, this definition is not equivalent to the original one. They are exactly equivalent
if and only if all the residuals are different from each other. Under Assumption A stated below,
this happens with zero probability and definitions (10) and (11) are equivalent almost surely as
the cumulative distribution function of r;(43) is assumed to be absolutely continuous. Therefore,
T use definition (11) for convenience.
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For notational convenience, I denote

kffl

SIG, Bi0,0) = Y (6= ) I(rE(8) <ty (B) 4+, (12)
j=1
where o = (ay, ..., ;) and ¢ = (cy, . . -, ¢k, ), 50 We can rewrite (11) as

5(SLTSw) - argmanT ) - SI1(i, B; e, ¢),

peB =1

and similarly, the objective function of SLTS at 3 is Ss(X,, Yy, w; 8) = >0 72(8)-
SI(i, B; a, c). Additionally, I define an asymptotical equivalent of SI(i, 5; ,¢). 1

simply replace T[Q%,n] (B) in (12) by its probability limit:

ky—

SIT(i, B; 0, ¢) = Z ¢ — ¢i1) I(r}(B) < G5' (o)) + cx, (13)

where GEl(aj) represents the aj-quantile of the distribution function of T[Qajn] (B).
Now, let us finally specify the assumptions needed for the consistency and

asymptotic normality of the SLTS estimator.

Assumption A.

A1l Let W,, = (wy)!, be a sequence of weight vectors generated for all n € N
by a stepwise generating function f,(z) : (0,1) — R,. We assume that
there are constants ky € N, 0 = ap < g < ... < o, = 1, and +o0 >
c1 > ¢y > ... > ¢, > 0such that fy,(z) = ¢; for all ;1 < v < ; and all

t=1,...,ks. Hence, wip > wop > ... > Wy, > 0.

Remark 1 As stated above, I derive consistency and asymptotic normality only

for stepwise generating functions. However, this does not present a considerable
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restriction on the choice of smoothing schemes since every continuous function
on (0,1) can be approzimated with an arbitrary precision by a stepwise function.

See Section 6.2 for more details.

A2 Let (z4,6;) € RF xR,i =1,...,n, be a sequence of independent identically

distributed random vectors with finite fourth moments. Moreover,

n 4 max|ay| = 0,(1) (14)

Remark 2 The necessity to include restriction (14) is caused by the discontinuity
of the objective function of LTS, which the SLTS objective function is composed of.
A nonrandom version of this assumption was used for the first time by Jureckovd
(1984) and the presented version (14) was introduced by Visek (1999a) and used
by Cizek (2001). Apparently, this condition does not affect a random variable
with a finite support at all. Moreover, Cizek (2001, Proposition 1) showed that
equation (14) holds even for some distribution functions with polynomial tails,
namely for those that have finite second moments. As the existence of finite
second moments is almost always utilized, and moreover, is one of the necessary
conditions here, assumption (14) should not pose a considerable restriction on the

explanatory variables.

A3 We assume

o E (xlxlT -SIT(1, B; «, c)) = @Q(B), where Q(p) is a nonsingular (pos-
itive definite) matrix for € B, where B is a compact parametric

space,
b E(‘El : 51(11/60;04: C)|IE1) = 0’
e E(c?2-5I(1,8%a,c)|z1) = 07, where 02 € (0, +00).
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Remark 3 These moment assumptions are nothing but a natural analogy to the

2

usual orthogonality E(e|z) = 0 and spheriality E(%|z) = o* conditions used for

the least squares regression. They also closely resemble similar conditions used

for LTS

(15)

A€ <%, 1>; see, for example Cizek (2001). Note that Assumption A2 is weaker
than its counterparts (15) for LTS.

The same applies to the regqularity condition regarding explanatory variables—

Exizl = Q, where Q is a nonsingular matriz, is a standard identification condi-

tion for the least squares estimator.

A4 Further, let us denote Fyo(z) as the distribution function of ¢; and assume
that Fjo(z) is absolutely continuous. Let fz denote the probability density
of Fgo, which is assumed to be positive, bounded by M; > 0 and differen-

tiable on the whole support of the distribution function Fjo.

Remark 4 This assumption, which actually implies the continuity of the quan-
tile function, is typical when trimmed order statistics of random variables are

analyzed; see Visek (1999a) and Cizek (2001), for instance.

Let Ggo(z) represents the distribution function of &7 = rZ(8). It follows that
Gpo(z) = Fpo(\/z) — Fgo(—+/z) for z > 0, Ggo(2) = 0 otherwise, and hence, it is
also absolutely continuous. Therefore, we can define ggo(2) to be the correspond-
ing probability density function. Moreover, sometimes it is necessary to refer to

the distribution function of r;(3) and r?(8); in such a case, F3 and G4 are used
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for the cumulative distribution functions and fz and gg for the corresponding

probability densities.

A5 Finally, assume that for any ¢ > 0 and U(8° ¢) such that B — U(8°¢) is

compact, there exists a(e) > 0 such that it holds

o, E[r(8) - SIT(L fro.0)] — E[r2(8") - SIT(1 8% 0.0)] > ().

Remark 5 This is nothing but a standard identification condition—the expecta-
tion of the objective function is assumed to have asymptotically a unique global

minimum at 8°. Compare, for ezample, to Cizek (2001) and White (1980).

5.1 Consistency and asymptotic normality

Now, I derive the main asymptotic results, namely the consistency and asymptotic

normality of SLT'S.
Theorem 1 Let Assumption A hold for a sequence W, = (w;,)7_, of weight

vectors. Let q¢; = Ggol(aj),j =1,...,ks, and

S0 — ejn) - {oy — s () + Fn(@)]} + e, 0. (16)

=1

5(SLTS, W)

Then the smoothed least trimmed squares estimator 57(1 18 \/n-consistent

Vi (BEETSI — g0) = 0,(1) (17)

and asymptotically normal,

Vi (BEETS — g0) 5 N(0,V) (19)
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as n — +00, where

Vo= i(cj —¢j1) - {ay — @5 [fpo(—qj) + fao ()]} + ek, X
xQ 1 (B°) var (51x1 - SIT(1, 8% «a, c)) Q (8. (19)

Proof: First of all, the objective function

n

Ss(XnaYnaWn;ﬂ) = Z(yz _ﬂTxi)z 'Sl(iaﬂ;a: C) (20)
= Z (¢j —¢j+1) - [Z(yz’ — fT;)? - 1(7“?(5) < T[Qajn}(ﬁ»]
T Crg [Z(yz' - /3T33z')2]

is actually a sum of the objective functions of the LTS estimators (the sums in
the square brackets are the mentioned LTS objective functions with trimming
constants «;). Because Assumption A covers all the assumptions relevant for the
linear regression model used in Visek (1999a) and Cizek (2001), I simply employ
the existing results for LTS from these two papers by applying them to every
element of sum (20).

Next, the SLTS estimator, minimizing its objective function Sg( X, Yy, Wy; §),
can be also obtained from the normal equations aSs(X"b—W = 0. As derived by
Visek (1999a, page 6) and Cizek (2001, Section 3.3.1 and Lemma 1), the normal

equations can almost surely be expressed as

85, (Xn, Yo, Wy - :
( op A > (yi = BTx)al - SIi, B5a,¢) = 0. (21)

i=1
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The second derivative of the objective function 9’5, (ngQ"’W";ﬂ ) can be analogously

expressed as
82SS(X’IL’ Y’Il’ Wn; IB
052

) = Zx,x? -S1(i, B; a, ).
i=1

Moreover, because of Assumption A, we can use the results from Cizek (2001,

Corollary 5 and Lemma 7), which imply uniformly in 3
1 n
S wial - S1(, f0,0)  E (il - SIT(, B50,0)) = Q(6)
i=1

in probability for n — oo, where Q(3) is a nonsingular positive definite matrix
(see Assumption A3). Hence, for any € > 0 it is possible to find ny € N such
that the matrix %2?21 z;xl - SI(i, B;, c) is positive definite for all 3 with a
probability greater than 1 — ¢. Consequently, the normal equations (21) have a
unique solution with an arbitrarily high probability for a sufficiently high n.
Now, I will find the solution to the normal equations (21). Because it is
unique, it has to be equal to the SLTS estimate. Using the asymptotic linearity
theorem for LTS (see Visek (1999a, Theorem 1) and Cizek (2001, Theorem 1))

we can write that for any M > 0

8Ss(Xp, Y, Wy; 8% — 0 2t) 0S5 (X, Yo, Wi; 5°)

i _ 5 (22)
k1
= QB4 Y (e — ¢i1) - Cla) + ok,
=1
+ Op<n%>

uniformly for all ¢t € Ty, = {t : ||t|| < M}, where

Cja) = aj —q; (f (—q;) + f (g5))
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(notation ¢; = Ggol(aj) is used). We show that there is ¢ € Tj such that

054(Xn Yo, Waif0—n~31)
28

B=p"— n~3t is then the only solution of normal equations. From equation (22),

= (0 with an arbitrarily high probability. This means that

it follows that, for the solution of the normal equations,

085 (X, Yo, W3 8°) _ S i
( 35 B ) = §Q(/BO) Z(Cj — Cj+1) : Cj(a) + Cky + OP (nZ>
=1

and (remember, ngl(cj — ¢j1) - Cj(@) + ¢, # 0 and Q(B°) is a nonsingular

matrix)

