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Abstract

Scientific freedom and openness are hallmarks of academia: relative to
their counterparts in industry, academics maintain discretion over their
research agenda and allow others to build on their discoveries. This pa-
per examines the relationship between openness and freedom, building
on recent models emphasizing that, from an economic perspective, free-
dom is the granting of control rights to researchers. Within this frame-
work, openness of upstream research does not simply encourage higher
levels of downstream exploitation. It also raises the incentives for ad-
ditional upstream research by encouraging the establishment of entirely
new research directions. In other words, within academia, restrictions on
scientific openness (such as those created by formal intellectual property
(IP)) may limit the diversity and experimentation of basic research itself.
We test this hypothesis by examining a “natural experiment” in openness
within the academic community: NIH agreements during the late 1990s
that circumscribed IP restrictions for academics regarding certain geneti-
cally engineered mice. Using a sample of engineered mice that are linked
to specific scientific papers (some affected by the NIH agreements and
some not), we implement a differences-in-differences estimator to evalu-
ate how the level and type of follow-on research using these mice changes
after the NIH-induced increase in openness. We find a significant increase
in the level of follow-on research. Moreover, this increase is driven by
a substantial increase in the rate of exploration of more diverse research
paths. Overall, our findings highlight a neglected cost of IP: reductions
in the diversity of experimentation that follows from a single idea.
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1 Introduction
The past three decades have seen a significant increase in the scope of formal
intellectual property (IP) rights, such as patents, over knowledge traditionally
maintained in the public domain (Mowery, et al 2001; Heller 2008). American
universities are granted over 3,000 U.S. patents per year and maintain a portfolio
of over 40,000 patents (Owen-Smith & Powell 2003). Notably, nearly 25% of
elite academic life sciences researchers hold at least one patent (Ding, Murray &
Stuart 2006), mostly for discoveries arising from their university-based research
(Azoulay, Ding & Stuart 2007). This dramatic expansion in property rights over
the earliest stages of research and over key research inputs has caused widespread
debate. In particular, it has shifted the economic analysis of patents away
from traditional concerns over the costs of monopoly pricing in product markets
(Nordhaus 1969, Scherer 1972) towards a focus on the incentives for innovation
when commercial returns depend upon the allocation of intellectual property
rights across innovators, each of whom is working at a different stage of the
knowledge production process (Scotchmer 1991, 1996; Aghion, Harris & Vickers
2000; Acemoglu & Akcigit 2006). This characterization describes innovation as a
step-by-step process in which discoveries generated in one stage serve as essential
inputs into the next. In terms of realizing the value from a given research
line, early-stage IP rights may be important to encourage the establishment
of that new research line, since upstream researchers can subsequently offer
incentives for research further along the line through appropriate contract design
(Scotchmer 1996). At the same time, recent debates over the proliferation of
upstream IP suggest that by requiring downstream innovators to contend with a
large number of fragmented IP rights, their projects may suffer from "gridlock"
as a result of transaction costs and complexity (Heller & Eisenberg 1998; Heller
2008).
By highlighting a single step-by-step research line, this approach abstracts

away from two fundamental features of knowledge. First, a single upstream idea
can, in principle, be applied across multiple later-stage domains and applications
(Breshnahan & Trajtenberg 1995; Romer 1990; Rosenberg & Trajtenberg 2001).
In other words, ideas are non-rivalrous. Second, it may be extremely difficult
in advance to precisely articulate the diversity and range of applications arising
from a given upstream idea (Rosenberg 1996). Different individuals may have
very different perceptions regarding the main application of an idea or the follow-
on research projects would prefer to pursue (Shane 2001). In other words, rather
than focusing exclusively on the value generated along a single line, it may also
be useful to consider whether multiple researchers are able to pursue a diverse
range of "horizontal " follow-on experiments each of which may itself initiate
new (potentially unanticipated) research lines.
What then is the role played by upstream IP rights when follow-on research

includes both horizontal exploration as well as vertical exploitation? Inter-
estingly, while prior research regarding IP rights (or conversely openness) has
focused the potential for grid lock arising from an upstream patent "thicket,"
little attention has been paid to the interaction between the openness of sci-
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entific knowledge and the diversity of scientific experimentation. This paper
builds on recent research analyzing the distinctive incentives and control rights
provided to academic versus industrial researchers (David and Dasgupta 1994,
David 2001ab, Stern, 2004), and more specifically on Aghion, Dewatripont &
Stein 2007 which emphasizes the role of academic freedom defined as the grant-
ing of control rights to researchers. In particular, a very distinctive aspect of
academia as opposed to industrial research is that academic researchers are free
to establish new research lines, based on the perception of opportunities or on
pure curiosity of individual academic researchers. Here, we use this control-
rights framework to identify three main channels whereby openness can influ-
ence the level and nature of scientific research. First, by reducing the costs
of accessing key research inputs openness encourages new researchers to enter,
thus increasing the diversity of academic research participants. Second, relative
to what would happen in the case of industrial research, openness makes free
(academic) researchers more likely to engage in experiments that broaden the
number and diversity of research lines, in part because subsequent openness
implies that their research can itself have subsequent impact. Finally, there
is of course a direct expropriation effect — an increase in the level of openness
of an upstream research tool should encourage the exploitation of that tool in
research which is already well down the research line and in the more applied
phase. Overall, our theoretical discussion suggests that, particularly in free
(academic) research, openness may increase the overall flow of research output,
and in particular it is closely associated with the establishment and exploration
of entirely new research lines. Moreover, while there should be an effect of open-
ness on both basic and applied research, the impact on basic research is more
likely to dominate when researchers in the pre-openness period face high fixed
costs of initiating a new line of research, while the applied research boost will
dominate when significant basic research has already been conducted.
We evaluate these empirical implications by taking advantage of a natural

