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Abstract. I present a consumption-based explanation of a number of phenomena in
the aggregate equity market. The model invokes the recursive utility function of Ep-
stein and Zin (1989), configured with the plausible parameters of the average coefficient
of the aversion to late resolution of uncertainty of about 22, and the elasticity of in-
tertemporal substitution of 1.5. Statistically hard to discriminate in less than 80 years
of data from the ubiquitous i.i.d. model of real consumption growth, the endowment
process is specified as being subject to sporadic large shocks and incessant small shocks.
The large infrequent shocks, modelled by means of a four-state hidden Markov chain,
display interesting macroeconomic regularities, occuring at both the business-cycle, and
a lower, frequencies. Despite the fact that the levels of endowments are observable, the
source of their variation cannot be detected perfectly, facing investors with a complex
signal-extraction problem. The associated posterior probabilities provide a natural link
between the observed asset value fluctuations and the economic uncertainty within the
rational Bayesian learning framework. Although computationally arduous, having to be
solved on a high-performance computing machine in a low-level language, the model is
able to account for (i) the observed magnitude of the equity premium, (ii) the low and
stable risk-free rate, (iii) the magnitude and the countercyclicality of risk prices, (iv) the
average levels and the procyclicality of price-dividend and wealth-consumption ratios, (v)
the long-horizon predictability of risk premia, and (vi) the overreaction of price-dividend
ratio to bad news in good times, all within the conceptually simple representative-agent
framework.
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I. Introduction

This paper explores an ingeniously simple channel that links the real and financial sec-
tors of the macroeconomy. Its arguably ambitious aim is to retort to such key questions
as why asset values swing over time, soaring in booms just to tumble in recessions, or
why the risk premiums are so sizable and persistently time-varying whereas real consump-
tion growth appears so smooth and unpredictable. Previous macroeconomic literature
until fairly recently completely missed this seemingly immaterial link due to its undue
reliance on the expected utility framework, wherein the axiom of the reduction of com-
pound lotteries has rendered a Bayesian doubt about macroeconomic growth prospects
irrelevant.

The kernel of the paper consists in the macroeconomic fundamentals being modelled
jointly at two leading spectral frequencies by the statistically independent composition of
a pair of two-state continuous-time hidden Markov chain models (HMM), an intriguing
idea first raised in Hansen 2007 Ely lecture. The critical implication is that the mod-
eller’s leeway in her choice of the degree of the persistence of the corresponding expected
consumption growth is dramatically restricted; the persistence is in fact fully dictated by
the respective durations of the Markov chain states. This check is unfortunately absent
in many current models of the stock market wherein the modeller simply feeds in a highly
persistent AR(1) sequences of latent variables.

The incompleteness of information leads to an intricate signal-extraction problem
(Wonham 1964, Liptser and Shiryaev 2001), the outcome of which is a vector of pos-
terior probabilities of the macroeconomy being in a particular growth state, and it is
these likelihoods, rather than, for instance, the conditional volatilities of consumption
growth, that naturally fulfill the role of yardsticks of Bayesian doubt about macroeco-
nomic fundamentals.

The dynamics of these beliefs is again dictated, this time by the highly restrictive
Bayes’ theorem, engendering a surprisingly strong nonlinear dynamics, in particular in
the assets’ risk premiums, which the current linear (log-linearized) models at the forefront
of research completely miss. Although latent, these likelihoods are easily estimable from
the NIPA real nondurable consumption and services data by means of the well-known
Hamilton (1989) filter.

The first two-state HMM model approximates the income growth dynamics at the
business-cycle frequency; its companion transition probability matrix exactly matches
the point estimates obtained by Cagetti, Hansen, Sargent and Williams (2004). Their
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data correspond to the time-series of the Solow residual, and the posterior probabilities
from the Hamilton (1989) filter closely track the NBER recessions. Expected income
growth variation at this particular frequency is one of the keys to reproduce the observed
countercyclicality of risk prices, and the concomitant long-horizon predictability of as-
sets’ risk premiums, but fails utterly in engendering a successful match of the respective
magnitudes. It has been introduced in recent studies of endowment economies, featuring
expected utility households, most notably in David (1999) and Veronesi (1999, 2000),
and as lately as 2008 in Chen and Pakoš, who consider the case of the Kreps and Porteus
(1978) households. In a parallel strand of literature, Hansen (2007) explores the asset-
pricing ramifications of investors’ worry about potential misspecification of such a model
of fundamentals in an exchange economy, whereas Cagetti et. al analyze the dynamics of
asset prices from the vantage point of a stochastic growth economy.

The second two-state HMM model captures the income growth dynamics at a lower
frequency, with the average duration of high-growth state around 12 years and the low-
growth state around 5 years. Chen and Pakoš (2008) explore this channel with a two-state
Markov chain, and find that this time the model matches the magnitudes of observed risk
premia, but unfortunately not the time-series properties of asset prices. My calibration
of the low-frequency dynamics of the income growth, however, differs from Chen et. al.
I closely follow the ideas of Hansen and Sargent by matching the income process in the
model to the NIPA real consumption, and consequently using the detection-error prob-
abilities methodology to ensure that (i) the mistake probability between the integrated
four-state HMM model and the ubiquitous i.i.d. model is more than 5% in less than 80
years of data, making precise inference statistically hard, and (ii) the relative entropy of
these two competing models is maximized so that I achieve a meaningful low-frequency
risk.

The households’ utility function that naturally prescribes an aversion to Bayesian un-
certainty is introduced by means of the recursive Epstein and Zin (1989) preferences. The
behavioral axioms of choice behind such preferences specifically do not list the postulate
of the reduction of compound lotteries. Compared to the case of expected utility, in-
vestors cease to be indifferent to the temporal distribution of risk. They may either love
or abhor, depending on the parameter configuration, the way uncertainty about future
economic prospects unfolds. And it is the aversion to such an uncertainty, hereafter to be
gauged by the likelihoods of the macroeconomy being in a particular growth state, that
is the key behavioral premise of the model. For illustration, a suddenly heightened doubt
about future macroeconomic growth prospects will tend to lengthen the average time up
to the future resolution of the respective uncertainty, a situation particularly feared by
Bayesian investors with recursive preferences, who immediately respond by bidding down
stocks and up real bonds. And as these likelihoods about fundamentals are updated by
Bayes’ theorem upon the arrival of new information, prices and hence expected returns
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change. The model therefore naturally generates variation in the conditional distribution
of returns and prices, with homoscedastic consumption growth.

The state-independent preferences case is configured with the aversion to late resolution
of uncertainty1 of about 35.5, the elasticity of intertemporal substitution EIS of 1.5, and
the subjective rate of time preference of 1.5% per annum. I subsequently refine the
model’s implications by considering the case of variable aversion to late resolution of
economic uncertainty, holding its average at 22, below the Bansal and Yaron’s (2004) value
of 28, and variable consumption impatience, holding its average close to 1% per annum.
All parameter constellations, across all states of the world, do imply a feature called
“preference for early resolution of uncertainty”, which makes households shy away from
assets with random payoffs the uncertainty of which resolves in the distant future. This
essential characteristic of the model is precluded within the expected utility framework
due to the axiom of the reduction of compound lotteries. Interestingly, I find many asset-
pricing results qualitatively robust to the introduction of the preference state-dependence,
but quantitatively enhanced.

Impelled partially by tractability, I endogenize the structural preference parameters by
rendering them mildly wealth contingent. I justify the wealth dependence of consumption
impatience by appealing to the well-known Becker and Mulligan’s (1997) hypothesis that
wealth causes patience. The endogeneity of the aversion to late resolution of uncertainty
is motivated by the economic intuition that households tend to fear a given economic
uncertainty about future growth prospects significantly more in bad times (times of low
consumption growth).

The asset pricing implications of this economic setting are rich and surprisingly wildly
nonlinear. The uncertainty about the low-frequency income growth dramatically raises
the risk prices, by more than an order of magnitude, in comparison to Hansen (2007);
the model succeeds in matching the observed equity premium with a small term premium
(Abel 1999, Pakoš 2008). The mean price-dividend ratio is close to its sample counterpart,
and is significantly below the mean wealth-consumption ratio, broadly consistent with the
recent empirical study of Lustig and Nieuwerburgh (2008). As conjectured, the time-series
properties of risk prices are driven predominantly by the business-cycle component of the
expected income growth that engenders their countercyclical variation. In consequence,
aggregate wealth and equity risk premiums are forecastable by the wealth-consumption
and price-dividend ratios. The respective linear-projection coefficients are of the correct
signs and the magnitudes commensurate with real data. In case of state-dependent
preferences, the time variation in the aversion to late resolution of uncertainty further
enhances these effects. Hence, the model is broadly consistent with the empirical variance
decompositions of the price-dividend ratio, tending to attribute the bulk of the large
swings in prices to expected returns, especially in short samples.

1The yardstick of the aversion to late resolution of uncertainty is, in Epstein and Zin (1989) notation,
defined to be 1 − α/ρ.
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There are important related papers, mostly penned by Professor Bansal and his coau-
thors. In particular, the provocative Bansal and Yaron (2004) investigates the ability of
a hard-to-detect persistent consumption growth to account for stylized features of the
equity market. Their economic story, however, is a polar opposite to mine. Although
configuring their recursive utility specification so that it exhibits a preference for early
resolution of uncertainty, they do so implicitly, without emphasizing its gravity2. In fact,
the information structure in their model is complete, and they are forced to couch their
analysis in terms of households preferring a less persistent process to a more persistent
one, that is to say, a constant expected income growth to a highly autocorrelated one.
Therefore, their interpretation is different to the one in both this paper, and its precursor
in Chen and Pakoš (2008), who explicitly feature incomplete information, attributing the
swings in expected returns, Sharpe ratios, price-dividend ratios, and other variables of im-
mense interest to financial economists, to a variation in macroeconomic uncertainty about
growth prospects. That there undoubtedly is an uncertainty about growth prospects in
the canonical Bansal and Yaron model, but still no variation, in for example, expected
(excess) returns, or Sharpe ratios, only further illustrates the diametrically opposite eco-
nomic mechanisms at work. To get these into motion, Bansal and Yaron are forced to lift
the assumption of the homoscedasticity of consumption growth innovations. In such a
case, the expected returns do rise and fall but precisely because the consumption volatil-
ity does. In contrast, the expected returns, Sharpe ratios, etc., in this paper are in a
natural state of motion despite homoscedastic consumption growth innovations, due to
the fluctuating confidence about macroeconomic fundamentals.

Finally, in a recent paper, Ai (2007) analyzes the role of the degree of information
quality in determining the level of the equity premium. Although his setting is different,
he makes a noteworthy discovery that risk premiums tend to rise with higher uncertainty
about the long run risk.

II. Model

A. Primitives.

a. Preferences. Consider an exchange economy of Lucas (1978), with a single perishable
consumption good ct, populated by a continuum of identical investors of measure one.
Assume further that their preferences are recursive as in Kreps and Porteus (1978), Ep-
stein and Zin (1989) and Weil (1989), later extended to the continuous-time setting by
Duffie and Epstein (1992ab). Formally,

J0 = E
[∫ ∞

0

f (cs, Js) ds

]
,

2I was unable to find a single reference to the term ’preference for early resolution of uncertainty’ in their
paper.
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with the indirect utility function as of time t denoted Jt. The aggregator function3 f :

R2
+ → R+ is of the constant-elasticity-of-substitution (CES) form, which in continuous-

time setting means that

(II.1) f(c, J) =
δ

ρ

cρ − (αJ)ρ/α

(αJ)(ρ/α)−1
.

The parameter δ is the measure of the consumption impatience of households, (1 − ρ)−1

denotes the elasticity of intertemporal substitution EIS, and 1−α is the coefficient of the
relative risk aversion, commonly defined in terms of atemporal gambles over consumer’s
wealth as W × ∂WWJ/∂W J . These structural parameters are all constant in the bench-
mark state-independent preference setting, and mildly wealth-dependent4 in the refined
state-dependent case, consistent with the Becker and Mulligan’s (1997) hypothesis that
“wealth causes patience”, and the economic intution that households tend to be signifi-
cantly more averse to a given economic uncertainty about future growth prospects in bad
times.

I note here, and demonstrate hereafter, that it is the variability in the coefficient of the
preference for early resolution of uncertainty 1 − α/ρ, not the risk aversion 1 − α itself,
that is behind the enhanced performance of the state-dependent calibration. It just
turns out that the recursive preferences, configurable with only 3 parameters, tightly link
the aversion to risk and aversion to late resolution of economic uncertainty (technically
termed the preference for the early resolution of uncertainty). The risk aversion tells how
much money households are willing to give up to avoid a fair gamble taken right now, the
uncertainty is resolved immediately. The preference for early resolution of uncertainty
tells, in contrast, how much households dislike the fact that the uncertainty about their
endowment is about to be resolved far in the future, not immediately. In fact, shutting
off such aversion to the economic uncertainty, one needs wildly implausible variation in
the relative risk aversion coefficient to match, for example, the time-series predictability
results from the empirical finance literature.

As I demonstrate hereafter, the equilibrium wealth-endowment ratio is a function of
the vector of the posterior probabilities π, defined later, that capture the likelihood of
the economy being in various states, such as a recession or a boom. As a result, I may
parameterize the parameters δ and α as linear functions of these likelihoods, namely,

δ (π) = [δ1, . . . , δ4] × π

α(π) = [α1, . . . ,α4] × π

3This is the ordinarily equivalent aggregator for which the variance multiplier is zero. See Duffie and
Epstein (1992ab) for more details.
4The assumption that δ and α depend on the aggregate rather than individual wealth is purely for
tractability reasons; in computing the first-order conditions I do not have to take partial derivatives with
respect to δ and α, which immensily simplifies the mathematics. This point is also related to recent
debates of internal vs. external habit specification. Of course, fully endogenizing these parameters may
further enrich the model’s implications.
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where δi < δj and αi < αj for i < j.

b. Endowments. Each investor is endowed with an identical Lucas tree, yielding a per-
fectly observable endowment flow at the rate Ct per unit of time, the dynamics of which
is given by the following differential equation

(II.2)
dCt

Ct
= κt dt + σC dZ1t

where the Brownian shock dZ1t is normally distributed with mean zero and variance dt,
the endowment growth volatility σC is constant, and the true expected endowment growth
rate κt is latent, being subject to sporadic large changes at random times. It follows a
hidden Markov chain with four states that are known, and are denoted κi, i = 1, . . . , 4.
The four states allow me to model the variation in the expected endowment growth rate
at the business-cycle (BC) and a lower (LF) frequencies jointly. The states decompose
into statistically-independent BC component, denoted θt, and the LF component, denoted
ϑt. Formally, κt = θt + ϑt; its transition matrix is denoted P κ (dt). Each component
itself follows a two-state hidden Markov chain with θt = θ, θ , and ϑt = ϑ, ϑ . Without
loss of generality, the states are ordered as κ1 = θ + ϑ, κ2 = θ + ϑ, κ3 = θ + ϑ and
κ4 = θ + ϑ, where θ < θ and ϑ < ϑ. The respective transition probability matrices for
the time interval (t, t + dt) are denoted P θ(dt) and P ϑ(dt).

