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Abstract

Western governments increasingly place more emphasis on non-income dimensions in
measuring national well-being (e.g. the UK, France). Not only averages, but the
characteristics of the whole distribution (e.g. inequalities) are taken into considera-
tion. Commonly used data such as life satisfaction, declared health status or level of
education, however, are ordinal in nature and the fundamental problem of measuring
inequality with ordinal variables exists. Here, a class of multidimensional inequality
indices for ordinal data is characterized by inequality axioms and based on the char-
acterization theorem an inequality measure is proposed. The method ensures that
the index is also attribute decomposable, that is, we can estimate the contribution
to overall inequality from inequality in dimensions and from their association. It was
found for the period 1972-2010 in the US, excluding 1985 that inequality in perceived
happiness contributed more to overall inequality than health inequality. Joint in-
equality in health and happiness was significantly higher in the first half of the study
period (0.3 vs. 0.2). In the 1970s and 1980s most healthy people were also happier
and this positive association increased inequality by around 20 percent. This trend
was reversed in the late 1980s when the contribution of association became negative.
This trend for the healthiest to no longer be the happiest persisted with the exception
of three years.
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Introduction

Governments are increasingly interested in measuring social well-being. Indeed,
several countries, including France, Germany, Italy, Japan, Korea, Spain and the UK,
are now searching beyond GDP to measure progress. In November 2010 the British
Prime Minister launched his happiness index, announcing that in evaluating quality
of life the Government would rely not only on GDP growth but also on non-income
indicators such as education, health and environment. The report on well-being was
published by the Office for National Statistics in July last year. Cameron earlier
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described monitoring people’s well-being as one of the central political issues of our
time. The Canadian government has been working with the UK since 2010 on the
problem of measuring socio-economic progress. In May 2011, in its 50th Anniversary
Week, the OECD launched the Better Life Index which allows comparison of life in
34 countries, based on 11 dimensions - housing, income, jobs, community, education,
environment, governance, health, life satisfaction, safety, work-life balance - applying
their own weight to each dimension. It appears that politicians have responded to
economists’ urges for a multidimensional analysis of well-being (Atkinson and Bour-
guignon 1982; Sen 1973, 1987; Maasoumi 1986; Tsui 1995; Gajdos and Weymark
2005; Duclos, Sahn and Younger 2011). In 2008 the French government created the
Stiglitz-Sen-Fitousi commission to resolve the issues involved with measuring social
and economic performance. The commission’s final report (Stiglitz, Sen and Fitoussi,
2009) underlines the multidimensionality of the concept of well-being, its relation to
non-income dimensions and the importance of including both objective and subjective
measures. The authors write “To define what well-being means a multidimensional
definition has to be used”(p.14), whereas in Recommendation 7 they stress “Quality-
of-life indicators in all the dimensions covered should assess inequalities in a compre-
hensive way.” Yet widely used non-income dimensions such as self-reported health
status (Allison and Foster, 2004; Apouey, 2007; Zheng, 2010) or declared happiness
(Di Tella and McCulloch, 2006; Diener et al., 1999; Frey and Stutzer, 2002; Kahne-
man and Krueger, 2006; Layard, 2005; Oswald, 1997) are ordinal. This is critical as
there has been no published account of the construction of multidimensional indices
to measure inequality in ordinal data. This paper proposes a methodology offering
an opportunity to extend the reach of measurement and relieve this setback.

The standard procedure to avoid the problem of ordinal variables is to assign
numerical values to categories in a manner that is consistent with the order of pref-
erence - a scale. Any increasing transformation of a scale reflects the same ordering
of categories. Then, standard indices such as the Gini coefficient, Atkinson’s in-
dex or the Theil index can be applied. However, as the following example indicates
this procedure is fundamentally flawed. The distributions of self-reported health
status among men π and women ω are, respectively, π = (0.2, 0.2, 0.2, 0.2, 0.2) and
ω = (0.3, 0.2, 0.1, 0.1, 0.3), that is, there are twenty percent men in each health cate-
gory and thirty percent women in the first category. By assumption, higher category
number indicates better health status. We consider two scales: c = (1, 2, 3, 4, 5)
and c̃ = (1, 2, 3, 4, 100); please note that both correspond to the same order of
health categories. Then, under scale c the Gini index for the men’s distribution
is1 GINI(π, c) = 0.26 whereas for women’s distribution we get GINI(ω, c) = 0.31,
hence health inequality is lower among men than women. However, under scale c̃ the
ranking is reversed; GINI(π, c̃) = 0.72 > GINI(ω, c̃) = 0.66. Sensitivity to rescaling
is clearly an undesirable property of standard inequality measures. In other words,
conventional inequality measures should not be used with ordinal data as they are
dependent on the mean which is sensitive to rescaling. Therefore, inequality mea-
surement theory for ordered response data is based on the distribution of a variable

1We calculated the Gini index assuming there are two men in each health category, three women
in the first health category, two women in the second health category and the like. This is valid
since the Gini index is replication invariant.
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rather than its values. The scatter around the median is the key concept involving
qualitative variables. To avoid the problem with scale changes it is often postulated
that inequality measures for ordinal data should be invariant with respect to rescaling
or scale independent.

In this paper inequality indices are proposed which are both multidimensional
and invariant to change of scale and so can be used with several ordinal variables.
An inequality index is not an arbitrary function but a function that meets certain
criteria (axioms), considered reasonable in the context of inequality measurement.
Multidimensional inequality concerns two main ideas: the spread of the distribution
(or, equivalently, we call it majorization) and association between variables. Methods
to represent majorization of ordinal data in the light of inequality measurement and
association are described. The two can be combined further to form an inequality
relation, and finally, a class of inequality measures, consistent with the inequality
relation and characterisable using the other standard axioms (continuity and scale
independence). The additive medial correlation index is defined in the last section as
one such measure.