experiment in openness that occurred in the late 1990s in the field of mouse ge-
netics. The experiment resulted from two Memoranda of Understanding (MoU)
between DuPont and the National Institutes of Health (NIH) regarding the
ability of academic researchers to gain access and publish research using par-
ticular types of genetically engineered mice that were covered under two differ-
ent patents (Cre-Lox mice and Onco mice, respectively). While DuPont had
adopted stringent restrictions on licensing the mice for academic research prior
to the MoUs, the agreements lifted these restrictions by implementing a simple
contract, providing a royalty-free and costless license that specifically removed
any claims to reach-through rights on downstream research, and ensuring that
the mice covered under the patents would be made available through the Jack-
son Laboratory, the world’s single largest non-profit repository for research mice.
As a result of these MoUs significantly enhancing the openness regarding these
research tools, hundreds of varieties of Cre-lox or Onco mice that had been de-
veloped in the early 1990s suddenly became widely accessible to the academic
research community.
Our empirical approach takes advantage of key aspects of our empirical
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setting to develop and implement a differences-in-differences estimate of the
impact of the NIH-MoU openness experiment on both the level and nature of
follow-on research. First, each genetically engineered mouse is associated with
a journal article that describes its initial development; as such, we are able to
construct samples based on research articles that were affected or unaffected
by the NIH agreements. Second, both the timing and the scope of the NIH-
MoU were effectively unanticipated by the mouse genetics community, and so
there was a fairly unexpected and dramatic shift in the level of openness in
a reasonably short period of time. Finally, we are able to take advantage of
detailed bibliometric data for articles citing the articles in either the treatment
or control groups to characterize how the change in openness changed the nature
of subsequent research (relative to the evolution of citations within the control
group).
To implement this empirical approach, we analyze the citations to a sam-

ple of more than 2000 published mouse-articles, approximately 10% of which
experienced a shift in the level of scientific openness as the result of the NIH
agreements. By comparing citations to the mouse-articles before and after the
agreement (and comparing to the evolution of citations as identified by the con-
trol sample), we are able to isolate the causal impact of a shift in scientific
openness on the level and nature of follow-on research. In particular, rather
than simply examine whether there is a net increase or decrease in the level
of citations, the bulk of our analysis examines how the nature of citations dif-
fers after the shift in openness. Specifically, we construct measures capturing
whether there is a shift in the size of the research community using a particular
mouse (such as the number of new authors citing the mouse-paper), whether
research is associated with the establishment of new research lines that had not
previously used a particular mouse (such as whether the citations include key-
words that had never been linked to particular mouse-paper), and whether the
research is more basic versus applied (as captured by the journal in which the
research is published). Thus we develop three distinctive empirical tests that
map to the three claims of our core theoretical framework.

Our results can be summarized as follows. First, the NIH agreements result
in a significant increase in the level of follow-on research. More importantly,
the bulk of the increase in citations arises from articles that are published by
“new” researchers or institutions. In other words, most of the incremental ci-
tations to a given mouse-article are by researchers working at institutions that
had not cited that mouse-article prior to the NIH agreement. Next, our re-
sults offer direct evidence that scientific openness seems to be associated with
the establishment of entirely new research lines: more specifically, increased
openness leads to a significant increase in the diversity of the journals in which
mouse-articles in the treatment group are cited, and, perhaps even more strik-
ingly, a very significant increase in the number of previously unused “keywords”
describing the underlying research contributions of the citing articles. Finally,
the two agreements — Cre-Lox and Oncomouse — differed in terms of whether
researchers had access to the mice prior to the agreement at all (but faced some
threat of IP enforcement). While the mice covered by the Oncomouse agreement
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were available but researchers were responsible for separately signing licenses as
they moved to downstream applications, mice based on the Cre-Lox technology
were much more limited in their distribution. Reflecting these differences (and
our theoretical predictions), mouse-articles associated with the Cre-Lox agree-
ment experience a significant increase in citations by basic research journals,
while mouse-articles associated with the Oncomouse agreement realize also an
increase in citation by applied research journals. Taken together, this evidence
is consistent with the view that the NIH agreement facilitated access to re-
search inputs, and that, at least in the academic setting where control rights
over research direction is in the hands of researchers, the effects of openness
have at least as large an effect on enhancing the scope and diversity of horizon-
tal exploration as on inducing vertical exploitation along well-defined research
lines.
The paper is organized as follows. Section 2 presents our theoretical frame-

work and develops it main predictions concerning the effects of increased open-
ness on the horizontal and vertical flow of research. Section 3 describes the
experiment and the identification strategy. Section 4 presents the data and
summary statistics. Section 5 presents the empirical results, and Section 6 con-
cludes.

2 Openness in scientific knowledge production

2.1 The role of academic freedom: the ADS framework

In recent work, Aghion, Dewatripont and Stein (2007) (ADS) have argued that
the allocation of control rights is central to knowledge production and inno-
vation. In a simple multi-stage representation of the discovery process, they
suggest that freedom is more important for the production of basic -or early
stage- research compared to applied research. Their core idea is that in earlier
stages of the research process, when monetary returns from the research line
remain remote, it is optimal to leave control rights for agenda setting with the
researcher. In other words, to promote academic freedom. In contrast, later
stages in the research process it becomes optimal to have control rights over the
research agenda be retained by the firm or lab.
Specifically, ADS consider research as multi-stage lines where the develop-

ment of an economically valuable product starts with an initial idea I0. If stage
1 is successful, there is a refined idea I1; this refined idea can be further worked
on to potentially generate an even-more-refined idea I2, etc. There are a total
of k stages after the initial idea. If and only if all k stages are successful, there
is a final idea Ik which generates a marketable product with value V .
Suppose for simplicity that at any given stage it is optimal to hire a single

researcher.1 Assume that this researcher obtains a probability of success equal
to p < 1 at any stage if he follows the success-maximizing (which we call “prac-
tical”) research strategy at that stage. Assume however that, instead of the

1See ADS for an extension to the case with more than one researcher per stage.
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practical strategy, a researcher may choose to follow an “alternative” strategy
in working with an existing idea. In this case, the scientist has a zero indi-
vidual probability of success. The interpretation is that the alternative strategy
amounts to the scientist working on an activity that he enjoys more but that
does not pay off in monetary terms (see the end of this section for another in-
terpretation where the scientist works on an activity that may help initiate new
lines but does not generate progress on that particular line).
There is an infinite supply of researchers at each stage, each of whom has

an outside option R. After being hired at stage j, the scientist is exposed to
idea Ij−1, and then learns whether he would better enjoy following the practical
strategy or the alternative strategy. If he is able to undertake his favored
strategy, he suffers no disutility from working. However, if the scientist has to
undertake the strategy that he likes less, he suffers disutility of z. The ex ante
probability that a scientist prefers to follow the practical strategy is given by
α. Assume further that the choice of the practical vs. the alternative strategy
is ex ante non-contractible.2

