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Abstract

This paper shows how to cope with a problem of model selection and simpli-

�cation using the principle of coherence (Gabriel (1969): A procedure involving

testing a set of models ought not accept a model while rejecting a more general

model). The mathematical lattice theory is used to de�ne a partial ordering

over the space of considered models. Several examples of partial ordering in

large families of models are given along with a searching algorithm to deter-

mine the best model with respect to chosen criteria.
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Motto: \All models are wrong, but some are useful." (G.E.P. Box)

\Models are to be used, but not to be believed." (H. Theil)

1. Introduction

Since the late 1970s econometricians have voiced increasing concern about

model speci�cation (see Henry, Leamer and Poirier (1990)). While every text-

book on the subject explicitly endorses economic theory as the starting point

and the guiding principle of a speci�cation search, the reader is never told

that all theories are not only highly abstract, but often quite incompatible.

This di�culty is further exacerbated by the very nature of economic research:

typically, the design of the experiment is uncontrolled, and hence the data-

generating process is exceedingly complicated. These facts should uphold the

importance of data analysis in model selection, and should draw attention to

the link between speci�cation analysis, sample evidence and/or the evalua-

tion of forecasting models. Indeed, several authors have already voiced their

dissatisfaction with attributing excessive signi�cance to economic theory, as

opposed to empirical evidence, especially when a time-series approach is uti-

lized (see Diebold (1995) among others). On the other hand, data mining and

model hunting are the most heavily criticized methods, perhaps because they

represent most precisely what researchers actually do (see Henry and Richard

(1982), Kennedy (1998) and Henry, Leamer and Poirier (1990) among others).

Applied econometric research usually proceeds from a widely accepted yet

unproven assumption that all data are at hand regardless of the model, and,

that the basic criterion for evaluating models is their consistency with these
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data2. Since the 1980s, however, discussion of the model building problem has

been informed by the \encompassing" principle, a requirement that a good

model be able to explain results obtained by rival models (see Henry and

Richard (1982) and Mizon (1984) for early references)3.

The goal of this paper is to present an algorithm used in a general search-

ing procedure that will minimize the number of comparisons/tests needed in

model speci�cation. As the basic tool for our approach we use the so-called

principle of coherence (Gabriel (1969)): \A procedure involving testing a set

of models ought not accept a model while rejecting a more general model."

The principle of coherence implies the principle of parsimony: because of dif-

ferences in degrees of freedom, one should use a restricted model that is able

to perform as well as the model of which it is a special case. To apply the

principle of coherence in a searching procedure, we need to de�ne an ordering

over the space of suitable models: that is, we need to impose an algebraic

structure (lattice) over the space of the considered models.

Even though proper de�nition of the coherence principle and implied struc-

tures require a lot of algebra, the procedure we propose is easy to use. In

fact, we need only de�ne a partial ordering in large families of models, which

are usually quite obvious, as we demonstrate in several examples of lattices

2For the sake of simplicity, in this paper we do not assume that data may be available

sequentially, implying that model selection becomes a sequential process.
3Even though encompassing was initially introduced in the context of nested models, this

standard could prove e�ective for a comparison of non-nested models as well, see, e.g., West

(2000).
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corresponding to applied econometric models. Since \encompassing" is asym-

metric and transitive, and therefore de�nes an ordering, our approach lies

between a \classical" searching procedure and \encompassing". In addition,

using the search results, models can be clustered by similarity into groups that

are identical with respect to empirical evidence and a given criteria.

The paper is structured as follows. The principle of coherence and basic

rules for model selection are formulated in the Section 2. The third sec-

tion uses algebraic terminology to formalize the model selection mechanism.

An algorithm for searching within introduced general structure is described in

Section 4, along with several modi�cations for the �nite structures. Several

examples of partial ordering are given in the Section 5. The conclusions of

the paper and directions for further research are presented in the �nal section.

Small appendix contains basic notation and results from lattice theory.

2. Principle of coherence and basic rules for model selection

Let us consider model selection from an arbitrary family M of models. Let

us assume, moreover, that some goodness-of-�t test for testing models in M

is available and is applied for given data set D at some particular signi�cance

level � (usually constant for all models fromM). Thus for each modelm 2 M,

we can apply the test and determine whether it is rejected or accepted4 based

on the data set D. Our main goal is to identify the simplest models in M

that are accepted by our test procedure. The basic tool for this purpose is the

so-called principle of coherence.

4For convenience we say a model is \accepted" instead of the more correct \non {

rejected".
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Principle of coherence
�
Gabriel (1969)

�
. A procedure involving testing a set of

models ought not accept a model while rejecting a more general model.

