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Abstract

The present paper investigates the e�ects of incorporating illiquidity in a standard

dynamic portfolio choice problem. Lack of liquidity means that an asset cannot be

immediately traded at any point in time. We �nd the portfolio share of �nancial wealth

invested in illiquid assets given the liquidity premium. Benchmark calibrations imply

a portfolio share of 2�6% in cash. These numbers are in line with survey data and

also with portfolio recommendations by practitioners. We also �nd that long horizon

investors invest more in illiquid assets. Overall, our results suggest that di�erences

between asset classes unrelated to standard price risk may in�uence portfolio shares.

JEL Classi�cation: G11, G12
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Introduction

The purpose of this paper is to examine portfolio investment decisions when

available asset markets di�er in their degrees of liquidity. It is a common obser-

vation that liquidity properties vary across markets. In our view liquidity can

be an important determinant of portfolio investment decisions, complementary

in nature to risk and return. To verify this intuition, we build a simple model to

investigate the e�ect of asset liquidity on optimal portfolio shares of in�nitely

lived investors, and attempt to calibrate it.

Throughout we assume that liquidity refers to the ease with which an asset

can be sold. Thus an asset or asset market is liquid if trade can take place at

short notice in large quantities without a substantial price change. Out of these

three aspects of liquidity, that is at short notice, in large quantities and without

a substantial discount, we will focus on the �rst one. The source of illiquidity of

an asset in our model is the di�culty of buying or selling the asset immediately

when the necessity of trade is realized. Trade of an illiquid asset takes place with

a lag; that is, some time elapses after the order to trade has been submitted to

the market and before trade actually takes place. The waiting time till trade

occurs once an order is submitted serves as a measure of the illiquidity of a

particular asset market (see Lippman and McCall, 1986). In equilibrium, one

expects that a less liquid asset will command a higher yield premium. Nowhere

do we assume that the assets traded in our model are necessarily �nancial assets.

This is partly because many examples of illiquid assets are non-�nancial, and

partly to allow for greater �exibility and more generality.

This paper maintains the view that the utility possibilities set is not time

invariant; rather during certain periods consumption is more rewarding than at

other times. One reason might be that consumption is not in�nitely divisible,

but takes place in large pieces. In that case, the availability of a large piece of

good at a reasonable price might correspond to more rewarding consumption.

Alternatively, the utility stemming from a given level of consumption may vary

over the life cycle (marriage, children, vacation). Thirdly, it may be the case

that from time to time agents have a favorable private investment opportunity.

To capture such e�ects, agents in this paper are sometimes faced with liquidity
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shocks (Diamond and Dybvig, 1983). The liquidity shock is assumed to a�ect

marginal utility, with the consumer having a higher marginal utility for the

duration of the shock.

Given the presence of liquidity shocks and the di�culty of selling illiquid

assets immediately, agents will face a non-trivial trade-o� in their portfolio al-

location decisions. Holding a less liquid asset will yield a higher premium; on

the other hand, the agent will become more vulnerable to liquidity shocks. In-

deed, when a shock comes, the agent with a higher share of illiquid assets in

her portfolio will �nd it more di�cult to liquidate su�cient wealth for current

consumption. The analysis of this trade-o� is the main purpose of the present

paper.

We set up an in�nite horizon model with power utility investors to examine

portfolio investment decisions under illiquidity. As discussed above, the two

main features of this model are the taste shocks and the lag in trade of the

illiquid asset. We characterize the optimal consumption and portfolio decision

in the model, and derive an almost completely analytic solution. The existence

of such a semi-analytic solution is a big advantage of the model. It makes the

analysis easy to perform and allows us to experiment with several calibration

exercises. We rely on simple numerical techniques to get calibration results as

well as comparative statics.

Calibration results imply that liquidity in�uences the portfolio decisions of

an investor with borrowing constraints. Because many of the underlying param-

eters in our model are not directly observable, we experiment with a variety of

speci�cations. Using a range of benchmark parameter values we �nd that the

portfolio share of the liquid asset varies between 2% and 6%. This result is in

line with empirical studies. Bertaut and Starr-McCluer (2001) �nd liquid wealth

to be 3.5% of total assets in aggregate data. They also use survey data from the

Survey of Consumer Finances, to �nd that average liquid wealth to total assets

of U.S. households varies between 4.6% and 5.7% over time. Both estimates are

in the range of our calibration results. Additionally, Elton and Gruber (2000)

point out that the asset allocation recommendations of major investment banks

contain 5% cash for liquidity reasons. This is again in line with our calibration
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results. Angeletos, Laibson, Repetto, Tobacman and Weinberg (2001) report av-

erage liquid assets to total assets to vary between 8% and 16% depending on the

exact de�nition of liquid assets, using data from the 1995 Survey of Consumer

Finances. These estimates are somewhat larger than our results.

On the more qualitative side, we �nd a horizon e�ect on the optimal port-

folio. Long horizon investors hold most of their wealth in illiquid assets, while

short horizon investors prefer cash. This e�ect stems from the di�erent optimal

lifetime consumption patterns of short and long horizon investors. Short hori-

zon investors consume more out of their current wealth, therefore need to hold

a higher share of liquid assets in their portfolio. In contrast to the literature

on optimal portfolios with risky assets (see Campbell and Viceira, 2002), the

horizon e�ects in our model are present in a completely stationary environment,

with no time variation in returns.

