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Abstract. When making a decision based on observational data, a person’s choice
depends on her beliefs about which correlations reflect causality and which do not.
We model an agent who predicts the outcome of each available action from ob-
servational data using a subjective causal model represented by a directed acyclic
graph (DAG). An analyst can identify the agent’s DAG from her random choice
rule. Her choices reveal the chains of causal reasoning that she undertakes and the
confounding variables she adjusts for, and these objects pin down her model. When
her choices determine the data available, her behavior affects her inferences, which
in turn affect her choices. We provide necessary and sufficient conditions for testing
whether such an agent’s behavior is compatible with the model.

1. Introduction

When making a decision based on observational data, a person’s choice depends
on her beliefs about which correlations reflect causality and which do not. While
correlation is unambiguous, causality is inherently subjective. For instance, a positive
correlation between duration of hospitalization and risk of death may be causal if time
in the hospital increases one’s risk of catching an unrelated infection, or spurious if
both are caused by the severity of illness. The agent’s beliefs about causality affect
her behavior: she would be more reluctant to seek treatment if she believed the former
rather than the latter. In this paper, we develop a theory in which an analyst can
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Table 1. A (Partial) Dataset

healthy (Nh = 36) diseased (Nd = 44) Pr(healthy|.)
no plaque, no tangles 18 12 0.6
plaque, no tangles 7 3 0.7
no plaque, tangles 2 8 0.2
plaque, tangles 9 21 0.3
Table describes a simulated dataset with 80 total patients. Column 2 (3) shows
the number of patients that are healthy (diseased) and have the characteristics in
Column 1. Column 3 shows the fraction of healthy patients having the characteristics
in Column 1.

use the agent’s behavior to identify her subjective causal model and to test whether
it is explained by misperceived causality.

To illustrate, consider a doctor (the agent) prescribing medical treatments for
Alzheimer’s disease. These treatments can affect the patients’ levels of two correlates,
amyloid plaques and neurofibrillary tangles, in addition to Alzheimer’s.1 The doctor
infers the effect of a drug using the dataset described in Table 1, as well as data
demonstrating that it unambiguously decreases the chance of plaque. She prescribes
the drug if she predicts that it leads to more healthy patients than doing nothing.
Plaque is unconditionally correlated with disease, but the correlation reverses if one
conditions on tangles. Therefore, the doctor’s prediction depends crucially on how
she interprets the data. If the doctor believes that tangles and health are endogenous
consequences of plaque, then she predicts that the drug would be more effective than
doing nothing. If she instead believes that tangles is an exogenous cause of plaque
and health, then she predicts that the drug increases her patient’s risk of disease. Our
results show how a drug company (the analyst) can reveal the doctor’s causal model
from how frequently she performs each treatment (behavior) given different datasets.

Following Pearl (1995) and Spiegler (2016), we study a decision maker (DM) who
makes predictions about her actions using a causal model described by a directed
acyclic graph (DAG). Each node in the graph is a variable, such as the treatment
and levels of plaque, tangles, and disease. Each edge represents a belief that one of
the variables directly causes another. DAGs allow for a flexible and non-parametric
representation of causal relationships. For example, they can represent a doctor who
1According to Wikipedia, Amyloid plaques are extracellular deposits of the amyloid beta protein, and
neurofibrillary tangles are aggregates of hyperphosphorylated tau protein. These are the primary
biomarkers of Alzheimer’s disease.
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believes either that tangles is an endogenous consequence of the drug (R in Figure
1) or that tangles may have affected the randomization into treatment and led to
spurious correlation between the plaque and health (Q in Figure 1). A random choice
rule records how often the DM takes each action after observing each dataset describ-
ing the joint distribution of variables and actions. The choice rule has a subjective
causality representation (SCR) if she acts as if she uses a fixed DAG to predict the
consequences of her actions, and then chooses the action with the highest predicted
utility most frequently.

Figure 1. Two Subjective Causal Models

Treatment

Plaque

Tangles

Health

(a) R

Treatment

Plaque

Tangles

Health

(b) Q

Our first main result reveals the DM’s subjective causal model, the variable she
cares about (the outcome), and her preferences from choices. Three features of the
causal model determine her predictions. Most crucially, her predictions depend on
the simplest ways in which she believes that her action can affect the outcome. These
causal chains correspond to the smallest paths in the DAG from the node representing
her action to that representing the outcome. For instance, the DAG R contains two
shortest paths, one from treatment to plaque to health and another from treatment
to tangles to health. This reflects Occam’s razor: more complex explanations im-
plied by simpler ones do not affect her predictions. Her predictions also depend on
any confounders: exogenous variables, such as tangles for model Q, having a causal
consequence in common with the action. The DM adjusts her predictions to account
for spurious correlations that she thinks result from the confounders. Any two causal
models with the same confounders and the same simplest causal chains from either
the action or a confounder to the outcome lead to the same predictions. We show
that the analyst can reveal these features by observing how the DM’s choices change
with the dataset used, just as the DM’s choice between the drug and the status quo
revealed whether her model is R or Q in the illustration. Our identification works
regardless of and in complement to non-choice data about the DM’s model, such as
the timing of variables or pre-existing knowledge of perceptions of causality.
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In contrast to the large literature that empirically determines causality (e.g. Card
(1999)), the result identifies an agent’s perception of causal relationships. These per-
ceptions may affect the agent’s reaction to a policy change, and thereby that policy’s
effectiveness, even if they are not empirically valid. For instance, a firm that appears
reluctant to hire minority workers may dislike employing minorities even though they
are equally or more productive (taste-based discrimination). Alternatively, its reluc-
tance may be because minority-status is correlated with another attribute, such as
education, that the firm thinks affects productivity (statistical discrimination, per-
haps based on a wrong model and resulting in incorrect beliefs). Policies that attempt
to remedy the latter, such as affirmative action in university admissions or awarding
scholarships to minority students, may do nothing for the former.2

We then extend our model to datasets generated by the agent’s own (or others
with the same model’s) past behavior. Actions correspond to lotteries over the other
variables, and she uses the dataset formed by combining the frequency with which she
chooses each option and the resulting distribution over the other variables. The DM
chooses the action with the highest predicted expected utility plus a (extreme-valued)
shock. Her behavior may create a correlation between two variables that she misinter-
prets as a causal effect, feeding back into her predictions and thus her choices. While
such a feedback effect occurs in many studies of agents with misspecified models, e.g.
Esponda and Pouzo (2016), it has typically been absent in decision theoretic work on
misspecification despite its potential policy implications. For example, a firm might
incorrectly statistically discriminate against minority workers when it hires few of
them but not when it hires more. We show in Section 4 that the feedback effect al-
lows the model to accommodate a number of documented cognitive biases, including
selection neglect, illusion of control, status-quo, and congruence biases.

To illustrate, consider a firm who thinks that worker productivity is a function of
only education. If education is correlated with productivity for majority workers, but
not for minorities, then the perceived return to education increases with the fraction
of majority workers hired. This incentivizes the firm to hire the better-educated type
more frequently, potentially reinforcing the effect. While this allows the model to
accommodate the above biases, it leads to technical challenges for our analysis such as
violations of (the stochastic choice analog of) independence of irrelevant alternatives,
a necessary condition for a random utility model (RUM).
2See Lang and Kahn-Lang Spitzer (2020) for an overview of different types of race discrimination.
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Our second main result establishes how to test whether a random choice rule over
lotteries has an Endogenous SCR. We provide axioms that link the DM’s subjective
causal model, as inferred from our first result, to her behavior. Holding her predictions
about the outcome of actions constant, her behavior conforms closely to Logit with
an expected utility Luce index (henceforth, Logit-EU). Put another way, her choices
from a pair of menus are inconsistent with Logit-EU only when her inferences about
causal effects differ across the menus. For example, the axioms require that the DM
chooses two actions with the same relative frequency whenever she makes the same
prediction about their effect on the outcome.

A DM with an Endogenous SCR may predict a different distribution of out-
comes from taking an action than the analyst does. The result places testable re-
strictions on her behavior in spite of the information gap. Thus, it establishes that
subjective causality provides enough discipline on how her beliefs are distorted to be
testable; without any restrictions on belief distortion, testing would be impossible.
More broadly, this paper adapts decision theoretic methodology to identify and test
an agent’s subjective model of the world, as opposed to the usual exercise of identi-
fying and testing her preferences with a correct, or at least an agreed upon, model of
the world. We see this as a step toward providing testable implications for the grow-
ing literature studying agents with misspecified models, especially Spiegler (2016),
Eliaz et al. (2020), Spiegler (2020), and Schumacher and Thysen (2022), which all use
versions of the subjective causality representation.3

Related literature. Pearl (1995) argued for using and analyzing DAGs to under-
stand causality. A large literature (e.g., Cowell et al., 1999, Pearl, 2009) develops and
applies this approach for probabilistic and causal inference. Applied researchers use
DAGs to estimate the causal effect of interventions from observational datasets, e.g.
Tennant et al. (2020).4

Spiegler (2016) first modeled misspecified causal reasoning using DAGs, albeit
without axiomatic foundations. He illustrates that his model has the power to capture
a number of errors in reasoning, including reversed causality and omitted variables.
3Other models where misspecification leads to distorted beliefs include Esponda and Pouzo (2016),
Bohren and Hauser (2021), Frick et al. (2020), He (2022), Heidhues et al. (2018), Samuelson and
Mailath (2020), Montiel Olea et al. (2021), and Levy et al. (2022).
4 Imbens (2020) contrasts this with the potential outcomes approach and discusses why these meth-
ods have attracted more attention outside of economics than within it.
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Taken together, our results allow one to test the underlying assumptions of existing
work studying the effects of causal misperception. This growing literature has been
applied to monetary policy (Spiegler, 2020), political competition (Eliaz and Spiegler,
2020, Eliaz et al., 2022), communication (Eliaz et al., 2021), inference (Eliaz et al.,
2020), and contracting (Schumacher and Thysen, 2022). In both these papers and
the present one, the DM’s behavior results from using a DAG and observational data
to predict the outcome of her actions. Consequently, our results identifying the DAG
from behavior increase their applicability.

We follow Spiegler in focusing on how a DM with a subjective causal model
interprets data and on the feedback between her predictions and behavior. In contrast,
Schenone (2020) takes a more normative approach to causality. He considers a DM
who expresses preferences over act-causal-intervention pairs, and provides necessary
and sufficient conditions for her beliefs to result from applying the do-operator to
intervened variables for a fixed DAG and fixed prior. His analysis complements ours,
showing what is possible given rich variation in exogenous interventions and mappings
from variables to payoffs as opposed to rich variation in the data provided about the
available actions. In contrast to both these approaches, Alexander and Gilboa (2019)
model perceived causal relationships as reducing Kolmogorov complexity but do not
explicitly relate their notion to choice.

More generally, our paper is related to the decision theory literature studying
DMs who misperceive the world. Lipman (1999) studies a DM who may not under-
stand all the logical implications of information provided to her. Ellis and Piccione
(2017) develop a model where agents misperceive the correlation between actions. Ko-
chov (2018) models an agent who does not accurately foresee the future consequences
of her actions. Ke et al. (2020) study DMs who perceive lotteries through a neural
network. Ellis and Masatlioglu (2022) consider an agent who categorizes alternatives
based on the context, and the alternative’s categorization affects her evaluation (or
perception) thereof. Cerreia Viogolio et al. (2021) analyze a DM who considers sev-
eral misspecified models and makes decisions that take her lack of confidence in the
models into account. In all, the DM’s perception of an alternative is unaffected by
her behavior.

Finally, our paper also falls into the theoretical literature studying random choice.
We fall between two strands. The first seeks to use choice data to identify features
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of otherwise rational behavior, such as Gul and Pesendorfer (2006) identifying the
distribution of utility indexes, Lu (2016) identifying an agent’s private information,
and Apesteguia and Ballester (2018) studying comparative risk and time preferences.
The second interprets randomness as a result of boundedly rational behavior in ab-
stract environments, such as the Manzini and Mariotti (2014), Brady and Rehbeck
(2016), and Cattaneo et al. (2020) models of limited attention. This paper uses ran-
dom choice to identify features of explicitly boundedly-rational behavior. The only
other paper of which we are aware that uses stochastic choice to capture equilibrium
behavior is Chambers et al. (2022).

2. Model

2.1. Primitives. A DM chooses an action after observing a dataset q. A set X0 hav-
ing at least two elements denotes the set of possible actions. Taking an action affects
the distribution of a random vector X = (X1, . . . , Xn) taking values in ∏n

i=1Xi ≡ X−0,
where Xi is a finite subset of R with at least two distinct elements for each i > 0. The
dataset q informing her choice describes past (joint) realizations of X and actions,
with q(a, x1, . . . , xn) representing frequency of observations of action a and Xi = xi

for every i. Formally, q is a distribution over X ≡ X0 × X−0 assigning positive prob-
ability to a finite set Sq of actions and where, to avoid issues of updating on zero
probability events, q(a, x) > 0 for all x ∈ X−0 and a ∈ Sq; let Q be the set of such
datasets. We also make the simplifying assumption that the DM’s choice set equals
Sq.5 An important special case, formally studied in Section 4, is when the dataset q
is derived endogenously from the DM’s behavior.

The analyst observes a random choice rule ρ : X0×Q → [0, 1] where∑a∈Sq ρ(a, q) =
1 and ρ(a, q) = 0 for every a /∈ Sq. The choice rule describes the DM’s behavior. The
probability she chooses action a given dataset q is ρ(a, q).

We adopt the following notational conventions. For a set B, ∆(B) denotes the
set of finite-support probability measures on it. For a set J ⊂ N ≡ {0, 1, . . . , n},
XJ = ∏

j∈J Xj, xJ denotes the event {y ∈ X : yj = xj for all j ∈ J} for any x ∈ XJ ′
with J ⊆ J ′, and margJ p denotes the marginal distribution of p on XJ when p ∈
∆(XJ ′) for J ⊆ J ′. With slight abuse of notation, we sometimes write xj instead of
5This avoids the DM having to form predictions about actions not in the dataset. One can easily
extend the model to choice from a known subset of Sq.
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x{j} and x∅ for an arbitrary constant random variable. For p ∈ ∆(X ) and disjoint
sets A,B ⊂ N , write XA ⊥p XB if p(xA∪B) = p(xA)p(xB) for all x ∈ X . Finally, for
p1, p2 ∈ ∆(Xi), say that p1 (strictly) FOSD p2 if p1((−∞, y)) ≤ p2((−∞, y)) for all y
(without equality for some y).

2.2. Causal Graphs. We model perception of causality using a directed acyclic
graph (DAG) R over the set N . The DAG R is an acyclic binary relation, with
iRj denoting (i, j) ∈ R and indicating that Xi is a direct cause of Xj. Visually, R
describes the set of directed edges in a graph with node set N .

