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Abstract

For tractability, researchers often use equilibrium models that can be solved in

closed-form. In practice, this means imposing unintended substantive restrictions on

incidence properties that are central to many policy questions. To overcome this limi-

tation, we characterize a set of joint supply and demand systems yielding closed-form

solutions. This class is broad enough to allow substantial flexibility and thus realism,

and it nests virtually all other tractable systems in the literature. We apply these

more realistic structures to a range of international trade models typically solved in

closed-form, thereby deriving several applied insights about, e.g., the cyclicality of

wage bargaining and the organization of supply chains. Beyond parametric examples,

the Laplace Transform, a standard tool used in applied mathematics and physics in

analogous settings that we exploit, provides a general approach to characterizing and

approximating incidence at any degree of desired tractability.
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NB: This paper is preliminary and incomplete. Comments, espe-

cially on our applications, are very welcome. We are also updating

the paper frequently, in response to such comments and to fill gaps.

1 Introduction

For tractability, static and deterministic equilibrium models are often solved in closed-form,

especially in pedagogical contexts, but also in many influential research papers (e.g., Farrell

and Shapiro, 1990; Melitz, 2003; Melitz and Ottaviano, 2008; Antràs and Chor, 2013). To

obtain these simple forms, researchers typically impose restrictions, such as linear or constant

elasticity demand and constant or linearly increasing marginal cost, with little grounding in

available empirical evidence. Yet while such restrictions are sufficient to obtain closed-form

solutions, we show in this paper that they are not necessary. In fact, a wide range of

behaviors, including those matching plausible empirical patterns in various contexts, can

be solved in closed-form. Applying these more realistic closed-form solutions to canonical

models in international trade, we predict more intuitive patterns of supply chain outsourcing,

identify neglected comparative statics of wage bargaining and significantly generalize the

class of explicitly aggregable models of monopolistic competition.

Our approach builds off the classic analysis of Bulow and Pfleiderer (1983, henceforth

BP), who study what makes demand forms tractable in imperfectly competitive models

with constant marginal cost. In the context of monopoly with constant marginal cost c,

they observe that demand functions leading to closed-from solutions correspond to inverse

demand P (q) = p0 + ptq
−t, where q represents the quantity of the good, and p0, pt and t are

constants. This leads to equilibrium conditions (monopolist’s first-order conditions) of the

form

p0 + (1− t)ptq−t − c = 0.

Because this equation is linear in q−t it is straightforward to solve for the optimal quantity

q.

However a broader class is equally tractable. Suppose that marginal cost and inverse

demand can both be written in this form

ftq
−t + fuq

−u = 0 (1)

for the same constants t and u, but possibly different constants ft and fu. Then the first-order

condition also takes the same form and after multiplication by qu, we obtain a linear equation
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for qu−t. The BP case above is clearly the special case when u = 0. However, unlike this

case, a flexible u allows marginal costs to be increasing, decreasing or even non-monotone,

and allows demand to be concave in some regions while convex in others. Furthermore, as we

show in the next section, this form is the maximally flexible class of equilibrium conditions

yielding a linear solution as the BP class does. This flexibility is needed to match plausible

patterns of supply and demand, such as U-shaped cost curves and demand derived from

bell-shaped willingness-to-pay distributions under unit demand.1

Realism in these patterns, in turn, is crucial for policy analysis because the economic in-

cidence of a range of policy interventions turns on these patterns, as we showed in Weyl and

Fabinger (2013). The pass-through properties determined by the shape of equilibrium condi-

tions play a central role in signing, among other things, the welfare impacts of third-degree

price discrimination and interchange fee regulation in credit card markets. Furthermore,

as we highlight in Section 3, the BP form restricts precisely the property of pass-through,

whether it rises or falls with quantity, on which the qualitative answers to these policy ques-

tions turn. To make matters worse, it does so in a manner that directly contradicts the

results that obtain under plausible empirical patterns such as constant marginal cost with a

bell-shaped demand or U-shaped cost with constant elasticity demand.

The form of equilibrium in Equation 1 is thus both more realistic than and yet equally

tractable as those presently in use. By equally tractable we mean not only that the solutions

are equally parsimonious but also that analyzing a model based on one of these forms requires

learning no additional analytic tools beyond those needed to solve existing tractable models.

Yet we did not simply arrive at this particular form by serendipity, as we explain in

Section 4. Instead we utilized generic equilibrium conditions’ inverse Laplace transform,

a standard tool used for analogous purposes in applied mathematics, physics and related

fields.2 A simple analysis based on this transform allows us to characterize not only the

class of equilibrium conditions that is as tractable as the BP class, but also the set of all

conditions yielding solutions that are one step less tractable, in that they admit quadratic

solutions, two steps less tractable (viz. cubic solutions) and so forth.

This provides a natural method for approximating incidence properties of general static,

1In fact, Toda (2012) and Toda and Walsh (2014) show that the double Pareto distribution, which
is closely related and extremely similar to this demand form, is an accurate model of the distribution of
(conditional) income and consumption distributions. The only difference between these distributions is that
the transition between the two dominant power laws under our form is smoother than under the double
Pareto distribution, a feature which Toda (2014)’s work suggests may fit more accurately.

2Technically we use the inverse Mellin transform, which is the inverse Laplace transform in the logarithm,
rather than level, of q. However the Mellin transform is a much less common term and thus we maintain the
Laplace terminology. Our reliance on, and characterization of tractability in terms of, polynomial solutions
derived from this form builds on the approach of Kubler and Schmedders (2010).
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deterministic equilibrium models at any desired level of tractability, ranging from closed-form

solutions through systems that can be solved at negligible computational cost to ones that are

increasingly costly to compute, with a natural corresponding trade-off in terms of accuracy.

Thus we identify the full hierarchy of maximally tractable parametric approximations to

non-parametric incidence patterns. Our approximations also a) focus attention on the most

policy-relevant properties of demand when data is scarce, b) may be computed trivially and c)

may be aggregated analytically in many standard models. These derive from approximating

the non-parametric incidence pattern by a sum of constant elasticity terms where the gap

between the powers in adjacent terms is constant. The degree of solvability is one less than

the number of such terms.3

To highlight the insights allowed by the generality our framework, in Section 6 we consider

a setting in which, largely due to a need for aggregation, closed-form solutions have been

particular influential: international trade. First, in Subsection 6.1, we show how introducing

realistic demand patterns into Antràs and Chor (2013)’s model of vertical integration along

supply chains implies an arguably more plausible pattern of organization, where both basic

inputs and final retailing are separated from firms that integrate intermediate points on

the value chain. Then, in Subsection 6.2, we show that in the widely-applied Stole and

Zwiebel (1996a,b) model of employment bargaining, labor hoarding cushions the economic

cycle under realistic demand forms, while it is constant across the cycle under the BP class

typically used. Counter-intuitively, given the interpretations in previous literature, this is

because demand and thus profit is more concave during recessions, leading to more labor

hoarding. Finally, in Subsection 6.3, we show that a far broader class of cost and demand

models for monopolistic competition (with or without heterogeneous firms) can be solved in

closed form or aggregated explicitly than those considered in the literature. These can allow,

for example, for realistic U-shaped cost curves that can help explain the size distribution of

exporting firms better than existing models, as we hope to show in a future draft. All of

these models are solved in closed-form according to precisely the same logic we apply to the

simplest monopoly models in the next section.

We conclude in Section 7 with a discussion of a variety of directions for future research.

The text generally takes an expository tone, with extensive derivations and computational

techniques appearing in appendices following the main text.

3For example 1 + q0.5 − q = 0 is quadratically solvable because 0− 0.5 = 0.5− 1 but q−0.5 + 1− q = 0 is
not because −0.5− 0 6= 0− 1. Instead this second equation is cubically solvable because it is a special case
of aq−0.5 + b+ cq0.5 + dq = 0 where a = b = −d = 1 and c = 0.
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2 Tractable Equilibrium Conditions

In this section we develop the central ideas behind our approach in the simplest setting

that suffices to illustrate them. Our results apply much more broadly, as we discuss in

detail in Appendix A, to essentially any static, deterministic equilibrium model that can

be reduced to a single equation by aggregation. These include partial equilibrium models

of perfect competition, essentially all symmetric models of imperfect competition (includ-

ing with differentiated products), supply chain models with perfectly complementary goods

and imperfect competition to produce each, aggregable models of general equilibrium (with

perfect or monopolistic competition), etc. Our results can also be extended, somewhat less

directly, to models that cannot be reduced to a single equation or closely-linked system of

equations (as we show by example in Appendix F) or applied to parts of more complicated

models to provide intermediate analytic solutions.

However, this generality distracts from exposition of our basic insight and thus we do not

focus on it here. Instead in this section we exposit our general approach in the context of the

simplest possible application (the classical monopoly model). We then illustrate the breadth

with which our approach applies with richer, but specific, examples in Section 6 below. The

observations here are stated and proved more formally in Appendix B.

Consider the classical monopoly problem. If a monopolistic firm chooses output level

q, it incurs cost C (q) and can sell its output at price P (q). The first-order condition for

maximization of the firm’s profits Π(q) ≡ P (q)q −C(q) equates marginal revenue MR(q) =

P (q) + P ′(q)q to marginal cost MC(q) ≡ C ′(q):

P (q) + P ′(q)q −MC(q) = 0. (2)

Much analysis of monopoly is concerned with comparing monopolistic outcomes to the social

optimum characterized by price equal to marginal cost:

P (q) = MC(q), (3)

which would be achieved under perfect competition.

Now consider Equations 2 and 3 when price P (q) takes perhaps the most canonical form

(Mill, 1848): constant elasticity. In this case inverse demand may be written as P (q) = ptq
−t

for some positive constants pt and t, and marginal revenue

P (q) + P ′(q)q = pt(1− t)q−t

has exactly the same functional form, differing only by a multiplicative constant.
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More generally, if price P (q) is a sum of such constant elasticity terms (viz. if it is a

linear combination of powers of q) marginal revenue inherits its functional form.4 Since

inverse demand is average revenue, we can say that one functional form characterizes both

average revenue and marginal revenue. A similar statement applies to the cost side as well:

if average cost is a linear combination of powers of q, then the marginal cost does not differ

in functional form.

Observation 1. Average and marginal quantities have the same mathematical form (viz.

finite functional basis) differing only in the coefficients if they can be written as a finite sum

of constant elasticity terms. We refer to this property as average-marginal form preservation

or form preservation for short.

A formal theorem describing most general average-marginal form-invariant functions may

be found in Appendix C.

Now suppose that the functional choices for price and cost lead to the first-order condition

(Equation 2) of the form

ftq
−t + fuq

−u = 0. (4)

Then the equilibrium quantity can be found easily by multiplying the equation by qu and

solving the resulting linear equation for qu−t, which yields q = (−fu/ft)1/(u−t). A ‘linear’

solution of this kind is possible precisely when the equilibrium condition is a sum of two

constant elasticity terms. Of course linear solutions are possible for transformations other

than powers of q (e.g. tan q = 5), but these will fail to be form-preserving and thus will not

typically be equally tractable in both the monopoly and social optimization problem (viz. if

P (q) = tan(q) then MR(q) = tan(q) + q sec2(q)).

What does the form in Equation 4 require of inverse demand and cost? It is possible that

they could have terms that look nothing like the left-hand side of Equation 4 if and only if

these terms are exactly balanced between marginal revenue and marginal cost. Absent such

non-generic coincidences, however, both marginal revenue and marginal cost must be of the

form of the left-hand side of Equation 4. This requires that:

1. By Observation 1, inverse demand must be of the form P (q) = ptq
−t + puq

−u.5

2. Average cost AC(q) ≡ C (q) /q must have the same form and thus equal AC(q) =

actq
−t + acuq

−u for constants act and acu.

4In statistics this is known as a “quantile mixture” of Pareto distributions.
5The first mention of this form in economics we are aware of is in Mrázová and Neary (2014a) as a demand

form. However they do not assume cost takes the same form and thus do not gain any tractability benefits
from this form. As a statistical distribution (viz. quantile function) this form is well-known in the modeling
of flood flows as the Wakeby distribution (Houghton, 1978).
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3. The exponents t and u in the expression for inverse demand must be the same as those

for marginal cost and average cost. For example, if demand is linear (P (q) = p0−p−1q)

then average cost must also be linear. If demand has constant elasticity ε (P (q) =

p1/εq
−1/ε), then one of the terms determining average cost must have exponent −1/ε,

i.e. AC(q) = actq
−t + ac1/εq

−1/ε. Average cost linearly proportional to an arbitrary

power q−t may be thought of as a special case in which ac1/ε = 0.

Observation 2. The only linearly-solvable, form-preserving monopoly problems have both

inverse demand and average cost that are a sum of two constant elasticity terms with the

same pair of elasticities on the cost and demand side.

Many studies are concerned with the case where cost has a constant average component,

either imposed as a specific tax by the government or arising naturally from the structure

of production. Including such a component is needed, for example, if one wishes to solve

explicitly for the inverse of marginal cost (the supply function) or of inverse demand (the

direct demand function). Such inverses are useful for obtaining closed-form solutions in some

models, as we illustrate in Subsection 6.1. As a result, we primarily focus, in what follows,

on cases admitting such an explicit inverse solution.

BP (Bulow and Pfleiderer, 1983) studied this case and proposed a class of demands with

P (q) = p0 + ptq
−t. It follows directly from our previous observation that this is the maximal

class allowing a constant average component of cost and yielding linear solutions. BP focused

on the case when cost has only a constant average component, but evidently linear solutions

arise if average cost also has a term matching the elasticity of the non-constant term in

inverse demand.

Observation 3. The only linearly solvable, form-preserving monopoly problems that include

a constant component in average cost and thus admit explicit inverse solutions have inverse

demand of the BP form and average cost of a matching form.

While linear solutions are the simplest, they are far from being the only ones that are

analytically tractable. Other polynomials in qt, such as quadratic and cubic functions, also

admit closed-form solutions. To take a simple example that we will return to in Subsection

4.1, consider

f0 + f−tq
t + f−2tq

2t = 0, (5)

where f0, f−t, f−2t, and t are constants. If we denote x ≡ qt, we obtain a quadratic equation

f−2tx
2 + f−tx+ f0 = 0,

which immediately yields closed-form solutions for qt and thus q.
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Here a quadratic solution is possible precisely because the powers of the three constant

elasticity terms (0,−t and −2t) are evenly spaced : 0 − (−t) = −t − (−2t). A quadratic

solution would not be possible, for example, to an equation of the form

q−t + 1− q2t = 0,

as 2t − 0 6= 0 − (−t). However, in this particular case we can think of the equilibrium

condition as a cubic equation in x ≡ q−t, namely

x+ 1− x−2 = 0 ⇐⇒ x3 + x2 − 1 = 0.

We see that to determine the degree of polynomial needed to solve the equation, a natural

measure of its tractability (Kubler and Schmedders, 2010; Kubler et al., 2014), we must

first determine the minimum number of evenly-spaced power terms necessary to write the

equation.6 While Observation 2 might suggest that it is simply the number of constant

elasticity terms that determines the complexity of the solution to equilibrium conditions, it

is in fact the number of evenly-spaced terms needed for the equation. When there are only

two terms, the even-spacing requirement is automatically satisfied and thus did not need to

be mentioned.

Observation 4. The order of polynomial required to solve a form-preserving monopoly prob-

lem is one less than the minimum number of evenly-spaced power terms required to write its

first-order condition.

Let us now return to the equilibrium condition in Equation 5. It is worth noting that it

gives much more flexibility than is possible in the BP class. For example, consider t = 3
4
, as

we do in Subsection 4.1. Then inverse demand can have a convex component (−q 3
4 ) and a

concave component (−q 3
2 = −q2· 3

4 ). Similarly, marginal cost may have both increasing and

decreasing components, with different shapes, so long as these shapes match with those used

to compose inverse demand. Furthermore, this is only one of many possible quadratic forms

for Equation 2. If one is willing to employ cubic forms, even greater flexibility is possible;

once one reaches the limit of analytically solvable equations (i.e. quartic equations) the

flexibility is very large indeed.7

6Barnett and Jonas (1983) discussed a demand system based on linear combinations of fractional power
functions, where the powers were not necessarily equally spaced. In that context, these were functions of
prices rather than quantities and for that reason the demand specification was not tractable in our sense.
For additional functional specifications that contain fractional powers see Barnett and Lee (1985); Diewert
(1971, 1973); Lau (1986).

7By the Abel–Ruffini theorem, there is no general algebraic solution to polynomial equations of degree
five or higher.
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Observation 5. If one is willing to allow quadratic, and certainly if one allows cubic or

quartic, solutions then equilibrium conditions with analytic solutions allow significant flexi-

bility in the structure of inverse demand and marginal cost.

Note that exploiting these simple closed-form solvable systems does not require the ana-

lyst to learn any additional analytical tools. All that is required is to use any one of the richer

functional forms discussed in Section 4 below and solve them using familiar, pen-and-paper

techniques. This provides substantial additional flexibility at little or no analytical cost;

thus we believe there is no argument, beyond familiarity, for researchers to continue to limit

themselves to traditionally-used functional forms of demand and cost. In fact, as we will see

in the next section, if authors do wish, for some reason, to continue to limit the number of

parameters, our classes offer far more plausible approximations to real-world demand and

cost forms at no analytical cost.

Despite their flexibility, however, even our broader simple closed-form solvable systems

will not perfectly match arbitrary demand and cost structures, because even in the quartic

case they have only a finite number of polynomial terms in q−t. Nonetheless, if we continue

to add more terms, we can approximate any smooth cost and demand structure by a process

analogous to Taylor series approximation.

If we require a perfect fit, then for a generic equilibrium condition F (q) = 0 we need to

add a continuum of constant elasticity terms. In this case Equation 2 becomes

ˆ ∞
−∞

f(t)q−tdt = 0, (6)

where f is some function of t, possibly with mass points.8 The function f (t) may be

computed from the original equilibrium function F (q) using an “inverse Laplace transform”

(ILT).9 For brevity, we refer to f (t) as the Laplace equilibrium function; in general, we will

use the adjective “Laplace” to refer to similar counterparts of various economic variables.10

The simple equilibrium conditions discussed above involving a finite number of constant-

elasticity terms may be thought of as Equation 6 with the Laplace equilibrium function f (t)

consisting of a finite number of (positive or negative) mass points, located at values of −t that

match the original powers of q. From this perspective, what makes these equilibrium systems

tractable is that they have “simple” Laplace equilibrium functions with a small number

8More precisely, f is a ‘generalized function’, or in equivalent terminology, a ‘distribution’.
9The left-hand side of a general equilibrium condition F (q) = 0, when written as a function of log q, is the

(bilateral) Laplace transform of f (t), which means that f (t) may be recovered from F (q) by inverse Laplace
transform. The numerous common techniques for computing such inverse transforms will be discussed in
the next draft.

10For example, the Laplace inverse demand p (t) associated with inverse demand P (q) = 3q−1/2 is a mass
point of size 3 at t = 1/2, and similarly for Laplace average cost ac (t), etc.
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of evenly spaced mass points. Such simple Laplace equilibrium functions will accurately

approximate broader Laplace equilibrium functions when most of the (positive or negative)

mass of f is clustered near these points, as we illustrate in detail in Subsections 4.2-4.3.

Throughout the piece we use t and u to represent a fixed value in the case of these simple

forms and to represent variables of integration or summation when discussing more general

Laplace functions: when they serve the former role we place them in subscripts and in the

later we write them as functional arguments.

The Laplace versions of demand and supply curves are often simpler to manipulate than

are the objects themselves in many economic problems. For example, marginal revenue

associated with inverse demand P (q) and Laplace inverse demand p (t) may be expressed as

MR (q) ≡ P (q) + qP ′ (q) =

ˆ ∞
−∞

(1− t)p(t)q−tdt ≡
ˆ ∞
−∞

mr(t)q−tdt.

That is, the Laplace marginal revenue is simply mr(t) = (1 − t)p (t). Similarly, if Laplace

average cost is ac (t), then Laplace marginal cost equals (1− t) ac (t). If we combine these two

expressions, we conclude that the Laplace equilibrium function is just (1− t)(p (t)− ac (t)).

More generally, analyzing Laplace equilibrium functions is useful in revealing a variety of

properties of these systems.

Observation 6. Inverse demand, marginal cost and equilibrium conditions can be easily

related to one another through their inverse Laplace transforms, which exists very gener-

ally and to which we refer to with the adjective Laplace. Among other useful properties,

the tractability of a monopoly’s first-order conditions corresponds to the Laplace equilibrium

function consisting of a small number of evenly-spaced mass points.

Solving for the optimal price, quantity and cost is an intermediate step to determin-

ing welfare quantities of interest. Calculating these from cost and demand involves simple

integration for which their Laplace representation is useful:

CS(q) =

ˆ q

0

P (x)dx− P (q)q =

ˆ ∞
−∞

ˆ q

0

p(t)q̃−tdq̃dt−
ˆ ∞
−∞

p(t)q1−tdt.