Academia differs from private-sector research in that it leaves control rights
over the choice of research strategy in the hands of the researcher. Thus if a
research line is pursued in Academia, the researcher is paid wage wa = R, and
always works on his preferred strategy. This implies that with probability α,
the scientist works on the practical strategy, and with probability (1 − α), he
works on the alternative strategy. Thus the ex ante probability of advancing
to the next stage is given by αp.
Now consider a researcher employed by the private sector. Whether the

researcher prefers the practical or the alternative strategy, becomes evident once
the researcher has been hired by the firm and has been given access to the idea
by the firm owner. Yet ex post, the firm owner has the authority to force the
scientist to work on the practical strategy. Anticipating this, the researcher will
demand a wage of wp = R+(1−α)z in order to work in the private sector. The
(1 − α)z markup over the academic wage represents compensation for loss of
creative freedom—the fact that scientists now always have to adopt the practical
strategy, whether this turns out to coincide with their preferences or not.
When is academic freedom optimal? Take a research line involving 2 stages,

and suppose that the first stage has been successful, so that we are now at stage
2, with one more stage to be completed in order to generate a payoff of V . If this
last stage of research is done in the private sector, the expected payoff is equal
to E(πp2) = pV −wp. If instead the last stage is done in academia, the expected
payoff is equal to E(πa2) = αpV − wa. This means that the private sector will
yield a higher payoff than academia if and only if (1 − α)pV > (wp − wa), or
equivalently pV > z.
Now, let Π2 denote the maximum of E(πp2) and E(πa2). Moving back to

stage 1, we now compare between E(πp1) = pΠ2 − wp and E(πa1) = αpΠ2 − wa.

2 In other words, one cannot write a contract that promises a scientist a bonus for following
the practical strategy, because the nature of what kind of work that strategy entails cannot
be adequately described ahead of time.
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The private sector will yield a higher payoff than academia at stage 1 if and
only if pΠ2 > z.
Since Π2 < V , it follows that if the private sector is value-maximizing at

stage 1, it is also value-maximizing at stage 2. In particular it cannot be value
maximizing to have academia operate at later stages than the private sector.
The key result is therefore that academia will be the optimal governance struc-
ture at earlier stages and private sector research will be optimal at later stages.
This result can be generalized to lines of any length k : if Πi denotes the NPVs
of the line of length k as of stage i, we have:

Πi = max{E(πpi ) = pΠi+1 − wp, E(π
a
i ) = αpΠi+1 − wa} < Πi+1.

This monotonicity property, together with the fact that research should be pur-
sued under academic freedom if and only if pΠi+1 > z, yields the desired result.
In ADS, the above result is generalized to the case where the “alternative”

strategy consists in working on ideas that can lead to an entirely new research
line, consistently with the idea that scientific discoveries do not follow a purely
“linear” model. This does not change the optimality of academia (resp. private
research) in earlier (resp. later) stages of research. But it raises the desirability
of academia, if we make the realistic assumption that it has a higher probability
of generating entirely new research lines than private research does (note that
the probability of such an event, possibly the result of an “accidental” discovery,
is nonzero for either mode of organization of research).

2.2 The main effects of openness

Now, let us introduce the idea of openness into the framework, where openness
is broadly defined as any event or device that reduces a researcher’s difficulty to
access other researchers’ ideas or to provide access to her own ideas and share
them as she sees fit. We shall argue that increased openness has two main effects
on basic research. First, openness tends to favor more applied research, possibly
at the expense of more basic research, as it reduces the extent to which upstream
researchers can appropriate the returns from their own research. This is the ap-
propriability effect pointed out in the introduction. Second, openness makes
it easier for stage-i researchers to "sell" their ideas to stage-i + 1 researchers,
which in turn encourages them to undertake stage i. Third, openness fosters
more basic research and the creation of new lines, in particular by reducing
researchers’ cost of accessing previous ideas and also by making it more likely
that the alternative strategies pursued by free researchers will actually lead to
new lines. We now formalize these various effects of openness, first abstracting
from control rights considerations and focusing on the effects of openness on
basic and applied research on a given line, then emphasizing the complementar-
ity between openness and freedom and the resulting effect of openness on the
diversity of lines.
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2.2.1 Within a line: restricting hold-up and facilitating downstream
transmission

For simplicity, consider a two-stage research line where stages 1 and 2 are
managed by the private sector. And suppose that what openness does is to
increase the extent to which stage 2 can hold-up and thereby expropriate stage
1. Thus,

Π2 = pV + ψ − wp,

where ψ measures openness.
The stage-1 value of the line can be written as:

Π1 = p(Π2 − 2ψ)− wp = p2V − pψ − (1− p)(1 + p)wp.

Thus, trivially, increasing ψ fosters stage-2 research at the expense of stage
1 research since

dΠ2
dψ

> 0 >
dΠ1
dψ

.

Now, suppose that openness achieves one more thing, which is to also in-
crease the possibility for stage-1 researcher to transmit her research to stage 2
researcher(s). Thus

Π1 = pA(ψ)(Π2 − 2ψ)− wp = A(ψ)(p2V − pψ)− (1− p)(1 + p)wp,

where A(ψ) is an increasing and concave function of ψ.
Then we have:

dΠ1
dψ

= A0(ψ)(p2V − pψ)− pA(ψ),

and
d2Π1

dψ2
= A”(ψ)(p2V − pψ)− pA0(ψ) < 0.

Now, particularly for ψ initially small, we may have

dΠ1
dψ

> 0.

(for example if A(0) = 0, A0(0) > 0).

2.2.2 Complementarity between openness and freedom: diversifica-
tion effects

Now, we reintroduce control rights considerations into the analysis. A first
virtue of openness in the context of the ADS model, is that it makes it easier
for stage i + 1 researcher to access ideas from stage i research.At first sight,
this should enhance research equally at all stages. However the argument can
be made that it should enhance research to a larger extent in more upstream
stages. Thus, for example, suppose that moving up to stage i+ 1 requires: (i)
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either that some fixed (training) cost K be spent while still working on stage i;
(ii) or that there be a successful match between a researcher and the research
idea Ii. The probability ψ of a successful match, reflects the degree of openness
in research at stage i.
For given Πi+1, training is more attractive in the private sector than in

academia, first because for given i training always pays out in private sector
research whereas it only pays out with probability α in academia, and second
because paying the fixed cost K is more likely to be profitable later than earlier
on the line, and later stages are typically those that are operated by the private
sector.
More formally, using the fact that Πi+1 is increasing in i, there exists an

integer ia such that:

αpΠi+1 − wa −K > αpψΠi+1 − wa

whenever i > ia, and similarly there exists an integer ip such that:

pΠi+1 − wp −K > pψΠi+1 − wp

whenever i > ip, and it is immediate to see that ia > ip.
Thinking of openness as increasing ψ, we find that more openness is of greater

value in academia as academia relies more on search and matching than the
private sector. Moreover, this suggests: first, that increased openness should
foster the creation of new lines as these result typically from the alternative
strategies pursued by free researchers; second, more openness should benefit
new research institutions more than it benefits old institutions: namely, old
institutions can take advantage of economies of scale or learning by doing in
training, which in turn reduces the fixed costK they incur if they choose training
over matching.3

Remark: That openness should enhance basic research and the creation of
new lines, also implies that it should have a long-lasting effect on the flow of
subsequent publications: the reason is that new lines take more time before ma-
turing. Indeed, starting a new line means a positive probability of a potentially
long dynamic flow of new discoveries until one potentially reaches the end of
this line.

