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Abstract

This paper studies a closed economy with a continuum of agents and
moral hazard. Economic agents in the economy operate a stochastic produc-
tion technology with capital and labor inputs in which the latter is private
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sumption in a stationary recursive equilibrium for a decentralized economy
with component planners. Allocation and accumulation of capital are facil-
itated by a ‘capital planner’ who serves as a financial intermediary for the
component planners. In equilibrium, private information lowers the equi-
librium interest rate below agents’ discount rate and I show that contrary
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tive economy can exhibit both endogenous lower and upper bounds on the
stationary distribution of utility entitlements.
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1 Introduction

This paper studies a general equilibrium model of a closed economy with het-

erogeneous agents and moral hazard. The agents operate independent stochastic

production technologies with capital and labor inputs in which the latter is private

information. I characterize the information-constrained optimal allocations of re-

sources and the conditions for which a stationary equilibrium in a closed economy

exhibits an endogenous interest rate with capital accumulation and an invariant,

non-degenerate distribution of resources and utility entitlements.

The first contribution of this paper lies in its incorporation of a general pro-

duction technology into the private-information, moral hazard economy with het-

erogeneous agents. I decentralize the economy by using the concept of component

planners who trade capital among themselves according to the willingness of their

agents to supply labor effort. The component planners rent capital from a finan-

cial intermediary called ‘capital planner’ at an endogenously determined market-

clearing interest rate. As the surplus of each component planner in each period is

invested at the capital planner as the next period capital stock, the capital planner

also facilitates capital accumulation. Previous models with private information and

capital accumulation have imposed severe restrictions on preferences and technol-

ogy (as in Khan and Ravikumar (1997a) or Khan and Ravikumar (1997b)). In my

decentralized economy with capital planner, not only are all variables endogenous

but there are also no special restrictions on preferences, production technology,

information structure, or contracts. I confirm the finding of Kehoe and Levine

(1993) or Atkeson and Lucas (1995) and show that moral hazard also lowers the

equilibrium interest rate below the discount rate of the agents.

Second, I prove that a moral-hazard production economy can exhibit endoge-

nous lower and upper bound on its stationary distribution of utility entitlements.

This feature contrasts with the necessity of imposing an exogenous lower bound on

utility entitlements as in Thomas and Worrall (1990), Atkeson and Lucas (1992),

or Phelan (1995) who motivate the exogenous lower bound by the inability of the

agents to forego future consumption or by competition among planners.
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My arguments extend the findings of Aiyagari and Alvarez (1995) who intro-

duce the concept of ‘misery’, the lowest available utility forever. If misery is not

incentive compatible, the distribution of utility entitlements is non-degenerate as

far as the consumption set is compact and the technology sufficiently productive to

pay for the input costs and consumption of the agent. Moreover, if the planners’

cost function is decreasing at the lowest levels of utility entitlements, the lower

bound on the stationary distribution will be endogenous: the Pareto-improving

policy is to move to the non-decreasing part of the cost function where the agent

is better off and the planner incurs a lower cost. The endogenous upper bound fol-

lows from the planners’ intertemporal tradeoff of resources at an interest rate lower

than the agent’s discount rate. Thus the ergodic set in a moral hazard produc-

tion economy can be quite different from those in economies with an endowment

technology or truth-telling constraints. Numerical simulations in Bohacek (2000)

confirm these analytical results.

The paper analyzes allocations and distribution of resources in a dynamic,

general equilibrium model of a closed economy with many agents and moral hazard.

It builds on the seminal contributions of Atkeson and Lucas (1992, 1995), Aiyagari

and Alvarez (1995) and the growing literature on computable general equilibrium

models with heterogeneous agents. The other important stream of the literature

has focused on partial equilibrium principal-agent models as in Green (1987), Spear

and Srivastava (1987), Atkeson (1991), Phelan and Townsend (1991), or Lehnert,

Ligon, and Townsend (1998). In these models the principal usually has access to

outside funds at an exogenously given price.

The paper is organized as follows. In the next Section, I describe preferences,

production technology, the private information economy, and outline a social plan-

ner’s problem. In Section 3, I follow Atkeson and Lucas (1995) and decentralize

the economy using the concept of component planners and a capital planner. I

formulate the problem recursively and define a stationary recursive equilibrium.

Optimal allocations, ergodic sets, properties of the invariant distribution, and an

algorithm for numerical simulation are characterized in Section 4. Section 5 con-

cludes. All mathematical proofs are in the Appendix.
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2 A Social Planner’s Problem

In this section, I formally describe the economy, state the assumptions on prefer-

ences and production function, commodity space, and information structure. Then

I present the economy as a principal-agent problem with moral hazard.

The closed economy is populated by a continuum of agents of measure one. In

each period of time t = 0, 1, 2, . . ., each agent is endowed with one unit of time he

can divide into labor, lt, and leisure, 1 − lt. At the beginning of each period, an

agent chooses labor supply to work with his capital stock, kt, accumulated over

time from an initial positive stock k0, in his production technology f(kt, lt). At

the end of the period, he divides the realized output, yt, into consumption, ct, and

investment towards the next period capital stock, kt+1, which depreciates at a rate

δ ∈ (0, 1). Each period the agent derives a separable utility from consumption and

leisure, u(ct) + v(1− lt), discounted over time at β ∈ (0, 1).

Assumption 1 The production function f : R+× [0, 1]→ R+ is concave, contin-

uously differentiable, and homogeneous of degree one. f(0, l) = f(k, 0) = 0 and

for x = {k, l}, limx→∞ f
′
x(k, l) = 0 and limx→0 f

′
x(k, l) =∞.

With decreasing marginal productivity of capital, there exists a maximal

(golden-rule) finite level of capital stock maintained by each agent in the steady

state when labor supply is at its highest level, l = 1. Denoting this level by k̄ and

the set of capital stock by K = [0, k̄], the steady-state set of output is Y = [0, ȳ]

for ȳ = f(k̄, 1). Finally, with consumption c ∈ C = [0, c̄], where c̄ = ȳ − δk̄ < ∞
is the maximal sustainable consumption in a steady state, all sets are compact.

Assumption 2 The functions u : [0, c̄] → R and v : [0, 1] → R are twice contin-

uously differentiable, strictly concave, strictly increasing in c and decreasing in l,

and bounded from above and below.

Agent’s labor supply and capital input are related to output realizations by

an exogenous probability measure P on Borel measurable space (Y,B(Y )) where

B(Y ) denotes Borelians on Y . The number P (A|k, l) represents the probability of
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output y being an element of A ∈ B(Y ) given the inputs k ∈ K and l ∈ L were

employed in the production function.

Assumption 3 For each (k, l) ∈ (0, k̄]× (0, 1], the probability P (A|k, l) is strictly

positive for all A ∈ B(Y ).

The above assumption establishes the information asymmetry: other agents

or a social planner cannot infer with certainty an agent’s labor supply from an

observed positive output (except for a zero recommended input resulting in zero

output with probability one). The output realizations drawn from this stochastic

technology are independent in time and across agents. Except for the monotone

likelihood ratio condition there are no other restrictions on the probability distri-

bution known to all agents in the economy.