Note that the inner integral converges only for t < 1 and thus we assume that the Laplace

inverse demand function p (t) has support in (−∞, 1), as well as well-behaved asymptotics.

Under this assumption we obtain

CS (q) =

ˆ 1

−∞

[
p(t)

1− t
− p(t)

]
q1−tdt =

ˆ 1

−∞

t

1− t
p(t)q1−tdt = −

ˆ 0

−∞

t+ 1

t
p(t+ 1)q−tdt,
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where the last equality was obtained by relabeling t → t + 1. We see that the Laplace

consumer surplus equals cs(t) = − t+1
t
p(t+ 1).

Similarly if we denote Laplace profits as π (t), analogous calculations give that π(t) =

p(t + 1) − ac(t + 1). The Laplace marginal cost mc (t) should have support in (−∞, 1) if

cost C (q) is to be finite. These results imply representation of utility, consumer surplus,

profit, and cost of a form that resembles the form of the equilibrium function: simple Laplace

inverse demand and average cost imply simple Laplace profit and surplus.11

Observation 7. Laplace welfare quantities inherit the simplicity Laplace inverse demand

and average cost. If the functional forms of inverse demand and average cost are valid for

any level of quantity, then their Laplace counterparts are supported in (−∞, 1).

3 Existing and Desirable Forms

In this section we discuss why allowing for the greater flexibility our tractable forms permit

is necessary to obtain correct answers to important policy questions and explain the sense in

which this flexibility is missing from existing tractable forms. While we provide motivation

here by briefly discussing a range of issues for which pass-through patterns are relevant in a

several field, we develop more detailed applications to international trade models in Section

6.

3.1 What difference does functional specification make?

We begin by discussing how the form of the equilibrium conditions impacts policy questions.

In Weyl and Fabinger (2013) we argue that a wide range of welfare properties are determined

by the most basic incidence quantity: the pass-through rate ρ at which a specific tax on a

producer translates into an increase in price for consumers, ρ ≡ dp?

dτ
. For example, focusing

on the monopoly case we used to motivate the previous section:

1. The local incidence I of a specific tax (per-unit tax) τ under a general model of sym-

metric imperfect competition is equal to the pass-through rate ρ. Here we define local

incidence as I ≡ dCS
dτ
/dPS
dτ

, where CS and PS are consumer and producer surplus,

respectively.

11If a fixed cost of entry or participation is introduced, this adds one more term (placed at 0) to the
resultant equation and may thus will raise the order of solvability. However, with this concern in mind the
Laplace inverse demand and average cost may be chosen appropriately to ensure a minimum of impact on
tractability in cases where a fixed cost is relevant.
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2. The global incidence I is equal to a weighted average ρ of the pass-through rate ρ. The

global incidence is defined as the ratio of welfare gains associated with the existence of

the market, namely I ≡ CS/PS. The precise form the average pass-through rate is ρ ≡´∞
τ=0

wQ(x)ρ(x)dx with non-negative weight function wQ (x) ≡ Q (x) /(
´∞
τ=0

Q(x′)dx′).

In other words, ρ is the quantity-weighted average pass-through rate for specific tax

rates ranging from zero to infinity.

3. In an auction for a monopolistic concession, knowledge about the pass-through rate

and its heterogeneity across bidders summarizes the differences between bidder efficient

and socially efficient allocations of the concession.12

4. In a supply chain consisting of a consecutive monopolies, the levels and slopes of pass-

through rates determine the relationships between markups at various stages of the

supply chain, as well as the effects of changes in industrial structure of these production

stages (Adachi and Ebina, 2014a,b).13

5. The slopes of pass-through rates play an important role in determining whether third-

degree price discrimination is socially beneficial or harmful (Fabinger and Weyl, 2014).

6. Pass-through plays similarly important role in a range of other applications, such

as behavioral welfare analysis, merger analysis, strategic effects in oligopoly and the

welfare impacts of regulation of platforms.

To see how pass-through relates to the form of the equilibrium conditions, note that a

specific tax τ enters linearly into (2). If we use the notation Π(q) for pre-tax profits, the

firm maximizes Π(q) − τq, and its first-order condition (2) may be written as Π′(q?) = τ ,

where q? is the optimally chosen quantity, corresponding to optimal price p? ≡ P (q?). The

related comparative statics equation Π′′(q?)dq? = dτ then provides an expression for the

pass-through rate ρ ≡ dp?

dτ
= dq?

dτ
P ′(q?):

ρ =
dp?

dt
=
P ′ (q?(t))

Π′′ (q?(t))
=

´ 1

−∞ tp(t)q
−1−tdt´ 1

−∞ [(1− t)p(t)− c(t)] tq−1−tdt
(7)

We see that the inverse pass-through rate 1
ρ

may be written as a weighted average of 1−t− c(t)
p(t)

:

12Relatedly, Kremer and Snyder (2014) show that the bias of R&D expenditures that firms choose to
engage in, relative to the preferences of a social planner, is driven by pass-through.

13A related, recent results are that pass-through plays a key role in determining which modes of electronic
book pricing are most pro-competitive (Gaudin and White, 2014a) and whether a federal authority, faced
with revenue-maximizing states but placing greater welfare on resident welfare than do the states, would
regulate states to use ad-valorem or specific taxes to raise revenue (Gaudin and White, 2014b).
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1

ρ
=

ˆ 1

−∞

(
1− t− c(t)

p(t)

)
w (t) dt,

with weight function

w (t) ≡ tp(t)q−1−t´ 1

−∞ t̃p(t̃)q
−1−t̃dt̃

,

which does not necessarily have to be always positive, since t and p (t) may have opposite

signs. Using this representation of pass-through ρ we can intuitively understand how its

value is influenced by the behavior of Laplace inverse demand p (t) and Laplace cost c (t).

If p(t)t puts a lot of (positive) weight on negative t values (or negative weight on positive

values), pass-through will tend to be less than one. This corresponds to the fact that log-

concavity tends to lead to pass-through below 1. The reverse occurs if the weight is placed

on positive values of t. Similarly weight on t values below −1 (concave terms) will lead the

pass-through to be below 1
2

while convex terms will lead it to be above 1
2
.

Contributions to the marginal cost play identical roles, though with opposite signs. If

tp(t) > 0 then c(t)
p(t)

is positive if c(t) > 0 for t > 0 or if c(t) < 0 and t < 0. Thus declining

marginal cost terms will tend to raise pass-through by decreasing 1 − t − c(t)
p(t)

. Conversely

increasing components of marginal cost will raise pass-through. This is consistent with the

classical intuitions that pass-through is highest when supply is most elastic (and even higher

when it is “more than perfectly” elastic). Thus the form of equilibrium conditions, both

through the structure of cost and demand, is crucial to shaping pass-through rates and thus

a wide range of standard policy questions in imperfectly competitive markets.

3.2 Existing tractable functional forms

A simple example of this is the ubiquitous BP (Bulow and Pfleiderer, 1983) class. Consider

the case of inverse demand P (q) = p0 + ptq
−t and constant average cost AC (q) = ac0. Then

Expression 7 for the pass-through rate simplifies to

ρ =

´ 1

−∞ tp(t)q
−1−tdt´ 1

−∞(1− t) [p(t)− ac(t)] tq−1−tdt
=

p−ttq
−1−t

(1− t)tp−tq−1−t =
1

1− t
,

because in this case Laplace inverse demand p (t) consists just of a point mass pt at the

choice t and a point mass p0 at 0, and similarly ac(t) consists of a point mass ac0 at 0.

We see that pass-through is constant and depends only on the fixed number t. If average

cost has the BP form with the same value of t as does inverse demand (i.e. AC (q) =

ac0 +actq
−t), then pass-through will remain independent of q, but in addition to the constant

13



t, it will also depend on the relative size of the constants mct and pt. This constant pass-

through class of demand functions includes every imperfectly competitive model component

we are aware of that has been solved in closed-form, including

1. Constant elasticity demand, P (q) = ptq
−t with t and pt positive, combined with con-

stant average cost (e.g. Dixit and Stiglitz, 1977; Krugman, 1980; Melitz, 2003) or

power-law cost, AC(q) = acuq
−u with u negative and acu positive (e.g. Antràs and

Chor, 2013).14

2. Linear demand, P (q) = p0 + p−1q with p0 > 0 and p−1 < 0, combined with constant

marginal cost (e.g. Singh and Vives, 1984; Melitz and Ottaviano, 2008) or linearly

increasing marginal cost, MC(q) = mc0 +mc−1q with mc−1 positive, (e.g. Farrell and

Shapiro, 1990).

3. Exponential demand, P (q) = −a log q = − limt→0+
a
t

(q−t − 1) with a positive, com-

bined with constant marginal cost (e.g. Baker and Bresnahan, 1985, 1988).

The fact that so many influential results have been founded on this particular structure

would be justifiable if there were empirical or intuitive reasons to believe that equilibrium

conditions must have one of these form. Are there?

3.3 Functional forms that are plausible, but not tractable

Unfortunately, there is little empirical evidence to guide an answer to this question as essen-

tially all empirical studies we are aware of have considered the level rather than the slope of

pass-through. These have generally found that pass-through rates range widely depending

on circumstances, though few systematic patterns have emerged.15

14Although Antràs and Chor formulate their supply chain problem in terms of constant marginal costs, it
may be rephrased in terms of power-law costs, as we discuss in Subsection 6.1.

15Barzel (1976) famously found that taxes on cigarettes were passed-through more than one-for-one to
consumers. Broader studies of sales taxes have found pass-through rates ranging from below unity (Haig
and Shoup, 1934), to above unity (Besley and Rosen, 1998), to typically equal to unity (Poterba, 1996),
depending on the methodology used. In a more detailed industry study, Genesove and Mullin (1998) found
pass-through slightly above unity even in a very competitive industry, while more macro pass-through rates
of exchange rate shocks are typically found to be below unity at least in the short-term (Menon, 1995; Campa
and Goldberg, 2005). However, recent work in this literature has found higher pass-through rates, near unity
(Fabra and Reguant, 2014).

More focused studies, of a single firm, find even more widely varying results. Ashenfelter et al. (1998) and
Besanko et al. (2001) found pass-through rate of individual firm cost shocks to that firm’s price to be small,
at about 25 to 60%. (They measured pass-through elasticity, so we used the relative markup to convert
their result to the corresponding range for the pass-through rate ρ stated here.) Work with multi-product
firms has found widely varying pass-through depending on the product using both accounting methodologies
(Chevalier and Curhan, 1976) and detailed scanner data studies (Besanko et al., 2005); the latter study

14



More systematic patterns emerge from the large literatures on demand and cost estima-

tion. Since its emergence in the 1980’s (Bresnahan, 1989), the “new” empirical literature in

industrial organization has typically, building off the pioneering work of Berry et al. (1995),

employed demand curves based on statistical distributions with a single, bell-shaped peak

such as Normal, lognormal, logistic or Type I Extreme Value. These shapes have strong the-

oretical under-pinnings as outcomes of various statistical processes such as order statistics

or sums of independent additive or multiplicative components of demand.

More importantly, they have been supported by two types of empirical evidence. The

first is indirect, but is the oldest quantitative tradition in demand estimation in economics.

Say (1819) argued that willingness-to-pay is likely to be proportional to income and thus

that the distribution of willingness-to-pay has the same shape as the income distribution.

Based on extrapolations of early measurements of top incomes following power laws (Garnier,

1796; Say, 1828), Dupuit (1844) and Mill (1848) argued that demand would have a constant

elasticity, an observation that appears to be the origin of the modern focus on constant

elasticity demand form (Ekelund and Hébert, 1999). However evidence on broader income

distributions that became available in the 20th century as the tax base expanded (Piketty,

2014) shows that, beyond the top incomes that were visible in 19th century data, the income

distribution is roughly lognormal through the mid-range and thus bell-shaped. Distributions

that accurately match income distributions throughout their full range (Reed and Jorgensen,

2004; Toda, 2012, 2014) have a similar bell shape, but incorporate the Pareto tails perceived

in the 19th century data.

Of course, consumers’ idiosyncratic values also contribute to demand shapes. More direct

measurements of the distribution of willingness-to-pay in contexts, like auctions, where it can

be recovered non-parametrically using structural models (Haile and Tamer, 2003; Cassola

et al., 2013) suggest that lognormal distributions fit well. Even in contexts where valuation

distributions are complicated (have multiple peaks), bell-shaped distributions fit much better

than do the Generalized Pareto Distributions that generate the BP demands (Burda et al.,

2008).

Thus there is a strong empirical and theoretical case for ensuring demand forms can

match the basic shape of such distributions. One consistent pattern they exhibit, as we

show in Appendix D, is that these demand curves are more convex at higher prices (lower

quantities). This implies that, when paired with constant average cost, they give rise to pass-

through rates that monotonically decrease in quantity. For the normal, logistic and Type

I Extreme Value distributions, curvature ranges from 1 at very small quantities, implying

found that approximately 40% of products have pass-through rates above unity. However, few clear patterns
linking product types to pass-through levels have emerged.
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constant average cost pass-through of 1, to −∞ at very high quantities (implying constant

average cost pass-through of 0).

For lognormal and other approximations to the income distribution the pattern is similar,

but the exact range over which curvature spans as quantities change depends on exact

parameter values and at sufficiently small quantities in the case of the lognormal distribution

curvature modestly rises (in quantity) because the distribution has thin tails. More realistic,

Pareto-tailed income distribution approximations have curvature that steadily declines in

quantile, reaching a high plateau at very low quantile/quantity (high income). In any case,

because all these forms have curvature that range broadly as a function of quantity, they are

all inconsistent with the BP form for demand.

On the cost side, few studies have systematically considered the shape of cost curves.

However, at least since Marshall (1890) economists have commonly assumed cost curves have

a U-shape, with economies of scale at small size and diseconomies of scale at sufficiently large

scale. Some limited evidence confirms this widely-held hypothesis (MacDonald and Ollinger,

2000). Despite this, we know of no common tractable equilibrium model incorporating this

feature. Nearly all standard tractable imperfect competition models have firms with constant

marginal cost; a few (Farrell and Shapiro, 1990; Antràs and Chor, 2013) feature firms with

linearly increasing marginal cost and some incorporate fixed costs.16 U-shaped costs curves

lead to pass-through rates that monotonically fall with quantity, just as bell-shaped demand

curves do under constant marginal cost when demand determines pass-through. The reason

is that at low quantities economies of scale reinforce pass-through while at high quantities

diseconomies reduce it just as under perfect competition.

Thus, for reasons both of supply and demand, equilibrium conditions that, at very least,

allow for pass-through rates that fall significantly as quantities increase are necessary to

correspond with what we expect from both theory and empirical work. Recent empirical

work (Einav et al., Forthcoming) has found other patterns in the context of resale goods,

where demand is so convex at low quantities that pass-through is infinite and convexity is

more moderate at higher quantities. We know that equilibrium conditions of both of these

forms will have significantly different implications for a range of policy questions than do

currently available tractable forms, motivating the extensions we explore in the next section.

16See Subsection 6.1 for the transformation of the Antràs and Chor (2013) model into our language that
makes this and the above discussions accurate.
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4 Closed-Forms and Approximation

In this section we elaborate on the outline we gave Section 2 by discussing more specifically

the nature and advantages of our approach to approximating equilibrium conditions.

4.1 Second-degree forms

From Section 2 we know that the equilibrium function has the same form as average cost

and inverse demand if it must takes the form of a polynomial in x ≡ q−t.When does this

polynomial have a quadratic solution?

Consider an equation of the form

ax2−κ + bx1−κ + cx−κ = 0.

It has a quadratic solution because if we multiply both sides of the equation by xκ, we

obtain ax2 + bx+ c = 0. It is clear that only polynomials of this and equivalent forms admit

quadratic solutions. The form requires that the spacing between the exponents of the highest

power term and middle power term is the same as that between the exponents of the middle

power term and lowest power term. For example

aq11/2 + bq5/2 + cq−1/2 = 0 ⇐⇒ a
(
q3
)2
q−1/2 + bq3q−1/2 + cq−1/2 = 0

would be an admissible form if we want to obtain closed-form solutions. For many purposes,

such as studying the impact of an ad-valorem tax or proportional “iceberg” trade costs,

this class of possibilities offers a broad range of flexibility.17 However a limitation of this

broad class is that it may not allow for tractability if constant components of marginal

cost, corresponding to constant terms in the equilibrium conditions, are introduced, say by

specific taxes. Such constant components are needed, for example, to analytically calculate

non-local pass-through rates, i.e. price responses to large specific tax changes or equivalent

cost changes. They are also, more importantly, needed for an explicit direct demand or

supply function, as is important for obtaining closed-form solutions in some models, as we

illustrated in Subsection 6.1.

If it is important to allow for specific taxes, we must restrict ourselves to the subclass

where 2t − κ = 0, t − κ = 0 or κ = 0. The first and third of these cases are equivalent,

17In fact, an even more tractable form with linear solutions, discussed in the introduction, is possible if one
does not require the possibility of constant components to marginal cost such as specific taxes. If equilibrium
conditions take the form ftq

−t + fuq
−u = 0 for any t, u < 1 then by the same logic as in the quadratic case

the system admits a linear solution, obviously allowing log-concave and log-convex components of demand
and increasing and decreasing components of marginal cost.
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because t may take either sign. The demand forms giving rise to them were discussed in a

previous version of this paper under the name “Adjustable Pass-Through” (Apt) demand

(Fabinger and Weyl, 2012), and have been applied by work building on that paper (Gaudin

and White, 2014b). We now briefly consider the range of economic behaviors accommodated

in each of these cases.

First, consider the case when both terms have negative exponents; that is the equilibrium

conditions take the form

f0 + ftq
−t + f2tq

−2t = 0 (8)

with t ∈ (0, 1/2). To ensure positive surplus, f2t should be positive. Therefore at least one

of f0 or ft must be negative for an equilibrium to exist. Pass-through is always greater

than unity in this form. If ft > 0 then pass-through monotonically decreases in quantity

(increases in the tax), while if ft < 0 it monotonically increases in quantity (decreases in the

tax).

Equation 8 corresponds to log-convex demand and to marginal cost functions with compo-

nents that have constant, declining (economies of scale) components and concavely increasing

(diseconomies of scale) components that manifest at high quantities. On the demand side

these can mimic log-convex increasing pass-through demand forms such as lognormal distri-

bution with very high variance or log-convex decreasing pass-through demand forms, possibly

with infinite pass-through at sufficiently low quantities as found by Einav et al. (Forthcom-

ing). On the cost side they can match cost curves that have economies of scale at low

quantities that either persist throughout he full range of quantities or turn into diseconomies

at large quantities, creating a U-shape.

Second, consider the case when one term has a negative and the other an equal and

opposite exponent, as discussed several times above. Then equilibrium conditions take the

form

f0 + ftq
−t + f−tq

t = 0 (9)

for t ∈ (0, 1). Again, ft > 0 and either f0 or f−t must be negative. When f−t > 0 this

case is quite similar to Equation 8 when ft < 0. When f−t < 0 pass-through monotonically

decreases in quantity and passes from being above to below unity.

This form allows for both log-convex and log-concave contributions to demand arising,

respectively, from positive coefficients on q−t and negative coefficients on qt in demand.

However, the latter must be convex because t ∈ (0, 1), so it does not actually allow for

bell-shaped willingness-to-pay distributions. On the cost side it allows for a U-shaped form

when marginal cost places positive weight on both qt and q−t. However, again, the increas-

ing portion of marginal cost must be concave, so convexly increasing marginal costs are
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Figure 1: An example of a demand and cost curve contributing to equilibrium conditions
that can be solved quadratically. The demand curve correspond to a bell-shaped willingness-
to-pay distribution and the cost curve has the standard U-shape. P (q) = 30− 4q
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impossible.

Third, let us discuss a case where this is actually possible, namely:

f0 + f−tq
t + f−2tq

2t = 0 (10)

for t > 0. One of f−t and f−2t must be negative, and at least one term of the three positive,

for a solution to exist. When f−2t < 0 pass-through monotonically falls in quantity. If

f−2t > 0 then pass-through rises monotonically in quantity from below unity to above unity.

When the coefficients of non-constant terms are both negative, the qualitative shape of

demand depends on the magnitude of t. While demand always becomes more concave the

larger q becomes, it may be convex at both low and high quantities (if t < 1
2
), concave in

both ranges (if t > 1) or first convex then concave, and thus having a bell-shaped willingness-

to-pay distribution, if t ∈
(

1
2
, 1
)
. In all these cases demand is globally log-concave, however.

When the coefficient of q2t is positive, demand transitions from being log-concave to being

arbitrarily log-convex at sufficiently high quantities, a useful form for representing resale

settings as in Einav et al..