3That more openness should foster the creation of new lines, also follows from an additional
consideration, which is that openness favors cross-fertilizing of ideas within stages. More
formally, consider two parallel research lines, 1 and 2, each of which operates as described
above. Namely, with ex ante probability α the researcher initially allocated to the current
stage of either of these two lines, prefers to pursue the practical strategy for that line whereas
with probability (1−α) he prefers not to pursue this practical strategy. Now openness implies
that the scientist on line 1 can learn about project 2 and vice-versa, and that consequently
with positive probability ϕ, she may choose to work on the practical strategy for project
2 if nobody else does. A greater degree of openness implies a higher value of ϕ. Openness
increases the net present value of a research line operated in academia, from: αpΠi+1 − wa
to [α + (1 − α)ϕ]pΠi+1 − wa,with i ∈ {0, 1}. However, openness has no value in the private
sector, since researchers there are anyway forced to work on the practical strategy. With or
without openness, the net present value of a line operated in the private sector, is pΠi+1−wp.
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2.3 Testable predictions

The above discussion suggests that, particularly when researchers enjoy free-
dom, providing greater access to critical inputs for follow-on innovation, greater
openness should enhance the total flow of knowledge building on materials that
have become more open and accessible. This prediction, which is of course
very intuitive, accords with a recent study estimating the positive impact of
Biological Resource Centers in making key research materials available to re-
searchers (Furman & Stern 2008). A second prediction is that the causal impact
of greater openness should be more long-term because greater openness is an
enduring condition of key innovation inputs (under our model) and such inputs
can be of value to follow-on researchers over a long period. This characteristic
of knowledge production is well recognized by studies on the intellectual origins
of critical innovations (Comroe & Dripps 1972) as well as by the analysis of
the long tail of forward citations following important research articles (Garfield
1979).
But perhaps the most important predictions relate to the types of research

and researchers most likely to be impacted by an “openness shock" in a world
where researchers have control rights on their research activities.4Here four pre-
dictions stand out. First, an openness shock should increase the diversity of
researchers engaged in follow-on innovation. With more open and independent
access to innovation inputs, new researchers can overcome fixed cost barriers to
move from other fields and build on these inputs. Second, an openness shock
should increase the diversity in the types of research that are being pursued, as
it fosters horizontal experimentation, therefore leading to the creation of new
lines. Third, openness should have a different impact on basic or applied re-
search. In particular openness should boost basic research most when access
costs are initially high and/or when control rights considerations are not first
order.

3 Empirical framework
Across a wide variety of settings, recent decades have brought dramatic changes
in the openness of key research inputs. The open source software movement, for
example, has moved many programmers into an institutional setting fostering
openness and sharing, although subject to wide variations in the degree of open-
ness of the source code (Lerner & Tirole 2003; OMahony 2003). In other diverse
areas of knowledge work scholars have examined the institutional arrangements
(both legal and informal) supporting openness and exchange (Oliar & Sprigman
2008; Fauchart & Von Hippel 2007). Few areas, however, have been subject to
more dramatic shifts in openness than the life sciences — our chosen empirical
setting.

4 Given that in our particular empirical setting, the openness shock is focused directly and
exclusively on public-sector researchers, we do not make specific predictions regarding the
overall balance of innovation between the public and the private sector.
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Openness of research tools in the life sciences was dramatically shaped by
the 1980 Bayh-Dole Act giving U.S. universities a broad mandate to patent and
commercialize research from all disciplines (Mowery et al., 2004) and, by the
late 1980s, reflected in a significant rise in patenting across universities cam-
puses particularly the life sciences (Owen-Smith & Powell, 2004). As a result,
key scientific discoveries in the life sciences, previously part of the public com-
mons (David, 2003) were now published and claimed in patents: gene sequences
(Huang & Murray 2008), biotechnology tools (Murray & Stern 2007), methods
for tissue engineering (Murray 2002). This transformation sparked considerable
debate over the impact of limits to openness (that potentially) accompany in-
tellectual property rights (Heller & Eisenberg 1998; Walsh et al. 2002, 2003,
2005; Murray & Stern 2007; Heller 2008).
While IP rights can be used to reduce the openness of their key innovation

inputs their owners have considerable discretion over the access terms imposed
on follow-on innovators. A range of strategies exist: owners can strictly enforce
their IP rights over a wide range of follow-on innovators on licensing terms
they design. At the other extreme, they can commit to a non-enforcement
strategy (as is the case with IBMs commitment to make 500 software patents
openly available). Alternatively, owners can triage their rights differently among
different follow-on innovators. In the case of research tools and materials in the
life sciences, patent owners have used a variety of approaches. The case at the
core of our empirical analysis highlights the licensing choices made by DuPont
over patented methods to produce engineered research mice (also covering the
mice themselves).

3.1 Openness in genetically engineered mice

With their genetic likeness to humans (the mouse and human genomes have
about a 99% similarity) mice are central in the study of cancer and other human
diseases (Boguski, 2002). Throughout the twentieth century, researchers in
mouse genetics relied on “spontaneous mice’ to for their disease studies: sick
animals with specific recognizable symptoms. A dramatic breakthrough came
in the 1980s when researchers combined advances in molecular biology with
advances in embryonic stem cells to develop techniques for precisely engineering
diseased mice. A leading member of the research community described the
events that ended the classical period in mouse genetics and ushered in this
important general-purpose technology: "Then" he began, "at the end of 1980,
in a period of a few months, an entirely new era in mouse genetics began,
with the creation of the first transgenic mice, initiated by the abrupt and then
continuing entry of molecular biological techniques into what had, until then,
been a classical genetic system (Paigan, 2003)".
To create an engineered mouse scientists mastered a complex process; first