The problem of each agent is to maximize his lifetime utility subject to his

budget constraint. Each agent can only employ his own labor but can trade capital

and consumption goods with other agents. Due to the stochastic technology, the

risk-averse agents would like to write insurance contracts with each other to smooth

their consumption. I will model the economy as a principal-agent problem for a

social planner with heterogeneous agents in a closed economy. It is assumed that

the planner has the ability to prevent the agents from trading with each other.

In exchange for providing the agents with insurance, the social planner confis-

cates the initial capital stock and assigns infinite sequences of allocations to each

agent contingent on an agent’s identification and history of output realizations. At

each date t ≥ 0, the social planner identifies each agent by an initial entitlement

to expected, discounted utility w0 ∈ W = [w,w] ⊂ R.1 All agents identified with

the same w0 receive the same treatment. Let ψ0 denote the distribution of initial

expected utility entitlements on (W,B(W )) so that ψ0(A) represents a fraction of

the population entitled to expected discounted utility in A ∈ B(W ).

The realizations of each agent’s stochastic technology form a history of output

yt = (y0, y1, . . . , yt) ∈ Y t+1 = Y0 × Y1 . . . × Yt. Then at date t ≥ 0, an agent

1I will discuss in detail the values of {w,w} in Section 4 when analyzing the endogenous

bounds of the stationary distribution.
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w0’s consumption is a sequence of functions ct : W × Y t+1 → [0, c̄], and similarly

for labor input, lt : W × Y t → [0, 1], and capital input, kt : W × Y t → [0, k̄].

Denote the histories of these functions also with superscripts and define P t+1 as

probability assigned to an output history yt ∈ Y t+1 given a history of capital and

labor inputs,

P t+1
(
yt|kt(w0, y

t−1), lt(w0, y
t−1)
)

= P (y0|k0(w0), l0(w0)) ·

·P
(
y1|k1(w0, y

0), l1(w0, y
0)
)
· . . . ·

·P
(
yt|kt(w0, y

t−1), lt(w0, y
t−1)
)
.

Within this framework, at time t ≥ 0 the social planner assigns to an agent

identified by w0 ∈ W an allocation sequence

σ =
{
kt(w0, y

t−1), lt(w0, y
t−1), ct(w0, y

t)
}∞
t=0

,

so that the latter’s expected initial discounted utility can be written as

U(w0, σ) =
∞∑
t=0

βt
∫
Y t+1

{
u
(
ct(w0, y

t)
)

+ v
(
1− lt(w0, y

t−1)
)}
·

·P t+1
(
dyt|kt(w0, y

t−1), lt(w0, y
t−1)
)
.

Define an allocation as such a sequence σ from the set of all sequences that sat-

isfies the following restrictions: first, the promise keeping constraint requiring the

sequence σ to deliver the initial expected discounted utility entitlement,

w0 = U(w0, σ), (1)

for all w0 ∈ W . Second, because of the moral hazard problem, the sequence must

be incentive compatible,

U(w0, σ) ≥ U(w0, σ̂), (2)

for all w0 ∈ W , where σ̂ contains any labor supply deviation l̂ ∈ L from the

recommended l ∈ L in any period of time.

Since the economy is populated by a continuum of agents, at the beginning of

each period, the social planner is required to divide the whole aggregate capital
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stock into capital input assignments for all agents w0 ∈ W ,

K̄t ≡
∫
W×Y t

kt(w0, y
t−1)P t

(
dyt−1|kt−1(w0, y

t−2), lt−1(w0, y
t−2)
)
ψ0(dw0). (3)

Finally, the allocations of all agents must be feasible in each time period,∫
W×Y t+1

{
yt − ct(w0, y

t)
}
P t+1

(
dyt|kt(w0, y

t−1), lt(w0, y
t−1)
)
ψ0(dw0)

≥ K̄t+1 − (1− δ)K̄t. (4)

This equation also serves as the law of motion for the capital stock: all goods

produced but not consumed by the agents are added by the social planner to the

depreciated current capital stock.

The rest of the paper is devoted to characterization of efficient allocations

and distribution of utility entitlements in a stationary recursive equilibrium for a

decentralized economy with component planners and a financial intermediary.

3 A Decentralized Recursive Formulation

Following Atkeson and Lucas (1995), the problem of finding the efficient alloca-

tions can be partially decentralized by using prices and the concept of ‘component

planners’, each responsible for allocating resources only to agents entitled to an

initial utility entitlement w0. Each component planner chooses an allocation that

attains the utility entitlement of his subpopulation in such a way as to minimize

the cost of attaining w0 evaluated at prices he trades with the other component

planners.

Specifically, the component planners borrow and lend capital inputs according

to the willingness of their agents to supply labor effort. One can imagine the capital

trading intermediated by a zero-profit financial intermediary called the ‘capital

planner’. All component planners deposit their initial capital stocks of their agents

with the capital planner who then lends the capital back to the component planners

in each period at a market-clearing price rt+δ. In other words, the capital planner

announces a sequence of interest rates {rt}∞t=0 such that the gross-of-depreciation
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rate of return on capital is equal across the component planners and the whole

capital stock is lent out in each period. All loans are repaid at the end of each

period and the component planners invest at the capital planner all goods produced

but not consumed by the agents as the next-period aggregate capital stock.

Given the interest rate sequence {rt}∞t=0, a component planner assigned to

subpopulation w0 ∈ W chooses an allocation sequence σr such that it minimizes

the cost of resources∫
Y0

{c0(w0, y0) + (r0 + δ)k0(w0)− y0} P (dy0|k0(w0), l0(w0)) +

+
∞∑
t=1

t−1∏
s=0

1

1 + rs

∫
Y t+1

{
ct(w0, y

t) + (rt + δ)kt(w0, y
t−1)− yt

}
·

·P t+1
(
dyt|kt(w0, y

t−1), lt(w0, y
t−1)
)
,

subject to the promise keeping (1) and the incentive compatibility (2) constraints.

Again, the capital stock must be distributed between agents in each period and

allocations of all component planners must be feasible in the closed economy. It

is straightforward to apply the First Welfare Theorem as in Atkeson and Lucas

(1992) in order to establish the efficiency outcome of the component planning

problem.

There is no general method of solving for the whole interest rate sequence

{rt}∞t=0 that would clear the market among the component planners. However, a

steady state of the decentralized economy will exhibit a constant interest rate r at

which the optimal allocation policies σr lead to an invariant distribution of utility

entitlements ψr that satisfy the market-clearing conditions for a closed economy

with constant aggregate capital stock K̄r.

In the recursive formulation the state variable of each component planner is

only the utility entitlement w that summarizes the history of output realizations of

his subpopulation at the beginning of each period. An agent is now assigned inputs

k(w) and l(w) as functions of the current utility entitlement, while consumption

c(w, y) and the continuation utility entitlement w′(w, y), the next-period state

variable, are also contingent on the realization of output.
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In the steady state, the capital planner rents the accumulated stock of capi-

tal K̄r to the component planners at a constant interest rate r. Each component

planner borrows an efficient amount of capital input according to his agent’s will-

ingness to supply labor input. At the end of each period, all component planners

pay for their capital loans (r+δ)k(w) and deposit all remaining surplus y−c(w, y)

at the capital planner: in the steady state, the aggregate surplus exactly equals

the depreciated capital stock δK̄r.