The following terminology will be useful. The parents of i, denoted R(i), are the
variables that directly cause Xi. The node j is an ancestor of i, denoted j ∈ AR(i),
if there are i1, . . . , im ∈ N so that jRi1Ri2R . . . RimRi, and j is a descendant of i if
i ∈ AR(j). The tuple (i, j, k) is an R-v-collider if iRk, jRk, j 6Ri, and i 6Rj.

We follow Pearl (1995) in assuming that if one intervenes to force X0 to equal
x0 without observing the realization of any other variables, the DAG R predicts that
the random vector X equals x ∈ X−0 with probability

(1) qR(x | do(x0)) =
n∏
j=1

q
(
xj | xR(j)

)
given the dataset q. The intervention only affects the distribution of variables caused
by it, which in turn only affect variables caused by them. Equation (1) makes Xi

is independent of Xj conditional on XR(i) whenever j is not a descendant of i. In
particular, the intervention does not change the distribution of its parents, even if they
are correlated with it. Given the DAGs in Figure 1 and a dataset q, qQ(xH |do(x0))
adjusts for the potential confounding effect of tangles, whereas qR(xH |do(x0)) does
not.

2.3. Subjective Causality Representation. We consider a DM who cares about
the realization of only one of the variables, referred to as the outcome and labeled
n∗. The other dimensions correspond to covariates that aid the DM in her inferences
about the distribution of the outcome from taking an action. The DM has a fixed
subjective causal model given by the DAG R. The DAG describes her beliefs about
the causal relationships between variables. It does not impose any restrictions on
the sign or the magnitude of the effects. She uses her dataset q and R to predict
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the outcome distribution of each action. That is, she calculates the effect of the
intervention “take action a” according to Equation (1). Then, she chooses the action
with the largest predicted expected utility.

Our representation restricts attention to a nontrivial and perfect DAG. A DAG
R is nontrivial if 0 ∈ AR(n∗) and perfect if there are no R-v-colliders. Neither places
any restrictions on the structure of q but affects qR(·|do(a)). If R is trivial, then
qR(xn∗|do(a)) is independent of a for every x ∈ X and a ∈ Sq. A perfect DAG implies
that the DM does not neglect the correlation between two variables used to predict
the realization of another variable. We discuss perfection further in Section 2.5.

Definition 1. Choice rule ρ has a (perfect) subjective causality representation (SCR)
if there exists a (perfect,) nontrivial DAGR, index n∗ ∈ N\{0}, and strictly increasing
u so that Uq(a) ≥ Uq(b) for all b ∈ Sq ⇐⇒ ρ(a, q) ≥ ρ(b, q) for all b ∈ Sq, where

Uq(c) =
∑

x∈X−0

u(xn∗)qR(x | do(c)).

Then, we say that (R, u, n∗) represents ρ and that ρ has an SCR (R, u, n∗).

The DM’s most frequent choice, or choices, maximizes expected utility but with
a potentially incorrect prediction about the outcome distribution. She expects to
receive outcome xn∗ with probability qR(xn∗|do(a)) if she takes action a.

2.4. Running Example. Throughout, we illustrate using the following example.
The random choice rule represents the frequency with which a doctor performs med-
ical treatments for Alzheimer’s disease on observationally identical patients. Each
treatment relates to three patient characteristics (variables): plaque build-up (in-
dexed by P = 1), tangles (indexed by T = 2), and long-term health status (indexed
by H = 3). The doctor only cares about her patients’ health. When choosing the
treatment, she does not know the characteristic of her patient, but she has access to a
dataset q that contains the joint distributions of other patients’ treatments and char-
acteristics. The vector (a, xP , yT , zH) represents a patient who received treatment a,
has plaque level xP , tangle levels yT and health status zH , and q(a, xP , yT , zH) is the
frequency with which a patient with these characteristics and that treatment appears
in the dataset.
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Figure 3. Possible DAGs in the Running Example
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Figure 3 gives some possible DAGs, each representing a different theory of cau-
sation.6 A doctor represented by RT believes that the treatment directly influences
tangles, and that tangles, and tangles alone, causes Alzheimer’s. By contrast, one
represented by RBoth believes that both tangles and plaque cause disease, that both
the treatment and tangles cause plaque build-up, and that only the treatment causes
tangles. The DAG RPCon differs from RBoth only in that tangles affects the choice of
treatment rather than vice versa. Both RBoth and RPCon explain any dataset equally
well, but they may lead to opposite predictions about which action is better. While
they agree that the treatment does not directly affect health and that plaque buildup
depends on both the treatment and tangles, they disagree on whether tangles influ-
enced past treatment choices or past actions affected tangles. This may occur due to
a disagreement about when tangles is measured.

Consider the dataset q described by Table 1 and where q(no plaque|a) = q(plaque|b) ≈
1 so that q(tangles|a) ≈ q(tangles|no plaque), q(tangles|b) ≈ q(tangles|plaque), and
plaque is independent of tangles given treatment. Let 1 represent healthy, no plaque,
and no tangles, and 0 represent diseased, plaque, and tangles. If the DM is represented

6DAGs are common tools in applied health research; see Tennant et al. (2020) for a survey.
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by RBoth, then she takes action a since

qRBoth(healthy|do(a)) =
∑
z=0,1

q(zT |a)
 ∑
y=0,1

q(yP |zT , a)q(1H |yP , zT )


≈3
4 ∗ (1 ∗ .6 + 0 ∗ 0.7) + 1

4 ∗ (1 ∗ 0.2 + 0 ∗ 0.3) = 0.5

>0.4 = 1
4 ∗ 0.7 + 3

4 ∗ 0.3 ≈ qRBoth(healthy|do(b)).

If she is instead represented by RPCon, then she takes action b since

qRPCon(healthy|do(a)) =
∑
z=0,1

q(zT )
 ∑
y=0,1

q(yP |zT , a)q(1H |yP , zT )


≈1
2 ∗ (1 ∗ 0.6 + 0 ∗ 0.7) + 1

2 ∗ (1 ∗ 0.2 + 0 ∗ 0.3) = 0.4

<0.5 = 1
2 ∗ 0.7 + 1

2 ∗ 0.3 ≈ qRPCon(healthy|do(b)).

The expression qRPCon(healthy|do(a)) treats tangles as an exogenous confounder af-
fecting both the treatment and plaque buildup, but qRBoth(healthy|do(a)) treats it as
an endogenous consequence of the action.

2.5. Remarks on the Model. The agent is dogmatic about her model R, in that
she does not consider switching models because of her dataset. This conforms with
evidence from psychology that, as summarized by Sloman (2005, p. 107), “causal
explanations quickly become independent of the data from which they are derived.”
We view our setting as one in which the DM has already formulated her model,
perhaps from past experience or earlier data, and does not deviate from it on the
basis of the present dataset.

We focus on perfect DAGs for philosophical and psychological reasons. Perfection
limits how wrong the DM’s predictions can be, as it ensures that the DM correctly
predicts the marginal distribution of individual variables. Psychology experiments
(Lombrozo, 2007, Pacer and Lombrozo, 2017) indicate a preference for stories with
fewer unexplained variables, and a perfect DAG has exactly one unexplained variable.
Moreover, perfect DAGs are widely applied. Most of the literature following Spiegler
(2016) uses perfect subjective DAGs. The first step of many algorithms using DAGs
is to make the DAG perfect if it is not already (e.g. Chapter 6 of Cowell et al. (1999)).
Natural procedures, such as extrapolating from multiple datasets by filling in missing
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correlations to maximize entropy, can be represented as coming from a perfect DAG
(Spiegler, 2017).

The ideas behind our identification results apply to imperfect DAGs as well. V-
colliders introduce complications similar to confounding variables (defined formally
in the next section). Confounders can be treated as v-colliders with the action.
However, any v-collider ancestral to the outcome affects the DM’s prediction, even
if it is exogenous and far removed from the variables that she thinks her action can
affect. While tedious, these can be identified from the DM’s behavior in a similar
manner.

Our identification results only require that the DM’s most frequent choices max-
imizes perceived expected utility. This allows application to several different choice
procedures. Of particular interest are the following three. First, ρ(·, q) equals the
uniform distribution on arg maxSq Uq(·). This nests deterministic choice with c(Sq) =
suppρ(·, q). Second, ρ(a, q) equals Pr({ε : Uq(a) + εa ≥ Uq(b) + εb ∀b ∈ Sq}) where
{εi}i∈Sq are independent and identically distributed. This includes Logit and Probit
for particular distributions of εi. Our endogenous dataset results focus on Logit so
that all actions are chosen with positive probability. Third, ρ(a, q) > 1

2 if and only if
Uq(a) > Uq(b) when X0 = {a, b}.

We assume that that the agent cares about influencing a single random variable.
Our results immediately extend to multiple outcomes provided that they are all di-
rectly causally related to one another. Otherwise, the paths between the outcomes
may also matter. We leave this as an open question for future work.

3. Revealing the Subjective Causal Model

We show that three features of the DAG R affect her predictions: its minimal
active paths (MAPs) from the action to the outcome, confounders, and MAPs from
confounders to the outcome.

A confounder is a variable that the DM thinks may affect the relationship between
her action and another variable. The node i∗ is an R-confounder if i∗R0, 0Rl and
i∗Rl for some l ∈ AR(n∗) ∪ {n∗}. Tangles is a RPCon-confounder but not an RBoth-
confounder.
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A directed path in the DAG captures a chain of causal reasoning, and a MAP
is a chain that cannot be made shorter by omitting variables. The finite sequence
(i0, . . . , im) of nodes is an R-MAP from i0 to im if ijRik if and only if k = j+1 and ij
is an R-confounder or 0 only if j = 0. The path (0, P,H) is both an RBoth-MAP and
an RPCon-MAP, (0, T,H) is an RBoth-MAP but not an RPCon-MAP, and (0, T, P,H)
is neither an RBoth-MAP nor an RPCon-MAP.

Theorem 1. Let ρ have a perfect SCR (R, u, n∗) and R′ be a perfect DAG. Then, ρ
has an SCR (R′, u, n′∗) if and only if n∗ = n′∗, R and R′ have the same confounders,
and R and R′ have the same MAPs from a confounder or 0 to n∗.

Theorem 1 shows that the identity of the outcome, the variables that may have
affected the relationship between the action and another variable, and the simplest
causal mechanisms determine her predictions. As in the running example, the DM
adjusts for confounders when forming her prediction, and different confounders, or
paths from confounders to the outcome, lead to different adjustments and thus differ-
ent behavior. Paths from her action to the outcome represent the direct and indirect
ways that she thinks her action could affect her payoff. Different paths correspond
to different mechanisms, and DMs who disagree on the mechanisms make different
choices.

However, only disagreements about the MAPs matter. Because a MAP cannot
be made shorter, it represents one of the simplest causal mechanisms. The result thus
provides a version of Occam’s razor: the simplest ways in which the DM thinks her
action (or a confounder) can affect the outcome determine her choices. For instance,
a DM represented by RP behaves identically to one represented by 0→ P → H even
though RP contains the additional path (0, P, T,H). The latter path captures a belief
that the effect of plaque on health is partly due to its effect on tangles. This does
not affect her estimate of plaque’s total effect on health. Since she does not think
that her action directly affects tangles, she makes the same prediction with either of
the two DAGs. Mathematically, tangles’ effect on health integrates out through the
identity ∑yT∈XT q(xH |yT , xP )q(yT |xP ) = q(xH |xP ).

The result has two immediate implications that allow us to simplify the set of
DAGs considered. First, only relationships between variables that appear in at least
one R-MAP affect the DM’s behavior. In particular, any variables that she thinks
are caused by the outcome are inconsequential for her behavior. Second, the chains
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of causality involving such variables determine all other causal relationships. While
there may be edges not in an R-MAP, their existence and direction can either be
determined from the R-MAPs or are immaterial to the DM’s choices.

Remark 1. If ρ has SCRs (R, u, n∗) and (R′, u′, n∗), then there exists α > 0 and β so
that u(z) = αu′(z) + β for every z ∈ Xn∗ . The exact form of the converse depends on
how much structure one puts on the random choice rule. For instance, the converse
holds if ρ(·, q) is uniformly distributed on arg maxSq Uq(·) and holds with α = 1 if ρ(·)
is Logit or Probit.

3.1. Intuition without confounders. We first provide an intuition for the result in
the case with no confounders. Then, the result says that two DMs with SCRs behave
identically if and only if they have the same tastes, care about the same outcome n∗,
and their DAGs have the same MAPs from 0 to n∗.

Sufficiency is illustrated above for the case of RP and 0 → P → H. The proof
extends this logic using a tool from the Bayesian networks literature known as a
junction tree (e.g. Cowell et al. (1999)) to transform a perfect DAG with many
paths to one with a single path but where nodes are sets of variables. We show an
equivalence between the path in the junction tree to minimal active paths in the
underlying DAG. Then, the logic above applies: only variables in the path between
the action and the outcome matter.

We now show how one can identify the R-MAPs from behavior. Observe that
when a variable is independent of its parents, the DM estimates their causal effect
on it to be zero. By making certain sets of variables independent of all others, the
analyst can tease out her DAG using this observation.

Definition 2. A subset A ⊆ N of variables is a ρ-separator if ρ(a, q) = ρ(b, q) for
every q such that XA ⊥q XAc and all a, b ∈ Sq .

A set A of variables is a ρ-separator if the DM is indifferent between her available
actions whenever XA is independent of the other variables in her data. That is, she
predicts that there is no relationship between her action and the outcome whenever
there is no relationship between the variables indexed by A and the others. When
using this definition or Definition 3, we omit “ρ-” when the choice rule is clear from
context.
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Lemma 1. If ρ has an SCR (R, u, n∗), then A ⊆ N is a ρ-separator if and only if
every R-MAP from 0 to n∗ intersects A.

To illustrate, consider a doctor who is equally likely to prescribe every treatment
whenever plaque build-up is independent of the other variables, i.e. {P} separates.
When one action is correlated with better health and tangles and the other is not,
she is nevertheless indifferent, revealing that she does not take these correlations into
account. Therefore, every causal chain in her DAG includes plaque.

In some cases, we can recover the R-MAPs from the separators alone. For ex-
ample, (0, n∗) is the only R-MAP if and only if every separator contains 0 or n∗.
In general, one needs to know more than the separators to recover R. For instance,
every non-empty subset of {0, H, T, P} is a ρ-separator if ρ is represented by either
RTP or RPT .

When the smallest (by set inclusion) separators are mutually disjoint, then ev-
ery R-MAP from the action to outcome contains exactly one index from each of
them. Intuitively, the path must contain at least one from every minimal separator
by Lemma 1, and if it contained more from a given separator, then the path could
be made shorter by omitting one of them. In general, the minimal separators are not
disjoint. Then, the variables that make up an R-MAP correspond to a selection from
the ρ-separators, a ⊆-minimal set J ⊆ N so that J intersects every ρ-separator. Sim-
ilar logic applies. The path must contain at least one from every minimal separator
but cannot contain too many from any of them. Note that {0} and {n∗} are always
separators, so every selection from the separators includes both 0 and n∗.