1 aSs(Xn;YnaWTUﬁO) Z
: (¢; —

= Q7 () 5

5

as n — 0o. Since the random variable

1 0Sy(Xp, Yo, Wy; 8°) 2T 8% 0.
Lo ts - - T S 50

has asymptotically the normal distribution with zero expectation and variance

( ]_ aSS (Xn; Yn7 Wn; /BO)
var

% 95 ) = var (513:1 -SIT(1, 8% a, c))

(see Visek (1999a, proof of Theorem 2) and Cizek (2001, proof of Theorem 4 and
Lemma 6)), it is bounded in probability. Hence, ¢ defined in (23) is bounded in
probability as well and for any ¢ > 0 there is M > 0 such that term (22) equals

zero for some ¢t € Ty with probability higher than 1 — . Then 3° — n=2t is the

B(SLTS W)

unique solution of (21), and consequently, the SLTS estimate itself is

BY —n~ 3t Apparently, it holds that f( (SLTS,Wn) 5()) =t.
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This finding has two important implications: the y/n-consistency and asymp-
totic normality of SLTS. First, because we can find a compact set T, and the
solution to the normal equations szSLTS’W”) such that H\/ﬁ ( Ay(LS LTS Wn) _ /30) H =

|t < M with an arbitrarily high probability,

Jn (BELSLTS,WTL) _ 50) =0,(1)

as n — +oo (this is the y/n-consistency of SLTS). Second, we found that the

solution ¢ of the normal equation (21) considered as a random variable equals

-1

kj—1
t=Q (8- Z(Cj—cj+1)'0j(a)+ckf -Z+(9,,(n7)
i=1
(see (23)), where Z = ﬁa‘gs(x”’;;“w";ﬁ ?) i asymptotically normally distributed

with zero expectation and variance var Z = var (121 - SIT(1, 8% o, ¢)). Hence,

Vit (BESETSI — 60) =4~ N (0,V)

for n — 400, where

kj—1 —2

Vo= Z(Cj —¢jr1) - Cjla) + ek, QB var (e121 - SIT(1, 8% o, 0)) Q1(8°).

1=1

The proof of asymptotic normality is not useful just on its own, it gives us
also an idea about the asymptotic variance of the SLTS estimator. This provides
a comparison to the least squares estimator, and more importantly, an idea how a
choice of weighting scheme used to define SLTS influences the asymptotic variance

of the estimator. Nevertheless, remember that these results describe only the
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asymptotic behavior and we cannot use it efficiently without a prior assumption
about the error distribution. To complement these asymptotic results, I study
the finite sample performance behavior of SLTS using Monte Carlo simulations

in Section 7.

5.2 Properties of the estimator as a function of weights

As T indicated in Section 4, the main focus of this paper is on the adaptive choice
of weights, which should enable us by a choice of one or more parameters to
control the balance between the robustness of the estimator and the amount of
information it employs from data. As the first step in this direction, I derive some
theoretical properties concerning the SLTS objective function Ss(z,y,w; ) as a
function of weights. In order to make the subsequent explanations and analysis
tractable, I first restrict the choice of weights to a family of weighting schemes.
Later, I discuss the principles of the adaptive weight choice and the corresponding
theoretical results.

It is interesting to study SLT'S not only for a fixed weighting scheme, but it
is preferable to search for optimal weights from a class of weighting schemes. For
this purpose, I introduced weights-generating functions that are parameterized by
a vector of parameters. Whereas this concept requires a non-increasing function
that is positive and integrable on (0, 1), the asymptotic properties of SLTS were
proved only for stepwise functions. Both because the results derived in the rest of
this paper can be proved generally for any generating function and because it is
easier and more transparent to work with a general generating function, I assume
from now on that a weights-generating function is a non-increasing continuous
function that is positive and integrable on (0,1). However, keeping in mind

that only stepwise generating functions should be used for practical computation
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(asymptotic properties of SLTS are derived only for stepwise generating functions
in Section 5.1), T assume that some fixed 1 > ¢, > 0 and n, = [¢, '] 41 are given,
describing the precision of approximation by a stepwise function. This means
that we use for practical computation a stepwise approximation f(z) instead of

a general continuous function f(x) on (0, 1):

fo-r(5) 1 Sleswst

2n,, Ny Ny

foralle=1,...,n,.
Now, let us specify the restrictions regarding generating functions used in the

rest of this section.

Assumption W.
Let W, (w) = (wi)™, be a sequence of weight vectors generated by function
f(z;w) : (0,1) — R parameterized by w from an interval (w;,ws) C R. Assume

that for any w € (wy, wo)

W1 f(z;w) is a continuous, non-increasing, and everywhere positive function

bounded on (0, 1) by constant K, > 0 uniformly for all w € (w1, ws)
W2 fol f(z;w)dz is independent of w, and

W3 thereis A € <%, 1> such that

e f(z;w) > f(r;u) for any w > w' and x < A

e f(z;w) < f(x;w') for any w > ' and z > \.
W4 Optionally, we can require that there are w; < wy € P, such that

e for w — wi it holds that f(z;w) — a1 > 0 for all z € (0, 1),
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e for w — wy it holds that f(z;w) — ag > 0 for all z < X and f(z;w) —

0 for all z > ).

Remark 6 Assumption W2 is just a normalization condition that allows us to
compare the values of the SLTS objective function for weighting schemes corre-
sponding to different w. Assumption W3 formalizes the requirement that we put
less weight on large residuals for some (here greater) values of parameter w and
vice versa. Optional assumption W4 states that the least squares and LTS es-

timators should be at least limiting cases within the class of smoothing schemes

defined by f(;w).

A reasonable choice of weighting functions f(z;w) might be, for example,
functions of the form 1 — F(x;w), where F(z;w) represents a cumulative density
function from some suitable family of distributions. Let me give an example
from Section 4, which actually corresponds to a generating function based on the

logistic distribution function:

1 ! 1
M(z;w) = W//o de (24)

for w>0and z € (0,1) (A € (3,1) is a fixed number here).

Now, I would like to roughly describe the principle of the adaptive choice of
weights defined by the weighting parameter w. At the time of estimation, only a
few characteristics of the estimate are readily available: the value of the objective
function at the point of the current estimate S, (:v, Y, Wh(w); A,QSLTS’W"(M))) and
the corresponding regression residuals. So, if we want to find the best choice of
the weighting parameter w, we have to base our decision on some characteristics

of regression residuals or on the behavior of S (x,y,Wn(w); Ay(LSLTS’W"(w))) for
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different values of w. Let me give some examples of possible adaptive-choice pro-
cedures. One possible idea is based on the fact that the estimator minimizes the
weighted sum of squared residuals and that the smaller sum represents a better
fit. If there is contamination or a deviation from a regression model that makes
the estimate for a given w inconsistent, the value of the objective function will
grow rapidly. This can, indeed, help to differentiate “good” and “bad” choices
of the weighting parameter. Another possibility is to use regression residuals.
Regression residuals have some mean value and variance, which indicate which
residuals are acceptable or which residuals are suspicious. If there is contamina-
tion or a deviation from a regression model that makes the estimate for a given w
inconsistent, some regression residuals will be suspiciously large. This will again
differentiate “good” and “bad” choices of the weighting parameter. Finally, know-
ing which values of the weighting parameter w are acceptable (“good” ones), we
choose the one providing the best efficiency. In order to find out which values of
w are acceptable and which are not, I now analyze some fundamental properties
of the objective function as a function of w. Later, I will discuss some theoret-
ical results concerning regression residuals, again as a function of the weighting
parameter w.

So, let us analyze the behavior of S, <x,y, W(w); Ar(LSLTS’W”(w))), that is, of

5(SLTS,Wn (w))

the objective function of SLTS at the optimum ﬁ,(L , as a function of the

parameter w. We show first that this function is decreasing for all w € (w1, wa).

Proposition 1 Let (y;,z;)’, be a fized realization of random sequence (y; =
xl B0+¢4, )", and W, (w) be a sequence of weight vectors satisfying Assumption
W. Consider

AnSLTS,Wn(w)) — arg mln Z win (W)T[Q,L] (ﬁ) A (25)
BeB
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Then
S(xﬁ%W()ﬂ“”mwﬁz&(&J%m@m;ﬂMMww

holds for any w < W' from (wy,ws).

Proof: Let w < w'. Assumption W implies that f(z;w) < f(z;w’) for x < A and
f(z;w) > f(x;w") for z > A. In other words, a higher w' causes bigger weights to
be assigned to smaller residuals and smaller weights to larger residuals (compared

with weights for w). Hence,

Su (KXo Vi, Wa(w); EETSWN) > 5, (X, Yoy Wi (w'); BSETSWD)

(SLTS,Wn(w))

since the objective function Sy is evaluated at the same point 6 on

both sides of the inequality, so all residuals stay the same. Now, by the definition
of SLTS,

Ss (X, Yo, Wa(W); BELTSHD) > 8, (X, Vo, Wi (W) BELTSWA )
and consequently, it follows that

s, (Xn,Yn,W (@); 5 (SLTS,Wn(w)) ) > S, (Xn’Yn’Wn(wl);ﬁAgSLTS,Wn(w’))) .