Lemma 1. The 4 × 4 transition probability matrix P κ (dt) may be written as the Kro-
necker product of the associated 2×2 transition matrices for the low-frequency dynamics,
P ϑ(dt), and the business-cycle dynamics P θ (dt). Formally

P κ (dt) = P ϑ(dt) ⊗ P θ (dt)

Proof. This is just an application of simple probability laws, given the statistical inde-
pendence of θt and ϑt, and the ordering of the states of κt. !

c. Market Completeness. The asset market is complete despite the signal extraction prob-
lem as investors are able to attain any claim that is contingent on observable events simply
by trading in the Lucas tree.

d. Equity Market. Following Abel (1999), I model the aggregate stock market as a zero
net-supply contingent asset, so-called leveraged consumption claim, that yields the fol-
lowing dividend flow

(II.3) Dt ∝ Cφ
t exp {Xt}

where Xt is a random process which drives a wedge between the otherwise deterministic
relationship between endowment and dividends. The parameter φ > 0 is the elasticity of
the dividend flow with respect to the endowment flow,

φ =
∂ log Dt

∂ log Ct
,



EQUITY PRICES UNDER BAYESIAN DOUBT ABOUT MACROECONOMIC FUNDAMENTALS 8

and it is a yardstick of the dividend leverage; its magnitude tells how sensitive the aggre-
gate dividend flow from the equity market is to changes in the underlying fundamentals
- the endowment flow5.

The choice of the time-series properties of Xt is essential. Economic intuition may
suggest that endowment and dividends are cointegrated, and therefore Xt, as the re-
spective cointegrating residual, ought to be statistically stationary. Intuitive though it
may be, such a choice necessarily introduces another state variable to already extremely
computationally intensive problem. Being fully aware of potential pitfalls, the curse of
dimensionality forces me to assume that Xt is a random walk6, exhibiting no temporal
dependence; formally

Xt = σD,2Z2t

where the Brownian shock dZ2t is normally distributed with mean zero and variance
dt, but uncorrelated with the consumption growth shock dZ1t, and σD,2 is a constant
volatility of the random process Xt.

Application of Itô lemma to the relationship (II.3) yields the following differential
equation for the growth rate of the dividend flow

dDt

Dt
= [(1 − φ)µs

C + φ κt] dt +

+ φσCdZ1t + σD,2dZ2t

where µs
C is the unconditional mean of the endowment growth rate. This specific normal-

ization implies that endowment and dividend growth rates share, on average, a common
drift, partially mitigating the lack of, potentially important, cointegration between the
levels in the model.

B. Time Evolution of Investors’ Confidence. The investors’ information sets are
denoted It and they contain all past realizations of the endowment and the dividend flows
up to time t. I measure investors’ confidence about the macroeconomic fundamentals by
the following posterior probabilities

(II.4) πjt = P {κt = κj | It} , j ∈ {1, . . . , 4}

5Hereafter, I carefully estimate the leverage parameter φ. As the reader will notice, I cannot reject
the hypothesis of no cointegration between the per-capita nondurable consumption and services (NIPA
data), and aggregate dividends (Prof Shiller’s data); therefore, I run the regression in first differences,
using a particular linear filter to emphasize business-cycle and lower frequencies. This is meant to avoid
the criticism of dividends being sticky in the short-run and hence φ being close to zero. After all, the
model is designed to explain asset prices at business-cycle and lower frequencies.
6Proper modelling of the cointegrating residual is definitely worthwhile but the reader should be aware
that the linear system that would arise from augmenting the current model and subsequently discretizing
the relevant partial differential equation may be huge. Depending on the discretization mesh (I use
δπ = 0.02 and am forced to approximate the relevant partial derivatives up to 4th order, even one-sided,
in order to avoid an explosion of the solution on the boundary), it may be even 1, 000, 000× 1, 000, 000!
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As probabilities sum to one, one of them is redundandant; without loss of generality I
choose π4t. In consequence, the remaining posterior probabilities π1t, π2t, and π3t live in
a three-dimensional tetrahedron ∆3, defined hereafter for future reference.

The open set ∆3 ⊂ R3
+ is a three-dimensional tetrahedron defined by

∆3 =

{

(π1, π2, π3) ∈ R3
+ |

3∑

i=1

πi < 1

}

.

Note that the differential equations for the consumption and the dividends all contain
unobservable drifts. In order to make analytical progress, rendering the analysis amenable
to Markov dynamic programming, I use a diffusion representation of these equations. The
following lemma compactly summarizes the result.

Lemma 2. The 2 × 1 process

(II.5) Yt =

[
dCt

Ct
,

dDt

Dt
− (1 − φ)µs

C dt

]′

may be written as a diffusion with respect to the Brownian process Z̃t =
[
Z̃1t, Z̃2t

]
, so-

called ’innovation’ process, as follows

dYt = E [dYt | It] + (ΣΣ′)
1/2

dZ̃t(II.6)

where the volatility matrix is

(II.7) Σ =

(
σC 0

φ σC σD,2

)

Proof. Liptser and Shiryaev (2001). See also Appendix that develops the necessary ad-
ditional notation. !

The interpretation of the innovation process is as a vector of innovations in the given
economic series perceived by investors. Note that due to the incompleteness of
information, dZi and dZ̃i in fact differ.

Investors’ confidence as gauged by the vector of posterior probabilities, also evolves as
a diffusion, according to the following lemma.

Lemma 3. The vector of the posterior probabilities (π1, π2, π3) ∈ ∆3 follows the diffusion
process

(II.8) dπjt = mjt dt + h̃jt dZ̃t,
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Table 1. The Calibration of the Endowment Process to Per-Capita Con-
sumption Growth

Panel A. Gibbs Sampler Estimates of the BC Component with a Pre-Set Transition Matrix

States of
BC

component

Mean
(% p.a.)

95% CI
(% p.a.)

θ 2.40 (2.09,2.71)
θ -0.68 (-

1.01,0.88)

Panel B. Calibration of the LR Component with a Pre-Set Transition Matrix and Using Detection
Error Probabilities

States of
LR

component

Mean
(% p.a.)

Jump
Intensity

Magnitude
(p.a.)

ϑ 1.00 λLR 0.085
ϑ -2.50 µLR 0.213

Notes: For the BC calibration, I borrow the annualized transition matrix P=[0.8457, 1.0-0.8457;1-0.2631, 0.2631]
from Cagetti et al (2004). The sample period is 1948.Q1-2007.Q4, and I perform Gibbs Sampler with 2,000,000
Monte Carlo simulations, discarding the first 1 million for convergence reasons. For the LR calibration, I choose
the annualized transition matrix to be P=[0.9265, 1-0.9265, 1-0.8162, 0.8162] (see main text for more details). I
then choose the states ϑ and ϑ to maximize the Kullback-Leibler relative entropy distance between the i.i.d. and
HMM models, subject to the constraint that the detection error probability (with non-informative prior) for 80
years is about 5%.

where πj0 is given, j ∈ {1, 2, 3}, and

mjt =
4∑

i=1

λij πit(II.9)

Ξt = (κt, φ κt)(II.10)

h̃jt = πjt [Ξj − E (Ξt | It)] ×(II.11)

× (ΣΣ′)−1/2(II.12)

Proof. Wonham (1964) and Liptser and Shiryaev (2001), Theorem 9.1. See also Appendix
on my ordering of states to construct Ξi, i = 1, . . . , 4. !

The previous proposition suggests that investors in fact learn from both signals: con-
sumption and dividends. This may appear at first counterintuitive; note that we may
write the dividend signal as

(II.13)
dDt

Dt
∝ φ

(
dCt

Ct

)
+ σD,2dZ2t

Clearly, for the leverage yardstick φ ≥ 1, the dividend signal is noisier that the con-
sumption signal. A naive solution to the signal extraction problem is to drop the nosier
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signal in Lemma 3. However, as the following proposition demonstrates, this argument
is fallacious, holding only asymptotically as the volatility ratio σD,2/σC goes to infinity.

Proposition 1. The information content of the dividend signal as a function of the
volatility ratio σD,2/σC declines asymptotically (σD,2/σC→ ∞) to zero.

Proof. See Appendix for details. !

C. Time Evolution of Asset Prices. Information in my economy is generated by
innovations that are Brownian processes. As a result, all equilibrium asset prices follow
diffusions (Chi-fu Huang 198x). Specifically, the price of the Lucas tree, which yields the
endowment stream, solves the differential equation

(II.14) dPt = [mP Pt − Ct] dt + Pt g̃P dZ̃t

The instantaneous conditional expected return mP and the instantaneous conditional
volatility g̃P are determined endogenously so that in the equilibrium each investor will-
ingly holds his tree(s). Without loss of generality, I normalize the measure of the Lucas
orchard to one; one tree for each investor.

The aggregate equity market is modeled as the leveraged consumption claim, with its
value St dictated by the differential equation

(II.15) dSt = [mS St − Dt] dt + St g̃S dZ̃t

Again, as with the Lucas tree, the instantaneous conditional expected return mS and
the instantaneous conditional volatility g̃S are determined endogenously in the compet-
itive equilibrium by the market clearing condition that the demand for the leveraged
consumption claim is zero.

Note that the only asset in net positive supply, normalized to one, is the Lucas tree
that yields the endowment stream; all other asset prices are shadow prices.

III. Model Calibration

A. Preference Parameters.

a. State-Independent Preferences. This benchmark case is configured with the coefficient
of the aversion to late resolution of uncertainty 1 − α/ρ equal to 35.5, the elasticity of
intertemporal substitution (1 − ρ)−1 = 1.5, and the subjective rate of time preference
equal to 1.5% per annum.

b. State-Dependent Preferences. This refined case endogenizes the aversion to late reso-
lution of uncertainty 1−α/ρ and household impatience δ by making them mildly wealth-
dependent, consistent with the wealth-causes-patience hypothesis of Becker and Mulligan
(1997), hence,

Assumption 1. The household impatience δ is a decreasing function of wealth
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Figure III.1. Mistake Probabilities
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Notes: I follow Hansen (2007), and use Monte Carlo with 50,000 simulations to construct these curves, by
computing the LR ratio for models A and B given that data was generated with model A, and vice versa. I
assume a non-informative prior over the two models.

and the intuition that households tend to particularly fear late unfolding of a given
economic uncertainty in bad times (times of low consumption growth). Formally,

Assumption 2. The coefficient of the aversion to late resolution of uncertainty 1−α/ρ

is a decreasing function of wealth.

As I show hereafter, the wealth-consumption ratio is a function of the vector of the
posterior probabilities that measure the likelihoods of the macroeconomy being in various
growth states. Therefore, I make the following parametrizations

δ (π) = [0.005, 0.01, 0.02, 0.03] × π

(1 − α/ρ) (π) = [1.03, 28.0, 58.0, 88.0] × π

On average, with respect to the ergodic probability of the hidden Markov chain, the
mean household impatience δ is about 1% and the mean aversion to late resolution of
uncertainty (1 − α/ρ) is around 22, below the Bansal and Yaron’s (2004) value of 28. The
relatively large aversions to late resolution of economic uncertainty, 58 and 88, occur in
states of the world when investors are pretty confident that the low-frequency component
of the true expected endowment growth is in the low state ϑ. These, however, have
relatively small probability, and moreover do not seem to have occurred throughout the
past 60 years of the U.S. history.

B. Data Description. Quarterly consumption data are from the U.S. national accounts
as available from the Federal Reserve Bank of St. Louis. I measure consumption Ct as the
sum of real personal consumption expenditures (PCE) on nondurable goods and services.
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Table 2. Calibration of the Dividend Process

1929.A - 2004.A 1948.Q1 - 2007.Q4

φ σD,2 (in %) φ σD,2 (in %)
1.72 8.95 1.75 3.47

(0.28,2.66) (4.20,12.60) (0.98,2.48) (2.30,4.80)
Notes: Notation is as follows: ct is the (demeaned) real per-capita log consumption growth, dt is the (de-
meaned) real log dividend from S&P500 index, φ is the yardstick of dividend leverage defined by the regression
A(L) (1 − L) dt = φA(L) (1 − L) ct +A(L) (1 − L)σD,2Z2t, and σD,2 is the annualized volatility of the dividend
shock dZ2t that is uncorrelated with the consumption growth shock. The linear filter A(L) is a two-sided MA(3)
low-pass filter that eliminates spectral components with periods less or equal to 3 quarters; the respective fil-
ter coefficients implied by the modified Daniell kernel are {0.083, 0.167, 0.167, 0.167, 0.167, 0.167, 0.083}. The
values in parentheses are bootstrap percentile confidence intervals for the respective parameters. The replicates
were generated using random block resampling with block lengths having a geometric distribution with mean 20.
In total, 50 000 experiments were performed.

Nondurable goods and services are converted to per-capita values by dividing by the
population. The dividend series are obtainable from Professor Shiller’s web.

C. Consumption Growth Dynamics.

a. Business-Cycle Component Calibration. Initially7, I estimate a Bayesian univariate
2-state HMM treating all parameters as unknown, and using diffuse priors. The confi-
dence intervals turn out to be quite wide, in particular for the transition probabilities8;
hence, the priors are important. I choose to fix the transition probability matrix at
the magnitudes that Cagetti, Hansen, Sargent and Williams (2004) estimate, using the
Solow residual9. I subsequently re-estimate the model. The estimated states with their
confidence intervals (CI) are reported in Table 1, Panel A.

b. Low-Frequency Component Calibration. In calibrating the low-frequency (LF) compo-
nent, I borrow from the work of Hansen and Sargent. Specifically, I consider two models
of consumption, model A and model B.

The model A is the classic i.i.d. specification of consumption dynamics10 (at quarterly
frequency),

(III.1) c̃t+1 − c̃t = 0.0049 + 0.01 ε̃t+1

with ε̃t ∼ i.i.d. N(0, 1). The tilde means the variable is time-aggregated to quarterly
value, for example, c̃t = log

(∫ t

t−1 Cτ dτ
)
.

7I also estimate a full four-state Bayesian regime-switching model. However, sufficient conditions for the
existence of the infinitesimal generator corresponding to the estimated transition probability matrix are
as yet unknown. Although I do impose some known necessary conditions, I am unable to compute the
generator for the transition matrix that I estimate.
8Results available upon request.
9They show that the implied posterior probabilities closely track NBER business cycles.
10I calibrate the volatility of the consumption growth at the conservative level of 2% per annum, below
the Bansal and Yaron (2004) counterpart of 2.70 %.
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Table 3. Summary Statistics of the Time-Averaged Fundamentals

Panel A: Simulated Data
Consumption Dividends

Mean 2.02 % 2.05 %
Std.Dev. 2.50 % 9.26 %
AC(1) 0.25 0.08

corr (gC , gD) 0.56

Panel B: Real Data
Consumption (s.e.) Dividends (s.e.)

