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Abstract

The unemployment rate remains persistently high a�er recessions even a�er job losses subside.
Standard search and matching models have di�culty capturing this pattern. In this paper, I argue that
noise shocks, which capture agents’ expectational errors due to the noise in received signals about the
persistence of aggregate productivity, can generate substantial persistence in the unemployment rate. I
�rst identify these noise shocks using a novel structural VAR and �nd that unemployment would have
recovered to its pre-recession level 7 quarters earlier in the absence of noise shocks in the 1968-2019 period.
I then set-up a general equilibrium search and matching model with on-the-job search, endogenous
search e�ort and wage rigidity and consider three shocks: a permanent productivity shock; a transitory
productivity shock and a noise shock. The model calibrated to target standard moments and disciplined to
match impulse responses identi�ed through SVAR predicts 6 quarters longer recoveries in unemployment
compared to a model without imperfect information and noise shocks. It also predicts 23 percent more
volatility in unemployment and vacancies. These results are generatedmainly through two channels. First,
responses to persistent productivity shocks are more persistent as it takes time for agents to learn whether
a shock is persistent or not. Second, noise shocks provide an additional source of persistence, which are
ampli�ed through on-the-job search and �rms’ vacancy posting decisions.
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1 Introduction

One of the well-established stylized facts in macroeconomics is the persistence in labor market
dynamics, especially the sluggish recovery of unemployment following recessionary job losses.
While job losses at the onset of recessions tend to normalize quickly, the unemployment rate
remains elevated much longer than the duration of the recession. Figure 1 shows that it took the
unemployment rate between 5 to 16 quarters to recover half of its recessionary increase and longer
than 20 quarters to recover back to its pre-recession level. The duration for recovery has become
even longer over time with the Great recession being the slowest. This stylized fact continues to
present a challenge for conventional business cycle models (Cole and Rogerson (1999) and more
recently Hall and Kudlyak (2022)).1

I argue that imperfect information about the fundamental drivers of business cycles provides
a natural explanation for sluggish recovery in the labor market even if the underlying shocks are
not persistent. For example, professional forecasters a�er the Great Recession systematically
over-estimated how high unemployment would be in the medium-run (see Figure 2). I proceed in
two steps to establish the link between imperfect information and labor market dynamics. First, I
identify noise shocks-errors in expectations due to the noise in received signals-using a structural
VAR framework estimated with data on the utilization-adjusted TFP, real GDP growth and nowcast
errors for the period 1968-2019. I �nd that unemployment would have recovered to its pre-recession
level 7 quarters earlier on average, in the absence of noise shocks. Second, I introduce noise
shocks into a general equilibrium search model. The model extends the textbook model along
three important dimensions: on-the-job search; endogenous search e�ort and rigid wages. I �nd
that noise shocks together with these features provide an intuitive explanation for the sluggish
recovery of the labor market. Due to imperfect information, �rms and workers observe noisy
signals and cannot discern if the productivity shock is persistent or transitory. This a�ects forward
looking decisions such as �rms’ hiring decisions and workers’ job search decisions. Since �rms
and workers learn the true persistence of shocks only slowly, they respond sluggishly to changes in
the economy which creates persistence in labor market dynamics.

I identify noise shocks using a using a tri-variate SVAR with utilization-adjusted TFP, real
output growth and nowcast errors from the Survey of Professional Forecasters. The shocks are
identi�ed with a combination of sign restrictions and max share identi�cation, which maximizes
the forecast error variance of a target variable (Francis et al., 2014) at a chosen horizon. I consider
three shocks: persistent and transitory productivity shocks and noise shocks. Noise shocks are
assumed to only a�ect expectations about productivity but not to in�uence their actual levels.
Therefore, noise shocks a�ect expected output growth more than actual output growth (Enders
et al. (2021)), which still may respond due to behavioral reasons. This assumption, along with the
fact that the nowcast errors, that are de�ned as the di�erence in expected output growth from the
realized output growth for the same quarter, are not available to the agents contemporaneously,

1The peculiar labor market dynamics in the wake of COVID pandemic presented a counter example which I address
in Section 6.2.3.
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allowsme to impose sign restrictions to identify the noise shocks. I then use themax-share method
to disentangle the productivity shock into persistent and transitory components. I identify the
shock that maximizes the forecast error variance of productivity in the long run as the persistent
shock to productivity. I quantify the role of noise shocks in accounting for movements in the
unemployment rate by computing the predicted unemployment rate due to only persistent and
transitory shocks while shutting down the noise shock from the estimated SVAR. While it took
on average 17 quarters for unemployment rate to recover 50% of its recessionary rise since the
beginning of the recession, it would have been 11 quarters in the absence of noise shocks. Noise
shocks also dampened job-�nding rates and vacancies.

I analyze the impulse responses for key labor market outcomes to the noise shock about the
true persistence of productivity using smooth local projections (Barnichon and Brownlees, 2019). I
�nd that noise shocks have persistent e�ects on the dynamics of the labor market. Speci�cally, a
one standard deviation noise shock leads to an increase in the unemployment rate of 0.4 percentage
points at 4 quarters and recovers between 8-10 quarters. This response results from an increase
in the in�ow into unemployment and a decrease in the job-�nding rate, in�uenced by a decrease
in vacancies and hiring rates by �rms. Wages respond weakly and are slow to adjust. These
�ndings suggest that �rms and workers overestimate the persistence of the true shock during these
downturns and respond as if the recession was deeper and longer than it was. Firms reduce hiring
and workers face lower job openings which keeps the unemployment rate persistently high.

There are two key takeaways from these impulse responses. First, the quantitatively and
statistically signi�cant response to a noise shock suggests the presence of information frictions. If
�rms and workers had perfect information about the shock being noise, noise shocks would not
exist and, it would not be optimal for agents to respond to it. However, initially agents misperceive
the noise shock as an actual negative productivity shock and hence �rms decrease their hiring.
As a result, there are fewer job opportunities for workers and job-�nding rate decreases. This
contributes to an increase in unemployment.

Second, the hump-shape of the impulse responses suggest that �rms and workers are learning
under imperfect information. Although �rms and workers initially misperceive this shock as a
change in fundamentals, they gradually place more weight on the shock being a noise shock. As
a result, layo�s decline, hiring increases albeit slowly and the job-�nding rate recovers. This
ultimately results in a decline in unemployment.

Motivated by the empirical evidence, I set up a general equilibriummodel of random search
and matching with imperfect information. The model has several key features such as on-the-job
search, endogenous search e�ort and wage rigidity. These choices are motivated by Cole and Roger-
son (1999) who argued for incorporating heterogeneity in worker search intensity and allowing
for on-the-job search as potential solutions to the slow recovery of unemployment. Speci�cally,
both unemployed and employed workers search and their search e�ort is endogenous. There
is a stylized job ladder with two kinds of jobs: good and bad jobs, which are idiosyncratic and
revealed to the �rms and workers upon matching. Good jobs o�er higher wages and they hire
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both unemployed and employed workers. Bad jobs pay lower wages and only hire the unemployed.
Employed workers in bad jobs search to move up the ladder and unemployed workers search to
move to employment. Firms optimize hiring decision each period while incurring a cost of hiring.
Wages are determined by staggered Nash bargaining a la Gertler and Trigari (2009) as they are only
renegotiated with an exogenous probability. Therefore, on average wages exhibit sticky wages.

There are two fundamental shocks: transitory and persistent productivity shocks. Moreover,
there is imperfect information about the true nature of these shocks that I introduce to capture the
noise shocks: workers and �rms observe aggregate productivity but cannot distinguish between its
transitory and persistent components. Instead, they receive a potentially persistent noisy signal
about the persistent component and use it to form beliefs about the future path of productivity. The
noise introduces complexity in determining whether a shock is a true persistent productivity shock
or noise in the signal. The model is calibrated by targeting key unconditional moments in the data
and disciplined to match the empirical impulse responses of key labor market variables to the
shocks identi�ed from the SVAR. The model generates impulse responses consistent with the data,
capturing both the magnitude as well as the hump-shape of the dynamic responses of key labor
market outcomes such as unemployment, job-�nding rate, job-to-job transition and vacancies.

I �nd that incorporating imperfect information about the underlying persistence of aggregate
productivity shocks increases the persistence of unemployment relative to a full-information
model where �rms and workers can perfectly observe the persistent and transitory components
of aggregate productivity each period, through two channels. First, the response to a persistent
productivity shock in the model suggests that the e�ects of persistent productivity shocks are even
more persistent because the agents learn about the true persistence of the shock slowly.

Agents initially attribute the shock to being persistent, transitory or noise with some probabil-
ity, and under-react to the persistent shock compared to the full information framework. Consider a
negative persistent productivity shock. Wages do not decrease initially. From the �rms’ perspective,
if they adjust wages downward substantially and the shock reverses rapidly, their future discounted
revenue will be lower. Unemployed and employed workers do not decrease their search e�ort as
much, since they attribute the shock to be noise with some probability. However, as �rms and
workers update their beliefs about the change in productivity, they assign more weight each period
to the change in productivity being truly persistent. This adjustment in expectations is signi�cantly
slowed down by the persistence in the noise as agents now face a more complex signal extraction
problem. Firms that get a chance to renegotiate now o�er lower wages as they assign higher
weight to the shock being a true productivity shock and as a result the average wage decreases.
Unemployed workers decrease their search e�ort as returns from employment declines. Further,
employed workers looking to move up the ladder decrease their search e�ort as average wages
have declined, it leads to �rms posting fewer vacancies and dampens job-�nding rates for the
unemployed workers. This generates persistence in the job-�nding rate, eventually leading to for a
more persistent response in unemployment than the full information framework.

The second channel is that the introduction of imperfect information gives rise to the noise
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shocks, which provide an independent source of persistence in the labor market. When there is a
negative noise shock, agents partially attribute the perceived decline in productivity to an actual
change in productivity, although the true productivity remains unchanged. This leads �rms to
expect lower returns from new hires which subsequently reduces labor demand and the number
of job vacancies. At the same time, unemployed workers who anticipate lower wages due to the
perceived fall in the persistent component of productivity, decrease their search intensity, resulting
in a lower job-�nding rate. Employed workers also reduce their search e�ort as their incentive to
move up the job ladder declines as they expect lower wages. In equilibrium, these factors lead to
fewer matches between �rms and workers, thereby increasing the unemployment rate.

During downturns, both these channels may act together to amplify the persistence of un-
employment as �rms and workers receive a sequence of all the shocks. Agents overestimate the
persistence of the negative productivity shock due to presence of noise shocks and perceive the
negative productivity shock to be persistently worse than it actually is. Since they gradually learn
whether a shock is persistent or transitory, they respond as if facing a more persistent negative
productivity shock than the true shock. Speci�cally, �rms anticipate productivity to be persistently
worse and therefore expect lower future revenue and post fewer vacancies for longer than would
be consistent with the true decline in productivity. The decline in vacancies lower job o�er arrival
rates for both the unemployed and the employed who lower their search e�ort due to the decline
in return to search. Since most of the bad jobs remain occupied by the employed workers and good
jobs are hard to �nd, the job-�nding rate of the unemployed declines further due to the congestion
in the lower ranks of the ladder. Consequently, the job-�nding rate declines further which keeps
the unemployment rate elevated longer than implied by the true state of the economy.

I quantify the additional persistence generated by imperfect information using my model by
simulating the path of unemployment for recessions between 1968-2019. I �nd that my baseline
modelwith imperfect information, stickywages andon-the-job search implies a substantially higher
persistence in the unemployment rate. Speci�cally, it takes 15 quarters for the unemployment rate
to recover 50% of its recessionary increase in the model while the corresponding number is 17
quarters in the data. In the model without imperfect information, it would take only 9 quarters. In
addition, the introduction of imperfect information improves the performance of the model in
explaining labor market volatility. The imperfect information model generates about 23 percent
higher volatility in the unemployment rate as compared to the full information model. It also
generates higher volatility in vacancies and job-�nding and job-to-job transitions rates, and a
relatively lower volatility of wages, consistent with the data.

This paper contributes to two strands literature. The �rst is on the macroeconomic e�ects of
incomplete information on labor market dynamics and business cycles. In this regard, this paper
the work on the role of beliefs as drivers of business cycles (Beaudry and Portier, 2004; Collard
et al., 2009; Blanchard et al., 2013; Forni et al., 2017; Chahrour and Jurado, 2018; Lagerborg et al.,
2020; Ilut and Saijo, 2021) by identifying noise shocks that are an important source of aggregate
�uctuations in the labor market. Speci�cally, this paper contributes to the literature focusing on
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the role of beliefs in labor market dynamics (Den Haan and Kaltenbrunner, 2009; Theodoridis and
Zanetti, 2016; Schaal, 2017; Chahrour et al., 2020; D’Agostino et al., 2022). Particularly, this paper is
closely related to Faccini and Melosi (2022) who also �nd that noise shocks play a signi�cant role in
the labor market dynamics. This paper also complements the �ndings in Morales-Jiménez (2022)
by providing novel empirical evidence; where imperfect information is introduced in a search and
matching model and quantitative analysis �nds that such a model is able to generate the volatility
as well as elasticity of wages with respect to productivity consistent with the data.

Second, this paper contributes to the literature studying the labor market dynamics and in
particular the persistent recovery of unemployment a�er recessions. It has been a feature of the
postwar recoveries in the labor market that unemployment levels remains elevated, even a�er
the initial spike in job destruction has subsided. While there is consensus in the literature about
these stylized facts and changes in unemployment dynamics, a uni�ed consensus on the driver
of slow recoveries remains elusive. Some of the primary explanations that have been proposed
for slow recoveries are job polarization (Jaimovich and Siu, 2020), restructuring (Koenders et al.,
2005; Berger et al., 2012), changing persistence of business cycles (Bachmann, 2012; Panovska,
2017) and increasing importance of technology shocks since mid-1980s (Barnichon, 2010b). Recent
papers attribute the slow recoveries to UI extensions (Mitman and Rabinovich, 2019), convergence
of female employment (Fukui et al., 2023) and congestion in hiring (Mercan et al., Forthcoming,
2023). I document that noise shocks arising from imperfect information can substantially delay
the recovery of the labor market, both empirically as well as quantitatively, thus contributing to
this literature that has explored various aspects of labor market recovery patterns.

The rest of the paper is organized as follows. Section 2 discusses the empirical evidence and
Section 3 discusses the identi�cation of noise shocks using a structural VAR and its impact on labor
market dynamics. Section 4 introduces an imperfect information structure to a general equilibrium
search and matching model. Section 5 discusses the calibration and estimation strategy for the
model parameters. Section 6 presents the results from the quantitative exercise and Section 7
concludes.

2 Unemployment Recoveries and Professional Forecasts

In this section, I �rst document the sluggish recovery of unemployment in the US data in 1968-2019.
I show that it takes on average 25 quarters for the unemployment rate to recover to its pre-recession
trough. I then document misperception about the unemployment rate by professional forecasters
across recessions and show that forecasters consistently predict more sluggish recoveries in the
labor market than what actually occurs.

Unemployment Dynamics During Recoveries. U.S. labor market recoveries typically have been
slow, with the unemployment rate remaining elevated even a�er the job destruction subsides.
To have a consistent metric of labor market recovery over time, I follow Heise et al. (2022) who
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propose a simple measure of labor market recovery—the unemployment recovery gap. I consider
the share of the rise in the unemployment rate during the preceding recession that has been
reversed during the subsequent expansion. Speci�cally, for each recession, I identify the peak
quarterly unemployment rate, upeak and compute the increase in the unemployment rate relative
to its preceding trough, utrough. This allows me to evaluate the progress in the unemployment rate
upeak – ut as a fraction of the unemployment gap upeak – utrough by considering the time for 25%,
50%, 75% and 100% of the gap to recover. Speci�cally,

(1) URecoveryt =
upeak – ut

upeak – utrough
.