So, we know now that the objective function at optimum is decreasing in w.
Unfortunately, we can hardly analyze the shape of S (Xn, Yo, Wa(w); (SLTS W"(w)))

for the general weighting scheme introduced in Assumption W. On the other
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hand, the complete specification of weighting schemes in Assumption W provides
another guideline: for small values of w (close to w;), the SLTS estimates should
converge to the least squares estimates; for large values of w (close to ws), the
SLTS estimates should converge to the least trimmed squares estimates. Thus,
the lower and upper bound for the values of the SLTS objective function are
given by the LS and LTS objective functions. Of course, these bounds cannot be
estimated on a real data set because we do not know whether the (least squares)
estimates are consistent. However, assuming a linear regression model with a
known distribution of the error term, it is possible to compute the asymptotic
ratio of the upper and lower bounds of the SLTS objective function. I compute

this ratio in the case of the normal distribution in Proposition 2.

Proposition 2 Let Assumption A hold and the error term be normally dis-

tributed e; ~ N(0,0%),7 = 1,....,n. Consider two special choices of weight
vectors: W) = (w}), w), = 1 (the least squares weights), and W2 = (w2),

wi, = 3-1(i < hy), where h, = [An] and X € (3,1) (the least trimmed squares

m

weights), for alli=1,...,n and n € N. Then

s, (X Y, W1 SLTSW)) 2?17"[]( (SLTSW)) \
S, (X Y, Wz’ﬂnSLTSW )) - z :Lnl (ﬁnSLTSW2)) - P (Fx_%l(/\))

as n — +o0o, where Fx?i represents the x5 cumulative distribution function with d

degrees of freedom and Fx_21 the quantile function of x3 distribution.
d

Proof: Assumption A guarantees that both estimators ﬁ(SLTS Wa) and ﬂ (SLTS,W)

are consistent—they converge to the true parameter vector 3° in probability.
~ 1 ~ 1
Hence, the residuals r; <6§LSLTS’W")) = g + af (BT(lSLTS’W") — 50) converge in

probability to &; for [ = 1,2 and ¢ = 1,...,n. Thus, the squared residu-
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als divided by o2 are asymptotically distributed according to x? distribution
with one degree of freedom. Consequently, by the strong law of large numbers,
ne? 2oic1 T ( A,(LSLTS’WTD) =Ly <A£SLTS’WT})) converges almost surely to
the expectation of the x? distribution, that is

1« ; >
7'2~ (5T(LSLTS,W7{)> — / T - fxf(x)dx = 1’
0

no? 4 (]
i=1

where f,2 (x) represents the probability density function of x?. Similarly,

F5 ()

1 in: 7'2 (B(SLTS WZ)) — / X1 z fx? (l‘) dr 1 / X_l T f (./E)d.fﬂ
; N W A = _ . % X
hno-Z P [ ] 0 (FX—%I ()\)) )\ 0 X

We can transform the integral in the following way:

Z Z ]_ 1 x
z-fo(x)dr = / T - T 2e 2dx
/0 fa(@) o 23T(1)
1

= /Z zre idx
0 23T ()
= / fra(@)dz
0
This leads directly to
{ I 2 ( AsLTS W) 1 FX*%I(A) 1 .
] > (5n o ) — X/o fg(@)de = S Fy (FX% ()\)> :
nTi=1

Such a result can be computed in a similar way also for other absolutely
continuous distribution functions. See Section 6 for further discussion and the

use of this result.
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Besides the objective function S, (ac,y,w; AV(LSLTS’W"(W))), we have one more

characteristic of an estimate available: the corresponding regression residuals.
Like in Proposition 2 for the SLTS objective function, it is possible to asymptot-
ically compare some statistics (e.g., variance) of regression residuals for the two
limiting cases, LS (w — wy) and LTS (w — wy). Assuming a linear regression
model with normally distributed errors, I compare regression residuals in these

two cases in Proposition 3.

Proposition 3 Let Assumption A hold and the error term be normally dis-
tributed e; ~ N(0,0%),7 = 1,....,n. Consider two special choices of weight
vectors: W} = (w},), w}, = 1 (the least squares weights), and W2 = (w2),
wi, = y=1(i < hy), where hy, = [An] and X € (3,1) (the least trimmed squares
weights), for alli =1,...,n and n € N. Moreover, given a sample of regression
residuals r;(8) = yi—x] B,1 =1,...,n, let r;3(B) refer to the ith smallest residual

in absolute value. Then

n

1 — . ) 1 A .
S gy (BETSWD) = S 37 (BESID) S B =0 (26)
=1

i=1
and
hn
hinzr{i} ( AnSLTS,W3)> — nh_)rgo E (gi . I(sf < g[th])) =0 (27)
i=1

as n — +o00. Similarly,

n

Zrzz (BELSLTS,W,})) s varg; = 02 (28)

i=1

S|

1 n
- z T%i} (&sms,w,})) _
i=1
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and

n—oQ

1 1 (1+A
= XFX% ((I> ! (T)) -vare; (29)

o? AT
- 50 (%))

as n — +oo, where Fx§ represents the x> cumulative distribution function with d

hn
3y (BT) Sl E 16 <) =
moi=1

degrees of freedom and FX_Q1 the quantile function of x4 distribution.
d

N 1 ~ 2
Proof: Assumption A guarantees that both estimators ﬂ,(LSLTS’W“) and &(LSLTS’W")

are consistent—they converge to the true parameter vector 3° in probability.

~

Hence, the residuals r; (,BéSLTS’W’Z‘)) = g + ol (B&SLTS’W’I”) — 60) converge in
probability to ¢; for [ = 1,2 and ¢ = 1,...,n. Consequently, the first asser-
tions (26) and (27) are an immediate result of the consistency of the LS and
LTS estimators and of the strong law of large numbers (see Assumption A3).
The same is true for (28) (vare? = o?): by the strong law of large numbers,
o7 2im1 T (A7(,SLTS’W%)> = Ly r? (ﬁA,(LSLTS’W"I)> converges almost surely

to the variance of the standard normal distribution N (0, 1),

1 “ P 1 1 = 5 1 oo
— eri} (6£LSLTS,Wn)> - Zrzz (BTSSLTS,WH)) N / 2? - p(z)dz = 1,
Lt no i3 -
(30)
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where ¢(x) represents the probability density function of N(0,1). Thus, the only

assertion to be proved is (29). Similarly to (30),

1 & 2 [ A(SLTS,W2) 2 9 o(x)
o 20 (09) = [ Sy - s

1Y)

We can transform the integral in the following way (g = ®~'(12) is used for

simplicity of notation):

e-1(L52) ax 1 22
/ - ¢(z)dr = 2/ 7% — e zdz
® 0 2

1Y)

This leads directly to

h 2
1 ~ o 5(SLTS,W2) 1 “ _1 a1+
—hnoz ;:1 i (ﬁn ) — A fxg(x)d:c = )\Fxé P 5 )

Proposition 3 describes the ratio between the variances of all regression resid-
uals and the h, smallest residuals (in absolute value), see (28) and (29). These
h, smallest residuals correspond to those observations that actually enter the
objective function of the LTS estimator. The dependence of the ratio between

the two variances is depicted in Figure 1.
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Figure 1: The ratio of variances (28) and (29) as a function of A.
6 Computational aspects

Any practical computation of an estimate usually raises some further issues that
need to be solved in additional to the theoretical problems. The choice of weights
for SLTS can serve in our case as an important example. While we require only

their positivity in the theory, the smallest weights in reality should not be chosen

Ss (Xn,Yn,w,ﬂ)

mari (3] where € > 0 is the smallest positive number such that

below ¢ -
1+¢e > 1in a used computer representation—otherwise the residuals with such
small weights cannot affect the minimized function. Nevertheless, most important
is naturally the existence of an algorithm that computes the proposed SLTS
estimate in an acceptable time and with an acceptable precision, see Section 6.1.

Some specific choices of weights as well as possible schemes for adaptive choices

of weights are discussed in Section 6.2.
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6.1 Computation of SLTS for given weights

There are many ways to compute the SLTS estimates—one similar to the tra-
ditional way for computing LTS (see Rousseeuw and Van Driessen (1999)) and
another one based on the so-called differential evolution. Both have their advan-
tages, although the traditional way (Section 6.1.1) is more suitable for the com-
putation within the classical linear regression model and is therefore described in

more detail.

6.1.1 LTS-like approximation

First of all, let me briefly discuss the traditional strategy for determining the
least trimmed squares estimates because it motivates the procedure I propose for
computing SLTS. This strategy relies on the search through subsamples of size h
and the consecutive least squares estimation: choose randomly an h-tuple of ob-
servations, apply the least squares method to it, and evaluate the residuals for all
n observations given the estimated regression coefficients. Then select an h-tuple
of data points with the smallest squared residuals and repeat the LS estimation
for the selected h-tuple. If the sum of the A smallest squared residuals decreases,
this step is repeated. When no further improvement can be found this way, a
new subsample of h observations is randomly generated and the whole process
is repeated. The search is stopped as soon as we get s times the same estimate
or when we reach a pre-specified number of iterations. A more refined version
of this algorithm suitable also for large data sets was proposed and described by
Rousseeuw and Van Driessen (1999), who also provided theoretical arguments
(the so-called C-step property) supporting the above outlined algorithm. The

following lemma describes a similar property in the case of SLTS.
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Lemma 2 Let (y;,x;)", be a fized realization of a random sample and w =

(w1, ..., wy,) be a weighting vector, wy, > Way > ... > Wy, > 0. Moreover, let

ki(B) : R — {1,...,n} be a function such that k;(5) is the index of the observation
2

with the ith largest squared residual, Tli-(ﬂ) (8) =ri(B) at B. Consider an arbitrary

estimate Bg of the regression parameters and define weights Ugs(po) = Wi for all

1=1,...,n. Next, denote B}l as the weighted least squares estimator with weights
Ui,i: 1,...,71,,
n
Bl = pIWLSY) = arg minZvirf(ﬂ). (31)
peB

Then it holds for the SLTS objective function that
So(Xs Yo, w3 BR) > Sy(Xn, Yoy w; B)-

Remark 7 The definition of weights v in Lemma 2 is the same as in Lemma 1.