Similarly a rich combination of behaviors of cost functions can be supported. In fact these

are too rich to describe thoroughly here. But consider just one example. If t ∈
(

1
2
, 1
)
, the

coefficient in the marginal cost expression on qt is negative and the term on q2t is positive,
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Figure 2: An example of a demand and cost curve contributing to equilibrium conditions
that can be solved linearly, but with no constant component of marginal cost. The demand
curve correspond to a pronounced bell-shaped willingness-to-pay distribution and the cost
curve has the standard U-shape. P (q) = 3 (q−.3 − q10) and MC(q) = q−.3 + 10q10.

then marginal cost have a nice, smooth U-shape as shown in Figure 1. In the figure we also

show the inverse demand corresponding to a bell-shaped willingness-to-pay distribution that

can be represented by the same t value.

While attractive and capable of fitting nearly-linear bell shaped distributions as found

empirically by Dinerstein et al. (2014), this form does not allow the convexity of demand

at low quantities, nor its concavity at high quantities to be very pronounced. As a result,

the bell shape in the distribution of willingness-to-pay is quite subtle and the distribution

is fairly close to uniform. Allowing greater contrasting curvature at the two ends of the

inverse demand curve is possible with a quadratic, even linear, solution if one is willing to

sacrifice the possibility of solving explicitly for the impacts of specific taxes. An example

with a linear solution is shown in Figure 2. However, if one wants to include specific taxes

and achieve these contrasting curvatures at the two ends, one must accept a higher-order

polynomial solution as discussed in the next subsection.

4.2 Higher-degree forms

We have seen that replacing the linear solutions of the previous section by simple quadratic

solutions, we can study a substantially wider range of economic behaviors. However, more

still is possible if we allow cubic or quartic equations, which always yield a closed-form

solution in terms of radicals. Although traditional paper-and-pencil manipulation of cubic

or quartic solutions may require substantially more effort than that of quadratic solutions,
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Figure 3: Fitting a quartic-solvable demand form to standard models of the income
distribution. In purple is a double Pareto lognormal distribution with (α, β, µ, σ) =
(3, 1.43, 10.9, .45), which fits the US income distribution well as discussed in Subappendix
D.1. In yellow is the common lognormal approximation, with parameters again fitted to the
US income distribution, (µ, σ) = (10.5, .85). The quartic-solvable approximation, in blue is
P (q) = 104 (.56q−.59 + 18− 49q.59 + 61q1.18 − 30q1.77), where all numbers are rounded to two
significant digits and the curve was fitted to the .001, .01, .25, .5, .75, .99 and .999 quantiles
of the income distribution using Mathematica’s non-linear fit function. The left panel shows
the main part of the income distribution (quantiles on the x-axis, income on the y-axis) and
the right panel shows its upper tail.

symbolic mathematical software can do the job with ease.18 As a result, moving beyond the

quadratic form decreases tractability only incrementally.

The permutations of possible behaviors become so large with such higher-order forms

that it is beyond the scope of this paper to analyze them in any detail. Instead we simply

consider a single example: we try to match some basic features of the US income distribution

using a demand form yielding quartic solutions and admitting specific taxation.

Figure 3 shows two standard distributions used to model the US income distribution

with standard calibrated values, the lognormal (yellow) and double Pareto-lognormal (dPln)

(Reed, 2003; Reed and Jorgensen, 2004) (purple) distributions. The exact parameters are

calibrated to the US income distribution as discussed in detail in Subappendix D.1. The

left panel shows the main range of the distribution and the right panel focuses on the

upper tail (up to the first quantile). The two distributions hug one another tightly except

at the tails, where the dPln distribution (realistically) has Pareto rather than lognormal

tails. The curve in blue is our quartically-solvable approximation; its equation is P (q) =

104 (.56q−.59 + 18− 49q.59 + 61q1.18 − 30q1.77).

This form is a closer approximation to the dPln income approximation, to which it was

fit given that this fits the US income distribution significantly better over a broad range

18For example, one can use Mathematica, or more generally the newly released Wolfram Language.
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(Toda, 2014), than is the lognormal approximation. The only region over which it performs

less well is upper middle-income, from about $60k to $160k, though even there the fit is

quite close. In the true tail of the distribution, shown in the right panel, its fit is far closer

than the lognormal distribution, given the latter’s thin tails. Thus our closed-form solvable

approximation appears to overall be a better fit to the US income distribution than is the

canonical lognormal approximation. This offers a dramatic increase in tractability at no or

negative cost to accuracy. In subsection 6.2 we show that fit similar to the lognormal except

for q very close to 1 may be obtained using a quadratically solvable form.

Before moving on to discuss the logic behind these forms, we once more wish to em-

phasize that using any of these forms does not require the analyst to know anything about

Laplace transforms or any other logic used to derive these forms. The properties discussed

in this subsection are more than sufficient to allow the analyst to choose a functional form

appropriate to her setting that nests the existing tractable forms discussed in Subsection

3.2 above. This form can then be solved using precisely the same pen-and-paper methods

with which existing forms are solved; this is precisely what we mean by tractability. The

broader theory of deriving these approximations based on the Laplace transform is needed

only in coming up with new forms and understanding approximations methodologically, not

in applying those proposed here.

4.3 Approximating arbitrary systems

Beyond the quartic form, higher-degree equilibrium conditions in terms of polynomials in q−t

generically do not have a solution by the method of radicals. However, pre-set functions for

the solution for roots of even very high-degree polynomial equations are standardly embed-

ded into mathematical software.19 Thus, if one is willing to use such software, approximating

equilibrium systems in terms of minimal degree polynomials allows for straightforward com-

putation to replace the numerical searches for roots necessary to solve for equilibrium given

the form of many standard computational equilibrium systems.

A very wide range of equilibrium systems may be approximated this way, even for a

non-constant conduct parameter, such as symmetrically differentiated Bertrand competition

derived from discrete choice models (Weyl and Fabinger, 2013) or supply chains with diverse

cost functions at each stage; see Appendix A for details. However because the basic approach

is independent of the particular system being approximated, here we focus our attention on

approximating the demand function based on the most canonical discrete-choice statistical

distribution, the Logistic distribution (viz. the difference between two Type I Extreme Value

19For more general purposes, Mathematica 10 includes fast numeric solutions of polynomial equations
based on algebraic homotopy computation.
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Figure 4: Approximating the logistic demand’s quantile function with quartic-or-lower-
solvable inverse demands functions.

distributions).

To begin, we take the Laplace inverse demand function corresponding to the standard

Logistic distribution. This can be done by any standard Mathematical software package and

expressions for many standard distributions other than the Logistic are given in Appendix D.

Let PL(q) be the inverse demand function corresponding to the standard Logistic distribution

(in the language of statistics, PL(q) is the quantile function). We obtain:

PL(q) = − log(q)−
∞∑
i=1

qi

i
= lim

t→0

q−t − 1

t
−
∞∑
i=1

qi

i
.

From the perspective of providing a tractable approximation, this form has both attractions

and challenges. On the positive side, the Laplace inverse demand function takes and ex-

tremely simple form and consists of evenly-spaced mass points with the exception of the two

points. On the negative side, for the first term to be accurate, weight must be placed on

values of t very close to 0, as well as weight on a constant term, while to include terms as in

the summation weight must be placed on terms with large values of t. This means that an

accurate approximation requires a high-degree solution.

Figure 4 shows what low-degree approximations can and cannot accomplish. All forms

are fit using Mathematica’s nonlinear fit function. The left panel are fit to only points from

below the median quartile (above the median draw) with a focus on points from the upper

tail. The right panel is fit to a variety of points symmetric about the median. All demands

fail to match the extreme concavity at high quantities as a result of attempting to match the

convexity at low quantities while maintaining a low-degree solution. Approximations run

from BP (Bulow and Pfleiderer, 1983) approximations (which is first-degree solvable and is

crudest in its fit) up to the closest approximations which is quartic-solvable. Panels on the

left refine, in the process, the fit at low quantities while panels on the right refine the fit
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Figure 5: 100-order-solvable approximations to logistic demand.

evenly throughout the function.

This exercise shows some of the trade-offs in approximation through closed-form solvable

demands that allow for specific taxation; similar issues arise in forms that are similarly

solvable but do not admit specific taxation, except that the poor fit occurs for intermediate

quantities rather than at the tails. Approximations fit to the upper tail upper tail capture

the high curvature and therefore pass-through rate (arbitrarily close to unity) of the logistic

distribution at low quantities. They do a much worse job, however, at middle and high

quantities than do the curves on the right. Very tight fit is possible to the upper tail (low

quantities) if the lower tail is neglected and a high-order solution is admitted. Only a loose

fit to the lower tail (high quantities) is possible even with a quartic solution.

Much more is possible, however, if we are willing to admit systems that cannot be solved

by radicals, but whose solutions all are stored in standard mathematical software. This is

true for polynomials up to order 100 in Mathematica 10; beyond this order solving equations

explicitly becomes quite costly, though more modern software versions may be able to handle

higher-order polynomials at low cost. Kubler et al. (2014) provide a detailed discussion of

computations of high-order polynomial solutions for economic problems.

Figure 5 shows three possible 100-order-solvable approximations to the logistic demand.

One matches almost perfectly the upper tail (but is very inaccurate beyond the median),

one almost perfectly the lower tail (but very poorly approximates the upper tail) and one

fits both tails reasonably well. In our next draft we plan to make this approximation process

more rigorous and supply software allowing researchers to do it at no cost to themselves.

While this case is clearly far less tractable than the low-order approximations discussed in

the previous subsections, it may still be used free of almost any computational costs. With

improved algorithms for this canonical problem that seem likely to be forthcoming, even

24



better approximations may be used. This contrasts sharply with what would be required

if the logistic function were used directly: its marginal revenue has no standard solution

when equated to a constant or polynomial marginal cost and thus every solution requires

a costly computational search for a root. We discuss further tractability advantages of

these polynomial forms in the next section. While our focus here was on approximating

one particular demand function, the same basic technique may be applied to any demand

function, cost function or even more complicated equilibrium system, such as ones with non-

constant conduct parameter generated by substitution patterns that change as a function of

price. In all of these cases, our approach offers a much more fine-grained trade-off between

flexibility and tractability than exists at present.

5 Formal theorems and properties of demand functions

We have recently developed a new point of view on demand functions, which makes pass-

through properties that might seem hard to understand manifest in terms of Laplace trans-

form and complete monotonicity properties.20 We also found the most general functions

invariant under average-marginal transformations. This section, when properly written, will

discuss these new developments, as well as formal mathematical statements. In the current

draft, formal specification of utility functions we consider may be found in Appendix B. The

newly developed point of view on demand functions based on complete monotonicity may

be found in Subappendix B.2. A theorem specifying most general functions invariant under

average-marginal transformations is formulated in Appendix C.

6 International Trade Applications

The previous sections dealt, for expositional purposes, with a general characterization of

tractability in the context of a highly stylized monopoly model. However the usefulness of

these techniques arise from their ability to generate concrete insights in the richer and more

realistic models of contemporary interest. In this section we therefore consider examples

of such applied insights the approach can generate. For definiteness and coherence, we

focus on applications to models most commonly employed in international trade as this is a

field where models that can be explicitly aggregated into a single equation are particularly

prevalent. However the approach is equally relevant in other active areas of economics where

similar models are common such as industrial organization theory, perfect and imperfect

20We are grateful to James Heckman for pointing out to us the formal similarity of our equations and
those used in duration analysis, which motivated the development of the complete monotonicity viewpoint.
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competition in selection markets, asymmetric information bargaining, symmetric auctions,

financial market microstructure, etc.

6.1 Non-monotonic value chain organization

Antràs and Chor (2013, henceforth AC) model the decisions of firms that manufacture com-

plex, multistage products about vertical structure (in-sourcing v. out-sourcing) to address

hold-up problems as in, e.g., Grossman and Hart (1986). Firms contributing to critical stages

of the production process, where the marginal revenue associated with their contributions is

very high, should be in-sourced to avoid hold-up, while those at more marginal stages of the

production process should be out-sourced to avoid hold-up by the main firm that discourages

quality production. For tractability, they assume a Dixit and Stiglitz (1977) structure, im-

plying that marginal revenue is monotone and thus that either the early or the late stages of

production are out-sourced, but not both. However, a more natural assumption may be that

while marginal revenue rises at early production stages, as the product is first taking shape,

it falls at later stages once it is nearly finished and thus its quality is reaching saturation,

causing standard downward sloping demand to kick in. This would lead to out-sourcing of

both early and late stages, an arguably more plausible conclusion. In this application we

show how a model exhibiting these features can be formulated and solved as simply as that

studied by AC.

We generalize AC’s model by relaxing constant-elasticity assumptions for final demand

functions and production functions.21 We use notation compatible with the rest of this paper

both for consistency and because it simplifies the exposition, but in footnotes provide explicit

relations to the notation of AC.

A firm desires to provide a final good to its customers, but production requires a contin-

uum of customized inputs each provided by a different supplier indexed by j ∈ [0, 1]. The

firm must choose whether to contract with independent suppliers or integrate its suppliers

into the firm.

The production of the final good is sequential, with one input added at a time. If

production proceeds smoothly the effective (quality-adjusted) quantity q of the final good

the integral of the quality contributed by intermediate input j, which we denote qs (j):22

21Our main focus is on more general demand functions. In the illustrative example we discuss we keep the
production function unchanged, although closed-form solutions may be obtained straightforwardly by the
same method with more general assumptions on technology.

22We use the symbol q̃ to refer to a quantity measure denoted q in AC, which is distinct from what we
call quantity q. In order to recover AC’s original model as a special case, we identify their output q̃ with
q1/α, where α ∈ (0, 1) is a constant defined there. For the present discussion we do not need q to be linearly
proportional to the number of units produced. It is just some measure of the output, which may or may not
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q =
´ 1

0
qs(j) dj. Note that this effective quantity represents both the quantity of the good

and its quality, and is a non-linear transformation of the notion of quantity used by AC.

The lower is j, the further upstream a supplier is; that is, the more basic inputs to the

good she supplies. However, if production is “disrupted” by the failure of some supplier,

j ∈ [0, 1), to cooperate, then only the quality accumulated to that point in the chain is

available, with all further quality-enhancement impossible, and thus effective quantity is

q = q(j) ≡
´ j

0
qs(j) dj. The firm faces an inverse demand function P (q), which need not be

decreasing as is a standard inverse demand is, because, for example, consumers may have

little willingness-to-pay for a very early stage product. Thus, over various ranges, increasing

effective quantity may either raise or lower price.23 If there is no disruption in production,

q = q(1).

Following the property rights theory of the firm (Grossman and Hart, 1986; Hart and

Moore, 1990; Antràs, 2003), the key feature of AC’s model is that input production requires

relationship-specific investments that are subject to hold-up resulting from incomplete con-

tracts. The marginal surplus from additional quality brought by supplier j, MR (q(j)) qs(j)

is therefore split between the firm and supplier j, where MR = P + P ′q. In particular,

the supplier receives a fraction 1− β(j) that is interpreted as the firm’s effective bargaining

power, which may be adjusted by the organizational form: integrating the supplier lowers

her bargaining power and leaving her independent raises it.

Effort by any individual supplier is subject to diminishing returns in producing qs(j).

The cost function C(qs(j)) associated with producing qs(j) is convex, and it is assumed to

be the same for all suppliers.24 Thus the first-order condition of supplier j equates the share

of marginal revenue she bargains for with her marginal cost:

MC (qs(j)) ≡ C ′ (qs(j)) = [1− β (j)]MR (q (j)) . (11)

The cost to the firm of obtaining a contribution qs(j) from supplier j is therefore the surplus

it must leave in order to induce qs(j) to be produced, qsMC (qs(j)).
25

be quite abstract. A similar statement applies to the customized intermediate input. Our measure qs (j) of
a particular input is related to AC’s measure x(j) by qs (j) = θα(x (j))α, where θ is a positive productivity
parameter defined in their original paper.

23If physical quantity is a non-linear transformation of the effective quantity then the downward sloping
nature of demand may be restored.

24The AC model corresponds to C(qs) = (qs)
1/αc/θ, where c and θ are positive constants defined in their

paper. In our notation, the suppliers’ cost is convex but their contributions towards the final output are
linear. In the original paper the suppliers’ cost is linear, but their contributions towards the final output
have diminishing effects. These are two alternative interpretations of the same economic situation from the
point of view of two different systems of notation. As mentioned before, in our interpretation, the product of
a supplier is qs, whereas in the original paper the supplier’s product is x, related to qs by qs (j) = θα(x (j))α.

25Production of qs(j) requires 1− β (j) = MC(qs(j))
MR(q(j)) , so that the revenue received by supplier j, and thus
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When the firm decides on the organizational structure of the supply chain, it chooses β (j)

optimally for each supplier to maximize its profits. Let us first focus on the relaxed problem

where β (j) may be adjusted freely and continuously. This provides most of the intuition

for what happens when the firm is constrained to choose between two levels, corresponding

to integration (in-sourcing) or separation (out-sourcing), for β. This relaxed problem may

even be more realistic in some cases as various joint ventures and long-term relationships

can lead to intermediate β values (Holmström and Roberts, 1998).26 Note that by convexity

MC ′ > 0, while each qs makes a linearly separable contribution to q. Thus for any fixed q the

firm wants to achieve, it does so most cheaply by setting all qs = q by Jensen’s Inequality.27

This observation allows us to avoid the complex Euler-Lagrange equation AC use to analyze

their model. Thus Equation 11 becomes, at any optimum q?,

β∗ (j) = 1− MC (q?)

MR (jq?)
. (12)

From this we immediately see that β? is co-monotone with MR: in regions where marginal

revenue is increasing, β? will be rising and conversely when marginal revenue is decreasing.

The marginal revenue associated with constant elasticity demand is in a constant ratio to

inverse demand and thus whenever inverse demand is declining in quantity, marginal revenue

must be declining if it is positive. However if inverse demand is increasing in (effective)

quantity, then so is marginal revenue (so long as it is positive). This implies AC’s principal

result that when revenue elasticity is less than unity the firm will tend out-source upstream

and when revenue elasticity is less than unity the firm will tend to out-source downstream.28

This conclusion is somewhat counter-intuitive: we often think of firms out-sourcing both

the very early stages of production and its final (retailing) stages in most industries. The

reason for this conclusion may be the equally counter-intuitive assumption about the shape

of demand. Constant elasticity preferences imply that either P (q) is globally increasing

or globally decreasing. However it seems natural to think that P (q) would initially rise,

as consumers are willing to pay very little for a product that is nowhere near completion,

and would eventually fall as the product is completed according to the standard logic of

downward-sloping demand. We now show how this logic can be embedded in assumptions

the cost to the firm, is [1− β (j)]MR (q (j)) qs(j) = MC (qs(j)) qs(j).
26AC consider the relaxed problem following analogous considerations in Antràs and Helpman (2004, 2008).
27Formal details of this argument will be supplied in Appendix E in the next draft.
28As BP argued, the tight connection between the slope of marginal revenue (which depends crucially

on demand curvature) and the slope of inverse demand arises only under the constant elasticity demand
form. Intuitively there is no reason the first and second derivatives of demand need have any particular
relationship to one another. For example, using a natural experiment Einav et al. (Forthcoming) identify an
(auction) inverse demand curve that is decreasing but has increasing marginal revenue and an increasing,
but sufficiently concave inverse demand P yields declining marginal revenue, as we will shortly see.
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that yield as simple a solution to the model as does constant elasticity demand, while yielding

these arguably more realistic results.

Equation 12 implies that the surplus left to each supplier is qsMC(q) and thus total cost

is qMC(q). Thus the problem reduces to choosing q to maximize revenue qP (q) less cost

qMC(q), giving first-order condition

MR(q) = MC (q) + qMC ′ (q) . (13)

This differs from the familiar neoclassical first-order condition MR (q) = MC (q) only by

the presence of the (positive) term qMC ′ (q). Note that MC + qMC ′ bears the same

relationship to MC that MC bears to AC; this equation therefore similarly inherits the

tractability properties of the standard monopoly problem.

Let us now consider the class of all linearly solvable examples for this model, namely

P (q) = p−tq
t+p−uq

u and MC(q) = mc−tq
t+mc−uq

u. This includes AC’s specification as the

special case when pt = 0 and mcu = 0 so that each has constant elasticity.29 However many

other cases can also be considered and we focus on one that corresponds to our intuition

that price should initially increase and then decline in q. In particular, we assume that

t, u,mc−u, p−t > 0 = mc−t > p−u and that u > t so that the first term of the inverse demand

dominates at small quantities while the second dominates at large quantities.30

The expression resulting for β∗ (j) is:

β∗ (j) = 1− 1

(1 + u)
[(

1− p−u
mc−u

)
jt + p−u

mc−u
ju
] . (14)

Note that because mc−u > 0 > p−u, the numerator and first denominator term in the

ratio are positive and the second denominator term is negative. This implies that at small

q, where jt dominates, β? increases in j, while at large j it decreasing in j. In the AC

complements case when p−u = 0, or even if p−u is sufficiently small, this large j behavior is

never manifested and all out-sourcing (low β?) occurs at early stages. Also note that only

the ratio of coefficients p−u
mc−u

matters for the sourcing pattern; p−t is irrelevant, as the the

joint level of p−u and mc−u.