A somewhat surprising �nding is that more risk averse investors hold less

cash. To understand why, �rst note that in our model the coe�cient of relative

risk aversion is also the reciprocal of the elasticity of intertemporal substitution.

A consumer with high risk aversion is less willing to accept a steady decline

or growth in consumption over time, so her consumption policy will be such

that her wealth does not change dramatically. In our parametrization this will

imply that a more risk-averse investor consumes less out of her wealth, hence a

lower bu�er stock of liquid wealth is su�cient. There is an opposite e�ect more

related to risk aversion itself. As the liquidity shock hits, the consumer will not

be able to choose her �rst-best level of consumption because of the borrowing

constraint. Such deviations from the unconstrined �rst best consumption are

less tolerated by a more risk-averse investor, so she will tilt her portfolio towards

the liquid asset to avoid them. Nevertheless, the �rst e�ect dominates in our

benchmark parametrization.

Also interesting is how the portfolio share of liquid assets changes in the

liquidity premium. The demand for liquid asset turns out to be inelastic in

the premium. What is surprising, however, is that a higher liquidity premium

implies a higher share of cash in the optimal portfolio. The intuitive reason

is that a higher liquidity premium in e�ect increases the portfolio return of
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the consumer. This in�uences the optimal consumption plan via a substitution

e�ect and an income e�ect. The income e�ect dominates, therefore optimal

consumption increases each period. But in order to �nance that, the agent

needs to hold more liquid assets in her portfolio.

We interpret our �ndings as evidence that non-risk related asset characteris-

tics have some in�uence on investment decisions. It is particularly insightful to

compare our calibration results to Merton (1971) and Merton (1973), who �nds

implausibly high portfolio weight on the risky asset in a calibration exercise. In

contrast our study yields plausible results making use of asset characteristics

not directly related to price risk.

The main driving force of our model is the recurring needs for liquidity.

There are several ways to formalize these needs. In our setup liquidity shocks

directly in�uence the consumer's marginal utility. This formulation is closest to

Diamond and Dybvig (1983); in that paper, as here, the liquidity shock shifts

the consumer's intertemporal marginal rate of substitution. Note that in their

paper the shock is a lot more drastic. Also related is Baldwin and Meyer (1979),

where investment opportunities with di�erent rates of return arrive at stochastic

intervals, and Huang (2001), where agents are forced to leave the economy after

an exponentially distributed lifetime. At a formal level our framework is very

similar to multiplicative models of habit formation (Abel, 1990), but in those

models habit is predetermined, whereas here the liquidity shock is an innovation.

A less standard assumption of the present paper is that trade of the illiquid

asset takes place with a lag. We tend to think about this assumption as a parable

that represents one aspect of illiquidity. One expects that no asset is impossible

to sell immediately if the price discount is large enough. However, if the discount

is too high, it may be optimal to wait, as in Lippman and McCall (1986).

The reason why we focus on this particular aspect of illiquidity is threefold.

First, this formulation yields a tractable model and we are able to �nd a semi-

analytic solution. Second, lags in trade are an empirically relevant aspect of

several asset markets. Third, to our knowledge, this formulation of illiquidity

has not been examined in the literature. A more standard way of modelling

illiquidity is by means of transactions costs. This line of research focuses on
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the price discount �avor of illiquidity. Ultimately, focusing on just one aspect of

liquidity is not satisfactory. More speci�cally, our liquidity shocks would interact

di�erently with transaction costs then they do with trade lags. Trade lags force

the consumer to keep some of her wealth in liquid assets, thereby in�uencing

her optimal portfolio. This is closer to a bu�er-stock interpretation of liquid

wealth. Transactions costs, on the other hand, would make it costly for her to

liquidate her portfolio at any point in time, independently of the liquidity shock

(see Huang, 2001 for similar liquidity shocks and transactions costs).

There are many examples of illiquid �nancial markets. These include small

stocks on developed country exchanges, stock markets in developing countries,

stocks of not publicly traded companies; and also publicly traded long bonds and

emerging country sovereign bonds. Examples of illiquid non-�nancial assets are

privately owned companies and real estate. The large variety of illiquid markets

suggests that liquidity should matter in portfolio decisions and asset pricing.

Numerous authors investigated empirically whether the liquidity risk of a

security is systematically related to its expected return. These studies include

Amihud and Mendelson (1986), Brennan and Subrahmanyam (1996), and Fiori

(2000). The studies tend to �nd, as expected, that less liquid stocks command

a higher return. For assets less liquid than stocks, a study by Benczúr (2002)

attempts to identify empirically part of the premium on emerging country gov-

ernment bonds that is caused by illiquidity.

On the theoretical side, many papers investigate the relationship between liq-

uidity and asset pricing. A close relative to the present paper is Huang (2001),

who also studies the e�ects of liquidity shocks in the presence of illiquid assets.

Illiquidity in that paper is introduced by means of transaction costs. Another

feature common with our model is that the volume of trade in the illiquid asset

can be large. This feature is also present in Lo, Mamaysky and Wang (2001).