Table 1 and Figure 1 show the unemployment recovery dynamics for each recession starting
in 1968. As Table 1 shows it took the unemployment rate between 5 to 16 quarters to recover
half of its recessionary increase and longer than 20 quarters to recover back to its pre-recession
level. Moreover, unemployment recoveries became slower over time. On average, post-recession
unemployment takes 10 quarters to reduce by 50% and 25 quarters for full recovery. Before 2000,
50% recovery occurred within 9 quarters; post-2000, this extends to 13 quarters.

Figure 1: Unemployment Recovery Across
Recessions

Table 1: Unemployment Recovery Across Re-
cessions

Note: Figure (1) and Table (1) report the number of quarters taken to recover 25%, 50%, 70% and 100% of the rise in the
unemployment rate from its peak across recessions between 1968-2019, except the recession in 1980 which was quickly
followed by the downturn in 1981-82. The NBER Cycle is the duration for economic activity to go from trough to its peak
during each recession.

Forecast Errors andMisperception about the Evolution of the Unemployment Rate. While the
unemployment rate remains persistently elevated during recoveries, forecasters tend to be even
more pessimistic about the recovery of the labor market. This is evident in the forecast errors
from the Survey of Professional Forecasters. The Survey of Professional Forecasters (SPF) is a
quarterly survey which elicits the expectations of professional forecasters about the state of the
economy in the US. It is o�en regarded as a benchmark measure of private sector expectations.
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The pattern is clear in long-run projections of the one, two and three year ahead unemployment
rate. Figure 2a shows that forecasters consistently overestimated the unemployment rate during
1981-82 in the Livingston Survey.2 Most recently, Figure 2b documents that professional forecasters
predicted an even slower recovery a�er theGreat recession. Figure A4 plots themedian 1 year ahead
unemployment rate projections from the SPF, which show that forecasters predict the recoveries
to be slower than they actually were. These observations suggest that there is typically a wedge
between the expected and the actual unemployment rate across recessions.

Figure 2: Unemployment Rate: Projections and Actual

(a) 1981-82 Recession (b) 2009-07 Recession

Note: In Panel (a), the various colored lines represent the median 1 and 2 year ahead projection of the unemployment
rate from the Livingston Survey. The solid red line is the actual unemployment rate during the 1981-82 recession. In
Panel (b) the various colored lines represent the median long-run (1 year, 2 year and 3 year ahead) projections of the
unemployment rate from the Survey of Professional Forecasters during the Great Recession. The dashed red line is the
actual unemployment rate.

Taking stock. One potential explanation for the mismatch between realized and expected unem-
ployment rates could be the imperfect information about whether the changes in the aggregate
fundamental process in the economy is persistent or transitory (Edge et al., 2007). Due to imper-
fect information, agents must base their decisions on their expectations about the persistence of
changes in the true fundamental process by observing some signals. Under such a framework,
agents then may predict consistently higher unemployment rate as they cannot distinguish the
true shocks in the economy from noise shocks (errors in expectations due to the noise in received
signals) and these beliefs may in turn a�ect economic outcomes. To test this hypothesis, I proceed
in two steps. I �rst identify noise shocks using a SVAR that I discuss in the following section. Then,
I study whether aggregate labor market outcomes respond to the identi�ed shocks.

A recent approach to identifying noise shocks relies on a measure of misperceptions: the
deviation of realized outcomes from expected outcomes (Enders et al., 2021). I use the ’nowcast
errors’—the di�erence between the actual outcome and the real-time perceived outcome—for
identifying noise shocks. The nowcast errors contain signi�cant information about the real-time

2The Survey of Professional Forecasters started reporting the long-run projections only since 2009. Therefore, I rely
on the Livingston Survey for longer-run unemployment expectations during earlier recessions.
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deviation in expectations of professional forecasters relative to realized outcomes. Since these
deviations may arise due to the noise in observed signals about current economic activity, nowcast
errors can be exploited to identify these noise shocks.

Nowcast Errors The nowcasts, which are median expectations about the current GDP growth
rate, are collected from the Survey of Professional Forecasters. The nowcast errors are computed
as the di�erence between the ex-post growth rate of GDP for a quarter and the contemporaneous
forecast of what that growth rate would be from professional forecasters. For the rest of the paper,
it is de�ned as

(2) ncet = ∆yt – Etmedian(∆yt)

where yt is the current real GDP growth rate. The timing of the survey is such that the participating
professional forecasters are asked to report their expectations about the current quarter output
growth by the second month of the quarter. At this point, the current output is not observable.
Therefore, at time t, nowcast errors are not observable in real time and are not part of any agent’s
information set. This gives an informational advantage to the econometrician over economic
agents as the nowcast errors only become available ex-post. Further, these nowcast errors plays a
key role in the identi�cation of noise shocks if one assumes that nowcast errors and output growth
have opposite response to noise shocks.

3 Identi�cation of Noise Shocks

In this section, I describe the empirical strategy to identify a persistent TFP shock, a transitory TFP
shock, and a noise shock and then discuss the e�ects of these shocks on key labormarket outcomes.
Here, I test the hypothesis that the observed wedge between realized and expected unemployment
rates, as shown in Figure 2 and A4, arise due to imperfect information about whether the changes
in the aggregate fundamental process in the economy are persistent or transitory. I proceed in two
steps. First, I identify noise and productivity shocks using a tri-variate SVAR. The identi�cation of
noise shocks is achieved by imposing sign and zero restrictions. identify persistent and transitory
productivity shocks by maximizing the forecast error variance of aggregate productivity in the long
run. Second, using local projections, I test whether noise shocks have a signi�cant e�ects on the
dynamics of key labor market indicators like unemployment and vacancies.

Empirical Speci�cation. The aggregate productivity process is assumed to consist of a persistent
and a transitory component. While the level of productivity is observable, its underlying compo-
nents are not. Therefore, economic agents must form their beliefs about aggregate productivity
using public signals. Noise shocks are the changes in the signal not coming from shocks to the
actual productivity. The aim is to now identify the three shocks, a persistent shock to aggregate pro-
ductivity, a transitory shock to aggregate productivity and a noise shock. The empirical speci�cation
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consists of a vector-autoregression of the form

(3) A0Yt = a + Σ
p
j=1AjYt–j + et

where the set of variablesYt ≡ [TFPt,GDPt,NCEt] includes the utilization-adjusted TFP fromFernald
(2014), real GDP growth and Nowcast errors.3 The sample period ranges from 1968q4 to 2019q4. Aj
is the weight on past realizations of Yt, et is a vector of structural economic shocks, and A–10 is the
structural matrix that the SVAR procedure seeks to identify from the set of reduced-form residuals.
The fact that agents cannot observe the nowcast errors in real time provides the econometrician
an informational advantage over the economic participants in real time, thus making the SVAR
model invertible (Blanchard et al., 2013).

It follows that the reduced-form representation is

(4) yt = b + Σ
p
j=1Bjyt–j + ut

Here b = A–10 is an n × 1 vector of constants, Bj = A–10 Aj , ut = A
–1
0 εt. var(ut) = E(utu

′
t) = ∑ = A–10 (A

–1
0 )
′

is the n × n variance-covariance matrix of reduced-form errors. Letφ = (B,∑) collect the reduced-
form parameters. Finally, following Uhlig (2005) , I de�ne the set of all IRFs through an n × n
orthonormal matrix Q ∈ Θ(n) where Θ(n) is the set of all n × n orthonormal matrices.

Identi�cation Assumptions Aggregate noise shocks in an imperfect information structure are
identi�ed in the data using a combination of zero and sign restrictions as well as max share
identi�cation in a tri-variate structural VAR. The sign restrictions identify the noise shock and the
max-share approach identi�es the persistent shocks from the transitory productivity shocks.

1. I impose the following restrictions on the impact matrix to identify the noise shocks.

(a) Noise shocks have zero impact on aggregate productivity. Noise is an error in the expec-
tations of economic agents. It should not a�ect the underlying fundamental productivity
process in the economy, which is the total factor productivity here. I use the TFP series
from Fernald (2014) and assume that this is an error-free measure of TFP.

(b) On impact, the persistent and the transitory TFP shocks contemporaneously a�ect TFP
and GDP growth in the same direction. The response of the nowcast error to a persistent
as well as a transitory shock is unrestricted.4

(c) Noise shocks contemporaneously a�ect nowcast errors in the opposite direction as they
do GDP growth. In other words, noise shocks are assumed to move expectations about

3The fact that the VAR does not include any labor market outcomes such as the unemployment rate, allows the
identi�ed shocks to be una�ected by �uctuations in the labor market directly.

4A TFP shockmay cause a larger change in actual GDP growth than it does in expectations as evidence suggests that
consensus forecasts under-react relative to full-information rational expectations (Bordalo et al., 2020). For robustness,
I consider an alternate speci�cation where I impose the restriction that the TFP shocks a�ect the nowcast error in the
same direction as TFP and output. However, the results from this exercise are in line with the main exercise.

9



real GDPmore than real GDP itself. GDP also increases as agents respond but it increases
less than the expectations. This implies that ncet = ∆yt – Etmedian(∆yt) < 0 while ∆yt > 0.
This assumption is made by Enders et al. (2021) and Chahrour et al. (2021) who identify
belief shocks in a bi-variate VAR using sign restrictions.

These identifying restrictions hold across a broad class of models with information structures
consistent with Lorenzoni (2009), Blanchard et al. (2013), and Angeletos and La’o (2010). Let
εt be the persistent shock, ηt be the transitory shock and νt be the noise shock. Thus, the
restrictions on the impact matrix can be demonstrated by the following:

(5)

 zt
yt
ncet

 = Σpj Bj
 zt–p
yt–p
ncet–p

 +
 + + 0
+ + +
∗ ∗ –


 εtηt
νt


2. The sign restrictions identify the noise shocks but do not distinguish between the persistent
and the transitory shock. To separately identify the persistent shock from the transitory
shock, I use what is referred to in the literature as the max-share identi�cation strategy. I
extract the persistent shock as the innovation that accounts for the maximum forecast error
variance (FEV) share of utilization adjusted TFP at a long but �nitie horizon. This method
builds on Uhlig et al. (2004) and has been used by Francis et al. (2014) to identify long run TFP
shocks. More recently this has been used by Kurmann and Sims (2021) in context of news
shocks.

To formalize the identi�cation strategy described above, let j ∈ {1, 2, 3} be the structural shocks,
and i ∈ {1, 2, 3} denote TFP, GDP growth and nowcast error respectively. De�ne I–j = 1, . . . , k as a
subset of the shocks of interest. Let sjh be the sign restrictions on the impulse response vector to
the jth structural shock at horizon h. In this case, the impulse response is given by the jth column
vector of IRh = Ch(B)∑trQ. The sign restrictions are represented by Sj(φ)qj ≥ 0, for j ∈ IS . Let
CEFEV ij (H) denote the factor error variance (% contribution) at horizon H of variable i explained

by the jth structural shock.

(6) CEFEV ij (H) = q′jΓh
i(φ)qj ; ΓiH(φ) =

ΣHh=0cih(φ)c
′
ih(φ)

ΣHh=0c
′
ih(φ)cih(φ)

where ΓiH(φ) is n × n positive semi-de�nite matrix.
Thus, the identi�cation of the three shocks, Q1:k = [q1, q2, . . . , qk] requires us to solve the

following problem

(7) q∗1 = argmaxq1
q′1Γ

1
H(φ)q1
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subject to

q′1(1, 3) = 0(8)

Sj(φ)qj ≥ 0, for j ∈ IS(9)

q′1q1 = 1(10)

Here the horizon is assumed to be H = 40 quarters, which is a medium run horizon. This
is because the e�ects of transitory and noise shocks are not expected to persist for as long as a
decade.5 Now, this implies that the shock can only be extracted till 2012. To extend the series, for
2012-2019, I calculateH as the maximum available horizon from that point. In 2017, this is set to
H = 20. As seen in Appendix Figure A7, persistent shocks explain the maximum variance of TFP
even at 20 quarters. Equation 8 is the restriction that noise shocks have zero e�ect on TFP, which
follows from the de�nition of the noise shock. Equation 9 consists of the sign restrictions detailed
in equation 5. Equation 10 ensures that the identi�ed shocks are mutually orthogonal. I follow the
algorithm outlined by Carriero and Volpicella (2022) to solve this optimization problem. I assume 4
lags as suggested by the Akaike Information Criterion and uniform priors.

The impulse response of the nowcast errors to the identi�ed shocks suggest that forecasters
do not have full information about the economy. Appendix Figure A6 shows the impulse response
of TFP, GDP growth and nowcast errors to the identi�ed persistent, transitory and noise shocks.
The nowcast error increases on impact of the persistent shock but does not recover immediately in
the next period. Furthermore, the nowcast error responds weakly to the transitory shock on impact
and has a delayed positive response. This signi�es that forecasters cannot distinguish immediately
if a shock is persistent, transitory or noise and learn with some persistence. Noise shocks have a
negative e�ect on impact on the nowcast errors since this is a restriction imposed by the VAR.

Predictably, the positive persistent shock increases TFP as on impact and declines persistently.
GDP growthweakly responds to a persistent productivity shock on impact, but has a delayed positive
and persistent response. A transitory shock increases TFP and GDP growth on impact but the e�ect
is not persistent. Finally, TFP does not respond to noise shocks, in line with the zero restriction
imposed. The Noise shock has a positive and somewhat persistent e�ect on GDP growth.

3.1 E�ect of Noise Shocks on Labor Market Dynamics

Key labor market variables exhibit signi�cantly persistent impulse responses to the identi�ed
noise shocks at the business cycle frequency (8-10 quarters). A historical decomposition shows
that noise shocks have an increasingly important role to play in the evolution of unemployment,
vacancies and job �nding rates over the business cycle, which is amotivation to introduce imperfect
information in a search and matching model.

5The results are robust to longer horizons, up to H = 60 quarters.
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Smooth Local Projections Once the shocks are extracted from the VAR, I can now study how
labor market variables respond to these shocks using smooth local projections (SLP) (Barnichon
and Brownlees, 2019). For each shock uj, the Jordà (2005) local projections are given by

(11) yt+h = α
j
h +β

j
hu

j
t +

P
∑
p=1
γ
j
pωt–p + µ

j
h,t+h

whereωj
t–p is the set of lagged values of y and u

j.

Following Barnichon and Brownlees (2019), one can approximate βjh ≈ ∑
K
k=1 b

j
kB

j
k(h) using

a linear B-splines basis function expansion in the forecast horizon h. Thus, the corresponding
smooth Linear Projections can be wriiten as Equation 12.

(12) yt+h ≈

K
∑
k=1

ajkBk(h)
j +

K
∑
k=1

bjkB
j
k(h)u

j
t +

P
∑
p=1

K
∑
k=1

cjpkB
j
k(h)ω

j
t–p + µ

j
h,t+h

The SLP is estimated using generalized ridge estimation and further details can be found in Ap-
pendix section A.5 and Barnichon and Brownlees (2019).

Here, yt = aggregate labor market outcomes such as unemployment rate, vacancies, rate of
out�ow from unemployment (UE), job-to-job transition rates (EE), hiring rate and wage growth. uj

are the three shocks respectively while µjt is the residual error for each regression. All labor market
data are from Current Population Survey and JOLTS for vacancies and hiring rate.6 Figures 3 and
4 show the impulse responses of the labor market variables to standardized 1 standard deviation
negative noise and persistent TFP shocks.7

Noise shocks have a signi�cant and persistent e�ect on unemployment, vacancies, UE, EE as
well as hiring rate for up to 10 quarters. The negative e�ect on wage growth is delayed, although
weak, indicating that wages are sluggish. Unemployment rises by 0.6 percentage points in response
to a one standard deviation noise shock. The number of job vacancies decreases, transitions
from unemployment to employment reduce, and job-to-job transitions decline. As there are fewer
vacancies, there are fewer number of jobs to be found, dampening the job-�nding rate of the
workers. Furthermore, as wage growth declines, there are fewer number of workers making job-to-
job transitions. This further dampens job �nding rates for the unemployed as jobs in lower end of
the ladders remain occupied since fewer workers are moving up the ladder, making it harder for
unemployed workers to �nd jobs. These ultimately lead to unemployment rate being higher for
longer.