However, for many parameters an inverted U-shape emerges. For example, Figure 6 shows

the case when t = .35, u = .7, p−t = 1.8, p−u
mc−u

= −4. The curve corresponds to the shape

29In particular, in their notation, AC have t = 1
α , u = 1 + ρ

α , mct = c/αθ and pu = A1−ρ, where θ and ρ
is are positive constants defined in AC, not to be confused with the pass-through rate denoted by ρ or the
conduct parameter denoted by θ in other parts of this paper.

30We focus on this case because, interestingly, if mct 6= 0 then if β has any lower bound there is no
positive production solution yielding positive profits because it becomes extremely costly to incentivize the
first suppliers.
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Figure 6: Optimal relaxed and restricted β? in the AC model when t = .35, u = .7, p−u
mc−u

=
−4.

of the relaxed solution. Depending on precisely which values of β we take in-sourcing and

out-sourcing to correspond to, this can lead to in-sourcing in the middle of the production

and out-sourcing at either end.

To investigate this we turn now to the restricted case. As we show in Subappendix E.1

a nearly closed-form solution to this problem, one with only a single, univariate explicit

equation to be solved numerically, is possible when the Laplace marginal cost and price

include a mass point at 0 (admit a closed-form inverse solution). This equation determines

the overall level of production, not the pattern of sourcing which can be solved for fully

analytically. This is not the case with the form we chose above, which is the simplest one

that gives the non-monotone effect while being closed-form solvable in the relaxed problem.

However, even in our case, many steps can be performed analytically, though it does require

a two-dimensional numerical search. We use this procedure to construct optimal constrained

solutions for the case when out-sourcing gives βO = .8 and in-sourcing gives βI = .4. This

is illustrated by the lines in Figure 6, which show the constrained optimum. This gives the

same qualitative answer as the relaxed problem, unsurprisingly.

The comparison between the case here and that we consider in the appendix illustrates

the trade-off between the greater improved flexibility-tractability trade-off possible without

a mass point at 0 and the additional tractability benefits for some problems afforded by

including a mass point at 0.
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6.2 Comparative statics of employment bargaining

Stole and Zwiebel (1996a,b, henceforth SZ) study a model of wage bargaining where firms

employ workers mutually at-will and where hiring new workers happens with delay. This

leads to “labor hoarding” (viz. over-employment relative to the neo-classical benchmark)

in order make each worker more expendable and thus weaken their bargaining position.

This distortion helps offset firm product and labor market power. However, the model has

been primarily applied (Helpman et al., 2010; Helpman and Itskhoki, 2010; Helpman et al.,

2014) in settings with constant elasticity demand and power law technology, as in the last

subsection. In this context, the quantity of labor hoarding is unaffected by the prevailing

state of the economic cycle, as measured by the size of the workers’ outside option relative

to demand. Furthermore, because the model is governed by a complex differential equation,

most intuitions about the model arise from these very special cases and may be misleading

as a result.

In fact, we show that stepping just slightly outside this particular class yields qualitatively

different results. In particular if one allows for a more plausible bell-shaped demand, labor

hoarding is counter-cyclical, implying that the possibility of bargaining dampens economic

fluctuations. We derive this result by mechanically applying our tractable forms; in fact, we

still do not understand the intuition behind this result. Such insights unguided by intuition

are possible because the fairly elaborate equilibrium of the Stole-Zwiebel model is simple

when framed in terms of the Laplace first-order conditions of a standard monopoly model.

Thus, despite how different this model appears to be from the neoclassical monopoly model

we focused on in Section 2, it can be tractably solved precisely under the conditions (on

demand and cost) as the monopoly model.

In SZ, at the beginning of a period, a firm hires workers, each of whom supplies one unit

of labor if employed.31 When this process has been completed but before production takes

place, the workers are free to bargain over their wages for this period. At that time the firm

cannot hire any additional workers, so if any bargaining is not successful and any worker

leaves the firm, fewer workers will be available for production in this period. Moreover, after

the worker’s departure, the remaining employees are free to renegotiate their wages, and

in principle the process may continue until the firm loses all its employees. Assuming its

revenues are concave in labor employed, this gives the firm an incentive to “over-employ” or

hoard workers as hiring more workers makes holding a marginal worker less valuable to the

firm and thus reduces workers’ bargaining power.

If the bargaining weight of the worker relative to that of the firm’s owner is λ, then

31The model is formally dynamic but is usually studied in its steady state as described here.
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the relationship surplus splitting condition is Sw=λSf . The worker’s surplus is simply the

equilibrium wage corresponding to the current employment level minus the outside option:

Sw = W (l)−W0, where W is the wage as a function of l, the labor supplied. For expositional

simplicity, we assume the firm transforms labor into output one-for-one, though analytic

solutions also exist for any power law production technology when λ = 1 and in other cases.

Thus we assume q = l and henceforth use q as our primary variable analysis for consistency

with previous sections.

The firm faces inverse demand P (q) and thus its profits are Π(q) = [P (q)−W (q)] q. The

firm’s surplus from hiring an additional worker is then Π′(q). This gives differential equation

W (q)−W0 = λMR (q) + λ (W (q) q)′ ⇒ λ(W (q) q1+ 1
λ )′ = q

1
λ (λMR (q) +W0) ,

where MR ≡ P +P ′q and the implication can be verified by simple algebra and is a standard

transformation for an ordinary differential equation of this class. Integrating both of the sides

of the equation, imposing the boundary condition that the wage bill shrinks to 0 at q = 0

and solving out yields wages

W (q) = q−(1+ 1
λ)

qˆ

0

x
1
λMR(x)dx+

W0

1 + λ

and thus profits

Π (q) = P (q)q − q−
1
λ

qˆ

0

x
1
λMR(x)dx− W0

1 + λ
.

The firm’s optimal q solves its first-order condition, Π′ (q) = 0, which, after some algebraic

manipulations, is
(1 + λ)

´ q
0
x

1
λMR(x)dx

λq1+ 1
λ

= W0. (15)

Let us define (relative) labor hoarding as h ≡ q?−q??
q??

, where q? is SZ employment and

q?? is the employment level that a neoclassical firm with identical technology would choose:

MR (q??) = W0. Combining these definitions with (15) gives a useful condition for h in

terms of the equilibrium employment level q?:

MR

(
q?

1 + h

)
=

(1 + λ)
´ q?

0
x

1
λMR(x)dx

λ (q?)1+ 1
λ

. (16)

Note that this equation, and Equation 15, involves only a) marginal revenue and b) integrals

of it multiplied by a power of q and then divided by one power higher of q. It can easily be
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shown that the support of the Laplace marginal revenue is preserved by this transformation

using essentially the same argument we used in Section 2 to show this support was shifted

by exactly one unit in when consumer surplus is calculated. This implies that Equations

15 and 16 have precisely the same tractability characterization as does the basic monopoly

model we studied in Section 2.32

We are interested in the response of hoarding to changes in the economic cycle. In

particular, in good economic times the real value of W0 falls so that firms optimally produce

more. Given the complexity of Equation 16 from any perspective other than our tractable

forms, we investigate it using these forms, following Helpman et al. (2010) who study the

model under constant elasticity demand. First consider the BP (Bulow and Pfleiderer, 1983)

class, P (q) = p0 + ptq
−t, which nests the constant elasticity case when p0 = 0. Solving

Equation 16 for h yields 33

h =

(
1 + λ

1 + λ− tλ

) 1
t

− 1. (17)

Thus hoarding is constant in q? and consequently in W0. Thus under constant elasticity

demand, or more broadly under the BP class of demand, the economic cycle (the nominal

outside option) has no effect on relative hoarding. It can easily be shown that hmonotonically

increases in t, so that the less concave demand (and thus profits) are, the more hoarding

occurs. To illustrate this Figure 7 illustrates the value of Expression 17 for λ = 1 as a

function of t running from −10 (very concave demand) to t = 1 (the maximally convex

demand consistent with the firm’s second-order conditions). Hoarding clearly rises with

demand convexity.

We found this result counter-intuitive, as we believed, building off the intuition supplied

by SZ about the relationship beween the “front-loading” that drives hoarding and concav-

ity, that labor hoarding was driven by concavity in the firm’s profit function. Instead it

appears that the reverse is the case: at least This shows one advantage of considering an

explicit functional forms: they help correct false intuitions. In particular, because t clearly

parameterizes concavity the comparative static has a natural interpretation.

Yet this new intuition suggests that the hoarding may not be constant over the economic

cycle if, during that cycle, the curvature of firm profits change. For example, if during booms

broad parts of the population are served and during recessions only wealthier individuals are

served, then labor hoarding should be counter-cyclical as the distribution of income among

the wealthy is more convex than among the middle-class and poor.

32Note that Equation 15 also involves a constant and thus only our tractable forms with a constant term
will maintain their tractability in this model. This is why we focus on this class below.

33(16)⇒ pt (q?)
−t

(1 + h)t = 1+λ
λ pt (q?)

−(1+ 1
λ ) ´ q?

0
x

1
λ x−tdx⇒ (q?)

−t
(1 + h)t = 1+λ

λ
1

1
λ+1−t (q?)

−t ⇒(17).
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Figure 7: Labor hoarding as a function of demand curvature in the BP class; demand and
thus profit is increasingly convex as t rises.

To analyze this issue we considered one of our quadratically solvable forms that does a

reasonable job of matching salient features of the income distribution:

P (q) = ptq
−t + p0 + p−tq

t.

Using the standard quadratic formula, one can obtain explicit expressions for q? and q?? by

solving (15) and MR (q??) = W0, respectively:

h =


√

1− β(1−t)2ptp−t
(W0−p0)2

± 1√
1− (1−t)2ptp−t

(W0−p0)2
± 1


1
t

γ − 1, (18)

where the newly defined constants are just combinations of t and λ:

β ≡ (1+λ)2

(1+λ−tλ)(1+λ+tλ)
γ ≡

(
1+λ+tλ

1+λ

) 1
t

and the ± is positive if W0 < p0 and negative otherwise.

We can use Equation 18 to study the cyclic behavior of labor hoarding by considering

the effect of a change in W0 on h. We interpret a reduction in W0, or equivalently a mul-

tiplicative scaling up of P , to be a boom (as it leads to higher production) and a rise in

W0 to be a recession. This expression can be shown algebraically to be always increasing.

This implies that in a recession hoarding rises, cushioning the force of the recession. This

contrasts with the standard intuition that unions exacerbate recessions by creating nominal
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approximation to it P (q) = 104 · (2.2q−.42 + 9.1− 11q.42). Right: relative labor hoarding in
the SZ model with λ = 1 and demand given by the approximation for W0 ∈ 104 · [1, 5]

wage rigidity, suggesting the effects of individual workers’ bargaining may have qualitatively

different comparative statics than collective bargaining does.

The size of this effect can be seen in a calibrated example, where P is calibrated to the

US income distribution, λ is set, as is conventional, to 1 and we vary W0.34

Figure 8 shows the results. The left panel shows the income distribution, as approximated

by a dPln with (α, β, µ, σ) = (3, 1.43, 10.9, .45) as in Subsection 4.2 and a (quite close)

approximation (by non-linear fitting in Mathematica) to it using our tractable form with

t = .42, pt = 2.2 · 104, p0 = 9.1 · 104, p−t = −1.1 · 105. The right-hand panel shows h as

a function of W0 as the latter range from 1 · 105 to 5 · 105. Hoarding is quite large, on

the order of 70-80%; however its comparative statics are more subtle. It rises by about

2.5 percentage points when the outside option rises from $30k to $50k, perhaps a reasonable

range of variation over the economic cycle. Thus the BP approximation of constancy appears

not to be very far off. However, these effects may be non-negligible from the perspective

of shifting employment, and cushioning unemployment during recessions, in the aggregate

economy, and thus are worth including to get a realistic portrait of cyclic unemployment.

6.3 Monopolistic competition model

In our final application, we extend a framework in which the combination of constant

marginal cost and Bulow-Pfleiderer demand is used perhaps most frequently: monopolis-

tic competition building on the model of Dixit and Stiglitz (1977). The applications of

this framework are ubiquitous and we consider three of the most common: the models of

34Note, however, that λ = 1 has no special tractability advantage in our class when technology is linear.
However, it does for more general power-law technology.
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Krugman (1980), Melitz (2003) and Melitz and Ottaviano (2008). These international trade

papers all feature constant marginal cost of production and transportation and either con-

stant elasticity or linear demand. A number of recent papers have noted the substantive

restrictions imposed by the assumptions of BP demand and have conducted analyses of

topics to which these models are typically applied that relax the demand-side restrictions,

e.g. Zhelobodko et al. (2012); Arkolakis et al. (2012); Bertoletti and Etro (2013); Berto-

letti and Epifani (2014); Bertoletti and Etro (2014); Dhingra and Morrow (2014); Kichko

et al. (2014); Mrázová and Neary (2014a,c,b); Parenti et al. (2014).35 To do so, these pa-

pers sacrifice analytic tractability and thus the ability to consider many of the quantitative

aggregate equilibrium questions with which the literature has traditionally been concerned.

At the same time, they typically, with the notable exception of Zhelobodko et al., maintain

the assumption of constant marginal cost of production. Whenever trade costs are consid-

ered, these are either constant per-unit costs, or much more frequently iceberg type costs

(i.e. losses of the transported good itself), which under the assumption of constant marginal

costs of production also imply constant marginal costs of transport.36

In this section we show how these limitations can be overcome using our technology. In

particular we show how all three of these canonical trade models with monopolistic compe-

tition fall squarely into our framework and thus can be studied flexibly on both the demand

and cost side while maintaining to a large extent the same tractability and aggregability

of the original papers. Thus there is often no trade-off, or at most a gradual one, between

the tractability of the original frameworks and the richer insights yielded by the growing

literature relaxing the assumption of a BP demand form. At the same time, restrictions on

production and transport cost may be relaxed just as easily as those on demand.

In a future draft of this paper we plan to discuss instances where the usual functional

form assumptions are inconsistent with empirical observations, and where relaxing these

assumptions is particularly desirable because it leads to novel economic insights. In the

current draft, we only describe the mathematical solutions to the models.

35Behrens and Murata (2007, 2012) use a tractable approach based on exponential inverse demand func-
tions, for which equilibrium variables may be expressed in terms of the Lambert W function. Note also that
the original Dixit and Stiglitz (1977) paper does discuss non-constant elasticity demand, albeit in a way that
is not explicitly tractable.

36For recent empirical evidence documenting the size of non-iceberg trade costs, see Hummels and Skiba
(2004) and Irarrazabal, Moxnes and Opromolla (2014).
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6.3.1 Tractable generalizations of the Dixit-Stiglitz framework

In the baseline monopolistic competition model consumers derive their utility from a con-

tinuum of varieties ω ∈ Ω of a single heterogeneous good:

UΩ =

ˆ
Ω

uω (qω) dω. (19)

In the original Dixit-Stiglitz model with constant elasticity of substitution σ, uω(qω) is a

power of the consumed quantities qω: uω(qω) ∝ q
1−1/σ
ω . In our generalization u (qω) is as-

sumed to be a function of a combination different powers of qω . More explicitly, consumer

optimization requires that marginal utility of extra spending is equalized across varieties:

u′ω (qω) = λPω, where Pω is the price of variety ω and λ is a Lagrange multiplier related to con-

sumers’ wealth. To ensure tractability, we let the residual inverse demand Pω (qω) = u′ω(qω)/λ

and the corresponding revenue Rω (qω) be linear combinations of equally-spaced powers of

qω:

Pω (qω) =
∑
t∈T

pω,tq
−t
ω , Rω (qω) =

∑
t∈T

pω,tq
1−t
ω

for some finite and evenly-spaced set T , with the number of elements of T determining the

precise degree of tractability. For convenience of notation, we choose a numéraire in a way

that keeps Pω (qω) for a given qω independent of macroeconomic circumstances.

Each variety of the differentiated good is produced by a single firm. We assume that the

marginal cost and average cost of production can be written as

MCω(q) =
∑
t∈T

mcω,tq
−t
ω , ACω(q) =

∑
t∈T∪{1}

acω,tq
−t
ω ,

where mcω,t = (1− t) acω,t. A constant component of average cost (and marginal cost) would

correspond to acω,0 and a fixed cost would correspond to acω,1. However given the generality

possible here we do not necessarily have to assume that these components are present in all

models under consideration.

6.3.2 Flexible Krugman model

The Krugman (1980) model of trade, featuring monopolistic competition and free entry of

identical single-product firms, may be solved explicitly for the tractable demand and cost

functions mentioned above, not just constant-elasticity demand and constant marginal cost

specified in the original paper. Here we consider these solutions in the case of two symmetric

countries, which leads to a symmetric equilibrium.
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There is a continuum of identical consumers with preferences as in Equation 19 who earn

labor income. The amount of labor a firm needs to hire in order to produce quantity q may

be split into a fixed part f and a variable part L (q) that vanishes at zero quantity. Both

L (q) and the revenue function R (q) are assumed to allow for a linear term. The firm only

uses labor for production, so its total cost is w (L (q) + f), where w is the competitive wage

rate. Having produced quantity q, the firm splits it into qd to be sold domestically, and

τqx to be shipped abroad. Due to iceberg-type trade costs (τ ≥ 1), a fixed fraction of the

shipped good is lost during transport, and only quantity qx is received in the other country.

(Non-iceberg trade costs are considered in the appendix.) Let us denote the equilibrium

level of marginal cost, measure of firms, international trade flows, and welfare by MC?, N?,

X?, and W ?, respectively, and similarly for other variables. The total labor endowment of

one of the two symmetric economies is LE.

Observation 8. There exists an explicit map MC? → (f, q?d, q
?
x, w

?) and an explicit map

(MC?, LE) → (N?, X?,W ?). These relationships represent a closed-form solution to the

model in terms of MC? and exogenous parameters.

We provide details in Subappendix E.3. Analogous solutions for several symmetric coun-

tries with fully symmetric trade costs or even asymmetric countries may be obtained straight-

forwardly. Additionally, it is possible to relax the assumption of exogenous labor supply.

6.3.3 Flexible Melitz model

The Melitz (2003) model is again based on monopolistic competition and assumes constant

elasticity of substitution between heterogeneous-good varieties. Relative to the Krugman

(1980) model, it introduced a novel channel for welfare gains from trade, namely increased

average firm productivity resulting from trade liberalization or analogous decreases in trade

costs. Here we generalize the model to allow for more flexible demand functions, non-constant

marginal costs of production, and trade costs that may have components that are neither

iceberg-type nor constant per unit.

Single country. For clarity of exposition, we first describe the flexible and tractable

version of the Melitz model in the case of a single country and later discuss its generalization.

Just like the Krugman model, it involves two types of agents: monopolistic single-product

firms and identical consumers, who supply their labor in a competitive labor market and

consume the firms’ products.37

37For simplicity, consumers do not discount future, although it would be easy to incorporate an explicit
discount factor. Formally, the model includes an infinite number of periods, but it may be thought of as a
static model because the equilibrium is independent of time.
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Labor is the only factor of production: all costs have the interpretation of labor costs and

are proportional to a competitive wage rate w. Each heterogeneous-good variety is produced

by a unique single-product firm, which uses its monopolistic market power to set marginal

revenue equal to marginal cost. Demand and costs are specified tractably as discussed above;

this time we do not need to assume that variable cost and revenue functions allow for a linear

term.

If the firm is not able to make positive profits, it is free to exit the industry. In situations of

main interest, this endogenous channel of exit is active: there exist firms that are indifferent

between production and exit. There is also an exogenous channel of exit: in every period

with probability δe the firm is forced to permanently shut down.

Entry into the industry is unrestricted, but comes at a fixed one-time cost wfe. Only after

paying this fixed cost, the entering firm observes a characteristic a, drawn from a distribution

with cumulative distribution function G (a) , that influences the firm’s cost function. In the

original Melitz model the constant marginal cost of production is equal to wa. Here we

leave the specification more general, while maintaining the convention that increasing a

increases the firm’s cost at any positive quantity q. In expectation, the stream of the firm’s

profits must exactly compensate the (risk-neutral) owner for the entry cost, which implies

the unrestricted entry condition wfe = EΠ (q; a) /δe, with the profit Π (q; a) evaluated at the

optimal quantity.38

The amount of labor needed to produce quantity q is L (q; a) + f , where L (q; a) cor-

responds to variable cost (L (0; a) = 0) and f to a fixed cost. L (q; a) is assumed to be

tractable with respect to q, but also with respect to a.39 In terms of the labor requirement

function L (q; a), the firm profit maximization condition and the zero cutoff profit condition

are R′ (q) = wL′ (q; a) and R(qc) = wL(qc; ac) + wf , where qc and ac correspond to a cutoff

firm, i.e. a firm that is in equilibrium indifferent between exiting and staying in the industry.