Definition 3. For a selection J from the ρ-separators, i ∈ J is adjacent to j ∈ J if
XJ ⊥q XJc and Xi ⊥q Xj implies ρ(a, Sq) = ρ(b, Sq) for a, b ∈ Sq.

When XJ ⊥q XJc , the only variables relevant for the DM’s choice given q are
those indexed by J . The DM believes that every variable in the selection (except her
action) is caused by exactly one of the others. If she thinks that Xi causes Xj (or
vice versa) and Xi ⊥q Xj, then she estimates its causal effect to be zero and thus
predicts that her action has no direct or indirect effect the outcome. Therefore when
i is adjacent j for a selection, the DM believes that either Xi causes Xj or Xj causes
Xi.
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Lemma 2. If ρ has a perfect SCR (R, u, n∗), then (i0, . . . , im) is an R-MAP from 0
to n∗ if and only if {i0, . . . , im} is a selection from the ρ-separators, i0 = 0, and ij is
ρ-adjacent to ij+1 for all j.

The lemma characterizes the R-MAPs via adjacency, and also identifies n∗ as the
element of {1, . . . , n} adjacent to exactly one variable in every selection. Consider
a doctor represented by RPT . There is a unique selection from the separators, J =
{0, P, T,H}. If tangles are independent of health, then the doctor thinks that each
treatment is equally effective since she believes that tangles are the only cause of
Alzheimer’s. She is equally likely to prescribe any treatment, regardless of the true
relationship between her action and health. Thus, we conclude that T is adjacent to
H. On the contrary, the doctor may think one drug is superior even when plaque is
independent of health. For instance, if tangles occur if and only if health is bad and
there is no plaque build-up, then tangles are negatively correlated with both plaque
and health even when they are independent of each other. Therefore, the doctor
thinks that the drug leading to a lower chance of plaque build-up is best, and we
conclude that P is not adjacent to H. By similar logic, P is adjacent to T , and 0 is
adjacent to P .

3.2. Intuition with confounders. When the DM believes there are confounding
variables, all representations must in addition have the same confounders and the
same minimal causal chains from each confounder to the outcome. For instance, a
doctor represented by RP makes different choices than one represented by RPCon

even though (0, P,H) is the only RP - or RPCon-MAP from 0 to H. The former has
no confounders, and T is an RPCon-confounder.7 Moreover, doctors represented by
RCon and RPCon also behave differently because (T,H) is an RPCon-MAP but not an
RCon-MAP.

To identify the presence of confounders in the DM’s causal model, we observe
that in their absence only the distribution over variables involved in a causal chain
from 0 to n∗ affects the DM’s choices. If the action is independent of all variables
involved in any causal chain from 0 to n∗ and the DM is not indifferent between all
of her actions, then her causal model contains at least one confounder.8 Formally, if
i∗ is not part of any selection from the ρ-separators, then i∗ is a revealed confounder
7For the dataset q and c = a, b in Section 2.4, qRP

(1H |do(c)) = qRBoth
(1H |do(c)).

8Lemma 2 still applies, so we can identify the R-MAPs from 0 to n∗ using it.
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if the DM expresses a strict preference between two action for some dataset where
every variable except i∗ is independent of her action. We show that the revealed
confounders must be confounders in the DM’s DAG. We then extend the procedure
above to identify the MAPs from each revealed confounder to the outcome.

3.3. Finite observations. The DM’s DAG can be revealed using choices from a
finite number of carefully constructed datasets. Given a set A, we construct a dataset
so that DM’s choices when facing it reveal whether or not A separates. As there are
a finite number of variables, we can reveal all the separators from a finite number of
datasets. Then, given a selection from the separators J and two variables i, j ∈ J ,
we construct another dataset that reveals whether or not i is adjacent to j.

To state the result, let x̄ and x be such that x̄i = maxXi and xi = minXi. A
dataset q has {i, j}-MLRP if Sq = {a, b} and q(xi|yj)

q(xi|y′j)
≥ q(x′i|yj)

q(x′i|y
′
j)
when x > x′ and y′ > y,

without equality for at least one (x, x′, y, y′) and where “a > b” is taken to be true.

Proposition 1. Let ρ have a perfect, unconfounded SCR (R, u, n∗) and Sq = {a, b}.

(i) If 0 /∈ A, XA ⊥q XAc, and q(x̄Ac|a), q(xAc |b) > δ, then ρ(a, q) = ρ(b, q) if and
only if A ρ-separates, where δ = 2−1/n

q(a)+(1−q(a))2−1/n .
(ii) For a selection I from the separators and distinct i, j ∈ I, if q has {i′, j′}-MLRP

for all distinct i′, j′ ∈ I s.t. {i′, j′} 6= {i, j}, XI ⊥q XIc, and Xi ⊥q Xj, then
ρ(a, q) = ρ(b, q) if and only if i is ρ-adjacent to j.

If a set A separates, then the DM chooses every action in her choice set with
equal probability. Otherwise, there is an R-MAP between the action and outcome
that does not intersect A. When the highest and lowest realizations are sufficiently
strongly correlated with each other outside of A, the DM predicts that action a leads
to a better outcome than does b.

If the two variables are adjacent, then XI ⊥q XIc and Xi ⊥q Xj imply that
the DM chooses both actions with equal probability. If not, then under the MLRP
condition, every pair of variables except i and j is positively correlated with each
other. As a consequence, the DM infers that all the causal effects between variables
in I are positive. Therefore, she predicts that a leads to a strictly better outcome
than does b whenever i does not cause j or vice versa.
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A similar approach can be used when the DAG contains confounders. However,
one needs additional structure on the datasets to ensure that the perceived correlation
remains even after controlling for the perceived endogeneity.

4. Endogenous Datasets

The next two sections study the special case where the dataset q is derived en-
dogenously from the DM’s behavior. This section generalizes the model from Section
2 to accommodate an endogenous dataset. The next characterizes the random choice
rules that have a subjective causality representation.

Consider a situation where the dataset utilized by the DM to make her predictions
is generated by her own behavior as in Spiegler (2016). To model this, we take as
given a function ζ that maps each action to the full-support lottery over X−0 that
results from taking the action. The mapping ζ should be interpreted as known to the
analyst but not the DM, who leverages her causal model to learn it. We assume that
ζ and X0 are rich enough that there is at least one action corresponding to every such
lottery, and to economize on notation, we write a(x) instead of ζ(a)(x).

Let S be the set of finite subsets of X0. Then, a random choice rule ρ : X0×S →
[0, 1] where ∑a∈S ρ(a, S) = 1 and ρ(a, S) = 0 for every a /∈ S describes the DM’s
choices. The DM’s dataset when facing menu S is ρS where

ρS(a, y) = ρ(a, S)a(y) for all a ∈ X0 and y ∈ X−0.

The dataset ρS combines the lottery that results from taking action a with the fre-
quency that a is chosen, ρ(a, S). Note that ρ(·, S) is a distribution over actions
whereas ρS is a distribution over X .

Definition 4. Choice rule ρ has an Endogenous Subjective Causality Representation
if there exists a perfect, nontrivial, unconfounded DAG R, an index n∗, and a strictly
increasing u : Xn∗ → R so that

ρ(a, S) =
exp

(∑
x∈X−0 u(xn∗)ρSR(x|do(a))

)
∑
a′∈S exp

(∑
x∈X−0 u(xn∗)ρSR(x|do(a′))

)
for every S ∈ S and a ∈ S. Then, we say that ρ has an Endogenous SCR (R, u, n∗).
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As before, the DM uses her model R to form predictions about the outcomes
of each potential action. However, the dataset ρS that she uses to estimate each
of the causal effects varies with how often she chooses each of the actions. Note
that ρ(a, S) = Pr({ε : UρS(a) + εa ≥ UρS(b) + εb for all b ∈ S}) when {εb}b∈S are dis-
tributed independently and extreme value. Moreover, the representation is a personal
equilibrium (Köszegi and Rabin, 2006): the DM maximizes expected utility given her
beliefs, which in turn depend on her choices. It is easy to show that an equilibrium
exists for any S ∈ S using Brouwer’s fixed point theorem. For menus with more than
one equilibrium, we place no restrictions on which is selected.

Remark 2. Random choice plays two roles. First, ρ(a, S) > 0 for all a ∈ S, so
predictions about every action are well-defined. Second, Spiegler (2016) shows that
“pure” equilibria may not exist, even after defining beliefs about unchosen actions.

Remark 3. We adopt the exponential function for concreteness and applicability. Our
results adapt to any other strictly increasing and positive function.

Remark 4. A confounded DAG would represent a DM who believes that a variable
whose realization she does not observe affects her choices.

The DM’s behavior may endogenously create correlations that she misinterprets
as causation. Fundamentally, the DM neglects the effect of her choices on her data.9

This leads to two key technical challenges. First, the DM may violate regularity, a
property necessary for representation by a random utility model (RUM). Second, her
behavior may be self-confirming: because she chooses a frequently, she thinks it is
better than b, but she would reverse her ranking if she chose b more frequently. These
features allow the model to accommodate a number of biases documented in the
psychology literature, including violations of independence of irrelevant alternatives,
illusion of control, status-quo bias, and congruence bias. We illustrate these challenges
using a doctor in the running example whose behavior has an Endogenous SCR
(RP , u,H) and where Xi = {0, 1} for i = P, T,H.

4.1. Regularity violation. An Endogenous SCR may violate regularity, the require-
ment that ρ(a, S) ≥ ρ(a, S ′) whenever a ∈ S ⊆ S ′. Consequently, the class of choice
rules with an SCR and those with a RUM do not coincide. By contrast, many models
9Esponda and Vespa (2018) experimentally document selection neglect, and Denrell (2018) provides
a recent survey of evidence for it in managers.
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of behavior interpreted as irrational are RUMs, such as the model of limited attention
due to Manzini and Mariotti (2014).

To illustrate why regularity may be violated, consider three treatment options,
ι, π, ν, that are equally likely to lead to good health. Plaque and health are inde-
pendent after undergoing treatment ι, positively correlated under treatment π, and
negatively correlated under treatment ν. When the doctor decides between only ι

and π, plaque buildup is necessarily positively correlated with good health. As she
mistakes the correlation for causation, this makes treatments that are more likely to
lead to plaque buildup more attractive. However, when she chooses between all three
treatments, the patients to whom she prescribes ν may cancel out or even reverse the
perceived positive effect of plaque on health. When this effect is strong enough, she
chooses the treatment with a lower probability of plaque buildup more frequently.
Formally, suppose that ι(1P , 1H) = ι(1P , 0H) = 1

2 , π(0P , 0H) = π(1P , 1H) = 1
2 ,

ν(1P , 0H) = ν(0P , 1H) = 1
2 , u(0) = 0, and u(1) = 6.10 One can verify that for

S = {ι, π} ⊂ S ′ = {ι, ν, π}, we have ρ(π, S) < 1
3 = ρ(π, S ′), a violation of regular-

ity.11 ,12

While the violations of regularity allow the model to accommodate phenomena
like the decoy effect, the failure stems from faulty reasoning. The above doctor
overestimates her ability to control events, or exhibits illusion of control (Langer,
1975). Her choices do not affect health, yet she would be willing to pay a premium
to choose one treatment over another. Moreover, she also exhibits “patternicity”
(Shermer, 1998) in that she perceives a pattern, namely that using ι leads to better
health, where none exist.

4.2. Self-confirming choices. As illustrated above, the outcome that the DM ex-
pects to get from an action may depend on how frequently she chooses it. She may
predict that one action is better than another only if she chooses it sufficiently fre-
quently. This can lead to multiple personal equilibria. Suppose that treatment b
prevents the disease but often leads to plaque buildup, and that treatment a leads

10The distribution of tangles does not affect behavior, so we leave it unspecified.
11See Appendix B.1 for the derivation.
12We note that S, S′ /∈ S, so this example, and that in the next subsection, are technically outside
our domain. At the cost of complicating the algebra and obscuring the logic, they can be made
consistent with our assumptions by replacing each action c with c′ = (1 − ε)c + εd where ε > 0 is
small enough and d(y) = 1

8 for each y ∈ {0, 1}3.
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to frequent disease but rare plaque buildup that only occurs when the patient is
sick. When the doctor rarely prescribes treatment b, low plaque buildup is mis-
takenly believed to increase the chance of good health. Consequently, prescribing
b, which raises their plaque, seems like a bad idea. Symmetrically, when she usu-
ally prescribes b, she predicts that a leads to a lower chance of good health because
plaque buildup is negatively correlated with disease. Formally, let b(1P , 1H) = 1,
a(0P , 1H) = 1

2q, a(0P , 0H) = 1
2(1 − q), and a(1P , 0H) = 1

2 where q ∈ (0, 1). When
u(0) = 0 and u(1) = 30, one can verify that ρ(a, {a, b}) ≈ .34, ρ(a, {a, b}) ≈ 0.02,
and ρ(a, {a, b}) ≈ 0.99 are all equilibria when q = 3

4 .
13

Interpreting the choices as the steady state of a learning process, such a DM ex-
hibits status quo bias (Samuelson and Zeckhauser, 1988), a tendency toward “main-
taining one’s current or previous decision,” and congruence bias (Wason, 1960) by
failing to test the alternative hypothesis that the drug is better than not intervening.

5. Behavioral Foundations

We now turn to the behavioral regularities that characterize the random choice
rules with an Endogenous SCR. We first identify a candidate causal model for the
DM. To this end, Section 5.1 adapts the techniques developed in Section 3 to the
current setting. The axioms relate the predictions implied by the causal model to the
DM’s choices. Section 5.2 presents some familiar axioms. Section 5.3 first illustrates
our approach by characterizing the choices of a doctor in the running example with
model RP . Section 5.4 presents the axiomatization for the general case.

5.1. Identification. The results in Section 3 generalize with minor modification.
Applying the results requires constructing a menu S for which XA ⊥ρS XB. When
0 /∈ A, XA ⊥ρS XB whenever margA a = margA b for all a, b ∈ S and XA ⊥a XB for
all a ∈ S. This allows easy application of Proposition 1 to reveal following from ρ.

Definition 5. The set of minimal ρ-separators is

Aρ = {A ⊆ N : A is a minimal set that ρ-separates}.

We say that A ∈ Aρ is adjacent to B ∈ Aρ, written A ∝ρ B, if every k ∈ A \ B is
ρ-adjacent to every l ∈ B \ A and A 6= B.
13See Appendix B.2 for the derivation.
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Both the set Aρ and the relation ∝ρ can be determined by observing ρ from a fi-
nite number of menus using Proposition 1. Together with the dataset, they determine
the DM’s predictions about her actions.