injecting foreign DNA into mouse eggs, then transplanting the eggs into female
mice, and, if successful, observing the incorporation of the genes into the off-
spring (Ruddle et al. 1980, Brinster et al. 1981, Constantini & Lacy 1981,
Wagner et al. 1981a, Wagner et al. 1981b). Beyond the basic techniques, sci-
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entists developed more precise methods to target the insertion and expression
of disease genes including the three methods we include in our analysis: Cre-lox
technology controlling gene switching in tissues (Sauer et al., 1988), Oncomouse
methods inserting cancer-producing (onco) genes (Stewart et al., 1984), and
“Knock-out’ methods deleting specific genes (Doetschman et al., 1987; Thomas
& Capecchi, 1987). This suite of research tools allowed for control of the types
of (disease) genes inserted into the mouse and control of the tissues where they
were expressed (switched on). Their general importance was recognized in the
2007 Nobel Prize in Physiology.
The production and breeding of research mice (spontaneous or engineered)

is complex, costly and time consuming. Recognizing these factors as a key
limitation to the growth of their field, researchers invested in a range of sci-
entific institutions to foster open exchange norms for research mice, facilitate
their breeding and promote standardization (Radner 2001). In 1933, scientists
built the Jackson Laboratories (JAX), a research organization to pioneer mouse
breeding, arbitrate mouse nomenclature and standardize production procedures
and serve as a repository for many strains of mice. In its role as a reposi-
tory, JAX circulated a large variety of mouse strains at low cost thus enabling
openness, rapid follow-on research, and low cost exchange. One leading mouse
researcher looking on his mouse breeding experience prior to JAX commented
on the pressures and costs of breeding and sharing his research mice: ”When it
was impossible to fill requests for the mice, there were grumblings that Strong
was uncooperative. A few even complained that I was trying to restrict scien-
tific material for my own selfish use. These charges were never justified. Few
people realized that the inbreeds had been created in the first place as a means
of opening my own scientific line of inquiry into the cancer problem. I was glad
to share the mice, but I had no intention of abandoning my career in cancer
research to become a supplier of laboratory animals for others (Strong 1978)”.
Breakthroughs in mouse engineering increased the challenges of producing

and sharing mice. Follow-on researchers wanting to use a mouse developed by
another scientist could replicate their engineering methods but this required
diverse knowledge — stem cell biology, molecular biology and embryology etc.
Alternatively they could engage in open exchange, following the norms followed
by previous generations of mouse geneticists — either informally from one re-
searcher to another or via JAX. At first, JAX hoped to step in, extending its
role in the open exchange of spontaneous mice to all engineered mice. How-
ever, IP rights on Cre-lox and Onco mice, and the licensing terms imposed by
DuPont, placed severe limits on openness for all forms of exchange among re-
searchers (in industry and academia). DuPonts control came because the new
engineered mice methods were patented around the world, most notably, two
types of mouse engineering methods (and the mice they generated) that are the
subject of our analysis: Cre-lox and Oncomouse.
The Cre-lox technology was developed by Brian Sauer, a researcher in DuPont’s

life science R&D Group (Sauer et al. 1988). By inserting a particular gene
“scissors’ on both sides a disease gene of interest, and by incorporating a tissue-
specific switch for these scissors, the Cre-lox technique produced engineered mice
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with target genes turned on or off in a specific tissue. Filed in 1987 and granted
to DuPont in 1990, the patent (4,959,317) covered the use of Cre-lox technology
and any Cre-lox mouse. The Oncomouse patent was owned by Harvard Uni-
versity and covered techniques (and mice) developed Phil Leder, a professor at
Harvard Medical School. The Onco patent was filed in 1984 just before the re-
searchers submitted their Oncomouse-paper to leading journal Cell (Stewart et
al., 1984). It claimed transgenic methods to insert cancer-producing onco genes
into mice. The patent (4,736,866) was granted in 1988 with sweeping (And
controversial) claims covering all transgenic animals (including but not limited
to mice) with an oncogene (or other gene) inserted. Over the years, the breadth
of this patent has been the subject of dispute and varying legal interpretation,
but even the narrowest definition of the claims transgenic mice engineered to
include cancer-producing genes. Since DuPont had provided unrestricted fund-
ing to Leder’s laboratory — in return for right of first refusal on any patentable
results — the firm received an exclusive license to the Oncomouse patent.
Throughout the 1990s, DuPont used its IP rights to control the openness of

all Cre-lox and Onco-mice —whether made by public or private sector researchers.
In particular, their licenses restricted the open exchange of mice among scien-
tists (public or private). If, for example, a scientist developed an Oncomouse
(or a Cre-lox mouse) then under the DuPont license they could only share it
with another scientist if they complied with four terms: both parties signed
the license, paid a fee, used a formal Material Transfer Agreement (contract),
committed to make annual disclosures to DuPont regarding their experimental
progress and granted DuPont reach through rights on any follow-on commercial
applications. Their alternative was to engage in the time consuming and costly
replication of the mice — although this also violated the patent.
Limits to openness caused widespread discontent among the academic com-

munity (the predominant initial follow-on innovators). They objected to a for-
profit corporation using its patent rights (either as an owner or licensee) to try
and change the behavior and rights to openness traditionally afforded academics
(Murray, 2008). Over an eight year period (from 1990 to 1998), scientists en-
gaged in various protests. Some shared mice informally (and against the advice
of their universities). Several informal attempts among scientists to initiate
to patent invalidation proceedings were never successful. At a conference in
1992 Dr. Ken Paigan, then director of JAX, announced he would make On-
comice openly available without a license, directly contravening DuPont’s IP
rights. While some took advantage of this opportunity, others were wary of the
repercussions.
On July 1 1998, after considerable pressure from the academic commu-

nity, NIH Director Nobel Laureate Harold Varmus announced a Cre-lox Mem-
orandum of Understanding (MoU) between DuPont, the Jackson Laboratories
(JAX), and the National Institutes of Health (NIH) greatly increasing the open-
ness of Cre-lox mice for academic researchers. It allowed JAX or university
researchers to distribute and share Cre-lox mice with a simple license. Before
1998, mice embodying the cre-lox technology could not be shared without a
costly and restrictive license from DuPont. Post-1998 Cre-lox mice became
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available for all researchers in non-profit institutions for research requiring only
a Material Transfer Agreement (contract) and an institution-level license. A
year later, on July 1 1999, a similar Oncomouse MoU was signed. Like the
Cre-lox MoU, it applied retrospectively to all Oncomice developed prior to the
MoU (as well as later mice). Taken together, the Cre-lox and Onco agreements
represent dramatic shifts in openness of important research tools, and provide
an ideal experimental window into the impact of openness on innovation. In
formal terms, the Oncomouse embodied a similarly dramatic shift in openness,
however in practice there are salient differences in the pre- and post- MoU pe-
riods that allow us to use these two openness shocks to disentangle the various
predictions in our theoretical set up. Specifically, in the case of Cre-lox the
MoU had the effect of increasing access and lowering the threat of expropria-
tion of downstream research. In comparison, in the case on the Onco MoU,
JAX had already made an informal commitment to openness prior to the MoU.
Thus the post shock period is characterized by the same shock lowering ex post
expropriation but with a much more tempered shock to open access.