These results suggest that agents cannot distinguish the type of shock they face correctly and
that they learn slowly over time about the true shocks. The hump shape of the impulse responses
suggest that initially agents misperceive the noise shock as an actual negative productivity shock

6The results are consistent with using an Autoregressive Distributed Lag (ADL)peci�cation for local projections.
7Response to the transitory TFP shocks is documented in Appendix Figure A10.
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Figure 3: Impulse Response to Noise Shocks

Note: This �gure shows the smoothed cumulative impulse response functions for key labor market variables to a noise
shock, estimated using equation 11, where uj is the noise shock identi�ed using the SVAR described by the optimization
problem in equation 7. The sample period is 1968q4: 2019q4. Data for the labormarket outcomes are from CPS, vacancies
from Barnichon (2010a) and wages from BEA’s average hourly earnings series. The shaded area represents a 95%
con�dence interval.

and hence respond as if faced with an actual negative productivity shock. Firms decrease their
hiring and increase layo�s. As there are less jobs to be matched with now, the job �nding rate
decreases and translates to an increase in unemployment. However, as �rms and workers learn
about the true process in the economy, they place higher weight on the shock being a noise shock
and gradually start increasing hiring. As a result, out�ow from unemployment increase, resulting
in a decline in unemployment.

These results are consistent with learning which motivates the introducing of imperfect infor-
mation in a general equilibriummodel of search and matching. If there was complete information
in the economy �rms and workers would not respond to noise shocks because these don’t change
the fundamental economic conditions. Moreover, the time it takes for the impulse responses to
recover, suggests that this learning process is quite gradual. If learning happened more rapidly,
the economy would adjust to noise shocks much faster.

Forecast Error Variance Decomposition The forecast error variance decomposition is infor-
mative of the variance in an outcome explained by each of the shocks at a speci�c horizon. I
use the estimator proposed by Gorodnichenko and Lee (2020) for calculating the forecast error
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Figure 4: Impulse Response to Persistent TFP Shocks

Note: This �gure shows the smoothed cumulative impulse response functions for key labor market variables to a
persistent TFP shock (in blue), estimated using equation 11, where uj is the persistent TFP shock identi�ed using the
SVAR described by the optimization problem in equation 7. The 95% con�dence interval is shaded in blue as well. It is
superimposed on the IRFs from the noise shocks in Figure 3. The sample period is 1968q4: 2019q4. Data for the labor
market outcomes are from CPS, vacancies from Barnichon (2010a) and wages from BEA’s average hourly earnings series.
The shaded area represents a 95% con�dence interval.

variance decomposition with local projections. The forecast error for the h-period ahead value of
an endogenous variable yt is given by

(13) ft+h|t–1 ≡ (yt+h – yt–1) – P[yt+h – yt–1|Ωt–1]

whereP[yt+h –yt–1|Ωt–1] is theprojectionof yt+h –yt–1 on the information setΩt–1 ≡ {∆yt–1,µt–1,∆yt–2,µt–2, · · · }.
The forecast errors due to innovations in µ can be decomposed as follows:

(14) ft+h|t–1 = ψµ,0µt+h + · · · +ψµ,hµt + vt+h|t–1

where vt+h|t–1 is the error term due to innovations orthogonal to {µt,µt+1, · · · , zt+h} andΩt–1.
The share of variances explained by the contemporaneous and future innovations in µt to the

total variations in ft+h|t–1 can be de�ned as follows (Sims, 1980):

(15) sh =
var(ψµ,0µt+h + · · · +ψµ,hµt)

var(ft+h|t–1)
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sh in equation 15 is estimated using the coe�cient of determination estimator for FEVDs as proposed
by Gorodnichenko and Lee (2020). The result of this exercise is summarized in Table 2.

TheFEVDanalysis reveals that at a short-runhorizonof 0 to 8 quarters, noise shocks arenotably
in�uential in accounting for the variability in key labor market metrics such as unemployment, job
openings, in�ows and out�ows from unemployment, and rates of transitions between jobs. Speci�-
cally, at an 8-quarter average, noise shocks account for 34% of the variation in unemployment, 37%
in job vacancies, 35% in the out�ow rate from unemployment, 27% in employment-to-employment
transitions, and 14% in wage growth.

Table 2: Forecast Error Variance Decomposition: Shorter Run Horizon

Short Run Medium Run
Horizon: 0-8 quarters Horizon: 9-16 quarters

Persistent Transitory Noise Persistent Transitory Noise

Unemployment 0.43 0.23 0.34 0.63 0.21 0.16
Vacancies 0.42 0.21 0.37 0.61 0.20 0.19
UE 0.38 0.27 0.35 0.63 0.20 0.17
EE 0.42 0.31 0.27 0.65 0.16 0.19
Wage Growth 0.61 0.25 0.14 0.92 0.05 0.03

Note: This table reports the average forecast error variance decomposition for U, V , E – E, U – E and ∆W , estimated
using equation 15, over a short run (0-8 quarters) and a medium run (8-16 quarters) horizon. Each row adds to 1. Noise
shocks explain a signi�cant variation in the labor market at a short run horizon. The sample period is 1968q4: 2019q4.
Data for the labor market outcomes are from CPS, vacancies from Barnichon (2010a) and wages from BEA’s average
hourly earnings series.

While persistent factors generally make up a larger share, ranging from 38% to 61% across
these indicators, and transitory factors contribute between 21% and 31%, the in�uence of noise
shocks is substantial. Especially in terms of job vacancies and unemployment, noise shocks account
for more than one-third of the observed variability, highlighting their signi�cant role in short-term
�uctuations in the labor market.

At a longer run horizon of 8-16 quarters, persistent shocks are the primary drivers of variance
across all labor market indicators. Speci�cally, they account for 63% of the variation in unemploy-
ment, 61% in vacancies, 63% in the job-�nding rate, 65% in job-to-job transitions (EE), and 92% in
wage changes. Predictably, noise shocks show a comparatively modest in�uence, accounting for
15-19% of the variance in unemployment, vacancies, job-�nding rate, and EE transitions, and 3% in
wages. Transitory shocks play a less substantial role, contributing to less than 25% of the variance
in unemployment, vacancies, UE, and EE transitions respectively, and only 5% in wage growth.

Historical Contribution of Noise Shocks. To understand the role of imperfect information over
the business cycle, it is useful to understand howmuch of the deviation of the key labor market
outcomes from their predicted path can be explained by the productivity shocks. If noise shocks are
not important, the productivity shocks would explain almost all the �uctuations in these variables.
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Here, the decomposition for j = {1, 2, 3} shocks can be written as the following:

(16) yt – Ψ̄t = ∑
j

t–t0
∑
h=0
βh · µj,t–h

where, Ψ̄t is the pure deterministic component and yt is various labor market outcomes such
as unemployment rate, vacancy postings, job �nding rate and average hourly earnings.

Two key facts emerge from the historical decomposition: �rst, that the productivity shocks
alone fail to account for the persistence of unemployment rate post 1985, and second, that noise
shocks have been playing an increasingly important role since 1990s. Figure 5a plots the deviation
of unemployment rate from its predicted path due to the persistent and transitory productivity
shocks alone. Thus, the remaining movement is explained by the noise shocks.

An examination of the recessions in 1990, 2001, and 2007-09 reveals that the productivity
shocks are insu�cient to completely explain the �uctuations in the unemployment rate, vacancy
postings and job �nding rates. The productivity shocks predicted a faster recovery across these
recessions and a diminished peak during the Great Recession. Moreover, Figure 2b demonstrates
that professional forecasters during the Great Recession anticipated unemployment rates that were
both higher and more persistent than the actual unemployment rate.

Out�ow from unemployment and vacancies follows a similar pattern, where the fundamental
shocks do not fully explain the �uctuation as well as the speed of the recovery. Noise shocks
dampened the job �nding rates during the expansion in the 90s, but ampli�ed the vacancy postings.
There seems to be a disconnect between the e�ect of imperfect information during expansions on
households and �rms, but during the downturns, noise shocks consistently amplify the decline in
both job �nding rates as well as vacancy postings.

An aggregate assessment of these �ndings implies that during these recessions, noise shocks
led to amis-estimationof thepersistence of the shockby economic agents. Thismisperception led to
an overestimation of the actual persistence of the shock, thereby in�uencing decisions concerning
employment and production. In other words, �rms and workers perceived the recessions to be
worse than they actually were. Consequently, there was a more pronounced reduction in vacancy
postings, accompanied by a decrease in job-�nding rates. These factors together resulted in
unemployment levels that were not only elevated but also persistent, re�ecting a persistence that
was greater than originally anticipated.

To understand the contribution of the noise shocks to the persistence of unemployment, I
compute for each recession between 1968-2019, the share of the rise in unemployment during the
recession that has been reversed during the expansion following Equation 1

I then de�nepersistence as the number of quarters to recover 50%of the rise in unemployment
during a recession, that is urecovery,t = 0.5. Now, from the historical decomposition, I can calculate
what fraction of this persistence can be attributed to each of the shock by �rst computing the
predicted unemployment rate from each shock and then calculating the persistence as de�ned
above. The results are summarized in Appendix Table A1. For the great recession, noise shocks
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Figure 5: Historical Contribution of Persistent and Transitory TFP Shocks

(a) Unemployment Rate

(b) Out�ow from Unemployment

(c) Vacancies

Note: This �gure shows the historical decomposition of unemployment rate, vacancy postings and out�ow rate from
unemployment following equation 16. The dashed black line is the cumulative contribution of the identi�ed persistent
and transitory TFP shocks to themovements in the demeaned vacancy postings (solid red line). The remainingmovement
is explained by the noise shocks, which contribute signi�cantly to the vacancy postings during the recessions in 1990-91,
2001 and 2007-09.
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account for about 35% of the 50% of the rise in unemployment and on average noise shocks account
for 27% of this recovery across recessions.

The second observation that emerges from this analysis is that the role of noise shocks appears
to be more prominent post the Great Moderation. Figure A5 plots the shock series retrieved from
the VAR and as can be seen, the noise shocks during the three recessions post 1990 had a larger
negative draw than in the pre 1990 decades. Interestingly, the persistent shock displays the opposite
pattern. This merely demonstrates that noise shocks have had a larger role to play post 1990,
although the time-series is not long enough to establish if this is a systematic pattern. Pre-2000
it took on average 26 quarters for the unemployment rate to recover to its pre-recession trough
while a�er 2000 it took 32 quarters. On average, noise shocks explain 19% of this recovery duration
pre-2000, and 36% of this duration for the post-2000 recessions.

The empirical results indicate that noise shocks play a signi�cant role in explaining the
dynamics of the labor market over the business cycle and speci�cally the sluggish recovery from
recessions. Now, to understand the mechanism through which noise shocks a�ect the persistence
of the labor market, I introduce imperfect information in a general equilibriummodel of search
and matching in the following section.

3.2 Robustness : Inclusion of Unrestricted Shocks

Structural shocks do not satisfy the sign restrictions for the noise shocks, since any structural shock
results in a larger change in actual output than expected. However, there may be potentially other
shocks such as monetary policy shocks or �nancial shocks, not included in the SVAR, which may
behave like the noise shocks. To address this concern,I including a fourth unrestricted shock in
the system. The key argument here is that if there are other shocks that are being picked up by any
of the persistent, transitory or noise shocks, inclusion of the fourth shock should then account for
those shocks. I include unemployment as the fourth variable and leave unrestricted the impact
matrix. The modi�ed VAR is thus given by equation 17.

(17)
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Once again, I assume that εt maximizes the forecast error variance of TFP at a long run horizon. I
present here the result of the historical decomposition exercise in Figure 6. Here as we see, the
noise shocks still explain a signi�cant variation in unemployment rate. However, in the 1973-75, as
well as the 1980-81, 1982-83 recessions, the contribution of the 4th shock is the highest in explaining
the movement in unemployment rate. This is consistent with the fact that these recessions were
mostly explained by monetary policy shocks or oil shocks, which cannot be attributed to TFP
shocks.
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Figure 6: 4 Variable VAR: Historical Contribution of Shocks to Unemployment Rate

Note: This �gure shows the historical decomposition of unemployment rate following equation 16. The black line is
the cumulative contribution of the identi�ed persistent and transitory TFP shocks to the movements in demeaned
unemployment rate (red line). The dashed blue line is the contribution of the TFP shock and the noise shocks, which
contribute signi�cantly to the unemployment rate during the recessions in 1990-91, 2001 and 2007-09. The remaining
movement here is explained by the 4th shock µt .

Finally, I conduct further robustness by controlling for various shocks when estimating the
impulse response of labor market outcomes to the noise shocks. In Section A.7, I control for
contemporaneous uncertainty shocks as well as its lags (Bloom, 2009), and �nd that the results are
robust to it. The impulse response of labor market outcomes to a noise shock, when controlling for
the uncertainty shock remains within the 90 percent con�dence interval of the response without
the control. Further, the shape of these responses remain unchanged and consistent with imperfect
information.

4 A Search andMatchingModel with Information Frictions

Standard models of search-and-matching fail to fully explain the volatility of unemployment and
vacancies as well as the slow recovery of the labor market from recessions Cole and Rogerson
(1999).8 Motivated by the empirical evidence that imperfect information plays an important role in
explaining these dynamics, this section introduces an imperfect information structure to a search

8As Cole and Rogerson (1999) note, the DMPmodel can account for business cycle facts only if the average duration
of non-employment spell is nine months or longer, which is quite high than observed in the data.

19



and matching model.
The model is based on a real business cycle model with search and matching in the labor

market as in Merz (1995) and Andolfatto (1996) and follows the extensions by Gertler et al. (2020)
who introduce staggered wage contracting and allow for on-the-job search with variable intensity.
The primary reason for introducing a staggered wage contracting in the context of this paper is that
wage rigidity ampli�es the role of imperfect information, as will become clear in the subsequent
subsections (Chahrour and Jurado, 2018; Morales-Jiménez, 2022). The reason for introducing
endogenous search e�ort as well as on-the-job search, is to capture the response coming from
workers when faced with information frictions. Job-to-job transitions capture not only the cyclical
wage gains, but also crowdout unemployedworkers searching for a job, thus capturing an important
moment of the labor market. In the following sub-sections I describe the environment for the
model and discuss the problems of �rms and households.

Environment There is a continuum of �rms and workers, each of measure unity. Firms that post
vacancies and workers looking for jobs meet randomly. The aggregate productivity in the economy
is given by zt. Idiosyncratic match quality is revealed once a worker and a �rmmeet. Match quality
of a worker within the �rm is either good (g) with probability ξ or bad (b) with probability 1 – ξ.
The productivity of a badmatch is a fractionφ of the productivity of a goodmatch, whereφ ∈ (0, 1).
The �rms’ e�ective labor force is

(18) lt = gt +φbt

The total number if unemployed workers is given by:

ūt = 1 – n̄t – b̄t
n̄t =

∫
i
ntdi

b̄t =
∫
i
btdi

where n̄t and b̄t are the total number of workers in good and bad matches respectively across all
�rms, indexed by i.