Therefore, for a constant interest rate r, define an allocation policy of a com-

ponent planner associated with subpopulation w ∈ W as

σr ≡ {k(w), l(w), c(w, y), w′(w, y)}

where k : W → [0, k̄], l : W → [0, 1], c : W ×Y → [0, c̄], and w′ : W ×Y → R. The

objective of each component planner is to minimize the present value of resources

needed to provide an honest agent with a lifetime utility w at interest rate r. For

intertemporal price of resources 1/(1 + r) and all w ∈ W , define a value function

Vr : W → R for the component planning problem and an operator Tr on the space

of bounded, continuous functions D(W ) as

(TrVr)(w) =

inf
σr

∫
Y

{
c(w, y) + (r + δ)k(w)− y +

1

1 + r
Vr(w

′(w, y))

}
P (dy|k(w), l(w)), (5)

subject to the promise keeping constraint,

w =

∫
Y

{u(c(w, y)) + v(1− l(w)) + βw′(w, y)} P (dy|k(w), l(w)), (6)

and the incentive constraint for all (l, l̂) ∈ L× L,∫
Y

{u(c(w, y)) + v(1− l(w)) + βw′(w, y)}P (dy|k(w), l(w))

≥
∫
Y

{u(c(w, y)) + v(1− l̂) + βw′(w, y)}P (dy|k(w), l̂), (7)

where l̂ ∈ L represents any deviation from the recommended labor effort.

In a stationary recursive equilibrium, the allocation of all individual component

planners must lead to an invariant distribution of utility entitlements. For that
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purpose define a probability measure λr from the set Λ of all probability measures

on (W,B(W )), and a transition function Fr : W ×B(W )→ [0, 1]. With Fr(w,A)

representing a probability that an agent with a current utility entitlement w ∈ W
will be entitled to w′ belonging to A ∈ B(W ) next period, the probability measure

λr ∈ Λ(W,B(W )) is invariant provided that

λr(A) =

∫
W

Fr(w,A)λr(dw) for all A ∈ B(W ). (8)

Using the invariant probability measure, the aggregate stock of capital is constant,

K̄r ≡
∫
W

k(w)λr(dw), (9)

and the market clearing condition requires that the allocation policies of all com-

ponent planners are feasible in the closed economy with constant aggregate capital

stock, ∫
W×Y

{y − c(w, y)} P (dy|k(w), l(w))λr(dw) = δK̄r. (10)

It is now possible to state the definition of a stationary recursive equilibrium.

Definition 1 A stationary recursive equilibrium for the decentralized economy is

a constant interest rate r, a value function Vr, an allocation policy σr, a probability

measure λr, and a law of motion for aggregate capital stock K̄r, such that

1. at interest rate r, for all w ∈ W , the allocation policy σr minimizes the

objective function of each component planner (5) subject to the constraints

(6) and (7);

2. the probability measure λr is invariant (8);

3. the aggregate capital stock (9) is constant with K̄r <∞;

4. and the market-clearing condition (10) holds.

Finally, it follows from Theorems 9.2 in Stokey, Lucas, and Prescott (1989) that

at a constant interest rate, the optimal allocations of the recursive and sequential

formulations are equivalent.
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4 Characterization of Optimal Allocations

In this section I study the existence, uniqueness as well as the properties of the

optimal allocation and the stationary distribution of utility entitlements in the

steady state of the decentralized economy. All proofs are in the Appendix.

In general, models with moral hazard exhibit non-convexity of the constraint set

for the component planner’s problem. This property can be regained by lotteries as

in Phelan and Townsend (1991). With lotteries, the choice of a component planner

associated with agents entitled to w ∈ W is a probability measure π(k, l, y, c, w′|w)

over all points in K×L×Y ×C×W . Following Prescott and Townsend (1984), I

show that conditional on recommended inputs and output realization, the proba-

bility measure π(c, w′|k, l, y;w) puts all mass on a single point in the consumption

and continuation utility entitlement set.

Proposition 1 With lotteries, the operator Tr has a unique fixed point Vr in

the space of bounded, continuous functions D(W ) and for all V ∈ D(W ),

limn→∞ T
n
r V → Vr. For a strictly convex V ∈ D(W ) and all w ∈ W , the minimum

of the component planner’s problem is attained by a unique continuous policy func-

tion π. Conditional on (k, l, y) ∈ K ×L×Y there exists a pair of (c, w′) ∈ C ×W
such that the optimal policy π(c, w′|k, l, y;w) = 1 for every w ∈ W .

Thus for a strictly convex value function, the minimum of the component plan-

ner problem is attained by unique continuous policy functions c(w, y) and w′(w, y)

for each input choice, k(w) and l(w), and a realized output, y. This result allows

me to take the first order conditions with respect to consumption and continua-

tion utility entitlements which are both important for studying the existence and

properties of the stationary recursive equilibrium.

Lemma 1 For all w ∈ W ,

1. w′(w, y) and c(w, y) are increasing functions of w for all y ∈ Y ;

2. w′(w, y) and c(w, y) are increasing functions of y for all l ∈ (0, 1].
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That consumption and the continuation utility entitlement are increasing func-

tions of the current utility entitlement and that agents are rewarded for a high

output realization (except for l = 0 when the allocations are independent of out-

put) are standard results of the private information literature. With continuation

utility entitlements increasing (decreasing) for agents who realized high (low) out-

put, there is a need to study the existence and properties of the ergodic set for the

invariant distribution of utility entitlements.

Recall that Green (1987) and Thomas and Worrall (1990) established that

without a lower bound the utility entitlements converge to minus infinity with

probability one. Following the result of Aiyagari and Alvarez (1995), I assume that

the consumption set is compact, c ∈ [0, c̄], where c̄ < ∞, and show that it is not

incentive compatible to drive an agent to the lower bound of this consumption set:

an agent offered a zero consumption forever cannot be motivated to supply positive

labor effort. It follows that the stationary distribution of utility entitlements will

have at least this exogenous lower bound at the utility entitlement corresponding

to repeated zero consumption and full leisure.

Next, the stationary distribution of utility entitlements is non-degenerate pro-

vided there exists an incentive compatible positive labor supply for which the tech-

nology is productive enough to pay for the capital input and current consumption

of the agent. Then the cost-minimizing component planners assign positive labor

supply and reward their agents by an increased next-period utility entitlement for

a high output realization (and vice versa for a low one).

Moreover, if the planners’ cost function is decreasing at the lowest levels of

utility entitlements (which implies that incentive-compatible labor supply and ex-

pected output are increasing), both planner and agent are better off by moving to

the Pareto frontier in the non-decreasing part of the cost function: the distribution

of utility entitlements has an endogenous lower bound w∗ where the convex cost

function has its minimum. Endogeneity of the upper bound w∗ follows from the

intertemporal tradeoff of resources: its existence is guaranteed for an interest rate

lower than the agent’s discount rate.