The principle of coherence is equivalent to the idea that if we deem one

model compatible with given data, it is absurd to consider that there exists

a more general model which is incompatible with the same data. Of course,

a given test may or may not obey this principle, so that coherence can be

regarded both as a property and as a principle. In fact, many commonly used

tests exhibit noncoherence, a typical example being the F -test in multiple

linear regression.

The model selection procedure is based on the following two rules which are

a direct consequence of the principle of coherence.

Rule I. If a model is accepted, then all models that include it are considered

accepted without further testing.

Rule II. If a model is rejected, then all of its submodels are considered rejected

without further testing.

The use of Rules I and II ensures that the principle of coherence will be

respected (provided the coherent test is applied). Their use has one great

practical advantage, namely that the number of models to be �tted is drasti-

cally reduced.

Clearly, it is preferable to use a coherent test if possible. However, some-

times a coherent test may not be readily available or may have low power or

have often undesirable properties. Then it is reasonable to use a noncoherent

test. When the violation of the principle of coherence is rare, we call such

a test mildly noncoherent. For the purposes of our paper we do not need to
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quantify this rather vague notion here. Nevertheless, when a \mildly nonco-

herent" test is used, there may exist an intermediate region consisting of both

accepted and rejected models. As long as the noncoherence is only mild, this

region should be small. However, in such a case the procedure should be per-

formed several times using di�erent starting points to examine the stability of

the solution.

3. Model and main goals of model selection

Let
�
M;�

�
be the lattice5 of models, where ordering � is de�ned in the usual

way, i.e., for any two models m1; m2 2 M,

m1 � m2 if m1 is a submodel of m2: (1)

Analogously we write m1 � m2 i� (if and only if) m1 � m2 and m1 6= m2.

In the sequel we shall work only with the lattices of models
�
M;�

�
with

partial ordering that satis�es condition (1). We shall concentrate on the situ-

ations typically considered in applied econometrics, including regression mod-

els, loglinear models for contingency tables, and autoregressive time series

models.

Let
�
M;�

�
be the lattice of models. Let us suppose that some decision

rule d is available for use; for a given data set D and for every model m 2 M,

d determines whether to reject or accept m based on the data set D. We shall

denote that d(m;D) = r and d(m;D) = a.

5The pertinent concepts from the theory of ordered sets and lattices are presented in the

Appendix. The main references are Birkho� (1967) and Gr�atzer (1978).
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De�nition 1. Let
�
M;�

�
be the lattice of models. We call the decision rule

d-coherent if for any data set D and any two models m1; m2 2 M cannot

occur

m1 � m2 ) d(m1;D) = a & d(m2;D) = r: (2)

(This means we do not accept a simple model while rejecting a more complex

model containing it.)

Let
�
M;�

�
be the lattice of models and m1; m2 2 M any two models.

Let d be the coherent rule and D a given data set. Using de�nition 1 we can

modify Rules I and II for the purpose of model selection/simpli�cation.

Rule I'. If m1 � m2 and d(m1;D) = a, then we also accept the model m2

without testing it.

Rule II'. If m1 � m2 and d(m2;D) = r, then we also reject the model m1

without testing it.

Evidently, when using Rules I' and II', we have the greatest gain if we accept

simple models and reject complex models.

De�nition 2. (a) We call a model weakly accepted and denote it w-accepted

if it includes an accepted model.
�
That is, we deduce this model as accepted

according to Rule I'
�

(b) We call a model weakly rejected and denote it w-rejected if it is included

in some rejected model.
�
That is, we deduce this model as rejected according

to Rule II'
�



8

Remark 1. The main (computational) advantage of Rules I' and II' and Def-

inition 2 is that if we know that model m 2 M is either weakly accepted or

weakly rejected, we do not compute the rule d(m;D), i.e., we do not use the

data to determine/test whether to accept or reject the model.

Main goal. The main goal of our selection procedure is to �nd two sets of

models, denoted A and R in the sequel, A;R � M, such that models in A

are accepted, models in R are rejected, and any other model in M is either

weakly accepted or weakly rejected. In other words, our aim is to classify

all models in M as either accepted /weakly accepted, or rejected /weakly

rejected, respectively. Note that this classi�cation can be done using only

classes A and R.

Figure 1 illustrates how the sets A and R divideM into three disjoint sub-

sets, namely the weakly accepted, weakly rejected, and undetermined models.

Four models (�lled circles) were �tted. The minimal and maximal models in

the undetermined set are shown as hollow circles.

Include Figure 1.

4. Computational aspects

Now we turn to the computational aspects of the procedure. At �rst we

introduce several notions needed in the sequel. As mentioned above, more

details can be found in the Appendix.