Neither of these papers focus on portfolio choice. Other studies include Con-

stantinides (1986), Grossman and Laroque (1990), Dumas and Luciano (1991),

Heaton and Lucas (1996), Vayanos (1998). In all of these papers illiquidity

is captured by means of transactions costs. Additionally, in contrast with the

present study, the volume of trade in these latter papers is small.
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There is also a considerable amount of literature on market microstructure,

that studies the possible determinants of liquidity; Campbell, Lo and MacKinley

(1997) is a good overview.

There has been a recent revival in the literature on portfolio choice, con-

cerning long-horizon investment decisions (see Canner, Mankiw and Weil, 1997,

Campbell and Viceira, 2002). That line of research investigates long horizon

portfolio choice where the risk-return characteristics of assets are time-varying.

The present study is complementary, in that it looks at long horizon portfolio

choice, but in the presence of illiquid assets and time-varying utility possibilities

set.

The rest of this paper is organized as follows. Section 1 presents our model.

We set up the Bellman equation and characterize the optimal policy. We set

up a problem that can be solved analytically, and characterize the solution of

the original problem as a solution to this modi�ed problem. This gives us the

semi-analytic solution. In Section 2 we turn to calibration. Because the solution

is not completely analytic, we need to rely on some simple numerical techniques.

The calibration results are encouraging. Finally, Section 3 concludes.

1. The Model

In this section we analyze the portfolio decision problem of a consumer in the

presence of liquidity shocks, when available assets di�er in their degree of liq-

uidity. We spell out the portfolio optimization problem and derive the Bellman

equation. Due to the nature of illiquidity in our model, the value function ad-

mits a relatively simple functional form. This enables us to �nd a semi-analytic

solution for the vale function as well as the optimal consumption and portfolio

policy. We turn to calibrating the model in the next section.

We study the portfolio decision problem of an in�nitely lived consumer with

exogenous initial wealth and no labor income. Time is discrete. As is custom-

ary, we assume that the per period utility function exhibits constant relative risk

aversion. This ensures that portfolio shares will be independent of wealth. The

consumer maximizes the lifetime discounted value of her utility over consump-
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tion. Her (per period) marginal utility is subject to a multiplicative taste shock,

the liquidity shock. The reasonableness of this assumption has been discussed

in the introduction.

The consumer has access to two assets, a liquid and an illiquid one. Lack of

liquidity is modelled as follows. The market for the illiquid asset operates with

a lag. The consumer is free to place any order to buy or sell at the prevailing

price of 1 at any point in time. However, an order placed at the beginning of

period t will only be executed at the end of that period, after consumption has

already taken place. As we have argued earlier, this formulation captures the

time to sell aspect of liquidity. In what follows, we shall call the illiquid asset

�bond,� and the liquid asset �cash.� This is not to say that we exclusively focus

on �nancial assets, rather, for purposes of exposition only.

We assume that short sale and borrowing are prohibited, and that consump-

tion can only be �nanced out of the liquid asset. This implies a liquidity con-

straint on consumption: at any point in time, consumption cannot be larger

than total cash holdings plus the return earned on asset holdings.

The liquid asset pays a cash interest rate of r per unit on each date. The

illiquid asset pays a dividend of r + π in cash, π being the liquidity premium.

Notice that there is no uncertainty about the price or the cash-�ow of the assets;

for the purposes of this study we have shut down issues related to price risk.

The only reason why the illiquid asset is not a risk free bond is that there is a

lag in the execution of orders: the asset is not perfectly liquid.

The consumer solves the following program

max
{Ct,αt+1}

E0

∞∑
t=0

βtχθ C1−θ
t

1− θ
, (1)

where Ct is consumption at time t, αt+1 is the cash to wealth ratio once the

order placed at time t realizes, β < 1 is the subjective discount factor, χt is the

taste shock at time t, and θ is the coe�cient of relative risk aversion (we assume

θ > 1). Maximization is subject to the budget constraint and the liquidity
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constraints:

Wt+1 = RptWt − Ct

Ct ≤ (αt + rpt)Wt

Rpt = 1 + rpt = 1 + r + (1− αt)π.

Here Wt and αt stand for total wealth (liquid and illiquid) respectively the share

of liquid wealth in the portfolio, both measured at the beginning of period t.

We write Rpt for the gross, and rpt for the net portfolio return from period t to

period t + 1. Although both Rpt and rpt depend on the portfolio share αt, we

suppress this dependence in notation, hoping that it will not cause confusion.

The taste shock χt is independently and identically distributed over time,

and can take two values only:

χt =

γ > 1 with probability µ,

1 with probability 1− µ.

We say that the consumer experiences a liquidity shock in period t if χt = γ.

The assumption that γ > 1 implies that the marginal utility of consumption is

higher during a liquidity shock than at normal times. Therefore the consumer

wishes to consume more during a liquidity shock.

Because the taste shock is independently distributed over time, there are only

two state variables, wealth (Wt) and the share of liquid assets in the portfolio

(αt). Consumers are allowed to choose di�erent consumption levels depending

on their current taste shock. This gives three control variables to be chosen by

the consumer: consumption levels in either of the two states and next period's

portfolio share.