In order to study the existence of lower and upper bounds on the stationary
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distribution of utility entitlements, it is convenient to set the (non-binding) ex-

ogenous upper bound at a utility entitlement corresponding to a perpetual utility

from full leisure and the highest consumption, w ≡ (1− β)−1{u(c̄) + v(1)}, where

c̄ = ȳ − δk̄ <∞ is the maximal sustainable consumption in a steady state.

Second, define wm as forever repeated assignment of zero consumption and zero

leisure, wm ≡ (1− β)−1{u(0) + v(0)}. Aiyagari and Alvarez (1995) call this utility

entitlement ‘misery’ and show that if misery is not incentive compatible, there is a

non-degenerate distribution of utility entitlements in a steady state. It is obvious

that an agent assigned zero consumption and future misery with certainty cannot

be asked to supply any positive labor effort: the incentive constraint u(0) + v(0) +

βwm ≥ u(0)+v(1−l̂)+βwm, reveals that misery is not incentive compatible for any

recommended l > 0 and that the only incentive-compatible allocation associated

with forever repeated zero consumption is full leisure. Therefore, the exogenous

lower bound on the stationary distribution is w ≡ (1− β)−1{u(0) + v(1)}.
The component planner associated with agents entitled to w can deliver this

utility entitlement in two ways. He can either assign zero consumption and full

leisure for all periods with cost V (w) = 0, or, if it is less costly, an incentive-

compatible positive labor supply and non-zero consumption together with an in-

creased continuation utility in case of a high realization of output.

The planner will choose the first option if the technology is not productive

enough for the incentive-compatible labor supply to repay the cost of capital input

and consumption of the agent. Then the optimal, cost-minimizing allocations

of continuation utility entitlements will drive all agents to w provided that the

interest rate is lower than the time preference of the agents, ρ = 1−β
β

.

Lemma 2 If the incentive compatible allocation at w results in a positive cur-

rent cost,
∫
Y
{c(w, y) + (r + δ)k − y}P (dy|k(w), l(w)) > 0, then the only feasible

stationary distribution of utility entitlements is degenerate at w with interest rate

r ∈ (0, ρ).

For optimal labor supply policy l(w) = 0 the continuation utility entitlement

policy follows V ′(w′(w, 0)) = (1 + r)βV ′(w) and with r ∈ (0, ρ) the lower bound w

13



becomes an absorbing point. If r = ρ the agents stay at their initial entitlements

while if the interest rate is greater than the discount factor, all agents will be

eventually driven to the exogenous upper bound. Neither equilibrium is feasible

since there is positive consumption with zero output.

The stationary distribution of utility entitlements will exhibit mobility if the

planner can choose the second, productive option, i.e., if the technology is suffi-

ciently productive to repay the cost of capital input and the consumption reward

for incentive-compatible labor supply l(w) > 0. The endogeneity of the lower

bound depends on the shape of the cost function. Denoting w∗ ∈ [w,w] as the

minimum of the convex cost function, the lower bound will be endogenous at

w∗ > w if the cost function is decreasing in w ∈ [w,w∗). On the other hand, the

lower bound will be exogenous at w∗ = w if the cost function is non-decreasing

in all w ∈ [w,w]. For example, a general-equilibrium extension of the numerical

simulation in Phelan and Townsend (1991) would lead to a stationary distribution

with an endogenous lower bound.

Whether the cost function is initially decreasing depends on the properties of

the production and utility functions. The cost function decreases in w ∈ [w,w∗)

if the one-period cost is also decreasing, which requires the incentive compatible

labor supply and expected output to be increasing in the same interval. As before,

the technology must be sufficiently productive to repay the cost of capital input

and the consumption reward. The next Lemma shows that in the decreasing part

of the cost function the planner can reduce his cost at the same time as making

the agent better off by assigning a continuation utility in the non-decreasing part

of the cost function, w′(w, y) ≥ w∗.

Lemma 3 If the current cost
∫
Y
{c(w, y) + (r + δ)k − y}P (dy|k(w), l(w)) < 0 is

decreasing in w ∈ [w,w∗), the planners’ cost function V (w) is decreasing in w ∈
[w,w∗) and the optimal continuation utility policy assigns w′(w, y) ≥ w∗ for all

w ∈ [w,w∗) and y ∈ Y .

For the either type (exogenous or endogenous) of the lower bound w∗, I will

now establish the existence of an ergodic set with an endogenous upper bound.
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Figure 1: Example of continuation utility policy functions for high and low output
realizations at interest rate r ∈ (0, ρ) with endogenous ergodic set [w∗, w

∗].

Lemmas 4 and 5 analyze the behavior of continuation utility policies for w ∈
[w∗, w]. Without loss of generality I consider the highest and the lowest level of

output realizations, y and y(= 0), respectively.

Lemma 4 For interest rate r ∈ (0, ρ), all inputs (k, l) ∈ K × L and a low output

realization y ∈ Y ,

1. w′(w, y) = w∗ for w = w∗; and

2. w′(w, y) < w for w > w∗.

Lemma 5 For interest rate r ∈ (0, ρ), all inputs (k, l) ∈ K ×L and a high output

realization y ∈ Y , there exists utility entitlement w∗ ∈ (w∗, w) such that

1. w′(w, y) > w for w < w∗;

2. w′(w, y) = w for w = w∗; and

3. w′(w, y) < w for w > w∗.

If r ≥ ρ, w′(w, y) ≥ w for all w ∈ W .

The continuation entitlement policies for an endogenous lower and upper

bounds with interest rate r ∈ (0, ρ) are illustrated in Figure 1. For such an interest

15



rate and a sufficiently productive technology, there exists a non-degenerate invari-

ant distribution of utility entitlements that satisfies the conditions of stationary

recursive equilibria. For all w ∈ (w∗, w
∗), the planners punish agents with a low

output realization by a lower continuation utility and reward agents with a high

output realization by increasing their utility entitlement from tomorrow on. It is

not cost efficient to punish agents below w∗ and reward them beyond w∗. These

results follow from the component planner’s intertemporal tradeoff of resources

(see the Appendix for derivation),

V ′r (w
′(w, y)) = (1 + r)β

[
V ′r (w) + ξ(w)

(
1− P (y|k, l̂)

P (y|k, l)

)]
,

where the value function is convex, (1 + r)β < 1 if r ∈ (0, ρ), the Lagrange multi-

plier ξ(w) on the incentive constraint is positive, and the ratio P (y|k, l̂)/P (y|k, l) is

a decreasing function of output for any downward deviation on labor effort l̂ ∈ L.

Theorem 1 If
∫
Y
{c(w∗, y) + (r + δ)k − y}P (dy|k(w∗), l(w∗)) < 0 and the inter-

est rate r ∈ (0, ρ), there exists a non-degenerate stationary distribution of utility

entitlements in the ergodic set [w∗, w
∗] with an endogenous upper bound. If the

cost function is initially decreasing in w, the lower bound is endogenous as well.