Considering majorization first, an inequality index is sensitive to distribution
changes that influence spread. In a unidimensional framework it is expressed by
Allison and Foster (AF) as the partial ordering (Allison and Foster, 2004) of two
distributions, as in the following case: Fixing n ≥ 1 and allowing p1,p2 to be two
probability distributions on {1, . . . , n}. p1 6AF p2 if and only if the following three
conditions are met:

(AF1) p1,p2 have identical median states m,

(AF2) P1(j) ≤ P2(j) for any j < m,

(AF3) P1(j) ≥ P2(j) for any j ≥ m,

where P1 and P2 are the cdf’s corresponding to p1 and p2 respectively. Interpretation
of this ordering is intuitive, in particular, p1 6AF p2 when p1 is more concentrated
around the median state than p2. Considering a natural multidimensional extension
of the AF relation, the multidimensional distribution p1 is less scattered than p2 if
the AF relation is true for every dimension.

Now association between variables which cannot apply to unidimensional but
which is a salient feature of multidimensional measures is considered. According
to the multidimensional inequality literature (Tsui, 1999) it is asserted that for two
distributions with the same margins, the distribution with the higher correlation be-
tween variables exhibits more inequality. In the case of categorical data a correlation
coefficient cannot be used; yet, it appears that other coefficients such as Kendall’s
tau, Spearman’s rho or the medial correlation coefficient (later defined) are better
suited for the use with ordinal variables. They are based on a copula which is the
most general measure of association between qualitative variables. As Schweizer and
Wolff (1981) note, “it is precisely the copula which captures those properties of the
joint distribution which are invariant under (...) strictly increasing transformations.”
Copulas are well-known in mathematics and statistics due to the celebrated Sklar’s
theorem (Sklar, 1959) which states that copula and marginal distributions character-
ize joint distribution fully. In this paper we assert that distributions with the same
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margins can be evaluated according to an ordering on copulas; such ordering can be
consistent with Kendall’s tau or Spearman’s rho or another measure of dependence.
The medial correlation coefficient is the measure considered in this work.2 For ex-
ample, if the ordering on copulas is given by the medial correlation coefficient then
the distribution with a higher value of medial correlation coefficient is more unequal
between two distributions with the same margins.

Combining majorization (expressed by multidimensional AF ordering) with asso-
ciation (expressed by the ordering on copulas) an inequality ordering (called CAF),
with which the index needs to be consistent, is obtained. More precisely, two distri-
butions are ordered with respect to CAF if they are either ordered with respect to
multidimensional AF and they have identical copulas or, they are ordered with re-
spect to ordering on copulas and they have identical marginals. It is demonstrated as
a main result that indices which fulfil continuity, normalization, scale independence
and are consistent with inequality ordering (CAF) are continuous increasing functions
of copulas and marginals. With respect to copulas these functions rise according to
the order on copulas (such as, for example, the medial correlation coefficient) whereas
with respect to marginals they rise according to multidimensional AF. Based on the
theorem a specific inequality index, the so-called additive medial correlation index
is proposed. Moreover, this framework (separating majorization and association) al-
lows the introduction of indices that are attribute decomposable. Contributions from
dimensional inequality and association to overall inequality can then be isolated.

Attribute decomposability is a recently introduced topic (first described by Abul
Naga and Geoffard, 2006), however its applications appear far reaching, for example,
if in two regions of a country there is a similar level of multidimensional inequal-
ity arising from different source causes and if in one region educational inequality
dominates over health, policy makers seeking to reduce inequality in both regions
need to apply different policy measures. Attribute decomposability reveals the detail
needed to devise and implement suitable policy. Without attribute decomposability
such insight is absent, since the two regions are indistinguishable in terms of overall
inequality score.

Here the methodology is applied to data on happiness and declared health status
taken from General Social Survey in the United States between 1972-2010. The
sample consists of not institutionalized randomly-selected adults (18+). Throughout
1972-2010 inequality in declared happiness and health status in the US ranges from
0.217 to 0.381. In general, it is higher in the 1970s and 1980s than in the 1990s
and 2000s (0.3 versus 0.2). To a major extent (around 80 percent) inequality is
determined by both health and happiness inequality, what remains is attributed to
association. Health and happiness inequality follow the same trend, with happiness
being dominant except for in 1985. Association is more variable than inequality in
the dimensions considered. Its contribution to overall inequality is reasonably stable
and significantly positive in the first twenty years , but from the late 80s it decreases
dramatically to negative or near zero levels. With a few exceptional years (1998, 2002,
2004) this suggests that the predominant trend in the first twenty years (healthier are
happier) disappears in the last twenty years. This general picture does not apply to

2We explain why we choose this coefficient in in Section 5.

4



2004 when there was a remarkable rise in the association level when its contribution
equalled 0.41, but after which it returned to levels close to zero.

The paper is organized as follows. In Section 1 notation and definitions are intro-
duced. In Section 2 majorization (multidimensional AF) and then association (copula
ordering) are considered. In Section 3 the focus is on the most equal and most un-
equal distributions. In Section 4 axioms are presented and a characterization theorem
is given. This is the main result of the paper. Based on the theorem in Section 5
an inequality index is presented and proved to fulfil the axioms postulated by the
characterization theorem. Section 6 which is empirical is followed by conclusions.
Proofs are collected in the Appendix.