Proposition 2. If ρ has an Endogenous SCR (R, u, n∗), then Aρ can be ordered
Aρ = {Aρ1, . . . , Aρm} where A

ρ
1 = {0}, Aρm = {n∗}, and for every i = 1, 2, . . . ,m, Aρi is

ρ-adjacent to Aρj if and only if j ∈ {i+ 1, i− 1}. Moreover, for any dataset q

(2) qR (xn∗|do(x0)) =
∑

y∈X∪m−1
i=2 A

ρ
i

q
(
xn∗|yAρm−1

)m−2∏
i=2

q
(
yAρi+1

|yAρi
)
q
(
yAρ2 |x0

)
.

Proposition 2 reveals the DM’s predictions from the minimal separators and ad-
jacency. Consider j ∈ Aρi+1\A

ρ
i . The result shows that kRj for every k ∈ A

ρ
i and that,

by perfection, either jRk′ or k′Rj for every other k′ ∈ Aρi+1 \ A
ρ
i . However, which of

the two holds is immaterial for the DM’s predictions. By focusing on the relationship
between the variables in Aρi+1 and those in Aρi , we sidestep any indeterminacy in her
model.

Given Theorem 1, Aρ and ∝ρ determine the R-MAPs for any R that represents ρ.
This reveals the set of DAGs that could potentially represent it. Our axiomatization
exploits this by identifying their implications for choice and requiring that the DM
does not deviate from them.

5.2. Basic axioms. The first two axioms are standard, and we present them with
minimal discussion. The first requires that the DM chooses every action with positive
probability.

Axiom 1 (Full-support). For any S ∈ S and a ∈ S, ρ(a, S) > 0.

The second limits the perceived difference between any two options.

Axiom 2 (Bounded Misperception). The quantity supS,a,b∈S
ρ(a,S)
ρ(b,S) is finite.

The relative frequency with which the DM takes two actions, their Luce ratio,
indicates the strength of her preference. Since the set of outcomes is finite, there is a
best and worst outcome. These provide a natural limit to how much she prefers one
action to another, which bounds the Luce ratio. The axiom thus bounds the size of
the mistakes that the DM can make.
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5.3. Foundations - special case. This subsection specializes the remaining axioms
to a doctor represent by RP . The first requires that RP is a candidate for her DAG.

Axiom (CRC*). The set of minimal separators Aρ equals {{0}, {P}, {H}}. More-
over, {0} and {H} are both adjacent to {P} and only to {P}.

Since {0}, {P}, {H} ∈ Aρ, every R-MAP of must include 0, P , and H. Further,
as {P} is adjacent to both {0} and {H}, there is a single R-MAP (0, P,H). Finally,
since H is furthest from 0 in the R-MAP, this reveals that the doctor cares only about
health.

Second, the doctor treats plaque as a sufficient statistic for health.

Axiom (I5*). For a, b ∈ S ∈ S, if margP a = margP b, then ρ(a, S) = ρ(b, S).

According to RP , any treatments that lead to the same chance of plaque buildup
also have the same chance of good health. Therefore, if two treatments lead to the
same marginal distribution over plaque, then the doctor is equally likely to choose
either, regardless of any other difference between them.

Third, she chooses similarly when she makes similar predictions.

Axiom (LCI*). For any S, S1, S2, · · · ∈ S with a, b ∈ Sm ∩ S for each m:
if ρSm (xH |xP )→ ρS (xH |xP ) for all x ∈ X−0, then ρ(a,Sm)

ρ(b,Sm) →
ρ(a,S)
ρ(b,S) .

The Logit model is characterized by Luce’s Choice Axiom (Luce, 1959), which
requires that ρ(a,S′)

ρ(b,S′) = ρ(a,S)
ρ(b,S) whenever a, b ∈ S ∩ S ′. LCI* requires that the Choice

Axiom holds when the DM makes the same predictions for a and b whether she faces
S or S ′. The doctor thinks that distribution of health conditional on plaque equals
the causal effect of plaque on health. If this distribution is the same for ρS1 and ρS,
then the doctor makes the same predictions about the effect of each treatment when
facing either S1 or S. Hence, she should consistently evaluate them, in the sense that
Luce’s choice axiom should hold for S1 and S. Indeed, letting Sm = S1 for all m, the
axiom implies that if ρS1(xH |xP ) = ρS(xH |xP ) for all x ∈ X−0, then ρ(a,S1)

ρ(b,S1) = ρ(a,S)
ρ(b,S) .

Moreover, the Luce ratio should be “almost” the same whenever these conditional
probabilities are “close.”

Finally, she behaves as if Logit-EU when her dataset is consistent with RP .
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Axiom (CPL*). There exists a increasing u : XH → R so that

ρ(a, S) =
exp

(∑
x∈X−0 u(xH)a(x)

)
∑
b∈S exp

(∑
x∈X−0 u(xH)b(x)

)
whenever b(yH , yP ) = b(yP )a(yH |yP ) for all y ∈ X−0 and a, b ∈ S.

When health is in fact independent of the treatment given plaque, the DM makes
correct predictions. Hence, she should behave according to Logit-EU.

These axioms hold if and only if the doctor has an SCR with DAG RP .

Corollary 1. The choice rule ρ satisfies Full-support, Bounded Misperception, CRC*,
I5*, LCI*, and CPL* if and only if ρ has an Endogenous SCR (RP , u,H).

The result is a corollary of Theorem 2, and so we defer discussion until then.

5.4. Foundations - general case. We now present the axioms for an arbitrary
DAG. To simplify the statement in the general case, we take the outcome n∗ to be
known.

The third axiom ensures that we can find a candidate for the DM’s DAG.

Axiom 3 (Consistent Revealed Causes, CRC). The sets {0}, {n∗} ∈ Aρ. Moreover,
(i) for any distinct A1, . . . , Ak ∈ Aρ with k ≥ 3, if Ai is ρ-adjacent to Ai+1 for all

i < k, then Ak is not ρ-adjacent to A1;
(ii) |{A′ ∈ Aρ : A′ is ρ-adjacent to A}| = 1 for each A ∈ {{0}, {n∗}}; and
(iii) |{A′ ∈ Aρ : A′ is ρ-adjacent to A}| = 2 for each A ∈ Aρ \ {{0}, {n∗}}.

First, both the action and the outcome separate. Second, there are no cycles
of causes. Since we infer causality from adjacency, this requires that the adjacency
relation has no cycles except those caused by symmetry. Finally, each separator is
adjacent to the correct number of others according to Proposition 2. When |Aρ| ≤ 4,
condition (i) is redundant given (ii) and (iii).

Lemma 3. Axiom 3 holds if and only if Aρ can be ordered Aρ = {Aρ1, . . . , Aρm} where
Aρ1 = {0}, Aρm = {n∗}, and for every i = 1, 2, . . . ,m, Aρi is ρ-adjacent to Aρj if and
only if j ∈ {i+ 1, i− 1}.
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Given Proposition 2, Lemma 3 shows that we can infer what a DM with an
Endogenoenous SCR would predict whenever ρ satisfies Axiom 3. This will be useful
in that the remaining axioms relate the DM’s inferences about causal effects to her
choices.

The fourth axiom requires that if the DM predicts two actions lead to the same
outcome distribution, then she chooses each with the same probability.

Axiom 4 (Indifferent If Identical Immediate Implications, I5). For a, b ∈ S ∈ S, if
A ∈ Aρ is ρ-adjacent to {0} and margA a = margA b, then ρ(a, S) = ρ(b, S).

The covariates directly caused by the action are a sufficient statistic for the
DM’s prediction of the outcome distribution. Whenever two actions lead to the same
distribution over these covariates, she predicts that they lead to the same outcome
distribution. She is therefore indifferent between any two actions with identical im-
mediate implications. The axiom only considers the marginal distributions on XA of
a and b, remaining agnostic about their distribution on other variables and any other
available actions.

The fifth axiom ensures that if she makes similar predictions in two contexts,
then she makes similar choices when facing them.

Axiom 5 (Luce’s Choice Axiom Given Inferences, LCI).
For any S, S1, S2, · · · ∈ S with a, b ∈ Sm ∩ S for each m, if

ρSm
(
yAρi+1

|yAρi
)
→ ρS

(
yAρi+1

|yAρi
)

for every y ∈ X−0 and i = 2, . . . , |Aρ| − 1, then ρ(a,Sm)
ρ(b,Sm) →

ρ(a,S)
ρ(b,S) .

LCI relates the DM’s inferences about the causal effects to her choices. As per
Equation (2), the axiom’s hypothesis ensures that her predictions about the outcome
of a and b from ρSm are close to those from ρS for large m. If that is the case, then
LCI requires that their Luce ratio from Sm is close to their Luce ratio from S. By
taking S1 = Sm for all m, we see that LCI implies that if her inferences are the same,
then their Luce ratio is the same.

The next definition identifies a set of menus for which the DM’s predictions about
the outcome of each action is correct.



26 ELLIS AND THYSEN

Definition 6. A menu S ∈ S leads to correct predictions if

b
(
y∪|A|i=2A

ρ
i

)
= b

(
yAρ2

) |Aρ|−1∏
i=2

a
(
yAρi+1

|yAρi
)
,

for every a, b ∈ S and y ∈ X−0.

From Equation (2), we see that only the set of variables indexed by ⋃|Aρ|i=1 A
ρ
i are

relevant for the DM’s predictions, and that the DM thinks that any variable in Aρi+1

is independent of any in ⋃i−1
k=1A

ρ
k conditional on those indexed by Aρi . A correctly

perceived menu satisfies these conditional independences, so her prediction of the
distribution of all relevant variables, including the outcome, is correct.

The DM behaves in a standard fashion when her predictions are correct.

Axiom 6 (Correct Predictions Logit-EU, CPL). There exists a strictly increasing u

so that ρ(a, S) =
exp
(∑

x∈X−0
u(xn∗ )a(x)

)
∑

b∈S exp
(∑

x∈X−0
u(xn∗ )b(x)

) for any a ∈ S whenever S leads to correct

predictions.

If S leads to correct predictions, then every conditional independence assumption
implied by her causal model holds in ρS. Hence, her predictions about each of the
actions are correct. She should therefore behave according to Logit-EU. This axiom
can be replaced by assuming that analogues of the independence, monotonicity, and
continuity axioms hold for correctly perceived menus; see the online appendix for
details.

Theorem 2. A random choice rule ρ has an Endogenous SCR if and only if ρ satisfies
Full-support, Bounded Misperception, CRC, I5, LCI, and CPL.

The result highlights the connection between SCR and the Logit-EU model. No-
tice that if Aρ = {{0}, {n∗}} and ρ satisfies Axioms 1-6, then the choice rule has a
Logit-EU representation. The axioms relate deviations from Logit-EU to inconsis-
tent predictions about causal effects. I5 says that two alternatives are chosen with
same probability whenever they coincide on the distribution of variables the action
is revealed to cause, whereas Logit-EU requires coincidence on the outcome distribu-
tion. LCI requires that the Luce ratio is constant only when predictions are constant,
whereas Logit-EU requires it to be constant across all menus. CPL limits deviations
from Logit-EU to situations where the DM’s predictions do not match reality.
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We outline the proof for sufficiency here, and defer a formal proof to the appendix.
By Axiom 3, we can define a candidate DAG Rρ and n∗ to represent ρ. Given S ∈ S,
we construct a correctly predicted S ′1 so that for every a ∈ S, there is an a′ ∈ S ′1 with
the same distribution that she would predict for a given the candidate DAG, i.e.,
a′(·) = ρSRρ(·|a). We then show that for any a, b ∈ S, the DM chooses a and b from S

with the same frequency as she chooses a′ and b′ from S ′1. To do so, we add distinct
alternatives to S ′1 to form a nested sequence (S ′m)∞m=1 where each S ′m is correctly
predicted. Bounded Misperception implies that the probability of choosing anything
in S from S ′m ∪ S goes to zero as |S ′m| goes to infinity. Therefore, the inferences that
the DM makes when facing S ′m ∪ S approach those she makes from S ′1, which in turn
equal those she makes from S. LCI implies that the relative frequency with which
a′ and b′ are chosen from S ′m ∪ S converges to that for a′ and b′ in S ′1. Moreover, a
and a′ (as well as b and b′) are chosen from S ′m ∪ S with the same probability by I5.
Applying LCI another time, we see that a and b are chosen with the same relative
frequency in S as a′ and b′ are in S ′1, completing the proof.

6. Discussion

Theorem 1 shows that one can use choice of actions to reveal the relevant parts
of a subjective causal model. It suggests the types of questions, and the regularities
in data, that could be used in surveys or experiments to infer or to test a subjective
model. The approach provides both an alternative approach to asking subjects di-
rectly to describe their model, as in Andre et al. (2022), and a complementary way
to test whether subjects actually use the model that they described.

We conclude by discussing comparative behavior and alternative interpretations
of the model.

6.1. Comparative Coarseness. A coarser causal model leaves out some variables
or relationships relative to another. Authors often explain “irrational” behavior in
situations with adverse selection via coarseness. For instance, Eyster and Rabin
(2005), Jehiel and Koessler (2008), and Esponda (2008) argue that the winner’s curse
reflects bidders who do not fully take into account the relationship between others’
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actions and signals.14 In this subsection, we compare DMs in terms of the coarseness
of their model. In particular, how can an analyst separate two DMs who differ in
that one’s model contains more variables than the other’s?

Definition 7. Say that ρ2 has a coarser model than ρ1 if ρ1(a, q) ≥ ρ1(b, q) for all
b ∈ Sq ⇐⇒ ρ2(a, q) ≥ ρ2(b, q) for all b ∈ Sq whenever Xi ⊥q XN\{i} for all i ∈ N
that are not in any R2-MAP from 0 or an R2-confounder to n∗.

Consider DM1 represented by ρ1 and DM2 represented by ρ2. As revealed by The-
orem 1, the variables that do not belong to an R2-MAP from 0 or an R2-confounder
to n∗ are irrelevant for DM2’s predictions. The condition says that whenever those
variables are independent of all other variables, i.e. they are actually irrelevant when
forming predictions using any DAG, then the two DMs behave in the same way. This
ensures that if DM2 thinks a variable is relevant, so does DM1.

Proposition 3. Let ρi have a perfect SCR (Ri, ui, n
∗) for i = 1, 2. Then, ρ2 has

a coarser model than ρ1 if and only if there exists N ′ ⊂ N so that ρ2 has an SCR
(R1 ∩N ′ ×N ′, u1, n

∗).

The comparison reveals when the models of two DMs are nested. Specifically,
they agree on the causal relationship between any two variables that both consider
relevant and on the desirability of outcomes. However, more variables may be relevant
for DM1’s predictions than for DM2’s.

6.2. Interpretations of the model. Our main interpretation of an SCR is the one
discussed above: it describes a DM who predicts the outcome of her action using a
causal model and adjusts her predictions for the spurious correlation caused by any
confounders.