Std.Dev. 2.93 % (0.69 %) 11.49 % (1.98 %)
AC(1) 0.49 (0.14) 0.21 (0.13)

corr (gC , gD) 0.55 (0.34)

Notes: The data are simulated for 400,000 quarters, and consequently time-aggregated over a year. Real data
are taken from Bansal and Yaron (2004), Table 1.

The model B is a four-state HMM, with the BC dynamics specified as described above,
and the LF dynamics carefully selected so that A and B are just indistinguishable in 80
years of data; that is, the detection error probability is around 5%. An attractive way to
calibrate this LF dynamics is to choose ϑ , ϑ, and the transition probability matrix so
that the relative entropy of model B with respect to model A is maximized, subject to the
constraints that E (ϑt) = 0 and the detection error probability is greater or equal than 5%
in 80 years of data. However, it turns out that the transition matrix is not identified by
this method. I therefore fix the durations of the good state of LF component to be around
12 years, and the low state, around 5 years11. I subsequently numerically maximize the
relative entropy of the model B with respect to the model A. The estimated states are
reported in Table 1, Panel B.

D. Dividend Growth Dynamics. Consumption and dividend flows are related by

(III.2) Dt ∝ Cφ
t exp {Xt}

If the shock Xt were stationary, I may estimate the leverage parameter by running the
cointegrating regression

d̃t ∝ φ c̃t + X̃t

where small letters with tildes are logs of time-aggregated values. However, recall that the
curse of dimensionality forces me to assume that the shock Xt is a random walk, thereby

11Chen and Pakoš (2008) provide a Gaussian quadrature approximation of the Bansal-Yaron expected
consumption growth rate in terms of a 2-state Markov chain. Their estimated intensities are around
0.125 each. They subsequently find that in order to match the temporal dynamics of asset prices, such
as stock return predictability, they must tilt these intensities to around 0.085 for the good state and
0.19 for the bad one. These numbers imply durations of the good and bad states quite close, though not
exactly, to 12 and 5 years, respectively, the magnitudes that I use in the main text. This observations
provides a partial justification for having chosen those durations.
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building into the model a lack of cointegration between the logs of the two series12. In
fact, the model suggests to identify the leverage measure φ by running the equation in
growth rates

(1 − L) d̃t ∝ φ (1 − L) c̃t + (1 − L) X̃t

rather than in levels. This is quite tricky, though. Consider applying any linear filter
A(L) to both sides of the equation. The result is

A(L) (1 − L) d̃t

= φA(L) (1 − L) c̃t + A(L) (1 − L) X̃t

which also may be used to estimate the leverage. The choice of the linear filter appears
to make a statistical difference. I select to utilize a low-pass filter to eliminate spectral
components with periods less than 3 quarters13 as the model is constructed to capture the
dynamics of consumption and dividends at business-cycle and lower frequencies. In detail,
the linear filter is a two-sided MA(3) filter with coefficients implied by the modified Daniell
kernel14. I verify that before applying the filter, consumption has also high-frequency
components, perhaps arising from seasonal adjustments, by estimating the smoothed
power spectrum. After the transformation, all spectral components with period T less or
equal 3 quarters are indeed eliminated; again, power spectrum visually inspected.

I run the regression with the filtered time series to focus on the consumption and
dividend growths comovement at the business-cycle and lower, long-run, frequencies. In
addition, I bootstrap the confidence intervals. Details are reported in Table 2. The
leverage yardstick is estimated around 1.75 in both the annual sample (1929.A-2004.A)
and the quarterly sample (1948.Q1-2007.Q4), although the 95% confidence bounds are
wider in the annual data. In calibrating the model, I choose φ = 2, well within the
confidence bounds. In a related paper, Bansal and Yaron (2004) choose φ = 3. Further,
the point estimate of the volatility of the dividend shock σD,2, which is uncorrelated with
the consumption shock, varies from around 3.5% in the quarterly sample up to nearly 9%
in the annual sample. I calibrate σD,2 at a quite conservative value of 7.5%, out of the
quarterly confidence bounds, but well within the annual confidence bounds.

E. How Well Do Simulated Fundamentals Match Real Data ? I calibrate the
consumption process using detection-error probabilities; it is impossible in less than 80
years of data to statistically discriminate between the i.i.d. model and my four-state hid-
den Markov switching model as the mistake probability is above 5%. Still, some readers
12I formally test this restriction in the annual Shiller data 1929.A-2004.A, and I cannot reject the null
hypothesis that real dividends and real consumption are not cointegrated even at 10% significance level.
The ADF t-statistics equals -2.94 and the Phillips-Perron t-statistics=-2.97. The 10%, 5% and 1%
quantiles are -3.10, -3.42, -4.04, respectively.
13Whether we choose MA(2), MA(3) or MA(4) doesn’t seem to make any statistical difference; MA(0)
vs MA(3) does. If you do not filter the series, you get in quarterly data that φ is statistically less than
one.
14MA(3) coefficients are {0.083, 0.167, 0.167, 0.167, 0.167, 0.167, 0.083}.
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may find a comparison of the model-implied moments with those from the real data in-
formative. In order to do that, I proceed as follows. First, I carefully time-aggregate the
instantaneous consumption and dividend growth rates to annual magnitudes as follows15

∆ct+1 = log

(∫ t+1

t

Cτ dτ

)
− log

(∫ t

t−1

Cτ dτ

)

∆dt+1 = log

(∫ t+1

t

Dτ dτ

)
− log

(∫ t

t−1

Dτ dτ

)

Consequently, I calculate the standard deviation and the first-order autocorrelation of the
simulated series. The results are reported in Table 3. The magnitudes of the first-order
autocorrelations of the time-aggregated simulated series are below the point estimates,
but well-within the confidence bounds. This implies that the univariate predictability by
means of lagged values is, if anything, weaker in the simulated data. Second, the respec-
tive volatilities are also a bit smaller as compared to the data, and raising these would
only help improve the fit of the model. Finally, the contemporaneous cross-correlation
between the simulated consumption and dividend growth rates is 0.56, practically exactly
equal to the real data counterpart of 0.55. In view of this, it appears fair to conclude that
the calibration of the consumption and dividends appears statistically consistent with the
NIPA data.

IV. Household Problem

A. Markov Dynamic Programming. In order to solve the portfolio choice problem
of the representative household, I use Markov dynamic programming. Define the indirect
utility function

(IV.1) Jt = E




∞∫

t

f(cs, Js) ds | It





The rate of return dRW
t on the aggregate wealth Wt is equal to the weighted average of

returns on the I-Owe-You-s, yielding the real interest rate rtdt, and the return on the
Lucas tree, equal to the capital gain dPt/Pt plus the endowment yield Ct dt/Pt; formally,

(IV.2) dRW
t = ap

(
dPt

Pt
+

Ct dt

Pt

)
+ (1 − aP ) rt dt,

As a result, the household’s dynamic budget constraint takes the form

dWt = Wt dRW
t − ct dt.(IV.3)

where ct is the consumption rate, and it is the portfolio outflow. Duffie and Epstein
(1992ab) show that the associated Hamilton-Jacobi-Bellman (HJB) equation for this

15Time is measured in years.
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Figure III.2. Equilibrium Wealth-Consumption and Price-Dividend Surfaces

Panel A. Valuation Rate Ratios With State-Independent Preferences
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Panel B. Valuation Rate Ratios With State-Dependent Preferences
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Notes: These pictures display the equilibrium wealth-consumption rate ratios (left), and the equity market
value over dividend rate ratios (right), all annualized. Note that in plotting these surfaces, I set the posterior
probability π3 = 0.

decision problem is of the form

(IV.4) 0 = sup
{c, aP }

{
f(c, J) + LJJ

}

where LJ is a second-order differential operator, so-called infinitesimal generator, and for
brevity it is displayed in Appendix. Because preferences are homothetic, it is natural to
conjecture that the value function is separable across the aggregate wealth Wt and the rest
of the state variables, in my case, the vector of posterior probabilities πt = (π1t, π2t, π3t).
As a result, I guess and verify that the value function takes the shape

(IV.5) Jt ≡ J(Wt, πt) = α−1 δα/ρ [Ψ(πt)]
1−ρ
(ρ/α) W α

t ,

where I use my hindsight and parametrize the value function in terms of the equilibrium
wealth-consumption rate ratio Ψ(π), the detailed characterization of which is supplied in
the following essential proposition.
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Proposition 2. The equilibrium wealth-consumption rate ratio Ψ : ∆3 → R+ solves the
nonlinear elliptic partial differential equation (PDE)

(IV.6) 0 =LΨ Ψ + a0 (π) Ψ + 1

subject to the boundary conditions

(IV.7) lim
π→ ∂∆3

Ψ(π) ∼ finite

where for brevity the nonlinear second-order differential operator LΨ , and the function
a0(π), are displayed in Appendix.

Proof. See Appendix for details. !

Unfortunately, the consumption-wealth rate ratio Ψ (π1, π2, π3) is not separable across
the posterior probabilities, and the partial differential equation is irreducible to a system
of ordinary differential equations. I am forced to resort to numerical methods, decom-
posing the tetrahedron domain ∆3 into a regular mesh, and subsequently employing a
high-order finite difference scheme16. Note that I do not linearize but rather carefully
deal with the nonlinearity by means of a particular iterative scheme. All computations
have been done on high-performance machines17.

The expected consumption growth is not constant, but rather a persistent continuous-
time AR(1) process, and therefore the solution Ψ is not the wealth-consumption ratio
but wealth-consumption rate ratio. I construct the discrete-time analogue of the wealth-
consumption ratio as18,19

Wt∫ t
t−1 Cτ dτ

=
Wt

Ct
× Ct∫ t

t−1 Cτ dτ

Figure III.2 on page 17 (Panel A) portrays the equilibrium wealth-consumption rate ratio
Ψ when the households’ preferences exhibit state-indepedence. The portrayed surface lies
in the plausible interval of about 72.5 up to 75. After accounting for the time-aggregation,
the wealth-consumption ratio Wt/

∫ t

t−1 Cτ dτ moves significantly more, from 70.7 up to
77.9.

To interpret the picture further, note that the partial derivatives ∂iΨ, i = 1, 2, 3, are
all positive and hence the function is strictly increasing in the posterior probabilities π1,
π2 and π3. The derivatives are ordered as ∂1Ψ > ∂2Ψ > ∂3Ψ > 0. This effect is a direct
consequence of the ordering of my states κi, whereby the lower the index i, the higher is

16Technically, I use 5+ nodes to approximate partial derivatives, even the one-sided.
17I utilize several computational C/C++/FORTRAN libraries, which are well-known in the field of
numerical mathematics, but dramatically less so in economics. All codes are fully parallelized to run on
multiple processing units by means of OpenMP and Message Passing Interface (MPI) protocols. The
libraries I use include in particular GNU GMP, SuperLU_DIST_2.1, MPICH2, and Intel Math Kernel
Library. In addition, I invoke the professional C/FORTRAN compiler set by Intel Inc.
18Time is measured in quarters.
19For presentation reasons, I annualize the ratio by multiplying it by four.
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the expected growth rate of consumption, and hence the larger is the surge in the wealth-
consumption ratio in response to a change in the posterior probability πi. Furthermore,
Ψ exhibits a mild convexity, which is related to the fact that expected returns turn out
to be inverted U-shaped; the extra fall in Ψ coming from a dramatic increase in expected
returns occurs precisely in the interior of the domain int (∆3).

Figure III.2 on page 17 (Panel B) portrays the wealth-consumption rate ratio when the
households’ preferences display mild state-dependence. The graph inherites many of the
qualitative characteristics of its state-independent counterpart. The biggest difference is
a surge in its variation. The discrete-time counterpart, Wt/

∫ t

t−1 Cτdτ , lies in the hefty
interval [72.7, 84.5], compared to the wealth-consumption rate ratio Ψ that moves from
around 74.3 up to 82.1. As noted before, this effect is due to the persistence in the
consumption growth.

Because both plots of the wealth-consumption rate ratios, Panels A and B, are quali-
tatively similar, I shall, for the sake of brevity, suppress a dual presentation where a loss
in understanding is deemed negligible.

B. Real Pricing Kernel and Risk Prices. Duffie and Epstein (1992ab) derive the
formula for the equilibrium pricing kernel {Mt, It }t≥0, for the case of the normalized
aggregator (my case) as

Mt = exp




t∫

0

∂Jf (Cs, Js) ds



 ∂Cf (Ct, Jt) .

The following proposition identifies both its dynamics and the instantaneous risk price
functions.

Proposition 3. The equilibrium dynamics of the real pricing kernel is dictated by the
differential equation

dMt

Mt
= −rt dt −ΛtdZ̃t

where rt is the instantaneous real interest rate, and Λt is the vector of the instantaneous
risk price functions

Λt = (1 − α) g̃C +

(
1 − α

ρ

) 3∑

i=1

h̃i

(
∂iΨ

Ψ

)
,

given as a sum of the Brownian motion consumption risk price (first term), and the
uncertainty price (second term).

Proof. See Appendix for derivation. !

Note that the Brownian consumption risk is multiplied by the coefficient of the relative
risk aversion, whereas the uncertainty premium depends on the coefficient of the aversion
to late resolution of uncertainty.
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Figure IV.1. Risk Price Function and Time-Series of Risk Prices: Case
of State-Dependent Preferences
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Notes: The top left picture displays the surface of the magnitude of the vector-valued instantaneous
risk price function |Λt|. The bottom two pictures display the conditional quarterly (i.e. finite-horizon as
opposed to the instantaneous one) Sharpe ratios for the aggregate wealth market (left) and the aggregate
equity market (right). Because these graphs are four-dimensional, I hold fixed the posterior probability
at π3t = 0. The top right picture displays the time-series of the instantaneous risk prices for the sample
period 1948.Q1-2007.Q4, obtained by estimating the time-series of the vector of the posterior probabilities
πt = (π1t, π2t, π3t), corresponding to the real per-capita consumption growth, by means of the Hamilton
(1989) filter.

