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Abstract

Immigration is rapidly changing the composition of the R&D workforce in the
United States, with important implications for both management and public policy.
We study here the Chinese chemists and chemical engineers who migrate to the United
States for their graduate studies. We analyze productivity at the individual researcher
level, thus bypassing the identification issues that earlier studies had to confront when
analyzing the relationship between immigration and innovation at the university or
firm level. Using new data and measurement techniques, we find robust evidence that
Chinese students make disproportionate contributions to the scientific output of their
advisors and departments. We attribute this result to a selection effect as it is relatively
more difficult for Chinese students to gain admission into U.S. PhD programs. Our
results strengthen the case for liberal student migration policies.
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1 Introduction

“The first step in winning the future is encouraging American innovation. (...)
We’re the home to the world’s best colleges and universities, where more students
come to study than any place on Earth. (...) Today, there are hundreds of

thousands of students excelling in our schools who are not American citizens.”

(Barack Obama, 2011 State of the Union address)

Immigration is rapidly changing the composition of the R&D workforce in the United
States. Immigrants represented 37% of the U.S. Science & Engineering workforce with
doctorate degrees in 2000 compared to 24% in 1990 (NSF 2007a). The majority of immigrant
scientists and engineers in the U.S. came as students (NSF 2007b). In 2009, 55% of PhD
degrees in engineering granted by U.S. universities were to temporary visa holders (NSF
2011), with China the largest source country. In fact, recent PhD graduates from U.S.
universities are more likely to have done their undergraduate studies at T'singhua University
or Peking University than at the University of California, Berkeley, or any other institution

(Mervis 2008).

The internationalization of the U.S. R&D workforce has potentially profound implications
for firms and for public policy. On the policy side, the key debate is whether immigration
policy for foreign students should be liberal, which ultimately depends on whether the U.S.
benefits from the influx of foreign scientists and engineers. Migrants may accelerate the rate
of U.S. innovation and strengthen U.S. comparative advantage in graduate-intensive sectors
of production (Freeman 2009). However, migration of foreign graduate students may crowd
out native students (Borjas 2004) or decrease incentives for natives to engage in scientific
careers (Borjas 2006). The latter concerns become more salient if a substantial fraction of

high-skilled migrants return to their home country after completing their education.

On the management side, one might wonder to what extent U.S. firms should rely on
foreign scientists and engineers for the staffing of their R&D labs. Firms may gain access

to engineering and scientific talent not otherwise available by hiring foreign scientists and



engineers. However, having a more culturally diverse R&D workforce could potentially have
a detrimental effect on performance due to communication or other problems. If the market
for scientists and engineers was frictionless, any such consideration would be fully reflected in
the wages of foreign scientists and engineers. Opportunities for arbitrage may exist, however,
in the presence of frictions in the market for scientists and engineers. The only paper we are
aware of in the management literature that speaks to these issues is Mithas & Lucas (2010)

who show that foreign I.T. workers command a wage premium.

This paper contributes to the growing literature on immigration and innovation. Previous
studies have typically analyzed the relationship between the innovative performance of cities
(Kerr & Lincoln 2010), states (Hunt & Gauthier-Loiselle 2010), firms (Kerr & Lincoln 2010;
Passerman 2011) or universities (Stuen, Mobarak & Maskus 2011; Chellaraj, Maskus &
Mattoo 2008; Gurmu, Black & Stephan 2010) and the share of migrants in these entities.
The problem with this approach is that the non-random assignment of migrants to cities,
states, firms or universities requires the development of sophisticated identification strategies.
Here, we directly compare the performance of Chinese students with other students in a given
university or given lab. Our approach complements the earlier literature and strengthens its

findings that migrant scientists and engineers increase the rate of U.S. innovation.

To enable an analysis at the level of the individual student, we collected and merged
data from multiple unconventional sources. Dissertation abstracts were used to build lists
of students.! We identified Chinese students through an ethnic name matching algorithm
as in Kerr (2008a; 2008b). Information on advisors was retrieved from the faculty listings
of the American Chemical Society Directory of Graduate Research. Finally, we matched
both the students and their advisors to their publications. Our final dataset covers more
than 20,000 PhD students graduating from U.S. universities in chemistry, biochemistry and
chemical engineering. These fields account for almost a fourth of PhD degrees in science and

engineering granted in the U.S. in 2006 (NSF 2009).

Regressing different measures of productivity on an indicator variable for Chinese student,

we find that Chinese students significantly outperform other students. The magnitude of the

IThe use of dissertation abstracts was inspired by the work of Kahn & MacGarvie (2011; forthcoming).



differential (between +24% and +62%) is sensitive to the choice of productivity measure but
robust to the inclusion of either school fixed effects or advisor fixed effects. Next, we compare
the Chinese students to three other interesting groups of students: the Indian students, the
Korean students, and the awardees of the NSF doctoral fellowship program- America’s best
and brightest in Science and Engineering. Conditional on acceptance into the same program
or working with the same advisor, Chinese students perform about as well as the NSF fellows.
We also find that the Chinese students outperform both the Indian students and the Korean
students. Thus, our results point to the exceptionalism of China with respect to other source

countries.