Alternatively, the model may also describe a DMwith limited data access (Spiegler,
2017). In this interpretation, she only considers or observes the distributions of sev-
eral overlapping subsets of variables. She then extrapolates from the partial datasets
using the distribution that maximizes entropy subject to matching the marginal dis-
tributions over the datasets. Identifying her DAG corresponds to identifying the

14Section 5 of Spiegler (2016) discusses how and to what extent these models fit into the DAG
framework.
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considered subsets, and the DAG will necessarily be perfect. In the example, a doc-
tor represented by RP only observes, or only has access to, two datasets; one that
keeps track of the efficacy of the treatments on plaque and another one that contains
the correlations between plaque, tangles and Alzheimer’s. Recently (and controver-
sially), the FDA approved the Alzheimer’s medication aducanumab on the basis of
its reduction in plaque buildup despite limited evidence of its effects on the disease
itself.15

Another interpretation is a particular kind of correlation neglect caused by lim-
ited memory. Without confounders, the DAG reduces the number of parameters
needed to reconstruct the joint distribution over the variables. In the running exam-
ple, a DM with DAG RT can store all the information, she deems relevant for such
reconstruction using only 6 parameters when all variables are binary, but it would
require 24 − 1 = 15 parameters to record the probability of each possible realization
without this assumption.

Another interpretation is that the DM estimates a structural equation model
(SEM). She estimates each variable Xi based on the variables indexed by R(i). Her
estimates have a causal interpretation if she includes all the variables (and only those)
that she believes have a direct causal impact on it. See Chapter 5 of Pearl (2009) for
a more in-depth discussion of this.

For a final interpretation, we note that when ρ has an SCR (R, u, n∗), qR mini-
mizes Kullback-Liebler divergence from q among all the probability distributions on
X that are consistent with ρS.16 A ρ with an Endogenous SCR represents a single
agent Berk-Nash equilibrium (Esponda and Pouzo, 2016) with extreme-value errors.
As in that model, we can interpret the behavior as the steady state of a learning
process with a set of parameters (probability distributions) that does not include the
“true” one.

15 See www.theatlantic.com/health/archive/2021/07/americas-drug-approval-system-
unsustainable/619422/ for a description of the controversy and fda.report/media/143503/PCNS-
20201106-CombinedFDABiogenBackgrounder_0.pdf for the evidence submitted and the FDA’s
evaluation thereof.
16See Section 5.5 of Hajek et al. (1992).

http://www.theatlantic.com/health/archive/2021/07/americas-drug-approval-system-unsustainable/619422/
http://www.theatlantic.com/health/archive/2021/07/americas-drug-approval-system-unsustainable/619422/
http://fda.report/media/143503/PCNS-20201106-CombinedFDABiogenBackgrounder0.pdf
http://fda.report/media/143503/PCNS-20201106-CombinedFDABiogenBackgrounder0.pdf


30 ELLIS AND THYSEN

Appendix A. Proofs omitted from the main text

A.1. Notation. For a DAG Q, let Q̃ be the skeleton or undirected version of Q, i.e.
jQ̃i if and only if either iQj or jQi, (i, j, k) be a Q-v-collider if and only if iQj, jQk,
i 6Qj and j 6Qi, andQ∗ be the DAG that drops all edges into 0 so pQ(x|do(a)) = pQ∗(x|a)
for all full support p.

Definition 8. Let C be a collection of subsets of a finite set and T a tree with C as
its node set. Say that T is a junction tree if for any C1, C2 ∈ C, C1 ∩C2 is contained
in every node on the unique path in T between C1 and C2.

The set C ⊆ {0, . . . , n} is a clique for R if jR̃k for all j, k ∈ C. By Theorem
4.6 of Cowell et al. (1999), the maximal cliques of a perfect DAG R can be linked to
form a junction tree. Call this the maximal clique junction tree (MCJT) for R.

A.2. Proof of Sufficiency for Theorem 1. Suppose that ρ has a perfect SCR
(R, u, n∗) and R′ is perfect and non-trivial DAG so that the set of R-confounders
equals the set of R′-confounders, the set of R′-MAPs from an R-confounder or 0
to n∗ equals the set of R-MAPs from an R-confounder or 0 to n∗. We show that
qR∗(xn∗ |a) = qR′∗(xn∗|a) for all q and a ∈ Sq. There is no loss in considering only an
R for which R ∩ AR∗(n∗)2 = R.

Let C∗R (or just C∗ when R is clear) be the set consisting of 0 and all R-
confounders. Notice C∗ is a clique: for j, k ∈ C∗, jR̃k if j = 0 or k = 0 and
otherwise, jR0 and kR0 so jR̃k by perfection.

Set R0 = R, N0(R) = AR(n∗). Inductively define N i+1(R) and Ri+1 as follows.
There is a unique maximal Ri-clique Ci† containing n∗, since jRin∗ and kRin∗ implies
jR̃ik by perfection and n∗ 6Rij for all j. For any MCJT for Ri, there is a unique path
from any maximal clique containing C∗ to Ci†. Take a maximal clique containing C∗

and the MCJT with one of the shortest such paths, and let Ci = {Ci
1, . . . , C

i
m} be

the maximal cliques in this path ordered so that so that there is an edge from Ci
j

to Ci
j+1, and C∗ ⊆ Ci

1. If ∪Ci 6= N i(R), then set N i+1(R) = ∪Ci. If ∪Ci = N i(R)
and there is ji+1 ∈ N i(R) \ [C∗ ∪ {n∗}] that is not contained in at least two maximal
Ri-cliques, then set N i+1(R) = N i(R) \ ji+1. Otherwise, N i+1(R) = N i(R). Set
Ri+1 = Ri ∩ [N i+1(R)×N i+1(R)].
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Since there are finite variables and cliques, there is ī so that N i+1(R) = N i(R)
for all i > ī. Let N∗(R) = N ī+1(R).

Lemma 4. If ρ has a perfect SCR (R, u, n∗), then it also has an SCR (R∩N∗(R)2, u, n∗).

Proof. Clearly, pR0∗(xn∗|xC∗) = pR∗(xn∗|xC∗). Assume (IH) that pR∗(xn∗|xC∗) =
pRi∗(xn∗|xC∗). We show that (IH) implies pR∗(xn∗|xC∗) = pRi+1∗(xn∗|xC∗). This es-
tablishes the result.

If ∪Ci 6= N i(R), then by properties of the MCJT, we can treat Ci
1 as ancestral

and all the cliques outside of Ci as being non-ancestors of n∗. Hence

pR∗(xn∗|xC∗) = pRi∗(xn∗|xC∗) = pRi+1∗(xn∗ |xC∗).

That is, we can drop all variables that do not appear in at least one clique in Ci.

If ∪Ci = N i(R), let (Ci
1, · · · , Ci

m) be the MCJT for Ri, WLOG a single path
ordered naturally and having C∗ ⊂ Ci

1 and n∗ ∈ Ci
m. Let k be so that ji+1 ∈ Ci

k and
ji+1 /∈ Ck′ for all k′ 6= k.

Let l(k′) < k′ be the highest index for each k′ > 1 so that Ck′ ∩ Ck′−1 ⊂ Cl(k′).
Define Qi so that jQij′ ⇔ jRij′ when j, j′ ∈ C∗, jQij′ whenever j ∈ C∗ and j′ ∈
Ci

1 \C∗, jQij′ whenever j ∈ Ck′ ∩Cl(k′) and j′ ∈ Ck′ \Cl(k′), jQiji+1 whenever j ∈ Ck,
and jQ̃ij′ for each distinct j, j′ ∈ Ck′ for all k′.

Notice Qi∗ has the same skeleton and the same v-colliders as Ri and that ji+1 /∈
AQi(n∗). Hence

p[Qi∩N i+1(R)2]∗(xn∗|xC∗) = pQi∗ (xn∗|xC∗) = pRi∗(xn∗|xC∗) = pR∗(xn∗|xC∗)

where the last equality holds by hypothesis and the second by Theorem 1 of Verma
and Pearl (1991). Moreover, [Qi∩N i(R)2]∗ has the same skeleton and same v-colliders
as Ri+1∗, so pR∗(xn∗|xC∗) = pRi+1∗(xn∗|xC∗). �

Lemma 5. If (B1, . . . , Bm) is any ordering of the maximal cliques of a perfect and
non-trivial DAG R that satisfies the running intersection property with B1 ⊃ C∗, then

(3) pR∗(xB̄m) = p(xC∗\{0})p(x0)p(xB1|xC∗)
m∏
j=1

p(xBj |xBj∩B̄j−1)

for any p and where B̄k = ∪ki=1Bi.
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Proof. Let p∗ be defined by the RHS of Equation (3) where {B1, . . . , Bm} are the
maximal R-cliques ordered to satisfy the running intersection property, have B1 = C1;
let l(k) < k be the highest index for each k > 1 so that Bk ∩ B̄k−1 ⊂ Bl(k), and define
Q from R and (B1, . . . , Bm) as we did Qi from Ri and (Ci

1, . . . , C
i
m) (ignoring ji+1).

Then, Q∗ has the same skeleton as R∗ since they have the same maximal cliques, and
Q∗ has the same v-colliders as R∗ since any Q∗-v-colliders are between variables in
C∗. By Theorem 1 of Verma and Pearl (1991), pR∗ = pQ∗ .

Proceed by induction. Since C∗ \{0} and {0} are ancestral cliques in Q∗ that are
Q∗-independent, pQ∗(xC∗) = p(xC∗\{0})p(x0). That p∗(xB̄1) = pQ∗(xB̄1) follows from
the formula for pQ∗(xB̄1).

Suppose (IH) that p∗(xB̄M−1
) = pQ∗(xB̄M−1

). For any j ∈ BM \ Bl(M), observe
that by construction of Q, kQj only if k ∈ BM ∪Bl(M).

Pick j1 ∈ BM \ Bl(M) so that j′ 6Qj1 for all j′ ∈ BM \ Bl(M); j1 exists since Q is
acyclic. Then,

pQ∗(xB̄M−1
, xj1) = p∗(xB̄M−1

)p(xj1|xQ(j1)) = p∗(xB̄M−1
)p∗(xj1|xBM∩Bl(M))

since Q(j1) = BM ∩ Bl(M). Recursively define jk ∈ BM \ [Bl(M) ∪ {j1, . . . , jk−1}] so
that j′ 6Q∗jk for all j′ ∈ BM \ [Bl(M) ∪ {j1, . . . , jk−1}] and assume that

pQ∗(xB̄M−1
, xj1 , . . . , jk−1) = p∗(xB̄M−1)p(xj1 , . . . , xjk−1|xBM∩Bl(M)).

Then,

pQ∗(xB̄M−1
, xj1 , . . . , jk)

=p∗(xB̄M−1
)p(xj1 , . . . , xjk−1 |xBM∩Bl(M))p(xjk |xQ(jk))

=p∗(xB̄M−1
)p(xj1 , . . . , xjk−1 |xBM∩Bl(M))p(xjk |xj1 , . . . , xjk−1 , xBM∩Bl(N))

=p∗(xB̄M−1
)p(xj1 , . . . , xjk |xBM∩Bl(M))

since Q(jk) = {j1, . . . , jk−1}∪ [BM ∩Bl(M)] by construction and that BM is a Q-clique.
Hence p∗(xB̄M ) = pQ∗(xB̄M−1

)p(xBM\BM−1|xBM∩Bl(M)) = pQ∗(xB̄M ). Inductively, p∗ =
pQ∗ = pR∗ . �

By Lemma 4, the MCJT for a perfect R such that R = R ∩ N∗(R)2 consists
of single path. We say that (C1, . . . , Cm) is the MCJT for such an R if each Ci is
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a maximal clique for each i, there is an edge between Ci and Ci+1 for each i, and
C∗R ⊆ C1.

Lemma 6. If (C1, . . . , Cm) is the MCJT for a perfect and non-trivial DAG R ⊂
N∗(R)2, A0 = C∗, Am = {n∗}, and Ai = Ci ∩ Ci+1 for i = 1, . . . ,m − 1, then
Ci = Ai−1 ∪ Ai.

Proof. First note that this clearly holds for i = 1,m. Thus, pick an i ∈ {2, · · · ,m−1}
and j ∈ Ci. By Lemma 4, there exists i′ 6= i so that j ∈ Ci′ . If i′ > i, j ∈ Ci+1 and
hence j ∈ Ai+1. If i′ < i, j ∈ Ci−1 and hence j ∈ Ai−1. �

Definition 9. For a DAG Q ⊆ N∗(Q)2, kQ̂j if and only if kQj and either:
(a) k ∈ C∗ and either j /∈ C∗ or j = 0,
(b) k precedes j on a Q-MAP from l ∈ C∗ to n∗, or
(c) there exists a node l ∈ N such that lQ̂k and l 6Qj.

Lemma 7. If (C1, . . . , Cm) is the MCJT for a perfect and non-trivial DAG R ⊂
N∗(R)2 and C0 = C∗R ⊂ C1 and {k, j} 6⊆ C0, then kR̂j if and only if there exists i so
that k ∈ Ci ∩ Ci−1 and j ∈ Ci \ Ci−1.

Proof. First we show necessity. Let (*) be the assertion that “if k ∈ Ci ∩ Ci−1 and
j ∈ Ci \Ci−1, then kR̂j.” We prove this inductively. For i = 1, k ∈ C0∩C1 iff k ∈ C∗.
If j ∈ C1 \C0, then kRj. To see this, suppose not, i.e. k 6Rj. As j, k ∈ C1 this implies
that jRk. If jR0, then j /∈ N∗(R) since j /∈ C∗ implies all paths from j to n∗ go
through C∗. Hence 0Rj and k 6= 0, but jRk implies 0RjRkR0, a cycle. Conclude
kRj.

Assume (IH) that (*) holds for all i′ ∈ {1, · · · , i − 1} where i ≥ 2. Take any
k ∈ Ci ∩Ci−1 and j ∈ Ci \Ci−1. If k ∈ C0 and jRk, then there exists l ∈ Ci−1 \Ci−2

and l′ ∈ Ci−1 \Ci. Now, jR̃l by construction and l′Rl by IH. We must have lRj since
jRl would imply jR̃l′, contradicting that j /∈ Ci−1 and l′ /∈ Ci. If l′ /∈ C0, then by
IH, there is an R-path from k to l, leading to a cycle when combined with lRjRk. If
l′ ∈ C0 and either l′ = k or kRl′, then there is a cycle. If l′ ∈ C0 and l′Rk, then l′R̃j
by perfection, contradicting that j /∈ Ci−1 and l′ /∈ Ci. Hence kRj and, since k ∈ C∗,
kR̂j.

So suppose that k 6∈ C0. Then there exists i′ ≤ i − 1 for which k ∈ Ci′ \ Ci′−1

and also l ∈ Ci′ \ Ci′+1 since Ci′ 6⊆ Ci′+1. By Lemma 6, l ∈ Ci′ ∩ Ci′−1, and by IH,
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lR̂k. Since j 6∈ Ci′′ for any i′′ < i and l /∈ Ci′′ for any i′′ > i′, l ˜6Rj, so by perfection,
j 6Rk. Then, kRj since k, j ∈ Ci, and kR̂j by Definition 9.c.