Figure IV.1 on page 20 (top left) plots the size of the instantaneous market prices
of risk |Λt| for20 π3 = 0 when preferences exhibit state-depedence. Several points are
worthwhile discussing. First, there is a clear tendency for the market prices of risk to
be high when ambiguity about both the business-cycle and long-frequency consumption
growth rates are high. First, note that holding either π1 or π2 fixed, the graph attains its
local maximum for πi ∼ 1/2. The reason that it is not exactly 1/2 is that the risk prices
depend also on the partial derivatives of the value function21. Second, the graph reaches

20The graph is 4-dimensional and I choose to present it for π3 = 0 for several reasons. First, the domain,
which is a tetrahedron, is maximized for such a choice, allowing nicer presentation. Second, it allows
better interpretation of the graph in terms of ambiguity about business-cycle and long-run consumption
growth rates as discussed in the main text further.
21My presentation differs from Hansen (2007) in that I include the value function derivatives; if I do not,
the maximum is always attained for πi = 1/2, holding πj fixed, j ,= i.
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its global maximum for π2 = 0. Recall the definition of the posterior probabilities

π1t = P
{
θt = θ, ϑt = ϑ | It

}

π2t = P
{
θt = θ, ϑt = ϑ | It

}

π3t = P
{
θt = θ, ϑt = ϑ | It

}

Observe that the law of total probability dictates that

π1t + π2t = P
{
ϑt = ϑ | It

}

π1t + π3t = P
{
θt = θ | It

}

In words, the sum π1t +π2t tells us the posterior probability of the long-frequency compo-
nent of the consumption growth being in the high state, and the sum π1t + π3t indicates
the posterior probability of the business-cycle component of the consumption growth be-
ing in the high state. Consider two scenarios. In the first one, the posterior probability
π1t = 0 and π2t ∼ 1/2, hence, we analyze the local maximum of the graph along the y
axis. Note that in such a scenario, the ambiguity about the long-frequency component
is large (π1t + π2t ∼ 1/2), but there is absolutely no ambiguity with respect to the busi-
ness cycle component (π1t + π3t = 0). In the second case, π2t = 0 but π1t ∼ 1/2, and
hence, we are analyzing the graph along the x axis, in which case the ambiguity about
the low-frequency component is large (π1t + π2t ∼ 1/2), and the ambiguity about the
business-cycle component is large (π1t + π3t ∼ 1/2) . This analysis explains the pattern
of the local maxima and why the global maximum (for π3t = 0) is attained along the x
axis.

Figure IV.1 on page 20 (top right) plots the time-series of the risk prices22 for the sample
period 1948.Q1-2007.Q4. In order to do that, I run the Hamilton (1989) filter, given the
calibration, that is, the 4 × 4 transition probability matrix, the states of the hidden
Markov chain and the consumption volatility, to estimate the posterior probabilities for
the real per-capita consumption growth. We see that there is a clear business cycle
pattern in the magnitude of the risk price funtion, rising dramatically during downturns.
Also, the Brownian motion consumption risk component is very small, and hence most of
the variation in the risk prices comes from the uncertainty premium as in Hansen (2007).
Further, the magnitudes of the risk prices are noteworthy. Hansen (2007), Figures 4 and
5, plots the instantaneous risk prices for a two-state HMM model calibrated only to the
business-cycle dynamics; his maximum risk price is around 0.09. It is the contribution
of the low-frequency component of the consumption growth that significantly raises the
risk prices; the maximum in Figure IV.1 on page 20 on the left is close to 2, more than
an order of magnitude higher.

Another advantage of modelling the business-cycle and long-run components of the
consumption growth jointly is related to the impact of the repeated observations of low
consumption growth. In a two-state model, such a string of bad luck tends to reduce
22In fact, as the risk price function Λt is a 1×2 vector, I plot the magnitude |Λt|.
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Figure IV.2. Impulse Response Functions to a Four-Quarter Standard-
Deviation Shock: Case of State-Dependent Preferences
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risk prices because it leads to a partial resolution of consumption growth uncertainty;
investors raise their posterior that they are in a bad state and risk prices drop. Hansen
(2007), p. 24, correctly points out that the inclusion of more low-frequency components of
consumption growth would tend to mitigate this problem. This may already be observed
in this model which features only single low-frequency component. A string of bad luck
raises the uncertainty associated with the long-run consumption growth states, and risk
prices rise.

In order to illustrate this point, Figure 5 plots the impulse response functions corre-
sponding to a four-quarter sequence of large23, one-standard-deviation, shocks24,25. The
left panel plots the reaction of the posterior probabilities. As may be observed, the poste-
riors move in the expected directions. The probability of both the BC and LF components
being in the high state drops, whereas the posterior of at least one component being in
the low state rises. Of course, the reaction for π3 is stronger as investors are suddenly
learning that the long-frequency risk component is unlikely to be in the high state. The
right panel portrays the impulse response function for the magnitude of the instantaneous
market prices of risk; risk prices soar in response to the persistently negative consumption
growth shocks, just to decline steadily as these are slowly dying out.

Although it is quite common in continuous time literature, with rare exceptions, to
report the annualized instantaneous quantities, such a practice may be, at least partially,
misleading. To counteract this valid criticism, I compute the annualized quarterly, as
23The largest annual fall in the real per-capita consumption growth in the sample 1948.A-2004.A (Shiller
data) amounts to -1.68% p.a., which coincidentally occurred in the year of 1974. The shock I am
considering amounts to a fall in the real consumption growth of 2% p.a., and hence by sample standards
it is very large. By the way, the next largest fall occurred in the year of 1980; consumption growth fell
by -1.43% p.a.
24I assume that the economy starts in the state where investors are quite confident that the long-
run consumption growth component, and the business-cycle components, are both in the high state;
that is, P

{
ϑt = ϑ | It

}
= P

{
θt = θ | It

}
= 0.95. This yields the following starting point πt =(

0.952, 0.95 × 0.05, 0.05 × 0.95
)
. Technically, I continuously shock the whole economy for four quar-

ters with dZ̃ = −(dt, 0, 0).
25I plot the impulse response function as a deviation from what would occur should there be no shocks,
as the starting point is not the total ergodic probability for the four-state unobservable Markov chain,
and the economy is in motion.
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Figure IV.3. Annualized Quarterly Expected Excess Return and Condi-
tional Volatility : Aggregate Wealth Market
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Notes: The Sharpe ratio is quarterly, the conditional average return is annualized quarterly magnitude.

opposed to the annualized instantaneous, Sharpe ratios on the aggregate wealth and
aggregate equity market. Mathematically, I do that by explicitly solving a certain class of
linear parabolic partial differential equations for the conditional expected excess return,
and the conditional volatility, of the respective returns. Consequently, I compute the
Sharpe ratios from their definitions26

SRi
t =

E
(
Ri

t+1 − Rf
t |πt

)

std
(
Ri

t+1 − Rf
t |πt

)

The results of this exercise are reported in Figure IV.1 on page 20, bottom left and right
panels. As may be observed, the actual annualized quarterly, as opposed to the annualized
instantaneous, Sharpe ratios, though large and time-varying, are quantitatively smaller,
about a half, relative to their instantaneous counterparts. The culprit is, in view of the
Feynman-Kač theorem, the time variation in the posterior probabilities, coupled with the
quite strong concavity of the instantaneous risk prices27.

C. Real Interest Rate. The instantaneous real interest rate is found by invoking the
first-order condition from Hamilton-Jacobi-Bellman equation with respect to the portfolio

26Time t is measure in quarters.
27Mathematically, as it is well-known, parabolic PDEs have a tendency to smooth out their initial
conditions.
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weight ap, and imposing the equilibrium condition ap = 1. The following proposition
summarizes the determinants of the level of the real interest rate.

Proposition 4. The level of the real interest rate rt = r (πt) is given by the expression

r = δ + (1 − ρ) mC

−1

2
(1 − α (2 − ρ))

(
g̃C g̃′

C

)
−

−
(

1 − α

ρ

) 3∑

i=1

(
h̃ig̃

′
C

)(
∂iΨ

Ψ

)
−

−1

2

(
1 − α

ρ

) 3∑

i=1

3∑

j=1

(
h̃ih̃

′
j

)(
∂iΨ ∂jΨ

Ψ2

)

Proof. See Appendix. !

The interpretation of the first three terms is standard. The higher the subjective
rate of time preference, the more impatient households are to consume and therefore
in equilibrium the real interest rate has to rise to make them willingly consume their
endowment rather than attempt at dissaving. The second term reflects the expected
endowment growth rate. With a high expected endowment rate, most of the consumption
occurs far in the future and household’s desire to borrow against this future income drives
up the real interest rate as there can be no borrowing in the aggregate. Finally, the third
term is the standard precautionary savings motive as we know it from the canonical Lucas
(1978) economies.

The last two terms are new and reflect time-varying precautionary savings motive. In
order to convince the reader, I invoke the following lemma.

Lemma 4. The following identities hold true

(
1 − α

ρ

)∑3
i=1

(
h̃ig̃

′
C

) (
∂iΨ
Ψ

)
=

−cov
(

dMt
Mt

, dCt
Ct

|πt

)
− (1 − α)

(
g̃C g̃′

C

)

and

(
1 − α

ρ

)∑3
i,j=1

(
h̃ih̃

′
j

)(
∂iΨ∂jΨ

Ψ2

)
=

1
2

(
1 − α

ρ

)−1

|Λt|2 +

+1−α
2

(
1 − α

ρ

)−1
cov

(
dMt
Mt

, dCt
Ct

|πt

)

Proof. See Appendix. !

According to the lemma, the last term in the expression for the real interest rate (the
term on the second line in the lemma) is an increasing function of the size of the risk prices
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in the economy, and the covariance between the real pricing kernel and the endowment
growth rate28. Therefore, this term convincingly reflects a portion of the precautionary
savings motive. In fact, the magnitude of the vector of risk prices |Λt| attains its maximum
when the uncertainty in the economy is largest29. This is the time when investors are
particularly anxious, and their supply of extra savings drives down the equilibrium interest
rate. This same story holds for the covariance term cov

(
dMt
Mt

, dCt
Ct

|πt

)
. Investors exhibit

particular anxiety not only in times when the volatility of consumption growth is large
but also when it happens in bad times. One of the measures of such a concidence, in
addition to the magnitude of the vector of the risk price discussed before, is the covariance
between consumption growth and the real pricing kernel. Note that the term on the first
line in the lemma is just a linear combination of all the terms already discussed. The
reader may easily verify that the signs of such terms, when combined with the rest, do
indeed deliver the aforementioned interpretation.

D. Aggregate Wealth Market Dynamics. The expected wealth return, and the cor-
responding volatility, fluctuate over time, depending on the state of the economy as sum-
marized by the vector of the posterior probabilities πt = (π1t, π2t, π3t). The following
proposition characterizes the time evolution of these first two conditional moments.

Proposition 5. (i) The instantaneous conditionally expected excess return on the aggre-
gate wealth portfolio is

E
(

dWt
Wt

+ Ctdt
Wt

|πt

)
− rt dt =

= −cov
(

dMt
Mt

, dWt
Wt

|πt

)

=
(
Λtg̃

′
W

)
dt

(ii) The instantaneous conditional volatility of the aggregate wealth return is

g̃W = g̃C +
3∑

i=1

h̃i

(
∂iΨ

Ψ

)
(IV.8)

Proof. See Appendix for proofs. !

I present the first two annualized moments of wealth portfolio returns for the finite-
horizon, quarterly, period, in contrast to the instantaneous ones. This choice matters as
the moments are time-varying. The methodology to obtain these finite-horizon moments
is technical, and is described at great length in Appendix.

28Strictly speaking, this holds true for α > 1, which is the only case I consider in this paper. It is
also a necessary condition for the preference specification to exhibit a preference for early resolution of
uncertainty.
29Technically, |Λt| does not attain its maximum when the uncertainty is largest because |Λt| also hinges
on the partial derivatives of the value function. Investors are not most worried when uncertainty is the
largest but when the product of the partial derivatives of the value function and the ’uncertainty’ is
largest. These two points are, though, close to each other, and were it not for the partial derivatives of
the value function, they would, of course, coincide.
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Figure IV.4. Annualized Quarterly Expected Excess Return and Condi-
tional Volatility : Aggregate Equity Market
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Notes: The Sharpe ratio is quarterly, the conditional average return is annualized quarterly magnitude.

Figure IV.3 on page 23 (top left and right) plots the annualized quarterly first two condi-
tional moments of the aggregate wealth return when preferences exhibit state-dependence.
There is a notably large variation in the expected excess return and volatility in response
to the investors’ confidence. Figure IV.3 on page 23 (bottom left) displayes the implied
time-series of the conditional excess mean return, obtained by estimating the posterior
probabilities for the sample period 1948.Q1-2007.Q4, using Hamilton (1989) filter. The
mean moves countercyclically, rising steeply in recessions. For illustrative purposes, Fig-
ure IV.3 on page 23 (bottom right) also portrays the related time-series of the conditional
Sharpe ratio.

Note the highly nonlinear profile of the conditionally expected excess return and volatil-
ity. In fact, the expected return profile as a function of the posterior probabilities is
inverted U-shaped, attaining its global maximum in the interior of the domain ∆3, and
its global minima on the boundary ∂∆3. As investors become quite confident about
the state of the economy, the uncertainty premium in expected returns falls to the level
reflecting the Brownian consumption risk. This observation is in stark contrast to the
Bansal and Yaron (1999) model, wherein the expected return is an affine function, rather
than inverted U-shaped, of their state variables.

E. Equilibrium Price-Dividend Ratio and Aggregate Equity Market Dynam-
ics. I model the aggregate equity market, with its value denoted S, as a leveraged con-
sumption claim (Abel 19xx), with the leverage yarstick denoted φ. In our economy, the
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aggregate equity price is not statistically stationary whereas the price-dividend rate ratio
is. Due to the preference homotheticity, the following functional relationship holds true

St

Dt
= Φ(πt)

Proposition 6. The equilibrium price-dividend ratio Φ : ∆3 → R+ solves the linear
elliptic PDE

(IV.9) 0 =LΦ Φ + b0 (π) Φ + 1

subject to the boundary conditions

(IV.10) lim
π→ ∂∆3

Φ(π) ∼ finite

where the elliptic differential operator LΦ is displayed in Appendix.

Proof. See Appendix for details. !

Figure III.2 on page 17 portrays the equilibrium price-dividend rate ratio S/D ≡ Ψ(π)

as obtained by applying a high-order finite-difference scheme to the linear elliptic PDE
displayed in the above proposition. As already discussed in the case of the wealth-
consumption rate ratio, Φ (π) is not the price-dividend ratio but rather price-dividend
rate ratio. The difference again matters as the expected dividend growth is not constant
but in fact a persistent continuous-time AR(1) process. I construct the discrete-time
analogue of the quarterly wealth-consumption ratio as30,31

St∫ t
t−1 Dτ dτ

=
St

Dt
× Dt∫ t

t−1 Dτ dτ

and it turns out to vary sizably more, from 24 up to 35.4, compared to the price-dividend
rate ratio Φ that moves only from around 26.4 up 32. All discussion related to the wealth-
consumption rate ratio carries over to the price-dividend rate ratio. In particular, the
graph is even more convex as expected returns in times of Bayesian uncertainty about
growth prospects, which occurs in the interior of the domain, int (∆3), soar even higher,
engendering a further discount in the in equity prices relative to confident times when
πt → ∂∆3. In addition, the equity prices tend to overreact to bad news in good times, and
underreact to good news in bad times as may be observed by evaluating the significantly
different gradients close to the “opposite” boundaries. This effect was first unveiled in a
rational-expectations expected-utility framework in Veronesi (1999).