De�nition 3. Let
�
M;�

�
be the lattice of models. We call models m1; m2 2

M incomparable if neither m1 � m2 nor m2 � m1. Further, we call a subset of
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models S � M incomparable if any two models m1; m2 2 S are incomparable

(cf also De�nition 10).

De�nition 4. Let
�
M;�

�
be the lattice of models. For any subset of models

S � M, we de�ne max(S) as the set of maximal models in S, and, respec-

tively, min(S) as the set of minimal models in S. This means that

max(S) =
�
s 2 S j s � t) t =2 S

	
& min(S) = fs 2 S j t � s) t =2 S

	
:

Note that t =2 S denotes that the model t does not belong to the set S.

Evidently, for any subset of models S �M the setsmax(S) andmin(S) are

incomparable. Moreover, if S is incomparable, then S = max(S) = min(S).

The basic constructions used to determine which models to test are the so-

called a-dual and r-dual of a given set of models S.

De�nition 5. Let
�
M;�

�
be a lattice of models and S � M. Then the

a-dual of S, denoted Da(S), is de�ned as the set of simplest models in M

which are not contained in any model from S. If S is empty, then we de�ne

Da(S) = min
�
M
�
. Formally the a-dual of S is de�ned as

Da(S) = min
�
m 2 M j m � s; 8s 2 S

	
: (3)

The concept of a-duality is relevant especially when the models in S have

been rejected. More precisely, using the principle of coherence, Da(S) consists

of the simplest models in M that could eventually be accepted given that S

contains rejected models. Moreover, note that a set S and its a-dual Da(S)
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induce a partitioning ofM into two disjoint subsets such that for each model

m 2 M, either m � s for some s 2 S or t � m for some t 2 Da(S).

De�nition 6. Let
�
M;�

�
be a lattice of models and S � M. Then the

r-dual of S, denoted Dr(S), is de�ned as the set of the most complex models

in M that do not contain any model from S. If S is empty, then we de�ne

Dr(S) = max
�
M
�
. Formally, the r-dual of S is de�ned as

Dr(S) = max
�
m 2 M j s � m; 8s 2 S

	
: (4)

The concept of r-duality is relevant especially when the models in S have

been accepted. More precisely, using the coherence principle, Dr(S) consists

of the most complex models inM that could eventually be rejected given that

S contains accepted models. Moreover, note that a set S and its r-dual Dr(S)

induce a partitioning ofM into two disjoint subsets such that for each model

m 2 M, either s � m for some s 2 S or m � t for some t 2 Dr(S). If set S is

incomparable, then Dr

�
Da(S)

�
= Da

�
Dr(S)

�
= S. This relationship justi�es

the term \dual" used for Dr(S) and Da(S).

Taking into account the above de�nitions, we see that the main computa-

tional burden consists of two tasks: �tting the models, and calculating the

duals Dr(A) and Da(R). We do not discuss the �rst of these tasks here be-

cause concept of �t varies from one model to the another and also interfere

with chosen criteria. Insted, we concentrate on the second task. It should

be note, that for large dimensional problems, the computation of duals can

involve considerable calculation. For models speci�ed as graphs, or more gen-

erally for any model family with a binary lattice structure, the calculation
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of the duals is formally equivalent to the dual representation problem. This

procedure was implemented in the analysis of (hierarchic) loglinear models for

contingency tables in the program MIM; see Edwards (1991, 1995). Hor�akov�a

(1989, 1991) contributed considerably to the detailed study of the computa-

tional complexity of this problem.

4.1. General algorithm.

The basic algorithm follows.

(1) The lattice of models
�
M;�

�
, decision rule d and data set D are

speci�ed.

(2) An initial set of models So �M is chosen and its elements tested. The

models are assigned coherently to the classes A and R, i.e.,

A =
�
m 2 So j d(m;D) = a

	
& R =

�
m 2 So j d(m;D) = r

	
: (5)

(3) If A = ; then go to Step 4. If R = ; then go to Step 5. Otherwise

choose randomly between Step 4 and Step 5. We suggest to choose

according to the size of Dr(A)nR and Da(R)nA.

(4) Test the models in Dr(A)nR. If these are all rejected, then stop.

Otherwise update A and R. This means that we add accepted models

A1 from Dr(A)nR to A and rejected models R1 from Dr(A)nR to R,

i.e., we set A = A [ A1 and R = R [ R1. Further, it is necessary to

eliminate the models redundant with respect to the partial ordering

�, i.e. to set A = min(A) and R = min(R). Then go back to Step 3.
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(5) Test the models in Da(R)nA. If these are all accepted, then stop.