We denote by LE, M?,M?
e , W ? the labor endowment, and the equilibrium measure of firms,

measure of entering firms, and level of welfare, respectively.

Observation 9. There exists an explicit map (qc, G) → (fe, w
?, ac) and an explicit map

(qc, LE, G) → (M?,M?
e ,W

?). These relationships represent a closed-form solution to the

model in terms of qc and exogenous parameters.

38In the case of a single country, the profit is simply Π (q; a) = q [P (q; a)−AC (q; a)]. Also note that the
unrestricted entry condition is often referred to as the free entry condition, but here we avoid this term since
there is a positive entry cost.

39For example, the function L (q; a) could be linear in a, as would be the case in the original Melitz
model. A simple example of a tractable choice of functional forms is L (q) = L̃ (q) + aL̂ (q), L̂ (q) ≡ qt,
L̃ (q) ≡ ˜̀

tq
−t + ˜̀

uq
−u, and R (q) = rtq

−t + ruq
−u.
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Again, we provide details in Subappendix E.3. Since these maps allow for an arbitrary

cumulative distribution function G, they involve integrals. For truncated Pareto G and

L (q; a) linear in a, there exist explicit expressions for these integrals, often involving special

functions. As in the case of the Krugman model, it is possible to relax the assumption of

exogenous labor supply.

Note also that comparative statics that assumes constant fe may be also performed

explicitly in terms of qc by constructing variations of the model’s parameters that leave the

value of fe intact.

Two symmetric countries, with non-iceberg and iceberg trade costs. Just like

in the case of the flexible Krugman model, it is convenient to write the model in terms of

equilibrium marginal cost, which this time is firm-specific and also depends on the firm’s

chosen export status. For tractability we will need the revenue function R (q) and the

production labor requirement function L (q; a) to allow for a linear term. The same is true

for labor corresponding to the non-iceberg trade costs, here denoted by LT (qx). As in

the original Melitz (2003) paper, we consider equilibria characterized by two cutoffs, here

denoted a1 and a2, such that least productive firms with a > a1 exit, more productive firms

with a ∈ (a2, a1] serve only their domestic market, and most productive firms with a ≤ a2

serve both countries. In general, we denote the equilibrium marginal cost of a non-exporting

firm as MC?
n and that of an exporting firm as MC?

x. Variables corresponding to the two

cutoffs are distinguished by subscripts 1 and 2, so for example MC?
1n is the optimal marginal

cost of a firm with a = a1, and MC?
2x and MC?

2n are optimal marginal costs of a firm with

a = a2 that decides to export or not to export, respectively. We denote by M?
x and X? the

equilibrium measure of exporting firms and international trade flows.

Observation 10. There exists an explicit map (MC?
1d,MC?

2x, G)→(fx, fe, w
?, a1, a2) and an

explicit map (MC?
1d,MC?

2x, LE, G) → (M?,M?
x ,M

?
e , X

?,W ?). These relationships represent

a closed-form solution to the model in terms of MC?
1d, MC?

2x, and exogenous parameters.

Again we discuss details in Subappendix E.3. As in the case of a single country, for

truncated Pareto G and L (q; a) linear in a, there exist explicit expressions for the relevant

integrals, often involving special functions. Likewise, the assumption of exogenous labor

supply may be relaxed.

We see that the Melitz model, which originally involved a very special specification of

demand, production costs and transportation costs, is not an isolated tractable model, but

rather a first instance of a wide class of models that describe heterogeneous firms in a
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tractable way that leads to closed-form solutions. As mentioned before, future versions of

this draft will discuss some of the cases where this greater flexibility is most needed.

6.3.4 Flexible Melitz/Melitz-Ottaviano model with non-separable utility

If we relax the assumption of separable utility, we obtain models that are rich enough to

contain also the Melitz and Ottaviano (2008) model as a special case (provided we are willing

to add a homogeneous good). Depending on the exact case under consideration, we may

obtain explicit solutions as in the separable utility case. However, even in the other cases,

one can explicitly perform aggregation under similar assumptions as previously. This means

that it is still possible to reduce the problem involving an infinite number of heterogeneous

firms to a problem with a finite number of equations for aggregate variables, which are

straightforward to solve numerically. We plan to make these observations concrete in a

future draft of this paper.

7 Conclusion

This paper makes three contributions. First, it identifies classes of (static, deterministic)

equilibrium systems that are analytically tractable, nest nearly every known tractable equi-

librium systems as special cases and allow much greater flexibility than existing systems.

Second, it shows how these equilibrium systems can be used to overcome implausible sub-

stantive assumptions imposed by existing tractable systems. Finally, it uses this framework

to study, and even in some cases overturn, the robustness and realism of prominent conclu-

sions in the theory of international trade.

Our work suggests several directions for future research. First, the process of adding addi-

tional terms to match features of an equilibrium system closely resembles sieve approximation

in non-parametric statistics. Determining “optimal” procedures for using increasingly less

tractable equilibrium systems to approximate empirical equilibrium systems as statistical

precision increases seems a natural method to maintain maximal tractability and flexibility

on incidence features for a given statistical resolution.

Second, inverse Laplace transforms may be a useful representation of various properties

of demand, cost and equilibrium systems. In on-going work (Fabinger and Weyl, 2014)

we are using characterizations of demand curves in terms of properties of inverse Laplace

transforms to determine sufficient conditions for price discrimination to be welfare enhancing.

The properties we use and others stated in terms of inverse Laplace transforms may be useful

hypotheses for other theoretical results.
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Third, while we focused on international trade in this paper, many results in the theory of

industrial organization are based on explicitly-solved equilibrium systems. Revisiting these

results in light of more flexible but equally soluble equilibrium systems could be enlightening.

Conversely models of optimal taxation take similar forms to monopoly models but have been

notoriously difficult to solve in closed for, except for with unrealistic uniform or Pareto talent

distributions. Lockwood et al. (2014) plan to include in their next draft an explicitly solved,

realistic example based on our tractable forms.

Finally, we considered only models that can eventually be reduced to a single equation

(or a few closely-related equations). However our approach here does not directly apply to

models, such as general equilibrium models with several asymmetric sectors or imperfectly

competitive models with multiple choice dimensions of quality or asymmetric firms, charac-

terized by several, non-aggregable equations. Nonetheless, as we discuss briefly in Appendix

F, the techniques from applied mathematics we use apply in these richer settings, albeit with

an increasingly unattractive trade-off between flexibility and tractability as the number of

equations increase. This approach should be more fully developed.

More broadly, the analysis of imperfect competition has become somewhat divided be-

tween approaches that employ simple, explicitly soluble systems, like those we discussed in

Subsection 3.2, and other work that focuses on more complex, realistic systems that require

significant computational cost to analyze. The approximation approach we developed here

can bridge between these two extremes by allowing systems that match key policy-relevant

features of empirical structures while remaining nearly as tractable as the systems that are

usually employed for their convenience rather than their realism. Researchers may then

choose more freely which position along the tractibility-plausibility spectrum is most ap-

propriate to their purposes, as well as choosing the features to most closely approximate

depending on the policy question of interest.
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Appendix

A Additional Applications

In this appendix we consider how our approach may be formally applied to three broad

contexts not discussed in the text. For brevity we do not derive any concrete results about

these contexts, but instead simply show how our approach allows tractability through the

same logic as described in the text.

A.1 Selection markets

Consider the model of perfect competition in selection markets proposed by Einav et al.

(2010) and Einav and Finkelstein (2011).40 In that model the welfare-relevant aggregates

they analyze are characterized by an inverse demand P and an average cost function AC from

which marginal cost may be derived as above. Perfectly competitive equilibrium is defined

as an intersection between P and AC while a necessary condition for the social optimality

is P = MC. Therefore by Observation 1 if Laplace inverse demand and average cost are

chosen to be tractable at any desired level, marginal cost and thus the social optimization

problem will inherit the same tractability. This is likely why both papers chose the highly

jointly-tractable linear forms for both demand and cost, despite the fact that the demand

curve estimated by Einav et al. appears concave. Our results can obviously therefore be

used to extend their analysis to more realistic demand and cost shapes while preserving the

same tractability.

A.2 Sequential-action supply chains

Consider the model of imperfectly competitive supply chains where each stage of production

strategically anticipates the reactions of the subsequent stage proposed by Salinger (1988).

There are m stages of production interacting via linear pricing. Producers at each stage act

simultaneously and the stages act in sequence. We solve by backwards induction.

Producers at stage m take an input from producers at stage m − 1 and sell it to final

consumers, facing inverse demand Pm. The nm firms at stage m are symmetric Cournot

competitors with average cost ACm. The linear price clearing the market between stage

m− 1 and m is P̂m−1. Using the standard first-order condition for Cournot competition and

40The analysis may be easily extended to any of the imperfectly competitive models discussed above
(Mahoney and Weyl, 2014), but the method is sufficiently analogous that we ignore it here.
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dropping arguments, the first-order equilibrium conditions are

Pm +
1

nm
P ′mq = P̂m−1 + ACm +

1

nm
AC ′mq ⇐⇒

P̂m−1 = Pm +
1

nm
P ′mq − ACm −

1

nm
AC ′mq.

Thus the effective inverse demand facing the firms at stage m− 1 is

Pm−1 ≡ Pm +
1

nm
P ′mq − ACm −

1

nm
AC ′mq,

as all output produced at stage m− 1 is used as an input at stage m. Effectively the inverse

demand at stage m− 1 is the (competition-adjusted) marginal profit (competition-adjusted

marginal revenue less marginal cost) at stage m.

This analysis may be back-propagated up the supply chain to obtain a first-order con-

dition at the first stage determining the quantity in the industry. However, at each stage

one higher derivative of Pm, at least and also of some of the cost curves, enters the first-

order conditions. Thus the implicit equation for the first-order conditions characterizing the

supply chain is usually quite elaborate and is both difficult to analyze in general and highly

intractable, even computationally, for many functional forms.

However we now derive a simple explicit transformation of the Laplace inverse demand

and average cost characterizing the supply chain and discuss how this can be used to overcome

these difficulties. Note that

Pm +
1

nm
P ′mq =

(
1− 1

nm

)
Pm +

1

nm
MRm,

where MRm = Pm + P ′mq. Let pm be the Laplace inverse demand. From Section 2 we have

that the Laplace marginal revenue is (1 − t)pm and thus that the ILT of
(

1− 1
nm

)
Pm +

1
nm
MRm is just

(
1− t

nm

)
pm. By the same logic, if we denote the Laplace average cost by

acm the ILT of ACm + 1
nm
AC ′mq is

(
1− t

nm

)
acm.

Iterating this process, one obtains that the Laplace first-order condition at the initial

stage, which we denote f1, is

pm

m∏
i=1

(
1− t

ni

)
−

m∑
i=1

[
aci

i∏
j=1

(
1− t

nj

)]
.

This obviously differs only in its (trivially computed) coefficients and not in its support from

the aci’s and pm that make it up. Thus if all aci’s and pm are chosen to have the same

53



tractable support (with the desired number of evenly-spaced mass points to achieve desired

tractability) then the full will be equally tractable. Beyond this, even if pm and the aci’s are

specified in an arbitrary manner, the resulting Laplace first-order condition can be trivially

computed from the ILTs of each of these inputs and then either solved directly by applying

the Laplace transform or approximated using a small number of evenly-spaced mass points

for tractability. In either case, the complexity of computing and representing the system

is significantly reduced. This is another example of how our approach directly applies well

beyond the simple monopoly model we focused on in Section 2.

A.3 Symmetrically differentiated Nash-in-Price competition

FORTHCOMING IN NEXT DRAFT.

B Definitions, Theorems, and Pass-Through Proper-

ties Demand Functions

In the following we discuss properties of single-product utility functions on some finite in-

terval [0, q̄] that may be written in the form

U (q) =

0ˆ

−∞

u (t) q−tdt, (20)

where the integral is defined by (21). Note that this integral may be interpreted as Laplace

transform in terms of the variable s ≡ log q. As long as we wish to consider utility bounded

below, there is virtually no loss of generality associated with the utility specification (20).

(In situations when utility unbounded below is desired, e.g. for constant demand elasticity

smaller than one, we can instead use the bilateral specification (22)). Similarly, for economic

purposes there is no loss of generality associated with q̄ being finite, since its value may be

chosen arbitrarily. Note that even though we refer to U (q) as a utility function, the same

mathematical theorems would apply even if we considered, say, cost functions instead.

Technical clarification (Integral definition). Here we define the integral (20) to be

the Riemann-Stieltjes integral

U (q) =

0ˆ

−∞

q−tduI (t) (21)
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for some function uI (t), not necessarily nonnegative, such that the integral converges. If

this function is differentiable, its derivative u′I (t) is the u (t) that appears on the right-hand

side of (20). If uI (t) is only piecewise differentiable, then u (t) is not an ordinary function,

but involves Dirac delta functions (i.e. point masses) at the points of discontinuity of uI (t).

Note that in certain parts of the paper we need a more general definition of (20) than

(21). In those cases we use the Schwartz-Sobolev distribution theory instead of the Riemann-

Stieltjes integral theory.

Proposition (Uniqueness). For each function U (q) that may be represented in the form

(20) in the sense (21), there exists just one normalized41 function uI (t) such that (21) holds.

Proof. This follows from Theorem I.6.3 of of Widder (2010). 2

Proposition (Polynomial functions). Any polynomial utility function may be written

in the form (20).

Proof. If we choose uI (t) appearing in (21) to be piecewise constant with a finite number

N of points of discontinuity {tj, j = 1, 2, ..., N}, the integral becomes

U (q) =
N∑
j=1

ajq
−tj ,

where aj is the (signed) magnitude of the discontinuity at point tj, i.e. the magnitude of the

mass that u (t) has at point tj. If we choose tj to be nonpositive integers, U (q) will be a

polynomial of q. By appropriate choices of N and aj, any polynomial of q may be expressed

in this way. 2

Proposition (Arbitrarily precise approximations). An arbitrary utility function Ũ (q)

continuous on an interval interval [0, q̄] may be approximated with an arbitrary precision by

utility functions of the form (20), in the sense of uniform convergence on [0, q̄].

Technical clarification (Uniform convergence). In other words, for any continuous

Ũ (q) there exists a sequence {Uj (q) , j ∈ N} of functions of the form (20) such that for any

ε > 0, all elements of the sequence after some position nε satisfy supq∈[0,q̄] |Ũ (q)−Uj (q) | < ε.

41Normalization here means that uI (0+) = 0 and uI (t) = (uI (t+)+uI (t−))/2. See Section I.6 of Widder
(2010).
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Proof. Given that polynomials are included in the specification (20), the theorem follows

from the Weierstrass approximation theorem, which states that polynomials are dense in the

space of continuous functions on a compact interval. For a constructive proof of the theorem

due to Bernstein, see e.g. Section VII.2 of Feller (2008). 2

Proposition (Analyticity). All functions of the form (20) are analytic.

Proof. This follows from Theorem I.5a of Widder (2010). 2

Comment (Conditions for the existence of inverse Laplace transform). The

Laplace representation (20) of a given utility function U (q) exists under various conditions.

Theorem 18b in Section VII.18 of Widder (2010) states general necessary and sufficient

conditions on U (q) for the existence of uI (t) such that (21) is satisfied; almost all utility

functions we may encounter in economic applications do satisfy these conditions.42 Sections

VII.12-17 of Widder (2010) provides conditions that guarantee that uI (t) exists and has

certain properties, such as being of bounded variation, nondecreasing, or belonging to the

functional space Lp. Additional conditions may be found in Chapter 2 of the book by Arendt

et al. (2011), which contains recent developments in the theory.

The following proposition goes beyond the theory of the Riemann-Stieltjes integral and

instead discusses Laplace transform of generalized functions based on the Schwartz-Sobolev

distribution theory. Zemanian (1965) provides the definition of the space of distributions

D′ used below. We denote by C−s̄ the half complex plane {s|Re s < s̄}, where s̄ is a real

number smaller than log q̄, i.e. than the logarithm the upper bound q̄ of the domain of U (q)

considered in (20).

Proposition (Uniqueness, analyticity, asymptotics - generalized functions). A

function U (q) such that U
[s]

(s) ≡ U (es) in the domain C−s̄ is analytic (i.e. holomorphic)

and bounded43 by a polynomial of s may be expressed in the form (20) with u representing

a distribution (i.e. an element of D′). This distribution is unique. Conversely, for any

Laplace-transformable distribution u, the integral (20) viewed as a function of s ≡ log q in

the domain C−s̄ is analytic and bounded by a polynomial of s.

42To handle rare useful cases that do not satisfy these conditions or their counterpart related to bilateral
Laplace transform, we use Laplace transform based on Schwartz-Sobolev distribution theory instead of the
Riemann-Stieltjes integral theory.

43Bounded in the sense of its absolute value being no greater than the absolute value of a polynomial of s.
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Proof. The three sentences of the proposition are implied by the following statements in

Zemanian (1965): (1) Theorem 8.4-1 and Corollary 8.4-1a, (2) Theorem 8.3-1a, (3) Theorem

8.3-2 and the text following Corollary 8.4-1a. 2

B.1 Bilateral Laplace transform

The discussion above generalizes to single-product utility functions that may be written in

the form

U (q) =

∞̂

−∞

u (t) q−tdt. (22)

This specification allows for, e.g., constant demand elasticity smaller than 1. (We plan to

add more details on the bilateral Laplace transform in a future draft.)

B.2 Complete monotonicity of the demand specification

Many demand curves have economic properties that may seem unexpected, but which are

easily understood in terms of Laplace transform. To develop the related theory, we start with

a standard definition of completely monotone functions and then discuss relations between

complete monotonicity, the form of Laplace inverse demand, and economic consequences for

the pass-through rate, as well as for supply chain models.44

Definition (Completely monotone function). A function f (x) is completely monotone

iff for all n ∈ N its nth derivative exists and satisfies

(−1)n f (n) (x) ≥ 0.

It turns out that many commonly used demand functions are such that the consumer

surplus is completely monotone as a function of negative log quantity. For this reason, we

make the following definition.

Definition (Complete monotonicity of the demand specification).45 We say that

the demand function (or utility function) satisfies the complete monotonicity criterion iff

44Brockett and Golden (1987) also discuss relations between complete monotonicity and a type of Laplace
transform. The Laplace transform used there is in terms of quantity q, whereas in our discussion, it is in
terms of the logarithm of quantity. These two transforms are distinct and should not be confused.

45In principle, it is possible to empirically test whether an empirical demand curve satisfies the complete
monotonicity criterion. The relevant empirical test has been developed by Heckman et al. (1990). It would
just have to be translated from the duration analysis context to our demand theory context.
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consumer surplus is a completely monotone function of −s, i.e. for all n ∈ N,

CS(n)
[s]

(s) ≥ 0,

or equivalently

U (n)
[s]

(s)− U (n+1)
[s]

(s) ≥ 0.

Strict complete monotonicity criterion then refers to these inequalities being strict.

Proof of Definition Equivalence. With the marginal utility of the outside good

normalized to one and U (0) is set to zero, we have CS (q) = −qP (q) +
´ q

0
P (q1) dq1 =

−qU ′ (q) +
´ q

0
U ′ (q1) dq1 = U (q) − qU ′ (q). This translates into CS

[s]
(s) = U

[s]
(s) − U ′

[s]
(s).

The equivalence for any n ∈ N then follows by differentiation.

Proposition. A (single-product) utility function is bounded below and satisfies the complete

monotonicity criterion iff the Laplace consumer surplus cs (t) is nonnegative and supported

on (−∞, 0), i.e. CS (q) =
´ 0

−∞cs (t) q−tdt for some cs (t) ≥ 0.46

Proof. This follows from Bernstein’s theorem on completely monotone functions, formu-

lated e.g. as Theorem IV.12a of Widder (2010) or Theorem 1.4 of Schilling et al. (2012).

2

Proposition. The complete monotonicity criterion for demand functions implies pass-

through decreasing with quantity in the case of constant-marginal-cost monopoly. The only

exception is Bulow-Pfleiderer demand, for which pass-through is constant.

Proof. Constant marginal cost monopoly pass-through may be expressed as

ρ =
CS ′

[s]
(s)

CS ′′
[s]

(s)
.

For a completely monotone problem, Laplace consumer surplus cs (t) is nonnegative. For

this reason, the inverse of ρ may be expressed as a weighted average of t with nonnegative

46Clarification to be added.
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weight

w (t, s) ≡ t cs (t) e−st´ 0

−∞ t cs (t) e−stdt

as follows
1

ρ
=
CS ′′

[s]
(s)

CS ′
[s]

(s)
= −
´ 0

−∞ t
2cs (t) e−stdt´ 0

−∞ t cs (t) e−stdt
= −
ˆ 0

−∞
t w (t, s) dt.