First, the analysis confirms the results of Kehoe and Levine (1993), Huggett

(1997) and Lucas (1992) that in a private information economy the market clearing

interest rate is less than the agents’ time preference. If the component planner

discounts the future more than the agents, i.e., if r ≥ ρ, he tends to shift his costs

into the future by promising higher continuation utility. On the other hand, if

r ∈ (0, ρ), the component planner cares about the future more than the agents

and does not overuse future resources for current incentives.

Second, contrary to the private-information endowment economies, the lower

bound of the ergodic set can be endogenous too. This result follows from the

Pareto-improving allocations at the lowest levels of utility entitlements for an ini-

tially decreasing cost function. The only requirement is that the planners’ cost

function is initially decreasing in w and the technology be sufficiently profitable
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to pay for the cost of capital input and current consumption of the agent. If the

technology does not cover the cost of production and consumption of the agent, the

only feasible stationary distribution is degenerate at the exogenous lower bound

with interest rate again lower than the discount factor of the agents.

It remains to study the relationship between the outside transfers and invariant

distribution ψr of utility entitlements for different levels of interest rate. Since the

policies for continuation utility determine the invariant distribution, the behavior

of ψr with respect to the interest rate depends on the relationship between w′(w, y)

and interest rate r.

First, arguments in Atkeson and Lucas (1995) and Stokey, Lucas, and Prescott

(1989) can be used to establish that Vr and w′r(w, y) vary continuously in the

interest rate. Following Krueger (1999) I will show that the higher the interest rate,

the more the component planners shift cost to the future by offering their agents

a higher continuation utility in exchange for a lower level of current consumption.

Lemma 6 The optimal policy w′(w, y) is increasing and the optimal policy c(w, y)

is decreasing in r, respectively.

Because the invariant distribution is determined by the continuation utility

policies, a higher interest rate leads to an invariant distribution with more mass

on higher utility entitlements.

Lemma 7 If r > r̂ then ψr ≥ ψr̂.

Finally, in numerical simulations one has to find a market-clearing interest rate.

For that purpose define an aggregate deficit of all the component planners in one

period in the steady state as

τ(ψr) ≡
∫
W×Y
{c(w, y) + δk(w)− y}P (dy|k(w), l(w))λr(dw).

The last Lemma shows that the aggregate deficit is a decreasing function of the

interest rate.

Lemma 8 τ(ψr) is increasing in r.
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Thus during numerical simulations the iteration on interest rate proceeds ac-

cording to the following algorithm: 1. Guess an initial interest rate; 2. Find the

optimal policies for all component planners and the invariant distribution of util-

ity entitlements; 3. If the component planners spend more on consumption and

investment than the agents produce (τ(ψr) > 0), repeat with a lower interest rate

(and vice versa for a surplus). Numerical simulations of different moral hazard

economies are carried in Bohacek (2000).

5 Conclusions

This paper shows how to incorporate capital into private information economies

using the concept of a financial intermediary, a ‘capital planner’. Such a frame-

work allows modeling general equilibrium economies with capital accumulation

and private information without any restrictive assumptions on functional forms

of production technology or preferences. An interesting extension could follow Fer-

nandes and Phelan (2000) method of incorporating serially correlated productivity

shocks into private information dynamic models.

Analysis of a closed economy with moral hazard and heterogeneous agents

shows that with a sufficiently productive technology there is no need for imposing

exogenous lower bound on utility entitlements in order to obtain a non-degenerate

stationary distribution in a steady state. This feature can be used in analysis of

distribution and allocation of resources in closed economies under different infor-

mation constraints and contractual framework, including different efficiency levels

of financial intermediation or various degrees of welfare state policies and social

insurance provided by the government.
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Appendix

Proof of Proposition 1

The arguments follow the appendix to Phelan and Townsend (1991). With lotteries, the
problem is a minimization of a continuous function V over a compact, non-empty set
by applying the operator Tr. The minimum exists because the objective function is an
integral over bounded continuous functions, defined on K × L × Y × C ×W ′. TrV is
continuous by the Theorem of the Maximum. Since r > 0, the operator Tr satisfies the
hypotheses of Blackwell’s theorem and is a contraction mapping of modulus 1/(1 + r).
Spear and Srivastava (1987) show in Proposition 4.4 that the value function is strictly
convex.

The proof of optimal conditional allocation π(c, w′|k, l, y;w) = 1 for every w ∈ W
is based on Prescott and Townsend (1984). At the market-clearing interest rate r, the
problem of a component planner, assigned to agent w, is to choose rewards in terms
of consumption and continuation utility entitlement, (c, w′) ∈ C ×W , conditional on a
input-output combination (k, l, y) ∈ K × L × Y . The component planner’s choice now
becomes a probability measure π(k, l, y, ·|w) which minimizes

V (w, (k, l)) =
∑
Y

P (y|k, l) ·

min
π(k,l,y,·|w)

∑
C×W ′

π(k, l, y, c, w′|w)
{
c+ (r + δ)k − y +

1
1 + r

V (w′)
}
,

subject to the promise-keeping constraint,∑
Y

P (y|k, l)
∑
C×W ′

π(k, l, y, c, w′|w){u(c) + v(1− l) + βw′} = w, (11)

the incentive constraint, for all l̂ ∈ L,∑
Y

P (y|k, l)
∑
C×W ′

π(k, l, y, c, w′|w) ·{
u(c) + v(1− l) + βw′ − P (y|k, l̂)

P (y|k, l)

[
u(c) + v(1− l̂) + βw′

]}
≥ 0, (12)
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and the probability measure condition,∑
C×W ′

π(k, l, y, c, w′|w) = 1. (13)

Denote η as the Lagrange multiplier on the promise keeping constraint (11), ξ on
the incentive constraint (12), and θ on the probability condition (13). Recall that the
technology P (y|k, l) > 0 is fixed for all combinations of inputs and outputs. The first
order condition with respect to π(k, l, y, ·|w) is:

c+ (r + δ)k − y +
1

1 + r
V (w′)−

(
u(c) + βw′

) [
η + ξ

(
1− P (y|k, l̂)

P (y|k, l)

)]

−ξ
(
v(1− l)− v(1− l̂)

) P (y|k, l̂)
P (y|k, l)

− θ

P (y|k, l)
≥ 0. (14)

First note that the above condition must hold at equality for some (c, w′) ∈ C ×W .
If it did not, all probabilities π(k, l, y, c, w′|w) would be zero, violating the summation
constraint (13).

Now analyze the left-hand side of (14), as a function of (c, w′). The Lagrange mul-
tipliers must be such that this function has a minimum at zero, at points where (14)
holds at equality. Suppose that the set C×W is very large so that the maximal distance
between any two points is arbitrarily small. Recall that the utility function is strictly
concave, increasing function in both arguments and V is strictly convex function. Define

x ≡ η + ξ

(
1− P (y|k, l̂)

P (y|k, l)

)
.

Then if x ≤ 0, 1 + (1 + r)−1V ′(w′)− x(u′(c) + β) > 0, since all terms but x are positive.
Then the left-hand side of (14) is strictly increasing function of (c, w′) within the non-
decreasing part of the planners’ cost function.