Workers search for jobs when they are unemployed with endogenous search intensity ζu.
Employed workers in a bad match also search on the job so that they can move up the ladder and
match with a good job. They search with endogenous search intensity ζb. Workers searching on
the job only transition to good jobs. If they are matched with another bad job, they stay in their
current bad jobs and hence lateral moveemnts to other bad jobs are eliminated.9 Search is costly

9As Gertler et al. (2020) explain, the expected gain from a lateral move is quantitatively trivial and can be ruled out
with a small moving cost.
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and the cost of searching is characterized by

c(ζjt) = µ(ζjt)
1

1+ω

where, ζjt is the search intensity of unemployed workers (j = u) and employed workers in bad
matches (j = b). There are two ways a match can be dissolved. First, �rms and workers may receive
an exogenous separation shock with probability 1 – σ. Workers who receive the separation shock
become unemployed at the beginning of next period. Second, if the match is not destroyed, a
worker in a bad match searches on the job. If she �nds another job and accepts it, the worker
moves to the new �rmwithin the period and the match with the current employer is dissolved. The
total e�ciency units of search is therefore given by the search intensity weighted sum of searchers

s̄t = ζutūt + σζbt b̄t

The aggregate number of matches are thus a function of the e�ciency weighted number of
searchers s̄t and the number of vacancies v̄t:

m̄t = Ψs̄αt v̄1–αt

where α is the elasticity of matches to units of search and Ψ is the matching e�ciency. The
probability that a unit of search leads to a match is given by

pt =
m̄t
s̄t

It follows that the probability that the match is good (pgt ) or bad (p
b
t ) is as follows respectively

pgt = ξpt

pbt = (1 – ξ)pt

For a �rm, the probability that a vacancy will lead to a match is:

qmt =
m̄t
v̄t

Now, not all matches will lead to hires since I assume that workers in bad matches accept only
good jobs. Thus, the probability that a vacancy leads to a good quality hire (qgt ) or to a bad quality
hire (qbt ) is given by

qgt = ζqmt

qbt = (1 – ζ)
(
1 –
σζbt b̄t
s̄t

)
qmt
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Since all workers accept good matches, qgt is simply the product of the probability of a match
being good conditional on a match and the probability of a match. However, since workers in bad
matches do not make lateral movements, the fraction of searchers who search on-the-job from bad

matches,
σζbt b̄t
s̄t

is netted out to calculate qbt . Thus, the expected number of workers in e�ciency

units of labor that a �rm can expect to hire from posting a vacancy as:

qt = q
g
t +φq

b
t

Thus, the total number of new hires (in e�ciency units) is qtvt and the hiring rate χt is the ratio of
new hires to the existing stock lt, given by:

χt =
qtvt
lt

We can now de�ne some law of motions for the good and bad matches. respectively.

ḡt+1 = σḡt + ξpt s̄t(19)

b̄t+1 = σ(1 – ζbt(1 – ξ)pt)b̄t + (1 – ξ)ptūt(20)

Total good matches next period are a sum of surviving good matches in the current period and
an in�ow of searchers into good matches, which depends on their probability of �nding a good
match. Similarly, total number of bad matches next period are a sum of two terms. the �rst term
represents the number of workers in bad matches who are unable to �nd a good match and thus
remain in the bad match. The second term is the number of unemployed workers who �nd bad
matches and move into them. The current values of lt, gt and bt are predetermined state variables.

The intra-period timing protocol that the �rm’s decision problem is based upon is: (i) real-
ization of aggregate and �rm-level shocks, (ii) wage bargaining and production, (iii) realization of
match-level separation shocks, and (iv) search and matching. We can now look at the problems
that the �rms and workers face in the subsequent sub-sections.

Information Structure This section introduces an imperfect information structure which is
analogous to the structural VAR deployed to recover the belief shocks as well as the persistent and
transitory productivity shocks. The information structure aims to capture the fact that agents do
not have full information about the state of the economy.

However, it is important to note that agents have rational expectations, given their informa-
tion set. Agents do not perfectly know whether the current aggregate productivity, which is the
only source of aggregate uncertainty, is persistent or transitory. They get a public signal about
the persistent component and form expectations based on it. Let zt = logZt. From now on, a
lowercase variable will denote the log of the corresponding uppercase variable. xt is the permanent

22



component and ηt is the temporary component.

(21) zt = xt + ηt ; ηt∼N (0,σ2η)

xt follows an AR(1) process:

(22) xt = ρxt–1 + εt ; εt∼N (0,σ2ε)

Each period, all agents in the economy observe a noisy signal ŝt about the permanent component
of the productivity process, which is given by

ŝt = xt + at(23)

at = ρaat–1 + νt ; νt∼N (0,σ2ν)(24)

The shocks ηt, εt and νt are mutually independent. The noise term νt in the signal at pre-
vents the agents from perfectly identifying permanent innovations to technology and generates
variation in the agents’ beliefs regarding xt, independent of the fundamentals. It is a pure shock to
expectations and does not a�ect productivity. Permanent shock to productivity is εt which a�ects
aggregate productivity and also a�ects beliefs. The temporary shock ηt a�ects agents’ beliefs and
realized productivity in the �rst period and only a�ects beliefs in the subsequent periods.

Persistence in Noise. Here, the noise is assumed to be persistent. This serves the purpose of
making the signal extraction problemmore complex for the agents. Agents now not only cannot
discern if a shock is persistent, transitory or noise, but they also cannot discern whether the
persistence in change in productivity is attributed to a true persistent change in productivity or a
persistent signal.

Let xt|t ≡ xt
∣∣∣ I t denote the agents’ expectations regarding xt conditional on their information

set at date t. This implies, xt|t ≡ Et[xt]. Agents update their beliefs about xt in a Bayesian manner,
using a Kalman �lter.

Thus, the dynamics of xt|t is.

(25) xt|t = ρxxt–1|t–1 +Kt–1(st – st|t–1)

where, st is the vector of signals (st = [zt, ŝt]), and Kt is the Kalman gain matrix. The details of the
�ltering process are in Appendix Section B.1.

Timing. Here, the timing of the signal and expectation formation is key, which is as follows:

1. Firms and workers form expectations at beginning of t with information set I t–1.

2. Firms and workers make their decisions for time period t.
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3. Public signal is revealed as is the value of zt. However, �rms and workers do not learn from
this signal in time period t (Pre-commitment).

Thus, agentsmake their decisions about time t outcomes based on the signal aswell as the aggregate
productivity they observed at the end of time period t – 1. Now, a key point to note here is that
technically, the agents in the model could observe various real outcomes in the economy such
as zt, yt, ct,ut, vt, st,wt and learn about the true aggregate productivity. However, assuming that
that signal extractions is costly and agents only use the signal to learn and make decisions. This
assumption is similar toWoodford (2001), Mankiw and Reis (2002) and Angeletos et al. (2020) where
agents do not learn endogenously.

Assumption 1 Firms and workers observe publicly available real variables in the model at time t, but do
not include them in their information set I t since this signal extraction is costly. Furthermore, all the
information processing that the workers undertake to learn the state of the economy is summarized in
the public signal at–1. Agents form their expectations at the beginning of the period before the signal is
revealed for t and pre-commit to their decisions that they make in t, which are based on I t–1.10

Firm’s Problem There is a continuum of �rms indexed with a mass normalized to 1. All �rms
produce a homogeneous good that is sold in a competitive market. The aggregate productivity in
the economy is zt with a transitory component ηt and a permanent component xt about which
the agents receive a noisy public signal. Firms produce with capital and labor, and their output
can be used for consumption or for capital accumulation. Capital is perfectly mobile and �rms
rent capital on a period by period basis. Firms add labor through a search and matching process
described above. The production function is yt = ztkζt l

1–ζ
t . Let the stochastic discount factor be

Λt,t+1, wt be the wage per e�ciency unit of labor and rt be the capital rental rate. I assume that
labor recruiting costs are convex in the hiring rate of labor in e�ciency units, χt.

The �rms decision problem is therefore to choose χt to maximize the value of the �rms which
is the discounted stream of pro�ts net of recruiting costs, wages and capital rental expenses, subject
to the law of motion for lt, gt and bt, and given the expected paths of wages and rental rate. Firm’s
solve the following problem:

(26) Ft = max
kt ,χt

Et

{
ztkζt l

1–ζ
t –

κ

(1 + ηh)
χ
(1+ηh)
t lt –wt lt – rtkt +Λt,t+1Ft+1

∣∣∣∣ I t–1
}

subject to the law of motions of lt, gt and bt given in equations 18, 19 and 20. The �rst order
conditions give us the rental rate of capital and a �rst order condition for hiring.

10This assumption can be thought of as economic data releases being lagged by one period. Firms and workers see
the data release in t, which contain the information from t – 1. This assumption tries to mimic this aspect. In the model,
therefore, nowcast errors are analogous to the data nowcast errors.
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kt+1 : ztζ
( lt
kt

)1–ζ
– rt = 0(27)

χt : –κ(χt)ηh lt +Et(Λt,t+1Ft+1) = 0(28)

Given Cobb-Douglas production technology and perfect mobility of capital, kt does not vary across
�rms. It is also important to note that while the �rm pays the same recruitment costs for bad and
good workers (in quality adjusted units), bad workers have di�erent survival rates within the �rm
due to their incentive to search on-the-job. The �rst order condition for hiring rate can be solved
to get the vacancies vt since χt = qtvt/lt. Each �rm optimizes their hiring rate and in equilibrium,
total vacancies are given by summing across all �rms, v̄ =

∫ 1
0 vidi.

Household’s Problem There is a unit measure of families, each with a measure one of workers.
The family pools all wage and unemployment income. Consumption and savings decisions are
made at the household level, but household members make their decisions based on the same
information set I. Each family owns diversi�ed stakes in �rms that pay out pro�ts and assigns
consumption c̄t to members and saves in the form of capital k̄t, which is rented to �rms at rate rt
and depreciates at the rate δ. The household solves the following problem,

(29) Ωt = max
k̄t+1,c̄t

Et
{
log(c̄t) +βΩt+1

}
subject to

c̄t + k̄t+1 + c(sbt )b̄t + c(s
u
t )ūt = w̄tn̄t +φw̄t b̄t + ūtuB + (1 – δ + rt) k̄t + Tt +Πt
ḡt+1 = σḡt + ξpt s̄t
b̄t+1 = σ(1 – ζbt(1 – ξ)pt)b̄t + (1 – ξ)ptūt

UnemployedWorkers Let Ut be the value of unemployment, V
g
t the value of a good match, and

Vbt the value of a bad match. uB is the �ow bene�t from unemployment. An unemployed worker
searches with an endogenous search intensity ζut. The value of unemployment is given by:

(30) Ut = max
ζut

Et

{
ub – c(ζut) +Λt,t+1

(
(1 – pt)ζutUt+1 + ζut(1 – ξ)ptVbt+1 + ζutξptV

g
t+1

) ∣∣∣∣ I t–1
}

Here, in the current period, an unemployed worker receives ub, net of search costs. In t + 1, With
probability (1– pt)ζut, an unemployed worker does not �nd a job and remains unemployed in t + 1.11

Unemployed workers �nd it optimal to accept either a bad or a good match if they receive one if
the wages are greater than their outside option.

11The average value of employment in the continuation value of Ut should be that of a new hire rather than the
unconditional one. However, Gertler and Trigari (2009) show that the two are identical up to a �rst order.
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EmployedWorkers Employed workers earn a wage wj while employed at �rm j. The workers in a
a bad match search on the job with endogenous intensity σbt and are matched with another �rm
with probability σbtpt. However, I assume that employed workers only move up the ladder. They
switch jobs only if they �nd a �rm that o�ers a better continuation value. Employed workers are
separated from their job with exogenous probability (1 – σ), in which case they have to spend at
least one period in unemployment before they can be matched with another �rm. The employed
worker solves the following problem

Value of being employed for a worker in a good match is given by the following

(31) Vgt = Et

{
wgt +Λt,t+1

(
σVgt+1 + (1 – σ)Ut+1

) ∣∣∣∣ I t–1
}

A worker in a good match earns wage wgt while employed in a good match. Since there is
no ladder to move up, these workers do not search on-the-job. In the next period, the worker
can either get the separation shock in which case she �ows into unemployment. Otherwise they
continue being in a good match in the subsequent period.

Now, the value of being employed for a worker in a bad match is given by:

Vbt = max
ζbt

Et

{
φwt – σc(ζbt) +Λt,t+1

(
σζbt(1 – ξ)ptV

b
t+1

+ σζbtξptV
g
t+1 + (1 – σ)Ut+1

) ∣∣∣∣ I t–1
}(32)

A worker in a bad match searches on-the-job and hence chooses their search intensity to optimize
their value from a bad match. While in a bad match, the worker earns the wage wbt, and if the
worker survives within the �rm, which occurs with probability σ, she searches with variable
intensity ζbt, and since search is costly, they pay the cost of searching. In the next period, if they
are hit by the separation shock they �ow into unemployment. If they remain employed in the bad
match, the worker might be matched with a good job in which case they move to the good job next
period. If matched with another bad match, the worker chooses to stay in the current bad job.

Wage Contracts Workers and �rms divide the joint match surplus via staggered Nash bargaining
à la Gertler and Trigari (2009). The �rm bargains with workers in good matches for a wage while
workers in bad matches then receive the fraction of the wage for good workers, corresponding to
their relative productivity.12 Thus, when bargaining with good workers, �rms also take account of
the implied costs of hiring bad workers. For the �rm, the relevant surplus per worker is:

Jt =
Ft
lt

12This wage rule for workers in bad matches approximates the optimum wage from direct bargaining.
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For good workers, the relevant surplus is the di�erence between the value of a good match and
unemployment:

Ht = V
g
t –Ut

The expected duration of a wage contract is exogenous. At each period, a �rm faces a �xed
probability 1– λ of renegotiating the wage andwith λ probability, the wage from the previous period
is retained. The expected duration of a wage contract is 1

1–λ . Workers hired in between contracting
periods receive the prevailing �rm wage per unit of labor quality wt. The wage wNt is chosen to
maximize:

(33) wNt = argmax
wt

{
Ht(wt)ηJt(wt)(1–η)

∣∣∣∣ I t–1
}

subject to

(34) wt+1 =

{
wt with probability λ
wNt+1 with probability 1 – λ

where wNt+1 is the wage chosen in the next period if there is renegotiation and η is the households
relative bargaining power. Now, to a �rst order approximation, the evolution of average wages can
be written as follows

(35) w̄t = (1 – λ)w̄Nt + λw̄t–1

Here, the average wages and the average contract wage are de�ned by

w̄t =
∫
w,γ

wdGt(w,γ)

w̄Nt =
∫
w,γ

wNt (γ)dGt(w,γ)

dGt(w,γ) denotes the time t fraction of units of labor quality employed at �rms with wage less than
or equal to w and ratio of bad-to-good workers less than or equal to γ.13

Resource Constraint To close the model, the resource constraint states that the total resource
allocation towards consumption, investment, vacancy posting costs, and search costs is equal to
aggregate output

(36) ȳt = c̄t + k̄t+1 – (1 – δ)k̄t +
κ

2

∫
i
κ2t ltdi + c(sbt )b̄t + c(sut )ūt

13Under multi–period bargaining, the outcome depends on how the new wage settlement a�ects the relative surpluses
of �rms and workers in subsequent periods where the contract is expected to remain in e�ect. As shown in Gertler and
Trigari (2009), up to a �rst order approximation, the contract wage will be an expected distributed lead of the target
wages that would arise under period-by-period Nash bargaining, where the weights on the target for period t + i depend
on the likelihood the contract remains operative which is λi.
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The government funds unemployment bene�ts through lump-sum transfers:

(37) Tt + (1 – n̄t – b̄t)b = 0

Equilibrium The aggregate state of the economy is de�ned byΩ = {l, g, b, k, z, xT ,nT }. A recur-
sive equilibrium is characterized as a solution for a set of (i) value functions {Jt,V

g
t ,V

b
t ,Ut}, (ii)

prices {rt,wNt ,wt+1, w̄t, w̄Nt }, (iii) allocations {χt, ζut, ζbt, k̄t+1, c̄t, ḡt, ḡt}, (iv) the density function of
composition and wages across workers dGt, a transition function Qt, t + 1, a law of motion for the
economy Πt, such that given the law of motion for exogenous variables zt, xt and nt:

1. households optimize such that ct, kt+1 satisfy the optimality conditions;

2. optimal search and hiring: ζbt, ζut,χt optimize the Bellman equations for Vbt ,Ut, Jt;

3. wage wNt satis�es the Nash Bargaining Rule and wt+1 is given by 35;

4. all Markets Clear: Rental market of Capital clears, households optimize consumption and
search intensities. Firms optimize on hiring decisions and capital investment;

5. ḡt and b̄t evolve according to their respective laws of motion and the evolution of Gt is
consistent with the transition function Qt,t+1;

6. at each point in time, agents’ beliefs are determined by their information set I t–1, their
perceived law of motion for the economy. Agents update their beliefs about the aggregate
productivity in a Bayesian manner with the timing consistent with Assumption 1.