Proof: The property is almost trivial and is based on inequalities (7), (8), and

(9) derived in the proof of Lemma 1:

Ss(Xna Yo, w; 52) = Sw(Xna Yo, v; Bg) > Sw(Xna Yo, v; ﬁylb) > Ss(Xna Yo, w; BA}L)

Lemma 2 offers a way to improve the approximation of the SLTS estimate.
Having an initial estimate 32, we can define weights v! as described in Lemma 2
and compute the weighted least squares estimate B}L, which attains the same or a
better value of the SLTS objective function than the initial Bg Next, we can use
B}l in place of the initial estimate, define new weights v? and compute the WLS
estimate AfL, which again improves Ss(X,, Yy, w; ). Repeating these steps yields

an iterative process for the sequence 32, 8%, 52, ... such that Ss(X,, Yy, w; 8¥) >

ny Mno
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Sy(Xn, Y, w; BEHY) for k = 1,2,.... The process stops when S,(X,, Yy, w; 8¥) =
Ss(Xn, Yo, w; Bﬁ“) for some k = k¢ (the sequence always converges and always
has a minimum as it is a decreasing sequence of a finite number of nonnegative
quantities). Unfortunately, this is not sufficient for 55 to be the global minimum
of the SLTS objective function. Therefore, more such sequences are needed and
the sequence that converges to the smallest value of Ss should be kept. This
concept leads to the proposal of the following algorithm (we assume that data

X, Y, and weights W, are given and K, € N is a fixed integer):

SLTS Algorithm:
1. Draw a random permutation II,, = (7, ...,m,) of {1,...,n}.
2. Define weights v = (v1,...,0n), v; = wg, foralli =1,...n.

3. Compute the weighted least squares estimate Bg with weights v and set

k=0.

4. Sort the absolute values of residuals 7‘2(32), which give rise to a new per-

mutation IT, = (7, ..., m,) such that

e (%) e (85)].

5. Define weights v = (v1,...,0n), v; = w,, foralli =1,.. . n.

<

(B < <

6. Compute the weighted least squares estimate Bﬁ“ with weights v.

7. If Sy( Xy, Yo, w; B5) > Sy(Xy, Yo, w; BEHY), set k = k + 1 and continue at

point 4. Otherwise go to point 8.
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8. If Sy(Xp, Yo, w; BE) < Sy(Xn, Yo, w; B5+1), compare the value Sy (X, Yy, w; BF)
with the values obtained from previously created sequences. If it is smaller,
continue at point 1. Otherwise, check how many sequences have been tried
without improving the global minimum of Ss(X,, Yy, w; ). If less than K,

continue at point 1; otherwise stop.

I implemented this algorithm in the S language, and as confirmed by many simu-
lations, this algorithm converges fast enough for smaller data sets (no more than
several thousands of observations). Its speed can be further improved in a similar
way as proposed for LTS in Rousseeuw and Van Driessen (1999), but this is not

the aim of this paper.

6.1.2 Differential evolution approach

Another method suitable for SLTS approximation is one of the global optimiza-
tion methods, differential evolution, developed by Storn and Price (1995). Dif-
ferential evolution is a direct search method that was recently found to be an
efficient method for optimizing general real-valued functions (see Storn and Price
(1996)). It uses a population of p-dimensional parameter vectors, which is ini-
tially randomly generated, and, in the simplest version, “generates new parameter
vectors by adding the weighted difference between two population vectors to a
third vector. If the resulting vector yields a lower objective function value than
a predetermined population member, the newly generated vector replaces the
vector, with which it was compared, in the next generation” (Storn (1996), page
1). There are many variants and refinements of this basic principle, but their
discussion is outside of the scope of this paper. The main advantage of differ-
ential evolution is, besides its simplicity and generality (it does not require any

special properties of the objective function), the parallel nature of the search

52



(the algorithm works with a population of parameter vectors), because it suits
the “combinatorial” nature of the (S)LTS objective function well.

The most important benefit of the differential-evolution algorithm is that
it requires only evaluation of the objective function. Therefore, it is suitable for
more complicated models (e.g., the application of SLTS in nonlinear models) or in
the case of simultaneous optimization over the space of the regression parameters
and the parameters controlling weight vectors. To check whether this method is
really suitable for the computation of SLTS, I compared its performance in the
case of the linear regression model with the algorithm described in Section 6.1.1
both for simulated and real data sets.'® In all cases, the estimates obtained by the
differential-evolution algorithm (schemes DE/rand/1 and DE/best/1, see Storn
(1996)) are equal to those obtained by the other algorithm or even slightly better.
On the other hand, the speed of the differential algorithm is lower when used in
linear regression models, mostly two to three times than the SLTS algorithm

described in Section 6.1.1.

6.2 Adaptive choice of weights

Having all the theoretical results and working computational procedures in hand,
it is now possible to discuss the adaptive choice of weights for SLTS (for a fixed
choice of weights, one can simply use the asymptotic results in Section 5.1 and
the algorithms described in Section 6.1.1). I first describe the adaptive choice
of weights theoretically (based on an abstract decision rule). Second, I propose
two decision rules and combine them together into one final procedure for the

adaptive choice of weighting schemes.

18The implementation of the variants of the differential-evolution algorithm is based on the
source code written by the authors of the method—Storn and Price (1995).
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The choice of weights for SLTS and the corresponding theoretical results de-
rived to this point are limited only by Assumption A (Section 5) and Assumption
W (Section 5.2). However, to exemplify the results and procedures discussed in
this section, it is beneficial to demonstrate them on weights generated by func-
tions from a specific class. For this purpose, I choose weighting schemes generated
by logistic functions (they were introduced already in Section 5.2, equation (24),

and they will be used in Section 7 as well):

wi= HC L) where ) = 1 /[ rrdawt ©)
i = :w), where f)(z;w) = .
A A 1+ ew(@=2) o 1+ ewl@=2)

fori =1,...,n, A € <%, 1> is a fixed trimming constant (equivalent to A in
Assumption W), and w > 0 is the parameter controlling the shape of the gener-

ating function f(x;w). Apparently, this weighting scheme satisfies Assumption

1.0

-—-— w=0.01
w=0.1

0.8

0.6
|

f(x;w)

0.4

0.2

0.0

Figure 2: Logistic generating functions for w = 0.01,0.1, 1, 10, 100.
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W, including convergence to the least squares weights (w — 0) and to the least
trimmed squares weights (w — +00). One can see the shape of function f)(z;w)
for different w in Figure 2. The advantage of the presented logistic weights is
that they satisfy Assumption W including the optional part and that they re-
act quite sensitively to changes of the weighting parameter w within a relatively
small interval, but on the other hand, values outside of this interval produce only

negligible changes in the estimates.

Let me describe now how an adaptive procedure for choosing a weight scheme
works. For weighting schemes generated by a function f(z;w) satisfying Assump-

tion W, it holds that the corresponding SLTS estimator (see Figure 2)

e is more robust for w — wy because the largest residuals are assigned very

small weights (decreasing with w approaching w,),

e is more efficient for w — w; because all residuals have similar weights, none
are extremely downweighted, and all observations influence significantly the

SLTS objective function.

Altogether, decreasing the parameter w increases efficiency and decreases the
robustness of SLTS and vice versa. Therefore, an adaptive choice of weights can
work in the following way: it starts with the highest possible w (closest to ws) to
obtain the most robust estimate. Given a data set, we do not know whether this
maximum level of robustness is necessary at all, so the next step is to decrease
w. A decrease in w improves the efficiency of the estimator (more information
from data is used), but because it also decreases the robustness of SLTS, it is
possible that the estimate is for lower values of w already adversely affected by

contamination or other data problems. Hence, we need a decision criterion that
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tells us how much we can decrease w without threatening the robustness of the
estimator. Having such a decision rule, the adaptive search for an optimal w
simply has to start with w close to ws and then to decrease w toward w; until the
decision rule indicates that w is already too low and the corresponding estimate
not sufficiently robust. Thus, we obtain as low w as possible, which means as
efficient an estimator as possible. So, the aim of this section is to construct a

decision criterion

D (w8, (o Yol A7) o (5775

that indicates whether the current value of parameter w is acceptable (i.e., does
not lower robustness of the estimate too much) or not. Such a decision rule can be
based either on the values of the objective function S or the regression residuals

r; and their statistics.