In response to an increase in s, the weight gets shifted towards more negative t,47 and 1/ρ

decreases. We conclude that ρ is decreasing in q. Only if t cs (t) is supported at one point

will there be no shift in weight and ρ remains constant. That case corresponds to Bulow-

Pfleiderer demand. 2

Proposition. The following demand functions satisfy the complete monotonicity criterion:

Pareto/constant elasticity (ε > 1), Bulow-Pfleiderer (ε > 1), logistic distribution, log-logistic

distribution (γ > 1), Gumbel distribution (α > 1), Weibull distribution (α > 1), Fréchet

distribution (α > 1), gamma distribution (α > 1), Laplace distribution48, Singh-Maddala

distribution (a > 1), Tukey lambda distribution (λ < 1), Wakeby distribution (β > 1),

generalized Pareto distribution (γ < 1), Cauchy distribution.

Proof. The complete monotonicity properties follow by straightforwardly recognizing

that in these cases t p (t) is nonnegative and supported on (−∞, 1), with the corresponding

Laplace inverse demand functions p (t) listed in Appendix D.2.49 Note that for most of

the inverse demand functions listed in the proposition, it is also possible to prove complete

monotonicity using Theorems 1–6 of Miller and Samko (2001). 2

Corollary. The demand functions listed in the previous proposition lead to constant-

marginal-cost pass-through decreasing in quantity, with the exception of Pareto/constant

elasticity and Bulow-Pfleiderer, which lead to constant pass-through.

Proposition. The following demand functions do not satisfy the complete monotonicity

criterion: normal distribution, lognormal distribution, constant superelasticity (Klenow and

Willis), Almost Ideal Demand System (either with finite or infinite surplus), log-logistic

distribution (γ < 1), Fréchet distribution (α < 1), Weibull distribution (α < 1), Gumbel

47In the same mathematical sense as in the definition of first order stochastic dominance.
48Each half of the distribution separately, or the full distribution smoothed by arccosh to ensure the

existence of the derivatives.
49The text of Appendix D.2 is to be improved.
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distribution (α < 1), Pareto/constant elasticity (ε > 1), gamma distribution (α < 1), Singh-

Maddala distribution (a < 1), Tukey lambda distribution (λ > 1), Wakeby distribution (β <

1), generalized Pareto distribution (γ > 1).

Note (normal distribution of values). We found that the normal distribution of con-

sumer values has properties very close to those satisfying the complete monotonicity criterion:

constant-marginal-cost pass-through is increasing in price (as we show below), and low-order

derivatives of CS (s) with respect to −s are positive. We concluded that the complete

monotonicity criterion is not satisfied based on examining the sign on the tenth derivative

of CS (s). The absence of complete monotonicity is consistent with our expression to the

corresponding Laplace inverse demand, which does not seem to satisfy t cs (t) ≥ 0. In most

economic applications, the difference from completely monotone problems is inconsequential

because it manifests itself only in very high derivatives of CS (s).

C Invariance under average-marginal transformations

In this appendix we derive the structure of classes of functions on R+ with m parameters that

are invariant under average-marginal transformations. An m-dimensional functional form

class is a subset of a space of functions that is homeomorphic to an m-dimensional manifold

(moduli space), possibly with a boundary. The m shape parameters are the coordinates on

this moduli space. For example, in the case of the functional form β exp(−(q − α)2), the

moduli space would be a plane (R2) with coordinates α and β.

Definition. We say that a functional form class C is invariant under average-marginal

transformations if for any function F (q)∈ C, the class also contains any linear combination

of F (q) and qF ′ (q). In other words, F∈ C ⇒ ∀ (a, b) ∈ R2 : aF + bqF ′ ∈ C.

In economic terms, we interpret F (q) as the average of the variable qF (q), such as

revenue or cost, and F (q) + qF ′ (q) as its marginal counterpart.

Theorem. Any real finite-dimensional functional form class invariant under average-marginal

transformations is the set of linear combinations of

(log q)ajk q−tj , ajk = 0, 1, ..., nj, j = 1, 2, ..., N1,

(log q)bk cos
(
t̃j log q

)
q−t̂j , bjk = 0, 1, ..., nj, j = 1, 2, ..., N2,

(log q)ck sin
(
t̃j log q

)
q−t̂j , cjk = 0, 1, ..., nj, j = 1, 2, ..., N2,
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where {tj, j = 1, 2, ..., N1},
{
t̃j, j = 1, 2, ..., N2

}
, and

{
t̂j, j = 1, 2, ..., N2

}
are sets of real

numbers. If we exclude functions oscillating as q → 0+, only the functions in the first

row are allowed. In that case the most general form is the set of linear combinations of

q−tj , q−tj log q, q−tj (log q)2 , ... , q−tj (log q)nj , j = 1, 2, ..., N1.

Proof. For convenience we express the (infinitely differentiable) functions F (q) on R+ in

terms of functions G (s) defined on R, with the identification s ≡ log q, F (q) ≡ G (log q).

Consider a function F (q)∈ C and its counterpart G (s). In terms of G, the average-marginal

form invariance requires that the counterpart of aG+bG′ belong to the class C, if the of coun-

terpart of G does so. For technical reasons, we will work with G (s) multiplied by the char-

acteristic function 1S (s) of an arbitrarily chosen non-empty interval S ≡ (s1, s2), i.e. with

GS (s) ≡ G (s) 1S (s). We denote by ĜS (ω) the Fourier transform of GS (s), which in turn

may be expressed as the inverse Fourier transform GS (s) = (2π)−1/2
´∞
−∞ ĜS (ω) e−iωsdω.50

By iterating the defining property of average-marginal invariance, we know that the class

C contains also counterparts of the derivatives G(n) (s). We will consider the first m of them,

in addition to G (s). For n = 1, 2, ...,m, we denote by G
(n)
S (s) the truncation of G(n) (s) to

the interval S, i.e. G
(n)
S (s) ≡ G(n) (s) 1s∈S. Inside the interval S,

G
(n)
S (s) =

ˆ ∞
−∞

(−iω)n ĜS (ω) e−iωsdω, for s ∈ S, n ∈ {0, 1, 2, ...,m}. (23)

The m + 1 functions GS (s) , G
(1)
S (s) , G

(2)
S (s) , ..., G

(m)
S (s) span a vector space with dimen-

sionality m + 1 or less. Dimensionality equal to m + 1 would contradict the assumption

of having an m-dimensional functional form class, which implies that the set of functions

GS (s) , G
(1)
S (s) , G

(2)
S (s) , ..., G

(m)
S (s) must be linearly dependent on the interval S. As a

result, there must exist a polynomial T0 (.) (with real coefficients), such that

ˆ ∞
−∞

T0 (−iω) ĜS (ω) e−iωsdω (24)

is zero for any s ∈ S. This expression vanishes not only for s ∈ S ≡ (s1, s2), but also for

s ∈ (−∞, s1) and s ∈ (s2,∞). This is because the right-hand-side of (23) when extended to

arbitrary s ∈ R represents the nth derivative of GS (s) in the sense of the Schwartz-Sobolev

distribution theory, and given that GS (s) vanishes for s ∈ (−∞, s1) and s ∈ (s2,∞), so must

50The Fourier transform used in the proof is equivalent to the Laplace transform with imaginary s. Both
transform may be thought of as parts of the holomorphic Fourier-Laplace transform.
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its nth derivative. Given that the expression (24) is a generalized function51 of s that gives

zero when integrated against any test function52 supported on (−∞, s1−ε]∪ [s1 + ε, s2 − ε]∪
[s2 +ε,∞) for any ε > 0, we may write it as a linear combination of Dirac delta functions and

a finite number of their derivatives located at s1 and s2. By computing its Fourier transform

we find that T0 (−iω) ĜS (ω) must be of the form

T1 (ω) eis1ω + T2 (ω) eis2ω

with some polynomials T1 (ω) and T2 (ω). Consequently, ĜS (ω) may be written as

ĜS (ω) =
T1 (ω)

T0 (−iω)
eis1ω +

T2 (ω)

T0 (−iω)
eis2ω.

The polynomial T0 (−iω) may have a common factor with T1 (ω) or T2 (ω) or both. If we

cancel these common factors, we may rewrite the expression as

ĜS (ω) =
T3 (ω)

T5 (ω)
eis1ω +

T4 (ω)

T6 (ω)
eis2ω (25)

for some polynomials T3, T4, T5, and T5, such that T3 has no common divisors with T5 and

similarly for T4 with T6. Let us compute the inverse Fourier transform of the last expression

for ĜS (ω) using the residue theorem. To perform the integration, we consider each of the

two terms in (25) separately and specialize to s ∈ S. We close the integration contour

by semicircles at infinity of the complex plane, correctly chosen so that their contribution

to the integral vanishes. The integral value is then equal to the sum of the pole (residue)

contributions, which give exponentials of s multiplied by polynomials of s. We see that for

s ∈ S,

GS (s) =
N∑
j=1

Dj (s) e−istj ,

for some integer N , complex numbers tj and polynomials Dj (s). Since the interval S was

chosen arbitrarily, not just GS (s), but also G (s) itself must take this form. In the last

expression the constants may be complex. Without loss of generality, we can assume that

the firstN1 numbers tj are real and the remaining ones have an imaginary part. By combining

individual terms into real contributions so that G (s) is real, we get

G (s) =

N1∑
j=1

Aj (s) e−stj +

N2∑
j=1

(
Bj (s) cos t̃js+ Cj (s) sin t̃js

)
e−t̂R,js,

51By a generalized function we mean an element of the space S ′ (R) of distributions.
52A test function here refers to an element of the space S (R) of space of rapidly decreasing functions.
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where Aj (s), Bj (s), and Cj (s) are polynomials, and N1 + 2N2 = N . This form of G (s)

translates into the following form of F (q):

F (q) =

N1∑
j=1

Aj (log q) q−tj +

N2∑
j=1

(
Bj (log q) cos

(
t̃j log q

)
+ Cj (log q) sin

(
t̃j log q

))
q−t̂j . (26)

If we wish to exclude the possibility of oscillations, e.g. in economic applications where we

allow the functional form to be valid arbitrarily close to q = 0, we can set the polynomials

Bj and Cj to zero and consider only functions of the form

F (q) =

N1∑
k=1

Aj (log q) q−tj .

An example of functional forms of this kind is aq−t + bq−u + cq−u log q + dq−u(log q)2. The

reader can easily verify that this is a four-dimensional functional form class invariant under

average-marginal transformations. In general, it is now straightforward to check that the

result (26) implies the statement of the theorem. 2

D Demand Forms

D.1 Curvature properties

Note: This appendix was written before we developed the theory related to the complete

monotonicity criterion discussed in Appendix B. For this reason a number of proofs described

below is redundant and will be removed in a future draft.

Table 1 provides a taxonomy of the curvature properties of demand functions generated by

common statistical distributions and the single-product version of the Almost Ideal Demand

System. Following Caplin and Nalebuff (1991b,a), we define the the curvature of demand as

κ(p) ≡ Q′′(p)Q(p)

[Q′(p)]2
.

Cournot (1838) showed that the pass-through rate of a constant marginal cost monopolist is

1

2− κ

and thus that a) that the comparison of κ to unity determines the comparison of pass-through

to unity in this case and b) that if κ′(p) > 0 that pass-through rises with price (falls with
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quantity), and conversely if κ declines with price (rises with quantity). The comparison of

κ to unity also determines whether a demand is log-convex and its sign whether demand

is convex. The comparison of κ to 2 determines whether demand has declining marginal

revenue, a condition also known as Myerson (1981)’s regularity condition.

For probability distribution F , the corresponding demand functionQ(p) = σ
(
1− F

(
p−µ
m

))
where σ and m are stretch parameters (Weyl and Tirole, 2012) and µ is a position parameter.

Note that in this case

κ(p) = −
σ2

m2F
′′ (p−µ

m

) (
1− F

(
p−µ
m

))
σ2

m2

[
F ′
(
p−µ
m

)]2 = −
F ′′
(
p−µ
m

) (
1− F

(
p−µ
m

))[
F ′
(
p−µ
m

)]2 .

Note, thus, that neither global level nor slope properties of κ are affected by σ,m or µ. We

can thus analyze the properties of relevant distributions independently of their values, as

represented in the table and the following proposition.

The most prominent conclusion emerging from this taxonomy is that the vast majority of

forms used in practice in computational, statistical models such as Berry et al. (1995) have

monotonically increasing curvature and most have curvature below unity. This suggests two

conclusions. The first, highlighted in the text, is that, to the extent we believe these forms

are more realistic than tractable forms, they have properties systematically differing from

the BP class and thus it is important to derive tractable forms capable of matching their

central property of monotonically increasing in price/decreasing in quantity curvature.

A second possible conclusion is that, to the extent that in some cases these properties are

not empirically relevant, such as in the data of Einav et al. (Forthcoming), standard forms

rule out observed behavior and thus analysts may wish to consider more flexible forms along

these dimensions, such as those we derive. For example, the Apt demand class we discussed

in Subsection 4.1 allows flexibility over curvature and the slope of curvature, as well as

the level and local elasticity of demand, unlike many of the common statistical forms. To

the extent there are not strong theoretical reasons to believe in the restrictions imposed by

standard statistically based forms (which, in many cases, there are) allowing such relaxation

is important because in many contexts the properties of firm demand and equilibrium are

inherited directly from the demand function, at least with constant marginal cost (Weyl and

Fabinger, 2013; Gabaix et al., 2013; Quint, 2014). Which conclusion is most appropriate will

obviously depend on the empirical context and the views of the analyst.

Proposition 1. Table 1 summarizes global properties of the listed statistical distributions

generating demand functions. α is the standard shape parameter in distributions that call

for it.
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κ < 1 κ > 1
Price-

dependent
Parameter-
dependent

κ′ < 0 AIDS with b < 0

κ′ > 0

Normal (Gaussian)
Logistic

Type I Extreme Value
(Gumbel)
Laplace

Type III Extreme Value
(Reverse Weibull)

Weibull with shape α > 1
Gamma with shape α > 1

Type II
Extreme Value
(Fréchet) with
shape α > 1

Price-
dependent
Parameter-
dependent
Does not
globally
satisfy
κ < 2

Type II Extreme Value
(Fréchet) with shape α < 1
Weibull with shape α < 1
Gamma with shape α < 1

Table 1: A taxonomy of some common demand functions

Proof. Characterization of the curvature level (comparisons of κ to unity) follow from classic

classifications of distributions as log-concave or log-convex as in Bagnoli and Bergstrom

(2005), except in the case of AIDS in which the results are novel.53 Note that our discussion

of stretch parameters in the text implies we can ignore the scale parameter of distributions,

normalizing this to 1 for any distributions which has one. A similar argument applies to

position parameter: because this only shifts the values where properties apply by a constant,

it cannot affect global curvature or higher-order properties. This is useful because many of

the probability distributions we consider below have scale and position parameters that this

fact allows us to neglect. We will denote this normalization by Up to Scale and Position

(USP).

We begin by considering the first part of the proof, that for any shape parameter α < 1

the Fréchet, Weibull and Gamma distributions with shape α violate DMR at some price.

We show this for each distribution in turn:

1. Type II Extreme Value (Fréchet) distribution: USP, this distribution is F (x) = e−x
−α

with domain x > 0. Simple algebra shows that

κ(x) =
(ex

−α − 1)xα(1 + α) +
(

1− ex−α
)
α

α
.

As x→∞ and therefore x−α → 0 (as shape is always positive), ex
−α

is well-approximated

by its first-order approximation about 0, 1 + x−α. Therefore the limit of the above

53We do not classify the slope of pass-through for demand functions violating declining marginal revenue
as this is such a common assumption that we think such forms would be unlikely to be widely used and
because it is hard to classify the slope of pass-through when it is infinite over some ranges.
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expression is the same as that of

x−αxα(1 + α)− x−αα
α

=
1 + α + x−αα

α
→ 1

α
+ 1

as x→∞. Clearly this is greater than 2 for 0 < α < 1 so that for sufficiently large x,

κ > 2.

2. Weibull distribution: USP, this distribution is F (x) = 1− e−xα . Again algebra yields:

κ(x) =
1− α
αxα

+ 1.

Clearly for any α < 1 as x→ 0 this expression goes to infinity, so that for sufficiently

small x, κ > 2.

3. Gamma distribution: USP, this distribution is F (x) = γ(α,x)
Γ(α)

where γ(·, ·) is the lower

incomplete Gamma function, Γ(·, ·) is the upper incomplete Gamma function and Γ(·)
is the (complete) Gamma function:

κ(x) =
ex(1− α + x)Γ(α, x)

xα
. (27)

By definition, limx→0 Γ(α, x) = Γ(α) > 0 so

lim
x→0

κ(x) = +∞

as 1−α > 0 for α < 1. Thus clearly for small enough x, the Gamma distribution with

shape α < 1 has κ > 2.

We now turn to the categorization of demand functions as having increasing or decreasing

pass-through. As price always increases in cost, this can be viewed as either pass-through

as a function of price or pass-through as a function of cost.

1. Normal (Gaussian) distribution: USP, this distribution is given by F (x) = Φ(x), where

Φ is the cumulative normal distribution function; we let φ denote the corresponding

density. It is well-known that Φ′′(x) = −xφ(x). Thus

κ(x) =
x [1− Φ(x)]

φ(x)
.
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Taking the derivative and simplifying yields

κ′(x) =
[1− Φ(x)] (1 + x2)− xφ(x)

φ(x)
,

which clearly has the same sign as its numerator, as φ is a density and thus everywhere

positive. But a classic strict lower bound for Φ(x) is x
1+x2

φ(x), implying κ′ > 0.

2. Logistic distribution: USP, this distribution is F (x) = ex

1+ex
. Again algebra yields

κ′(x) = e−x > 0.

Thus the logistic distribution has κ′ > 0.

3. Type I Extreme Value (Gumbel) distribution : USP, this distribution has two forms.

For the minimum version it is F (x) = 1−e−ex . Algebra shows that for this distribution

κ′(x) = e−x.

Note that this is the same as for the logistic distribution; in fact κ for the Gumbel

minimum distribution is identical to the logistic distribution. This is not surprising

given the close connection between these distributions (McFadden, 1974).

For the maximum version it is F (x) = e−e
−x

. Again algebra yields

κ′(x) = e−x
(
e2x[ee

−x − 1]− ee−x [ex − 1]
)
.

For x < 0 this is clearly positive as both terms are strictly positive: 1 > ex and because

e−x > 0, ee
−x
> 1. For x > 0 we can rewrite κ′ as

ee
−x

(ex − 1) + e−x
(
ee
−x − 1

)
,

which again is positive as ex > 1 for x > 0 and ee
−x
> 1 by our argument above.

4. Laplace distribution: USP, this distribution is

F (x) =

{
1− e−x

2
x ≥ 0,

ex

2
x < 0.

For x > 0, ρ = 1 (so in this range pass-through is not strictly increasing). For x < 0

κ′(x) = 2e−x > 0.
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So the Laplace distribution exhibits globally weakly increasing pass-through, strictly

increasing for prices below the mode. The curvature for this distribution is 1 − 2e−x

as opposed to 1− e−x for Gumbel and Logistic. However these are very similar, again

pointing out the similarities among curvature properties of common demand forms.

5. Type II Extreme Value (Fréchet) distribution with shape α > 1: From the formula

above it is easy to show that the derivative of the pass-through rate is

κ′(x) = x−(1+α)
(

[1 + α]
[
x2α(ex

−α − 1)− ex−αxα
]

+ αex
−α
)
> 0,

which can easily be shown graphically to be positive; we plan to show this analytically

in the next draft. Thus this distribution, as well, has κ′ > 0.

6. Type III Extreme Value (Reverse Weibull) distribution: USP, this distribution is

F (x) = e−(−x)α and has support x < 0. Algebra shows

κ′(x) = (−x)α−1α2
[
1− α + e(−x)α

(
[1− α]

[
(−x)α − 1

]
+ [−x]2αα

)]
,

which has the same sign as

1− α + e(−x)α
(

[1− α]
[
(−x)α − 1

]
+ [−x]2αα

)
. (28)

Note that the limit of this expression as x→ 0 is

1− α− (1− α) = 0

and its derivative is
e(−x)α(−x)2αα

(
1 + α + [−x]αα

)
x

,

which is clearly strictly negative for x < 0. Thus expression (28) is strictly decreasing

and approaches 0 as x approaches 0. It is therefore positive for all negative x, showing

that again in this case κ′ > 0.

7. Weibull distribution with shape α > 1: As with the Fréchet distribution algebra from

the earlier formula shows

κ′(x) = xα−1(α− 1)α2,

which is clearly positive for α > 1 as the range of this distribution is positive x. Thus

the Weibull distribution with α > 1 has κ′ > 0.
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8. Gamma distribution with shape α > 1: Taking the derivative of Expression 27 yields:

κ′(x) =
α− 1− x+ ex

xα

(
x2 − 2x[α− 1] + [α− 1]α

)
Γ(α, x)

x
,

which has the same sign as

α− 1− x+
ex

xα
(
x2 − 2x[α− 1] + [α− 1]α

)
Γ(α, x), (29)

given that x > 0. Note that as long as α > 1

x2+(α−2x)(α−1) = x2−2(α−1)x+α(α−1) > x2−2(α−1)x+(α−1)2 = (x+ 1− α)2 > 0.