1. Basic definitions and notation

A relation - is a partial ordering if and only if it is reflexive (p - p), antisym-
metric (p1 - p2 and p2 - p1 implies p1 = p) and transitive (p1 - p2 and p2 - p3

implies p1 - p3). In what follows relations which are only reflexive and transitive
will be used, these are quasi-orderings. An ordering is a partial ordering in which all
elements are comparable (a chain). Each such ordering has an associated indifference
relation (being the equivalence relation) defined as p1 ∼ p2 if and only if p1 - p2

and p2 - p1. An element p is considered maximal (minimal) in - if there exists no
element p̃ such that p - p̃ (p̃ - p) and p � p̃. For demonstration purposes two
well-being dimensions are analysed, however, this can be extended to an arbitrary
number of dimensions.3 In the notation unidimensional objects are typed in bold.

Let us consider self-declared health status and education level as two dimensions
of well-being. We call a vector c = (l1, l2, . . . , ln) a unidimensional scale whenever l1 <
l2 < . . . < ln, n is the number of categories. For instance, we have ordered responses to
a well-being dimension such as health and c1 = (1, 2, 3, 4, 5) means that the first health
category is assigned number 1 and the second health category is assigned number 2.
For education level the scale is c2 = (2, 4, 8). The set of bi-dimensional scales is
denoted by C. Continuing the example, c := (c1, c2) = ((1, 2, 3, 4, 5), (2, 4, 8)) ∈ C.
We define I := {1, . . . , n1} × {1, . . . , n2}, nj is the number of categories in the j−th
dimension; j = 1, 2. In our example I := {1, 2, 3, 4, 5} × {1, 2, 3}. Throughout our
article I, nj are fixed unless we explicitly state otherwise.

Now let p be a probability distribution on the set I. Given a scale c ∈ C one
may also consider p as a distribution on c. By defining probability distribution p

on I we make it independent of scale; that is, if there are two different scales with
the same number of categories on each dimension (I does not change) then on both
scales the same p can be considered a probability distribution. Obviously we require∑

i∈I p(i) = 1 and for all i ∈ I, p(i) ≥ 0. We now define marginal distributions. Let
p be a probability distribution on I as above. For j ∈ {1, 2} we put

pj(i) :=
∑

i∈I such that ij=i

p(i), i ∈ {1, 2, . . . , nj} . (1)

For example, for educational level there are three categories hence i ∈ {1, 2, 3} and
the distribution can be the following p2(1) = 0.15,p2(2) = 0.55,p2(3) = 0.30, that

3See coin.wne.uw.edu.pl/mkobus/Multi1extended.pdf .
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is, fifteen percent of the society is in the first category of education level and fifty five
percent is in the second category. We notice that pj is a unidimensional distribution
for which we can define the cumulative distribution function

Pj(k) =
∑
h≤k

pj(k), j ∈ {1, 2} .

In our previous example, we obtain P2(2) = 0.15 + 0.55 = 0.70. In a similar manner
we define a multidimensional cumulative distribution function by

P(i) =
∑

h∈{1,2,...,i1}×{1,2,...,i2}

p(h).

Continuing the example we could have P(2, 4) = 0.40. For each dimension j we define
a median mj which is the number for which Pj(mj−1) ≤ 1/2 and Pj(mj) ≥ 1/2. Let
Λ denote a set of probability distributions with given marginals on all dimensions.
Finally, let inequality index be denoted by I : Λ×C 7→ R.

2. Majorization, association and inequality ordering

Having begun defining ordering that reflects one of two distributions as being
less scattered (majorization), we next offer a suggestion of how association can be
represented using copulas. We follow with an example of association ordering. The
two ideas are then combined by constructing a general inequality relation.

2.1. Majorization
When matrix A is less scattered than matrix B we say that it is majorized by B.

In the literature on unidimensional inequality indices for continuous data the notion
of less spread is expressed by Pigou-Dalton transfer axiom which states that transfer
of resources from the richer to the poorer in such a way not to change their rela-
tive positions, reduces inequality. Hence, individuals are moved towards the mean
of the distribution. Similarly, Allison and Foster (2004) postulate that inequality in
categorical data increases when probability mass is moved away from the median.
They introduce a particular relation on the space of distributions which we term
unidimensional AF ordering 6AF and define formally in the Introduction. This rela-
tion embodies the notion of one distribution being more equal than the other. As a
bi-dimensional counterpart of 6AF we focus on its natural extension.

Definition 1. Multidimensional AF
Fixing m1,m2, let p1,p2 be two probability measures on I respectively. p1 -AF p2 if
and only if

p1
1 6AF p1

2 and p2
1 6AF p2

2

where 6AF is defined by (AF1) - (AF3) and the median states for dimensions 1 and
2 are, respectively, m1 and m2.

In the above definition pj1,p
j
2 are marginals of p1,p2 given by (1). This defini-

tion is a straightforward extension of a unidimensional relation 6AF to a multivariate
framework. In particular, one bivariate distribution is less scattered, if it is so for each
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dimension. Further, if marginals are concentrated at one point then the joint distri-
bution shows the same. The converse also holds true, that is, if a joint distribution is
concentrated at one point then so are the marginals. The tendency is, therefore, for
a better concentration of the marginal distributions to imply a better concentration
of the joint distribution.