Otherwise update A and R. This means that we add accepted models

A1 from Da(R)nA to A and rejected models R1 from Da(R)nA to R,

i.e., we set A = A [ A1 and R = R [ R1. Further, it is necessary to

eliminate the models redundant with respect to the partial ordering

�, i.e., to set A = min(A) and R = min(R). Then go to 3.

The initial set of models So can be chosen arbitrarily. However, since we

require that the assignment of A and R be coherent; the simplest way is to

use such So which is incomparable. If So is incomparable, then in the �rst

step A[R = So and A\R = ;. Evidently, if So is close to the solutions, i.e.,

close to either A and/or R, the solution will be found more quickly.

When a coherent decision rule d is used, the set of accepted models A

is unique. That is, A does not depend on the starting subset So and various

choices between steps 4 and 5 taken during the procedure. With a noncoherent

decision rule d this is not always the case. It is evident that the same is true

for the set of rejected models R.

The reason we test either the models from Dr(A)nR or Da(R)nA is the

following: Let us consider the set of models T whose status has not been

determined yet. That is, the models from T neither contain a model from A

nor are contained in a model from R. Therefore, we can write

T =
�
m 2 M j a � m; a 2 A; or m � r; r 2 R

	
: (6)

Then max(T ) = Dr(A)nR and min(T ) = Da(R)nA. Suppose, moreover,

that at some step the models in Dr(A)nR are tested and all are rejected.
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Then, after updating R, the set Dr(A)nR will be empty. This means that the

status of all models has been determined and the procedure can be stopped.

The same applies if the models in Da(R)nA are tested and all are accepted.

Evidently, it is su�cient to keep (to store) the sets of minimal accepted

models A and maximal rejected models R, since they determine Da(R) and

Dr(A). Moreover, Da(R) and Dr(A) can be updated directly after each step

of the procedure; it is not necessary to recompute them in each step from

scratch.

One modi�cation of the above procedure should be mentioned here. Let

us consider as accepted only the models containing a given model mo 2 M

as a submodel, i.e. we restrict our search to the subfamily of the models

Mo =
�
m 2 M j mo � m

	
. This may be achieved if we initially assign

the models from Dr(mo) to R without any testing. Since for any m 2 M

it holds that mo � m i� m is not contained in some model in Dr(mo), i.e.,

m � s; s 2 Dr(mo), we obtain the desired result. In e�ect we have rede�ned

the minimal model as mo. We apply the same procedure when we want to

perform a restricted search in the subfamilies of the modelsM1 =
�
m 2 M j

m � m1

	
or Mo;1 =

�
m 2 M j mo � m � m1

	
.

However, combining the later restriction to a set of the form Mo;1 is a bit

trickier. Simply assigningDr

�
fm1g

�
toA andDa

�
fmog

�
toR may violate the

coherence requirement, which would cause the procedure to fail. To enforce

coherence we can assign Dr

�
fm1g

�
to A and Da

�
fmog [ Dr(fm1g)

�
to R.

Moreover, using Lemma 3 of Edwards and Havr�anek (1987) we can simplify
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Da

�
fmog [Dr(fm1g)

�
= min

�
m ^m1 j m 2 Da(fmog)

	
;

which, with a certain license, can be abbreviated to Da

�
fmog

�
^m1. Equiva-

lently we can set Da

�
fmog

�
to R and Dr

�
fm1g

�
^mo to A.

4.2. Model selection procedure for (general) �nite lattices.

Evidently, for real applications of the described algorithm the most important

question is how to �nd the duals in an e�cient way. As one might expect, the

least e�ective way is to follow the de�nition directly, while the lattice structure

can help us �nd a more e�cient solution. The following three theorems show

us how.

Theorem 1. Let
�
M;�

�
be a lattice of models and S and T any two subsets

of models from M. Then

Dr(S [ T ) = max
�
s ^ t j s 2 Dr(S) and t 2 Dr(T )

	
(7)

and

Da(S [ T ) = min
�
s _ t j s 2 Da(S) and t 2 Da(T )

	
: (8)

(Here S [ T denotes the union of sets S and T )

Theorem 2. Let
�
M;�

�
be a lattice of models. Let P � M contain all

^-irreducible models �i in M and Q �M contain all _-irreducible models �i

in M. Then for any model m 2 M, it holds that

Dr(m) = max
�
�
i 2 P j m � �

i
	

& Da(m) = min
�
�i 2 Q j �i � m

	
: (9)
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Theorems 1 and 2 illustrate how to �nd duals for any set of models S =

fm1; : : : ; mkg. Let us consider, e.g., the construction of the r-dual Dr(S). At

�rst we must �nd Dr(mi); i = 1; : : : ; k, using (9). The desired solution is then

of the form

Dr(S) = max
�
s1 ^ � � � ^ sk j si 2 Dr(mi); i = 1; : : : ; k

	
: (10)

The corresponding a-dual Da(S) can be constructed quite analogously, i.e.,

Da(S) = min
�
s1 _ � � � _ sk j si 2 Da(mi); i = 1; : : : ; k

	
: (11)

Note that if card
�
M
�
=1, then card(P) and card(Q) can also be in�nite

and we may observe some theoretical and computational problems.