First, let us summarize what we know about the SLTS objective function as a
function of weights: it is decreasing, it is bounded by Ss(X,,, Yy; B,(LLS)) from above
and by S(Xn, Yo, Wrrs 3LETSMY from below (wrrsp = 5-(1hy, On-n, ), whereby
hn = [An] and the multiplication by ;- normalizes weights (see Assumption W

and Lemma 3). Further, the ratio

S (X, Yoy B

Ss (Xm Yna wLTS,h; A7(lLTS’h))

R =

converges for normally distributed errors to

o6



(see Proposition 2), which for the choice A = 1/2 results asymptotically in
1 1 .
Ry =3 /Fxg (FX% (1/2)) = 7.01.

Next, let us compare this outcome with some simulation results. Several
estimates of ratio R are presented in Table 1. They come from a Monte Carlo
simulation for the linear regression model y; = 0.3+ z; +¢;, where z; ~ N (0, 100)
and €; ~ N(0,4); the sample size is n = 100 and the results are based on 1000

simulations. Clearly, estimates for cases with normally distributed errors are

Error distribution | Outliers (%) R OR
N@©,1) 0 8.264 | 1.610
N(0,4) 0 8251 | 1.782

U{—1,1) 0 5813 | 1.045

3" 0 16.70 | 1.680
N{©,1) 1 0875 | 1.212
N0, 1) 5 269.1 | 8.410
N0, 1) 15 1231.1 | 13.01

Table 1: Estimates of R: Simulation for y; = 0.3 + z; + &; with various error
distributions.

Entries in rows marked by * correspond to the median and the median absolute
deviation, which were used instead of mean and standard deviation because of some
extreme results in simulations concerning the least squares estimator.

a little bit higher than the asymptotically derived value. Nevertheless, most
important is a drastic increase in R whenever outliers appear in the data'® (the
value for one percent of outliers is smaller mainly because this case represents
only one randomly generated outlying observation (n = 100) which often does
not outlie at all). It also seems that the value for the Student distribution ¢; is too

large compared to the values for the normal distribution, but this is completely

correct—if errors are distributed according to ¢4 with small degrees of freedom d,

19 Although T used a simple linear regression, the results are the same for multiple regression
models.
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then the least squares estimator loses its efficiency and behaves as if the data were
slightly contaminated (more information on this topic is presented in Section 7).
Thus, we can conclude that the ratio R of the objective function of SLTS for
w — 0 and w — 400 indicates quite well how much the data are contaminated,
or in other words, how probable it is that the least squares estimator misbehaves.

Given these results, we can now propose the following decision rule (function

Ss(Xy, Yo, w(w); A,SSLTS’W)) is further referred to by S¥(w) for simplicity):

e start from a reasonably high w?® (e.g., wy = 50 for our logistic weights),
estimate SLTS and remember the value of the objective function S} (wp) at

this point;

e gradually decrease the value of w and stop when the estimated objective
function S¥(w) is greater than M - S¥(wy), where M = cRy and Ry is the
asymptotic value of the ratio R derived at the beginning of this section (cRy
with ¢ > 1 can be used instead of Ry to allow for small sample deviations

from the asymptotic value).

We showed that an increase in S¥(w) indicates quite well whether data are con-
taminated. However, the described decision rule can work quite well in practice
only for data that are not too contaminated. In general, it is possible that the
estimate is already affected too much by contamination when we stop decreasing
parameter w (remember, S¥(w) > M S¥(wy), where M > R,, > 7). Therefore, the
above rule should be complemented by another rule which is able to cope with

highly contaminated data and will stop decreasing w in time.

20By reasonably high wy we understand wy as close to we from Assumption W as possible,
but such that it does not result in complete trimming numerically, that is, trimming caused by
the limited computer precision (see Section 6).
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Such a rule can be constructed based on regression residuals: we assume that
the initial estimate corresponding to wy is consistent and we know that the prin-
ciple of most robust estimator is “to constrain the influence of observations with
extremely large residuals on the estimate.” Hence, we can construct estimates of
location and scale for the consistently estimated residuals computed at wy (most
robust choice) and then compare them with the weighted residuals for a current
w to see whether some of them are already too large and thus have too big of an
influence on the objective function and on the estimate itself. This decision rule

can be summarized as follows:

e start from a reasonably high wy (e.g., wg = 50 for our logistic weights),
estimate SLTS and compute corresponding regression residuals along with

robust estimates of their mean mg and variance vy;

e gradually decrease the value of w and stop when some weighted regres-
sion residuals /w;r;(b) do not lie inside the interval (mg — Cvg, m + Cvy)
anymore (weighted regression residuals are used because they describe the

effect of observations on the SLTS objective function).

The check for weighted residuals is based on the following principle. The mean
value of residuals r;(by) (consistently estimated for wp) is mg and their variance is
vo. Hence, (my — Cvg, m + Cvg) represents a kind of confidence interval, and for
a suitable choice of (', residuals should lie inside of this interval with a probability
close to 1. It is, of course, possible that some residuals can lie outside of this
interval, but such residuals should not have a bigger influence on the objective
function of the SLTS estimate because they are most probably outliers.

Now, the crucial question is the choice of constant C' for the confidence in-

terval. Assuming normal distribution of the error term, it is tempting to choose
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C € (2.5,3.0) as this corresponds to 99%-99.9% confidence intervals. However,
this would destroy the robustness of the SLTS estimator. Hence, in the same
way as for LTS, we assume that only some fraction A € (3,1) of observations
closely follow a specified regression model. This is also reflected by Assump-
tion W: the generating function is chosen so that weights for the [An] smallest
residuals increases for more robust choices of w and the other weights converge
to zero. Therefore, only these smallest residuals fully affect the SLTS objective
function and all other observations are downweighted. Consequently, the adap-
tive decision rule should follow the same strategy: the [An]| smallest residuals can
fully influence the SL'TS objective function and the influence of all other residuals
should be limited so that it will not be greater than the influence of these [An|
smallest residuals. This means that (mg — Cvy, m + Cvg) should represent the
confidence interval for the [An] smallest residuals and all greater residuals have
to be downweighted so that they fall into this interval. Hence, assuming that the
error term has normal distribution, constant C' can be written as

cpr=p-Lrg (a0 (152),

where D € (2.5,3.0) is a constant we would use for the standard confidence

interval of a normally distributed random variable and

Va(A) = % - Fyg <<I>—1 (%)) (33)

is the ratio of variances of the [An] smallest residuals (in absolute value) and all

residuals; this is derived in Lemma 3. For A = 1/2, we get

VN(%) =2F; <<I>‘1 (%)) = 0.24.
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Finally, let us combine both proposed decision rules with a general principle of

the adaptive choice of SLTS weights. As a result, we obtain this adaptive-choice

procedure (examples are always meant for the case of logistic generating function

and weights, see (32)):

Adaptive choice 1 (one parameter)

1.

Set the initial value of the weighting parameter w to a reasonably high wy;

for example, w = wg = 50.

. Compute the SLTS estimate by for wy, evaluate S?(wp) and the character-

istics of regression residuals: my = med; r;(by) and vy = MAD; r;(b)-

Decrease the weighting parameter, for example, w = 0.8w. If w < wy, set

w = wy and stop (w; is the lower bound for w).

Compute the SLTS estimate b for the new w and evaluate S¥(w).

. If S¥(w) > ¢+ Ry - S¥(wp), return to the previous value of w and stop.

. Compute the weighted regression residuals —Y% -7;(b) and check whether

max; /W;

all of them are inside the interval (my — D - Viy(A\) - v, m + D - Viy(A) - vg)-
If not, return to the previous value of w and stop. Otherwise continue at

point 3.

As a result, we obtain some w, which define the optimal SLTS estimator within

the used class of smoothing schemes for a given data set. In the following text,

we refer to SLTS used with a smoothing scheme chosen by means of “Adaptive

choice 1”7 as SLTS-AC1.

Remark 8 Constants ¢ and D determine the mazximum accepted increase of

S¥(w) and the width of the confidence interval for the [An| smallest residuals,
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respectively. Reasonable values are ¢ € (1,2) and D € (2,3), as discussed above.

The effects of the choice of D are also studied in Section 7.1.

Remark 9 There is one more important issue to be discussed. The algorithm for
the adaptive choice of a weighting scheme, which I propose in this section, is based
on theoretical results derived for normally distributed errors. Although this might
seem to be non-robust, it is in fact robust. The least squares estimators generally
perform best under errors having the normal distribution, and moreover, they are
easily affected by observations with large residuals. Therefore, the decision rules
discussed above are designed so that they are optimized for normal errors and they
stop too early if the error term has a distribution with heavier tails or outliers
are present. This implies that w stays closer to we (more robust choice) and the
SLTS-AC1 estimator “prefers” more robust, although less efficient estimates to
efficient, but rather non-robust ones.

On the other hand, this implies that an undersmoothing can occur (actually
from two reasons: either the optimal smoothing is not reached—the adaptive pro-
cedure stops too early, or there is a better smoothing in a family of smoothing
schemes not taken into account). To find the optimal decision rule and smoothing
class, it is necessary to study the behavior of SLTS not only at a given distribution
function, but also in its neighborhood. Unfortunately, SLTS under such distri-
butional assumptions is hard to study because the asymptotic results concerning
LTS that I used throughout the analysis of SLTS are not readily available under
these assumptions. However, I will argue that the proposed adaptive procedures,
although sub-optimal in this sense, are superior to the existing solutions in many

aspects, see simulations in Section 7.