2.2. Association
As already mentioned association is a salient feature of multidimensional distri-

butions. Generally, the greater the association the greater the tendency to inequality.
In this section we show that in the case of ordinal data this concept is well-captured
by the ordering on copulas which have the advantage of being scale-invariant. Cop-
ulas were popularized by Sklar (1959) to study the dependence structure between
random variables. We know from Sklar’s theorem that the copula of a distribution p
is the only information necessary to recover p from its marginal distributions p1,p2.
Formally, a bi-dimensional copula cop : [0, 1]2 7→ [0, 1] is a function such that

P((j1, j2)) = cop
(
P1(j1),P

2(j2)
)
. (2)

Let Cop denote a function which given a multidimensional distribution returns its
copula.4

In order to understand copulas and how they differ from cdf better it is easiest to
consider an example. In this setting it is impossible to show the invariance of copulas
with respect to increasing transformations since probability distribution on I has al-
ready been defined, irrespective of scale. Therefore, we need to move away from the
framework and assume that p is a probability distribution on a given scale. In the
original distribution (Distribution (a) in Figure 1) there are two dimensions: health
and education level with respectively (1, 2) and (3, 5) as categories. The copula is
constructed as follows: we calculate cop(0.5, 0.5); here the first 0.5 is the probability
value in, say, the health dimension, so in Distribution (a) it corresponds to health
category 1; second 0.5 is the probability value in education distribution, so in Dis-
tribution (a) it corresponds to education category 3; since P(1, 3) = 0.5 we obtain
cop(0.5, 0.5) = 0.5. Now if we change the scale in which we measure health from 1 and
2 into, respectively, 10 and 20 (Distribution (b)) the cdf changes from P(1, 2) = 0.5
into P(1, 2) = 0, whereas the copula does not change, namely, the copula calculated
at a point (0.5, 1) is still 0.5. This is what is meant when it is stated that the copula
is invariant to increasing transformations of variables (cdf is not). Therefore, the
copula is a particularly useful concept when applied to measure association between
variables for which only order matters.

Let association be captured by � a total ordering on the set of copulas; ∼ is its
indifference relation. The specific � we will use extensively later on is the ordering
on copulas induced by the medial correlation coefficient denoted by �medial. It was
proposed by Blomqvist (1950). In our setting it has the following form.

4Technical problems related to the fact that in the discrete setting such as ours there are infinitely
many copulas associated with a given distribution are dealt with in the Appendix.
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Figure 1: The difference between copula and cdf.

Definition 2. Medial correlation coefficient

β(p) =

m1−1∑
i=1

m2−1∑
j=1

p((i, j)) +

n1∑
i=m1+1

n2∑
j=m2+1

p((i, j))

−
m1−1∑
i=1

n2∑
j=m2+1

p((i, j))−
n1∑

i=m1+1

m2−1∑
j=1

p((i, j)).

The first two expressions indicate a situation in which two variables values fall on
the same side of their respective medians, namely, either below the median or above
the median. The higher the probability mass associated with these two cases the
higher the association is between two variables. In contrast, the last two expressions
rise when two variables values fall on opposite sides of their medians. Association is
then lowered. Obviously, higher coefficient value implies more association between
two dimensions.

2.3. Inequality ordering
We combine majorization and association by defining the relation <CAF as follows.

Definition 3. p1 <CAF p2 if either

(CAF1) p1 -AF p2 and Cop(p1) ∼ Cop(p2).

or

(CAF2) Cop(p1)� Cop(p2) and p1,p2 have the same marginal distributions.

There are two cases in which distribution p1 is more equal than p2 in the sense of
<CAF . When the degree of dimensional association is identical for two distributions,
distribution p1 is more equal than p2 if it has less spread. On the other hand, if
both distributions are equally scattered then the more equal is the distribution that
has lower association between dimensions. In other words, with association fixed,
equality is markedly based on majorization and also, leaving majorization unaltered
it is association that determines which distribution is the more equal.
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Figure 2: Violation of transitivity.

Relation <CAF is reflexive because of reflexivity of multidimensional AF rela-
tion, but typically, <CAF is not transitive. To see why, we consider a simple intu-
itive example (Figure 2) of three distributions. Since Cop(p1) ∼medial Cop(p2)

5 by
(CAF1) p2 <CAF p1. On the other hand, p2 and p3 have the same marginals and
Cop(p3) �medial Cop(p2)

6, hence by (CAF2) p3 <CAF p2. There is no reason how-
ever to have p3 <CAF p1; neither (CAF1) nor (CAF2) applies. In order to remove
non-transitivity we introduce the following definition.

Definition 4. -CAF is a transitive relation induced by <CAF , that is, -CAF is the
intersection of all quasi-orderings containing <CAF .

In other words -CAF is “the smallest order” compatible with <CAF .7

3. The most equal distribution and the most unequal distributions

We will now consider two distinctive distributions, namely, the most equal and
the most unequal distribution. We start with the most equal distribution. We argue
that the best distribution in the set Λ with respect to inequality is p̂ such that

p̂1(m1) = 1 and p̂2(m2) = 1. (3)

Namely, the best distribution occurs when all probability mass is concentrated in the
median state on each marginal. Let us note that it is trivial to confirm that such a
distribution is unique and concentrated in one point: i = (m1,m2). If mass assigned
to a point were different than i then, clearly, some marginal would vary from that
prescribed by (3). This distribution is optimal with respect to -AF as each marginal
is minimum with respect to unidimensional AF ordering. For example, we might
consider I = {1, 2, 3, 4, 5} × {1, 2, 3}, setting m1 = 4,m2 = 2. According to (3) the
most equal distribution among distributions with prescribed medians is p̂((4, 2)) = 1
and is otherwise zero. We note that p̂ is the only minimal element of -AF and -CAF .8

5The medians of p1 and p2 are second row and second column; β(p1) = 1
9 + 1

9 −
1
9 −

1
9 = 0 and

β(p2) = 1
16 + 1

16 −
1
16 −

1
16 = 0.