The timing of asset trade, consumption and interest earned is as follows. At

the end of period t − 1, the order placed in that period is executed. Interest

earned on the new portfolio between periods t and t+1 is paid out in advance, at

the beginning of period t. Then the taste shock is realized. Given the taste shock,

the consumer chooses consumption subject to her current liquidity constraint,

and also the portfolio share for next period. At the end of period t, her order is

executed on the market. This timing is illustrated in Figure 1.
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[Figure 1 about here.]

The value function and optimal program of the consumer can be character-

ized by the following Bellman equation:

V (W, α) = max
α′

{
µ max

C1≤(α+rp)W

[
γθ C1−θ

1

1− θ
+ βV (RpW − C1, α

′)

]
+

(1− µ) max
C2≤(α+rp)W

[
C1−θ

2

1− θ
+ βV (RpW − C2, α

′)

]}
. (2)

Here C1 stands for consumption if a liquidity shock occurs, whereas C2 is con-

sumption in the normal state. α′ denotes the fraction of wealth in cash after

this period's order is executed.

The intuition behind the Bellman equation is the following. A liquidity

shock takes place with probability µ. When it occurs, current consumption will

deliver higher marginal utility, hence the multiplier γθ on the per period utility.

Consumption cannot be more than current liquid wealth, hence the constraint

in the maximization. Next period wealth is given by wealth plus interest earned

this period, minus consumption this period (recall that Rp is gross interest).

The second maximization, describing the case when there is no liquidity shock,

can be interpreted similarly. Since the taste shock is independent over time, in

either of the two states the consumer chooses the same optimal portfolio share

for next period, namely α′.

Because both the budget constraint and the liquidity constraint are linear in

consumption and wealth and utility is power utility, the value function will be

homogeneous of degree 1− θ in wealth.

Proposition 1. The value function is homogeneous of degree 1 − θ in wealth,

i.e., there exists a function φ(α) such that

V (W, α) = φ(α)−θ W 1−θ

1− θ
. (3)

Proof. Fix k > 0 any positive constant. Because all constraints are linear, the

optimal contingent plan for initial wealth kW and portfolio α will be just k times

the optimal contingent plan for initial wealth W and porfolio share α. Since per

period utility is homogeneous of degree 1 − θ, it follows that total value with
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initial wealth kW will be equal to k1−θ times total value with initial wealth W .

Therefore the value function of the problem will also be homogeneous of degree

1− θ. It is also a smooth function of W , therefore it has to admit the functional

form indicated in the proposition. The proof is complete.

Homogeneity implies that when the investor chooses her portfolio share for

next period, her choice will be independent of wealth. Hence there is an optimal

portfolio share of wealth to be held in cash. We denote this optimal share by α∗.

Now (3) implies that the value function is maximal for any wealth level exactly

when φ(α)−θ/(1− θ) is maximal. Assuming θ > 1, this amounts to maximizing

φ(α), so α∗ = arg maxα φ(α).

So far we have proved that the optimal policy involves a constant share of

liquid wealth, and also that the value function is separable in W and α. To �nd

the optimal portfolio α∗, we adopt the following methodology. We consider a

subset of all feasible policies, such that the optimal policy is an element of this

subset. We characterize all policies in this subset, and then choose the one that

gives most utility to the consumer. This is going to be the �rst best policy.

In order to make this subset as small as possible while still including the �rst

best, we try to characterize the optimal policy in more detail. As we have seen

above, optimality requires holding a constant portfolio share in the liquid asset.

Here we also argue that under the optimal policy, once a liquidity shock takes

place, the consumer will spend all her liquid wealth on consumption.

This is because the consumer can rebalance her portfolio before the next

period anyway, so holding more cash then needed during a liquidity shock is

unnecessary. Indeed, it is harmful if the liquidity premium π is positive. There-

fore the optimal policy certainly satis�es two conditions: �rst that it maintains

a constant share of the liquid asset, and second that it involves consuming all

liquid wealth during a liquidity shock. The fact that consumption during a liq-

uidity shock is determined by the constraint means that the agent is consuming

less then what her unconstrained �rst best would be; in other words, she would

choose to consume more if more cash were available. But ex ante, she trades o�

this (infrequent) pain caused by the constraint during a liquidity shock against

the yield premium of investing more in the illiquid asset.
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Given our knowledge that the optimal policy is of the above mentioned form,

we can restrict our attention to the set of policies that are also of that form.

Speci�cally, consider contingent plans such that (a) the consumer always rebal-

ances her portfolio to hold a share of wealth α̃ in cash; and (b) she consumes

all her liquid wealth during a liquidity shock, otherwise chooses consumption

optimally. Here α̃ ∈ [0, 1] is any �xed value. As we have argued above, the

optimal policy is an element of this set, attained for α̃ = α∗.

De�nition 1. The modi�ed problem with portfolio share α̃ is the lifetime con-

sumption problem of an agent when she is restricted to

(a) always hold a share of wealth α̃ in cash, and

(b) consume all liquid wealth during a liquidity shock.

For any �xed value of α̃, we can solve solve the modi�ed problem, which

is just solving the optimal problem with two extra restrictions. Because these

two restrictions eliminate two of the three control variables to be chosen by

the consumer in the original problem, the modi�ed problem will turn out to be

considerably easier to solve.