3.2 Empirical strategy

The Cre-lox/Onco MoUs represent openness shocks for key scientific inputs
exogenous to the vast majority of scientists working on mouse genetics and
using engineered mice as research tools. As such, they solve a number challenges
associated with evaluating the causal impact of openness on follow-on scientific
research productivity. More specifically, if we used an approach comparing
follow-on innovation based on knowledge produced under varying conditions
of openness it would be impossible to measure the counterfactual — follow-on
innovation building on the same knowledge under different openness conditions.
Take as an example, a finding that knowledge in academic publications that

is more openly available generates more follow-on knowledge. We confront sev-
eral possible explanations: First, publications associated with more open knowl-
edge may simply be different in quality (higher or lower) compared to publica-
tions whose knowledge was less open. Second, knowledge associated with more
openness may be different from less open knowledge and their papers might
thus exhibit different patterns of follow-on research lines. For example, these
papers may be more useful, more relevant or better understood. More precise
causal identification must rely on some sort of experiment in openness for which
the shift to more (or less) openness is exogenous both to the initial production
of the knowledge and to its initial incorporation into follow-on research lines.
The Cre-lox and Onco MoUs (and the comparison between them) provide such
an institutional “shock’ allowing us to use a differences-in-differences economet-
ric framework within which to estimate differences in the pre- and post- shock
rate of follow-on innovation, an approach that follows recent work analyzing the
institutional foundations of knowledge accumulation (Furman & Stern 2006,
Murray & Stern, 2007, Huang & Murray 2008, Rysman & Simcoe 2008).
Follow-on innovation is captured by taking advantage of another character-

istic of the institutional environment of scientific research — citation practices.

14



Scientists building on the research of prior researchers acknowledge the follow-
on nature of their contribution to the research line by citing the prior articles
(Hagstrom, 1965; Merton 1973). While patent citations have been more widely
used to trace follow-on innovation (Jaffe & Trajtenberg, 1996), citations in scien-
tific articles to prior scientific articles are another important trace of the impact
of a new discovery on follow-on research (de Solla Price, 1976; Garfield 1979;
Cole 2000). We therefore take a series of scientific articles describing the pro-
duction and analysis of spontaneous and engineered mice (what we refer to as
mice-article papers) and trace the forward citations to these papers in other
scientific papers. As the Cre-lox and Onco MoU openness shock impact some
mice-article papers (those associated with Cre-lox and Onco mice-articles) and
not others, and the MoUs take place with a substantial delay after the mice-
article papers are published, we can exploit the timing of the shock and the
non-shock mice-articles to identify the impact of the openness shocks on follow-
on innovation. It should be noted that while similar in language, the two shocks
may have a slightly different impact on follow-on innovation because early in the
1990s, JAX announced its willingness to contravene the strict DuPont licensing
terms and distribute Onco mice, albeit without the agreement of researchers’
universities. No such actions took place for Cre-lox mice. By measuring cita-
tions to Cre-lox and Onco mouse-article papers both pre and post the openness
MoUs (and by measuring the citations to mouse-paper articles unaffected by
the MoUs) we can separately identify the casual impact of both the openness
agreements.
Of course this analysis depends upon the extent to which the Cre-lox and

Onco MoU shocks to openness are truly exogenous. After all, they reflected
the endogenous choice of DuPont, JAX, and the NIH. There is, however, strong
evidence to suggest that the Cre-lox shock and Onco shock were widely unan-
ticipated in their timing and terms by the scientific community (Murray, 2008).
Moreover, our focus is on the behavioral (citation) response of over 5,000 follow-
on researchers who were not part of the intense, but largely private, negotia-
tions. The right-hand side variable in our regressions is the shock (which might
be thought of as simply a ”cost-shift”) whereas the left-hand side variables are
the forward citations which reflect the ”realized demand’ for prior knowledge
by follow-up researchers in the pre and post shock periods. While the cost-shift
may be endogenous to incentives of agents on the supply side (DuPont, Jack-
son, NIH), it is econometrically exogenous from the perspective of follow-on
researchers. More than simply a policy announcement, or even an agreement
that ratified behavior already taking place, the MoUs directly changed openness
of a set of key research inputs.

3.3 Estimation equations

Our estimation approach uses an annual count of forward citations to a given
mouse-article paper as the dependent variable and builds on recent work using
citation analysis to examine the impact of institutional shocks on follow-on
innovation (Furman & Stern, 2006; Murray & Stern, 2007). As a starting point,
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we use a negative binomial functional form to account for the skewed nature of
citation count data. Given the heterogeneity among scientific research articles
and the nonlinear evolution of citation patterns over the time elapsed since
publication, and the year of publication, we also include article, age and calendar
year fixed effects and use a conditional fixed effects estimator to address the
incidental parameters problem (Hausman, Hall & Griliches, 1984).
To identify the impact of the MoU we use the PostOverallShock variable

(set to one for each article-year in which a particular mouse-paper article is sub-
ject to an openness MoU). To allow for a gap between the MoU openness shock
to the scientific environment and an impact on observed publication outputs, we
also use the OverallWindow variable which represents a short ”window period’
before the PostOverallShock treatment period commences. We first estimate
the effect of these explanatory variables on the overall level of follow-on research
activity (Citationsjt) as follows:

Citationsjt

= f(εjt; γj + βt + δt−PubY ear +Ψ0PostOverallWindowjt

+Ψ1PostOverallShockjt),

where εjt is the error term, γj is the article fixed effect, βt the year fixed effect,
and δt−PubY ear is the article’s age fixed effect.
This specification tests for the impact of the MoUs by calculating how the

citation rate for a mouse-article changes after the relevant MoU, accounting
for fixed differences in the citation rate across articles and relative to the non-
parametric trend in citation rates for the non-treated mouse-article papers.
In the next step of our analysis, we decompose the OverallShock into

the two distinct experiments in our setting: the PostCreLoxShock and the
PostOncoShock variables. In both instances we also include the correspond-
ing window variables, CreLoxWindow and OncoWindow, respectively. The
CreLoxWindowjt dummy variable is equal to one if the article is subject to
the Cre-Lox shock (i.e. the mouse-paper article is associated with a Cre-lox
mouse), and the citation year is 1998 or 1999 (i.e. a two year window after the
Cre-lox MoU). Alternatively, the OncoWindowjt dummy variable is equal to
one if the article is subject to the Onco shock (i.e. the mouse-paper article is
associated with an Onco mouse) and the citation year is 1999 or 2000 (i.e. a
two year window after the Onco MoU). We again use a full set of article, age
and calendar year fixed effects. We thus estimate the equation:

Citationsjt

= f(εit; γj + βt + δt−PubY ear

+ΨCRE0CreLoxWindowjt +ΨCRE1PostCreLoxShockjt

+ΨONCO0OncoWindowjt +ΨONCO1PostOncoShockjt,

where the coefficients ΨCRE1 and ΨONCO1
measure the respective equilib-

rium impacts of the Cre-Lox and Onco shifts in openness on the level of follow-on
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research activity.
As the predictions of our model clearly suggest, we expect to see a num-

ber of effects regarding the changing nature of follow-on innovation in the
PostCreLoxShock and PostOncoShock periods. We therefore develop a spec-
ification that allows us to disentangle the shocks on different types of forward
citations using a two-equation system that separates the full count of Citations
for each citation-year into two (mutually exclusive) types and estimates the
effects of our openness shock variables separately for each type. Consider for
example the contrast between follow-on publications in a given year by new au-
thors versus those who have never cited a particular mouse-article paper before.

NewAuthorCitationsjt

= f(εjt; γj + αNEW−OLDt+ βt + δNEW
t−PubY ear

+ΨNEW
CRE0CreLoxWindowjt +Ψ

NEW
CRE1PostCreLoxShockjt

+ΨNEW
ONCO0

OncoWindowjt +Ψ
NEW
ONCO1

PostOncoShockjt,

and

OldAuthorCitationsjt

= f(εjt; γj + βt + δOLDt−PubY ear

+ΨOLDCRE0CreLoxWindowjt +Ψ
OLD
CRE1PostCreLoxShockjt

+ΨOLDONCO0
OncoWindowjt +Ψ

OLD
ONCO1

PostOncoShockjt,

The two equations are estimated jointly, with the following conditions. First,
the article fixed effects are set to be identical in both regressions. Next, the
calendar year fixed effects may differ only by a fixed annual rate. Finally, the age
fixed effects are independent across the two regressions. This allows for different
growth rates over time for public and private citations, and for differences in the
flow of public and private citations received over an article’s lifetime. With this
setup, we then test whether, in line with the theory, ΨNEW

CRE1
and ΨNEW

ONCO1
are

significantly larger than ΨOLDCRE1
and ΨOLDONCO1

, respectively. We develop similar
specifications for several citation margins that capture the notion of diversity
across research lines described in our theory: new versus old institutions, new
versus old key words, and new versus old journals. We also explore research
along a given research line comparing citations in applied versus basic journals.

4 Empirical data

4.1 Data and sampling

The data for this study is based on the entire population of research mice cata-
logued by the Mouse Genome Informatics (MGI) database. MGI consists of over
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13,000 unique mice, each linked to an original scientific publication in what we
refer to as a mouse-article. Of this large population, we focus only on research
mice publish in mouse-articles in the period from 1992 up until the first MoU
in 1998. We then sample on four mouse engineering technologies (as defined
by MGI). First, we include all Cre-lox mouse-articles, all of which are impacted
by the 1998 Cre-lox MoU. The second group includes all Onco mouse-articles
from the period; these are all impacted by the 1999 Onco MoU. The third
and fourth groups represent control mouse-articles: Other Engineered mouse-
articles describe new gene knockout mice not subject to the MoUs while the
fourth group is the Spontaneous mouse-articles whose production relies upon
random mutation rather than engineered genetic manipulation. The openness
of the Spontaneous mice follows the broad sharing norms of the mouse genetics.
In total, our sample includes 2638 novel mice linked to 2223 unique mouse-
article papers. The breakdown is as follows: 52 Cre-lox mice, 160 Onco mice,
2171 Other Engineered mice, and 255 Spontaneous mice.
For all 2223 mouse-articles we obtained information on technology and publi-

cation year from MGI and PubMed. We then used Thomson ISI Web of Science
to collect the full set of follow-on (forward) citations in academic journals from
the year following publication through to the end of 2006 (a total of 525,865 cita-
tions). For each citation, we also collected detailed information on last author,
reprint author, institutional addresses, key words, and journal characteristics
(including name, impact factor and a basicness score). The citations were then
aggregated by combining all the citations received by a given mouse-article in
a particular year into 27,442 citation-year observations. We also then devel-
oped a set of mutually exclusive categorical variables and coded our citations
accordingly. This allowed us group the citations in each citation-year for any
mouse-article into two mutually exclusive citation-year observations giving us
54,884 citation-year observations in each case. This allows us to examine the
impact of the MoU openness shocks on the two margins in each case.
Following our theoretical predictions, we focus first on margins capturing

the predicted expansion of horizontal experimentation across new lines. We
consider measures both of the diversity of researchers in follow-on innovation -
new researchers and new institutional affiliations and of the diversity of research
- new key words and new journals. Consider, for example, the case of new key
words. We consider a key word to be new if it has never been used in a prior
year to categorize a citation to particular mouse-article and old otherwise. This
allows us to capture changes in the research landscape. Overall, we generate
four such new/old categorical variables:
i. New/Old Last Author: defined as new if the last author (listed in ISI

Web of Science) has never appeared as a last author before in a citations to
the mouse-article in prior years, old otherwise. This measure is grounded in the
observation that the authorship convention in the life sciences places the faculty
controlling the research last.
ii. New/Old Institution: defined as new if any address in institution list

has never appeared in an address list of citations to the - mouse-article in prior
years, old otherwise.
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iii. New/Old Key Words: defined as new if a key word had never be-
fore appeared in the key word list of in the citations to the mouse-article, old
otherwise.
iv. New/Old Journal: defined as new if the journal of the citation has

never appeared before in the citations to the mouse-article, old otherwise.
We capture the predictions of our model regarding the impact of openness