Theorem 3. Let
�
M;�

�
be a �nite lattice of models. For a modelm 2 M, let

there exist other models x1; : : : ; xq 2 M, and, respectively, y1; : : : ; yh 2 M,

such that

m = x1 ^ � � � ^ xq; and; respectively; m = y1 _ � � � _ yh: (12)

Then

Da(m) = min

n[
i

Da(xi)
o

& Dr(m) = max

n[
i

Dr(yi)
o
: (13)

�
Here [i denotes again the union of subsets Da(xi), and respectively, Dr(yi)

�
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4.3. Model selection procedure for �nite distributive lattices.

The situation can be even more simpli�ed if the set of models forms a �nite

distributive lattice as shown in the next two theorems.

Theorem 4. Let
�
X ;�

�
be a �nite distributive lattice. Then for each ^-

irreducible element �i there exists a _-irreducible element �i such that

�i = min
�
x 2 X j x � �

i
	
: (14)

Similarly, for each _-irreducible element �i there exists a ^-irreducible element

�
i such that

�
i = max

�
x 2 X j �i � x

	
: (15)

Proof: See Birkho� (1967), Edwards and Havr�anek (1987) or Gr�atzer (1978).

The correspondence between the joint and meet irreducible elements is

clearly 1-1 mapping. The construction of the algorithm then follows from

the following theorem.

Theorem 5. Let
�
M;�

�
be a �nite distributive lattice of models. Let f�i; i =

1; : : : ; ng denote its irredundant ^-irreducible elements and f�i; i = 1; : : : ; ng

denote its irredundant _-irreducible elements. Then for any model m 2 M

such that

m = _
j

�j; j 2 W1; W1 � f1; : : : ; ng; (16)

we have

Dr(m) =
�
�
j
; j 2 W1

	
: (17)
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Similarly, for any model m 2 M such that

m = ^
j

�
j
; j 2 W2; W2 � f1; : : : ; ng; (18)

we have

Da(m) =
�
�j; j 2 W2

	
: (19)

Let
�
M;�

�
be a �nite distributive lattice ofmodels and S = fm1; : : : ; mkg

� M. Then the way to �nd Dr(S) is to �rst represent each mi in its ir-

redundant joint representation. Then Dr(S) can be calculated combining

Theorems 3 and 5 with (10) and (11). Similarly, to �nd Da(S) we �rst rep-

resent each mi in its irredundant meet representation, and then use the same

arguments as above.

5. Examples

This section demonstrates the lattice structure for some of the most important

models frequently used in applied econometrics and data analysis, namely,

linear regression models, polynomial regression models, analysis of variance

models, hierarchic log-linear models in contingency tables, and ARMA mod-

els. The notation used appears in the Appendix. The arrows in the �gures

show the direction of inequalities; relations following from transitivity are not

marked.

5.1. Linear regression.

Let us consider the linear regression model of the form

Y = �0 + �1A + �2B + � � �+ �qQ+ "; (20)
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with regressors A;B; : : : ; Q. In our search for the set of best regressors we

consider the models fAg; fBg; fABg; fABCg etc., i.e., di�erent subsets of

regressors. The situation for three independent variables A;B and C is rep-

resented in Figure 2. An analogous situation for four independent variables

A;B;C and D is represented in Figure 3. The models in the �gures are de-

noted by A;B;AB;ABC etc.

The ordering � corresponds to the standard inclusion �. Operations join

and meet are de�ned as union and intersection. This is an example of a (very

simple) �nite distributive lattice and the results of subsection 4.3 apply here.

The ^-irreducible elements are the subsets containing exactly q� 1 variables,

i.e., �i =
�
A1; : : : ; Ai�1; Ai+1; : : : ; Aq

	
; i = 1; : : : ; q (regressor Ai is missing in

the model). The _{irreducible elements are the subsets containing just one

variable, i.e., �i = Ai; i = 1; : : : ; q.

Include Figure 2.

Include Figure 3.