As in the market for the aggregate wealth, the return moments in the aggregate equity
market are time-varying.

30Time is measured in quarters.
31For presentation reasons, I annualize the ratio by multiplying it by four.
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Table 4. Quantitative Asset Pricing Implications of the State-Dependent Calibration

Model Real Data

Average RRA 8.04
EIS 1.5
E
“
rS

t+1 − rf
t

”
5.60 % 6.33 % (2.15 %)

E
“
rf

t

”
1.50 % 0.86 % (0.42 %)

σ
“
rS

t − rf
t

”
14.42 % 19.42 % (3.27 %)

σ
“
rf

t

”
1.64 % 0.97 % (0.28 %)

E (exp (pt − dt)) 19.82 26.56 (2.53)
σ (pt − dt) 9.80 % 29 % (4 %)

Notes: I simulate 400, 000 quarters of relevant time-series pertaining to the aggregate wealth at the
frequency dt = 0.001. I subsequently compute the unconditional annual moments of the aggregate wealth
and the leveraged consumption claim, and the concomitant return in excess of the yield-to-maturity rf

t

of the zero-coupon bond maturing in one quarter ahead, my yardstick of the risk-free rate. Small letters
are in logs; returns are continously compounded. All variables are annualized quarterly series.

Theorem 1. (i) The instantaneous conditional expected excess return on the aggregate
equity is

E
(

dSt
St

+ Dtdt
St

|πt

)
− rt dt =

= −cov
(

dMt
Mt

, dSt
St

|πt

)

=
(
Λtg̃

′
S

)
dt

(ii) The instantaneous conditional volatility of the aggregate equity return is

g̃S = g̃D +
3∑

i=1

h̃i

(
∂iΦ

Φ

)
(IV.11)

Proof. See Appendix for proofs. !

I present in Figure IV.4 on page 26 the first two moments of the aggregate equity
portfolio returns for the finite-horizon period, in contrast to the instantaneous ones.
Again, this choice matters as the moments are time-varying, and thus the expected return
on the aggregate equity portfolio for a yearly holding period does not equal the annualized
instantaneous return; the same holds for the conditional aggregate equity return volatility.

F. Unconditional Quantitative Asset Pricing Implications.

a. Simulation of the Model. As I work in continuous-time setting, I am forced to dis-
cretize time t in order to simulate the whole economy. The model is very nonlinear32, and
therefore I proceed carefully, selecting the discrete time small, ∆t = 0.001, and approx-
imating the stochastic differential equations for the vector of the posterior probabilities
32Although the wealth-consumption and price-dividend ratios do not look wildly nonlinear, the expected
excess return profiles do.
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using the Euler scheme. The sequence of i.i.d. Gaussian variables needed for the simula-
tion is quite lengthy. In this respect, I avail myself of the state-of-the-art random number
generator33 (Saito and Matsumoto 2006). Having obtained the time-series of the posterior
probabilities of length 400,000 quarters, I consequently assign to them the correspond-
ing quantities, which I linearly interpolate34’35. All flow variables are time-aggregated as
expounded in Appendix.

b. Equity and Risk-Free Rate Puzzles. Table 4 reports the relevant summary statistics
for the equity markets (state-dependent case), and, for the reader’s convenience, also the
sample counterparts as estimated by Bansal and Yaron (2004). The average yield-to-
maturity on an one-year zero-coupon real bond, my measure of the risk-free rate, comes
out 1.50%, and has a volatility of 1.64% percent, all within the estimated asymptotic two-
standard-error bounds in Panel C. The equity risk premium is 5.60 %, and though a bit
lower compared to the point estimate of 6.33%, it is well within the asymptotic confidence
bounds. The model is able to account for the observed risk premium in the aggregate
stock market without engendering any risk-free rate puzzle. In addition, Abel (1999)
cautions against accounting for a large equity premium with a large term premium. As
demonstrated in the related paper by Pakoš (2008), the term premium is economically
small. As regards the volatility of equity excess return, it comes out about 14.42%,
well above the lower asymptotic two-standard error confidence bound 12.88%=19.42%-
2.00×3.27% of the Bansal and Yaron point estimate.

c. Matching Moments of Valuation Ratios. The model nicely fits the mean price-dividend
and wealth-consumption ratios, being exempt from the Lustig and Nieuwerburgh (2008)
criticism. The average price dividend ratio comes out about 20 whereas the wealth-
consumption ratio is around 75. If there is any problem with the model-implied moments,
it probably lies in the relatively smaller variation in the price-dividend ratio, which comes
out about half, σ (pt − dt) = 9.80% < 21% = 29% − 2.00 × 4%. In this respect, I am
considering several possible avenue for future research that may help fit this important
moment better, such as introducing durable goods.

G. Countercyclical Risk Premia and Stock Return Predictability. Although the
excess return profile is highly nonlinear (inverted U-shaped), the model is capable of
generating countercyclical risk premia for careful, but still highly plausible, calibration.
What is necessary is to live on the monotonic part of the profile most of the time. This
condition is met in my parametrization as the transition probability kernels P θ (∆t) and
P ϑ (∆t) are significantly asymmetric.
33In detail, I use the double-precision SIMD-oriented Fast Mersenne Twister (dSFMT) random number
generator. I choose the optional period to be the largest 2216091 − 1. The code itself is implemented in
C directly by its authors as expounded in Saito and Matsumoto (2006), and is downloadable from their
home Dept. of Mathematics at the University of Hiroshima.
34This is not restrictive as it appears. The domain ∆3 is decomposed into a mesh with δπ = 0.02.
35I have also experimented with higher-orders of approximation but the OpenMP parallel code running
on 64 processors was unable to handle this exercise within the reasonable time of several hours.
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Figure IV.5. Impulse Response Functions for the State-Dependent Case
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Notes: I shock the economy with a yearly negative shock of size 1 std. I start the economy in the good
state in terms of LR and BC. PD and WC as a percent of the stationary values.

In light of the discussion above, I construct the following thought experiment. Suppose
the economy is doing well in the sense that investors attach posterior probabilities of
P

{
ϑt = ϑ | It

}
= 0.95 and P

{
θt = θ | It

}
= 0.95 to the economy being in the high

state of the low-frequency, and business-cycle, consumption growth components. All of
a sudden, the macroeconomy gets buffeted by a year-long negative consumption shock36

equal in magnitude to one standard deviation; quantitatively, we are talking about a drop
in annual consumption growth37 of 200 basis points. Figure IV.5 displays the resulting
impulse response functions for the (annualized instantaneous) expected38 excess returns,
and conditional volatilities, on the aggregate wealth and equity portfolios, and for the
wealth-consumption rate and price-dividend rate ratios.

As may be observed, the expected excess returns soar in response to the negative
income shocks, just to slowly come down as those are slowly dying out. The peak for the
aggregate stock market is a hefty six percent surge, whereas that for the aggregate wealth
market is nearly four percent, magnitudes that are economically large. Furthermore,
the conditional volatility and valuation ratios are also countercyclical and procyclical,
respectively, moving in the expected directions.

This thought experiment illustrates the ability of the model to generate countercyclical
movements in the conditional risk premiums. Therefore, excess returns ought to be
predictable. I now proceed to analyze such predictability in the aggregate equity market.

H. Volatility Tests. Equity prices by definition equal the expected discounted value of
future dividends

St = Eπ, t

{∫ ∞

t

(
Ms

Mt

)
Ds ds

}

and, as a result, move up and down in response to changing expectations of future
dividends and changing expectations of future discount rates (expected returns). Using

36Technically, I shock the economy continuously with dZ̃ = − (dt, 0, 0) for four quarters.
37Recall the calibration σC = 2%.
38These are instantaneous expected excess returns. Working with finite-horizon moments is computa-
tionally intensive.
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Table 5. Variance Decompositions
Panel A. Population Decompositions, 400 000 Quarters

Assets
Consumption Claim Dividend Claim

Return (in %) 9.47 31.27
Cash Flow Growth (in %) 80.37 43.11

Panel B. Small Sample Decompositions, 220 Quarters

% of var (w − c) % of var (p − d)

Mean Median Mean Median
Return (in %) 77.01 101.34 53.46 58.28

Cash Flow Growth (in %) 16.46 -4.79 25.70 21.47

postwar data with the length of about 200 quarters, Campbell and Shiller (1988), and
Cochrane (1992), among others, try to quantify the relative economic significance of these
price determinants, and find that swings in expected dividend growth do not appear to
account for the variation in equity prices. Formally, they consider log-linearizing the
identity

(IV.12) 1 + RS
t+1 =

St+1 +
∫ t+1

t Dτ dτ

St

with the transversality condition that there are no rational asset price bubbles, and arrive
at the following approximate variance decomposition

100% ≈
∞∑

i=1

ρi cov (st − dt, ∆dt+i)

var (st − dt)
(IV.13)

−
∞∑

i=1

ρi cov
(
st − dt, rS

t+i

)

var (st − dt)

where I define ρ = exp
(
s − d

)
/
[
1 + exp

(
s − d

)]
, with the bar denoting the sample

mean, and denote st = log (St), rS
t = log

(
1 + RS

t

)
, dt = log

(∫ t

t−1 Dτ dτ
)
.

Table 5, Panel A, presents the population values of ( IV.13) using 400,000 quarters of
the simulated data. The items do not sum to one due to the highly nonlinear relationships
between price-dividend ratio and expected returns; the gap should thus be attributed to
expected returns.

As may be observed, wealth-consumption ratio varies mostly (around 80%) due to
varying expectations of consumption growth. In contrast, only about 43% of the variance
of the price-dividend ratio is attributable to the changing expectations of dividend growth,
with 100%-43%=57% imputed to swings in expected returns.

Note that these decompositions are population values, and therefore may not be retriev-
able in short samples of 200 to 300 quarters of postwar data as the underlying variables
are highly persistent. In response to this legitimate concern, table 5, Panel B, presents
the means and medians obtained by performing 1000 simulations with the length of 220
quarters. The small sample bias is dramatic! If we re-ran the postwar history, around
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50% of the time we would impute all the variation in the wealth-consumption ratio to
the swings in expected returns, in stark contrast with the true population decompo-
sition discussed above. And around 50% of time, we would also conclude that more
than 100%-21.47%=78.53% of the variation in the price-dividend ratio is due to changing
expectations of expected equity returns.

I. Time-Series Predictability of Aggregate Wealth and Equity Returns. In or-
der to evaluate the ability of the model to match the empirical results in the predictability
literature, I run the following regressions,

gD
t→t+T = a + b (dt − pt) + εD

t→t+T

rS
t→t+T − rf

t = a + b (dt − pt) + εS
t→t+T

The population slopes and R2s from these regressions are conveniently summarized in
Table 6, Panel A, with no need to report t-statistics as they are based on 400,000 quarters
of simulated data. The risk premiums in the aggregate stock market are predictable
with the correct signs, and plausible magnitudes of the linear projection coefficients.
Furthermore, both slopes and R2s rise with the horizon.

An astute reader may worry about the relatively high forecastability of the dividend
growth rate. Table 6, Panel B, demonstrates, that we if re-ran the postwar history, about
50% of the time we would tend to conclude that the aggregate dividend growth rate is
unpredictable with the respective price-dividend ratio.

V. Summary

I present a consumption-based asset pricing model that puts a macrocoenomic expla-
nation on a number of phenomena observed in the aggregate equity market. This seem-
ingly elusive link between the real and financial sectors of the economy is accomplished by
means of an aversion to Bayesian uncertainty about macreconomic fundamentals, thereby
evading the failures of much of the previous literature to connect the apparent turbulence
in asset markets with a seemingly smooth and unpredictable consumption growth.

The great virtue of the model is its conceptual simplicity, the minor technical drawback
the programming labor needed to solve it. In terms of the economics, I stay neoclassi-
cal; in terms of computations, I go a bit experimental, using high-performance machines,
together with the freely-available C++/Fortran numerical libraries from the ingenious
open-source community. The focus of the paper is economics wherefore I have through-
out suppressed a description of the computational details, including the domain decom-
position, the choice of the numerical scheme, or the code parallelization by means of
OpenMP and Message Passing Interface (MPI) protocols, in order not to distract the
reader as these issues are just too interesting.

I avail myself of the construct of the representative household, endowed with the recur-
sive utility function of Epstein and Zin (1989), which I configure with plausible magni-
tudes of the aversion to late resolution of uncertainty and the elasticity of intertemporal
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Table 6. Predictability Results for Aggregate Equity Market, State-Dependent Case
: Regression Analysis on Simulated Data

Panel A. Population Predictive Regressions, 400 000 Quarters
T (in quarters) dt+1 − dt rS

t→t+T − rf
t

b R2 b R2

4 -0.26 8.27 % 0.46 11.45 %
8 -0.36 7.30 % 0.74 16.64 %
12 -0.44 6.69 % 0.92 19.20 %
16 -0.50 6.15 % 1.05 20.37 %
20 -0.54 5.57 % 1.15 20.83 %

Panel B. Predictive Regressions, Small Sample of 220 Quarters, Medians
T (in quarters) dt+1 − dt rS

t→t+T − rf
t

b R2 b R2

4 -0.23 6.63 % 0.53 13.66 %
8 -0.30 4.95 % 0.85 19.84 %
12 -0.32 3.78 % 1.07 23.62 %
16 -0.33 3.58 % 1.20 24.81 %
20 -0.31 3.28 % 1.30 26.05 %

Notes: Predictive regressions are run with overlapping observations. Risk-free rate is the YTM on a
risk-free zero-coupon bond maturing in one quarter.

substitution. I further endow the household with a single asset, the Lucas tree, yielding
a periodic stream of income. Although its level is perfectly observable, its growth rate is
subject to sporadic large shocks and incessant small, Brownian, shocks. As it is statisti-
cally hard to discriminate between the source of the shocks, the information structure is
incomplete, confronting investors with a complex signal-extraction problem.

The kernel of the paper lies in the specification of the large shocks, which are modelled
with the help of a continuous-time four-state hidden Markov chain model (HMM). The
two states of the HMM model are meant to encapsulate the business-cycle dynamics,
with the remaining two tracking the variation in the expected income growth at a low
frequency. I justify the calibration of the HMM model to the real per-capita consumption
growth by means of detection-error probabilities; the probability of mistakenly believing
in the income growth being identically and independently distributed is more than 5%
with less than 80 years of data.