6The medians of p3 and p2 are second row and second column; β(p3) = 0 + 0− 1
8 −

1
8 = − 1

4 .
7Such transitive relation can be easily constructed. Please see

coin.wne.uw.edu.pl/mkobus/Multi1extended.pdf .
8Please note that the medians are fixed.
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Let us now study the most unequal distribution. In a unidimensional setting the
distribution which assigns half of the probability mass to “the worst” category and the
other half of mass to “the best category” is typically considered as the most unequal.9
We argue that the worst distribution in the set Λ is p̌ such that

p̌1(1) = p̌1(n1) =
1

2
and p̌2(1) = p̌2(n2) =

1

2
and β(p̌) = 1. (4)

That is, we require p̌ to be such that each of its marginal distributions has “maxi-
mal unidimensional spread” and the lowest association. For example, let the number
of categories on both dimensions be three, that is, n1 = n2 = 3. Then all such 3× 3
distributions can be parametrized by k as in Figure 3, where k ∈ [−1

4
, 1
4
]. Thus in the

set of 3× 3 distributions, the most unequal distribution is the one for which k = −1
4

because then medial correlation coefficient equals 1. That is, the higher association
the higher inequality.

Figure 3: A parametrization of all 3× 3 distributions.
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4. Characterization theorem

In this section the multidimensional inequality axioms are set out. These axioms
parallel standard axioms used in inequality measurement.

CON I : Λ×C 7→ R is a continuous function.

SCALINDEP I(p, c1) = I(p, c2) for any c1, c2 ∈ C.

NORM1 I(p, c) ≥ 0 and I(p̂, c) = 0 for any c ∈ C.

NORM2 I(p, c) ≤ 1 and I(p̌, c) = 1 for any c ∈ C.

EQUAL (p1 -CAF p2)⇒ (I(p1, c) ≤ I(p2, c)) for any c ∈ C.

(CON) states that an index is continuous. The (SCALEINDEP) postulates that an
index is independent of scale.10 Thus the problem of scale changes influencing the

9This is distribution Π̌ in Abul Naga and Yalcin (2008).
10The analysis could also be conducted for a weaker requirement, namely, than an in-

dex is invariant with scale changes (scale invariance). For further details please refer to
coin.wne.uw.edu.pl/mkobus/Multi1extended.pdf .
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ranking of two distributions no longer exists. The (NORM1) normalizes the possible
range of values an index admits by assigning lowest value (zero) to the most equal
distribution. In addition, the (NORM2) requires that the index admits the highest
value for the most unequal distribution. The (EQUAL) says that an index must rank
distributions according to equality ordering -CAF . We are now ready to derive the
following theorem.

Theorem 1. I : Λ×C 7→ R fulfils CON, NORM1, NORM2, EQUAL, SCALINDEP
if and only if I is of the form

I(p) = f(Cop(p),p1,p2), (5)

where f is a continuous increasing function. Along the first coordinate it increases
with respect to � and on the coordinates 2, 3 with respect to (unidimensional) 6AF .
Moreover, f(p̂) = 0 and f(p̌) = 1.

Theorem 1 states that indices satisfying the postulated axioms admit a particular
functional form. This result facilitates the choice of an inequality measure, namely, a
given measure needs to be a member of the (5) family of measures. Otherwise one of
the axioms does not hold. A particularly attractive property of the proposed index
(and in fact, of all the indices characterized in Theorem 1) is attribute decomposabil-
ity, in so far as we can distinguish between inequality arising from association and
from marginal distributions. In fact, equation (5) can be viewed as the special case
of the definition of the attribute decomposability of inequality indices, namely, an
index is attribute decomposable if it can be represented as a function of inequality in
marginals and some measure of association between marginals.

5. Additive medial correlation index

In this section we present a concrete index that is characterized by Theorem 1.

Definition 5. Additive medial correlation index

I(p) = A1β(p) + A2I1(p1) + A2I2(p2), (6)

where
A1 =

n1 + n2 − 2

n1n2 − 1

A2 =
(n1 − 1)(n2 − 1)

2(n1n2 − 1)

I1(p1) =

∑
j<m1

P1(j)−
∑

j≥m1
P1(j) + n1 −m1 + 1

1
2
(n1 − 1)

I2(p2) =

∑
j<m2

P2(j)−
∑

j≥m2
P2(j) + n2 −m2 + 1

1
2
(n2 − 1)

.
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The unidimensional indices I1(p1), I2(p2) both denote an absolute value index
defined in Naga and Yalcin (2008). Kobus and Miłoś (2011) proved that this index is
the only inequality index for ordinal data known in the literature that is decomposable
by population subgroups. Obviously, the additive medial correlation index has the
form given by (5). It is continuous and also scale independent. What is less obvious
is that it satisfies the normalization axioms. Although clearly I(p̂) = 0 and I(p̄) = 1,
indeed, we also need to show that these are the minimum and maximum values of the
index. The weights in the index were chosen to ensure that the following condition
is satisfied.

Theorem 2. Index defined in (6) fulfils (NORM1) and (NORM2).

Normalization proved to be the most difficult with other association measures
such as Kendall’s tau or Spearman’s rho. Once bi-dimensional scale is fixed, it is not
possible to find a distribution for which the value of one is admitted. This is caused by
the substantial chance of obtaining a pair which is neither concordant nor discordant.
Such a pair is the result of the discrete nature of distributions, it is well-known that
such a situation cannot happen for any continuous distribution. On the other hand,
medial correlation coefficient does not have this unfavourable property.

6. Empirical application

The methodology was applied to the data on happiness and declared health status
taken from General Social Survey in the United States between years 1972 and 2010.
The General Social Survey is a data bank of demographic characteristics and opinions
of residents of the United States ranging from race and gender issues to religion.
The survey is conducted via face-to-face interview and administered by the National
Opinion Research Center at the University of Chicago. The sample is of randomly-
selected adults (18+) who are not institutionalized. The survey started in 1972 and
was conducted every year until 1994 (except in 1979, 1981, and 1992). Since 1994,
it has been conducted every other year. As of 2010 twenty-eight national samples
with 55,087 respondents and 5,417 variables had been collected. The variables were
weighted appropriately to account for the black oversample in some years, problems
with randomization procedures and the number of adults in the household.11 The
variables to point are as follows: happy (Taken all together, how would you say
things are these days - would you say that you are very happy, pretty happy, or
not too happy?) and health (Would you say your own health, in general, is excellent,
good, fair, or poor?). The time trends for these two variables are presented in Figures
4 and 5. Through the whole period the median category of the happiness distribution
was ‘pretty happy’, whereas the median of the health distribution was ‘good’. The
weights were the following: A1 = 5

11
, A2 = 6

22
.