We also run a set of regressions where the unit of analysis is the advisor. We regress
the productivity of the advisor as dependent variable on the number of Chinese students
and the number of other students graduating that year, the subsequent year and preceding
year. Chinese students seem to have a larger effect on the productivity of their advisor than
non-Chinese students, which is entirely consistent with the results obtained at the individual

student level.

Our preferred explanation for the productivity differential between the Chinese students
and other students is a selection effect. Evidence from Attieh and Attieh (1997) suggests that
top U.S. universities give substantial preference to U.S. citizens in their admissions decisions.
This could reflect a preference for natives but it may also be the consequence of greater
uncertainty regarding applicants from other countries. In either case, the bar for admissions
is effectively higher for foreign students. The fact that Chinese migrants overwhelmingly
come from a small number of elite Chinese universities provides strong support for the

importance of these selection processes.

The rest of the paper is organized as follows. We first provide background information
on the migration of Chinese students, on the National Science Graduate Fellowships, and
on graduate study and knowledge production in chemistry. We then describe our data and
present the results. Finally, we discuss potential explanations for the productivity differential

between Chinese and other students and conclude.



2 Background
2.1 Migration of Chinese students

The U.S. Immigration and Nationality Act of 1952 formalized the status of foreign students in
U.S. institutions by creating non-immigrant visa categories permitting temporary residence
for study purposes (Bound et al. 2009). The F1 visa grants access to the US to students who
are admitted by a recognized academic institution and can prove sufficient financial support.
The number of student visas issued by the State Department climbed sharply from 65,000 in
1971 to 315,000 visas in 2000 (U.S. Department of State, Annual Report of the Visa Office,

various years).

Until 1978, Chinese migration policy only allowed migration into socialist countries. The
relaxation of this policy gave start to a period of steadily rising Chinese migration to the US.
In 2002, there were more than 700,000 temporary immigrants to the U.S. from China, about
one-tenth of whom were students (USCIS data reported in Poston & Luo (2007)). Around
325,000 scientists and engineers based in the US in 2003 were born in China, Hong-Kong
or Macau (NSF 2007b), of whom around three-fourth had obtained at least one university
degree in the US (ibid.).

Since the end of the Cultural Revolution in 1977, China has made considerable invest-
ments in its higher education system, both in absolute terms and relative to other countries
at similar levels of development.? From 1978 to 2006, the number of institutions of higher
education more than tripled (Li, 2009) and enrollments increased even faster, growing at
approximately 30% a year since 1999 (Li et al. 2008). In the 90’s, Chinese universities
graduated slightly less Bachelors in Science and Engineering than U.S. universities but the

number of Bachelors in S/E graduating from Chinese universities rose sharply in the 00s.

Until recently, Chinese universities offered limited possibilities for graduate education.?

2Resource inputs have also been concentrated on a small number of elite institutions and in Science and
Engineering departments in particular.

30nly slightly more than 1000 doctoral degrees in S/E were awarded in China in 1989 (NSF 2007a). The
number of doctoral degrees in S/E awarded by Chinese universities reached 12,000 in 2003 (ibid), which was
still only about one third of the the number of doctoral degrees in S/E awarded by US universities in the



Conversely, the leadership position of US universities as providers of high-quality doctoral
education is undisputed. Chinese scientists and engineers report educational opportunities

as the most important reason for coming to the United States (NSF 2007b).

2.2 The NSF graduate research fellowship program

Although we are not interested in the National Science Foundation (NSF) graduate research
fellowship (GRF) program per se, we provide a brief of description as the NSF graduate
fellows are a useful reference group for assessing the performance of Chinese students. The
NSF graduate research fellowship is a highly prestigious award for Science and Engineering
students. Freeman et al. (2005) refer to the program as ’Supporting the “Best and Bright-
est” in Science and Engineering’. Applicants to GRF program have to be either US citizen
or permanent residents to be eligible. Around 1,000 fellowships are awarded each year, which
amounts to two fellowships per thousand Science and Engineering Bachelors. Applications
are evaluated by panels based upon recommendation letters, graduate point average (GPA)
obtained in undergraduate studies and quantitative and verbal graduate research exami-
nation (GRE) scores. The program provides financial support for three years of graduate
study. While the dollar value of the stipend was relatively low in the 90’s (at USD 15,000),
the prestige of the award is considerable and could easily be leveraged to obtain the best
possible financial support from host institutions, as universities actively woo NSF graduate

fellows (WestEd 2002).

2.3 Graduate study and knowledge production in chemistry

As in much of the physical and life sciences, knowledge production in chemistry is organized
in laboratories. Typically, graduate students focus on conducting experiments while the
faculty member focuses on conceptual-theoretical activities, including raising grant funding,
formulating research questions, designing research projects and interpreting experimental

results (Laudel 2001). In the words of the Economist (2007) the graduate student is ’the

Same year.



workhorse of the modern laboratory’. Correspondingly, faculty and students work in much
closer collaboration than in the social sciences. Authorship practices reflect the division
of labor within the lab. The median number of authors per paper is five with the first
authorship conferred to the junior scholar who did most of the experiments. The name of
the advisor normally appears at the end of the authorship list and more minor contributions
to the paper are recognized through authorship slots in the middle. Graduate students are

not expected to publish independently of their faculty advisors.