Special Cases

1. Full Information Benchmark. The goal of theoretical framework is twofold. First, to assess
whether introducing imperfect information improves the prediction of duration of recovery
of unemployment as compared to a full information framework. Second, to understand the
propagation mechanism for imperfect information. For either scenario, it is important to
de�ne the full information benchmark. Under full information, the agents perfectly observe
zt and xt each period along with other variables. Therefore, whenmaking their decisions, the
agents are fully aware of the state of the economy and can perfectly observe each component
of aggregate productivity. Hence there are only two shocks in this case: persistent and
transitory productivity shock. As there is no information friction, and they immediately
adjust their expectations in response to any changes in the economy.

2. Imperfect InformationWithout Noise. Another important consideration is the role of imper-
fect information, evenwithout noise shocks. In this framework, I assume that the information
structure is the same as in the imperfect information with noise shocks framework, and
agents observe zt and a signal ŝt about the persistent component of the aggregate productivity
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Table 3: Parameter Values

Parameters Interpretation Value Source
β Discount rate 0.99 Shimer (2005)
δ Depreciation rate 0.025 Gertler and Trigari (2009)
ζ Production function parameter 0.33 Gertler et al. (2020)
ω Elasticity of search cost 3.60 Faberman et al. (2022)
γ Worker’s bargaining power 0.5 Shimer (2005)
λ Renegotiation frequency 0.75 Gertler et al. (2020)
α Elasticity of matches to searchers 0.4 Gertler et al. (2020)
ηh Hiring cost convexity 2.40 Merz and Yashiv (2007)
ρz Technology autoregressive parameter 0.949 Shimer (2005)

Note: This table reports the parameter values that have been �xed to widely accepted external values in the literature.

xt. Here, the noise shocks are never realized, but agents believe that there is some noise in
the economy and adjust their expectations accordingly.

5 Parameterization and Estimation

I estimate the parameters in the model at a quarterly frequency using a three-step procedure.
First, I �x the parameters {β, δ, ζ,ω,γ, λ,α,ηh, ρz} to widely accepted values from the literature.
Then, I estimate {Ψ, κ,µ,σ,φ,ub, ξ} by targeting some unconditional stationarymoments using the
simulated method of moments. Finally, the remaining parameters {σε,σnu, ρn,K} are estimated
to match the impulse responses of unemployment rate, vacancies, out�ow from unemployment,
job-to-job transition rates, hiring rates and wage growth to the identi�ed noise shocks as well as the
persistent productivity shock in the data. Table 3 summarizes the result of the calibration strategy.
I calibrate the output elasticity of labor α = 0.33, the discount factor β = 0.99, and depreciation rate
δ = 0.025 to widely accepted values in the literature.

Targeting Unconditional Moments. As a �rst step, I target the steady state unemployment rate,
unemployment-to-employment transitions, job-to-job transitions and separation rate in the model
to match the average values from the United States for the period 1968-2019. I also target the �ow
value of unemployment, uB, to match the relative value of non-work to work activity ūT = 0.71
following Hall and Milgrom (2008).14

The e�ciency parameter Ψ is targeted such that the steady state unemployment rate in the
model matches the average unemployment rate from 1968-2019 in the data, and takes a value of 0.49.
The hiring cost parameter κ determines the resources that �rms invest into recruiting, and hence,
in�uences the probability that a worker �nds a job. I set the steady state job �nding probability to
match the quarterly UE transition probability, p̃ = 0.28; and then calibrate κ to be consistent with

14The relative non-work to work satis�es EXPRESSION. The value of non-work includes saved search costs from
on-the-job search and the value of work includes saved vacancy posting costs.
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Table 4: Unconditional Targeted Moments

Parameters Interpretation Value Target
Ψ Match e�ciency 0.49 Unemployment Rate = 0.055
κ Cost of hiring 7.21 U – E = 0.28
µ Scale parameter of search cost 0.082 E – E = 0.025
1 – σ Separation rate 0.010 E –U = 0.010
φ SS productivity from bad job 0.76 Average E-E wage increase = 0.045
ξ Probability of �nding a good job 0.24 Average wage-improv. �ow share = 0.53
ub Flow value of unemployment 2.43 Relative value, non work = 0.71

Note: This table reports the parameters estimated using Simulated Method of Moments to target some key stationary
moments in the data. These moments are: unemployment rate, unemployment to employment transition rate, job-to-
job transition rate, employment to unemployment separation rate and wage change of workers who make job to job
transitions. These moments are calculated over the sample period 1968q4 - 2019q4 using the CPS.

p̃. Furthermore, a higher search cost implies a lower EE probability and hence, the search cost
parameter µ is targeted to match EE probability, and takes a value µ = 0.082. The separation rate σ
is targeted to match the E-U probability. The steady state productivity from a bad job, φ is targeted
to match the change in wage of workers who make job-to-job transitions. The ratio of bad jobs
to good jobs is held constant and is calibrated following Gertler et al. (2020).15 I further calibrate
ζ to match the average share of job transitions involving positive wage changes out of total job
�ows and target this number to be 0.527, following Gertler et al. (2020). The corresponding value if
ζ = 0.23. A lower probability of �nding a good job corresponds to a higher steady state value of
bad-to-good workers, and hence a higher average share of bad-to-good �ows. Finally, the hiring
cost convexity ηh is targeted to match

Information Parameters: Impulse Response Matching. I estimate the information parameters
bymatchingmodel-implied responses following a noise shock, and TFP shock to their counterparts
in the empirical exercise (Rotemberg and Woodford, 1997; Christiano et al., 2005). The targets
are the responses of unemployment rate, UE rate and EE rate for horizons of up to 20 quarters.
The impulse response matching is done by minimizing the distance between the model-generated
impulse response functions (IRFs) and the empirical IRFs. Let f , be the column vector stacking the
point estimates of each of these impulse responses, where i = 1, · · · ,N indexes the di�erent IRFs,
and h is the horizon at which the IRFs are being evaluated. The model-generated IRFs are denoted
as fm(Θ), where Θ is a vector of model parameters. The optimization problem is given as:

(38) min
θ

(f – fm(Θ))′W (f – fm(Θ))

15

b̄
ḡ
=
(1 – λ)(pEE + pEU )

pEE + λpEU

where pEE and pEU are probability of E-E transitions and E-U transitions respectively
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Table 5: Estimated Parameters from IRF Matching

Parameters Interpretation Estimate Std. Error
σε Std. Dev of Persistent TFP shock 0.062 0.009
σν Std. Dev of Noise Shock 0.096 0.007
ρn Noise Autoregressive Parameter 0.921 0.004
K Signal-to-Noise Ratio 0.23 0.003

Note: This table reports the estimated parameters from the impulse response matching exercise outlined in equation 38.
The third column reports the estimated values while the fourth column reports the standard errors for these values. The
impulse responses are matched by GMM and the standard errors are calculated using the delta method.

where, Θ = σ2ε,σ2ν, ρn,K, where K is the signal-to-noise ratio. The weight matrixW is the inverse
of the variance-covariance matrix of the empirical IRF estimates.16

The result of this estimation process is documented in Table 5, with standard errors calculated
using the delta method (Guerron-Quintana et al., 2017). The signal-to-noise ratio is 0.23 , which is
low as the noise shocks have a large variance. Thus, the implied standard deviation of the transitory
productivity shock is found to be ση = 0.192, which is relatively large compared to the standard
deviation of the noise shock as well as that of the persistent TFP shock, so that learning about the
persistent component of productivity is gradual. This implies that the agents in the economy learn
quite slowly about the true persistent TFP component.

Figures 7 plots the impulse responses from the empirical exercise and the impulse responses
implied by the estimatedmodel in response to a noise shock and a persistent TFP shock. Themodel
�t is good, with all the model implied impulse responses falling within the con�dence bands from
the empirical exercise. The impact as well as the dynamics for unemployment rate, job �nding
rate and job-to-job transitions matches the empirical impulse responses well. The dynamics for
vacancies and hiring rate are not matched well as the model fails to capture the curvature which
the empirical impulse responses display.

The benchmark model for the rest of the paper is the imperfect information model with noise
shocks. I consider several counterfactual models. The �rst is the full information model which is
re-calibrated as discussed in Appendix Section B.2. In this framework, �rms and workers perfectly
observe zt, xt every period and immediately revise their expectations. The second framework,
is the imperfect information model without noise shocks. This model is not re-calibrated. Here,
�rms and workers still have imperfect information and do not observe xt, but only see the signal
ŝt each period. However, the noise shocks are never realized. This model serves as an important
comparison to highlight the role of imperfect information.

BusinessCycleStatistics Tounderstandhow themodelwith imperfect informationperformswith
respect to the observed business cycle statistics in the data, I report the volatility and correlation

16The objective function becomes a form of the generalized method of moments estimator. In this case, the opti-
mization problem aims to match moments (the IRFs) in a way that is e�cient given the variability of the empirical
estimates.
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Figure 7: Impulse Responses from Data and Estimated Model

(a) Noise Shocks

(b) Persistent TFP Shock

Note: This �gure shows the results of IRF matching for noise shocks and persistent TFP shocks.
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of several labor market outcomes with output in Table 6. The table compares the business cycle
statistics obtained by simulating the benchmark model and the full information model, to the
statistics in theUS economy from 1968-2019 for unemployment rate (U), job vacancies (V ), job-tp-job
transitions (EE), job transitions from unemployment to employment (UE), and hiring rate.

While both models o�er reasonable approximations of output data, the imperfect informa-
tion model outperforms the full-information model across all other variables, both in terms of
standard deviation and correlation with output and is closer to empirical observations. It’s worth

Table 6: Business Cycle Statistics

Data Full Information Imperfect Info.
without Noise

Imperfect Info.
withNoise

(1) (2) (3) (4) (5) (6) (7) (8)
x SD corr(Y,x) SD corr(Y,x) Info corr(Y,x) SD corr(Y,x)
Y 0.019 1 0.019 1 0.021 1 0.024 1
U 0.162 -0.859 0.092 -0.742 0.117 -0.768 0.152 -0.792
V 0.182 0.702 0.131 0.642 0.157 0.675 0.196 0.728
EE 0.102 0.720 0.067 0.629 0.071 0.661 0.088 0.825
UE 0.069 0.734 0.044 0.639 0.058 0.653 0.077 0.692
Hiring Rate 0.058 0.677 0.034 0.571 0.036 0.622 0.042 0.723

Note: This table reports standard deviation of key labor market variables and their correlation with output in the model.
The data here has been simulated from the model and HP-�ltered (100,00).

acknowledging that the full-information model already incorporates features like wage rigidity
and on-the-job search—factors known to induce volatility in search models (Shimer, 2005). Yet, the
introduction of imperfect information augments the volatility of unemployment by an additional
23% relative to the full-information benchmark. Similarly, the imperfect information framework
yields higher volatility for job vacancies and transition rates. This underscores the imperfect
information model’s enhanced e�cacy in capturing the dynamics of labor markets.

Forecast Error Variance Decomposition The identi�ed nosie shocks explain about a third of the
variance in the labor market at a short run horizon. To understand how the benchmark model
compares to the observed moments, I report the forecast error variance decomposition calculated
by simulating the imperfect information model, in Table 7, for 8 quarters. The benchmark model
can match the forecast error variances of the key labor market outcomes observed in the data
reasonalbly well. The model predicts that the noise shocks explain 31% of the forecast error
variance in unemployment rate which is 90% of the forecast error variance in the data explained
by noise shocks. On average, the model overpredicts the forecast error variance by 7%.
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Table 7: FEVD: Data and Model

Data Model
Horizon: 0-8 quarters Horizon: 0-8 quarters

Persistent Transitory Noise Persistent Transitory Noise

Unemployment 0.43 0.23 0.34 0.48 0.21 0.31
Vacancies 0.42 0.21 0.37 0.49 0.19 0.32
Job-�nding Rate 0.38 0.27 0.35 0.42 0.21 0.37
E-E 0.42 0.31 0.27 0.49 0.17 0.34
Wages 0.61 0.25 0.14 0.60 0.22 0.18

Note: This table reports the forecast error variance in the model with imperfect information and compares it to the
moments in the data.

6 Role of Imperfect Information in Labor Market Dynamics

The benchmark model with information frictions is not only a good �t to the data, as seen in the
previous section, but also predicts higher volatility in the labor market than the model with full
information. Now, the identi�ed noise shocks played an important role in explaining the slow
recovery of unemployed in the data. In this section, I �rst explain a propagation mechanism of
shocks under imperfect information in the benchmark model. A�er establishing the mechanism,
I document a counterfactual exercise to demonstrate that imperfect information can contribute
signi�cantly to the slow recovery of unemployment rate in recessions. Finally, I discuss the
importance of various other channels such as sticky wages and on-the-job search, which have been
proposed as possible channels for generating higher persistence in search and matching models.

6.1 Mechanism for Propagation of Shocks under Imperfect Information

Figure 8 illustrates the e�ect of a one standard deviation negative persistent productivity shock
on key outcomes. The solid lines represent the imperfect information framework, while the
dashed lines are the full information benchmark. In an environment characterized by imperfect
information, agents—both �rms andworkers—operate under a Bayesian learning frameworkwhere
they assign probabilistic weights to shocks as either persistent, transitory, or mere noise.

The uncertainty surrounding the nature of these shocks induces a form of temporal inertia
in agent responses. Due to sticky wages, �rms and workers do not immediately adjust wages as
much as in the full information benchmark. This initial under-reaction stems from the fear that
if the shocks are transitory or merely noise, an increase in wages would be sub-optimal when
subsequently productivity levels decline, thereby reducing the future discounted pro�ts.

In contrast to a full-informationbenchmarkwhere responses are immediate andunambiguous,
under imperfect information, we observe amoderated initial decrease in key labormarket variables
such as job vacancies, job-to-job transitions, and UE transitions.

However, as �rms and workers update their beliefs about the change in productivity, they
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Figure 8: Impulse Response to a Positive Persistent TFP Shock

Note: This �gure shows the impulse response functions for the re-calibrated full information model (dashed black line)
and the imperfect information model (solid green line) to a negative 1 standard deviation persistent TFP shock.

assignmoreweight each period to the change being truly persistent, andwe see amore pronounced
adjustment mechanism. This adjustment in expectations is signi�cantly slowed down by the
persistence in the noise as agents face a more complex signal extraction problem. As the �rms and
workers put more weight on the shock being persistent, the �rms that get a chance to renegotiate
now o�er lower wages and as a result the average wage decreases. This triggers decrease in search
intensity for both unemployed and employed workers, as workers now anticipate lower wages
and thus lower surplus from a match. Further, �rms post fewer vacancies as they now place
more weight on the shock being a true negative persistent shock. Consequently, this generates
sluggishness in the job-�nding rate. Eventually, unemployment starts increasing in a hump-shaped
trajectory and we observe a more persistent response in unemployment than the full information
framework.

This illustrates the importance of sticky wages in propagating the imperfect information. If
wages were �exible, they could keep adjust immediately as agents learn about the nature of the
shock, and recovery would be faster. Further persistence is generated by the on-the-job search, as
employed workers crowd out the unemployed workers in bad matches, and also cause �rms to
post fewer vacancies. This signi�cantly delays the job-�nding process for the unemployed workers,
thus contributing to the persistence of unemployment. With the combination of sticky wages,
on-the-job search and imperfect information, persistent productivity shocks have signi�cantly
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more persistent e�ects on unemployment than would under the full information framework.

6.2 Unemployment Dynamics across Recessions: Data vs Model

In this section, I simulate the calibrated imperfect information model to generate counterfactual
unemployment rate series for 5 recessions between 1970-2019. This exercise shows that imperfect
information explains the slow recovery of the unemployment rate, specially in the last three
recessions. For this exercise, the model is normalized to match the starting unemployment rate
for each of the recessions. While simulating the imperfect information model with noise, all three
identi�ed shocks from the VAR are incorporated each period. For the imperfect information model
without noise, only the persistent and transitory shocks from the VAR are incorporated each period.
For the full information model, I introduce the persistent and the transitory shocks each period.
Furthermore, the full information model is re-estimated as described in the previous section, to
match the empirical IRFs to the persistent productivity shocks. The estimated parameters for the
full information model are presented in the Appendix.