The model offers a novel laboratory to evaluate the effect of economic uncertainty
about the macroeconomic fundamentals on asset prices, being able to account for (i)
the observed magnitude of the equity premium, (ii) the low and stable risk-free rate,
(iii) the magnitude and the countercyclicality of risk prices, (iv) the average levels and
the procyclicality of price-dividend and wealth-consumption ratios, (v) the long-horizon
predictability of risk premia, and (vi) the overreaction of price-dividend ratio to bad news
in good times, all within the conceptually simple representative-agent framework.
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Appendix A. Wonham’s (1964) Nonlinear Filter In Detail

Let the four-tuple (Ω, F , {Ft}t≥0, P ) be a filtered probability space, supporting a bivariate Brownian motion
{Zt, Ft }t≥0, where Zt = [Z1t, Z2t]

′. Let {Yt, Ft }t≥0 denote the vector of the endowment growth rate and
dividend growth rate,

dYt =

»
dCt

Ct
,

dDt

Dt
− (1 − φ)µs

C dt

–′

Its dynamics is given by the vector stochastic differential equation

(A.1) dYt = Ξt dt + Σ dZt
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where the volatility matrix

Σ =

 
σC 0

φσC σD,2

!
.

and the drift

Ξt = [κt, φκt]
′

switches between four states at random times. It follows a four-state continuous-time hidden Markov chain, with
the transition kernel in the time period (t, t + ∆t) given by P (∆t) = I + M ∆t + ō(∆t); the generator M is
defined

(A.2) M = lim
∆t↓0

P (∆t) − I
∆t

and it is given by the 4 × 4 real matrix

M =

0

BBBB@

−λ12 − λ13 − λ14 λ12 λ13 λ14

λ21 −λ21 − λ23 − λ24 λ23 λ24

λ31 λ32 −λ31 − λ32 − λ34 λ34

λ41 λ42 λ43 −λ41 − λ42 − λ43

1

CCCCA
,

with λij ≥ 0, i $= j. The four states correspond to four states for the true expected endowment growth rate κt.
Formally,

Ξ1 = [κ1, φκ1]

Ξ2 = [κ2, φκ2]

Ξ3 = [κ3, φκ3]

Ξ4 = [κ4, φκ4]

Define the orthogonalized innovation vector eZt as

(A.3) deZt =
`
ΣΣ′´−1/2

[dYt − E{dYt | It}]

where the investor’s information set, It = σ ({Yτ : 0 ≤ τ ≤ t}), is strictly smaller than Ft due to the unobserv-
ability of the true expected growth rates of consumption. To introduce appropriate notation, let the volatilities
with respect to the innovation process eZ be denoted as

"
egC

egD

#
=

`
ΣΣ′´1/2

and let the ’new’ drifts be denoted

mCt =
4X

i=1

κi πit

mDt = (1 − φ) µs
C + φ

 
4X

i=1

κi πit

!

Hence, we may rewrite the Itô process for the vector Yt as a homoscedastic diffusion

dCt

Ct
= mCt dt + egC deZt

dDt

Dt
= mDt dt + egD deZt

where I have defined the posterior probabilities as

(A.4) πit = P {Ξt = Ξi | It } , i ∈ {1, 2, 3, 4}



EQUITY PRICES UNDER BAYESIAN DOUBT ABOUT MACROECONOMIC FUNDAMENTALS 37

Clearly,
P4

i=1 πit = 1, and thus π4t is redundant. Let us also denote

(A.5) mΞ
t =

4X

i=1

Ξi πit

The posterior probabilities follow the time-homogenous diffusion (Wonham 1964, Liptser and Shiryaev 2001)

dπit = mit dt + ehit deZt(A.6)

where

mit =
4X

j=1

λji πjt, i ∈ {1, 2, 3}(A.7)

ehit = πit

h
Ξi −mΞ

t

i `
ΣΣ′´−1/2

, i ∈ {1, 2, 3}(A.8)

Appendix B. Proof of Proposition 2

Recall the definition of the innovation process deZt, written explicitly as

deZt =
`
ΣΣ′´−1/2

 
1

0

!
dCt

Ct
− Et

„
dCt

Ct
| It

«ff
+

+
`
ΣΣ′´−1/2

 
0

1

!
dDt

Dt
− Et

„
dDt

Dt
| It

«ff

The term dCt
Ct

−Et

“
dCt
Ct

| It

”
corresponds to the consumption growth innovation, and the term dDt

Dt
−Et

“
dDt
Dt

| It

”

is the dividend growth innovation. Note that as long as (ΣΣ′)−1/2

 
0

1

!
is a nonzero vector, we do need the

dividend signal even though it actually is nosier than the consumption signal. I now proceed to show that the
second column of this matrix goes to zero as the orthogonal part the dividend volatility σD,2 grows without
bounds. In such a case, investors learn exclusively from the consumption innovations d eZ1; the dividend signal
is irrelevant. What the proof also shows, though, is that as long as σD,2 is finite, the dividend signal cannot be
disposed of in the inference problem, at least as long as φ $= 0.

Recall the volatility matrix

Σ =

 
σC 0

φσC σD,2

!

Basic algebra shows that

`
ΣΣ′´ =

 
σ2

C φσ2
C

φσ2
C φ2σ2

C + σ2
D,2

!
= σ2

C ×
 

1 O (φ)

O (φ) O
`
φ2 + σ2

D,2/σ
2
C

´
!

To prove the proposition, it suffices to show that the second column of (ΣΣ′)−1/2 is zero only in the limit as
σ2

D,2 goes to infinity. To proceed, define
 

u1 v1

u2 v2

!
=

 
1 O (φ)

O (φ) O
`
φ2 + σ2

D,2/σ
2
C

´
!−1

This yields the following system of linear equations for v1 and v2

v1 + O (φ) v2 = 0

O (φ) v2 + O
`
φ2 + σ2

D,2/σ
2
C

´
v2 = 1

the solution of which is

v1 = −O (φ) /O
`
σ2

D,2/σ
2
C

´

v2 = 1/O
`
σ2

D,2/σ
2
C

´

Clearly, v1 and v2 converge to zero as σ2
D,2/σ

2
C grows without bounds. Hence,
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lim
σ2

D,2→∞

 
σ2

C φσ2
C

φσ2
C φ2σ2

C + σ2
D,2

!−1

=

 
ū1 0

ū2 0

!

Hence,

lim
σ2

D,2→∞

 
σ2

C φσ2
C

φσ2
C φ2σ2

C + σ2
D,2

!−1/2

=

 √
ū1 0

ū2/
√

ū1 0

!

Appendix C. Pricing the Lucas (1978) Tree

a. The Value Function and Hamilton-Jacobi-Bellman (HJB) Equation. Recall the dynamic budget constraint

dWt = mW dt + W egW deZt(C.1)

where

mW = aP [mP − rt] Wt + rt Wt − ct(C.2)

egW = aP egP(C.3)

The infinitesimal operator L takes the form

LJ = mW ∂W J +
1
2

W 2 `egW eg′
W

´
∂WW J + m′

π∂πJ +(C.4)

+
1
2

tr
“
eH∂2

ππ′J
”

+ W
3X

j=1

“
egW
eh′

j

”
∂Wj J(C.5)

where I denote π := [π1,π2,π3]
′, the matrix eH :=

h“
ehi
eh′

j

”i

3×3
, the operators ∂π =[∂1, ∂2, ∂3]

′ and ∂2
ππ′ =[∂ij ]3×3

with ∂i ≡ ∂/∂πi, and the vector mπ := [m1, m2, m3].

According to Duffie and Epstein (1992ab), the Hamilton-Jacobi-Bellman (HJB) equation is

(C.6) 0 = sup
{c, aP }

{ f(c, J) + LJ }

I make an educated guess that

(C.7) J(W, π) = α−1 δα/ρ [Ψ(π)]
1−ρ

(ρ/α) Wα

The partial derivatives of the value function are

∂W J =
αJ
W

∂WW J =
α (α− 1) J

W 2

∂i J =

„
1 − ρ
ρ/α

« „
∂iΨ
Ψ

«
J

∂ij J =

„
1 − ρ
ρ/α

« »
∂ijΨ
Ψ

+

„
1 − ρ
ρ/α

− 1

«„
∂iΨ ∂jΨ

Ψ2

«–
J

∂Wi J =

„
1 − ρ
ρ/α

« „
∂iΨ
Ψ

«
αJ
W

and the partial derivative of the normalized aggregator is

∂c f(c, J) =
δ cρ−1

(αJ)(ρ/α)−1
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The first-order condition for the consumption rate c yields

∂C f(c, J) = ∂W J

δ cρ−1

(αJ)(ρ/α)−1
=

αJ
W

δ cρ−1 = (αJ)(ρ/α) W−1

cρ−1 = Ψ1−ρW ρ−1

W
c

= Ψ(π)

In equilibrium, financial markets must clear, aP = 1, and goods markets must clear, c = C. Substituting into
the budget constraint (C.1) yields

dWt = (mP Wt − Ct) dt + Wt egP deZt

Recalling the dynamics of the Lucas tree

dPt = (mP Pt − Ct) dt + Pt egP deZt

and the condition that the initial wealth W0 equals the value of the Lucas tree P0 yields that

(C.8) ∀t ≥ 0 : Pt = Wt

As a result, the equilibrium wealth-consumption ratio equals the price-endowment ratio of the underlying Lucas
tree

(C.9) P
C

=
W
c

= Ψ(π)

Cross-multiplying by the endowment rate, and applying Itô lemma yields

P = Ψ(π) C

dP
P

=
dΨ
Ψ

+
dC
C

+
d[Ψ, C]
ΨC

Furher application of Itô lemma to function Ψ = Ψ(π) gives

dΨ =
3X

i=1

∂iΨ dπi +
1
2

3X

i=1

3X

j=1

∂ijΨ d[πi,πj ]

=

(
3X

i=1

mi∂iΨ +
1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

”
∂ijΨ

)
dt +

+
3X

i=1

ehi ∂iΨ deZ

In addition, the dynamics of the endowment is

dC
C

= mC dt + egC deZ

Finally, the cross-variation between the processes Ψand C is

d[Ψ, C]
ΨC

=
3X

i=1

“
ehieg′

C

” „∂iΨ
Ψ

«
dt
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Putting all these results together yields

dP
P

=

„
mP − C

P

«
dt + egP (t) deZ(t)

dP
P

=

"
mC +

3X

i=1

“
mi +

“
ehieg′

C

””„∂iΨ
Ψ

«#
dt

+

"
1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

” „∂ijΨ
Ψ

«#
dt +

"
egC +

3X

i=1

ehi

„
∂iΨ
Ψ

«#
deZ

I invoke the canonical decomposition for continuous semi-martingales to get the instantaneous conditional ex-
pected return of the Lucas tree

mP = Ψ−1 + mC +
3X

i=1

“
mi +

“
ehieg′

C

””„∂iΨ
Ψ

«

+
1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

” „∂ijΨ
Ψ

«
(C.10)

and the instantaneous conditional volatility vector of the Lucas tree

egP = egC +
3X

i=1

ehi

„
∂iΨ
Ψ

«
(C.11)

Before we substitute all these intermediate results back into the HJB, note that

egP eg′
P =

"
egC +

3X

i=1

ehi

„
∂iΨ
Ψ

«#"
egC +

3X

j=1

ehj

„
∂jΨ
Ψ

«#′

=
`
egCeg

′
C

´
+ 2

3X

i=1

“
ehieg′

C

” „∂iΨ
Ψ

«
+(C.12)

+
3X

i=1

3X

j=1

“
ehi
eh′

j

” „∂iΨ
Ψ

«„
∂jΨ
Ψ

«

and

egP
eh′

j =

"
egC +

3X

i=1

ehi

„
∂iΨ
Ψ

«#
eh′

j =(C.13)

=
“
egC
eh′

j

”
+

3X

i=1

“
ehi
eh′

j

” „∂iΨ
Ψ

«
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Substituting into the HJB equation together with the equilibrium conditions, skipping the quite tedious inter-
mediate steps

0 = f(C, J) + LJ

=
δ
ρ

Cρ − (α J)ρ/α

(α J)(ρ/α)−1
+
`
mP −Ψ−1´W ∂W J +

1
2

W 2 `egP eg′
P

´
∂WW J + m′

π∂πJ +

+
1
2

tr
“
eH∂2

ππ′J
”

+ W
3X

j=1

“
egP
eh′

j

”
∂Wj J =

=

„
1
δΨ

− 1

«
δ
ρ
αJ +

+

"
mC +

3X

i=1

“
mi +

“
ehieg′

C

””„∂iΨ
Ψ

«
+

1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

” „∂ijΨ
Ψ

«#
αJ

+
1
2

"
`
egCeg

′
C

´
+ 2

3X

i=1

“
ehieg′

C

” „∂iΨ
Ψ

«
+

3X

i=1

3X

j=1

“
ehi
eh′

j

” „∂iΨ
Ψ

«„
∂jΨ
Ψ

«#
α (α− 1) J

+

„
1 − ρ
ρ/α

« 3X

i=1

mi

„
∂iΨ
Ψ

«
J +

+
1
2

„
1 − ρ
ρ/α

« 3X

i=1

3X

j=1

“
ehi
eh′

j

” »∂ijΨ
Ψ

+

„„
1 − ρ
ρ/α

«
− 1

«„
∂iΨ
Ψ

«„
∂jΨ
Ψ

«–
J

+

„
1 − ρ
ρ/α

« 3X

j=1

"“
egC
eh′

j

”
+

3X

i=1

“
ehi
eh′

j

” „∂iΨ
Ψ

«# „
∂jΨ
Ψ

«
αJ

Simplifying and re-arranging the terms yields that the price-endowment ratio Ψ : ∆3 → R+ solves the nonlinear
elliptic PDE

(C.14) 0 =LΨ + a0 Ψ + 1

subject to the boundary conditions

(C.15) lim
π → ∂∆3

Ψ(π) ∼ finite

where differential operator L is given by

LΨ =
1
2

tr
“
eH ∂2

ππ′Ψ
”
− 1

2Ψ

„
1 − α

ρ

«“
∂πΨ

′ fH ∂πΨ
”

+
`
a′

1∂πΨ
´

(C.16)

I additionally denote the vector a1 := [mi + α (egCh′
i)]3×1 and the scalar

a0 := −δ + ρ

"
3X

i=1

θiπi + θ4 (1 − π1 − π2 − π3)

#
− 1

2
(1 − α) ρ

`
egCeg

′
C

´
.