The median enrollment to graduation time is six years for chemistry PhD students (NSF
2006). In the first year of PhD graduate programs, students choose an advisor in whose lab
they will conduct research, in principle for the rest of their PhD. They are mainly supported
by research assistantships (42.2%) and teaching assistantships (41.8%) while around 8% have
fellowships (NSF 2007c). About half of graduating PhD students pursue careers in industry,
either in the classical chemical industry or, increasingly, in the pharmaceutical industry.

About 30% of chemistry PhD graduates pursue careers in the academia.

3 Data

We identify PhD students using Proquest Dissertations and Abstracts. This bibliographic
database lists abstracts of completed PhD theses with the name of the student, the university
and year of graduation as well as the field and the name of the advisor. It also includes links
to the full-text of the theses, which is useful because theses from certain universities include

additional bibliographical information on students (MacGarvie 2007).

Proquest data provides a good coverage of PhD graduates for U.S. universities and recent
years. However, we do not directly observe country of birth or of undergraduate education.
To address this limitation, we use a technique similar to that pioneered by Kerr (2008a,
2008b) in his study of ethnic patent inventors. This technique relies on the fact that names
implicitly contain information about the origin of individuals and ethnicity can be reasonably
well inferred by matching names to lists of ethnic names. Using the same approach, we

constructed lists of Chinese last and first names and used them to code students as Chinese.



To verify the quality of the results obtained with of our ethnic name matching algorithm,
we manually coded hundreds of CVs for universities that require students to report biographic
information in theses. We find that 88% of students coded as Chinese had received their
undergraduate degrees in China (and a further 5% in Taiwan). Conversely, our algorithm
identified 96% of students that did their undergraduate studies in China as Chinese (see
table 1).

[insert table 1 about here]

We construct scientific output measures by matching our list of students to publication
data from Scopus, a bibliographic database from Elsevier. The matching is by no means
trivial and its validity is essential to the credibility of our exercise. To minimize errors in
the matching process, we exploit the fact that papers authored by chemistry students are
almost invariably written with their advisor as coauthor, as discussed earlier. We also use
affiliation data for individual authors.* A publication is matched to a student if nine criteria
are successfully met: an author of the publication needs to have the (1) last name of the
student (2) first initial of the student (3) correct departmental affiliation of the student (4)
correct university affiliation of the student; and one of the coauthors of the paper has to have
(5) the last name of the advisor (6) the first initial of the advisor (7) the correct departmental
affiliation of the advisor and (8) the correct university affiliation of the advisor. Finally, the
paper has to be published (9) no earlier than 3 years prior to the graduation of the student

and no later than the year of graduation.

Scientific output can be measured by counting the number of publications, or adjusting
for the journal impact factor (JIF) (a reasonable proxy for quality of the journal) or by
counting the number of cites received by these publications. Moreover, as discussed earlier,
first-authorship in chemistry has a special meaning and is typically used to recognize the
junior scholar who made the main contribution to the paper. Thus, it is interesting to

distinguish between first-authored publications and all publications. Although our preferred

4Scopus includes affiliation data for individual authors which is not the case for the concurrent biblio-
graphic database ISI Web of Scicne.



measure of productivity is counts of first-authored articles weighted by journal impact factor,

we use the other productivity measures as well.

Proquest includes names of PhD advisors but no other information on them. To enrich
our data set, we match advisors from Proquest to the faculty listings of the Directory of
Graduate Research from the American Chemical Society. This data source has information
on the age, gender as well as educational and professional histories of chemistry and chemical
engineering faculty.® Finally, we infer the area of specialization of faculty in our sample from
the journals in which they publishes. For instance, a faculty member who often publishes in
the Journal of Biological Chemistry is assumed to to be specialized in biochemistry. Table

2 displays a listing of areas of specialization and an example journal for each.

[insert table 2 about here]

4 Descriptive statistics

Our data cover virtually all U.S. PhD-granting departments in chemistry and chemical en-
gineering. We have a total of 21,154 students graduating between 1999 and 2008 of whom
2,220 (10.49%) are identified as Chinese by our name matching algorithm. The share of
Chinese students is slightly increasing over time from an average of 9.5% for the graduation
years from 1999 to 2003 to an average of 11.6% for the graduation years 2004 to 2008. The
share of Chinese students exhibits considerable variation across universities. For instance,
more than 50% of graduates from New York University are Chinese compared to less than
3% at the University of California, Berkeley. The fraction of Chinese students is markedly
higher in schools with lower chemistry R&D budgets. For instance, Chinese students repre-
sent 7.2% of students in the top 25 chemistry departments compared to 12.6% for the rest

of the departments.

5,139 faculty advised at least one student graduating between 1999 and 2008, with a mean

of 4 students and a maximum of 29. An interesting pattern that emerges in our data is that

°For more information about this database, see Gaule (2011)



Chinese students are more likely to match with Chinese advisors.® 29.0% of students advised
by Chinese faculty in U.S. universities are themselves Chinese whereas the Chinese students
represent only 10.5% of the student population. However, we only have 115 Chinese advisors
in our sample (less than 3% of advisors) so that only 5.2% of Chinese students graduate with

a Chinese advisor.