The proposed adaptive choice of SLTS weights describes a situation when a
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weighting scheme is controlled only by one parameter. This is not always optimal.
We can consider, for instance, the logistic weighting scheme used throughout this
section: it is generated by functions fy(x;w), where the trimming constant \ is
a fixed number, A € (3,1) (it is depicted in Figure 2). For w — 0, it gives
(almost) the same weight to all observations; for w — oo, the weights assigned to
[(1—X)n] largest residuals converges to zero. Now, from the shape of the function,
it is obvious that if more observations have to be significantly downweighted (let
us say more than 1-5%), then all [(1 — \)n| observations with largest residuals
are significantly downweighted as well. This means that most of the information
of all [(1 — A\)n] observations with largest residuals is not used in the presence of
any contamination, which in turn leads to a loss of efficiency. Apparently, this
inefficiency can be fixed when it is possible to adjust the parameter A as well.
Then, adaptively choose two parameters—A\ and w—and the logistic generating

functions have to be considered as a function of these two parameters:

1 ! 1
flasdw) = filww) = m// TFem -

The adaptive choice of two parameters A and w can be done relatively easily

using the same decision rules that were used for the adaptive choice of one pa-

1

5 and w = wp. As

rameter w. Start again with the most robust choice: A = Ay =
the next step, find the optimal value for A (i.e., the amount of observations that
does not have to be downweighted at all) without changing w—increase A and
stop when the decision rules indicate to do so. Finally, fix A and start to search
for the optimal value of w in the same way as in Adaptive choice 1. The com-

plete adaptive procedure for the two parameters can be summarized as follows

(examples are again provided for the logistic generating functions):

63



Adaptive choice 2 (two parameters)

1.

10.

Set the initial value of the weighting parameters A = A\ = % and w to a

reasonably high wy; for example, w = wy = 50.

. Compute the SLTS estimate by for Ay, wy, evaluate S} (Ao, wp) and the char-

acteristics of regression residuals: mg = med; r;(by) and vy = MAD; r;(bo).

. Increase the trimming constant A and keep parameter w fixed (for example,

A=X+0.05). If A > 1, set A =1 and stop (1 is the upper bound for \).

. Compute the SLTS estimate b for the new A and w and evaluate S¥(\,w).

I SE(A w) > ¢ Ry - S¥(Xo,wop), return to the previous value of A and

continue at point 7.

. Compute the weighted regression residuals VWi -r;(b) and check whether

max;  /w;
all of them are inside the interval (my — D - Viy(A) - vg,m + D - Viy(A) - vg).

If not, return to the previous value of A and continue at point 7. Otherwise

continue at point 3.

Decrease the weighting parameter w (A is already fixed at its optimal level);
for example, w = 0.8w. If w < wq, set w = w; and stop (w; is the lower

bound for w).

Compute the SLTS estimate b for the new A and w and evaluate S¥(\,w).

I S¥(A\ w) > ¢- Ry - S¥(Ag, wo), return to the previous value of w and stop.

Compute the weighted regression residuals ma% -r;(b) and check whether
all of them are inside the interval (my — D - Viy(A) - v, m + D - Viy(A) - vg).
If not, return to the previous value of w and stop. Otherwise continue at

point 7.
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At the end of this algorithm for the adaptive choice of two parameters A and w,
we obtain two values, w and A\, which define the optimal SLTS estimator within
the used class of smoothing schemes for a given data set. The main difference
to SLTS-AC1 is that we have extended the class of smoothing schemes from
{fi(sw) :we R} (Mixed) to {f(;A,w) : A€ (3,1),w € Ry }. Once again, we
refer to SLTS using a weighting scheme found via “Adaptive choice 2” as SLTS-
AC2. The simulations using the described adaptive procedures are presented in

Section 7.

7 Simulations

In Section 6.2, we constructed adaptive choice procedures for the SLTS estimator,
which allow us to select an optimal set of weights from a family of weighting
schemes parameterized by one or two real parameters. As an example, we used
weights generated by standardized logistic functions (32). In this section, I would
like to demonstrate finite sample properties of the SLTS estimator with weights
generated by logistic functions with one adaptively chosen parameter in Section
7.1 (SLTS-AC1) and with two parameters in Section 7.2 (SLTS-AC2). Please note
that, despite the limitation to only one smoothing scheme, the qualitative results
presented later in this section are valid also for some other weighting schemes
(e.g., one generated by the cumulative distribution function with polynomial
tails). Finally, I examine the effect of misspecification of categorical variables on
the LS, RDL, and SLTS estimators in Section 7.3.

Before discussing the simulation results, let me describe the models used in

Monte Carlo simulations. First, for most simulations, I use the linear regression
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model

y¢=0.3+xi+5i, 7:21,...,7’?,, (34)

where z; is a continuously distributed random variable, z; ~ N(0,10); the error
term ¢; has a continuous distribution, for example, normal, Student, or exponen-
tial. Continuous random variables are used in many cases so that it is possible to
compare SLTS and LTS. Second, for simulations involving both continuous and

discrete variables, I use

y; = 0.3 4+ x; — 1.5d; + ¢, 1=1,...,n, (35)

where z; ~ N(0,10) and d; ~ Bi(0.5,1). Both models (34) and (35) are suffi-
ciently simple, enable a comparison of SLTS with other existing estimators, and
most importantly, the simulation results are qualitatively the same as for more
complicated models. Finally, some simulations study the effects of contamina-
tion on the estimators. In these cases, contamination is simulated as a uniform
random noise. This is actually one of the most favorable cases for the RDL; esti-
mator because it treats observations only according to their robust distance from
the center of the data cloud. On the other hand, LTS and SLTS treat any type
of observations and any kind of contamination in the same way, so it does not

matter so much for the simulations, which type of contamination we simulate.

7.1 Adaptive choice with one parameter

The simulation results presented in this section are for models (34) and (35). The
results are in all cases based on 1000 simulations and samples consisting of 100
observations. Nevertheless, I obtained the same qualitative results for sample

sizes ranging from 50 to 500 observations. Further, I present here results for
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the least squares, LTS with trimming constant h = [n/2] + [(p + 1)/2], SLTS-
AC1 with logistic weights (see Section 6.2), and RDL; estimators—first, under
different error distributions, later, under contamination.

Now, the use of the adaptive-choice algorithm deserves one additional note.
One of the decision rules discussed in Section 6.2 checks whether all weighted
residuals belong to a confidence interval (mo — Cvy, mg + Cvp). For example, for
normally distributed errors, we obtain the 99% confidence interval for C' = 2.58.
However, we argued that it is necessary to construct this confidence interval
only for the [An] smallest residuals in order to preserve robustness of the SLTS
estimator. Therefore, we should set C = D - V(). However, to see the effect
of such a choice, simulations are performed for a range of values—from 3.0 to

0.72 = 3.0- Vi (0.5).

Estimator | Parameter | Coefficient | & ~ N(0,1) g~ t3 e~ Ezxp(1)

C Mean Var | Mean Var | Mean Var
LS Intercept | 0.290 0.099 | 0.294 0.178 | 0.305 0.139
LS Slope 0.998 0.033 | 1.002 0.057 | 1.001 0.045
SLTS 2.5 Intercept | 0.290 0.099 | 0.297 0.135 | 0.303 0.117
SLTS 2.5 Slope 0.998 0.033 | 1.002 0.043 | 1.001 0.038
SLTS 1.5 Intercept | 0.290 0.102 | 0.299 0.139 | 0.303 0.112
SLTS 1.5 Slope 0.999 0.035 | 1.002 0.043 | 1.001 0.035
SLTS 1.0 Intercept | 0.289 0.110 | 0.299 0.149 | 1.001 0.116
SLTS 1.0 Slope 0.999 0.038 | 1.002 0.046 | 0.303 0.036
SLTS 0.75 Intercept | 0.289 0.119 | 0.299 0.157 | 1.001 0.120
SLTS 0.75 Slope 0.999 0.042 | 1.002 0.049 | 0.302 0.038
LTS Intercept | 0.286 0.278 | 0.292 0.248 | 0.302 0.176
LTS Slope 0.994 0.089 | 1.001 0.079 | 1.003 0.057
RDL; Intercept | 0.290 0.129 | 0.300 0.150 | 0.303 0.119
RDL; Slope 0.997 0.049 | 1.000 0.051 | 1.000 0.043

Table 2: Simulations for clear data sets of size n = 100 and SLTS-AC1.

Entries in column “Parameter” indicate which confidence interval for resid-
uals was used for the decision rule within the algorithm Adaptive choice 1:
(mg — C -vg,m + C -vg), where my = med; r;(by), vo = MAD; r;(by), and by is the
initial (most robust) estimate.
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The first set of simulations studies the behavior of the estimators for a clean
data set (no contamination) and model (34) under different error distributions,
namely, the standard normal distribution N(0,1), the Student distribution ¢3
with 3 degrees of freedom, and the exponential distribution with parameter 1.
The simulation results are presented in Table 2 (I obtained very similar results
also for distributions N(0,0?),0? € (4,4) and t4,d € {1,...,10}). In all cases
and for all distributions, the estimators provide consistent results. For normal
distribution N(0, 1), the least square method is the most efficient one (measured
by variance of the estimate) with SLTS closely following it. For SLTS, a more
strict decision rule (i.e., lower C) leads to higher robustness and lower efficiency.
The performance of RDL; is a bit weaker, but still much better than that of the
LTS estimator. For the Student distribution t3, the final picture is quite similar
with one exception: the variance of the least squares estimator increases in such
a way that LS performs worse than all robust estimators except for LTS. This
documents that robust estimators can provide more efficient estimates than the
least squares in situations when the least squares estimator is consistent, but
the error distribution has heavier tails than the normal distribution. Finally, the
exponential distribution is presented as well, because it represents the optimal
case for estimators minimizing the sum of absolute values of residuals. In this
last case, the least squares estimator is (besides LTS) the least efficient estimator.
Moreover, SLTS exhibits about the same or even better efficiency than RDL;.