Figure 9: Model Implied Recovery of Unemployment for Recessions Post 1990s

Note: This �gure shows the model implied, simulated unemployment rate for the re-calibrated full information model
(dashed blue line), the imperfect information model without noise (gray line) and the imperfect information model
(solid green line) for the Great Recession, 2001 recession and the 1990-91 recession.

The imperfect information model predicts the persistence of the unemployment rate for the
three recessions post 1990 quite well. In contrast, the full information model predicts much faster
recoveries. For the Great Recession, the actual unemployment rate took 37 quarters to recover to its

36



pre-recession trough. The imperfect information predicts the recovery at 32 quarters whereas the
full informationmodel predicts amuch faster recovery at 24 quarters. In other words, the imperfect
information model predicts almost 33% slower recovery than the full information benchmark.

For the 2001 recession, the duration of recovery for unemployment was 24 quarters, and the
imperfect information model (20 quarters) predicts 25% slower recovery than the full information
model (16 quarters). In 1991 recession, the unemployment recovery took 28 quarters. The imperfect
informationmodel predicted a recovery at 22 quarters, almost 38% higher than the full information
benchmark which predicted recovery at 16 quarters. This highlights the contribution of imperfect
information to the persistence of the labor market. Larger noise shocks further dampen the
economy as �rms and workers perceive a negative productivity shock to be more persistent than
it actually is. The slow learning by agents combined with sticky wages, translates into a slower
recovery.

For the pre-90s recessions, the full information and the two imperfect information models
are comparable in their prediction for recovery of unemployment rate. This is because the noise
shocks identi�ed in the SVAR play a much smaller role in explaining the �uctuations in the labor
market. With smaller noise shocks, the agents’ perceived productivity, while still lower than actual,
was not too far o� from the true productivity. Thus, the imperfect information models predict
similar recovery relative to the full information model. To be precise, in the 1981-82 recession (14
quarters), the imperfect information model with noise shocks predicted recovery in 11 quarters
while the full information model predicted recovery in 9 quarters. For the 1973-78 recession (23
quarters), the imperfect information model with noise shocks predicted recovery in 17 quarters
while the full informationmodel predicted recovery in 14 quarters. The results are also summarized
in Appendix Table B2.

6.2.1 Model Decomposition: StickyWages, On-the-job Search and Imperfect Information

In this section, I compare the persistence of unemployment under various mechanisms with and
without imperfect information. In this model, there are three factors that add to the persistence
of the unemployment rate: on-the-job search, sticky wages and learning. To understand the
contribution of each channel, I compare a full information benchmark to imperfect information
model under 4 scenarios: a) �exible wages without on-the-job search b) �exible wages with on-
the-job search, c) sticky wages without on-the-job search, and d) sticky wages with on-the-job
search.

The measure of persistence I use is the average number of quarters across recessions to
recover 50% of the rise in unemployment during recession. I calculate for each recession between
1968-2019, the share of the rise in unemployment during the recession that has been reversed
during the expansion following Equation 1. For each recession, I calculate the average number of
quarters it takes from the beginning of the recession to recover 50% of the rise in unemployment.
Empirically, it took 17 quarters from the beginning of the recession to recover 50% of the rise
in unemployment across recessions between 1968-2019. To highlight that learning contributes to
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Figure 10: Model Implied Recovery of Unemployment for Recessions Pre 1990s

Note: This �gure shows the model implied simulated unemployment rate for the re-calibrated full information model
(dashed blue line), the imperfect information model without noise (gray line) and the imperfect information model with
noise shocks (solid green line) for the Great Recession, 2001 recession and the 1990-91 recession.

persistence under each speci�cation, I plot this measure in Figure 11. In the stacked bar graph, I
re-calibrate the full information model as discussed in Section B.2.

Role of sticky wages. Sticky wages generate persistence in the labor market by making wage
adjustment sluggish. As wages are slower to adjust downwards during recessions, incentive for
�rms to hire workers remains low. Thus, hiring declines and results in a lower job-�nding rate with
higher unemployment for longer than if the wages were �exible to adjust. Introduction of sticky
wages with no on-the-job search contributes signi�cantly to the persistence of unemployment, and
under full information, it accounts for 45% ( 7 quarters) of the 50% of the rise in unemployment.

Role of on-the-job search. During downturns, on-the-job search creates congestion for the
unemployed workers as the pool of employed workers in bad matches increases. This is because
the incentive for employed workers to move up the ladder is low due to lower productivity. And as
the probability of �nding a good job is exogenously low, unemployed workers have fewer vacant
low productivity jobs to move into and thus, �nding a job takes longer, creating persistence in the
unemployment rate. Furthermore, employed workers search with lower intensity due to which the
�rms post fewer vacancies and thus also dampens the unemployed workers probability of �nding
a job. When on-the-job search is introduced to a �ex wage full information model, it predicts about
30% (5 quarters) of the duration to recover 50% of the rise in unemployment rate. When on the job
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Figure 11: Average Duration to Recover 50% of Rise in Unemployment Across Models

Note: This �gure shows the model implied duration to recover 50% of the rise in unemployment from the beginning of
the recession, averaged across recessions between 1968-2019 for various model speci�cation. The percentages are the
percent of the data (18 quarters) that the particular model speci�cation explains, while the x-axis is the actual number
of quarters explained by the particular speci�cation. The green bars are incremental contributions by learning, which
implies that the total contribution of the imperfect information model is the sum of the blue and the green bar. Here,
the full information model is re-calibrated as discussed in Section B.2. Further, I shut down each mechanism one by one
in both models.

search interacts with sticky wages, the full information model predicts about 54% (9 quarters) of
the persistence observed in the data.

Role of imperfect information. The previous two paragraphs highlighted that both on-the-job
search and sticky wages endogenously generate persistence, predicting the unemployment rate to
recover 50% of its rise in 10 quarters. To understand howmuch does imperfect information add
to the persistence, we must look at the contribution coming from learning across all the model
speci�cations. During downturns, due to noise shocks, �rms and workers perceive the aggregate
productivity shocks to bemore persistent than they are. Since they only learn over multiple periods
whether a shock is persistent or transitory, this generates a sluggishness as they keep behaving as if
facing a negative productivity shock which is more persistent than the true shock. Firms anticipate
lower returns from hiring while workers decline their search e�ort, leading to lower number of
matches for as long as they learn about the true shock. When introducing imperfect information
to the the �exible wages without on-the-job search framework, persistence increases, predicting
the unemployment to recover 50% of it’s rise in 6 quarters (35% of the total duration).

Learning interacts with on-the-job search and generates an additional 16% to the persistence
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of unemployment, predicting the 50%of the recovery in 8 quarters. Here, the employedworkers are
learning slowly about the true shock and they anticipate the productivity to be persistently worse
than actual. Employed workers search e�ort remains dampened, which leads �rms to post fewer
vacancies and thus also dampens the unemployed workers chances of �nding a job. This leads to
dampened job �nding rates for longer and hence higher duration of recovery of unemployment
rate.

Learning interacts with sticky wages and generates higher persistence evenwithout on-the-job
search. Firms anticipate the productivity to be persistently worse than actual, which decreases
their incentives to hire which is further ampli�ed by wages which are slow to adjust downwards.
Therefore, hiring remains dampened as they slowly learn about the true shock. Workers also
decrease search e�ort and combined with lower hiring, this leads to dampened job �nding rates
and hence unemployment rate takes much longer to recover. Imperfect information with sticky
wages predict that it would take 11 quarters to recover the 50% of the rise in unemployment. This
is 65% of the recovery duration in the data and is 24% higher than the full information sticky wage
model.

Finally, I show that imperfect information with sticky wages and on-the-job search adds a
substantial 5.5 quarters (30%) to the average duration to recover 50% of the rise in unemployment,
as compared to the full information counterpart. In equilibrium, as �rms and workers anticipate
the productivity to be persistently lower than actual due to imperfect information, sticky wages
decline the incentives to hire even further, while decline in on-the-job search makes it harder for
unemployed workers to �nd jobs, thus endogenously generating 84% of the persistence observed
in the data.

In Appendix Section B.4.2, I discuss the model decomposition, comparing the full information
model with the imperfect information model without noise shocks. This analyses establishes that
learning endogenously leads to higher persistence of unemployment, even without noise shocks.
In the model with sticky wages and on-the-job search, imperfect information adds 18% to the
persistence of unemployment rate (approximately 3 quarters). This highlights the importance of
incorporating imperfect information in models of search and matching to accurately predict the
duration of recovery of unemployment from recessions.

6.2.2 Unemployment Forecasts in the Model.

The model presents a unique feature with respect to the unemployment forecast. When faced
with a persistent productivity shock, due to imperfect information, agents attribute a part of the
shock to be noise as well as transitory shock and hence their projections under-react to the actual
unemployment rate. However, the reverse happens when they face a noise shock. Agents attribute
some part of a negative noise shock to be persistent or transitory productivity and hence initially
forecast the unemployment rate to be higher than it actually is (since true productivity has not
changed). They eventually start placing more and more weight on the shock being noise and as
they learn, their forecasts converges to the true unemployment rate. This is illustrated in Figure 12
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where Panel (a) shows the 4-8 quarter ahead unemployment forecasts by agents in the model in
response to a noise shock along with the impulse response of unemployment rate. Panel (b) shows
the response of actual and forecasted unemployment rate in response to a persistent TFP shock.

Figure 12: Long-Run Unemployment Projections in the Model

(a) Response of Unemployment to Noise Shock (b) Unemployment Projections: Great Recession

Note: Panel (a) shows the model implied 4-8 quarters ahead projections in response to a noise shock. The solid thick
black line is the actual response of unemployment due to the shock. Panel (b) shows the model implied forecasts for
unemployment rate 1,2 and 3 years ahead. The dashed black line is the model simulated unemployment rate for the
Great Recession. While simulating the model, each period all three shocks act.

To illustrate that the noise shocks in this model can replicate the over-shooting of unemploy-
ment projections observed in the data, I simulate themodel and generate long run forecasts. Figure
12b shows the model generated, one, two and three year ahead unemployment projections in the
model a�er the Great Recession. Here, all three shocks, identi�ed from the VAR, act together
each period while simulation the imperfect information model with noise shocks. Since all three
shocks act, the projections under-react if the contribution of the persistent shock dominates the
contribution of the noise shocks as well as transitory shocks. Similarly, as the contribution of the
noise shocks dominates, the projections over-estimate the unemployment rate. As seen in the
historical decomposition of the unemployment rate in the data in Figure A11, the contribution of
the noise shocks to the movement in unemployment dominates a�er 2012. Thus, in the model,
initially, as the productivity shocks have higher weight, the unemployment rate is under-estimated
by the agents in the model. However, from 2012, the contribution of the noise shocks increases but
the agents are unable to discern the shock from a true persistent productivity shock and hence
keep expecting higher unemployment rates in the future. However, as the shock is truly noise, the
actual unemployment rate is lower than expected. This is similar to the pattern seen in the data in
Figure 2b. It is important to note that the noise shocks are unique in generating over-estimation of
long run unemployment projections. For all structural shocks, the long run expectations under-
estimate the unemployment rate. Thus, noise shocks can be a potential solution to the consistent
pattern observed in the data where the long-run unemployment forecasts are over-estimated by
professional forecasters.
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6.2.3 Unemployment Dynamics during COVID-19 Recession

Finally, I consider the recovery from the Covid-19 recession, which stands out as one of the quickest
recoveries in postwar history. The unemployment rate rose from 3.5% in February 2020 to a peak
of 14.7%, and declined to 3.9% at the end of 2021. The rise in unemployment was primarily due
to temporary layo�s. Typically, unemployment from temporary layo�s declines quickly once
economic activity improves as workers can to return to work quickly when labor demand improves.
To understand the role of imperfect information, I �rst look at the shorter horizon expectations (1-4
quarters ahead) of the professional forecasters in Figure 13a, and the longer horizon expectations
(1-3 years ahead) in Figure A2b. Forecasters revised their shorter horizon expectations much
faster by 2021q4 and the longer horizon projections by 2021, suggesting that they expected this
recession to be transitory relative to other recessions. In our framework, this suggests that the role
of noise shocks was not very high during the Covid-19 recession. To formally understand the role

Figure 13: COVID-19: Projections and Contribution of Shocks

(a) Shorter Horizon Projections (b) COVID-19: Historical Contribution of Shocks to
Unemployment Rate

Note: Panel (a) shows the median 1-4 quarters ahead projections of unemployment rate from the Survey of Professional
Forecasters during Covid-19. Panel (b) shows the historical decomposition of unemployment rate following equation 16.
The black line is the cumulative contribution of the identi�ed persistent and transitory TFP shocks to the movements in
demeaned unemployment rate (red line). The dashed blue line is the contribution of the TFP shock and the noise shocks.

of imperfect information, I extend the SVAR by including the Covid 19 pandemic in my sample
(1968-2022). Now, the max-share identi�cation assumes that the persistent TFP shock maximizes
the FEV of TFP at a long run. However, given that the Covid-19 pandemic happened less than 20
quarters ago, I assume that the persistent shock maximizes the forecast error variance of TFP
even in the short run. However, since the identi�cation of noise shocks does not depend on the
max-share identi�cation, this exercise is still informative about the dynamics of unemployment
rate driven by noise shocks. In Figure 13b, the noise shocks did not play an important role in this
recession, as most of the �uctuation is picked up by the TFP shocks. This can be explained due
to the expectations that adjusted very quickly to the recovery and in the short run, forecasters
predicted a transitory recovery. This suggests that noise shocks did not play an important role and
although there was some degree of misperception, it was less than in other recessions such as
2007-09. In this case, the fundamental shocks contributed to most of the rise and the quick recovery.
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7 Conclusion

This paper assess the role of imperfect information in labor market �uctuations and recovery
patterns. Using a tri-variate structural VAR model, I identify noise shocks and their signi�cant
e�ects on labor market dynamics. I document that noise shocks can be an important driver of
the slow recovery of unemployment during recessions. I �nd that without noise shocks, the labor
market would have recovered faster by 7 quarter on average in the downturns between 1968-2019.
Furthermore, noise shocks account for one-third of the variance in unemployment, job �nding
rate, and vacancy postings at the business cycle frequency. The response of labor market outcomes
to the identi�ed noise shocks is signi�cant at the business cycle frequency and is hump-shaped.
The quantitatively and statistically signi�cant response to noise shocks suggest the presence of
information frictions and the hump-shape indicates that �rms and workers are learning under
imperfect information. These results then motivate the introduction of imperfect information into
a general equilibriummodel of search and matching.

The introduction of imperfect information in a general equilibriummodel provides a more
robust framework for explaining the phenomena observed in the labor market. The model is
calibrated to match unconditional moments in the data as well as the impulse responses to the
identi�ed shocks from the SVAR. The imperfect information model with noise shocks predicts ∼ 30
percent higher persistence in recovery of unemployment on average across recessions, relative to
themodel with full information. During downturns, �rms and workers receive a sequence of all the
shocks, agents overestimate the persistence of the negative productivity shock due to presence of
noise shocks and perceive the negative productivity shock to be persistently worse than it actually
is. Since they gradually learn whether a shock is persistent or transitory, they respond as if facing
a more persistent negative productivity shock than the true shock. Firms therefore post fewer
vacancies for longer and workers search with lower intensity, which leads to persistently dampened
job �nding rates. This leads to a slower decline in unemployment rate, which is further exacerbated
by sticky wages which are sluggish to adjust initially as well as due to on-the-job search. Finally, the
imperfect information model with noise shocks predicts 23% higher volatility in the labor market
indicators. This is particularly true for the period a�er 1990, emphasizing the increased importance
of imperfect information in more recent economic conditions.
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A Empirical Appendix

A.1 Data Sources

This subsection describes all the data sources used in this paper. The sample period for all the
primary analysis is 1968q4 to 2019q4.