Finally, descriptive statistics by type of student for the six output measures are displayed
in table 3. From this raw data, we can see that Chinese students have higher unconditional

mean productivity than other students for the six output measures.

[insert table 3 about here]

5 Estimation and results

5.1 Regressions at the individual student level

In the first step of our analysis, we regress various measures of scientific output on an
indicator variable for Chinese students. Our controls always include sets of indicator variables
for the year of graduation and for the specialization of the adviaor. We alternate between

specifications with school fixed effects, with advisors fixed effects and with neither of those.

Most regressions are estimated with a quasi-maximum likelihood conditional fixed-effects
Poisson model (“Poisson QML”; see Hausman et al. 1984). This model has several desirable
properties, including consistency of the coefficient estimates independently of any assumption
on the conditional variance as long as the mean is correctly specified (Woolridge 1997)
and consistency in the standard errors even if the data generating process is not Poisson.
This estimator can also be used for fractional and non-negative variables (Santos Silva &
Tenreyro 2006), such as publications counts adjusted by journal impact factors in our case.

We implement this in Stata with the “xtqmlp” procedure written by Tim Simcoe.” Poisson

6Similar patterns for a smaller sample are found by Tanyildiz (2008)
" Available for download at http://people.bu.edu/tsimcoe/code/xtpqml.txt
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QML estimates are interpreted as (exp(8) — 1) % 100 percentage change or approximately as

3 * 100 percentage change.® They can thus be easily compared across regressions.

The results are displayed in table 4 . Each panel (A, B, C) presents the results obtained
with different sets of fixed effects. The coefficient for Chinese student is positive and signif-
icant at 1% in all specifications. Comparing the coefficient for Chinese student horizontally
across different productivity measures, the coefficient tends to be larger for citations than
for raw publication counts, or counts weighted by journal impact factors. Since citations are
usually thought to be a better proxy for the quality of research, this suggests that the produc-
tivity advantage of Chinese students is stronger in the quality dimension than in the quantity
dimension. Comparing the Chinese student coefficient vertically across panels, we find that
it is not sensitive to the inclusion of either school fixed effects or advisor fixed effects. Thus,
the productivity differential of Chinese students does not seem to be explained by school
or advisor characteristics. The point estimates range from 0.216 to 0.497, implying that
Chinese students are between 24.1% (100 (exp(0.216) — 1)) and 64% (100 * exp((0.497) — 1)

more productive than other students.

[insert table 4 and 5 about here]

So far, we have compared Chinese students to all other students combined. However,
it is also interesting to compare Chinese students to other, more specific, populations of
students. We thus repeat the same type of exercise and introduce indicator variables for
Indian students, Korean students?, and Fellows of the National Science foundation (an elite
group of American students). The results are displayed in panels D, E; and F of table 5. The
results for the other groups of students are somewhat less stable across specifications than
those for Chinese students, perhaps due to the smaller size of these groups. Nevertheless,
clear patterns emerge. While Indian and Korean students outperform the residual group of

students who are neither Chinese, Indian, Korean or NSF fellows, they systematically un-

8For instance, a coefficient of 0.216 corresponds to exp(0.216) —1 = 0.241 * 100=24.1% with 0.216 %100 =
21.6% a decent approximation.

9Indian and Korean students are identified using an ethnic name matching algorithm, like the Chinese
students.
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derperform the Chinese students. Another interesting comparison is between the coefficient
for Chinese students and the NSF fellows. Conditional on being in the same school (panel
E) or having the same advisor (panel F), the Chinese students perform about as well the

NSF fellows- America’s best and brightest in Science and Engineering.

5.2 Regressions at the individual advisor level

We continue our analysis by using a completely different, but complementary, approach. We
use the information we have on students and advisors to construct a panel of advisors over
the years 2000-2007. We then regress the output of the advisor on the number of Chinese
and other students graduating in that year, the preceding year, and subsequent year. The
estimation is by ordinary least squares with robust standard errors. Our controls include
school fixed effects, advisor age fixed effects and specialization fixed effects. As discussed
earlier, a chemistry faculty member typically relies on her graduate students to conduct
experiments that she conceives, and her name would invariably be included in the resulting

publications.

[insert table 6 about here]

The results are shown in table 6. Having an extra Chinese student in the lab increases
the output of the advisor by 0.895 paper per year on average whereas a non-Chinese student
increases the output of the advisor by 0.630 only. A F-test rejects the equality between the
coefficient for Chinese students coefficient and the coefficient for other students at the 1%
confidence level. Similar results are obtained when using citations or publications weighted
by journal impact factor. Thus, Chinese students seem to make a disproportionate contri-

bution to the output of their advisors.

The results of these regressions should be interpreted with caution because graduate
students are typically financed through grants to their advisors. Thus, the number of students
that a faculty will have will reflect his (unobserved) past fund-raising success. Furthermore,

the assignment of students to advisors may be non-random. While these considerations may
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threaten the consistency of point estimates for either type of students, it is less clear that
they affect the difference between the two types of students. Thus, while the results at the
advisor level are entirely consistent with those at the individual student level, we place more

confidence in the individual student regressions.