The second simulation repeats the first one for the case of normally distributed
errors, but a dummy variable is included in model (35). The results are sum-
marized in Table 3 and they are quite similar to those described in the last
paragraph. The main conclusion is that the simulation confirms that SLTS can

cope with discrete explanatory variables as well as with continuous ones.
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Estimator | Parameter | Coefficient | & ~ N(0,1)

C Mean  Var

LS Intercept | 0.295 0.142
LS Slope 0.999 0.033
LS Dummy |-1.494 0.203
SLTS 2.5 Intercept | 0.294 0.142
SLTS 2.5 Slope 0.999 0.034
SLTS 2.5 Dummy |-1.494 0.203
SLTS 1.0 Intercept | 0.291 0.162
SLTS 1.0 Slope 0.999 0.039
SLTS 1.0 Dummy |-1.490 0.233
SLTS 0.75 Intercept | 0.290 0.180
SLTS 0.75 Slope 0.999 0.043
SLTS 0.75 Dummy |-1.489 0.258
RDL; Intercept | 0.290 0.184
RDL; Slope 1.000 0.050
RDIL, Dummy | -1.489 0.262

Table 3: Simulations with one dummy variable for clear data sets of size n = 100
and SLTS-ACI.

Entries in column “Parameter” indicate which confidence interval for resid-
uals was used for the decision rule within the algorithm Adaptive choice 1:
(mg — C -vg,m + C -vg), where my = med; r;(by), vo = MAD; r;(by), and by is the
initial (most robust) estimate.

The third set of simulations studies the behavior of the estimators again using
model (34) and normally distributed errors, but a positive amount of contami-
nation is present in this case. Three cases presented in Table 4 correspond to
contamination levels 1%, 10%, and 40% (this means that the respective amount
of observations is replaced by random noise). To indicate which estimates are sig-
nificantly biased, I test the one-sided hypothesis that the slope parameter equals
its true value (all estimators have asymptotically normal distribution). The one-
sided test is used since the simulated contamination leads to a bias towards zero.
The estimates for which we reject this hypothesis are marked. First, the least

squares estimator seems to be biased a bit already for 1% contamination and it

does not provide any reasonable results for higher levels of contamination (the

69



Estimator | Parameter | Coefficient | Cont. 1% Cont. 10% Cont. 40%

C Mean Var | Mean Var | Mean Var
LS Intercept | 0.294 0.214 | 0.242 0.552 | 0.317 0.958
LS Slope 0.849 0.200 | 0.292¢ 0.234 | 0.077¢ 0.142
SLTS 2.5 Intercept | 0.295 0.159 | 0.311  0.205 | 0.333  0.379
SLTS 2.5 Slope 0.981 0.059 | 0.881* 0.097 | 0.589* 0.258
SLTS 1.5 Intercept | 0.296 0.178 | 0.316  0.208 | 0.338  0.321
SLTS 1.5 Slope 0.990 0.059 | 0.935 0.082 | 0.649* 0.257
SLTS 1.0 Intercept | 0.297 0.192 | 0.317 0.217 | 0.323  0.265
SLTS 1.0 Slope 0.993 0.061 | 0.958 0.078 | 0.756  0.242
SLTS 0.75 Intercept | 0.298 0.198 | 0.318 0.219 | 0.314  0.243
SLTS 0.75 Slope 0.995 0.063 | 0.964 0.077 | 0.819 0.218
LTS Intercept | 0.296 0.279 | 0.322  0.271 | 0.299  0.208
LTS Slope 1.003 0.087 | 1.000  0.080 | 0.993  0.080
RDL; Intercept | 0.297 0.134 | 0.307 0.138 | 0.313  0.195
RDL; Slope 0.999 0.047 | 0.987  0.048 | 0.903* 0.075

Table 4: Simulations for contaminated data sets of size n = 100 and SLTS-AC1.

Entries in column “Parameter” indicate which confidence interval for resid-
uals was used for the decision rule within the algorithm Adaptive choice 1:
<m0 —C - v,m+C- ’U()), where my = med; ’)"Z'(b()), vg = MAD; ’r‘i(bo), and by is the
initial (most robust) estimate. Constant C' actually corresponds to D - V().

¢ For these estimates, the one-sided test of the hypothesis that the parameter is
equal to its true value is rejected at 10% (%), 5% (®), or 1% (¢) levels, respectively. The
one-sided test is used since the simulated contamination biases slope estimates towards
Z€ero.

intercept is estimated consistently by LS, but it is just because the random noise
simulating contamination is symmetric around zero). Second, the robust esti-
mators LTS and RDL; can cope with contamination quite well. RDL; is most
efficient at lower levels of contamination, but it is biased at high levels of contam-
ination. On the other hand, LTS, which is the least efficient estimator in most
cases, provides the best and most efficient estimates for the 40% level of con-
tamination. Finally, let us discuss SLTS. For non-robust choices of the decision
rule (C > 1), lower levels of contamination do not affect the estimates too much
(except for C' = 2.5), but extreme 40% contamination destroys them completely.

A quite robust choice C' = 0.75 can cope relatively well with contamination, al-
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though it seems to be biased for the 40% contamination level. If necessary, it is
possible to use an even more robust choice C' = 0.5. Nevertheless, these results

show that

e it is necessary to stick to robust decision rules (C = 1) even though it
might decrease efficiency in the ideal case of normally distributed errors

and a clean data set,

e the efficiency of SLTS is not very good in presence of contamination (it
is certainly worse than that of RDL;). The reason for this was already
discussed in Section 6.2: SLTS-AC1 with logistic weights has to downweight

almost half of all observations if contamination is present.

Altogether, we can conclude that SLTS performs quite well for clean data sets
regardless of the error distribution. It provides robust estimates under contam-
ination, but loses efficiency already under moderate contamination. These defi-
ciencies are addressed by the proposed SLTS-AC2 and we examine its behavior

in Section 7.2.

7.2 Adaptive choice with two parameters

The simulation results presented in this section are for model (34) and they cor-
respond to the simulations in Section 7.1. The results are again based on 1000
simulations and sample size n = 100. The main difference is that SLTS-AC2 (see
Section 6.2) is added and compared with all other estimators. This second adap-
tive SLTS estimator optimizes not only the parameter w, controlling the shape
of smoothing, but also the trimming constant \, see (32). Moreover, the decision
rule is now based only on robust confidence intervals (mg — Cvg, m + Cp), that

is, C = D - Vy(A), where D = 3 or D = 4. For the fixed choice of A = 0.5, these
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two cases, D = 3 and D = 4, correspond to SLTS-AC1 with constants C' = 1 and

C = 0.75 presented in Section 7.1.

Estimator | Parameter | Coefficient | & ~ N(0,1) e~ e~ Exp(1)

nP: D Mean Var | Mean Var | Mean Var
LS Intercept | 0.297 0.101 | 0.304 0.187 | 0.303 0.139
LS Slope 1.002 0.033 | 1.000 0.057 | 0.998 0.045
SLTS 1P: 4.0 Intercept | 0.298 0.117 | 0.305 0.147 | 0.300 0.115
SLTS 1P: 4.0 Slope 1.003 0.039 | 1.000 0.046 | 0.997 0.039
SLTS 1P: 3.0 Intercept | 0.297 0.128 | 0.305 0.156 | 0.300 0.112
SLTS 1P: 3.0 Slope 1.003 0.043 | 1.001 0.048 | 0.997 0.038
SLTS 2P: 4.0 Intercept | 0.296 0.103 | 0.303 0.130 | 0.301 0.117
SLTS 2P: 4.0 Slope 1.002 0.034 | 0.999 0.041 | 0.997 0.040
SLTS 2P: 3.0 Intercept | 0.298 0.119 | 0.300 0.138 | 0.301 0.119
SLTS 2P: 3.0 Slope 1.003 0.040 | 1.000 0.043 | 0.997 0.039
LTS Intercept | 0.295 0.280 | 0.309 0.251 | 0.294 0.173
LTS Slope 1.009 0.086 | 1.003 0.079 | 0.999 0.058
RDL; Intercept | 0.296 0.136 | 0.307 0.149 | 0.299 0.117
RDL; Slope 1.002 0.049 | 1.001 0.052 | 0.998 0.044

Table 5: Simulations for clear data sets of size n = 100, SLTS-AC1 and SLTS-

AC2.

Entries in column “Parameter” indicate: (a) which adaptive-choice algorithm is

used for SLTS (“1P” means Adaptive choice 1 (SLTS-AC2), “2P” represents Adap-
tive choice 2 (SLTS-AC2), see Section 6.2); (b) which confidence interval for resid-
uals was used for the decision rule within the algorithms Adaptive choice 1 and 2:
(mog — D -V, (A) -vg,m + C - V() - vg), where mg = med; r;(by), vo = MAD; r;(bg),
and by is the initial (most robust) estimate.