1. Unemployment rate and unemployment to employment transition rates are constructed from
the Current Population Survey (CPS).

2. Since 1994, the CPS has asked individuals whether they still work at the same job as in the
previous month. However, it is not possible to observe job-to-job transitions prior to 1994
and my sample changes to 1994-2019 for the job-to-job transitions.

3. Vacancies are measured as an index constructed based on the composite help-wanted index
computed Barnichon (2010a), as it goes back to the beginning of my sample (1968).

4. Real GDP and wage (average hourly earnings) series are from BEA.

5. Aggregate productivity is measured as the Solow residual, for which I rely on the utility
adjusted series from Fernald (2014), also updated by the Federal Reserve Bank of San Fransico.

6. Nowcast Errors: The GDP nowcast errors are constructed from the median forecast from the
Survey of Professional Forecasters, which starts in 1968q4.
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A.2 Recovery Pattern of the Labor Market

The labor market recovery has been sluggish and typically lags behind the recovery of output.
Figure A1 illustrates the recovery pattern of unemployment and vacancies. In particular, the last
three recessions before the pandemic have been slower. Specially the recessions occurring in
1990-91, 2001, and 2007-09, display distinct features from the postwar recoveries observed before
the 1990s. In these recoveries, unemployment levels remained elevated, while both employment
growth and job vacancies were sluggish for multiple quarters following the trough in output. I
compute the duration to recover the rise in unemployment across various recessions. I calculate
the following urecovery duration to recover 25%, 50%, 75% and 100% rise in unemployment across
recessions. These are reported in Table 1.

Figure A1: Recoveries across Recessions

(a) Unemployment Rate (b) Vacancies

Note: This �gure plots the recovery of unemployment rate and vacancies from recessions to their pre-recession levels.
The vacancy series is from Barnichon (2010a)

A.3 Projections from Forecasters and Policymakers

As noted in the introduction, the standard assumption inmost macroeconomicmodel is that agents
immediately recognize the nature of such a shock and adjust their expectations (and decisions).
However, it can take agents much longer to learn about the true nature of the shock.

A.3.1 Professional Forecasters.

Survey of Professional Forecasters. To illustrate this point, I �rst present unemployment pro-
jections from the Survey of Professional Forecasters (SPF) during the recovery from the Great
Recession in Figure A2. This illustrates that a) the forecasters consistently predicted unemploy-
ment to be higher than it actually was during the recovery from the Great Recession and, b) this
misperception about the true nature of the shock likely contributed to higher persistence, as the
historical decomposition of unemployment rate in Figure ?? suggests. The SPF documents long run
projections starting in 2009 and hence long run projections are not available for earlier recessions.
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Figure A2: Projected Unemployment Rate from Survey of Professional Forecasters:

(a) Projections: Great Recession (b) Projections: Covid-19

Note: The various colored lines represents the median 1 year, 2 year and 3 year ahead projection of unemployment rate
from the Survey of Professional Forecasters. The solid red line is the actual unemployment rate

However, I provide 1 year ahead forecasts in Figure A4a, which documents that forecasters almost
always predict the recovery to be slower than it is.

Livingston Survey The Livingston survey is the longest running survey of forecasters starting
in 1946.17 The survey is conducted twice a year and consists of forecasts of 18 di�erent variables
describing unemployment, output, prices, and other macroeconomic data. The forecasts are by
economists from industry, government, banking, and academia.

Figure A3 depicts the 1 year and 2 year ahead median forecasts by the forecasters in the
Livingston survey for the 1973-74 recession in the le� panel and the 2007-09 recession in the right
panel. Qualitatively the results are similar to what the SPF forecasters expected. Across recessions,
forecasters over estimated the recovery of unemployment rate. This re-enforces the idea that
agents cannot distinguish between a persistent and transitory shock immediately and may take
several quarters to learn.

Policymakers. Now, to illustrate that it can be challenging even for policymakers to correctly
assess the nature of the recession, I present the projections from Federal Reserve’s Greenbook in
December 2008 in Figure A4b. Under all scenarios, the Federal Reserve Board predicted a much
faster recovery during the Great Recession.

17It is publicly available and is �elded by the Federal Reserve Bank of Philadelphia who took over from Joseph
Livingston.
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Figure A3: Projected Unemployment Rate from the Livingston Survey

(a) 1973-74 Recession (b) 2009-07 Recession

Note: The various colored lines represents the median 1 and 2 year ahead projection of unemployment rate from the
Livingston Survey. The solid red line is the actual unemployment rate

Figure A4: Projected Unemployment Rate from the SPF

(a) 1 year ahead Unemployment Forecast from Survey of
Professional Forecasters

(b) Projected Unemployment Rate: Fed. Greenbook, De-
cember 2008

Note: Panel (a): The black dashed line represents the median 1 year ahead projection of unemployment rate from the
Survey of Professional Forecasters. The solid red line is the actual unemployment rate. Panel (b): The black dashed line
represents the projection of unemployment rate from the December 2008 Greenbook released by the Federal Reserve
Board. The dashed lines represent projections under various scenarios that the Fed simulated. The solid red line is the
actual unemployment rate.

A.4 SVAR

In this section I discuss somemore results and robustness from the SVAR. First, I present the shock
series identi�ed from the VAR in Figure A5.

VAR Impulse Response Functions. The VAR’s impulse responses, illustrated in Figure A6, align
with both the model’s stipulated assumptions and economic reasoning. Speci�cally:

1. Noise Shocks: These do not a�ect TFP but instantly reduce nowcast errors while boosting
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Figure A5: Shock Series

Note: This �gure plots the time series of noise shocks, persistent TFP shocks, and transitory TFP shocks, as identi�ed in
the SVAR. The persistent TFP shocks have lower volatility post 1985 while the noise shocks have higher volatility.

GDP. These are imposed by the VAR on impact. However, we see in the dynamics that the
nowcast errors remain negative for about 8 quarters which implies that the agents keep
getting surprised as they expect GDP to be higher than it is. This suggests that they do not
immediately recognize the shock as noise and attribute it to a persistent or transitory change
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in productivity. This is once again consistent with learning under imperfect information.

2. Persistent Shocks: These raise TFP in a manner that aligns with a long-lasting shock. Concur-
rently, GDP and nowcast errors increase immediately. Even a�er several quarters, nowcast
errors stay elevated, indicating that these persistent shocks continually surprise economic
agents and they misperceive the shocks.

3. Transitory Shocks: These momentarily elevate both TFP and output, but their e�ect is short-
lived. Initially, nowcast errors rise due to these shocks but soon turn negative. This indicates
that agentsmistakenly view the shock as persistent for a duration and continue to be surprised
since it’s actually a tranbsitory shock with minimal long-term e�ects on productivity and
GDP.

Figure A6: Impulse Response from the VAR
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Note: This �gure plots the impulse response functions for the variables in the VAR to a persistent shock, a transitory
shock and a noise shock, identi�ed using the SVAR described by the optimization problem in 7. The sample period is
1968q4: 2019q4.

The �gure A7 plots the forecast error variance contribution of each shock to TFP, GDP and
the nowcast errors (NCE). The blue shaded area is attributed to the persistent shock, the yellow is
attributed to the transitory shock and the purple is attributed to the noise shocks. As expected, the
maximum forecast error variance of TFP is explained by the persistent shock. We also see that
the noise shock does not contribute signi�cantly to the forecast error variance of TFP, which is
consistent with the assumptions of the VAR. The nowcast errors are mostly explained by the noise
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shocks while GDP is intitally explained to a large extent by the noise shocks but as the horizon
increases, persistent shock becomes the primary driver of forecast error variance of GDP. This is
also in line with economic intutition – as noise shocks die down, GDP is explained by the actual
TFP shocks in the long run.

Figure A7: FEVD a�er Max-Share Identi�cation
TFP
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Note: This �gure plots the forecast error variance decomposition for TFP, GDP and the Nowcast errors (NCE). The
blue shaded area is attributed to the persistent shock, the yellow is attributed to the transitory shock and the purple is
attributed to the noise shocks.

A.5 Smooth Linear Projections

In this section, I describe the method used to estimate the SLP, following Barnichon and Brownlees
(2019). They model the sequence of impulse response coe�cients as a linear combination of
B-splines basis functions. These are estimated using a shrinkage estimator that shrinks the impulse
response toward a polynomial. SLP coincides with LP when the degree of shrinkage is low and
with polynomial distributed lag model with a high degree of shrinkage. Consider a LP of the form:

(39) yt+h = α
j
h +β

j
hu

j
t +

P
∑
p=1
γ
j
pωt–p + µ

j
h,t+h

whereωj
t–p is the set of lagged values of y and u

j.

Following Barnichon and Brownlees (2019), one can approximate βjh ≈ ∑
K
k=1 b

j
kB

j
k(h) using

a linear B-splines basis function expansion in the forecast horizon h. Thus, the corresponding

54



smooth Linear Projections can be written as Equation 40.

(40) yt+h ≈

K
∑
k=1

ajkBk(h)
j +

K
∑
k=1

bjkB
j
k(h)u

j
t +

P
∑
p=1

K
∑
k=1

cjpkB
j
k(h)ω

j
t–p + µ

j
h,t+h

The SLP is estimated using generalized ridge estimation. When the shrinkage parameter is small,
it is close to the least square estimation and has zero bias but potentially large variance.When
the shrinkage parameter is large, the estimator is biased but has smaller variance than the least
squares estimator. The shrinkage parameter is chosen using k-fold cross-validation (Racine (1997)).
I present the impulse responses from the local projection and their smoothed counterparts for the
noise shock in Figure A9 and the persistent shock in Figure A8. The IRFs from the smoothed LPs
are qualitatively and quantitatively similar to the local projections.

Figure A8: Smoothed Impulse Response to Persistent TFP Shocks

Note: This �gure plots the impulse responses from the local projection and their smoothed counterparts for the persistent
TFP shock. The shaded area represents a 95% con�dence interval for the local projection.
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Figure A9: Smoothed Impulse Response to Noise Shocks

Note: This �gure plots the impulse responses from the local projection and their smoothed counterparts for the noise
shock. The shaded area represents a 95% con�dence interval for the local projection.

A.6 Empirical Results

A.6.1 Impulse Response to Transitory TFP Shock

Figure A10 illustrates the response of labormarket variables to a transitory TFP shock. The response
to a transitory shock is muted and is less than that of noise shocks in terms of magnitude.

A.6.2 Historical Decomposition

To understand the role of imperfect information over the business cycle, it is useful to understand
how much of the deviation of the key labor market outcomes from their predicted path can be
explained by the productivity shocks. If noise shocks are not important, the productivity shocks
would explain almost all the �uctuations in these variables. The VARmodel in its Vector Moving
Average form is

yt = et +Ψ1ut–1 + . . . +Ψtu1 + Ψ̄t(41)

= ψ0vt +ψ1vt–1 + . . . +ψtv1 + Ψ̄t(42)

where, ψ0 = Q and ψj = ΨjQ are functions of A1, . . . ,Ap and Q. Ψ̄t is the pure deterministic
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Figure A10: Impulse Response to Transitory TFP Shocks

Note: This �gure plots the impulse response functions for key labor market variables to a transitory TFP shock. The
shaded area represents a 95% con�dence interval.

component. Now, we can decompose (yt – Ψ̄t) as the sum of the contribution of n shocks

(43) yt – Ψ̄t =
t

∑
j=0
ψjv

1
t–j + . . . +

t
∑
j=0
ψjv

n
t–j

In Figure A11, I present the contribution of the two TFP shocks (in blue) and the noise shocks
(in green) in the VAR to the movements in unemployment rate. The noise shocks contribute
signi�cantly to the unemployment rate during the recessions in 1990-91, 2001 and 2007-09. In
Figure A12 I plot the cumulative contribution of the TFP shocks and noise shocks to the out�ow
from unemployment as well as the vacancy postings. These three shocks explain almost all the
movement in the out�ow from unemployment and vacancy postings across the business cycle.
When combined with Figure 5b and Figure 5c, these graphs establish that the noise shocks play an
important role in driving the dynamics of key labor market outcomes specially post 1985, as the
TFP shocks do not fully explain the �uctuations while the noise shocks contribute substantially to
these movements.
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Figure A11: Historical Contribution of Shocks to Unemployment Rate

Note: This �gure plots the historical decomposition of unemployment rate following equation 16. The blue bars are
the cumulative contribution of the identi�ed persistent and transitory TFP shocks to the movements in demeaned
unemployment rate (black line). The green bars are the contribution of the noise shocks.

Figure A12: Historical Contribution of Persistent, Transitory and Noise Shocks

(a) Job Finding Rate (b) Vacancy Posting

Note: This �gure plots the historical decomposition for each series following equation 16. The black line is the cumulative
contribution of the identi�ed persistent, transitory and noise shocks to the movements in demeaned unemployment
rate (red line).
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Figure A13: Historical Contribution of Persistent, Transitory and Noise Shocks

(a)Wage Growth
(b) Private Investment

Note: This �gure plots the historical decomposition for each series following equation 16. For wage growth, he black line
is the cumulative contribution of the identi�ed persistent, transitory and noise shocks to the movements in demeaned
unemployment rate (red line). For private investment, the blue bars are the cumulative contribution of the identi�ed
persistent and transitory TFP shocks to the movements in demeaned unemployment rate (red line). The green bars are
the contribution of the noise shocks.

A.6.3 Persistence of Unemployment

To understand the contribution of the noise shocks to the persistence of unemployment, I compute
for each recession between 1968-2019, the share of the rise in unemployment during the recession
that has been reversed during the expansion. I then de�ne persistence as the number of quarters
to recover 50% of the rise in unemployment during a recession, that is urecovery,t = 0.5. Now, from
the historical decomposition, I can calculate what fraction of this persistence can be attributed
to each of the shock by �rst computing the predicted unemployment rate from each shock and
then calculating the persistence as de�ned above. The results are summarized in Table A1. For the
great recession, noise shocks account for about 35% of the 50% of the rise in unemployment and
on average noise shocks account for 27% of this recovery across recessions.
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Table A1: Contribution of Noise Shocks to Recovery of Unemployment Across Recessions

No of quarters for 50% recovery

Recession Data Share explained by
Noise shocks

2007-09 20 35%
2001 15 33%
1990-91 18 28%
1981-82 18 33%
1973-75 17 29%
Average 17.6 32%

Note: This table reports the number of quarters to recover 50% of the rise in unemployment during a recession, that is
urecovery,t = 0.5.

A.6.4 Response of Unemployment Forecast Errors

Figure A14: Unemployment Rate: Projections and Actual

(a) Unemployment Projections: Model (b) Unemployment Projections: Data

Note: Panel (a) shows the response of actual unemployment rate (solid, black) and expected unemployment rate from
the SPF (dashed,blue) to a one standard deviation noise shock, for the duration 1968-2019. Panel (b) shows the response of
actual unemployment rate (solid, black) and expected unemployment rate from the SPF (dashed,blue) to a one standard
deviation persistent TFP shock, for the duration 1968-2019.
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Figure A15: Response of Unemployment Forecast Error to Shocks

Note: This �gure plots the response of unemployment forecast error from the SPF for 1968-2019 to Noise Shocks in
Panel(a) and to Persistent TFP Shocks in Panel (b).

A.6.5 Sub-Sample Analysis

In this subsection, I discuss a sub-sample analysis to address investigate whether there were
structural changes in the business cycle post the Great Moderation in 1985. I �rst present some
simple statistics from the SVAR identi�ed shocks as well as the nowcast errors in Table A2. I �nd
that post 1990, the noise shock became more volatile while the persistent shocks have become less
volatile. Interestingly, the unemployment nowcast errors not only became more volatile, but also
the average �ipped sign post 1990 implying that forecasters on an average, predict unemployment
to be higher than it is in this period. Likewise for output growth, forecasters predict output to
be lower than it is. This suggests some structural change that might have happened post Great
Moderation, and I leave it for future work to investigate it’s source.
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Table A2: Summary Statistics Pre and Post 1990

1968-1989 1990-2019
Mean SD Mean SD

Unemployment Rate 5.68 1.65 5.80 1.83

GDP Nowcast Error 0.06 1.72 0.25 2.59

Unemployment Nowcast Error 0.07 0.695 -0.03 1.20

Noise Shock 0.04 0.745 -0.05 1.27

Persistent Shock -0.21 1.34 0.03 0.68

Transitory Shock 0.18 0.83 0.27 0.89

Note: This table reports summary statistics from 1968-1989 and 1989-2019 in the empirical exercise.