As we have shown above, once we manage to solve the modi�ed problem for

each value of α̃, all we need to do is maximize total value over α̃ to get the

optimal value attainable. The argument of this maximum will give the optimal

portfolio share α∗. The objective is, then, �rst to characterize the value function

of the modi�ed problem for any given α̃, and then to maximize over α̃ to get α∗.

Let Ṽ (W, α̃) denote the value function of the modi�ed problem. Then the

previous arguments are summarized in the following proposition.

Proposition 2. The value of the modi�ed problem is less than or equal to the

value of the original problem, with equality only at the optimal portfolio share

α∗. Formally,

Ṽ (W, α̃) ≤ V (W, α̃) (4)

with equality if and only if α̃ = α∗.

Using homogeneity of the per period utility function, it is easy to show that

the value function of this modi�ed problem will also be homogeneous of degree
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1− θ. Therefore with some suitable function f(α̃), we can write

Ṽ (W, α̃) = f(α̃)−θ W 1−θ

1− θ
. (5)

The next step is to characterize the function f(·). This amounts to solving the

modi�ed problem. Once we have done this, all we need to do is maximize f(α̃)

in α̃ to �nd α∗ and the �rst best rule.

The value function of the modi�ed problem satis�es the following Bellman

equation

Ṽ (W, α̃) = µ

[
γθ C1−θ

1

1− θ
+ βṼ (RpW − C1, α̃)

]
+

(1− µ) max
C2≤(α+rp)W

[
C1−θ

2

1− θ
+ βṼ (RpW − C2, α̃)

]
, (6)

where by assumption C1 = (α̃+ rp)W . Indeed, this is just rewriting the original

Bellman equation (2), imposing the restrictions that the portfolio share has to

be equal to α̃ and that the agent consumes all her liquid wealth during a shock.

In the modi�ed problem only consumption in the normal state, C2, remains

as a choice variable. This consumption level is determined as follows. If the

consumer's liquidity constraint does not bind in the normal state (because she

has enough cash), then C2 will be chosen according to the �rst-order condition

of the problem. From the Bellman equation (6), using the expression about the

functional form (5), we �nd this �rst order condition for C2 to be

C−θ
2,foc = βf(α̃)−θ[(Rp − C2)W ]−θ.

If the liquidity constraint happens to bind, that is, the consumer has too little

cash to consume at the unconstrained �rst best, then she will choose to consume

all of her liquid wealth. This gives

C2,constr = (α̃ + rp)W.

Clearly, C2,foc is only feasible if C2,foc ≤ C2,constr. Hence in general the consumer

will choose C2 to be the smaller of these two consumption levels, that is

C2 = min

{
(α̃ + rp)W,

f(α̃)β−1/θ

1 + f(α̃)β−1/θ
RpW

}
. (7)
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Let α denote the threshold level of the portfolio where the liquidity constraint

becomes binding in the normal state. In other words, α ∈ (0, 1) is the value of α̃

that exactly equates C2,foc and C2,constr. We then have the following proposition.

Proposition 3. Using α determined above, the value function of the modi�ed

problem is characterized as follows. If α̃ < α then f(α̃) is given by

f(α̃) =

[
1− β(1− α̃)1−θ

µγθ + (1− µ)

]1/θ

(α̃ + rp)
1−1/θ. (8)

If α̃ ≥ α then f(α̃) is implicitly determined as the root of the following equation

1− µβ(1− α̃)1−θ − (1− µ)βR1−θ
p

(
1 + f(α̃)β−1/θ

)θ
= f(α̃)θµγθ(α̃ + rp)

1−θ. (9)

Proof. The structure of the proof is the following. We look at two cases de-

pending on whether the liquidity constraint of the agent is binding or not. The

formulas for C2,constr respectively C2,foc give the optimal consumption choice in

these two cases. Once we have the optimal consumption choice, we just sub-

stitute into both sides of the Bellman equation (6) in both cases. Given the

functional form (5), straightforward calculations imply equations (8) and (9) in

the two cases.

We know that for α̃ < α the constraint is binding, hence equation (8) holds.

Similarly, for α̃ > α the constraint is not binding, and so equation (9) holds.

This is the statement of the Proposition.

The last Proposition gives a complete characterization of the consumer's op-

timal choice in the modi�ed problem. In order to �nd the optimal policy in

the original problem, all we need to do is maximize the function f(α̃) implicitly

determined in the proposition. Unfortunately, this last step of the derivation

cannot be performed analytically; we will need to rely on numerical methods

to get f(α̃) for each value of α̃, and then also to maximize in α̃. Nevertheless,

the fact that �nding the solution only takes the numerical maximization of a

function in one variable can be considered a substantial simpli�cation; espe-

cially compared to other numerical methods that rely on iterative procedures

approximating the whole value function.
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2. Calibration Results

In this section we outline our numerical strategy and attempt to calibrate the

model. We start out using a set of benchmark parameter values to solve for

the optimal portfolio share of cash. Then we investigate the e�ects of changing

the underlying parameters on the optimal portfolio. We look at changes in each

parameter separately, and in some cases also look at interaction e�ects.