Therefore so long as x ≤ α − 1 this is clearly positive. On the other hand when

x > α− 1 the proof depends on the following result of Natalini and Palumbo (2000):

Theorem (Natalini and Palumbo, 2000). Let a be a positive parameter, and let

q(x) be a function, differentiable on (0,∞) , such that limx→∞x
αe−xq(x, α) = 0. Let

T (x, α) = 1 + (α− x)q(x, α) + x
∂q

∂x
(x, α).

If T (x, α) > 0 for all x > 0 then Γ(α, x) > xαe−xq(x, α).

Letting

q(x, α) ≡ x− (α− 1)

x2 + (α− 2x)(α− 1)
,

T (x, α) =
2(α− 1)x(

α2 + x[2 + x]− α[1 + 2x]
)2 > 0

for α > 1, x > 0. So Γ(α, x) > xαe−xq(x, α). Thus Expression 29 is strictly greater

than

α− 1− x+ x− (α− 1) = 0

as, again, x2 + (α− 2x)(α− 1) > 0. Thus again κ′ > 0.

This establishes the second part of the proposition. Turning to our final two claims, algebra

shows that the curvature for the Fréchet distribution is
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κ(x) =
α− ex−α

(
α− xα[1 + α]

)
− xα(1 + α)

α
=

(
1− ex−α

)
[α− xα (1 + α)]

α
.

Note for any α > 1 this is clearly continuous in x > 0. Now consider the first version

of the expression. Clearly as x → 0, xα → 0 and ex
−α → ∞ so the expression goes to −∞.

So for sufficiently small x > 0, κ(x) < 1. On the other consider the second version of the

expression. Its numerator is

(
1− ex−α

)
[α− xα (1 + α)] .

By the same argument as above with the Fréchet distribution the limit of the above expression

as x→∞ is the same as that of

−x−α · −xα (1 + α)

as x→∞. Thus

lim
x→∞

κ(x) =
1 + α

α
> 1

and thus for sufficiently large x and any α > 1, this distribution has κ > 1.

Finally, consider our claim about AIDS. First note that for this demand function

κ(p) = 2 +
b
(
a− 2b+ b log[p]

)(
a− b+ b log[p]

)2 < 1

as b < 0 and p ≤ e−
a
b < e2−a

b . This is less than 1 if and only if

a2 + 2ab
(

log[p]− 2
)

+ b2
(

1 + log[p]
[

log(p)− 2
])

< b2
(
2− log[p]

)
− ab

or (
a+ b log[p]

)2 − b2
(

log[p] + 1
)
< 0.

Clearly as p → 0 the second term is positive; therefore there is always a price at which

κ(p) > 1. On the other hand as p→ e−
a
b this expression goes to

0− b2

(
1− a

b

)
= b(a− b) < 0.
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Thus there is always a price at which κ(p) < 1.

κ′(p) = b2 −
(
a− 2b+ b log[p]

)2
,

which has the same sign as

b2 −
(
a− 2b+ b log[p]

)2
< b2 − (2b)2 = −3b2 < 0.

Thus κ′ < 0.

We now turn to two important distributions, which are typically used to model the income

distribution, whose behavior is more complex and which, to our knowledge, have not been

analyzed for their curvature properties. We focus only on the two that we believe to be

most common (the first), best theoretically founded (both) and to provide the most accurate

match to the income distribution (the second). Namely, we analyze the lognormal and double

Pareto-lognormal (dPln) distributions, the latter of which was proposed by Reed (2003) and

Reed and Jorgensen (2004). Other common, accurate models of income distributions which

we have analyzed in less detail, appear to behave in a similar fashion.

We begin with the lognormal distribution, which is much more commonly used, and for

which we have detailed, analytic results. However, while most of the arguments for the

below proposition are proven analytically, some simple points are made by computational

inspection.

Proposition 2. For every value σ, there exist finite thresholds y(σ) > y(σ) such that

1. If y ≥ y(σ) then κ′ ≤ 0, and similarly with strict inequalities or if the directions of the

inequalities both reverse.

2. If y ≥ y(σ) then κ ≥ 1, and similarly with strict inequalities or if the directions of the

inequalities both reverse.

Both y and y are strictly decreasing in σ.

Under the lognormal distribution, behavior depends critically on the amount of inequality

or equivalently the standard deviation of the logarithm of the distribution: there is famously a

one-to-one relationship between the Gini coefficient associated with a lognormal distribution

and its logarithmic standard deviation. If inequality is not high, the behavior of curvature

like a normal distribution occurs except at fairly high incomes levels; for a Gini of .34, for

example, monotonicity of κ is preserved until the top 1% of the income distribution and
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Figure 9: Curvature of a lognormal distribution calibrated to the US income distribution:
parameters are µ = 10.5 and σ = .85.

log-concavity outside of the top 30%. However, if inequality is sufficiently high, in particular

if the Gini coefficient is above about .72, then the lognormal distribution has κ > 2 over some

range and then κ converges back to 1 for very large incomes. This result is not discussed in

the proposition, but can easily be seen by inspecting a graph of the expression for κ given

in the proof of the proposition for various values of σ yielding Gini coefficients of various

magnitudes around .72.

For intermediate levels of inequality between these, like that seen in nearly every country,

the lognormal distribution has curvature that rises from −∞ to above unity before gradually

returning towards unity. For an example calibrated to the US income distribution (Figure

9), the crossing to above unity occurs at an income of about $33k, between the mode and the

median and the downward slope begins at about $100k. Despite this, curvature never falls

below unity again and in fact is at each quantile increasing in σ (again, not discussed in the

proposition). Again taking the example of the US income-calibrated distribution, curvature

peaks at about 1.21 and only falls to 1.20 by $200k, eventually leveling out to about 1.1

for the extremely wealthy.54 Thus, in practice, curvature is closer to flat at the top than

significantly declining.

54Note, however, that in the true limit as y → ∞, κ → 1. However, in practice this occurs at such high
income levels that the asymptote to a bit above 1 is a more realistic representation.
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Proof. For a lognormal distribution with parameters (µ, σ), F (x) = Φ
(

log(x)−µ
σ

)
, so that

Q(p) = 1− Φ

(
log(p)− µ

σ

)
, Q′(p) = −

φ
(

log(p)−µ
σ

)
σp

and

Q′′(p) = −
φ′
(

log(p)−µ
σ

)
σ2p2

+
φ
(

log(p)−µ
σ

)
σp2

= −
φ
(

log(x)−µ
σ

)
σ2p2

(
σ +

log(x)− µ
σ

)
.

where the second equality follows from the identities regarding the normal distribution from

the previous proof and y ≡ log(p)−µ
σ

. Thus

κ (p(y)) =
(y + σ) [1− Φ(y)]

φ(y)
. (30)

Note that we immediately see, as discussed above, that κ increases in σ at each quantile as

the inverse hazard rate 1−Φ
φ

> 0; similarly, for any quantile associated with y, κ → ∞ as

σ →∞ so it must be that the set of y for which κ > 1 a) exists for sufficiently large σ and

b) expands monotonically in σ. This implies that, if point 2) of the proposition is true, y

must strictly decrease in σ. This also implies that for sufficiently large σ, κ > 2 for some y.

Now note that limy→∞
y[1−Φ(y)]
φ(y)

= 1. To see this, note that both the numerator and

denominator converge to 0 as 1−Φ dies super-exponentially in y. Applying L’Hôpital’s rule:

lim
y→∞

y [1− Φ(y)]

φ(y)
= lim

y→∞

1− Φ(y)− φ(y)y

φ′(y)
=
yφ(y)− [1− Φ(y)]

yφ(y)
=

0

0
.

where the first equality follows from the identity for φ′ we have repeatedly been using, and

from here on we no longer note the use of. Again applying L’Hôpital’s rule:

lim
y→∞

y [1− Φ(y)]

φ(y)
= lim

y→∞

φ(y) + yφ′(y) + φ(y)

φ(y) + yφ′(y)
= lim

y→∞

2φ(y)− y2φ(y)

φ(y)− y2φ(y)
= lim

y→∞

2− y2

1− y2
= 1.

The same argument, but one step less deep, shows that limy→∞
σ[1−Φ(y)]
φ(y)

= 0. Together these

imply that limy→∞ κ (p(y)) = 1 and thus that, if κ > 1 at some point, it must eventual

decrease to reach 1.

Similar methods may be used to show, as discussed in the text, that κ→ −∞ as y → −∞.

Furthermore we know from the proof for the normal distribution above that y[1−Φ(y)]
φ(y)

is

monotone increasing and that σ[1−Φ(y)]
φ(y)

is monotone decreasing. The latter point implies

that the set of y for which κ is decreasing must be strictly increasing in σ and thus that, if

point 1) of the proposition is true, then y must strictly decrease in σ.
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Figure 10: The figure shows the value, in logarithmic scale, of the left-hand side of inequality
31.

All that remains to be shown is that κ’s comparison to unity and the sign of κ′ obey

the threshold structure posited. Note that we only need to show the cut-off structure for κ′

and that this immediately implies the structure for κ, given the smoothness of all functions

involved, because if κ increases up to some threshold and then decreases monotonically while

reaching an asymptote of unity, it must lie above unity above some threshold. Otherwise, if

it ever crossed below unity, it would have to be increasing in some region to asymptote to

unity at very large p, violating the threshold structure for κ′. Furthermore, the same logic

implies that that the region where κ > 1 must be strictly larger than the region where κ′ < 0

(that y > y ) as κ must rise strictly above unity before sloping strictly down towards it.

We drop arguments wherever possible in what follows to ease readability. We use the

symbol ∝ to denote expressions having the same sign, not proportionality as is typical.

κ′ =
(1− Φ)φ− (y + σ)φ2 − (y + σ)(1− Φ)φ′

φ2
=

1− Φ− (y + σ) [φ− y(1− Φ)]

φ
∝

1− Φ− (y + σ) [φ− y(1− Φ)] ∝ 1− Φ

φ− y(1− Φ)
− y − σ.

where the last sign relationship follows by the common inequality that φ(y) > y [1− Φ(y)].

Thus κ′ > 0 if and only if
1− Φ

φ− y(1− Φ)
− y > σ. (31)

Figure 10 shows that the left-hand side of this inequality is strictly decreasing. We have not

found a simple means to prove this formally, but it is clearly true by inspection of the figure.

Thus the left-hand side of inequality 31 must cross σ at most once and this must be from

above to below.

It only remains to show that this expression does, in fact, make such as single crossing
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for all values of σ. It suffices to show that the small y limit of the left-hand side of inequality

31 is ∞ and that its large y limit is 0. We show these in turn.

The first claim is easy: clearly −y (1− Φ)→∞, while 1−Φ is finite, as y → −∞. Thus

the first term approaches 0 and the second ∞ as y → −∞.

The second claim is more delicate. The expression is the same as

(1− Φ) (1 + y2)− yφ
φ− y (1− Φ)

.

This asymptotes to the indefinite expression 0
0

as y →∞ as it is well-known that limy→∞
φ

y(1−Φ)
=

1. Applying L’Hôpital’s rule yields

lim
y→∞

(1− Φ) (1 + y2)− yφ
φ− y (1− Φ)

= lim
y→∞

−φ (1 + y2) + 2y (1− Φ)− φ− yφ′

φ′ − (1− Φ) + yφ
=,

, applying now familiar tricks,

lim
y→∞

2
φ− y(1− Φ)

1− Φ
=

0

0
.

Again, we apply L’Hôpital’s rule:

lim
y→∞

2
φ− y(1− Φ)

1− Φ
= lim

y→∞
2
φ′ − (1− Φ) + yφ

φ
= lim

y→∞
−1− Φ

φ
= 0.

Even the slight decline in the lognormal distribution’s curvature at very high incomes is

an artifact of its poor fit to incomes distributions at very high incomes. It is well-known that

at very high incomes the lognormal distribution fits poorly; much better fit is achieved by

distributions with fatter (Pareto) tails, especially in countries with high top-income shares

like the contemporary United States (Atkinson et al., 2011). A much better fit is achieved by

the dPln distribution (Reed, 2003). Figure 11’s left panel shows curvature as a function of

income for the parameters Reed estimates (for the 1997 US income distribution). Curvature

monotonically increases up the income distribution.

However it levels off at quite moderate income (it is essentially flat beyond $100k) and at

a lower level (≈ 1.04) than under the log-normal calibration, except at exorbinate incomes,

where the lognormal distribution has thin tails. Thus it actually has a thinner tail, except at

the very extreme tail, than the log-normal calibration, paradoxically. This is because Reed

calibrated only to the mid-section of the US income distribution, given that the survey he

used is notoriously thin and inaccurate at higher incomes; this led him to estimate a very
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Figure 11: Curvature of the double Pareto-lognormal distribution lognormal under pa-
rameters estimated by (Reed, 2003) (left) and by updated by us (right); parameters in
the former case are α = 22.43, β = 1.43, µ = 10.9, σ = .45 ad in the latter case are
α = 3, β = 1.43, µ = 10.9, σ = .5. The x-axis has a logarithmic scale in income.

high (thin-tailed) Pareto coefficient in the upper tail of 22.43. Consensus economic estimates,

for example Diamond and Saez (2011), suggest that that 1.5-3 is the correct range for the

Pareto coefficient of the upper tail of the income distribution in the 2000’s.

We therefore construct our own calibration consistent with that finding. To be conser-

vative we set the upper tail Pareto coefficient to 3, maintain β = 1.43 to be consistent with

Reed and because the lower-tail is both well-measured in his data and has not changed dra-

matically in the last decade and a half (Saez, 2013). We then adjust µ and σ in the unique

way, given these coefficients, to match the latest US post-tax Gini estimates (.42), using a

formula derived by Hajargasht and Griffiths (2013), and average income ($53k). This yields

the plot in the right panel of Figure 11. There curvature continues to monotonically increase

at a significant rate up to quite high incomes: at $50k it is .87, at $100k it is 1.19 and

by $200k it has leveled off at 1.31, near its asymptotic value of 1 + 1
α

= 4
3
. It is this last

calibration that we use to represent the dPln calibration US income distribution in the text.

Moreover, the monotone increasing nature of curvature is not only true in the US data.

While we have not been able to prove any general results about this four-parameter class,

we have calculated similar plots to Figure 11 for every country for which a dPln income

distribution has been estimated, as collected by Hajargasht and Griffiths. In every case

curvature is monotone increasing in income, though in some cases it levels off at a quite

low level of income (typically when the Gini is high relative to the upper tail estimate).

Even this leveling off seems to us likely to be a bit of an artifact, arising from the lack of

reliable top incomes tax data in many of the developing countries on which Hajargasht and

Griffiths focus. In any case, it appears that a “stylized fact” is that a reasonable model of

most country’s income distributions has curvature that is significantly below unity among
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the poor, rises above unity for the rich and monotone increasing over the full range so long

as top income inequality is significant relative to overall inequality.

D.2 Laplace inverse demand functions

The following table contains Laplace inverse demand functions corresponding to inverse

demand functions used in the literature. Although for most Laplace inverse demand functions

we include only a few terms, closed-form expressions for all terms exist and will be included

in future versions of this draft. A few other Laplace inverse demand functions will be added.

Here pa refers to a mass-point of magnitude pa at location a. In the alternative notation on

the lower lines, δ(x− a) refers to a mass-point of magnitude 1 at location a, i.e. to a Dirac

delta function centered at a.
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Constant elasticity / Pareto: q(P ) =
(
P
β

)−ε
P (q) = βq−1/ε

p(t) : p 1
ε

= β

p(t) : βδ
(
t− 1

ε

)
Constant pass-through / BP: q(P ) =

(
P−µ
β

)−ε
P (q) = µ+ βq−1/ε

p(t) : p0 = µ, p 1
ε

= β

p(t) : βδ
(
t− 1

ε

)
+ µδ(t)

Gumbel distribution: q(P ) = exp
(
− exp

(
P−α
β

))
P (q) = α + β log(− log(q))

p(t) : p0 = µ, p(t) = −β
t

for t < 0

p(t) : αδ(t)− β1t<0

t

Weibull distribution: q(P ) = e−(Pβ )
α

P (q) = β(− log(q))
1
α

p(t) : (−1)
1
α βt−

1
α−1

Γ(− 1
α)

for t < 0

p(t) : (−1)
1
α β1t<0t

− 1
α−1

Γ(− 1
α)

Fréchet distribution: q(P ) = 1− e−(P−µβ )
−α

P (q) = µ+ β(− log(1− q))−1/α

p(t) : p0 = µ, p 1
α

= β, p 1
α
−1 = − β

2α
, p 1

α
−2 = β

8α2 − 5β
24α
, ...

p(t) :
(
β

8α2 − 5β
24α

)
δ
(
t− 1

α
+ 2
)

+ βδ
(
t− 1

α

)
− βδ(t− 1

α
+1)

2α
+ µδ(t) + . . .

Logistic distribution: q(P ) =
(

exp
(
P−µ
β

)
+ 1
)−1

P (q) = µ− β log
(

1
1−q − 1

)
p(t) : p0 = µ, p

(1)
0 = −β, p−1 = −β, p−2 = −β

2
, p−3 = −β

3
, p−4 = −β

4
, ...

p(t) : −β
∑∞

j=1
δ(j+t)
j

+ µδ(t)− βδ′(t)

Log-logistic distribution: q(P ) =
((

P
σ

)γ
+ 1
)−1

P (q) = σ
(

q
1−q

)−1/γ

p(t) : p 1
γ

= σ, p 1
γ
−1 = −σ

γ
, p 1

γ
−2 = σ

2γ2
− σ

2γ
, p 1

γ
−3 = − σ

6γ3
+ σ

2γ2
− σ

3γ
, ...

p(t) :
(

σ
2γ2
− σ

2γ

)
δ
(
t− 1

γ
+ 2
)

+ σδ
(
t− 1

γ

)
− σδ(t− 1

γ
+1)

γ
+ . . .

Laplace distribution (q < 1
2
): q(P ) = 1

2
exp

(
µ−P
β

)
P (q) = µ− β log(2q)

p(t) : p0 = µ− β log(2), p
(1)
0 = −β

p(t) : δ(t)(µ− β log(2))− βδ′(t)
Laplace distribution (q > 1

2
): q(P ) = 1− 1

2
exp

(
P−µ
β

)
P (q) = µ+ β log(2(1− q))

p(t) : p0 = β log(2) + µ, p−1 = −β, p−2 = −β
2
, p−3 = −β

3
, p−4 = −β

4
, ...

p(t) : δ(t)(β log(2) + µ)− β
∑∞

j=1
δ(j+t)
j

Normal distribution: q(P ) = erfc
(
P−µ√

2σ

)
P (q) = µ−

√
2σerfc−1(2− q)

p(t) : p
(1)
0 = −

√
π
2
σ, p

(2)
0 = −1

2

√
π
2
σ, p

(3)
0 = 1

24

(
−
√

2π3/2 − 2
√

2π
)
σ, ...

p(t) : −
√

π
2
σδ′(t)− 1

2

√
π
2
σδ′′(t) + 1

24

(
−
√

2π3/2 − 2
√

2π
)
σδ(3)(t) + . . .

lognormal distribution: q(P ) = erfc
(

log(P )−µ√
2σ

)
P (q) = exp

(
µ−
√

2σerfc−1(2− q)
)

p(t) : p
(1)
0 =

√
π
2

(−eµ)σδ′(t), p
(2)
0 = 1

4
πeµσ2 − 1

2

√
π
2
eµσ, ...

p(t) :
(

1
4
πeµσ2 − 1

2

√
π
2
eµσ
)
δ′′(t)−

√
π
2
eµσδ′(t) + . . .
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Almost Ideal Demand System: q(P ) = α+β log(P )
P

P (q) = −
βW

(
− qe

−α
β

β

)
q

p(t) : p0 = e−
α
β , p−1 = e

− 2α
β

β
, p−2 = 3e

− 3α
β

2β2 , p−3 = 8e
− 4α
β

3β3 , p−4 = 125e
− 5α
β

24β4 , ...

p(t) : 125e
− 5α
β δ(t+4)

24β4 + 8e
− 4α
β δ(t+3)
3β3 + 3e

− 3α
β δ(t+2)
2β2 + e−

α
β δ(t) + e

− 2α
β δ(t+1)
β

+ . . .

Constant superelasticity: q(P ) =
(
ε log

(
θ−1
θP

)
+ 1
) θ
ε P (q) = (θ−1)e

1
ε−

qε/θ

ε

θ

p(t) : p0 = e
1
ε − e

1
ε

θ
, p− ε

θ
= e

1
ε

θε
− e

1
ε

ε
, p− 2ε

θ
= e

1
ε

2ε2
− e

1
ε

2θε2
, p− 3ε

θ
= e

1
ε

6θε3
− e

1
ε

6ε3
, ...

p(t) :
(
e
1
ε

2ε2
− e

1
ε

2θε2

)
δ
(
t+ 2ε

θ

)
+ δ(t)

(
e

1
ε − e

1
ε

θ

)
+
(
e
1
ε

θε
− e

1
ε

ε

)
δ
(
t+ ε

θ

)
+ . . .