A.7 Robustenss: Controlling for Uncertainty Shocks.

Fundamental shocks do not satisfy the sign restrictions used to identify the noise shocks, as any
fundamental shock has a higher impact on actual output than expected, thus violating the sign
restrictions. However, there might be some cases where uncertainty shocks might behave like
the noise shocks: generate a larger change in expected output than actual output. To address this
concern, I control for the uncertainty shock series from Bloom (2009) in the linear projections.
This robustness is to test whether the noise shocks are independent of uncertainty shocks. If the
noise shock was indeed capturing uncertainty shocks, controlling for uncertainty shock would then
capture the response otherwise attributed to the noise shock. I speci�cally estimate the regression
in Equation 44.

(44) yt+h = αh + β̃hu
noise
t + θhu

uncertainty
t +

P
∑
p=1
γ̃pω̃t–p + µ̃

j
h,t+h

where ω̃j
t–p is the set of lagged values of y, u

noise and uuncertainty. I then plot the respective smoothed
cumulative impulse response to the noise shock (β̃). The baseline is Equation 39 where I compute
the smooth cumulative impulse response to a noise shock without controlling for uncertainty
shock.

The results of this exercise are shown in Figure A16. This exercise shows that controlling for
uncertainty shocks does not change the response of key labor market outcomes to a standardized
negative noise shock. The impulse responses for all the outcomes in the labor market lie within the
90 percent con�dence interval of the baseline impulse responses. Furthermore, the hump-shape
of the responses are retained, which are consistent with Bayesian learning. This exercise suggests
that the noise shocks are not capturing the uncertainty shocks.
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Figure A16: Impulse Response to a Noise Shock When Controlling for Uncertainty

Note: This �gure plots the impulse response of key labor market outcomes to the noise shocks with and without
controlling for uncertainty shocks. The solid black line is the smoothed cumulative coe�cient β from Equation 39. The
blue dashed line is the smoothed cumulative coe�cient β̃ from Equation 44. The impulse responses are smoothed by
following Equation 40 respectively. The error bands plot the 90 percent con�dence interval.
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B Theoretical Appendix

In this section I derive some theoretical results and discuss variousmechanisms in detail. I conduct
some sensitivity analysis with alternate calibrations that are documented in this section.

B.1 Information Structure

Consider the following state-space representation:

zt = xt + ηt, ηt ∼ iid N(0,σ2η)

xt = ρxxt–1 + εt, εt ∼ iid N(0,σ2ε)

at = xt + nt,

nt = ρnnt–1 + νt, νt ∼ iid N(0,σ2ν)

Where:

• zt is the observed sum.

• at is the observed public signal.

• xt is the underlying state variable.

Kalman Gain Derivation The Kalman gain is derived from the following general equation:

(45) Kt = Pt|t–1H
′(HPt|t–1H

′ + R)–1

Given the system, the state transition matrix F:

(46) F =

[
ρx 0
0 ρn

]

Observation matrix H:

(47) H =

[
1 0
1 1

]

Process noise covariance matrix Q:

(48) Q =

[
σ2ε 0
0 σ2ν

]
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Measurement noise covariance matrix R:

(49) R =

[
σ2η 0
0 0

]

Using these matrices, the Kalman gain is:

(50) Kt = Pt|t–1

[
1 1
0 1

]([
1 0
1 1

]
Pt|t–1

[
1 1
0 1

]
+

[
σ2η 0
0 0

])–1

In steady-state, the error covariance matrix does not change over time, i.e., Pt+1|t = Pt|t–1 = P̄.
The steady-state Riccati equation is:

(51) P̄ = FP̄FT +Q – FP̄HT(HP̄HT + R)–1HP̄FT

From this equation, the variance of the estimation error for xt in steady-state is given by P̄11.
Given the structure of the processes, the Kalman gain matrix is given by

(52) Kt =

[ 1
σ2z

1
σ2z

+
1
σ2x,t

+
1
σ2s

;

1
σ2s

1
σ2z

+
1
σ2x,t

+
1
σ2s

]

where, σ2x,t is the conditional forecast variance of xt+1 ≡ Vart(xt+1). It is updated according to the
standard Riccatti equation:

(53) σ2x,t = ρ2x
( 1
σ2s

+
1
σ2z

+
1

σ2x,t–1

)–1
+ σ2x

where,

σ2z = Var(zt) = σ2x + σ2η(54)

=
σ2ε
1 – ρ2z

+ σ2η(55)

σ2s = Var(ŝt) = σ2x + σ2a(56)

=
σ2ε
1 – ρ2z

+
σ2ν
1 – ρ2a

(57)
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B.2 Estimation: Full Information

In this section I present the results for re-calibration of the full information model to match the
impulse responses from the persistent TFP shocks.

Table B1: Estimated Parameters from IRF Matching: Full Information Model

Parameters Interpretation Value Target
Ψ Match e�ciency 0.48 Unemployment Rate = 0.055
κ Cost of hiring 8.23 U – E = 0.28
µ Scale parameter of search cost 0.082 E – E = 0.025
1 – σ Separation rate 0.010 E –U = 0.010
φ SS productivity from bad job 0.68 ∆Wage of E-E = 0.045

Parameters Interpretation Estimate Std. Error
λ Renegotiation frequency 0.88 0.13
ξ Probability of �nding a good job 0.18 0.05
ηh Hiring cost convexity 0.34 0.09

Note: This table reports the estimated parameters from the impulse response matching exercise outlined in equation 38
for the Full information model. The third column reports the estimated values while the fourth column reports the
standard errors for these values. The impulse responses are matched by GMM and the standard errors are calculated
using the delta method.

B.3 Quantitative Results

B.3.1 Impulse Responses From theModel

Here I plot impulse response functions from the imperfect information sticky wage with on-the-job
search model for other important outcomes like output, investment.
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Figure B1: Model Implied Impulse Response Functions to a Negative Noise shock
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Note: This �gure plots the model implied, impulse response functions to a noise shock.

Figure B2: Model Implied Impulse Response Functions to a Positive Persistent Productivity
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Note: This �gure plots the model implied, impulse response functions to a persistent productivity shock.
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B.4 Projections from theModel

In this section, I present the 4-8 quarters ahead projections by the agents in the model in response
to a persistent TFP shock and in response to a noise shock. When faced with a persistent TFP shock,
due to imperfect information, agents attribute a part of the shock to be noise as well as transitory
shock and hence their projections under-react to the actual unemployment rate. However, the
reverse happens when they face a noise shock. They similarly attribute some part of the shock
to be persistent or transitory productivity and hence initially expect unemployment to be higher
than it actually is (since true productivity has not changed). They eventually start placing more and
more weight on the shock being noise and as they learn, their projections are closer to the actual.

Figure B3: 4-8 Quarter Ahead Projections in the Model

(a) Noise Shock (b) Persistent Productivity Shock

Note: This �gure shows the 4-8 quarters ahead projections by the agents in the model in response to a response to a
noise shock (a) and a persistent TFP shock (b). The solid thick black line is the actual response of unemployment due to
these shocks respectively.

Figure B4a shows the model generated, one, two and three year ahead unemployment projec-
tions in the model a�er the Great Recession. Here, all three shocks, identi�ed from the VAR, act
together each periodwhile simulation the imperfect informationmodel with noise shocks. Since all
three shocks act, the projections under-react if the contribution of the persistent shock dominates
the contribution of the noise shocks as well as transitory shocks. Similarly, as the contribution of
the noise shocks dominates, the projections over-estimate the unemployment rate. As seen in the
historical decomposition of the unemployment rate in the data in Figure A11, the contribution of
the noise shocks to the movement in unemployment dominates a�er 2012. Thus, in the model,
initially, as the productivity shocks have higher weight, the unemployment rate is under-estimated
by the agents in the model. However, from 2012, the contribution of the noise shocks increases but
the agents are unable to discern the shock from a true persistent productivity shock and hence
keep expecting higher unemployment rates in the future. However, as the shock is truly noise, the
actual unemployment rate is lower than expected. This is similar to the pattern seen in the data in
Figure B4b. It is important to note that the noise shocks are unique in generating over-estimation
of long run unemployment projections. For all structural shocks, the long run expectations under-
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estimate the unemployment rate. Thus, noise shocks can be a potential solution to the consistent
pattern observed in the data where the long-run unemployment forecasts are over-estimated by
professional forecasters.

Figure B4: Unemployment Rate: Projections and Actual– Model vs Data

(a) Unemployment Projections: Model (b) Unemployment Projections: Data

Note: Panel (a) shows the model implied forecasts for unemployment rate 1,2 and 3 years ahead. The dashed black
line is the model simulated unemployment rate for the Great Recession. While simulating the model, each period all
three shocks act. In Panel (b) the various colored lines represent the median long-run (1 year, 2 year and 3 year ahead)
projections of the unemployment rate from the Survey of Professional Forecasters during the Great Recession. The
dashed red line is the actual unemployment rate.

B.4.1 Unemployment Dynamics across Recessions: Data vs Model

The calibrated model is simulated to generate counterfactual unemployment rate series for 5 reces-
sions between 1970-2019. This exercise shows that imperfect information explains the slow recovery
of unemployment rate in the last three recessions. For this exercise, the model is normalized to
match the starting unemployment rate for each of the recessions. While simulating the imperfect
information model, each period, all three identi�ed shocks from the VAR are incorporated. For
the full information model, I only introduce the persistent and the transitory shocks each period.
Furthermore, the full information model is re-estimated as described in the previous section, to
match the empirical IRFs to the persistent TFP shocks. The estimated parameters for the full
information model is presented in the Appendix.
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Figure B5: Model Implied Recovery of Unemployment for Recessions

Note: This �gure plots the model implied, simulated unemployment rate for the re-calibrated full information model
(dashed blue line) and the imperfect information model (solid green line) for major recessions between 1973-2019.

B.4.2 ComparingMechanisms in the Model

In this section, I compare the persistence and volatility of unemployment under various mecha-
nisms with and without imperfect information. I compare the model under 4 scenarios: a) �exible
wages without on-the-job search (OJS), b) �exible wages with OJS, c) sticky wages without OJS, and
d) sticky wages with OJS.

Persistence To capture the persistence of unemployment, I compare the average duration to
recover the 50% of the rise in unemployment across recessions between 1968-2019. Figure B6 shows
the decomposition for the four di�erence model speci�cations, and within each speci�cation I
further decompose the re-calibrated full information benchmark to the imperfect information
model without noise.

The main takeaway of this graph is that introducing learning endogenously contributes to
persistence in unemployment rate in the model. This speaks to Wright (1986), who �nds that
imperfect information (albeit about wages, and on worker side), introduces learning endogenously
in presence of job search.

I also present the full duration of recovery across recessions in theTableB2 for the re-estimated
full information model and the imperfect information model. This measure captures the duration
of recovery by calculating the number of quarters it took the unemployment rate to return to it’s
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Figure B6: Average Duration to Recover 50% of Rise in Unemployment Across Models

Note: This �gure plots the model implied duration from the beginning of the recessions to recover 50% of the rise
in unemployment. This is averaged across the recessions between 1968-2019, for various model speci�cation. The
percentages are the percent of the data (18 quarters) that the particular model speci�cation explains, while the x-axis is
the actual number of quarters explained by the particular speci�cation. The green bars are incremental contributions
by learning, which implies that the total contribution of the imperfect information model is the sum of the blue and the
green bar. Here, the full information model is not re-calibrated and the noise is shut down in the imperfect information
model. Further, I shut down each mechanism one by one in both models.

pre-recession trough.

Table B2: Duration of Recovery of Unemployment Rate Across Recessions

Recession Data Full Information Imperfect Information
1973-75 22 14 17
1981-82 24 17 21
1990-91 28 16 24
2001 24 14 21
2007-09 37 22 32

Note: This table reports the number of quarters it takes unemployment to return to pre-recession trough across �ve
recessions between 1975-2019. The model is normalized to match the starting unemployment rate for each of the
recessions. The imperfect information model is simulated each period with all three identi�ed shocks from the VAR
activated. For the full information model, only the persistent and the transitory shocks are incorporated each period.
The full information model is then re-estimated to match the empirical impulse responses to the persistent TFP shocks.

Volatility In this section, I compare the unemployment volatility under various mechanisms
with and without imperfect information. To highlight that learning contributes to volatility under
each speci�cation, I plot the unemployment volatility as a percent of the observed volatility in
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data in Figure B7. In the stacked bar graph, I compare full information benchmark to imperfect
information model under 4 scenarios: a) �exible wages without on-the-job search (OJS), b) �exible
wages with OJS, c) sticky wages without OJS, and d) sticky wages with OJS. I do not re-calibrate the
full information model, but shut down noise in the imperfect information model.

Within the �exible wages without OJS framework, full Information framework accounts for
approximately 14%of theunemployment volatility observed in thedata. However, when introducing
imperfect information, volatility is markedly ampli�ed, bringing the cumulative total to around
20%. In the �exible wage with OJS environment, while full information accounts for about 22% of
the volatility, imperfect information’s contributes an additional 10% to the unemployment volatility.

Introduction of sticky wages with no OJS contributes signi�cantly to the volatility and under
full information, it encompasses nearly 47%. This is not a surprising result as sticky wages have
long been proposed as a mechanism to match the observed volatility of unemployment (Shimer,
2005). However, it is important to note that learning contributes an additional 17%. Finally, when
OJS is introduced along with sticky wages, the full information model can predict about 58% of the
volatility in the data, but importantly, the cumulative impact of imperfect information catapults
it to a signi�cant 81%. This underscores the substantial ampli�cation by imperfect information
across wage-setting contexts.

Figure B7: Unemployment Volatility as a % of Data Across Models

Note: This �gure plots the model implied standard deviation for the unemployment rate across models. Here, the full
information model is not re-calibrated, but noise is shut down in the calibrated imperfect information model. Further, I
shut down each mechanism one by one in both models.
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Table B3 compares the business cycle statistics obtained by simulating the imperfect informa-
tion model as well the re-calibrated full information model, to the statistics in the US economy
from 1968-2019 across multiple labor market variables such as output (Y ), unemployment rate (U),
job vacancies (V ), job-tp-job transitions (E – E), job transitions from unemployment to employment
(U – E), and hiring rate. I compare full information benchmark to imperfect information model
under 4 scenarios: a) �exible wages without on-the-job search (OJS), b) �exible wages with OJS, c)
sticky wages without OJS, and d) sticky wages with OJS.

The imperfect information model outperforms the full-information model across all speci�-
cations, highlighting that learning is an important mechanism for volatility in the labor market.

Table B3: Business Cycle Statistics

Data (SD) Flex Wage , No OJS Flex Wage , OJS Sticky Wage , No OJS Sticky Wage , OJS
Full Info Imperfect Info Full Info Imperfect Info Full Info Imperfect Info Full Info Imperfect Info

Y 0.019 0.009 0.014 0.011 0.017 0.013 0.021 0.018 0.027
U 0.162 0.029 0.068 0.052 0.098 0.087 0.128 0.102 0.153
V 0.182 0.032 0.091 0.072 0.136 0.101 0.176 0.131 0.193
U-E 0.069 0.019 0.031 0.027 0.042 0.032 0.061 0.048 0.077
E-E 0.102 0.017 0.039 0.042 0.063 0.036 0.055 0.069 0.086

Note: This table reports standard deviation of key labor market variables in themodel. The data here has been simulated
from the model and HP-�ltered (100,00).
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