If x > 0, the Hessian matrix for (14) is positive definite, |H| = −(1 +
r)−1V ′′r (w′)xu′′(c) > 0, and the left-hand side of (14) is strictly convex function of (c, w′).
In both cases the left-hand side of (14) attains a minimum at a single combination of
rewards (c, w′) ∈ C ×W .

Therefore, for each pair of recommended inputs, the probability measure puts all
mass on single combination of the rewards (c, w′) ∈ C × W conditional on assigned
inputs and realization of output. These points only depend on the utility entitlement
level w, interest rate r, technology specification and parameters of the model.

Assuming interior solutions in a sufficiently large set C ×W , so that the allocations
satisfy the appropriate conditions for maxima as if C ×W were a continuum, it is pos-
sible to take the analogous first order conditions for (14). Using the envelope condition
V ′r (w) = η,

V ′r (w′(w, y)) = (1 + r)β

[
V ′r (w) + ξ

(
1− P (y|k, l̂)

P (y|k, l)

)]
, (15)
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and
1

u′(c(w, y))
= V ′r (w) + ξ

(
1− P (y|k, l̂)

P (y|k, l)

)
, (16)

so that
u′(c(w, y))V ′r (w′(w, y)) = (1 + r)β. (17)

In case when the lowest labor supply is recommended to the agent, these conditions
simplify to u′(c(w))V ′r (w) = 1 and V ′r (w′(w)) = (1 + r)βV ′r (w).

To summarize, a component planner associated with agents entitled to w ∈ W
chooses input combination (k, l) ∈ arg min(k′,l′)∈K×L Vr(w, (k′, l′)) with unique rewards
(c, w′) ∈ C ×W for each realization of output y ∈ Y .
(Note: Even if the component planners ex ante randomized in inputs, the uniqueness
of optimal (c, w′) for each pair of (k, l) suffices for all proofs in the paper since the
randomization results in a convex combination of rewards (c, w′).) 2

Proof of Lemma 1

The combination of the first order conditions for consumption (15) and continuation
utility (16) obtains u′(c(w, y))V ′r (w′(w, y)) = (1 + r)β. In the non-decreasing part of the
cost function u′ > 0 and concave while V ′r > 0 and convex, so that c(w, y) and w′(w, y)
move in the same direction as w changes. Suppose, as a contradiction, that both c(w, y)
and w′(w, y) are decreasing functions of w, so that for w ≤ ŵ < w ≤ w, c(ŵ, y) > c(w, y)
and w′(ŵ, y) > w′(w, y) for all y ∈ Y . Then from the promise-keeping constraint

w = u(c(w, y)) + v(1− l) + βw′(w, y) < u(c(ŵ, y)) + v(1− l) + βw′(ŵ, y) = ŵ

which contradicts the initial assumption that ŵ < w. Therefore, c(w, y) and w′(w, y)
are both increasing functions of w for all y ∈ Y .

To prove the second claim of the Lemma, note first that for l = 0, there is no incentive
compatibility constraint and the first order conditions become

u′(c(w, y))V ′r (w) = 1 and V ′r (w′(w, y)) = (1 + r)βV ′r (w),

respectively, with c(w, y) and w′(w, y) independent of output realization.
For l > 0, the incentive compatibility constraint binds and the first order conditions

are as in the proof of Proposition 1, equations (15) and (16), respectively. Since the
utility is increasing and concave in consumption and increasing in leisure, ξ(w) > 0 by
Lemma 1 in Jewitt (1988). Recall that P (y|k, l̂)/P (y|k, l) ratio is a decreasing function
of y for any deviating strategy l̂ < l at the given level of recommended inputs. Then for
all w ∈ W , w′(w, y) > w′(w, y) and c(w, y) > c(w, y) for all w ∈ W and y, y ∈ Y , such
that y > y. 2
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Proof of Lemma 2

If the cost-minimizing optimal allocation at w assigns l(w) = 0, there is no consumption
and no output. Then for r ∈ (0, ρ] the first-order intertemporal condition V ′(w′(w, 0)) =
(1 + r)βV ′(w) implies that at the lower bound w′(w, 0) = w and V (w) = 0. For a cost
function non-decreasing in w ∈ W any other allocation would lead to a higher current
and future costs and would not be optimal.

Then w is an absorbing point rather than a reflecting barrier for r ∈ (0, ρ) and
the distribution puts the mass of all agents at w since for l(w) = 0 the continuation
utilities w′(w, 0) < w for all w ∈ W and r ∈ (0, ρ); for l(w) > 0 the probability of low
output, and therefore, decreasing continuation utility, is positive for all w ∈ W . This
equilibrium is feasible since all agents neither produce nor consume. For interest rate
r ≥ ρ the continuation utility policies would be nondecreasing in w and the stationary
distribution would exhibit no mobility at utility entitlements with positive consumption
and zero output (see Lemmas 4 and 5 for details). 2

Proof of Lemma 3

First consider the optimal continuation policy function for w ∈ [w,w∗) provided that the
cost function is decreasing with a minimum at w∗. Consider l ∈ (0, 1] and, without loss of
generality, y, y ∈ Y such that y > y. For w ∈ [w,w∗), denote {w′∗(w, y), c∗(w, y), V∗(w)}
as allocations and value associated with continuation policies w′∗(w, y) ≥ w′∗(w, y) = w∗.
Correspondingly, denote {w′(w, y), c(w, y), V (w)} as allocations and value associated
with continuation policies w′(w, y) < w∗ ≤ w′(w, y). Let both allocations satisfy the
promise keeping and incentive constraints.

Rewrite the intertemporal first order condition as V ′r (w′(w, y)) = (1 + r)β[V ′r (w) +
ξ(Pl(y|k, l)/P (y|k, l)] where Pl(y|k, l) = ∂P (y|k, l)/∂l. For a given l(w), integra-
tion with respect to P (dy|k(w), l(w)) delivers

∫
Y V (w′(w, y))P (dy|k(w), l(w)) =

(1 + r)βV ′(w) for all w ∈ W . Therefore
∫
Y w

′
∗(w, y)P (dy|k(w), l(w)) =∫

Y w
′(w, y)P (dy|k(w), l(w)) and w′(w, y) > w′∗(w, y). The promise keeping con-

straint implies that
∫
Y c∗(w, y)P (dy|k(w), l(w)) =

∫
Y c(w, y)P (dy|k(w), l(w)). Then

for continuation utility policies w′(w, y) < w∗ = w′∗(w, y) ≤ w′∗(w, y) < w′(w, y)
the strictly convex cost function with minimum at w∗ implies that V (w∗) ≤∫
Y V (w′∗(w, y))P (dy|k(w), l(w)) <

∫
Y V (w′(w, y))P (dy|k(w), l(w)). Then V∗(w) <

V (w) and the cost-minimizing allocations assign w′(w, y) ≥ w∗ for any w ∈ [w,w∗),
all y ∈ Y and any positive labor supply l ∈ (0, 1]. For l = 0 the continuation utility and
consumption rewards do not depend on output and similar arguments lead to optimal
w′(w, y) = w′(w) = w∗ for all w ∈ [w,w∗).