Our numerical strategy is the following. For each candidate portfolio share

α̃ we solve for f(α̃) using equation (9), that is, assuming that the liquidity

constraint is not binding. Given f(α̃), we verify whether the assumption that

the liquidity constraint is not binding, C2,foc ≤ C2,constr indeed holds. This is

equivalent to checking the condition α̃ ≥ α. If the condition is satis�ed, then

the true value of f(α̃) is indeed given by equation (9). If the condition is not

satis�ed, then it has to be that α̃ < α and hence the true value of f(α̃) is given

by (8).

Once f(α̃) has been determined for each value of α̃, we maximize the function

in the range α̃ ∈ (0, 1). By Proposition 2, the argument α∗ corresponding to the

maximum gives the value function of the original problem. Also, the number

α∗ is just the optimal portfolio share in the original problem. Once we have the

value function, we can easily derive the optimal choice of consumption in the

two states.

Given this simple numerical procedure we can evaluate the predictions of the

model for any set of underlying parameters. In the calibration exercise our most

important target variable will be the optimal portfolio share α∗. We will also

look at the second moment of consumption in order to better match available

data.

2.1. benchmark calibration

Our benchmark set of underlying parameters is reported in Table 1.

[Table 1 about here.]

Whenever possible, we annualized the parameters. These benchmark values can

be interpreted as follows.
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The assumption of β = 0.9 is somewhat unusual, a value of 0.96 is more

common in the macro calibration literature. We have chosen a lower discount

rate because we would like to look at consumers with short horizons, and then

make a comparison with longer horizons. Additionally, relatively low discount

factors (in the range of 0.85-0.90) have been estimated in Carroll and Samwick

(1997).

We take the coe�cient of relative risk aversion, θ to be equal to 2. This is

at the lower end of the range of plausible values for risk aversion. This choice

emphasizes the fact that our results are not driven by high risk aversion. In-

deed, it is going to turn out that increasing θ has the somewhat counterintuitive

implication of decreasing the share of cash in the optimal portfolio.

The annual risk free rate is r = 0.02. This is close to the US average real risk

free rate of 2.02% during the time period 1891�1998, as reported in Campbell

(2001).

The liquidity premium is chosen at a yearly four percent, π = 0.04. Unfor-

tunately there are not many studies that actually come up with the liquidity

premium of a typical household portfolio. For long horizon U.S. treasury bonds,

Campbell (2001) �nds an average excess return not exceeding 1.5%; this he at-

tributes at least partly to liquidity reasons. However, we think that most of

the assets in a typical household's portfolio are less liquid then long bonds, and

accordingly carry a larger yield premium. Indeed, we believe that the e�ects of

illiquidity on returns may be comparable to those of risk. Accordingly we have

chosen 4% as an intermediate value between the term premium of 1.5% and the

equity premium of about 6%.

The length of a time interval is 1 month, that is, ∆t = 1/12. This means that

an order is executed one month after it is placed. This seems like a considerable

amount of illiquidity, partially justifying the high liquidity premium. We shall

see how varying this waiting time changes our results. Again, due to lack of

data on the illiquidity of a household portfolio, we have to rely on varying the

interesting parameters, in this case the time interval, in a reasonable range.

Due to the setup of the model, the length of the time interval is also the

length of the liquidity shock. Although this might seem like a serious weakness,
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it is not. The reason is that if a liquidity shock lasts longer than the waiting

time before trade takes place, the consumer can optimally trade to counteract

her continuing liquidity shock after the trade is executed. Thus a longer liquidity

shock will not change the optimal portfolio substantially.

Liquidity shocks occur once in four years on average, that is µ = 0.25. The

size of these shocks (γ = 11) is such that the agent consumes roughly ten times

as much during liquidity shocks as at normal times.

The last two benchmark values have been chosen by looking at their im-

plied moments on consumption growth. At the current parameter values there

is one month in every four years with a large unforeseen liquidity shock, that

raises monthly consumption to 9.8 times its normal level. This corresponds to a

2.43% standard deviation of annual consumption growth, σ(∆ ln Ct). In Camp-

bell (2001) U.S. aggregate consumption growth is reported to have a standard

deviation of just above 1%. However, the same paper reports international ag-

gregate consumption growth to be considerably more volatile, with standard

deviations ranging from 1.7% (Italy) to 2.9% (France). On top of that, individ-

ual consumption is probably a lot more volatile than aggregate consumption.

Hence our yearly standard deviation of 2.43% can be considered as a reasonable

match with the data.

Solving the model using the numerical procedure outlined earlier, we get

that the optimal portfolio share of liquid assets is α∗ = 5.0%. This number is

roughly in line with empirical studies. Bertaut and Starr-McCluer (2001) �nd

liquid wealth to be 3.5% of total assets in aggregate data, a slightly lower value

than our result. They also look at U.S. household survey data from the Survey

of Consumer Finances (SCF), and �nd that average liquid wealth to total assets

varies between 4.6% and 5.7% over time. Our calibration result is roughly in the

middle of this range. Angeletos et al. (2001) report that average liquid assets

to total assets varies between 8% and 16% depending on the exact de�nition of

liquid assets. They use data from the 1995 Survey of Consumer Finances. These

estimates are somewhat larger than our results.

Additionally, Elton and Gruber (2000) point out that the asset allocation rec-

ommendations of major investment banks contain 5% cash for liquidity reasons.
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This is exactly in line with our calibration results.