6 Discussion

Why do the Chinese students perform well? Our preferred explanation is a selection effect.
U.S. education enjoys an excellent reputation in China and attracts the brightest and most
motivated Chinese students. Despite the fact that U.S. universities are admitting large
numbers of Chinese students, it is nevertheless considerably more difficult for a Chinese
than for a native to be accepted into a U.S. PhD program. Evidence from Attich and Attieh
(1997) suggests that top U.S. universities give substantial preference to U.S. citizens in their
admission decisions. While this may reflect an underlying preference for natives, it could also
be an optimal response to difficulties encountered in evaluating the applications of Chinese

students (lack of familiarity with schools, grading systems and reference letter writers).

Precisely because of these difficulties, an undergraduate degree from one of the top Chi-
nese universities is a de facto requirement for entry into a U.S. PhD program. Chinese
graduate students come from a restricted set of elite Chinese universities such as Peking
University and Tsinghua University. In China, around 10 million high school finishers take
the national college entrance exam but only three thousand (0.03%) are admitted into the two
most prestigious schools, Peking University and Tsinghua University. Peking University and
Tsinghua University are thus more selective than the most exclusive U.S. institutions; the
majority of MIT undergraduates would not have had standardized test scores high enough
to be admitted into the undergraduate programs of Peking University and Tsinghua Univer-

sity.0

Besides this positive selection story, two other plausible arguments could explain the

10The median SAT math score of MIT undergraduates is 770 which is lower than the top centile cutoff of
the SAT score distribution.
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productivity advantage of the Chinese students. The first argument points to incentive
effects due to higher preferences of the Chinese students for an academic career. The second
explanation emphasizes a cultural predisposition of the Chinese students for higher effort at

work.

According to the first argument, a career in academia and a post-doctoral training in
particular may be relatively more attractive to Chinese students, thus increasing the incen-
tives to publish during the PhD. In particular, immigration considerations may be relevant
as maintaining valid immigration status in the U.S. could be easier when undertaking post-
doctoral training than when working in industry.!’ However, data from the 2001 Survey of
Earned Doctorates indicate that Chinese PhD students in chemistry are more likely than
others to be planning to go to industry directly from graduate school (35.8% of those born in
China plan to work in industry, versus only 26.2% of those born anywhere else) and no more
likely to be planning to follow postdoctoral training (37.4% of the Chinese plan to follow
postdoctoral training, versus 39.7% of all other students) (Stephan 2010).

In support of the second argument, anecdotal evidence suggests that Chinese graduate
students work harder and spend more time in the laboratory. Again, complementary evidence
from other data sources suggests that this cultural predisposition for higher effort might be of
second order importance. In fact, a survey of post-docs found only small differences between
Chinese and Americans in terms of hours worked (50.5 hours per week versus 49.8; Brumfiel

2005).

7 Concluding remarks

The contribution of this paper is to show that Chinese students enrolled in U.S. PhD pro-
grams have a strong record of publications during their graduate studies and make dispro-
portionate contributions to the productivity of their advisors and departments. We argue

that this excellent performance of the Chinese with respect to other students is most likely

UErom the perspective of immigration law, post-doctoral training is not considered as work. Most post-
doctoral fellows are on visitor (J1) rather than on work (H1B) visas. The latter, but not the former, are
subject to a yearly cap.

14



explained by selection processes. Our findings strengthen and complement other studies
that have found that migrant scientists and engineers make disproportionate contributions
to U.S. innovation (Levin & Stephan 1999; Hunt 2011, Stuen, Mobarak & Maskus 2011;
Chellaraj, Maskus & Mattoo 2008, Gurmu, Black & Stephan 2010). The influx of talented
students is an important benefit to host universities. However, potential negative effects,
and in particular the fact that migration may decrease incentives for natives to engage in

scientific careers (Borjas 2006), should also be in taken into account.

Since the costs of training graduate students are mainly borne by the host country in
the form of research and teaching assistantships, it is important to consider the stay rates of
Chinese students. According to estimates derived by Finn (2007) using Social Security data,
the stay rate for Chinese doctorate recipients is around 92% after five years from obtaining
the title, the highest observed for any major source country in 2005. Similarly, Gaule (2011)
finds that the lifetime odds of permanent return for Chinese migrants who become faculty
in U.S. universities is less than 2%. However, the current high stay rates cannot be taken
for granted given the steadily rising skill premium in China and the aggressive recruiting

policies of Chinese universities.

An important limitation of our study is that our research is based on an early measure
of productivity - publication during the PhD - and does not address post-PhD outcomes.
We do not know if Chinese students continue to outperform non-Chinese students after their
training period. On the one hand, initial differences in scientific productivity tend to persist
and might even amplify over time. On the other hand, post-graduate occupations may
require skills that the Chinese immigrants may lack. Further evidence on productivity and
mobility choices after the PhD would thus be useful to complete our understanding of the

contribution of Chinese high-skilled migrants to U.S. innovation.
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Figures

Figure 1: Illustrating the matching process

ProQuest
((Basic | Advanced  Browse 7, MyResearch
1 Disserations & Theses
Document View « Backto Result

G Print | 52 Email | @® Copy link | [ Cite this | ] Mark Document

Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through
semiconductor nanowires

by Huang, Yu, Ph.D., Harvard University, 2003 , 139 pages; AAT 3106649

Indexing (document details)
Science 9 November 2001: Advisor: Lieber, Chades W,
Vol. 294. no. 5545, pp. 1313 - 1317 School: Harvard University
DOL 10.1126/science. 1066192
School Location: United States - Massachusetts

REPORTS
Logic Gates and Computation from Assembled Nanowire Building Blocks

Yy Huang.'" Xiangfeng Duan," Yi Cui," Lincoln J. Lauhon," Kyoung-Ha Kim,? Charles M. Lieber'2!