Figure 4 indicates that the proportion of not too happy increased in the last
decade in comparison with the 90s and 80s and returned to the levels observed in the
70s. Indeed, in the 1970s and 2000s, on average, 12 percent of the sample was not

11Strictly speaking, the weight variables we use are the following: oversamp, formwt and wtssall.
More on sampling design and weighting can be found in Appendix A of Cumulative Codebook of
General Social Survey available at http://www.norc.uchicago.edu/GSS+Website/Documentation/.
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Figure 4: General happiness by year in the US (1972-2010)

Source: General Social Survey database.

Figure 5: Condition of health by year in the US (1972-2010)

Source: General Social Survey database.

too happy, whereas in the 80s and 90s the average was around 10 percent and some
years it was as low as 7.7 percent. On the other hand, a different declining trend
with individuals who declare themselves as very happy is observed; in the 1970s very
happy individuals constituted around 35 percent of the population, whereas in the first
decade of the new millennium this number was close to 32 percent. With respect to
health distribution (Figure 5) the greatest variability concerns those with fair health,
the percentage ranges from 7 to more than 21. The percentage of individuals with
poor health was slightly reduced, from 6 percent on average in the 1970s to around
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5 percent between 2000 and 2010. There was a significant rise (by around 6 percent)
in the proportion of those with good health for the last 40 years.

The values of the multidimensional index, the happiness and the health inequali-
ties and the medial correlation coefficient are presented in Figure 6. The value of the
additive medial correlation index varies between 0.217 (1988) and 0.381 (2004). In-
equality was fairly stable until the late 80s when it decreased significantly. Since then,
excluding the years 1998, 2002 and 2004, joint inequality in happiness and health is
lower than it used to be throughout most of the 1970s and 1980s. Except for the
year 1985 inequality in happiness is higher than health inequality throughout. Also
health and happiness inequality were much less variable than the association which
may explain why the time trend of the additive medial correlation index mimicked
the behaviour of the association measure. On the other hand overall inequality score
is for the whole period significantly higher than the association coefficient, which im-
plies that inequality in marginals to a large extent determines the behaviour of the
former. Indeed, this is what we observe when analyzing the contributions of happi-
ness, health and medial correlation coefficient presented in Figure 7: the contribution
of association is the highest only in 2004. The contribution of variable happy evolves
between 0.321 (year 2004) and 0.547 (year 1990), whereas the contribution of variable
health changes between 0.268 (year 2004) and 0.511 (year 1990). Except for 1985,
inequality in perceived happiness contributed more to overall inequality than inequal-
ity in declared health status. The contribution of medial correlation coefficient varied
between minus 0.06 (year 1990) and plus 0.41 (year 2004). Here minus means that
association lowers inequality.

Figure 6: Inequality in happiness and health in the US in years 1972-2010

Source: General Social Survey database.

The Figures above show that until 1987 the contribution of association remained
relatively stable at around plus 0.17 - 0.23. It fell in 1984, following which different
trends of health and happiness can be observed (Figure 5); the percentage of those
with excellent health reduced as did the percentage of individuals declaring poor
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Figure 7: Contribution of happiness, health and association to overall inequality in
the US in years 1972-2010

Source: General Social Survey database.

health, whereas as Figure 4 showed that number of both “very happy” and “not too
happy” rise. The following year 1985 brought a reversal of these tendencies and was
the only year in which health inequality prevailed over happiness inequality. Until
1988 both health and happiness were associated positively; those with poor health
did not feel very happy and those with excellent health were happier. In 1988 the
association dropped markedly and became negative with its contribution. It then
grew to became as large as 0.41 in 2004 and this, as already stated, was the only year
when association contributed more to inequality than dimensions. Afterwards, again,
the association returned to near previous values.

In the year 2004 we observe an exceptionally high value of medial correlation
coefficient. This looks almost like an outlier, therefore we studied this year more
closely. In 2004 a new approach to demographic sampling frame construction was
introduced, but this is taken into account by the weighting system. Also the approach
was continued and we do not observe anything unusual (comparing to the 1990s) in
years 2006-2010. We analyzed the raw data using an indicator variable to indicate
whether observations lay on the same or on the opposite sides of the medians. In
particular, the indicator variable assigned one to observations for which values of
both happiness and health lie on the same side of the medians (are both lower or
higher than its medians), zero when either health value or happiness value is the
median value and minus one if the two values were on opposite sides of the median
(i.e. health value was higher than its median value whereas happiness was lower).
If we look at the percentile distribution of this indicator variable then in most years
value one is admitted at around eightieth percentile, whereas in the year 2004 value
one appears at the fiftieth percentile, so this really means there are substantially more
cases in 2004 in which both happiness and health values lie on the same sides of their
medians, that is, when they are positively correlated.
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To sum up the observations, throughout 1972-2010 inequality in declared happi-
ness and health status in the US is between 0.217 and 0.381. It was the lowest in 1988
and the highest in 2004. Yet on average it was greater in the first two decades of the
considered period than in the last twenty years. The contributions of health inequal-
ity and happiness inequality follow the same time pattern with happiness inequality
contributing more to overall inequality except for year 1985. The degree of association
between happiness and health was less stable than both inequality in happiness and
inequality in health and similar to its contribution. Until the late 1980s association
was mildly positive and then, with the exclusion of years 1998, 2002, 2004 it became
either negative or zero meaning that the healthiest were not necessarily the happiest.
This was a reversal of the tendency that was prevalent in the 1970s and most of the
1980s.