Appendix D. The Real Interest Rate

The first-order condition from the HJB equation with respect to the portfolio weight aP yields

0 = (mP − r)W∂W J + W 2aP

`
egP eg

′
P

´
∂WW J + W

3X

i=1

“
ehieg′

P

”
∂Wi J(D.1)

To ensure equilibrium in the financial market, we must have

(D.2) aP = 1
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Imposing this condition upon (D.1) and solving for the real interest rate gives

r = mP +
W∂WW J
∂W J

`
egP eg

′
P

´
+
X“

ehieg′
P

”„∂Wi J
∂W J

«

r = mP − (1 − α)
`
egP eg

′
P

´
+

„
1 − ρ
ρ/α

« 3X

i=1

“
ehieg′

P

”„∂iΨ
Ψ

«

Recalling equations (C.10), (C.12) and (C.13) yields after tedious algebra r = r (π); that is,

r = δ + (1 − ρ)
"

3X

i=1

θiπi + θ4 (1 − π1 − π2 − π3)

#
−

− 1
2

(1 − α) (2 − ρ)
`
egCeg

′
C

´
−
„

1 − α
ρ

« 3X

i=1

“
ehieg′

C

”„∂iΨ
Ψ

«
−

− 1
2

„
1 − α

ρ

« 3X

i=1

3X

j=1

“
ehi
eh
′
j

”„∂iΨ ∂jΨ
Ψ2

«

Appendix E. Real Pricing Kernel

In case of the normalized aggregator

f (C, J) =
δ
ρ

Cρ − (α J)ρ/α

(α J)(ρ/α)−1
,

Duffie and Epstein (1992ab) show that the equilibrium pricing kernel {Mt, It }t≥0 takes the form

Mt = exp

0

@
tZ

0

∂Jf (Cs, Js) ds

1

A ∂Cf (Ct, Jt) .

Application of Itô lemma gives

dM
M

= ∂Jf (C, J) dt +
d∂Cf (C, J)
∂Cf (E, J)

= O (dt) + d log ∂Cf (C, J)

= O (dt) + d log

"
Cρ−1

(α J)(ρ/α)−1

#

= O (dt) + (ρ− 1) d log C −
“ ρ
α

− 1
”

d log J

Note that

log J ∝
„

1 − ρ
ρ/α

«
logΨ + α log W(E.1)

log W = log C + logΨ(E.2)

Hence,

dM
M

= O (dt) + (ρ− 1) d log C +
“ ρ
α

− 1
” »„1 − ρ

ρ/α

«
d logΨ + α (log C + logΨ)

–

= O (dt) − (1 − α) d log C −
“
1 − ρ

α

”
d logΨ

= O (dt) −
(

(1 − α) egC +

„
1 − α

ρ

« 3X

i=1

ehi

„
∂iΨ
Ψ

«)
deZ

We know that the drift of the real pricing kernel growth rate is equal to the minus of the real interest rate −rtdt.
I have found the expression for r ≡ r(π) previously in a different, and much easier, way (see subsection above);
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as a result,

dMt

Mt
= −rt dt −

(
(1 − α) egC +

„
1 − α

ρ

« 3X

i=1

ehi

„
∂iΨ
Ψ

«)
deZt

Appendix F. Expected Excess Return on the Lucas (1978) Tree

The dynamic Euler equation

E
„

dPt

Pt
+

Ct

Pt
dt | It

«
− rt dt = −Cov

„
dMt

Mt
,

dPt

Pt
| It

«

yields the formula for the instantaneous conditional expected excess return on the wealth portfolio as

mP − r = (1 − α)
`
egCeg

′
P

´
+

„
1 − α

ρ

« 3X

i=1

“
ehieg′

P

” „∂iΨ
Ψ

«

See a subsection above for the expression for the instantaneous conditional volatility of the Lucas tree.

Appendix G. Finite Horizon Moments

A. Preliminaries. The P-dynamics of the value of the Lucas (1978) tree is

dPt

Pt
=

„
mP − Ct

Pt

«
dt + egP deZt

Hence,

d log Pt +
Ct

Pt
dt −rtdt =

„
mP − rt −

1
2

`
egP eg′

P

´«
dt + egP deZt

We recognize the term on the left-hand side as the instantaneous excess log-return; that is,

d log Re
t =

„
mP − rt −

1
2

`
egP eg′

P

´«
dt + egP deZt

Written in the integral form,

log Re
T − log Re

t =

TZ

t

»
mP − rτ − 1

2

`
egP eg′

P

´–
dτ +

TZ

t

egP deZτ

The left-hand side tells us the cumulative log-return earned over the time interval [t, T ]. I am interested in
computing its first two conditional moments.

B. Conditional Mean. Define

G(t; T ) = E [log R(T ) − log R(t) | I(t)]

As before, the vector of posterior probabilities π is a Markov process, and hence, with a slight abuse of notation,

E [log RT − log Rt | It] = E [log RT − log Rt |πt] =: G(πt, t;T )

As a result,

G(πt, t; T ) = Eπ,t

8
<

:

TZ

t

»
mP − r − 1

2

`
egP eg′

P

´–
dτ | It

9
=

; + Eπ,t

8
<

:

TZ

t

egP deZ | It

9
=

;

G(π, t; T ) = Eπ,t

8
<

:

TZ

t

»
mP − r − 1

2

`
egP eg′

P

´–
dτ

9
=

;

where the Itô integral term is a zero-mean local martingale, and under integrability conditions a martingale, and
hence it is zero.



EQUITY PRICES UNDER BAYESIAN DOUBT ABOUT MACROECONOMIC FUNDAMENTALS 44

Feynman-Kač theorem tells us that the long-horizon expected return G(π, t;T ) is the solution of the follow-
ing backward parabolic partial differential equation

0 = ∂tG +LGG +

»
mP (π) − r(π) − 1

2

`
egP (π) egP (π)′

´–

subject to the final condition

(G.1) G(π, T ; T ) = 0

and the boundary conditions

(G.2) lim
π → ∂∆3

G (π, t; T ) ∼ finite for ∀t ∈ [0, T ]

where the differential operator

LGG =
1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

”
∂ijG +

3X

i=1

mi ∂iG

C. Conditional Variance. In the notation from the previous subsection, define the long-horizon variance
V ar(t;T ) as

V ar(t; T ) = V ar [log RT − log Rt | It]

= E
˘
[log RT − log Rt]

2 | I(t)
¯
− {E [log RT − log Rt | It]}2

= H(πt, t; T ) − G2(πt , t; T )

where I denote the conditional second moment as

H(π, t; T ) := Eπ,t ˘[log RT − log Rt]
2¯

In order to simplify the notation further, define

xT = log RT − log Rt

Itô lemma tells us that

dx =

»
mP − r − 1

2

`
egP eg′

P

´–
dt + egP deZ

and

d
`
x2´ = 2xdx + d[x, x] = 2xdx +

`
egP eg′

P

´
dt

In integral form

x2
T − x2

t =

TZ

t

2xdx +

TZ

t

`
egP eg′

P

´
dτ

=

TZ

t

2x

»
mP − r − 1

2

`
egP eg′

P

´–
dτ +

TZ

t

2xegP deZ +

TZ

t

`
egP eg′

P

´
dτ

Taking conditional expectation, the Ito term drops out as it is a zero-mean martingale, and we obtain
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H(π, t; T ) = Eπ,t

8
<

:

TZ

t

2x

»
mP − r − 1

2

`
egP eg′

P

´–
dτ

9
=

;+

+ Eπ,t

8
<

:

TZ

t

`
egP eg′

P

´
dτ

9
=

;

= Integral1 + Integral2

Define

(G.3) f(π) = mP (π) − r(π) − 1
2

ˆ
egP (π)egP (π)′

˜

The first integral is easily simplified using Fubini Theorem and the law of iterated expectations as follows

Integral1 = 2 Eπ,t

8
<

:

TZ

t

xτ f (πτ ) dτ

9
=

;

= 2 Eπ,t

8
<

:

TZ

t

dτ

τZ

t

du f (πu) f (πτ )

9
=

;

= 2 Eπ,t

8
<

:

TZ

t

du

TZ

u

dτ f (πu) f (πτ )

9
=

;

= 2 Eπ,t

8
<

:

TZ

t

du f (πu) Eπ,u

2

4
TZ

u

f (πτ ) dτ

3

5

9
=

;

= 2 Eπ,t

8
<

:

TZ

t

f (πu) G(πu, u; T ) du

9
=

;

Merging the two integral yields

H(π, t; T ) = Eπ,t

8
<

:

TZ

t

2 f(πτ )G(πτ , τ ; T ) +
ˆ
egP (πτ ) egP (πτ )

′˜ dτ

9
=

;

Feynman-Kač theorem tells us that H(π, t; T ) is the solution of the following backward parabolic partial differ-
ential equation

0 = ∂tH +LHH +
ˆ
2 f(π) G(π, t; T ) +

`
egP (π)egP (π)′

´˜

subject to the final condition

(G.4) H(π, T ;T ) = 0

and the boundary conditions

(G.5) lim
π → ∂∆3

H (π, t; T ) ∼ finite for ∀t ∈ [0, T ]

where the differential operator

LHH =
1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

”
∂ijH +

3X

i=1

mi ∂iH

Finally, the long-horizon variance is then easily calculated as
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V ar(π, t; T ) = H(π, t; T ) − G2(π, t; T )

Appendix H. Pricing the Leveraged Claim

In our economy, prices are not stationary but price-dividend ratio is. Hence, denote the equilibrium price-
dividend ratio as

S
D

= Φ(π)

The functional relationship is due to the preference homotheticity; prices (price-dividend ratios) do not depend
on the wealth W . Cross-multiplying by the dividend rate yields S = DΦ(π). Application of Itô lemma gives

dS
S

=
dD
D

+
dΦ
Φ

+
d[D,Φ]

DΦ

Recall

dD
D

= mD dt + egD deZ

Furher application of Itô lemma to function Φ = Φ(π) gives

dΦ =
3X

i=1

∂iΦ dπi +
1
2

3X

i=1

3X

j=1

∂ijΦ d[πi, πj ]

=

(
3X

i=1

mi∂iΦ +
1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

”
∂ijΦ

)
dt +

+
3X

i=1

ehi ∂iΦ deZ

Finally, the cross-variation between the processes D and Φ is

d[D,Φ]
ΦD

=
3X

i=1

“
ehieg′

D

” „∂iΦ
Φ

«
dt

Putting all these results together yields

dS
S

=

„
mS − D

S

«
dt + egS(t) deZ(t)

dS
S

=

"
mD +

3X

i=1

“
mi +

“
ehieg′

D

””„∂iΦ
Φ

«#
dt

+

"
1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

” „∂ijΦ
Φ

«#
dt +

"
egD +

3X

i=1

ehi

„
∂iΦ
Φ

«#
deZ

I invoke the canonical decomposition for continuous semi-martingales to get the instantaneous conditional ex-
pected return of the leveraged claim

mS = Φ−1 + mD +
3X

i=1

“
mi +

“
ehieg′

D

””„∂iΦ
Φ

«

+
1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

” „∂ijΦ
Φ

«

and the instantaneous conditional volatility vector of the leveraged claim

egS = egD +
3X

i=1

ehi

„
∂iΦ
Φ

«
(H.1)
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The dynamic Euler equation is

Et

„
dSt

St
+

Dt

St
dt

«
− rt dt = −Covt

„
dMt

Mt
,

dSt

St

«

mS −r = (1 − α)
`
egCeg

′
S

´
+

„
1 − α

ρ

« 3X

i=1

“
ehieg′

S

” „∂iΨ
Ψ

«

In detail, after relevant substitutions,

0 = Φ−1 + mD +
3X

i=1

“
mi +

“
ehieg′

D

””„∂iΦ
Φ

«
+

1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

” „∂ijΦ
Φ

«

− r − (1 − α)
`
egCeg

′
S

´
−
„

1 − α
ρ

« 3X

i=1

“
ehieg′

S

” „∂iΨ
Ψ

«

For future reference, note that

egSeg′
S =

"
egD +

3X

i=1

ehi

„
∂iΦ
Φ

«#"
egD +

3X

j=1

ehj

„
∂jΦ
Φ

«#′

=
`
egDeg

′
D

´
+ 2

3X

i=1

“
ehieg′

D

” „∂iΦ
Φ

«
+

+
3X

i=1

3X

j=1

“
ehi
eh′

j

” „∂iΦ
Φ

«„
∂jΦ
Φ

«

further

egS
eh′

j =

"
egD +

3X

i=1

ehi

„
∂iΦ
Φ

«#
eh′

j =

=
“
egD
eh′

j

”
+

3X

i=1

“
ehi
eh′

j

” „∂iΦ
Φ

«

and

egCeg′
S =

"
egD +

3X

i=1

ehi

„
∂iΦ
Φ

«#
eg′

C

=
`
egDeg

′
C

´
+

3X

i=1

“
ehieg′

C

” „∂iΦ
Φ

«

Combining these results with the Euler equation yields, after tedious algebra,

0 = Φ−1 + mD +
3X

i=1

“
mi +

“
ehieg′

D

””„∂iΦ
Φ

«
+

+
1
2

3X

i=1

3X

j=1

“
ehi
eh
′
j

” „∂ijΦ
Φ

«
− r − (1 − α)

`
egEeg

′
D

´
−

− (1 − α)
3X

i=1

“
ehieg′

C

” „∂iΦ
Φ

«

−
„

1 − α
ρ

« 3X

i=1

(“
ehieg′

D

”
+

3X

j=1

“
ehi
eh
′
j

”„∂jΦ
Φ

«)„
∂iΨ
Ψ

«

Rearranging yields the linear elliptic partial diferential equation for the price-dividend ratio Φ : ∆3 → R+ solves
the linear elliptic PDE

(H.2) 0 =LΦ + b0 Φ + 1
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subject to the boundary conditions

(H.3) lim
π → ∂∆3

Φ(π) ∼ finite

where differential operator L is given by

LΦ =
1
2

tr
“
eH ∂2

ππ′Φ
”

+
`
b′

1∂πΦ
´

(H.4)

I additionally denote the vector b1 := [b1, b2, b3]3×1 and define

bi = mi +
“
ehiegD

”
− (1 − α)

“
ehieg′

C

”
−
„

1 − α
ρ

« 3X

j=1

“
ehi
eh
′
j

” ∂jΨ
Ψ

Finally, the scalar

b0 := mD − r − (1 − α)
`
egCeg

′
D

´
−
„

1 − α
ρ

« 3X

i=1

“
fhieg′

D

” ∂iΨ
Ψ

Appendix I. Aggregation From Instantaneous to Discrete

As the model is set up in continuous time, many variables are instantaneous. For example, Ψ is the wealth-
consumption rate ratio, not wealth-consumption ratio. Similarly, the conditional volatilities egP , egS and egB are
also instantaneous quantities. Therefore, to obtain correct discrete time-magnitudes, I proceed as follows. First,
I compute the wealth-consumption ratio as39,40

WtR t
t−1

Cτdτ
=

Wt

Ct
× CtR t

t−1
Cτdτ

I solve for the ’correction factor’
R t

t−1 Cτdτ/Ct by means of simulation as follows

1
Ct

Z t

t−1

Cτdτ =
Ct−1

Ct
×
Z t

t−1

exp (log(Cτ ) − log(Ct−1)) dτ

=
Ct−1

Ct
×
Z t

t−1

exp

„Z τ

t−1

d log Cs

«
dτ

≈ Ct−1

Ct
×
X

s

exp (∆ log Cs)∆s

and then jointly simulate it with the vector of the posterior probabilities when I simulate the whole economy
because it is much simpler. Technically, I simulate jointly the posterior probabilities, the consumption growth,
the dividend growth, and the respective correction factors for 400,000 quarters at the frequency of ∆t = 0.001

of a year. Subsequently, I assign the relevant variables, such as price-dividend ratio, that corresponds to these
simulated series.