Miniaturization in electronics through improvements in established "top-down™ fabrication techniques is approaching
the point where fundamental issues are expected to limit the dramatic increases in computing seen over the past
several decades. Here we report a "bottom-up” approach in which functional device elements and element arrays have
been assembled from solution through the use of electronically well-defined semiconductor nanowire building blocks
We show that crossed nanowire p-n junctions and junction arrays can be assembled in over 95% yield with
controllable electrical characteristics, and in addition, that these junctions can be used to create integrated
nanoscale field-effect transistor arrays with nanowires as both the conducting channel and gate electrode. Nanowire
junction arrays have been configured as key OR, AND, and NOR logic-gate structures with substantial gain and have
been used to implement basic computation

' Department of Chemistry and Chemical Biology,
2 Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
> These authors contributed equally to this work™™

' 7o whom correspondence should be addressed. E-mail: cmi@cmliris harvard edu

1

Proquest Dissertation and Abstracts (upper part of the figure) has information on the name of the student,

name of the advisor, university and year of graduation. The publication (lower part of the figure) has
information on the affiliation of each author. A publication is matched to a student if nine criteria are
successfully met: The first author of the publication needs to have the (1) last name of the student (2) first
initial of the student (3) correct departmental affiliation of the student (4) correct university affiliation of
the student; and one of the coauthor on the paper had to have (5) the last name of the advisor (6) the first
initial of the advisor (7) the correct departmental affiliation of the advisor and (8) the correct university

affiliation of the advisor. Finally, the paper had to be published (9) no earlier than 3 years prior to the

graduation of the student and no later than the year of graduation.
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Tables

Table 1: Using biographic information to verify the quality of the name
matching

With Chinese name
Right Match 88.2% are educated in China
Wrong Match  11.8% not educated in China (5.1% Taiwan)

Educated in China
Right Match 95.6% have a Chinese name
Wrong Match 4.4% do not have a Chinese name

Table 2: Using journals to define field of specialization
Field Journal (example)

Analytical chemistry  Analytical Chemistry

Applied Chemistry Angewandte Chemie
Biochemistry Journal of Biological Chemistry
Chemical Engineering AIChE Journal

Inorganic Chemistry  Inorganic Chemistry

Material Science Macromolecules
Organic Chemistry Journal of Organic Chemistry
Nanotechnology Nano Letters

The area of specialization for a given faculty is inferred from the journals s/he pub-
lishes in. For instance, a faculty who publishes often in the Journal of Biological Chemistry is
assumed to be specialized in biochemistry.
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Table 3: Descriptive statistics on scientific output

Chinese students All other students

(n=2,220) (n=18,934)

Mean SD Mean SD
First-authored publications
Number 1.16 1.47 0.93 1.27
JIF-weighted 5.57 8.25 4.63 7.38
Cites to 34.74  131.19 27.19 83.48
All publications
Number 1.81 2.48 1.41 2.03
JIF-weighted 9.29 15.37 7.25 12.24
Cites to 66.63  264.45 46.01 139.88
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Table 4: Regression results at the individual student level

(A)

First-authored publications

All publications

Number JIF-weighted Cites to Number JIF-weighted Cites to
Chinese student 0.216%** 0.189%*** 0.275%+* 0.247%%* 0.250%+* 0.396*+*

(0.021) (0.010) (0.004) (0.017) (0.007) (0.003)
Year of graduation FE Yes Yes Yes Yes Yes Yes
Lab specialization FE Yes Yes Yes Yes Yes Yes
Students 21,154 21,154 21,154 21,154 21,154 21,154
(B) First-authored publications All publications

Number JIF-weighted Cites to Number JIF-weighted Cites to
Chinese student 0.237%%* 0.248%** 0.370%** 0.265%** 0.311%** 0.497%%*

(0.033) (0.038) (0.115) (0.034) (0.042) (0.122)
Year of graduation FE Yes Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes Yes
Lab specialization FE Yes Yes Yes Yes Yes Yes
Students 21,133 21,133 21,133 21,133 21,133 21,133
Universities 164 164 164 164 164 164
(C) First-authored publications All publications

Number JIF-weighted Cites to Number JIF-weighted Cites to
Chinese student 0.231%** 0.239%** 0.297*** 0.236%+* 0.269%+* 0.390%**

(0.027) (0.032) (0.085) (0.029) (0.034) (0.090)
Year of graduation FE Yes Yes Yes Yes Yes Yes
Advisor FE Yes Yes Yes Yes Yes Yes
Students 17,185 17,183 17,115 17,185 17,183 17,141
Advisors 3,013 3,012 2,991 3,013 3,012 3,000

Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Note: Panel A specifications are estimated using a Poisson regression with robust standard
errors. Panel B and C specifications are estimated by Poisson Quasi-Maximum Likelihood.
The various productivity measures used as dependent variable are based on the papers

published between three years before graduation and the year of graduation.
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Table 5: Regression results at the individual student level -

continued

(D)

First-authored publications

All publications

Number JIF-weighted Cites to Number JIF-weighted Cites to
Chinese student 0.234%** 0.212%** 0.300%*** 0.264*** 0.270%** 0.414%**
(0.021) (0.010) (0.004) (0.017) (0.008) (0.003)
Indian student 0.104*** 0.079*** 0.027*** 0.065%* 0.028** -0.065%**
(0.030) (0.014) (0.006) (0.025) (0.011) (0.005)
Korean student 0.065* 0.108*** 0.112%** 0.049* 0.075%** 0.074***
(0.035) (0.015) (0.006) (0.029) (0.012) (0.005)
NSF fellow 0.461%** 0.654*** 0.846*** 0.499*** 0.653*** 0.803***
(0.045) (0.018) (0.007) (0.036) (0.014) (0.005)
Year of graduation FE Yes Yes Yes Yes Yes Yes
Lab specialization FE Yes Yes Yes Yes Yes Yes
(E) First-authored publications All publications
Number JIF-weighted Cites to Number JIF-weighted Cites to
Chinese student 0.256%** 0.269%*** 0.385%*** 0.283*** 0.328%** 0.502%**
(0.034) (0.039) (0.108) (0.035) (0.043) (0.114)
Indian student 0.130%** 0.137*** 0.104 0.094** 0.090* 0.022
(0.042) (0.045) (0.066) (0.043) (0.047) (0.065)
Korean student 0.078* 0.111%* 0.106 0.055 0.068 0.047
(0.047) (0.060) (0.120) (0.044) (0.057) (0.098)
NSF fellow 0.337%** 0.301%*** 0.162 0.347%** 0.256%** 0.087
(0.043) (0.043) (0.170) (0.047) (0.045) (0.110)
Year of graduation FE Yes Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes Yes
Lab specialization FE Yes Yes Yes Yes Yes Yes
(F) First-authored publications All publications
Number JIF-weighted Cites to Number JIF-weighted Cites to
Chinese student 0.245%** 0.256+** 0.316%** 0.246%** 0.278*** 0.401%***
(0.027) (0.032) (0.085) (0.029) (0.034) (0.092)
Indian student 0.145%** 0.151%** 0.160** 0.094** 0.076 0.054
(0.039) (0.046) (0.072) (0.039) (0.046) (0.063)
Korean student 0.040 0.055 0.088 -0.018 -0.030 -0.024
(0.043) (0.059) (0.124) (0.045) (0.060) (0.094)
NSF fellow 0.318%** 0.335%** 0.265%* 0.359%** 0.323%** 0.252*%*
(0.053) (0.060) (0.125) (0.055) (0.060) (0.114)
Year of graduation FE Yes Yes Yes Yes Yes Yes
Advisor FE Yes Yes Yes Yes Yes Yes

Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Note: Panel E specifications are estimated using a Poisson regression with robust standard
errors. Panel E and F specifications are estimated by Poisson Quasi-Maximum Likelihood.
The various productivity measures used as dependent variable are based on the papers

published between three years before graduation and the year of graduation.
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Table 6: Regressions at the individual advisor level

Publications of the advisor
Number JIF-Weighted  Cites to
Number of Chinese students 0.895*** 4.641F+* 30.557F**

(0.086) (0.565) (7.497)
Number of other students 0.630%** 3.357k** 18.604***

(0.031) (0.214) (1.854)
School fixed effects Yes Yes Yes
Speciality fixed effects Yes Yes Yes
Age fixed effects Yes Yes Yes
Observations 34,005 34,005 34,005
Advisors 4,870 4,870 4,870

Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

We regress the output of the advisor on the number of Chinese and other students graduating
in that year, the preceding year, and subsequent year. The panel is at the advisor-year level
and runs from 2000 to 2007.
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Table 7: Ethnic labs

as % of all students as % of students with Chinese advisor
Chinese students 10.5% 29.0%

as % of all students as % of students with Indian advisor
Indian students 5.8% 17.3%

as % of all students as % of students with Korean advisor
Korean students 4.1% 32.3%

Table 8: Ethnic labs - continued

as % of all students as % of Chinese students
Students with Chinese advisor 1.9% 5.2%

as % of all students as % of Indian students
Students with Indian advisor 2.4% 7.2%

as % of all students as % of Korean students
Students with Korean advisor 0.5% 3.6%
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Table 9: Interaction between Chinese student and Chinese advisor

(G)

First-authored publications

All publications

Number JIF-weighted Cites to Number JIF-weighted Cites to
Chinese student 0.219%** 0.229%** 0.338%*** 0.238*** 0.284*+* 0.482%+*

(0.034) (0.038) (0.126) (0.036) (0.044) (0.144)
Chinese advisor 0.561%** 0.679%*** 1.134%%* 0.781%** 0.904*** 1.541%%*