2.2. comparative statics

Next we turn to comparative statics. Our strategy is to let one of the parameters

vary while holding the others �xed at their benchmark values. We are interested

in how each of the parameters of the model a�ect the share of the liquid asset

in the optimal portfolio.

First let us examine how the two main building blocks of the model, that is,

the liquidity shock and the market lag, a�ect the optimal portfolio rule. We shall

examine separately how the share of cash varies as we change the magnitude and

frequency of the taste shock (γ and µ) and also how it varies as we change the

degree of illiquidity (∆t). Additionally, to get a better understanding of the

model, we also look at the interaction of these two e�ects. In other words, we

also examine whether illiquidity matters more when liquidity shocks are larger.

[Figure 2 about here.]

Figure 2 shows how the optimal portfolio rule changes as a function of the

size of the liquidity shock (γ). Clearly there is a very strong positive relationship

between γ and the optimal share of cash in the portfolio; moreover, this relation-

ship is close to linear. Intuitively, the larger the size of the shock, the more the

consumer wishes to consume when it actually hits; accordingly, a higher bu�er-

stock of liquid assets is required to �nance that higher level of consumption. As

the size of the liquidity shock vanishes, that is, γ goes to one, the share of liquid

wealth in the portfolio becomes very small.

Because the parameters governing the liquidity shock (its frequency, µ, and

its size, γ) are di�cult to interpret directly, we also report the implied standard

deviation of annual consumption growth. The �gure shows that there is a clear

one-to-one correspondence between the size of the shock and the standard devi-

ation of consumption. A larger liquidity shock, unsurprisingly, gives rise to more

volatile consumption. The magnitude of the standard deviation of consumption,

as depicted in the �gure (in the range of 1−4%), suggests that the size of shocks

we consider here is not unrealistic.
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The exact relationship between liquidity shocks, portfolio choice and con-

sumption volatility depends on the distribution of taste shocks. This in turn is

governed not only by γ, but also by µ, the frequency of liquidity events.

[Figure 3 about here.]

Figure 3 depicts cash holdings to total assets and the standard deviation of

consumption as a function of µ. A striking observation is that both functions are

hump�shaped; they �rst increase with µ and then slowly decrease. The intuition

for why the portfolio share of cash increases with µ for µ small is straightforward.

As liquidity shocks become more frequent, holding too little bu�er�stock hurts

the investor more often, so she will tilt her portfolio towards cash. On the

other hand, once the cash reserve is high enough to �nance an almost optimal

consumption plan, another e�ect starts to set in: more frequent liquidity shocks

raise the e�ective discount factor of the consumer. This is because she expects

to have on average higher marginal utility in the future. Thus it is as if the

consumer became more patient. She then modi�es her optimal consumption

pattern accordingly, consuming less in both possible states. But then a lower

bu�er�stock is su�cient to �nance her lower consumption. A similar intuition

applies as to why consumption volatility is increasing for µ small and decreasing

afterwards.

With the benchmark parameters the porfolio share of cash is maximal for

µ = 0.136, that is, when roughly one liquidity shock occurs in every seven years.

This suggests that even rare events have a sizable e�ect on portfolio choice when

assets are illiquid. It seems, therefore, that consumers hold a signi�cant share

of their portfolio in liquid assets in order to prepare for unforeseen (or, at least

very unlikely) contingencies.

Let us now turn to the question of how the degree of illiquidity a�ects port-

folio choice. The relationship between the waiting time after an order is placed

and the optimal share of wealth held in cash is depicted in Figure 4. When

varying the length of time periods, ∆t, we adjust all the other parameters such

that their annualized value remains �xed at the benchmark level.

[Figure 4 about here.]
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As expected, the more illiquid the asset is, that is, the more the investor

has to wait before her order is ful�lled, the higher the share of liquid assets in

the optimal portfolio. This is because when the investor su�ers from a liquidity

shock, she would wish to consume more during the entire waiting period, and

in order to do that she needs to hold a higher bu�er stock in cash.

One might think that this result strongly depends on the assumption that

the order lag lasts exactly as long as the liquidity shock. However, the result

would not change qualitatively if we allowed the length of the liquidity shock to

be larger than the order lag. The reason for this is that once the taste shock

hits, the investor can immediately place a sell order and consume its proceeds

from the next period on. Thus the only reason for keeping a cash reserve is the

�rst period of the taste shock.

Concerning the actual numbers, note that at the benchmark parameter val-

ues, even a small degree of illiquidity (say, 1 week) has a noticeable impact on

the portfolio decision of the investor.

It is also instrumental to see how the e�ects of asset illiquidity interact with

the liquidity shock. Figure 5 shows the optimal portfolio share of cash as a

function of both the order lag (∆t) and the size of the liquidity shock (γ).

The interesting �nding is that illiquidity matters more when liquidity shocks

are large. That is, the size of the cash reserve increases faster in the degree

of illiquidity when γ is high. For a small liquidity shock, or, at the extreme,

without any liquidity shocks (γ = 1), not even a large degree of illiquidity has a

signi�cant impact on portfolio holdings. This �nding underlines the importance

of time-varying consumption needs in explaining liquidity-related phenomena.

[Figure 5 about here.]

Next we turn to examine how asset returns in�uence portfolio choice. Ulti-

mately, one would wish to assess how the liquidity premium a�ects the demand

for both liquid and illiquid assets.