Concluding remarks

In the introduction several initiatives undertaken by Western countries to im-
prove measurement of social progress were mentioned. These initiatives prove that
politicians are finally responding to economists’ and social scientists’ calls to look
beyond GDP in order to estimate a nation’s state of well-being. These pleas are doc-
umented in the extensive literature that has evolved over recent decades. As noted by
McGillivray and Shorrocks (2005), twenty years ago, the comparison of living stan-
dards across countries was achieved by comparison of average incomes, whereas now
it almost always includes non-income dimensions of well-being. Empirical research
reveals factors that determine income inequality (social security provision, minimum
wage access) that do not necessarily coincide with determinants of educational in-
equality, namely public provision of schools and child labour legislation (Jensen and
Skyt Nielsen, 1997). Unlike income however, which is a continuous variable, many
welfare dimensions are ordinal. Such is the case with happiness, health, occupational
status and educational attainment. Indicators of living conditions such as drinking
water sources and types of sanitation are evaluated differently for levels of quality;
spring water is higher quality than collected rainwater, but is lower quality than public
tap; latrines are classed as inferior to ‘flush to piped sewer systems’. In measurement
exercises, these categories are typically assigned numerical values consistent with the
order of preference, to enable researchers to use standard inequality indices, yet such
practice is inherently flawed. In this article we show how inequality in several ordinal
variables can be measured.

Many research questions remain open. Firstly, there may be alternative definitions
of multidimensional majorization ordering. Secondly, multidimensional AF ordering
might be extended to allow for distribution comparison with different median states.
In the unidimensional case Naga and Yalcin (2010) have already proposed methodol-
ogy for comparison of distributions irrespective of their medians. Finally, dependence
on association measure does not necessarily have to be explicit, nevertheless this may
compromise attribute decomposability.
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Appendix

Theorem 1

Proof. Let us first observe that if I is of the form (5) axioms are obviously satisfied.
We assume that the axioms are satisfied. SCALEINDEP ensures that I(p, c) = Φ(p)
for some function Φ. Let us first take a function fulfilling the conditions above. To
check that it is increasing with respect to -CAF it is enough to check that it is
increasing with respect to cases listed in Definition 3. We start with (CAF1); let
p1,p2 be such that p1 -AF p2 and Cop(p1) ∼ Cop(p2). From the second prop-
erty we know that f(Cop(p2),p

1
2,p

2
2) = f(Cop(p1),p

1
2,p

2
2) while the first property

gives us f(Cop(p1),p
1
2,p

2
2) ≥ f(Cop(p1),p

1
1,p

2
1) and finally f(Cop(p2),p

1
2,p

2
2) ≥

f(Cop(p1),p
1
1,p

2
1). (CAF2) is even simpler as it is basically equivalent to the fact that

f is increasing with respect to the first coordinate. In this way we proved that the or-
dering induced by f contains <CAF and also -CAF (Definition 4). By Uncop(c,p1,p2)
we denote a function which produces a distribution p such that Cop(p) = c and the
marginal distributions are given by (p1,p2). Thus f = h◦Uncop gives us the required
representation.

Theorem 2

Proof. First we will prove that minimum of the additive medial correlation index is
attained at the distribution concentrated at (m1,m2): p̂. To this end let us compute
a derivative of I with respect to p((i, j)). To ease the notation we work with Ĩ :=
(n1n2 − 1)I. We have the following cases

• i < m1, j < m2; ∂Ĩ
∂p((i,j))

= n1+(n1 − 1) (−j + 2m2 − n2 − 1)+(−i+ 2m1 − n1 − 1)

(n2 − 1) + n2 − 2.

• i = m1, j < m2; ∂Ĩ
∂p((i,j))

= (n1 − 1) (−j + 2m2 − n2 − 1)+(m1 − n1 − 1) (n2 − 1) .
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• i > m1, j < m2; ∂Ĩ
∂p((i,j))

= −n1 + (n1 − 1) (−j + 2m2 − n2 − 1) + (i− n1 − 1)

(n2 − 1)− n2 + 2.

• i < m1, j = m2; ∂Ĩ
∂p((i,j))

= (n1 − 1) (m2 − n2 − 1)+(−i+ 2m1 − n1 − 1) (n2 − 1) .

• i = m1, j = m2; ∂Ĩ
∂p((i,j))

= (n1 − 1) (m2 − n2 − 1) + (m1 − n1 − 1) (n2 − 1) .

• i > m1, j = m2; ∂Ĩ
∂p((i,j))

= (n1 − 1) (m2 − n2 − 1) + (i− n1 − 1) (n2 − 1) .

• i < m1, j > m2; ∂Ĩ
∂p((i,j))

= −n1 + (n1 − 1) (j − n2 − 1) + (−i+ 2m1 − n1 − 1)

(n2 − 1)− n2 + 2.

• i = m1, j > m2; ∂Ĩ
∂p((i,j))

= (n1 − 1) (j − n2 − 1) + (m1 − n1 − 1) (n2 − 1) .

• i > m1, j > m2; ∂Ĩ
∂p((i,j))

= n1 + (n1 − 1) (j − n2 − 1) + (i− n1 − 1) (n2 − 1) +
n2 − 2.