With consumption policy function c(w, y) increasing, convex in w for all
y ∈ Y and production function increasing, concave in l, the one-period cost∫
Y {c(w, y) + (r + δ)k − y}P (dy|k(w), l(w)) is decreasing, convex function only for an

increasing l(w) in w ∈ [w,w∗) and increasing expected output. If planners can also
achieve current negative cost,

∫
Y {c(w, y) + (r + δ)k − y}P (dy|k(w), l(w)) < 0, the cost

function is also decreasing in w ∈ [w,w∗). 2
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Proof of Lemma 4

It is not possible to assign w′(w, y) < w∗ if the lower bound is exogenously set at w∗.
Lemma 3 proved that it is not optimal to assign a continuation utility lower than the
endogenous lower bound w∗.

To study optimal continuation utility entitlement policies for the strictly increasing
part of the cost function at w ∈ (w∗, w] when a low output is realized, consider first
the case when l = 0. There is no incentive problem and the first order intertemporal
condition equals V ′r (w′(w, y)) = (1 + r)βV ′r (w). Then for V ′r (w) > 0, w′(w, y)) ≥ w if
r ≥ ρ and w′(w, y)) < w if r ∈ (0, ρ). In case that l > 0 the incentive constraint binds
and ξ(w) > 0. Then the intertemporal first order condition is

V ′r (w′(w, y)) = (1 + r)β

[
V ′r (w) + ξ(w)

(
1−

P (y|k, l̂)
P (y|k, l)

)]
. (18)

When y = y, the ratio P (y|k, l̂)/P (y|k, l) > 1 for any downward deviation l̂ ∈ L. Hence
the term multiplying the positive Lagrange multiplier is negative and for r ∈ (0, ρ) the
continuation utility entitlement decreases, w′(w, y) < w for all w > w∗. 2

Proof of Lemma 5

First, consider the case when l = 0. Then the output is zero with certainty and the first
order intertemporal condition is V ′r (w′(w, y)) = (1 + r)βV ′r (w), so that for the increasing
part of the cost function, w′(w, y) ≥ w if r ≥ ρ and w′(w, y) < w if r ∈ (0, ρ).

In case that l > 0 the incentive constraint binds and ξ(w) > 0. For the high output
level the ratio P (y|k, l̂)/P (y|k, l) < 1 for any downward deviation l̂ ∈ L. Recall the
definition of the highest utility entitlement, w ≡ u(c) + v(1) + βw′. Since for any y ∈ Y ,
w′(w, y) < w for all w ∈ W when l = 0 and r ∈ (0, ρ), the highest possible utility
entitlement is not sustainable if l = 0 and is not attainable if l > 0.

In the latter case suppose that an agent begins with some arbitrary initial entitlement
w < w, corresponding to some c < c and l > 0. Since the highest continuation utility
w is not attainable, he can be promised w′ = w − ε for some ε > 0, i.e., he begins with
a promised utility w = u(c) + v(1− l) + β(w − ε). The component planner’s first order
intertemporal condition (15) becomes

V ′r (w − ε, y) = (1 + r)β

[
V ′r (w) + ξ(w)

(
1− P (y|k, l̂)

P (y|k, l)

)]
.

For establishing the endogenous upper bound on utility entitlement, suppose that the
agent’s utility entitlement increased to w′(w, y) = w − ε > w. The argument can be
repeated for a sequence of periods until an entitlement w = w − ε∗, with ε∗ > 0, is
reached at which w′ = w − ε∗ = w, i.e., w = w − ε∗ = u(c) + v(1− l) + β(w − ε∗).

Since c ∈ C and l ∈ (0, 1] were arbitrary optimal allocations, for r ∈ (0, ρ) there
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exists a utility entitlement w∗ ∈ (w∗, w) for which w′(w∗, y) = w∗, i.e.,

V ′r (w∗(w∗, y)) = (1 + r)β

[
V ′r (w∗) + ξ(w∗)

(
1− P (y|k, l̂)

P (y|k, l)

)]
.

For utility entitlements w < w∗ the continuation utility entitlement increases to
w′(w∗, y) > w∗, and for w > w∗ decreases w′(w, y) < w. When r ≥ ρ, w′(w, y) ≥ w for
all w ∈W . 2

Proof of Theorem 1

See Lemmas 2 - 5. For the proof of convergence to the unique invariant probability
measure λr from an arbitrary probability measure λ0, see Theorem 3.2 and Lemma
11.11 in Stokey, Lucas, and Prescott (1989). 2

Proof of Lemma 6

Let r > r̂ and show w′r(w, y) ≥ w′r̂(w, y) and cr(w, y) ≤ cr̂(w, y). Define {V n}∞n=1 by
V n = (Tnr̂ )Vr. Let (cn(w, y), w′n(w, y)) and (cr(w, y), w′r(w, y)) be the optimal policies
associated with V n and Vr, respectively, where V n(w) is defined as

V n(w)=
∫
Y

{
cn(w, y) + (r + δ)kn(w)− y +

1
1 + r

V n−1(w′n(w, y))
}
P (dy|kn(w), ln(w)).

Since {V n, w′n(w, y)}∞n=1 uniformly converges to (Vr̂, w′r̂(w, y)), it is sufficient to prove
that

w′r(w, y) ≥ w′n(w, y) and cr(w, y) ≤ cn(w, y). (19)

First, let n = 1, w ∈ [w,w∗], and assume as a contradiction that for all y ∈
Y,w′r(w, y) ≤ w′1(w, y). From the first order conditions,

V ′r (w′1(w, y)) = (1 + r̂)β
1

u′(c1(w, y))
and V ′r (w′r(w, y)) ≥ (1 + r)β

1
u′(cr(w, y))

.

The strict convexity of Vr, together with the assumption that r > r̂ and w′r(w, y) ≤
w′1(w, y), imply that V ′r (w′1(w, y)) > V ′r (w′r(w, y)) and c1(w, y) > cr(w, y).

However, from the promise-keeping constraint,

w =
∫
Y

{
u(c(w, y)) + v(1− l(w)) + βw′(w, y)

}
P (dy|k(w), l(w)),

there must exist a ỹ ∈ Y such that w′r(w, ỹ) > w′1(w, ỹ). Then from the first order
conditions,

V ′r (w′r(w, ỹ)) = (1 + r)β
1

u′(cr(w, ỹ))
< (1 + r̂)β

1
u′(c1(w, ỹ))

= V ′r (w′1(w, ỹ)),
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which implies w′r(w, ỹ) < w′1(w, ỹ), a contradiction. Therefore, w′r(w, y) ≥ w′1(w, y) for
all y ∈ Y . The promise keeping constraint implies cr(w, y) ≤ c1(w, y), for all y ∈ Y .
The envelope condition yields (1 + r)V ′r (w) ≥ (1 + r̂)V ′1(w).

Second, suppose that (19) hold for n− 1. I want to show that the same is true also
for n. By contradiction, suppose that for all y ∈ Y,w′r(w, y) ≤ w′n(w, y). Again, from
the first order conditions,

(V n−1)′(w′n(w, y)) = (1 + r̂)β
1

u′(cn(w, y))
, and V ′r (w′r(w, y)) ≥ (1 + r)β

1
u′(cr(w, y))

.