Cauchy distribution: q(P ) =
tan−1(a−Pb )

π
+ 1

2
P (q) = a+ b tan

(
π
(

1
2
− q
))

p(t) : p1 = b
π
, p0 = a, p−1 = −πb

3
, p−3 = −π3b

45
, p−5 = −2π5b

945
, p−7 = − π7b

4725
, ...

p(t) : aδ(t) + bδ(t−1)
π
− 1

3
πbδ(t+ 1)− 1

45
π3bδ(t+ 3)− 2

945
π5bδ(t+ 5)− π7bδ(t+7)

4725
+ . . .

Singh Maddala distribution: q(P ) =
((

P
b

)a
+ 1
)−q̃

P (q) = b
(
q−

1
q̃ − 1

) 1
a

p(t) : p 1
aq̃

= b, p−a−1
aq̃

= − b
a
, p− 2a−1

aq̃
= b

2a2
− b

2a
, p− 3a−1

aq̃
= − b

6a3
+ b

2a2
− b

3a
, ...

p(t) :
(

b
2a2
− b

2a

)
δ
(

2a−1
aq̃

+ t
)

+ bδ
(
t− 1

aq̃

)
− bδ(a−1

aq̃
+t)

a
+ . . .

Tukey lambda distribution: q(P ) = P (−1)(P ) P (q) = (1−q)λ−qλ
λ

p(t) : p−λ = − 1
λ
, p0 = 1

λ
, p−1 = −1, p−2 = λ

2
− 1

2
, p−3 = −λ2

6
+ λ

2
− 1

3
, ...

p(t) :
(
−λ2

6
+ λ

2
− 1

3

)
δ(t+ 3) + δ(t)

λ
+
(
λ
2
− 1

2

)
δ(t+ 2)− δ(t+λ)

λ
− δ(t+ 1) + . . .

Wakeby distribution: q(P ) = P (−1)(P ) P (q) = µ− γ(1−q−δ)
δ

+
α(1−qβ)

β

p(t) : p0 = α
β
− γ

δ
+ µ, p−β = −α

β
, pδ = γ

δ

p(t) : δ(t)
(
α
β
− γ

δ
+ µ
)
− αδ(t+β)

β
+ γδ(t−δ)

δ
+ . . .

E Details of Applications

E.1 Antràs-Chor

In this subappendix we include additional details about our method of solving the AC model

and illustrate a quadratic solution involving only a single implicit solution to a fully explicit

equation..

WE PLAN TO ADD THE ADDITIONAL DETAILS IN THE NEXT DRAFT.

We now consider the solution of the restricted AC model in the case. As in the relaxed

solution, consider the optimal choice of a path for β subject to producing a total quantity

q̂. Note that q(j; β) is a strictly increasing function of j for any path of β achieving q̂ by

definition. Thus it is equivalent, instead of solving for the optimal restricted β for each j,

to solve for the optimal β?? for each q (j; β) ∈ [0, q̂] and then invert the resulting q (j; β??)

function to recover the value optimal β at each j. This method preserves the separability
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we used in the relaxed problem and thus greatly simplifies the restricted problem. Wherever

it does not create confusion we suppress as many arguments as possible, especially the

dependence on β, to preserve notational economy.

By the same arguments as in the restricted case, the cost of production q̂ is C (q̂; β) where

C (q̂; β) =

ˆ q̂

0

[1− β(q)]MR(q)dq,

where β(q) is a notationally-abusive contraction of β (j (q; β)). However, to actually produce

q̂, we need ˆ 1

0

S ([1− β (q(j))]MR (q(j))) dj = q̂,

where S = MC−1, the supply curve, exists because of our assumption that MC is strictly

monotone increasing. Changing variables so that both integrals are taken over j:

C (β) =

ˆ 1

0

[1− β (q(j))]MR (q(j))S ([1− β (q(j))]MR (q(j))) dj.

Thus the firm solves a Lagrangian version of this problem that is separable in each j, or

equivalently q:

max
β

ˆ 1

0

λS ([1− β (q(j))]MR (q(j)))−([1− β(q)]MR(q)S ([1− β (q(j))]MR (q(j)))) dj−λq̂.

At each q this is a simple maximization problem. The firm chooses the value of β maximizing

λS ([1− β (q)]MR (q))− [1− β(q)]MR(q)S ([1− β (q)]MR (q)) ,

the difference between the total value of the production by that firm and the total cost of

that production. Clearly both terms are decreasing in β given that MR > 0 in any range

where the firm would consider producing, so given that the firm chooses between only two

values of β, βI > βO, the firm will strictly choose in-sourcing if and only if

MR(q) >
λ [S ([1− βO]MR (q))− S ([1− βI ]MR (q))]

[1− βO]S ([1− βO]MR (q))− [1− βI ]S ([1− βI ]MR (q))
. (32)

If the sign here is equality (which generically occurs on a set of measure 0 so long as the

functions are nowhere constant relative to one another) then the firm is indifferent and if the

inequality is reversed the firm strictly chooses in-sourcing. As λ rises, the firm will in-source

less and produce more; thus varying λ over all positive numbers traces out all potentially
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optimal solutions. Note that this could easily be extended to a situation where the firm has

any simple restricted choice of β, not just two values.

Furthermore, once β(q) is set, we can easily recover the optimal β?? for each j by noting

that the optimal value of β?? at j̃ is the optimal value at q̃ satisfying the production equation

ˆ j̃

0

S ([1− β?? (q(j))]MR (q??(j))) dj = q̃.

This implies the differential equation q′(j) = S ([1− β?? (q(j))]MR (q??(j))) and thus the

inverse differential equation j′(q) = 1
S([1−β??(q)]MR(q??))

which together with the boundary

condition j(0) = 0 yields j(q) and thus β?? at each j.

It remains only to pin down the optimal value of λ. To do this, denote the set of q on

which Inequality 32 is satisfied BI(λ) and on which it is reversed BO(λ).55 Total production

is

qλ =

ˆ
j∈(0,1):q(j)∈BI(λ)

S ((1− βI)MR (q(j))) dj +

ˆ
j∈(0m1):q(j)∈BO(λ)

S ((1− βO)MR (q(j))) dj,

while total cost Cλ =

ˆ
BI(λ)∩(0,qλ)

[1− βI ]MR (q) dq +

ˆ
BO(λ)∩(0,qλ)

[1− βO]MR (q) .

Profit is

R (qλ)− Cλ

and the first-order condition for its maximization is

MR (qλ)
∂qλ
∂λ
− ∂Cλ

∂λ
= 0 =⇒ MR (qλ) =

∂Cλ
∂λ
∂qλ
∂λ

= λ,

because λ is defined as the shadow cost of relaxing the constraint on production.

Now we consider obtaining as close as possible to an explicit solution. Note that, to do

so, we must be able to characterize S,BO and BI explicitly. S is the inverse of MC and

thus MC must admit an explicit inverse. To characterize BO and BI explicitly requires

solving Inequality 32 with equality to determine the relevant thresholds, which, as we will

see, requires marginal revenue to have an explicit inverse.

One of the simplest forms satisfying these conditions and yet yielding our desired non-

monotonicity is P (q) = p0 + p−tq
t + p−2tq

2t and MC(q) = mc−tq
t, where t, p0, p−t,mc−t >

55We ignore the generically 0-measure set on which it is an equality.
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0 > p−2t. In this case S(p) =
(

p
mc−t

) 1
t
. Thus the equality version of Inequality 32 becomes

MR(q) =

λ

([
(1−βO)MR(q)

mc−t

] 1
t −

[
(1−βI)MR(q)

mc−t

] 1
t

)
(1− βO)

[
(1−βO)MR(q)

mc−t

] 1
t − (1− βI)

[
(1−βI)MR(q)

mc−t

] 1
t

=⇒

=⇒ MR(q) =
λ
[
(1− βO)

1
t − (1− βI)

1
t

]
(1− βO)

1+t
t − (1− βI)

1+t
t

≡ λk,

where k is the relevant collection of constants. Note that this is an extremely simple threshold

rule in terms of marginal revenue. Given that we have chosen a form of marginal revenue

that admits an inverse, it is simple to solve out for the threshold rule in terms of quantities;

this is why we needed marginal revenue to have an inverse solution.

p0 + (1 + t)p−tq
t + (1 + 2t)p−2tq

2t = λk =⇒

q =

(
−p−t(1 + t)±

√
p−t(1 + t)2 + 4 (p0 − kλ) p−2t(1 + 2t)

2p−2t(1 + 2t)

) 1
t

.

Between these two roots, in-sourcing is optimal; outside them, outsourcing is optimal.56

This provides closed-form solutions as a function of λ, but λ remains to be determined.

This is, unfortunately, where things start to get a bit messier. The integral determining qλ can

be explicitly taken, but only in terms of the less-standard Appell Hypergeometric function.

The equation for MR (qλ) = λ therefore cannot be solved explicitly for λ. However, it is

a single explicit equation. Once λ has been determined, optimal sourcing is determined in

closed-form as described above. We plot this and the relaxed optimal β, in Figure 12, in

the same format as in the text for the case when p0 = .2, p−t = 2, p−2t = −4,mc−t = .5, t =

.5, βI = .8, βO = .3 . Clearly we obtain similar, non-monotone results, but now these require

only a single call of Newton’s method to solve an otherwise explicit equation, as opposed to

the two-dimension search we required to solve the case presented in the text.

We do not discuss second-order conditions here, but they can easily be derived and

checked to hold for this example as well as for the example in the text. A grossly sufficient

condition is that marginal revenue is declining over the solution range, as is the case in both

of these examples.

56Actually if λk < p0 then the lower root should be interpreted as 0.
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Figure 12: Relaxed and restricted solutions to the AC model when P (q) = .2 + 2q
1
2 − 4q,

MC(q) = q
1
2

2
, βO = .3 and βI = .8.

E.2 Stole-Zweibel

FORTHCOMING IN THE NEXT DRAFT.

E.3 Monopolistic competition

The following brief discussion will be extended in the next draft.

E.3.1 Flexible Krugman model

Here we briefly discuss the logic behind the observation in the main text. It is convenient

to express the model’s equations in terms of the equilibrium level of marginal cost MC?.57

Output optimally designated for the domestic market and the export market will satisfy

R′(qd) = MC? and R′(qx) = τ MC?, respectively, and therefore may be solved for in closed

form in terms of MC? for tractable specifications of the revenue function (or consumer

preferences).58 The same is true for wages, since w = MC?/L′(qd + τqx).

For a chosen MC? we may compute the level of fixed cost f consistent with it using the

57The case of a single country corresponds to the Dixit-Stiglitz model. It may be obtained from our
two-country discussion by setting τ →∞ and qx = 0. In this case one does not have to express the model’s
equations in terms of the equilibrium level of marginal cost MC? as we do below. Instead, for tractable
functions R (q) and L (q) one can solve for equilibrium quantity q? in closed form (in terms of the fixed cost
of production f) from an equation that combines profit maximization and free entry: (L(q) + f)R′(q) =
R(q)L′(q).

58As mentioned in the main text, a convenient choice of numéraire allows us to keep the revenue function
R (.) independent of economic circumstances.
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free-entry condition: R(qd)+R(qx) = wL(qd+τqx)+wf . The equilibrium number (measure)

N? of firms in each economy then satisfies N? = LE/(L (qd + qx) + f), where LE is the labor

labor endowment one of the two economies.59 Other variables of interest, e.g. trade flows or

welfare, are then simply functions of the ones discussed above. A future draft of this paper

will contain a more detailed explanation.

Krugman model with non-iceberg and iceberg international trade costs. Al-

though the Krugman model with non-iceberg trade costs is not our main focus here, we

mention it for completeness. Let us assume the presence of non-iceberg international trade

costs that require hiring labor LT (qx) in order for qx to reach its destination in the other

country.60 The export FOC is now R′(qx)−wL′T (qx) = τMC?, while the free entry condition

becomes R(qd) + R(qx) = wL(qd + τqx) + wLT (qx) + wf . The resulting number (measure)

of firms is N? = LE/((L (qd + qx) + f) +LT (qx)). The model may be solved explicitly along

the same lines in terms of chosen MC? and w, with f and τ treated as derived quantities.

E.3.2 Flexible Melitz model

Single country. The firm profit maximization condition and the free entry condition are

R′ (q) = wL′ (q; a) , (33)

R(qc) = wL(qc; ac) + wf. (34)

A convenient solution strategy is to choose qc and then calculate fe as a derived quantity. For

a chosen qc we can find ac explicitly by combining (33) and (34) into R′ (qc) (L(qc; ac) + f)=

R(qc)L
′ (qc; ac), since L (q; a) is assumed to be tractable also with respect to a. Wages are

then given recovered from (34): w = R(qc)/(L(qc; ac) + f).

Now we need to show how to calculate the fixed cost of entry fe and the measure of

firms. The fixed cost of entry consistent with the chosen cutoff quantity is given simply by

the unrestricted entry condition:

wδefe = Π̄ =

ˆ

q≥qc

(R (q)− wL (q; a)− wf) dG (a (q)) .

Here a (q) is the firm’s productivity parameter as an explicit function of the optimally chosen

59LE may be exogenous, as in the original Krugman model, but even for endogenous labor supply it is
possible to obtain fully explicit solutions to the model in terms of the parameter MC?.

60In a symmetric equilibrium it does not matter how this labor is split between the countries, as long
as symmetry of the model is maintained. For asymmetric countries, we could assume that the transport
requires labor from both countries. The model may be solved in terms of marginal costs of serving each
market.
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quantity q that results from using (33). For ParetoG, and L and R tractable from the point of

view of q (but not necessarily having a linear term) and L (q; a) linear in a, there exist closed-

form expressions for this integral in terms of special functions, which are straightforward to

derive, especially if one uses symbolic manipulation software such as Mathematica. If the

shape parameter of the Pareto distribution is a negative integer, the integrals actually reduce

to simple power functions.

If Me denotes the measure of firms that enters each period (in one country), then the

measure of operating firms is M = G (ac)Me/δe. The total labor used in the economy is

given by LE = Mefe +Mf +ML̄, where L̄ = G (ac)
−1 ´

q≥qc L (q; a) dG (a (q)) is the labor on

average hired for the variable cost of production. Under the same assumptions, the integral

again has an explicit form in terms of special functions. We see that in these cases we can

get fully explicit expressions for fe and M in terms of chosen qc and LE.

Other quantities of interest, such as trade flows or welfare, may be found in an analogous

fashion. In a future draft of this paper we will provide a more detailed discussion.

Two countries with non-iceberg and iceberg international trade costs. Our solu-

tion strategy is treat MC1n and MC2x as given and to express other variables of the model

in terms to these two chosen parameters. In particular, we will show how to derive explicit

expressions for the fixed cost of exporting fx and cost of entry f e. The (variable-cost) labor

requirement L (q; a) is assumed to be a tractable combination of equidistant powers of a,

with coefficients that in general depend on q. Firms’ profit maximization leads to the set of

equations:

MCn = R′(qn) (35a)

MCn = wL′ (qn; a) (35b)

MCx = R′(qd) (35c)

MCx = 1
τ
R′(qf )− 1

τ
wL′T (qf ) (35d)

MCx = wL′(qd+τqf ; a) (35e)

R(q1n)− wL(q1n; a1) = f (35f)

R(q2d) +R(q2f )− wL(q2d + τq2f ; a2)− wLT (q2f ) = f + fx (35g)

Here qn is the quantity sold by a non-exporting firm, while qd and qf represent quantities

that reach domestic and foreign customers of an exporting firm, respectively. In addition to

exporting cost wLT (qf ), we allow for an iceberg trade cost factor τ ≥ 1.

For a chosen MC1n, we can calculate q1n from (35a). The corresponding a1 may be
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found by solving a linear equation that results from combining (35b) and (35f) in a way that

eliminates wages. Wages then may be recovered by substituting back to (35b).

For a chosen MC2x, we can derive q2d from (35c) and q2f from (35d). The value of a2 is

then determined by (35e). We find q2n by solving (35a) and (35b) with MC2n eliminated,

and then in turn use one of these to find MC2n. This means that we know the marginal cost

at the cutoffs. Fixed cost of exporting fe is then identified from (35g).

For a given marginal cost, we can find the corresponding quantities and productivity

parameters a by a similar method from (35a-35e), this time treating w as known. We denote

the resulting functions qn (MCn), qd (MCx), qx (MCx), an (MCn), and ax (MCx). Using

these functions we can now determine the entry labor requirement fe from the unrestricted

entry condition:

wδefe = Π̄ =

ˆ

y∈Sn

Π (qn (y) ; an (y)) dG (an (y)) +

ˆ

y∈Sx

Π (qx (y) ; ax (y)) dG (ax (y)) ,

where Π is the profit function (revenue minus cost), G (a) is the cumulative distribution

function of a, and the integration ranges are Sn ≡ (MC2n,MC1n) and Sx ≡ (0,MC1n).

Under various assumptions these integrals may be evaluated in closed form, often involving

special functions. If a measure Me of firms enters each period (in one of the countries), then

the equilibrium measure of operating firms is M = MeG (a1) /δe and that of exporting firms

is Mx = MeG (a2) /δe. These measures may be calculated from the labor market clearing

condition Mefe +Mf +Mxfx + (M −Mx)L̄n +MxL̄x = LE, where

L̄n ≡ 1
G(a1)−G(a2)

ˆ

y∈Sn

L (qn (y) ; an (y)) dG (an (y)), L̄x ≡ 1
G(a2)

ˆ

y∈Sx

L (qx (y) ; ax (y)) dG (ax (y)).

Under the same assumptions as before, these integrals may be evaluated in closed form.

Again, other variables of interest, such as trade flows or welfare, may be obtained in a

similar way.

E.3.3 Flexible Melitz/Melitz-Ottaviano model with non-separable utility

While a significant part of the international trade literature relies on separable utility func-

tions, there exist realistic economic phenomena what are more easily modeled with non-

separable utility. An instantly classic alternative to the Melitz model that uses non-separable

utility is the model of Melitz and Ottaviano, which assumes that with greater selection of

heterogeneous-good varieties available to consumers, the marginal gain from an additional
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variety decreases relative to the gains from increased quantity. Trade liberalization leads to

tougher competition, which results not only in higher productivity, but also in the decrease

of markups charged by a given firm.

Here we briefly discuss a generalization of the flexible Melitz model where the utility

function is allowed to be non-separable. This generalized model contains as special cases

both the Melitz model and the Melitz and Ottaviano model.61 The utility is of the form

UΩ ≡ F
(
U

(1)
Ω , U

(2)
Ω , ..., U

(m)
Ω

)
, U

(i)
Ω ≡

ˆ
Ω

U (i,ω) (qω) dω.

In order to preserve tractability, we assume that U (i,ω) (qω) are linear combinations62 of

equally-spaced powers of qω and that the set of exponents does not depend on i or ω.

For example, we could specify UΩ ≡ U
(1)
Ω + κ1(U

(1)
Ω )ξ1 + κ2(U

(2)
Ω )ξ2 , U

(1)
Ω ≡

´
Ω
qγ1ω dω, and

U
(2)
Ω ≡

´
Ω
qγ2ω dω, with (γ1 + 1)/(γ2 + 1) equal to the ratio of two small integers. The choice

κ1 = κ2 = 0 corresponds to the Melitz model, while the choice ξ1 = 2, ξ2 = 1, γ1 = 1, and

γ2 = 2 gives the Melitz and Ottaviano model, which is based on a non-homothetic quadratic

utility. Our general specification allows also for homothetic non-separable utility functions

that feature market toughness effects analogous to those in the Melitz and Ottaviano model.

It is straightforward to verify that just like the flexible Melitz model with separable

utility, this more general version leads to tractable optimization by individual firms, as well

as for tractable aggregation under the same conditions. The reason for the tractability of

the firm’s problem is simple: the firm’s first-order condition will have the same structure as

previously, a linear combination of equidistant powers (with additional dependence of the

coefficients of the linear combination on aggregate variables of the type
´

Ω
qγω dω for some

constants γ). Given that the nature of the firm’s problem is unchanged, it follows that

being able to explicitly aggregate over heterogeneous firms does not require any additional

functional form assumptions relative to the separable utility case.

F Extension to Multi-Equation Models

FORTHCOMING IN NEXT DRAFT.

61In addition to the heterogeneous-good varieties explicitly considered here, the Melitz and Ottaviano
model includes a homogeneous good. In our discussion, the homogeneous good is absent, but adding it to
the model is straightforward.

62Of course, without loss of generality we could assume that U (i,ω) (qω) are power functions and let the
function F combine them into any desired linear combinations. However, for clarity of notation it is preferable

to keep the number m of different expressions U
(i)
Ω small.
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