(0.093) (0.107) (0.203) (0.112) (0.145) (0.279)
Chinese student 0.031 -0.024 0.051 0.010 -0.030 -0.262
with Chinese advisor (0.107) (0.139) (0.301) (0.102) (0.151) (0.308)
Year of graduation FE Yes Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes Yes
Lab specialization FE Yes Yes Yes Yes Yes Yes
Students 21,133 21,133 21,133 21,133 21,133 21,133
Universities 164 164 164 164 164 164
(H) First-authored publications All publications

Number JIF-weighted Cites to Number JIF-weighted Cites to
Chinese student 0.231%** 0.236%*** 0.270%*** 0.242%** 0.271%** 0.397***

(0.028) (0.033) (0.085) (0.029) (0.034) (0.094)
Chinese student 0.016 0.040 0.288 -0.046 -0.022 -0.054
with Chinese advisor (0.127) (0.156) (0.291) (0.142) (0.150) (0.202)
Year of graduation FE Yes Yes Yes Yes Yes Yes
Advisor FE Yes Yes Yes Yes Yes Yes
Students 17,185 17,183 17,115 17,185 17,183 17,141
Advisors 3,013 3,012 2,991 3,013 3,012 3,000

Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
Note: Panel G and H specifications are estimated by Poisson Quasi-Maximum Likelihood.
The various productivity measures used as dependent variable are based on the papers

published between three years before graduation and the year of graduation.
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Table 10: Baccalaureate-origin institutions of PhD graduates in S/E from

US Universities

Baccalaureate-origin Country Rank All S/E Life Physical Eng.
Institution doctorates sciences Sciences
Tsinghua Univ China 1 542 17 104 421
Beijing Univ China 2 435 139 221 75
Seoul National Univ Korea 3 239 56 76 107
Cornell Univ USA 4 210 108 58 44
Univ of California-Berkeley USA 5 207 92 59 56
National Taiwan Univ Taiwan 6 176 64 49 63
Massachusetts Inst of Tech USA 7 171 44 64 63
Univ of Sci & Tech China China 8 157 20 87 50
Univ of lllinois at Urbana-Champaign =~ USA 9 153 70 27 56
Fudan Univ China 10 140 49 65 26
Nanking Univ China 11 138 42 68 28
Univ of Mumbai India 12 136 55 23 58
Pennsylvania State Univ-Main Campus USA 13 136 70 23 43
Univ of Michigan-Ann Arbor USA 14 134 52 34 48
Shanghai Jiaotong Univ China 15 133 8 27 98
Univ of Florida USA 16 132 71 23 38
Nankai Univ China 17 128 43 65 20
Univ of Wisconsin-Madison USA 18 125 74 27 24
The Univ of Texas at Austin USA 19 122 58 30 34
Univ of California-Davis USA 20 119 75 29 15
Harvard Univ USA 21 118 59 48 11
Brigham Young Univ USA 22 116 52 39 25
Univ of California-Los Angeles USA 23 116 61 38 17
Zhejiang Univ China 24 115 9 31 75
China Univ of Sci and Tech China 25 115 20 68 27
Total (incl. other institutions) 20,057 7,909 6,151 5,997

Source: Data from NORC(2008) based upon the NSF Survey of Earned Doctorates
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Table 11: Statistics of interest for the top 25 chemistry departments in our

sample
School R & D total # # NSF Chinese Chinese
exp. students fellows (total) (%)
1 California Institute of Technology 36.9 186 26 16 8.6%
2 Harvard University 30.3 245 71 23 9.4%
3 University of California-Berkeley 29.5 449 37 17 3.8%
4 University of Illinois-Urbana 29.2 413 7 40 9.7%
5  Texas A&M University 24.7 315 2 45 14.3%
6  Georgia Institute of Technology 24.4 183 1 24 13.1%
7 University of California-San Diego 23.6 206 3 11 5.3%
8  University of California-Los Angeles 23.3 285 3 28 9.8%
9  University of Texas-Austin 22.7 273 4 31 11.4%
10 Rutgers 22.0 131 0 50 38.2%
11 Massachusetts Institute of Technology 21.5 258 41 20 7.8%
12 Northwestern University 21.3 228 ) 34 14.9%
13 University of North Carolina-Chapel Hill 21.0 311 6 18 5.8%
14 Purdue University 20.4 288 1 50 17.4%
15 Pennsylvania State University 19.6 229 3 24 10.5%
16  Cornell University 19.2 210 4 22 10.5%
17  University of Washington-Seattle 18.6 192 2 11 5.7%
18 University of Colorado 18.4 199 2 6 3.0%
19  University of California-Irvine 17.9 216 0 15 6.9%
20  University of Wisconsin-Madison 17.9 445 15 30 6.7%
21 Stanford University 17.8 232 31 28 12.1%
22 Johns Hopkins University 17.1 99 0 10 10.1%
23 University of Michigan 16.6 264 2 34 12.9%
24 Louisiana State University 16.5 95 0 9 9.5%
25 Emory University 16.4 123 0 36 29.3%

Notes: R & D expenditures refers to 2007 R&D expenditures in chemistry in million USD.
The number of students, Chinese students and NSF fellows are based on students graduating
from chemistry departments between 1999 and 2008
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