5.2. Polynomial regression.

Let us consider a polynomial regression model of the form

Y = �0 + �1A + �2A
2 + �3B + �4AB + � � �+ "; (21)

where the regressors are A;B; : : : ; Q; A2
; B

2
; : : : ; Q

2
; AB;A

2
B : : : . We assume

a hierarchic situation, i.e.,

{ if A2 is in the model then A is also included;

{ if AB is in the model then both A and B are also included;

{ if A2
B is in the model then both A

2 and AB are also included etc.
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The models are described by the sets of maximal elements (regressors) con-

tained in the representation (21); the example of three independent variables

A;B and C is represented in Figure 4.

The ordering � corresponds to inclusion with respect to the set of all re-

gressors contained in the model, not only to the maximal elements. The oper-

ations join and meet are de�ned as union and intersection. The _-irreducible

elements consist of the models with just one element that can be (in our

shorthand notation) written as A;A2
; AC;BC; : : : . The polynomial regres-

sion model is an example of a in�nite distributive lattice. It holds that each of

its elements can be unambiguously expressed using the _-irreducible elements.

Include Figure 4.

5.3. Analysis of variance.

Linear regression and variance component models are of central importance in

statistical and econometrical theory and practice. Here we shall concentrate on

one special case of ANOVA which is used very often. Let us have n parameters

�1; : : : ; �n (for example n mean values of n samples). The hypotheses of

interest are of the forms �i = �k for i 2 ak; k = 1; : : : ; q, where a1; : : : ; aq

de�ne the partition of the set a = f1; : : : ; ng. The lattice is composed of the

elements x together with the ordering � de�ned as follows: x � y if y is

a re�nement of x. The operations join and meet are introduced as

{ The join of x = fa1; : : : ; aqg and y = fb1; : : : ; bsg is given by x _ y =

�
a1 \ b1; a1 \ b2; : : : ; aq \ bs

	
; empty intersections are omitted.
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{ The meet-operation requires a two step procedure. In the �rst step

we form z =
�
a1; : : : ; aq; b1; : : : ; bsg, and in the second step we form

the nonintersecting sets from z.

The models of the form fa1; a2g are _-irreducible and all other models

except fag can be composed of them in an unique way. The models of the

form
�
a1; : : : ; an�1

	
are ^-irreducible (one of ai contains two elements, all

other ai's contain just one element).

The case for n = 3 and n = 4 is represented in Figures 5 and 6. It should

be noted that the case of n = 5 is more complicated, as shown in Figure 7.

Indeed, it can be easily shown that (123; 4; 5) = (12; 3; 4; 5) ^ (1; 23; 4; 5) =

(12; 3; 4; 5) ^ (13; 2; 4; 5). This example shows that we do not have unique

nonredundant representations of the elements using the ^-irreducible elements

here. Thus, the lattice for n = 5 is �nite but not distributive.

Include Figure 5.

Include Figure 6.

Include Figure 7.

5.4. Hierarchic log-linear models in contingency tables.

Let us consider, for example, a contingency table with four categorical vari-

ables A;B;C and D and a model of conditional independence of AB and D

given C. Let pijkl be the probability that A will take the value i, B the value j

etc., and assume that pijkl > 0. Let us consider the model of conditional inde-

pendence of AB and D given C. Then we can use the log-linear representation

of probabilities pijkl > 0 to write
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log pijkl = � + �
A

i
+ �

B

j
+ �

C

k
+ �

D

l
+ �

AB

ij
+ �

AC

ij
+ �

BC

jk
+ �

CD

kl
+ �

ABC

ijk
: (22)

The models are described by the maximal indexes of the generating classes,

e.g., fABC; CDg. Then the lattice operations can be formally de�ned as ope-

rations on the generating classes, i.e., fABC;CDg_fACDg = fABC;ACDg

and fABC;CDg ^ fAB;C;Dg = fAB;C;Dg etc.

The situation with three variables is represented in Figure 8. One can

easily check that fAB;Cg_fAC;Bg = fAB;ACg and fAB;Cg^fAC;Bg =

fA;B;Cg etc. Thus, the lattice also contains the models corresponding to the

collapsed tables, i.e. the models containing only some of the main e�ects. It

is a �nite distributive lattice with the minimal element f0g and the maximal

element fABCg.

The distributive sublattice is very important from the practical point of

view. This lattice contains only the models which have all the main e�ects,

i.e., �A; �B; �C , denoted in Figure 8 by ]�. In this case we can use for the

representation of all models the ^-irreducible elements fAC;BCg; fAB;BCg

and fAB;ACg or the _-irreducible elements fA;BCg; fAC;Bg and fAB;Cg.