To complete the proof, we show that “if j ∈ Ci\Ci−1 and kR̂j, then k ∈ Ci−1∩Ci.”
Let j ∈ Ci \ Ci−1 and kR̂j. If i = 1 and k ∈ C∗, then k ∈ C0 ∩ C1. If i = 1 and
k /∈ C∗, then j, k ∈ C1 \C0. Then k′Rj and k′Rk for all k ∈ C∗ by necessity. But this
rules out Definitions 1.(a)-(c) holding for k and j, since no R-MAP can contain both.
For i > 1, take any j′ ∈ Ci \ Ci+1, noting j′ ∈ Ci−1 ∩ Ci by Lemma 6. By necessity,
j′R̂j. If j′ = k, then we are done. If not, then kR̃j′ by perfection, so k ∈ Ci′ for some
i′ ≤ i. Similarly, kR̃j so k ∈ Ci′′ for some i′′ ≥ i. Because (C1, . . . , Cm) is a MCJT,
k ∈ Ci. To see k ∈ Ci−1 ∩ Ci, suppose not, so k /∈ Ci−1. Hence k 6∈ C∗. Since any
path from a node in C∗ to n+ 1 contains some j′ ∈ Ci−1 ∩Ci, and j′R̂j and j′R̂k by
necessity, no R-MAP includes both j and k. Therefore, by Definition 9 there is l so
that lR̂k and l 6Rj. Then, l ∈ Ci, since otherwise kR̂l by necessity. Thus, jRl. But
then jRlRkRj, a contradiction. Hence k ∈ Ci−1 ∩ Ci. �

Lemma 8. For a perfect and non-trivial DAG R ⊆ N∗(R)2, if jRk and j ˆ6Rk, then
there exists l such that jR̂l and kR̂l.

Proof. Pick any j, k ∈ N∗(R) so that jRk and j ˆ6Rk. If {j, k} ⊂ C∗, then k 6= 0 by
Definition 9(a), and j 6= 0 as k ∈ C∗. Thus, j and k are R-confounders, and so jR̂0
and kR̂0 by Definition 9. Otherwise, let (C1, . . . , Cm) be a MCJT for R, noting that
j, k ∈ Ci for some i and that if k /∈ Ci−1, then j /∈ Ci−1 by Lemma 7 and j ˆ6Rk. This
combined with Lemma 6 implies that either j, k ∈ Ci ∩ Ci−1 or j, k ∈ Ci ∩ Ci+1. In
the former case pick l ∈ Ci \ Ci−1 and in the latter pick l ∈ Ci+1 \ Ci. In either case,
jR̂l and kR̂l by Lemma 7. �

By Lemmas 7 and 8, any two DAGs that have the same confounders have the
same C∗ and the same MAPs from C∗ to n∗ correspond to the same MCJT after
removing unnecessary variables. Therefore, if R and R′ have the same confounders
and the same MAPs from a confounder or 0 to n∗, then qR(xn∗|do(a)) = qR′(xn∗|do(a))
for any q and a ∈ Sq.

A.3. Necessity. It will be useful to introduce the following class of datasets. Par-
tition every Xj′ into {Ēj′ , Ej′} where xj′ ∈ Ēj′ and x′j′ ∈ Ej′ implies xj′ > x′j′ and
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let Ē0 = {a} and E0 = {b}. A dataset q is pseudo-binary if Sq = {a, b} and the
distribution within each Ēj′ and Ej′ is independent of all events outside of j′.

Proof of Lemma 1. Let (i0, . . . , im) be an R-MAP from 0 to n∗ that does not intersect
A. Pick a pseudo-binary dataset q that factorizes as

q(x) = q(x0)
m∏
j=1

q(xij |xij−1)
∏

k′ /∈{i0,...,im}
q(xk′)

and where q(Ēij |Ēij−1) > q(Ēij |Eij−1) for all j. This implies that XA ⊥q XAc since
A ⊆ N \ {i0, . . . , im}. For such a dataset q, ρ(a, q) > ρ(b, q) since qR(·|do(a)) FOSD
qR(·|do(b)), so A does not separate.

Suppose that A intersects all paths from 0 to n∗ and let R′ remove all links from
A to Ac and vice versa. Observe that when XA ⊥q XAc ,

q(xi|xR(i)) = q(xi|xR(i)∩A, xR(i)\A) = q(xi|xR(i)∩A) = q(xi|xR′(i))

when i ∈ A, and for i /∈ A,

q(xi|xR(i)) = q(xi|xR(i)∩A, xR(i)\A) = q(xi|xR(i)\A) = q(xi|xR′(i)).

Hence qR(x) = qR′(x) for all x. Since 0 /∈ AR′∗(n∗), 0 and n∗ are qR∗ independent and
ρ(a, q) = ρ(b, q) for all a, b ∈ Sq. �

Lemma 9. Let ρ have a perfect SCR (R ⊆ N∗(R)2, u, n∗) and R′ = R∩[N∗ (R \ [R(0)×N ])]2

. Then, A ∈ A if and only if A = Ci∩Ci+1 for some i where (C1, . . . , Cm) is a MCJT
for R′, C0 = {0}, and Cm+1 = {n∗}.

Proof. Let ρ have a perfect SCR (R ⊆ N∗(R)2, u, n∗), R′ = R∩[N∗ (R \ [R(0)×N ])]2

, (C1, . . . , Cm) be a MCJT for R′, C0 = {0}, Cm+1 = {n∗}, Ai = Ci ∩ Ci+1 for each
i, and Bi = ∪ij=1Cj for each i. Moreover, observe that every R-MAP from 0 to n∗ is
an R′-MAP, and every R′-AP (R′-MAP) from 0 to n∗ is a R-AP (R-MAP). Clearly,
A0, Am ∈ A.

Pick any i ≥ 0. We first show that every R-AP from 0 to n∗ intersects Ai+1.
Take any such R-AP. It contains an R-MAP (i0, . . . , iM). Let ik be first index so that
ik /∈ Bi. In particular, ik ∈ Cj\Cj−1 for some j ≥ i+1. Then, ik−1 ∈ Cj−1∩Cj ⊂ Bj−1

by Lemma 7, so j − 1 = i and ik ∈ Ai+1. By Lemma 1, Ai+1 separates.
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Let A ∈ A \ {{0}, {n∗}}. By Lemma 1, A intersects every R-AP from 0 to n∗.
By Theorem 4.4 of Cowell et al. (1999), A is a clique, so A ⊂ Ci for some i. We show
that either A = Ai or A = Ai−1. Since both Ai and Ai−1 separate and A is minimal,
it suffices to show that either Ai−1 ⊆ A or Ai ⊆ A.

For contradiction, suppose that Ai ∩ Ai−1 6⊆ A. There exists j ∈ Ai ∩ Ai−1 \ A.
Let i′ < i−1 be such that j ∈ Ci′ \Ci′−1. Then, there exist j′ ∈ Ci′ \Ci′+1 ⊆ Ci′∩Ci′−1

and l ∈ Ci+1 \Ci. By Lemma 7, j′R̂′j and jR̂′l, so there exists a R-AP that does not
intersect A. Therefore, Ai ∩ Ai−1 ⊆ A.

If Ai−1 6⊆ A, then there is j ∈ Ai−1 \ A. For any k ∈ Ai \ Ai−1, jR̂k by Lemma
7 and since A blocks all R-APs, k ∈ A. Since k was arbitrary, Ai ⊆ A. If Ai 6⊆ A,
then there is k ∈ Ai \ A ⊂ Ai \ Ai−1. For any j ∈ Ai−1, jR̂k by Lemma 7 and since
A blocks all R-APs, j ∈ A. Since j was arbitrary, Ai−1 ⊆ A.

It remains to be shown that Ai 6⊆ Aj for any j 6= i. Suppose not, so Ai ⊆ Aj for
j 6= i. Consider j > i; similar arguments apply when j < i. By Lemma 6, x ∈ Ai∩Aj
implies that x ∈ [Ci+1 ∩ Cj+1] \ R(0). Since (C1, . . . , Cm) is a MCJT, x ∈ Ci+2. But
then every x ∈ Ai is also in Ai+1, and by Lemma 6, Ci+1 = Ai ∪Ai+1 = Ai+1 ⊆ Ci+2,
contradicting that Ci+1 is maximal. �

Proof of Lemma 2. Let (C1, . . . , Cm) by a MCJT for R′ = R∩ [N∗ (R \ [R(0)×N ])]2

, and take Ai = Ci ∩ Ci+1 with A0 = {0} and Am = {n∗}. By Lemma 9, A =
{A0, . . . , Am}.

Consider any selection J from A. For all i, let F (i) = min{k : i ∈ Ak} and
L(i) = max{k : i ∈ Ak}. Observe 0 ∈ J . Take i0 = 0, noting F (0) = L(0) = 0. Let
J0 = J \ {0}. While Jl−1 6= ∅, let kl be the lowest index for which Jl−1 ∩ Akl 6= ∅.
Note that kl exists since J \ Jl−1 does not intersect some A ∈ A by minimality;
kl > F (il−1) and, when l > 1, kl > L(il−2) + 1 since otherwise J can be made smaller;
and kl ≤ L(il−1) + 1 since otherwise J ∩ AL(il−1)+1 = ∅. Moreover, |Jl−1 ∩ Akl | = 1.
To see this, suppose not, and there are j1, j2 ∈ Jl−1 ∩ Akl . Then there is κi so that
ji ∈ Ak for k ∈ [kl, κi] by Lemma 6 and (C1, . . . , Cm) is a MCJT. If κ1 ≥ κ2 (κ2 ≥ κ1),
then J \ {j2} (J \ {j1}) still intersects every A, contradicting minimality of J .

Define il ∈ Jl−1 ∩ Akl and Jl = Jl−1 \ {il}. By above, il−1 ∈ Akl−1, so il−1Ril

and F (il) > L(il−2) + 1 implies that il′ 6Ril for all l′ < l − 1 by Lemma 7. Moreover,
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minimality of J requires that L(il) > L(il−1). Repeating until l = |J | − 1, conclude
that (i0, . . . , i|J |−1) is a R-MAP from 0 to n∗.

Conversely, pick any R-MAP (i0 = 0, . . . , im = n∗) and let J = {i0, . . . , im}. By
Lemma 1, J ∩A 6= ∅ for any separator A. Clearly, {i0} = J ∩A0 and {im} = J ∩Am,
so J \ {i0} ∩A0 = ∅ and J \ {im} ∩Am = ∅. By Lemmas 6 and 7, for each l ∈ (0,m),
there exists kl so that il ∈ Akl and il+1 ∈ Akl+1 \ Akl . Since il′ 6Ril+1 for all l′ 6= l by
definition, il′ /∈ Akl for all l′ 6= l by Lemma 6. Therefore, J \ {il} ∩ Akl = ∅ for all
l ∈ (0,m), and so no proper subset of J intersects every A ∈ A.

Now, let I be any selection from A. By above, I = {i0, . . . , im} for some R-MAP
(i0, . . . , im) from 0 to n∗. We show that ij is adjacent to ij+1 for each j. Fix j < m

and consider q so that Xij ⊥q Xij+1 and XI ⊥q XIc . Note that

q(xik |xR(ik)) = q(xik |xR(ik)∩I , xR(ik)∩Ic) = q(xik |xR(ik)∩I) = q(xik |xik−1)

for k > 0. Therefore,

qR(xn∗|a) =
∑
y

q(yi1|a)
m−2∏
k=1

q(yik+1|yik)q(xn∗|yim−1),

which does not vary with a if q(yij+1|yij) = q(yij+1) for all y.

Now, pick any j < k − 1; we show that ij is not adjacent to ik. Pick a pseudo-
binary dataset q that factorizes as

q(x) = q(x0)q(xik)
∏

l 6=k−1,k−2
q(xil+1|xil)q(xik−1|xik−2 , xik)q(xIc)

and where

q(Ēik−1 |x{ik,ik−2}) =


3
4 if x{ik,ik−2} ∈ Ēik × Ēik−2
1
4 otherwise

and q(Ēil |Ēil−1) > q(Ēil |Eil−1) for l 6= k, k − 1. By construction, XI ⊥q XIc and
Xij ⊥q Xik . Nevertheless, q(Ēil |Ēl−1) > q(Ēil |Eil−1) for l = k − 1 and l = k,
so qR∗(Ēn∗|a) > qR∗(Ēn∗|b), so ρ(a, q) > ρ(b, q). Conclude that ij and ik are not
adjacent. �

Let N∗ be the variables in some R-MAP for 0 to n∗, i.e. N∗ = {0}⋃|A|i=1A∗i and
N̂ the remaining variables.
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Lemma 10. Let i∗ ∈ C∗ \ {0}. If (i0 = 0, . . . , iM = n∗) and (j0 = i∗, . . . , jk′ = ik)
are R-MAPs with {j1, . . . , jk′−1} ⊆ N̂ \ C∗ and k′ > 1, then ik−1Rjl for all l ∈
{1, . . . , k′ − 1} and i∗Ril′ for all l′ ∈ {1, . . . , k − 1}.

Proof. Note that ik−1R̃jk′−1 asR is perfect, so suppose for contradiction that jk′−1Rik−1.
If k = 1, then i0 = 0 and then jk′−1 ∈ C∗, a contradiction. If k > 1, then
there exists some l < k − 1 such that ilRjk′−1 as otherwise jk′−1 ∈ C∗. But then
(i0, . . . , il, jk′−1, ik−1, . . . , iM) is an R-MAP, which contradicts that jk′−1 6∈ N∗.

Suppose that (*) ik−1Rjl′ for l′ ∈ {l, . . . , k} and, for contradiction, that ik−1 6Rjl−1.
By perfection, jl−1Rik−1. Again, k− 1 = 0 implies that jl−1 ∈ C∗, a contradiction, so
there exists some l′ < k−1 such that il′Rjl−1. But then (i0, . . . , il′ , jl−1, . . . , jk′−1, ik, . . . , iM)
is an R-MAP, contradicting that jl−1 /∈ N∗. Induction establishes that ik−1Rjl for
l = 1, . . . , k′ − 1. Note that i∗R̃ik−1 by perfection and i∗Rik−1 as R is acyclic. The
same arguments inductively establish that i∗Ril′ for all l′ ∈ {1, . . . , k − 1}. �

Definition 10. The covariate i∗ /∈ N∗ is a revealed confounder if

XN\{i∗,0} ⊥q X0

does not imply that ρ(a, q) = ρ(b, q) for all a, b ∈ Sq and all q. Let C∗(ρ) be the set
of all revealed confounders.

Lemma 11. i∗ is a R-confounder if and only if i∗ ∈ C∗(ρ).