Since V n−1 and Vr are convex, together with the assumption that r > r̂ and w′r(w, y) ≤
w′n(w, y), it follows that cn(w, y) > cr(w, y). Again, by the promise-keeping constraint,
there must exist a ỹ ∈ Y such that w′r(w, ỹ) > w′n(w, ỹ). Then from the envelope
condition

(V n)′(w) =
1

β(1 + r̂)
(V n−1)′(w′n(w, ỹ)) <

1
β(1 + r)

V ′r (w′r(w, ỹ)) = V ′r (w),

which implies w′r(w, ỹ) < w′n(w, ỹ), a contradiction. Therefore, w′r(w, y) ≥ w′n(w, y) for
all y ∈ Y . The promise keeping constraint implies cr(w, y) ≤ cn(w, y), for all y ∈ Y . 2

Proof of Lemma 7

Define the sequence {ψn}∞n=1 by ψn = (T̂r̂)nψr and prove by induction that for each
n ≥ 1 and each y ∈ Y , ψr stochastically dominates ψn. Since by {ψn}∞n=1 converges to
{ψr̂}∞n=1 in total variation. Define ψyn as the distribution function associated with ψn by
ψyn : W → [0, 1], where ψyn(w) = ψn([w,w]) for all y ∈ Y . It is sufficient to prove that
for all w ∈W , ψyr (w) ≤ ψyn(w) for all y ∈ Y .

First, let n = 1. By definition, ψ1 = (T̂r̂)ψr and ψr = (T̂r)ψr . Fix an arbitrary
y ∈ Y and w ∈W . Then

ψyr (w) =
∫
{z∈W |w′r(z,y)≤w}

ψr(dz) ≤
∫
{z∈W |w′r̂(z,y)≤w}

ψr(dz) = ψyr̂ (w),

where the inequality is due to the fact that w′r(w, y) ≥ w′r̂(w, y) for all w ∈W .
Second, suppose that ψyr (w) ≤ ψyn−1(w), for all w ∈ W and y ∈ Y and show that it

is also true for n. Again,

ψyr (w) =
∫
{z∈W |w′r(z,y)≤w}

ψr(dz) ≤
∫
ȳ∈Y

P (dȳ|k(zr), l(zr))ψȳr (zr),

where zr = max{z ∈ W |w′r(z, y) ≤ w} and the equality follows from w′r(w, y)
being continuous and increasing in its first argument. Similarly, ψyn(w) =∫
ȳ∈Y P (dȳ|k(zn), l(zn))ψȳn−1(zn), with zn = max{z ∈W |w′r̂(z, y) ≤ w}.

Lemma 6 implies that zr ≤ zn. Then from the induction hypothesis it follows that
for all ȳ ∈ Y , ψȳr (zr) ≤ ψȳn−1(zn) and, therefore, ψyr (w) ≤ ψyn(w). 2
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Proof of Lemma 8

By definition and by ψr being an invariant distribution,

τ(ψr) =
∫
W×Y

{c(w, y) + δk(w)− y} P (dy|k(w), l(w))ψr(dw)

=
∫
W×Y

{c(w, y) + (r + δ)k(w)− y} P (dy|k(w), l(w))ψr(dw)

=
1 + r

r

∫
W
Vr(w)ψr(dw). (20)

For r > r̂, I need to prove that
∫
W Vr(w)ψr(dw) ≥

∫
W Vr̂(w)ψr̂(dw). Since ψr stochas-

tically dominates ψr̂ and Vr is strictly increasing,
∫
W Vr̂(w)ψr(dw) ≥

∫
W Vr̂(w)ψr̂(dw),

it is enough to show that
∫
W Vr(w)ψr(dw) ≥

∫
W Vr̂(w)ψr(dw). Define {V n}∞n=1 by

V n = (Tnr̂ )Vr . From proofs above, the sequence {V n}∞n=1 converges uniformly to Vr̂
and it is sufficient to prove that for n ≥ 1,∫

W
Vr(w)ψr(dw) ≥

∫
W
V n(w)ψr(dw).

Also let {kn(w), ln(w), cn(w, y), w′n(w, y)} and {kr(w), lr(w), cr(w, y), w′r(w, y)} be the
optimal policies associated with {V n}∞n=1 and Vr, respectively.

First, let n = 1. By definition, V 1 = Tr̂Vr and

V 1(w) =
∫
Y

{
c1(w, y) + (r̂ + δ)k1(w)− y +

1
1 + r̂

Vr(w′1(w, y))
}
P (dy|k1(w), l1(w))

≤
∫
Y

{
cr(w, y) + (r̂ + δ)kr(w)− y +

1
1 + r̂

Vr(w′r(w, y))
}
P (dy|kr(w), lr(w)),

by the principle of optimality. Integrating with respect to ψr yields∫
W
V 1(w)ψr(dw) =

∫
W×Y

{
c1(w, y) + (r̂ + δ)k1(w)− y +

1
1 + r̂

Vr(w′1(w, y))
}
·

·P (dy|k1(w), l1(w))ψr(dw)

≤
∫
W×Y

{
cr(w, y) + (r̂ + δ)kr(w)− y +

1
1 + r̂

Vr(w′r(w, y))
}
·

·P (dy|kr(w), lr(w))ψr(dw)

=
∫
W
Vr(w)ψr(dw),

using (20).
Second, suppose that

∫
W Vr(w)ψr(dw) ≥

∫
W V n−1(w)ψr(dw). To show that the same

is true for n, use V n = Tr̂V
n−1 and

V n(w) =
∫
Y

{
cn(w, y) + (r̂ + δ)kn(w)− y +

1
1 + r̂

V n−1(w′n(w, y))
}
·
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·P (dy|kn(w), ln(w))

≤
∫
Y

{
cr(w, y) + (r̂ + δ)kr(w)− y +

1
1 + r̂

V n−1(w′r(w, y))
}
·

·P (dy|kr(w), lr(w)),

using again the principle of optimality. Integrating as above with respect to ψr obtains∫
W
V n(w)ψr(dw) =

∫
W×Y

{
cn(w, y) + (r̂ + δ)kn(w)− y +

1
1 + r̂

V n−1(w′n(w, y))
}
·

·P (dy|kn(w), ln(w))ψr(dw)

≤
∫
W×Y

{
cr(w, y) + (r̂ + δ)kr(w)− y +

1
1 + r̂

V n−1(w′r(w, y))
}
·

·P (dy|kr(w), lr(w))ψr(dw)

=
∫
W×Y

{
r̂

1 + r̂
Vr(w, y) +

1
1 + r̂

V n−1(w′r(w, y))
}
·

·P (dy|kr(w), lr(w))ψr(dw)

≤
∫
W×Y

{
r̂

1 + r̂
Vr(w, y) +

1
1 + r̂

Vr(w′r(w, y))
}
·

·P (dy|kr(w), lr(w))ψr(dw)

=
∫
W
Vr(w)ψr(dw),

using (20) and the induction hypothesis for the last inequality. 2
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