In the general case of this special sublattice with general dimension n, the

^-irreducible elements are of the form fa1; : : : ; akg, where each ai contains

exactly n � 1 letters, k � 2. If �i = (a1; : : : ; ak) is such a ^-irreducible

element, then the corresponding _-irreducible element �i = (b; A1 : : : ; As),

where b is a set of those letters missing in a1; : : : ; ak, and A1; : : : ; As are the

other letters. For example, let n = 5 and �i = (ABCD;ABCE;ABDE), then

�i = (CDE;A;B).
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Include Figure 8.

5.5. ARMA models.

Let
�
Xt

	
t
be the autoregressive moving average process ARMA(p; q) of the

form

Xt + a1Xt�1 + � � �+ apXt�p = et + b1et�1 + � � �+ bqet�q; (23)

where
�
et

	
t
is Gaussian white noise. The problem here is to search for the

models with the most parsimonious number of parameters. The lattice corre-

sponding to the ARMA models is quite simple provided we use the principle

of hierarchy. Namely, the elements of the desired lattice are the pairs fi; jg,

i = 0; : : : ; p; j = 0; : : : ; q, consisting of the largest indexes included in the

model. The case for p = 3 and q = 4 is represented in Figure 9.

The ordering is naturally de�ned as fi; jg � fk; lg i� i � k & j � l.

Operations join and meet are de�ned as follows, namely fi; jg _ fk; lg =

�
maxfi; kg;maxfj; lg

	
and fi; jg ^ fk; lg =

�
minfi; kg;minfj; lg

	
. The _-

irreducible elements �i are of the form fi; 0g and f0; jg. The ^-irreducible

elements �i are of the form fi; qg and fp; jg. Moreover, each model can be

unambiguously expressed using the _- and ^-irreducible elements and because

fi; jg = fi; 0g _ f0; jg = fi; qg ^ fp; jg.

The correspondence between _- and ^-irreducible elements is straightfor-

ward. It holds, e.g., that �i = min
�
x j x � �

i
	 �

cf (14)
�
, where �

i = fi; qg

and fp; jg. Thus min
�
x j x � f2; 4g

	
= f3; 0g etc. More generally, fi + 1; 0g

corresponds to the model fi; qg while, quite analogously, f0; j+1g corresponds

to the model fp; jg . Similar relations hold also for �i.
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Include Figure 9.

6. Conclusions

The goal of this paper is to present an algorithm used in a general search-

ing procedure to minimize the number of comparisons/tests needed in model

speci�cation. The procedure introduced typically selects multiple models con-

sistent with the data. It can be argued that this approach faithfully re
ects

inherent ambiguity and, therefore, is advantageous.6 Similarly, Tukey (1985)

argues that \Science is the holding of multiple working hypotheses. . . " when

urging that \. . .methods that give multiple answers would be adopted." Data

may be ambiguous and any selection procedure should re
ect this in its con-

clusions. This ambiguity may { or may not { be subsequently resolved through

the use of sensitive econometric/statistical analysis appropriate to the subject

matter. The main advantage of our approach is that the models can be clus-

tered by similarity into groups that are observationally equivalent with respect

to selected criteria (i.e., a given test). In addition, one can use overall good-

ness of �t as a decision rule in searching procedures rather than nested test

procedures to search within non-nested structures. (see, for example, Antoch

and Hanousek (1999) in which predictive accuracy is used in discrete choice

models.)

6Although in some contexts a formal model is not of primary concern, econometricians

feel obliged to choose one in order to be able to apply the standard arsenal of statistical

methods.
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7. Appendix: Basic notation, definitions and theorems from the

lattice theory

This appendix summarizes the basic elements of lattice theory used in our

paper. For more details the reader can refer to any textbook about algebra,

Birkho�'s or Gr�atzer's monographs are also excellent sources.

De�nition 7. Set X with partial ordering � , i.e. the pair
�
X ;�

�
, is called

a partially ordered set (poset) if the partial ordering is re
exive, antisymmetric

and transitive, i.e., if 8x; y; z 2 X hold x � x; x � y & y � x ) x = y and

x � y & y � z ) x � z.

De�nition 8. The Lattice is the partially ordered set
�
X ;�

�
such that:

(1) For any two elements x; y 2 X , there exists a unique greatest lower

bound denoted by x ^ y.

(2) For any two elements x; y 2 X , there exists a unique lowest upper

bound denoted by x _ y.