Proof. Suppose that i∗ is an R-confounder. This implies that there is an R-MAP
(i0 = i∗, . . . , im = n∗) that does not go through 0 or any other j∗ such that j∗R0. Let
I = {i0, . . . , im, 0} and construct a pseudo-binary dataset q that factorizes according
to

q(x) = q(xi0 | x{i1,0})q(x0)q(xi1)
∏
k′>1

q(xik′ | xik′−1)
∏
j 6∈I

q(xj)

where q(Ēi1) ≥ 5
6 , q(Ēik′ | Ēik′−1) > q(Ēik′ | Eik′−1

) for k′ ≥ 2, and

q(Ēi0 | x{i1,0}) =


3
4 if x{i1,0} ∈ Ēi1 × Ē0,

1
4 otherwise.

By construction, X0 ⊥q XN\{0,i∗}, q(Ēi0) = 1
4 + 1

2q(Ēi1)q(a) < 3
4 ,

q(Ēi1 | Ēi0 , a) = 3
q(Ēi1)−1 + 2

>
1

q(Ēi1)−1 + 2
= q(Ēi1 | Ei0 , a),
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and q(Ēi1 | Ei0 , b) = q(Ēi1). Hence,

qR∗(Ēi1 | a) < 3
41 + 1

4
1
3 = 5

6 ≤ q(Ēi1) = q(Ēi1 | b).

Combined with the above, we have qR∗(Ēn∗ | b) > qR∗(Ēn∗ | a). Thus, ρ(b, q) > ρ(a, q)
and i∗ ∈ C∗(ρ).

Now suppose that j∗ ∈ N̂ is not an R-confounder. WLOG, assume R =
R ∩ N∗(R)2 so there exists a MCJT for R, (C1, . . . , Cm) such that C∗ ⊂ C1 and
(C1, . . . , Cm) satisfies the running intersection property with Ck ∩ C̄k−1 ⊂ Ck−1 when
C̄k = ∪kk′=1Ck′ for every k.

Consider any q that satisfies XN\{0,j∗} ⊥q X0. By Lemma 5 we have

qR∗(xC̄k) = q(x0)q(xC∗\{0})q(xC1\C∗ | xC∗)
k∏

k′=2
q(xCk′\Ck′−1

| xCk′∩Ck′−1)

= q(xCk\Ck−1 | xCk∩Ck−1)qR∗(xC̄k−1
).(4)

We use this to show that qR∗(Ck) = q(Ck) for every k. For k = 1, this follows directly
from the assumptions on q and j∗ 6∈ C∗: qR∗(C1) = q(x0)q(xC∗\{0})q(xC1\C∗|xC∗) =
q(x0)q(xC∗\{0} | x0)q(xC1\C∗|xC∗) = q(xC1). Assume (IH) that qR∗(xCk−1) = qR∗(xCk−1).
Then,

qR∗(xCk) =
∑

y∈XCk−1\Ck

q(xCk\Ck−1 | xCk∩Ck−1)qR∗(xCk−1∩Ck , yCk−1\Ck)

=
∑

y∈XCk−1\Ck

q(xCk\Ck−1 | xCk∩Ck−1)q(xCk−1∩Ck , yCk−1\Ck) = q(xCk),

where the second equality follows from (IH).

Let k∗ be the last index for which 0 ∈ Ck∗ . If n∗ ∈ Ck∗ , then qR∗(xn∗|a) =
qR∗(xn∗ |b) for all a, b ∈ Sq. If j∗ /∈ Ck∗ ∩Ck∗+1, then q(xCk∗∩Ck∗+1 |a) = q(xCk∗∩Ck∗+1|b)
since XCk∗∩Ck∗+1 ⊥q X0. Then, qR∗(xn∗|a) = qR∗(xn∗|b) for all a, b ∈ Sq follows from
Eq (4). Therefore, j∗ 6∈ C∗(ρ) follows if we show j∗ ∈ Ck∗ ∩ Ck∗+1 or n∗ ∈ Ck∗ .
Suppose not, so n∗ /∈ Ck∗ and j∗ ∈ Ck∗ ∩ Ck∗+1. By Lemma 7, 0Rj∗. For any
l ∈ Ck∗+2 \ Ck∗+1, 0Rj∗Rl, 0 6Rl, and there is an R-AP from l to n∗. But this implies
that there exists an R-MAP (0, j∗, . . . , n∗), contradicting that j∗ /∈ N∗. �
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Definition 11. There is a revealed confounding path from i∗ ∈ C∗(ρ) to ik in the
R-MAP (i0 = 0, . . . , iM = n∗) if

Xj ⊥q XN\j ∀j ∈ N∗ ∪ C∗(ρ) \ {i∗, i0, . . . , iM}

& Xik ⊥q Xik−1

do not imply that ρ(a, q) = ρ(b, q).

First condition implies that the only R-confounder that matters is i∗, and the
only R-MAP from 0 to n∗ that matters is (i0, . . . , iM). The remaining condition
ensures that in the absence of a path from i∗ to ik, the DM will express indifference.

Lemma 12. For R-MAP (i0 = 0, . . . , iM = n∗), there is a revealed confounding path
from i∗ ∈ N̂ to ik ⇐⇒ there exists an R-MAP from i∗ to ik that does not intersect
N∗ ∪ C∗.

Proof. Suppose that i∗ is an R-confounder and there exists an R-MAP from i∗ to ik,
(j0 = i∗, j1, . . . , jm = ik). that doesn’t intersect N∗.

Let C = {i0, . . . , iM , j0, . . . , jm}. Pick a pseudo-binary dataset q that factorizes
according to

q(x) = q(x{i0,j0})
∏
k′ 6=k

q(xik′ |xik′−1)
m−1∏
k′=1

q(xjk′ |xjk′−1)q(xik |xik−1,jm−1)
∏
j′ /∈C

q(xj′)

where

(i) q(Ēik′ |Ēik′−1) > q(Ēik′ |Eik′−1
) for k′ 6= k;

(ii) q(Ējk′ |Ējk′−1) > q(Ējk′ |Ejk′−1
) for k′ < m; and

(iii) for appropriate z, z′, ε ∈ (0, 1),

X{i0,j0} q(.) X{ik−1,jm−1} q(Ēik |·)

Ēi0 × Ēj0 z 1
4 Ēik−1 × Ējm−1

q

(
Ējm−1 |Eik−1

)
q(Ējm−1 |Ēik−1) z

′ + ε

Ei0 × Ēj0 (1− z)3
4 Eik−1 × Ējm−1 z′ + ε

Ēi0 × Ej0 z 3
4 Ēik−1 × Ejm−1 ε

Ei0 × Ej0 (1− z)1
4 Eik−1 × Ejm−1 ε
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so Xik−1 ⊥q Xik and q(Ēik |xjm−1 , Ēik−1) > q(Ēik |xjm−1 , Eik−1) for all x.17

Then, qR∗(xC) equals

q(xi0)q(xj0)
m−1∏
k′=1

q(xjk′ |xR(jk′ ))
M∏
k′=1

q(xik′ |xR(ik′ ))

=q(xi0)q(xj0)
m−1∏
k′=1

q(xjk′ |xjk′−1 , xik−1)
k−1∏
k′=1

q(xik′ |xik′−1 , xj0)
M∏

k′=k+1
q(xik′ |xik′−1)q(xik |xik−1 , xjm−1)

=q(xi0)q(xj0)
m−1∏
k′=1

q(xjk′ |xjk′−1)
k−1∏
k′=1

q(xik′ |xik′−1)
M∏

k′=k+1
q(xik′ |xik′−1)q(xik |xik−1 , xjm−1)

where the second equality follows from the construction of q.

A simple induction argument establishes that q(Ēik′ |Ēik′′ ) > q(Ēik′ |Eik′′
) when-

ever k > k′ > k′′ or k′ > k′′ ≥ k, and q(Ējm−1 |Ēj1) > q(Ējm−1|Ej1). Then, qR∗(Ēik |c)
equals∑
x

qR∗(xjm−1)
{
q(Ēik−1|c)

[
q(Ēik |Ēik−1 , xjm−1)− q(Ēik |Eik−1 , xjm−1)

]
+ q(Ēik |Eik−1 , xjm−1)

}
and

qR∗(Ēn∗ |c) = qR∗(Ēik |c)[q(Ēn∗|Ēik)− q(Ēn∗|Eik)] + q(Ēn∗|Eik).

Combining implies qR∗(Ēn∗|a) > qR∗(Ēn∗|b).

Now, suppose that there is no path in N̂ from i∗ to ik. Observe that if there
is a path in N̂ from i∗ to ik+1, there is also a path to ik by Lemma 10. Consider
any q satisfying the conditions. Define R′ that removes all edges involving a node in
N∗ ∪ C∗(ρ) \ {i∗, i0, . . . , im} but otherwise agree with R. Take R′′ = R′ ∩ N∗(R′)2,
and arguments as in Lemma 1 show that qR∗(xn∗ |c) = qR′∗(xn∗ |c) = qR′′∗(xn∗|c).
Lemma 7 shows that N∗(R′) equals the variables that are part of some R′-MAP from
i∗ or 0 to n∗. Let l ∈ R′′(ik). Either l is in an R′′-MAP from 0 to n∗, in which
case l = ik−1, or l is in an R′′-MAP from i∗ to n∗, in which case l = ik−1 or l is
part of a path in N̂ from i∗ to ik, a contadiction. Therefore, R′′(ik) = {ik−1} and
q(xik |xR′′(ik)) = q(xik |xik−1) = q(xik) since Xik ⊥q Xik−1 . Then, the DM is indifferent,
and there is no revealed confounding path from i∗ to ik. �

17The quantity
q(Ējm−1 |Eik−1

)

q(Ējm−1 |Eik−1
) is pinned down by (1), (2), and the first part of (3), so z′, ε ∈ (0, 1)

exist satisfying the conditions so that q is a well-defined conditional probability.
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Definition 12. If (i0 = 0, . . . , im = n∗) is an R-MAP and there is a revealed con-
founding path from i∗ ∈ C∗(ρ) to ik, then B ⊂ {i∗}∪ [N̂ \C∗(ρ)] is a (i∗, ik)-separator
if ρ(a, q) = ρ(b, q) whenever

Xj ⊥q X{j}c ∀j ∈ N∗ ∪ C∗(ρ) \ {i∗, i0, . . . , im}

Xik ⊥q Xik−1

& XB ⊥q XBc .

The first two conditions are the same as before, and the third condition is anal-
ogous to separation.

Remark 5. {i∗} is a (i∗, ik)-separator but {ik} is not.

Lemma 13. B is a (i∗, ik)-separator ⇐⇒ B intersects all R-paths from i∗ to ik in
N̂ .

Proof. If B does not intersect a path from i∗ to ik contained in [(N∗ ∪C∗) \ {i∗, ik}]c,
then we can find a minimal R-path (j0 = i∗, j1, . . . , jm = ik) with jl /∈ B ∪ N∗ ∪ C∗

for all l 6= 0,m. Then, the dataset q from Lemma 12 constructed for this path leads
to ρ(a, q) 6= ρ(b, q).

If B intersects all paths from i∗ to ik, then consider R′ that drops all edges
involving a node in B and a node in Bc. Since XB ⊥q XBc , qR′∗(xn∗|x0) = qR∗(xn∗|x0)
for all x ∈ Sq × X−0. Applying Lemma 12 to R′ and q establishes that ρ(a, q) =
ρ(b, q). �

Definition 13. Let A(i∗,ik) be the set of minimal (i∗, ik)-seperators, and say that J is
a selection from A(i∗,ik) if J ∩A 6= ∅ for all A ∈ A(i∗,ik) and no proper subset of J has
a non-empty intersection with every A ∈ A(i∗,ik). For any selection J from A(i∗,ik),
i ∈ J is adjacent to j ∈ J if ρ(a, q) = ρ(b, q) for all a, b ∈ Sq whenever

Xl ⊥q XN\l ∀l ∈ N \ [{i0, . . . , im} ∪ J ],

Xi ⊥q Xj|Xik−1 , and

& Xik ⊥q Xik−1 .

The first two conditions are analogous to the conditions in Definition 3, and
the third condition ensure that the DM expresses indifference whenever all variables
outside the R-MAP between 0 and n∗ are independent.
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Lemma 14. The sequence (j0 = i∗, . . . , jM−1, ik) is an R-MAP from i∗ ∈ C∗(ρ) to
ik and J = {j0, . . . , jM−1} does not intersect N∗ if and only if J is a selection from
A(i∗,ik) and jl is adjacent to jl+1 for all l < M − 2.

Proof. As in Lemma 2, J is a selection from A(i∗,ik) if and only if there is an R-MAP
(j0 = i∗, . . . , jM = ik), {j0, . . . , jM−1} = J , and J ∩ C∗(ρ) = {i∗}.

Let N † = {i0, . . . , im} ∪ J . We show that jk′ is adjacent to jk′+1. Pick any q

satisfying the conditions for jk′ and jk′+1 to be adjacent. Then by Lemma 10,

q(xil |xR(il)) = q(xil |xR(il)∩N† , xR(il)\N†) = q(xil |xR(il)∩N†) = q(xil |xil−1 , xj0)

for l < k. Similarly, q(xil |xR(il)) = q(xil |xil−1) for l > k. Moreover,

q(xjl |xR(jl)) = q(xjl |xR(jl)∩N† , xR(jl)\N†) = q(xjl |xR(jl)∩N†) = q(xjl |xjl−1 , xik−1)

for l > 0. In particular, q(xjk′+1 |xR(jk′+1)) = q(xjk′+1|xik−1) by the second condition in
Definition 13.

Note that for s = k′ + 2, ...,M ,∑
yjs−1

q(xjs|yjs−1 , xik−1)q(yjs−1|xik−1) =
∑
yjs−1

q(yjs−1 , xjs|xik−1)

=
∑
yjs−1

q(yjs−1 |xjs , xik−1)q(xjs|xik−1) = q(xjs|xik−1).

Since js is the only variable dependent on js−1 in qR∗(·|x0) and q(xjk′+1|xR(jk′+1)) =
q(xjk′+1 |xik−1), we can successively apply the above to drop xjs−1 for s = k′+ 2, ...,M
from the expression for qR∗(xn∗ |x0). Since Xik ⊥q Xik−1 ,

q(xjM |xik−1) = q(xik |xik−1) = q(xik)

so the DM is indifferent, and jk′ and jk′+1 are adjacent.