We �rst look at the impact of a simultaneous increase in the return of the

two assets. In Figure 6 we depict the portfolio share of cash as a function of r,

the return on the liquid asset. Recall that the return on the illiquid asset is just
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the liquid return plus a �xed premium. We can see that cash holding increases

in the interest rate. The reason for that is when the return on the portfolio

increases, this in�uences the optimal consumption plan via a substitution e�ect

and an income e�ect. For θ > 1, the income e�ect dominates, therefore optimal

consumption increases each period. But in order to �nance that, the agent needs

to hold more liquid assets in her portfolio. The relationship between portfolio

return and the demand for cash is practically linear, with a 1%point increase in

return causing 0.23%point increase in demand.

[Figure 6 about here.]

A more exciting question is how the liquidity premium a�ects portfolio

choice. Figure 7 shows that a higher premium on the illiquid asset increases

the demand for cash. This result runs counter to our �rst intuition but can

be explained as follows. On the one hand, as the liquidity premium increases,

so does the total return on the portfolio (recall that the investor holds over

90% of her wealth in the illiquid asset). The income e�ect described above still

raises consumption and hence the required cash holding. On the other hand,

because the illiquid asset is more attractive, the agent wishes to allocate less of

her wealth to cash. It turns out that the income e�ect dominates this trade-o�

in the empirically relevant range, tilting the optimal portfolio towards the liquid

asset. It follows that cash demand is increasing in the liquidity premium. Note,

however, that the size of the increase is considerably smaller than in the case of

a pure income e�ect. A 1%point rise in the excess return of the illiquid asset

brings about a rise of only 0.1%point in the portfolio demand for cash, which is

roughly half of what we found for an overall increase in returns. This suggests

that, as expected, there is some substitution away from cash happening in the

background.

[Figure 7 about here.]

Another question is how risk aversion a�ects the demand for liquid assets.

One might expect that more risk-averse investors hold more cash since they

tolerate less the risk of being constrained by lack of liquidity. However, because
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of the power utility speci�cation, the coe�cient of relative risk aversion, θ, is

also the inverse of the elasticity of intertemporal substitution. Thus varying θ

brings about intertemporal considerations, too. In particular, a consumer with

high θ is less willing to accept a steady decline or growth in consumption over

time. Therefore her optimal consumption policy will be such that her wealth

does not change dramatically. In our parametrization this implies that a more

risk-averse investor will consume less out of her current wealth, hence a lower

bu�er stock of liquid assets is su�cient.

Figure 8 depicts liquid asset holdings as a function of θ, showing that more

risk averse investors hold less cash. This means that the e�ect of a lower in-

tertemporal substitution dominates that of a higher risk aversion in our bench-

mark case.

[Figure 8 about here.]

Finally, let us discuss the e�ects of investor patience. Figure 9 shows that

more patient investors, that is, those with a higher annual discount factor (β)

hold less of their wealth in liquid assets. Consumers with a shorter horizon

(low β) value future consumption less and therefore allocate more of their con-

sumption to the present. But since consumption is �nanced from liquid wealth,

short-horizon investors should hold a larger fraction of their wealth in liquid

form. Note that unlike in Campbell and Viceira (2002), this horizon e�ect

arises in a completely stationary environment.

[Figure 9 about here.]

3. Conclusion

We developed a model of portfolio optimization in the presence of illiquid assets.

Our results suggest that illiquidity is an important factor in portfolio investment

decisions. Our calibration results imply a portfolio demand for cash that is in

the range of 2 − 6% of total wealth. This is in line with asset allocation rec-

ommendations by practitioners and also with survey data from the Survey of

Consumer Finances. Qualitatively, we �nd that long horizon investors invest
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more in illiquid assets, whereas short horizon investors prefer cash. We also

�nd, somewhat surprisingly, that the portfolio share of liquid wealth is increas-

ing in the liquidity premium over the empirically relevant range. Additionally,

even a very infrequent liquidity shock can give rise to a sizeable bu�er stock

cash holding, verifying the intuition that consumers hold liquid assets mostly to

prepare for unforeseen (or at least unlikely) contingencies. Overall the present

study indicates that di�erences across assets unrelated to risk and return may

have a sizeable in�uence on portfolio demand.

Directions for future research may include extending the model to incorporate

price risk and/or risky labor income as well as illiquidity to study the joint e�ect

of these forces on portfolio decision problems. Another desirable extension would

be to close the model and solve for equilibrium.
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Tables

β θ r π ∆t µ γ

0.9 2 0.02 0.04 1/12 0.25 11

Table 1: Benchmark parameter values (annualized)
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Figure 2: Optimal portfolio share and consumption volatility as a function of

the size of the liquidity shock
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Figure 3: Optimal portfolio share and consumption volatility as a function of

the frequency of the liquidity shock
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Figure 4: Optimal portfolio share as a function of the order lag
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Figure 5: Interaction of the order lag and the liquidity shock
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Figure 6: Optimal portfolio share as a function of the return on the liquid asset
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Figure 7: Optimal portfolio share as a function of the premium on the illiquid

asset
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Figure 8: Optimal portfolio share as a function of risk aversion
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Figure 9: Optimal portfolio share as a function of the discount factor
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