Remark 2. Let
�
X ;�

�
be a lattice. We can consider ^ and _ as binary

operations and, as is usual, call them meet and join. Operations join and

meet have the following properties, i.e., for any x; y; z 2 X :

x ^ x = x x _ x = x; (24)

x ^ y = y ^ x x _ y = y _ x comutativity; (25)

(x ^ y) ^ z = x ^ (y ^ z) (x _ y) _ z = x _ (y _ z) associativity; (26)

x ^ (x _ y) = x x _ (x ^ y) = x adsorbility: (27)
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De�nition 9. Lattice
�
X ;�

�
is called a �nite lattice if card X � 1.

De�nition 10. Let
�
X ;�

�
be a lattice. If for two elements x; y 2 X neither

x � y nor y � x, we call elements x and y incomparable. We call subset

Y � X incompatible if any two elements x; y 2 Y are incompatible. fHere

x � y means that element x does not lie before element y and they are not

identical.g

De�nition 11. Lattice
�
X ;�

�
is called distributive lattice if for any x; y; z 2 X

it holds that :

x ^ (y _ z) = (x ^ y) _ (x ^ z) and x _ (y ^ z) = (x _ y) ^ (x _ z): (28)

These two identities are equivalent; see Birkho� (1967), page 11.

De�nition 12. Distributive lattice
�
X ;�

�
is called a boolean distributive lattice

if it containsminimal element ;, maximal element I and, moreover, if for every

element x 2 X there exists just one element, �x, called a complement, such

that

x ^ �x = ; & x _ �x = I: (29)

De�nition 13. Let
�
X ;�

�
be a lattice. Element x 2 X is called meet-

irreducible (^-irreducible) if

x = y ^ z ) x = y or x = z: (30)

De�nition 14. Let
�
X ;�

�
be a lattice. Element x 2 X is called join-

irreducible (_-irreducible) if
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x = y _ z ) x = y or x = z: (31)

We shall denote by �
1
; : : : ; �

n the ^-irreducible elements and by �1; : : : ; �n

the _-irreducible elements of the lattice
�
X ;�

�
. It is clear that in a �nite

lattice
�
X ;�

�
there exists a �nite number of ^- and _-irreducible elements,

but their number generally need not be equal. In an in�nite lattice their

number can be in�nite. Moreover, let
�
X ;�

�
be a �nite lattice. Then each

element x 2 X can be represented either as a join of _-irreducible elements

or as a meet of ^-irreducible elements.

The next theorem shows that even more holds for �nite distributive lattices.

Theorem 6. Let
�
X ;�

�
be a �nite distributive lattice. Then every element

x 2 X has a unique representation as an irredundant meet of ^-irreducible

elements. This means that there exist ^-irreducible elements �1; : : : ; �p 2 X

such that

x = �
1 ^ � � � ^ �

p and 8i x 6= [�1 ^ � � � ^ �
i�1 ^ �

i+1 ^ � � � ^ �
p]: (32)

Similarly, every element x 2 X has a unique representation as an irre-

dundant join of _-irreducible elements, i.e., there exist _-irreducible elements

�1; : : : ; �q 2 X such that

x = �1 _ � � � _ �q and 8i x 6= �1 _ � � � _ �i�1 _ �i+1 _ � � � _ �q]: (33)

Proof: Birkho� (1967), Chapter 9.
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It can be shown that the meet of the form (32) is irredundant i� the set

f�i; i = 1; : : : ; pg is incomparable. Analogously, the join of the form (33) is

irredundant i� the set f�i; i = 1; : : : ; qg is incomparable.
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Figure 1. A step in the procedure.
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Figure 2. Linear regression model (20), q = 3.
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Figure 3. Linear regression model (20), q = 4.
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Figure 4. Polynomial regression.
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Figure 5. Irreducible lattices in analysis of variance, n = 3.
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Figure 6. Irreducible lattice in analysis of variance, n = 4.



34

1,2,3,4,5

1,2,3,45 1,2,34,5 1,2,35,4

1,2,345 1,23,45

� � �

1,2345 12,345 � � �

12345

^-irreduci-

ble models

_-irreduci-

ble models

Figure 7. Lattice in analysis of variance, n = 5.
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Figure 8. Hierarchic log-linear models.
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Figure 9. Lattice for ARMA(3,4) model.
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Figure 1. A step in the procedure.

Figure 2. Linear regression model (20), q = 3.

Figure 3. Linear regression model (20), q = 4.

Figure 4. Polynomial regression.

Figure 5. Irreducible lattices in analysis of variance, n = 3.

Figure 6. Irreducible lattice in analysis of variance, n = 4.

Figure 7. Lattice in analysis of variance, n = 5.

Figure 8. Hierarchic log-linear models.

Figure 9. Lattice for ARMA(3,4) model.