The first set of simulations concentrates again on the behavior of the estima-
tors for a clean data set (no contamination) and model (34) under different error
distributions. The simulation results are presented in Table 5. The results con-
cerning LS, LTS, SLTS-AC1, and RDL; are naturally the same as in Section 7.1,
so I pay attention mainly to SLTS-AC2. First, it is consistent, and additionally,
it is more efficient than the corresponding SLTS-AC1 in the case of normal and
Student distributions (for the exponential distribution, it is a bit worse). More

interestingly, SLTS-AC2 with D = 4 reaches the efficiency of the least squares
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for normally distributed errors and overtakes least squares in the other cases.

SLTS-AC2 also performs better then RDL; in all cases.

Estimator | Parameter | Coefficient Cont. 1% Cont. 10% Cont. 40%

nP: D Mean Var Mean Var Mean Var
LS Intercept | 0.294 0.214 | 0.276 0.530 | 0.164  0.946
LS Slope 0.849 0.200 | 0.304¢ 0.238 | 0.064¢ 0.151
SLTS 1P: 4.0 Intercept | 0.297 0.192 | 0.294 0.218 | 0.294 0.261
SLTS 1P: 4.0 Slope 0.993 0.061 | 0.957 0.075 | 0.767 0.253
SLTS 1P: 3.0 Intercept | 0.298 0.198 | 0.300 0.224 | 0.299 0.238
SLTS 1P: 3.0 Slope 0.995 0.063 | 0.963 0.074 | 0.819 0.238
SLTS 2P: 4.0 Intercept | 0.298 0.119 | 0.300 0.123 | 0.298  0.231
SLTS 2P: 4.0 Slope 0.998 0.046 | 0.983 0.048 | 0.842 0.244
SLTS 2P: 3.0 Intercept | 0.299 0.136 | 0.300 0.141 | 0.294  0.200
SLTS 2P: 3.0 Slope 0.998 0.049 | 0.983 0.054 | 0.885  0.205
LTS Intercept | 0.296 0.279 | 0.296 0.272 | 0.298  0.207
LTS Slope 1.003 0.087 | 0.996 0.086 | 0.993 0.076
RDL; Intercept | 0.297 0.134 | 0.295 0.138 | 0.298 0.183
RDL, Slope 0.999 0.047 | 0.990 0.049 | 0.906* 0.067

Table 6: Simulations for contaminated data sets of size n = 100, SLTS-AC1 and

SLTS-AC2.

Entries in column “Parameter” indicate: (a) which adaptive-choice algorithm is

used for SLTS (“1P” means Adaptive choice 1 (SLTS-AC1), “2P” represents Adap-
tive choice 2 (SLTS-AC2), see Section 6.2); (b) which confidence interval for resid-
uals was used for the decision rule within the algorithms Adaptive choice 1 and 2:
(mog — D -V, (A) -vg,m + C - V() - vg), where mg = med; r;(by), vo = MAD; r;(by),
and by is the initial (most robust) estimate.

e For these estimates, the one-sided test of the hypothesis that the parameter is
equal to its true value is rejected at 10% (%), 5% (), or 1% () levels, respectively. The
one-sided test is used since the simulated contamination biases slope estimates towards
7ero.

Now, let us analyze the results for all the estimators under contamination.
The three cases presented in Table 6 correspond to contamination levels 1%, 10%,
and 40%. Again, I test the one-sided hypothesis that the slope parameter equals
its true value. Results concerning LS, LTS, SLTS-AC1, and RDL; correspond

again to those in Section 7.1, so let us concentrate on SLTS-AC2. First of all,

its estimates are less affected by contamination than the SLTS-AC1 estimates,
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especially under very high contamination (40%). Moreover, the adaptive search
over two parameters considerably improves the efficiency of SLTS, especially for
a moderate amount of contamination. Consequently, if the contamination level

is not extremely high, it performs as good as RDL; or even better.

Remark 10 Due to space consideration, it is not possible to present all the avail-
able numerical results. Therefore, I have chosen two main levels of contamination—
10% and 40% levels. Whenever I speak about “moderate” amount of contamina-
tion, I mean lower levels of contamination. Simulations show that under the
moderate level of contamination it is possible to understand contamination levels
up to 30% in the sense that SLTS behaves in a similar way as for 10% contam-
ination. Other cases (contamination levels higher than 30%) are referred to as
high or extreme contamination. This threshold can be increased, indeed, because
the robustness of SLTS can be further improved by using a smaller D (and thus
smaller confidence intervals) for decision rules: until now, D > 3, which corre-
sponds to at least 99.9% confidence intervals under normally distributed errors,

but we can use also D = 2.5, which corresponds to the 99% confidence interval.

The simulation results discussed in this section clearly indicate that the SLTS-
AC2 estimator is superior to SLTS-AC1 both in robustness and efficiency. In
almost all cases, it performed as good as or better than all other estimators
including RDL;. The only exception is estimation with highly contaminated
data, because then SLTS loses efficiency and it is not so stable as the original

LTS estimator.
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7.3 Misspecification of categorical variables

To this point, RDL; has performed very well, even compared to SLTS (but re-
member, we have chosen a quite favorable type of contamination for RDL;). On
the other hand, RDL; is designed for a simple additive model (it is difficult to
generalize it if cross-effects are to be included), and moreover, it only takes care
of continuous variables. This does not effect its breakdown point (categorical
variables are always bounded and cannot therefore bring the estimator out of
any bounds), but, as we demonstrate in this section, makes RDL; vulnerable to

misspecification in categorical variables.

Estimator | Parameter | Coefficient | & ~ N(0,1)

nP: D Mean  Var
LS Intercept | 2.162¢ 0.041
LS Slope -1.001  0.037
LS Dummy 2.836¢ 0.081
SLTS 2P: 3.0 Intercept 1.026  0.060
SLTS 2P: 3.0 Slope -1.000 0.017
SLTS 2P: 3.0 Dummy 3.978  0.106
RDL; Intercept 1.268° 0.070
RDL, Slope -1.000 0.023
RDL; Dummy | 3.733° 0.116

Table 7: Simulations with one misspecified dummy variable for data sets of size
n = 100 and SLTS-AC2.

Entries in column “Parameter” indicate: (a) which adaptive-choice algorithm
is used for SLTS (“1P” means Adaptive choice 1 (SLTS-AC1), “2P” represents
Adaptive choice 2 (SLTS-AC2), see Section 6.2); (b) which confidence interval for
residuals was used for the decision rule within the algorithm Adaptive choice 2:
(mog — D -V, (A) -vg,m + C - V() - vg), where mg = med; r;(by), vo = MAD; r;(by),
and by is the initial (most robust) estimate.

abe For these estimates, the two-sided test of the hypothesis that the parameter is
equal to its true value is rejected at 10% (%), 5% (®), or 1% () levels, respectively.

The misspecification sensitivity is again exemplified using a Monte Carlo sim-
ulation. I consider the model y; = 1—x;+4d;+¢;, wherei =1,...,n,¢; ~ N(0,1),

and d; € {0,1}. Further, assume that 20% percent of the observations have a
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misspecified binary variable d; (it can correspond, for example, to wrong entries
about the sex of individuals in a sample). In other words, d; contains a wrong
value for 20 percent of the sample. The results obtained for sample size n = 200
and 1000 simulations are summarized in Table 7.3. To indicate which estimates
are significantly biased, I tested the two-side hypothesis that the intercept and
slope parameters equal their true values. Apparently, both LS and RDL; esti-
mates are inconsistent. Notice that the slope coefficient is estimated correctly,
but the intercept and the effect of the dummy variable are wrong. On the con-
trary, the SLTS estimate provides consistent results, which are not affected by

the misspecification of the dummy variable.

8 Conclusion

In this paper, I introduced the smoothed least trimmed squares estimator and
derived its asymptotic properties. Thus, I extended applicability of the LTS pro-
cedure is extended to general regression models that involve categorical explana-
tory variables. The resulting estimator is currently the only robust estimator with
a high breakdown point that can be applied in general regression models with
categorical variables. Equally important is the improvement in efficiency com-
pared to the LTS estimator and also to the RDL; estimator, which represented
until now the only solid robust estimator for linear regression models involving
binary covariables. The only exception concerning the efficiency improvement
is highly contaminated data (40% contamination and more), because especially
LTS performs better than SLTS for such data. This inefficiency of SLTS can
probably be reduced by a better choice of smoothing, but one does not currently

exist. I constructed a procedure that adaptively chooses weighting schemes for
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SLTS and thus controls the balance between the robustness and the efficiency
of the estimator. The adaptive procedure actually starts from an estimate close
to LTS (most robust) and decides how far it can go towards the least squares
(improvement in efficiency) without endangering the robustness of SLTS.

On the other hand, I studied behavior of the adaptive choice of a smoothing
scheme only for one possible class of generating functions, which is quite suit-
able, but it does have to be the optimal one. Hence, finding an optimal smoothing
class with respect to the asymptotic variance of SLTS would be a very valuable
improvement of SLTS and it is one of the main issues for further research. An-
other unresolved issue closely related to the adaptive choice of smoothing is the

construction of a distribution-free decision rule.
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