Let p be a distribution with medians (i, j) 6= (m1,m2). We consider the probability
distribution such that p((i, j)) := ε, p((m1,m2)) := a − ε and arbitrary values in
other points. We define f(ε) = Ĩ(p) and calculate its derivative. We have f ′(ε) =

∂Ĩ
∂p((i,j))

− ∂Ĩ
∂p((m1,m2))

. Hence we have the following cases:

• i < m1, j < m2; f ′(ε) = n1−(n1 − 1) (m2 − n2 − 1)+(n1 − 1) (−j + 2m2 − n2 − 1)−
− (m1 − n1 − 1) (n2 − 1) + (−i+ 2m1 − n1 − 1) (n2 − 1) + n2 − 2 ≥ 0.

• i = m1, j < m2; f ′(ε) = (n1 − 1) (−j + 2m2 − n2 − 1)−(n1 − 1) (m2 − n2 − 1) ≥
0.

• i > m1, j < m2; f ′(ε) = −n1−(n1 − 1) (m2 − n2 − 1)+(n1 − 1) (−j + 2m2 − n2 − 1)+
(i− n1 − 1) (n2 − 1)− (m1 − n1 − 1) (n2 − 1)− n2 + 2 ≥ 0.

• i < m1, j = m2; f ′(ε) = (−i+ 2m1 − n1 − 1) (n2 − 1)−(m1 − n1 − 1) (n2 − 1) ≥
0.

• i = m1, j = m2; f ′(ε) = 0.

• i > m1, j = m2; f ′(ε) = (i− n1 − 1) (n2 − 1)− (m1 − n1 − 1) (n2 − 1) ≥ 0.

• i < m1, j > m2; f ′(ε) = −n1 + (n1 − 1) (j − n2 − 1)− (n1 − 1) (m2 − n2 − 1)−
(m1 − n1 − 1) (n2 − 1) + (−i+ 2m1 − n1 − 1) (n2 − 1)− n2 + 2 ≥ 0.

• i = m1, j > m2; f ′(ε) = (n1 − 1) (j − n2 − 1)− (n1 − 1) (m2 − n2 − 1) ≥ 0.

• i > m1, j > m2; f ′(ε) = n1 + (n1 − 1) (j − n2 − 1) − (n1 − 1) (m2 − n2 − 1) +
(i− n1 − 1) (n2 − 1)− (m1 − n1 − 1) (n2 − 1) + n2 − 2 ≥ 0.

Therefore we proved that regardless of the choice of (i, j) the derivative of f ′(ε) > 0
hence the function is increasing. One easily checks that p0 = p̂. Let us now consider
any p 6= p̂. We notice that p can be obtained from p̂ by means of sequence of
transfers of the probability mass from (m1,m2). As we have just proved each such
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transfer increases the value of Ĩ therefore we have Ĩ(p̂) < Ĩ(p). This concludes the
proof of (NORM1).

Now we take any distribution p and show a sequence of transfers which transform
this distribution into p̌ and such that the index increases following each transfer.
Let (i0, j0) be such that 1 < i0 < m1, let us consider the probability distribu-
tion p such that p((i0, j0)) > 0. We construct a new distribution pε by setting
pε((i0, j0)) := p((i0, j0)) − ε, pε((1, j0)) = p((1, j0)) + ε and pε agrees with p other-
wise. The transformation moves the mass towards the edge of the first coordinate
without moving the other. We denote g(ε) := Ĩ(pε) and calculate the derivative
g′(ε) = ∂Ĩ

∂p((1,j0))
− ∂Ĩ

∂p((i0,j0))
. We have only three cases this time i0 < m1, j0 < m2,

i0 < m1, j0 = m2 and i0 < m1, j0 > m2. In each case g′(ε) = (i0 − 1) (n2 − 1) > 0.
Such transfers on both sides of the median ensure that the whole mass is concentrated
at a point for which i ∈ {1,m1, n1}. When transporting the mass from points (m1, j)
to (1, j) or (n1, j) the situation is more delicate since the transfers are required to
be such that m1 is median, hence the total mass gathered in the points of the form
(1, j) must be equal to 1/2 and the same holds for the points of the form (n1, j).
The final step is to transfer all the mass from points of the form (1, j) to (1, 1) and
all from (n1, j) to (n1, n2). Following such transfer (6) medial correlation coefficient
β increases and so does inequality in the second dimension as the spread rises. At
each step of our procedure we increase the index hence the value attained at p̌ is the
highest possible.

The problem of infinitely many copulas associated with any distribu-
tion
In our context there are infinitely many copulas associated with any distribution.
This results from the fact that our distributions are discrete. Indeed, one can see
that to calculate P in (2) one needs only the values of cop attained on a range of P1

and P2, which as a range of values of cumulative functions of discrete distributions
is finite. The remaining points of [0, 1]2 can be assigned arbitrary values compatible
with the properties of the copula. However, this does not seem to be problematic
since Sklar’s theorem ensures that copula is unique on the range of cdf of marginal
distributions (which we call copula’s significant points) and this is indeed the only
relevant information.12 Further, we will assume that given a multidimensional dis-
tribution we always choose the smallest possible copula, where smallest means that
a chosen copula is the smallest as a function, namely for every argument it admits
smaller value than any other copula function. We also note that this copula can be
recovered from its values at significant points, hence sometimes its values are only
presented at these points (as in the example in Section 2.2). Technically, without this
assertion Definition 3 would be incomplete, namely, conditions Cop(p1) ∼ Cop(p2)
would not be well-defined. For instance, if cop, ˜cop are two copulas associated with
p1 and additionally ˆcop is associated with p2 and we have an order � such that
cop � ˆcop and ˆcop � ˜cop, then it is unclear whether we should have p1 <CAF p2

or p2 <CAF p1 or declare indifference. Therefore we needed to decide on choosing a
single copula associated with a given multidimensional distribution p. This solution

12Please refer further to Nelsen (1999): Theorem 2.3.3.
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is equivalent to working with copulas restricted to their significant points.
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