Second, I construct the quarterly returns on the aggregate wealth RW
t and aggregate equity RS

t as

RW
t+1 =

Wt+1 +
R t+1

t
Cτdτ

Wt

=

“
Wt+1/

R t+1

t
Cτdτ

”
+ 1

“
Wt/

R t
t−1

Cτdτ
” ×

R t+1
t

Cτdτ
R t

t−1
Cτdτ

=

“
Wt+1/

R t+1
t

Cτdτ
”

+ 1
“
Wt/

R t

t−1
Cτdτ

” ×
1

Ct

R t+1

t
Cτdτ

1
Ct−1

R t
t−1

Cτdτ
× Ct

Ct−1

39Time is measured in quarters.
40For presentation reasons, I annualize the ratio by multiplying it by four.
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where Ct denotes the endowment rate. I find the “correction factor” again by means of simulation as described
above. Similar formulas apply for the construction of the return on the equity portfolio

RS
t+1 =

St+1 +
R t+1

t
Dτdτ

St

=

“
St+1/

R t+1

t
Dτdτ

”
+ 1

“
St/

R t

t−1
Cτdτ

” ×
R t+1

t
DτdτR t

t−1
Dτdτ

=

“
St+1/

R t+1

t
Dτdτ

”
+ 1

“
St/

R t

t−1
Dτdτ

” ×
1

Dt

R t+1

t
Dτdτ

1
Dt−1

R t

t−1
Dτdτ

× Dt

Dt−1

I compute the excess return by subtracting the yield-to-maturity on an indexed zero-coupon bond with maturity
one quarter. Finally, I construct the quarterly consumption growth rate as

R t+1

t
CτdτR t

t−1
Cτdτ

=
1

Ct

R t+1

t
Cτdτ

1
Ct−1

R t
t−1

Cτdτ
× Ct

Ct−1

and the quarterly dividend growth rate
R t+1

t
Dτdτ

R t

t−1
Dτdτ

=
1

Dt

R t+1

t
Dτdτ

1
Dt−1

R t

t−1
Dτdτ

× Dt

Dt−1

Appendix J. Bayesian Analysis of the Four-State Univariate Regime-Switching Model for

the Log-Consumption Growth Rate

This appendix details the estimation of the Bayesian univariate regime-switching model, as applied to the
simple growth rate of real per-capita nondurable consumption and services, denoted C. Let us recall the dynamics
of the consumption growth rate

(J.1) dCt

Ct
= κt dt + σC dZ1t

where Z1t is a standard Wiener process. I discretize the above equation as follows

(J.2) ∆Ct

Ct
= κ(st) + σC Et

where Et ∼ i.i.d. N(0, 1), st follows a four-state hidden Markov chain, and κ(st) ∈ {κ1, κ2, κ3, κ4 }. Further-
more, let

Y =

»
∆C1947:Q2

C1947:Q2
, ...,

∆C2007:Q2

C2007:Q2

–′

T×1

(J.3)

s1 = [1(s1947:Q2 = 1), ..., 1(s2007:Q2 = 1)]′T×1(J.4)

s2 = [1(s1947:Q2 = 2), ..., 1(s2007:Q2 = 2)]′T×1(J.5)

s3 = [1(s1947:Q2 = 3), ..., 1(s2007:Q2 = 3)]′T×1(J.6)

s4 = [1(s1947:Q2 = 4), ..., 1(s2007:Q2 = 4)]′T×1(J.7)

X = [s1, s2, s3, s4]T×4(J.8)

where 1(•) is an indicator function for the simulated state st at time t. In addition, let the matrix B4×1 of
regression coefficients be given by

(J.9) B = [κ1, κ2, κ3, κ4]
′
4×1

Stacking the data into matrices, the discretized model may be written as

(J.10) Y = XB + σC E
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A. Generating B and Σ Conditional on the Rest of the Parameters and sT . Under the assumptions
made above, the likelihood function l(B,σ2

C |Y,X) is

l(B,σ2
C) |y,x) ∝

`
σ2

C

´−T/2 × exp


− 1

2σ2
C

(Y − XB)′ (Y − XB)

ff
(J.11)

Noting that

(Y − XB)′ (Y − XB) = S + (B − B̂)′ X′ X (B − B̂)(J.12)

where B̂ is the OLS estimate

(J.13) B̂ = (X′ X)−1 X′ Y

and

(J.14) S = (Y − XB̂)′ (Y − XB̂)

I find that the likelihood function takes the form

l(B,σ2
C |Y,X) ∝

`
σ2

C

´−T/2 × exp


− 1

2σ2
C

S − 1
2σ2

C

(B − B̂)′ X′ X (B − B̂)

ff

The prior distribution of the consumption variance is assumed to be inverse Gamma IΓ(ν0/2, δ0/2), with the
density

(J.15) p

„
1
σ2

C

«
∝
„

1
σ2

C

« ν0
2 −1

exp


− δ0

2σ2
C

ff

and the prior for the consumption growth rates B is multivariate Normal N(B̄, C), having the density

(J.16) p(B) ∝ exp


−1

2
(B − B̄)′ C−1 (B − B̄)

ff

In addition, I assume that the priors for B and 1 /σ2
C are statistically independent, that is,

p

„
1
σ2

C

, B

«
= p

„
1
σ2

C

«
× p(B)(J.17)

∝
„

1
σ2

C

« ν0
2 −1

exp


− δ0

2σ2
C

− 1
2

(B − B̄)′ C−1 (B − B̄)

ff
(J.18)

The joint posterior distribution is then as follows

p

„
B,

1
σ2

C

|Y,X

«
∝

„
1
σ2

C

« ν0 + T
2 −1

×(J.19)

× exp


− δ0

2σ2
C

− 1
2

(B − B̄)′ C−1 (B − B̄)

ff
×(J.20)

× exp


− 1

2σ2
C

S − 1
2σ2

C

(B − B̂)′ X′ X (B − B̂)

ff
(J.21)

Merging the two quadratic forms in the exponent yields

p

„
B,

1
σ2

C

|Y,X

«
∝

„
1
σ2

C

« ν0 + T
2 −1

× exp


− δ0 + S

2σ2
C

− 1
2

(B − d)′ D−1 (B − d)

ff

where

D =

„
1
σ2

C

X′ X + C−1

«−1

(J.22)

d = D ×
„

1
σ2

C

X′ XB̂ + C−1 B̄

«
= D ×

„
1
σ2

C

X′ Y + C−1 B̄

«
(J.23)

Note that I can factor out the joint posterior as

(J.24) p

„
B,

1
σ2

C

, |Y, X

«
= p

„
B | 1
σ2

C

, Y, X

«
× p

„
1
σ2

C

|Y, X

«
,
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so that the conditional posterior p
“
B | 1

σ2
C

, Y, X
”
, which in fact I do need for the Gibbs sampler, is

p(B | 1
σ2

C

, Y, X) ∝ exp


− 1

2
(B − d)′ D−1 (B − d)

ff
(J.25)

which I recognize as the density of the multivariate Normal distribution

(J.26) B | 1
σ2

C

, Y, X ∼ N(d, D)

With respect to the conditional posterior of the inverse of the consumption growth rate variance σ2
C , it is helpful

to recall eq. (J.12) and rewrite the joint posterior in eq. (J.19) as

p

„
B,

1
σ2

C

|Y,X

«
∝

„
1
σ2

C

« ν0 + T
2 −1

×(J.27)

× exp


− δ0

2 σ2
C

− 1
2

(B − B̄)′ C−1 (B − B̄)

ff
×(J.28)

× exp


− 1

2σ2
C

(Y − XB)′ (Y −XB)

ff
(J.29)

or

p

„
B,

1
σ2

C

|Y,X

«
∝

„
1
σ2

C

« ν0 + T
2 −1

×(J.30)

× exp


− 1

2σ2
C

ˆ
δ0 + (Y − XB)′ (Y − XB)

˜ff
×(J.31)

× exp


− 1

2
(B − B̄)′ C−1 (B − B̄)

ff
(J.32)

Note that I may factorize the joint posterior for
“
B, 1

σ2
C

”
also as

(J.33) p

„
B,

1
σ2

C

|Y, X

«
= p

„
1
σ2

C

|B, Y, X

«
× p(B |Y, X)

This gives me the conditional distribution for 1 / σ2
C as

p

„
1
σ2

C

|B, Y, X

«
∝

„
1
σ2

C

« ν0 + T
2 −1

exp


− 1

2σ2
C

ˆ
δ0 + (Y − XB)′ (Y − XB)

˜ff

which may be recognized as the density of the inverse Gamma distribution

(J.34) 1
σ2

C

|B, Y, X ∼ IΓ

»
ν0 + T

2
,
δ0 + (Y −XB)′(Y − XB)

2

–

B. Generating Transition Probabilities Conditional on sT .

a. Finding the Posterior Distribution. Observe that conditional on sT , the transition probabilities (πi,j)4x4 are
independent of the data set Y and the model’s other parameters. I assume that the rows of the transition
probability matrix are a priori independent, each having the Dirichlet distribution

(πi,1, πi,2, πi,3, πi,4) ∼ Dir(δi,1, δi,2, δi,3, δi,4; 4), i = 1, 2, 3, 4(J.35)

∝ π
δi,1
i,1 × πδi,2

i,2 × πδi,3
i,3 × (1 − πi,1 − πi,2 − πi,3)

δi,4(J.36)

The likelihood function is

l
`
{πij}4

i,j=1 | sT

´
=

4Y

i,j=1

π
ni,j
i,j(J.37)

where ni,j is the total number of transitions from state i to state j. Hence, the posterior distribution takes the
form

(J.38) (πi,1, πi,2, πi,3, πi,4 | sT ) ∼ Dir(δi,1 + ni,1, δi,2, + ni,2, δi,3, +ni,3, δi,4, +ni,4; 4), i = 1, 2, 3, 4
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Clearly, the rows of the transition matrix are conditionally independent.

Sampling from the Dirichlet distribution Dir(δ1, ..., δ4; 4) is relatively simple. One first generates independent
ξ1,...,ξ4 from the Gamma distribution Γ(δi, 1). Then, the four-tuple

(J.39)

 
ξiP4

j=1 ξj

!

i=1,2,3,4

has the desired Dirichlet distribution.

b. Testing the Embeddability Conditions of the Sampled Transition Probability Matrix. Although the sufficient

conditions for the existence of an infinitesimal generator that corresponds to a given sampled 4 × 4 transition

probability matrix have yet to be found, we do test several necessary conditions. These are summarized in the

following lemmas for the convenience of the reader.

Lemma 5. Let P = {pij}4
i,j=1 be a transition probability matrix. Suppose that any of the following conditions

(1) det(P) ≤0
(2) det(P) >

Q4
i=1 pii

(3) States i and j communicate but pij = 0

hold. Then, there does not exist an infinitesimal generator for P .

Proof. See Kingman (1962), Theorem 6.1 in Goodman (1970), Chung (1992), Grimmett and Stirzaker(1992)

!

Lemma 6. Let P = {pij}4
i,j=1 be a transition probability matrix with a real spectrum. If the eigenvalues are

distinct but some are negative, then there is no real matrix Q satisfying exp(Q) = P .

Proof. See Singer and Spilerman (1976). !

C. Generating sT Conditional on B, Σ, (πi,j)4x4 and Y. I follow Kim and Nelson (1998) and use multi-move
Gibbs sampling, simulating st, t=1,...,T, as a block from the joint conditional distribution

(J.40) p (sT |B, Σ, (πi,j)4x4, Y)

which may be derived as follows, suppressing the conditioning on the model’s parameters

p(sT |Y) = p(s1, ..., sT |Y) = p(sT |Y) ×
T−1Y

t=1

p(st | st+1, Y)(J.41)

where I invoke the Markov property of the chain. Then, observe that

p(st | st+1, Y) =
p(st, st+1 |Y)

p(st+1 |Y)
∝ p(st+1 | st) × p(st |Y)(J.42)

We find p(st |Y) by running Hamilton’s (1989) filter.

I find sT by sampling from p(sT |Y) as follows. I generate a random number from the uniform distribution.
If it is less or equal to p(sT = 1 |Y), I set sT = 1. If not, I calculate

(J.43) p(sT = 2 | sT $= 1, Y) =
p(sT = 2 |Y)

P4
j=2 p(sT = j |Y)

If a new generated number from the uniform distribution is less or equal to p(sT = 2 | sT $= 1, Y), I set sT = 2.
If not, I compute

(J.44) p(sT = 3 | sT $= 1, 2, Y) =
p(sT = 3 |Y)

P4
j=3 p(sT = j |Y)
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If a yet new generated number from the uniform distribution is less or equal to p(sT = 3 | sT $= 1, 2, Y), I set
sT = 3. If not, I set sT = 4.

I generate {st}t=1,...,T−1 using sampling from the uniform distribution as follows. First, I compute

(J.45) p(st = 1 | st+1, Y) =
p(st+1 | st = 1) × p(st = 1 |Y)

P4
j=1 p(st+1 | st = j) × p(st = j |Y)

If the generated number from the uniform distribution is less or equal to p(st = 1 | st+1, Y), I set st = 1. If not,
I compute

(J.46) p(st = 2 | st+1, st $= 1, Y) =
p(st+1 | st = 2) × p(st = 2 |Y)

P4
j=2 p(st+1 | st = j) × p(st = j |Y)

If the new generated number from the uniform distribution is less or equal to p(st = 2 | st+1, st $= 1, Y), I set
st = 2. If not, I compute

(J.47) p(st = 3 | st+1, st $= 1, 2, Y) =
p(st+1 | st = 3) × p(st = 3 |Y)

P4
j=3 p(st+1 | st = j) × p(st = j |Y)

If the yet new generated number from the uniform distribution is less or equal to p(st = 3 | st+1, st $= 1, Y), I

set st = 3. If not, I set st = 4.
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