We now show that jl is not adjacent to jk∗+1 for any l < k∗. Pick a pseudo-binary
dataset q that factorizes as

q(x) =q(x{i0,j0})q(jk∗+1)
∏
k′ 6=k

q(xik′ |xik′−1)
∏

k′ /∈{k∗,k∗+1}
q(xjk′ |xjk′−1)

∏
j′ /∈N†

q(xj′)×

× q(jk∗|jk∗+1, jk∗−1)q(ik|ik−1, jM−1)
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and where

q(Ēik |x{ik−1,jM−1}) =


3
4 if x{ik−1,jm−1} ∈ Ēik−1 × ĒjM−1
1
4 otherwise

,

q(Ējk∗ |x{jk∗−1,jk∗+1}) =


3
4 if x{jk∗−1,jk∗+1} ∈ Ējk∗−1 × Ējk∗+1
1
4 otherwise

,

q(Ējk′ |Ējk′−1) > q(Ējk′ |Ejk′−1
) for k′ 6= k∗, k∗ + 1, and q(Ēik′ |Ēik′−1) > q(Ēik′ |Eik′−1

)
for k′ 6= k. By construction, Xl ⊥q Xk∗+1|Xik−1 for all l < k∗. We can also calculate
that q(Ējk′ |Ēk′−1) > q(Ējk′ |Ejk′−1

) for k′ = k∗, k∗+1, so qR∗(Ējm|Ēj0) > qR∗(Ējm|Ej0).
As in Lemma 2, this leads to ρ(a, q) > ρ(b, q). Conclude that jk∗+1 and jl are not
adjacent for all l < k∗. �

A.4. Proof of Proposition 1. For part (1), if A separates then we have ρ(a, q) =
ρ(b, q) by definition. So suppose that A does not separate.

Let (C1, . . . , Cm) be a MCJT representation for R ∩ N∗(R)2 with 0 ∈ C1 and
n∗ ∈ Cm, and Bk = Ck \ A. By the properties of the junction tree, it follows
that Ck is adjacent to Ck+1 for every k. Furthermore, Bk ∩ Bk−1 6= ∅ for every k. If
Bk∩Bk−1 = ∅ for some k, then A intersect every R-MAP from 0 to n∗, a contradiction
given Lemma 1. By Lemma 5 and A ⊥q Ac, we note that qR∗(x̄n∗ | a) > q(x̄B1\{0} |
a)∏m

k=2 q(x̄Bk\Bk−1 | x̄Bk∩Bk−1). As A does not separate, Bk ∩ Bk−1 6= ∅ for every
k ∈ {2, . . . ,m} and so

q(x̄Bk\Bk−1|x̄Bk∩Bk−1) = q(x̄Bk |a)q(a) + q(x̄Bk |b)q(b)
q(x̄Bk∩Bk−1|a)q(a) + q(x̄Bk∩Bk−1|b)q(b)

>
f(n, q(a))q(a)

1− (1− q(a))f(n, q(a)) = 2−1/n,

since f(n, q(a)) ≤ q(x̄Bk |a) < 1, 0 < q(x̄Bk |b) ≤ 1− f(n, q(a)), and q(b) = 1− q(a).

As there are no more than n minimal separator sets, qR∗(x̄n∗|a) >
(
2−1/n

)n
> 1

2 .
Symmetrically, qR∗(xn∗ |b) > 1

2 . Therefore, Uq(a) > 1
2u(x̄)+ 1

2u(x) > Uq(b) so ρ(a, q) >
ρ(b, q).

For part (2), if i is adjacent to j, then Xi ⊥q Xj and XI ⊥q XIc is sufficient to
imply ρ(a, q) = ρ(b, q) by definition. We show that if i is not adjacent to j, then the
conditions on q imply that ρ(a, q) > ρ(b, q). Since I is a selection from separators,
Lemma 2 implies that I = {i0, i1, . . . , im} and (i0, i1, . . . , im) is an R-MAP. We show
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that margil qR(·|a) FOSD margil qR(·|b) for all l, provided that {il, il+1} 6= {i, j} for
all l. By Lemma 2, {il, il+1} 6= {i, j} for all l if and only if i is not adjacent to j.
For l = 1, this follows per hypothesis. Assume margil qR(·|a) FOSD margil qR(·|b).
By (i, j)-MLRP, margil+1

q(·|xil) FOSD margil+1
q(·|x′il) when x > x′, so for any event

E = (−∞, k) ∩Xil+1 , the function f = x 7→ q(E|xil) is decreasing. Then,

qR(Eil+1|a) =
∑
x∈Xil

qR(xil |a)f(x) ≤
∑
x∈Xil

qR(xil |b)f(x) = qR(Eil+1|b),

establishing that margil+1
qR(·|a) FOSD margil+1

qR(·|b). Inductively extend to im,
and conclude ρ(a, q) > ρ(b, q). The proof of Lemma 2 constructs a q satisfying these
properties. �

A.5. Proof of Proposition 2. Equation (2) follows from Lemma 5, Lemma 6, and
Lemma 9. That Aρ can be ordered uniquely follows from Lemma 2 and Lemma 7. �

A.6. Proof of Lemma 3. Necessity is obvious, so suppose Axiom 3 holds. The
result is clearly true when |Aρ| ≤ 4, so suppose |Aρ| = m > 4.

We show that {0} 6∝ρ {n∗}. If not, then {0} ∝ A iff A = {n∗} and {n∗} ∝ A

iff A = {0}. Moreover, for any A2 ∈ Aρ \ {{0}, {n∗}}, there exist distinct A1, A3 ∈
Aρ \ {{0}, {n∗}} so that A1α

ρA2 ∝ρ A3 and A1 6∝ρ A3 by Axiom 3. So there are
distinct A1, . . . , Ak so that A1 ∝ρ · · · ∝ρ Ak for k = 3. Suppose there are distinct
A1, . . . , Ak so that A1 ∝ρ · · · ∝ρ Ak for k ≥ 3. Since |{A′ ∈ Aρ : A′ ∝ρ Ak}| = 2,
there exists Ak+1 6= Ak−1, {0}, {n∗} so that Ak+1 ∝ρ Ak. By Axiom 3, Ak+1 6= Al

for l < k − 1. Therefore, there are distinct A1, . . . , AK so that A1 ∝ρ · · · ∝ρ AK for
K = k + 1. Inductively, this is true for K = m + 1. But |Aρ| = m by hypothesis, a
contradiction.

Now {0} = Aρ1, and {0} ∝ρ A for some unique A 6= {n∗}. Label this A as
Aρ2. Suppose that Aρ1 ∝ρ · · · ∝ρ Aρk. As above, there exists Ak+1 6= Aρk−1, {0} so
that Ak+1 ∝ρ Aρk. By Axiom 3, Ak+1 6= Aρl for l < k − 1. Let Aρk+1 = Ak+1. If
Aρk+1 = {n∗} and k + 1 6= m, then the same arguments as to why {0} 6∝ρ {n∗} imply
a contradiction. Therefore, if k + 1 = m, then the proof is complete. Otherwise, we
can inductively find Aρk+2. �
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A.7. Necessity for Theorem 2. Suppose that ρ has an Endogenous SCR (R, u, n∗).
Proposition 2 implies that ρ is represented by Rρ where jR̃ρk for every distinct j, k ∈
Aρi ∪ A

ρ
i+1 for every i, jRρk whenever there exists i ≥ 0 such that j ∈ Aρi and

k ∈ Aρi+1 \A
ρ
i , Rρ(j) ⊂ Aρi+1∪A

ρ
i when j ∈ A

ρ
i+1 \A

ρ
i , and Rρ(j) = ∅ whenever j /∈ Aρi

for all i. Since ∫
u(c)dρSRρ(cn∗|a′) ∈

[
min
x∈Xn∗

u(x), max
x∈Xn∗

u(x)
]
,

Axioms 1 and 2 hold. Axioms 4, 5, and 6 follow from Proposition 2 and continuity
of the expected utility. �

A.8. Sufficiency for Theorem 2. Suppose that ρ satisfies the axioms. Lemma 3
implies A∗1, . . . , A∗|A| exist, and so Rρ as defined in necessity is a perfect, unconfounded,
nontrivial DAG. We show that

(5) ρ(a, S)
ρ(b, S) =

exp[
∫
Xn∗ u(c)dρSRρ(cn∗ |a)]

exp[
∫
Xn∗ u(c)dρSRρ(cn∗ |b)]

for any a, b ∈ S and any S ∈ S. If so, then ρ has an Endogenous SCR (Rρ, u, n∗)
since ∑a∈S ρ(a, S) = 1.

Pick any S ∈ S and any a, b ∈ S. Let a′(y) = ρSRρ(y|a) and b′(y) = ρSRρ(y|b) for
every y ∈ X−0. Since {a′, b′} is correctly perceived, ρ(a′, {a′, b′})/ρ(b′, {a′, b′}) has the
desired form by Axiom 6. If a′ = b′, then margA∗1 a = margA∗1 b, so ρ(a, S) = ρ(b, S)
by Axiom 4, and Equation (5) holds.

Otherwise, let S1 = {a′, b′} and recursively define Sm = Sm−1 ∪ { 1
m
a′ + m−1

m
b′}.

Each Sm is correctly perceived by construction, and each has m + 1 distinct al-
ternatives. By Axiom 2, there exists K > 0 so that for any a′′, b′′ ∈ S ′′ ∈ S,
ρ(a′′,S′′)
ρ(b′′,S′′) ≤ K. For Sm ∪ S = {s1, . . . , sM} and any i, j ∈ {1, . . . ,M} with i 6= j,
we have ρ(si, Sm ∪ S) ≥ K−1ρ(sj, Sm ∪ S). Then,

1 =
∑
i 6=j

ρ(si, Sm ∪ S) + ρ(sj, Sm ∪ S) ≥ [(M − 1)K−1 + 1]ρ(sj, Sm ∪ S)

so ρ(sj, Sm ∪ S) ≤ K
M+K−1 . In particular ρ(c, Sm ∪ S)→ 0 for c ∈ S as m→∞.

For pm = ρSm∪S, arbitrary 1 < i ≤ |Aρ|, and E = Aρi+1 \A
ρ
i , we have pm(xE|xAρi )

equals

1
pm(xAρi )

∑
a′′∈S

pm(a′′)pm(xAρi |a
′′)a′′(xE|xAρi ) + pm(Sm)pm(xA∗i |x0 ∈ Sm)a′(xE|xAρi )


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for every x ∈ X−0 since â(xE|xAρi ) = a′(xE|xAρi ) for all â ∈ Sm. This converges to
ρS1(xE|xAρi ) = a′(xE|xA∗i ) because pm(a′′) → 0 for all a′′ ∈ S. Since i was arbitrary,
ρSm∪S(xA∗i+1\A

∗
i
|xA∗i )→ ρS1(xA∗i+1\A

∗
i
|xA∗i ) for every i.

Axiom 4 gives that ρ(a, Sm∪S) = ρ(a′, Sm∪S) and ρ(b, Sm∪S) = ρ(b′, Sm∪S).
Axiom 5 implies that

ρ(a′, Sm ∪ S)
ρ(b′, Sm ∪ S) = ρ(a, Sm ∪ S)

ρ(b, Sm ∪ S) →
ρ(a′, S1)
ρ(b′, S1)

and that
ρ(a, Sm ∪ S)
ρ(b, Sm ∪ S) = ρ(a′, Sm ∪ S)

ρ(b′, Sm ∪ S) →
ρ(a, S)
ρ(b, S) .

Therefore, ρ(a′,S1)
ρ(b′,S1) = ρ(a,S)

ρ(b,S) and Equation (5) holds for a, b. Since a, b, and S were
arbitrary, ρ has an Endogenous SCR (Rρ, u). �

A.9. Proof of Proposition 3. Suppose that ρi has a perfect SCR (Ri, ui, n
∗) for

i = 1, 2 and that ρ2 has a coarser model than ρ1. Let N∗ be the set of all i that are
part of an R2-MAP from 0 or an R2-confounder to n∗. Define R3 = R1 ∩ N∗ × N∗

and ρ3 to have an SCR (R3, u, n
∗). Pick any q, and set q̂ = x 7→ q(xN∗)

∏
i/∈N∗ q(xi).

By construction for i = 2, 3, qRi(xn∗|do(x0)) = q̂Ri(xn∗|do(x0)) so arg maxSq ρi(·, q) =
arg maxSq ρi(·, q̂). Also, q̂R1(xn∗|do(x0)) = q̂R3(xn∗ |do(x0)) so arg maxSq ρ1(·, q̂) =
arg maxSq ρ3(·, q̂). By hypothesis, arg maxSq ρ1(·, q̂) = arg maxSq ρ2(·, q̂). Combining,
arg maxSq ρ2(·, q) = arg maxSq ρ3(·, q). Since q was arbitrary, R3 represents ρ2.

Conversely, let ρi have a perfect SCR (Ri, ui, n
∗) for i = 1, 2, u2 = u1 and

R2 = R1 ∩ [N ′ ×N ′] for some N ′ ⊂ N . By Lemmas 4 and 7, N∗(R2) equals the
indexes that appear an R2-MAP from 0 or an R2-confounder to n∗. Pick any q ∈ Q so
that Xi ⊥q XN\{i} for all i /∈ N∗(R2). Since N ′ ⊃ N∗(R2), we also have Xi ⊥q XN\{i}

for all i /∈ N ′, so for every i and x ∈ X ,

q
(
xi|xR1(i)

)
= q

(
xi|xR1(i)∩N ′ , xR1(i)\N ′

)
= q

(
xi|xR1(i)∩N ′

)
= q

(
xi|xR2(i)

)
.

Hence, qR1 = qR2 , and so ρ1(a, q) ≥ ρ1(b, q) for all b ∈ Sq if and only if ρ2(a, q) ≥
ρ2(b, q) for all b ∈ Sq. �

Appendix B. Examples
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B.1. Violating Regularity. If ρ(ι, S) = z, then

ρS(1H |0P ) = 0 < ρS(1H |1P ) = 1
1 + z

,

and since ι(1P ) > π(1P ) > 0, we have 1 > z > 1
2 . Then, 1

2 < ρS(1H |1P ) < 2
3 , so

ρSR(1H |π) < 1
3 , while ρ

S
R(1H |ι) > 1

2 . Hence

ρ(π, S)
ρ(ι, S) <

exp[1
36 + 2

30]
exp[1

26 + 1
20] = exp[−1] < 1

2

and ρ(π, S) < 1
3 . Because health is independent of the treatment conditional on

plaque according to RP , the doctor is indifferent between two treatments with the
same probability of plaque buildup. Therefore, ρ(ν, S ′) = ρ(π, S ′) = γ. Then,

ρS
′(1H |1P ) =

(1− 2γ)1
2 + γ 1

2 + γ(0)
(1− 2γ) + 2γ 1

2
= 1

2 =
(1− 2γ)(0) + γ(0) + γ 1

2
(1− 2γ)(0) + 2γ 1

2
= ρS

′(1H |0P ),

so ρ(ι, S ′) = ρ(ν, S ′) = ρ(π, S ′) = 1
3 > ρ(π, S), violating regularity.

B.2. Self-confirming choices. One can compute that

ρS (1H |1P ) = 2− 2ρ(a, S)
2− ρ(a, S) and ρS (1H |0P ) = q.

That is, whether the doctor thinks that plaque has a positive or negative effect on
Alzheimer’s depends on the fraction who take action a. Setting u(1) = λ > u(0) = 0,

λ
1
2

(
q − 2− 2ρ(a, S)

2− ρ(a, S)

)
= ln ρ(a, S)− ln(1− ρ(a, S)).

For large enough λ, ρ(a, S) ≈ 0 and ρ(a, S) ≈ 1 are both solutions.
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