on the vertical change in follow-on innovation i.e. whether these shifts lead
to research further along particular research lines (towards commercialization),
using a categorization of basic versus applied journal categorization. Our Ba-
sic/Applied Journal definition is based on work by Lim (2000) who used the
measure building on a classification scheme developed by CHI Research, Inc.
According to Lim, “CHI awards each journal a score from zero to four. For
the biomedical sciences, they correspond to clinical observation, clinical mix,
clinical investigation and basic science (see Hicks 1996, for more details)” (Lim
2000 p. 129). (It is worth noting that in this schema, multidisciplinary journals
are classified as “basic” because this adds a conservative bias against finding an
increase in basic research compared to applied research.)
Taken together these measures allow us to explore the more detailed implica-

tions of changes in openness for both horizontal and vertical follow-on research,
well beyond a levels effect. Using the citation margins, we can investigate the
hypothesis that changes in openness create new more diverse lines of research,
pursued by a more diverse range of scientists. We also investigate were along
the research line (from basic to applied) the additional research is taking place,
examining the prediction that by lowering the hold-up of researchers from IP
on Cre-lox and Onco mice those who already had access to research mice (re-
searchers using Onco mice) would move downstream to more applied research.
In contrast, for those without any access — such as researchers hoping to use
Cre-lox mice — the main effect of lower IP would be to focus effort on basic
research (at least initially). Not only does this allow us to test the rich pre-
dictions of our theoretical model but also link the importance of openness to
macroeconomic models where growth is driven by technological innovation.
One caveat is worth noting. We do not examine the impact of openness on

the public/private citation margin. First, the openness shocks in our analysis are
directed specifically to public-sector researchers. Second, for our entire sample
we find that 97.5% of all forward citations have at least one of their authors
in public institutions (of which 92.5% are only public and only 5% are public-
private mix). With only 2.5% of citations having all private-sector authors, this
margin is insignificant in the field of engineered mice.

4.2 Variables and summary statistics

Our empirical analysis focuses on measuring follow-on innovation through ci-
tation counts to the 2223 mouse-articles in our core data set. Table 1 pro-
vides variable names and definitions and Table 2 reports summary statistics for
our data. Our mouse-articles are published between 1992 and 1998 (mean =
1995) and have an average of seven authors each. We trace citations to each
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mouse-article from the year after its publication until 2006 (with the mean of
CitationY earjt being 2001), giving us 27,442 citation-year observations. The
papers receive a mean of 231 TotalCitationsj between the year following their
publication and 2006. Our key dependent variable in the initial set of regres-
sions is AnnualCitationsjt measuring the total number of citations to article j
in year t. The average number of citations for our mouse-articles is 18.32 (with
a minimum of 0 and maximum of 336 citations received in any year). This
is higher than the mean in other samples of life science papers (e.g. Murray
& Stern 2007), highlighting the importance of mouse genetics research in this
period.

TABLE 1 HERE
TABLE 2 HERE

In our core analyses we break the annual citation count for any mouse-article
into categorical margins of interest. As outlined above, to measure diversity of
citing authors, we construct the two dependent variables: NewAuthorCitationsjt
and OldAuthorCitationsjt by measuring number of citations by new (last) au-
thors to article j in year t; and the number of citations by old (last) authors to
article j in year t, respectively (mean = 11.0 and 3.7 respectively). We then cre-
ate an additional new/old dependent variable: NewInstitutionCitationsjt and
OldInstitutionCitationsjt (mean = 16.6 and 9.7 respectively) to capture diver-
sity at the institutional-level. Likewise, to capture diversity across research lines
we code citations with new and old key words as NewKeywordCitationsjt and
OldKeywordCitationsjt (mean = 32.8 and 11.0 respectively) as well as citations
in new and old journals as NewJournalCitationsjt and OldJournalCitationsjt
(mean = 7.5 and 5.9 respectively). Following a similar logic, and to capture ver-
tical shifts in research along particular research lines, we defineBasicCitationsjt
and AppliedCitationsjt, measuring the number of citations in basic journals to
article j in year t; and the number of forward citations in applied journals to
article j in year t, respectively (mean = 8.725 and 6.947 respectively).
As described in our empirical specification, we create three shock variables.

The first is the PostOverallShockjt, equal to one if the article j is subject to
either of the two MoU openness shocks, and if the citation year is after the
window period for the shock (mean = 0.0482). The second and third variables
capture the specific Cre and Onco shocks: PostCreLoxShockjt is equal to
one if the article j is subject to the Cre-lox MoU openness shock, and if the
citation year is after the Cre-lox window period for the shock (mean = 0.013)
and PostOncoShockjt equal to one if the article j is subject to the Onco MoU
openness shock, and if the citation year is after the OncoWindow period (2001
or later) (mean = 0.035).

TABLE 3 HERE
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5 Results
Our empirical analysis estimates the causal impact of the openness shocks exem-
plified by the Memorandum of Understanding signed by DuPont, NIH and JAX
dramatically opening up the access to Cre-lox (1998) and Onco (1999) mice for
academic researchers. Recall that these agreements both reduced down-stream
expropriation of follow-on innovators (in the case of Cre-lox and Onco) by de-
creasing the reach-through rights available to DuPont, and increased access for
follow-on innovators to the mice themselves (particularly in the case of Cre-lox
mice). Our approach is to observe the annual citations to mouse-articles linked
to Cre-lox and Onco mice in the pre- and post- shock period. By comparing the
citation patterns to Other Engineered mice and Spontaneous mice unaffected
by the MoUs and in the pre- and post- periods for the treated mice, we can
identify the impact of the shocks to openness. Our analysis proceeds in several
stages. First, we investigate the impact across both shocks on the overall flow
of citations received by our mouse-articles. We then decompose the shocks to
determine the specific impact of the Cre-lox and Onco shocks to better char-
acterize their different causal impact. In both cases we also examine the time
dynamics of the shocks.
We then turn to the core of our analysis which first examines the Overall,

Cre-lox and Onco shocks on the horizontal flow of research — by different re-
searchers and across research lines and then the vertical flow of research along a
given line (from basic to applied) . We capture the horizontal margin of ”new”
compared to ”old” categories of citations, specifically key words, journals, au-
thors, and institutions . In contrast, we use the vertical margin of basic v.
applied journals to capture the downstream nature of research. By analyzing
the impact of openness within the differences-in-differences framework, we are
particularly interested in coefficient on the “shock” variable as this captures the
change in citations (overall or for a particular margin) in the pre- and post-shock
period. We report the coefficient in the form of an incident rate ratio (IRR)
as well as the estimated coefficient. We focus on the IRR in our presentation
because it is easily interpreted: it provides the multiplicative effect on the ex-
pected number of citations received with a one unit change in a regressor (i.e.,
the null hypothesis of no effect yields a coefficient of 1.0). For example an IRR
of 1.25 on the shock variable can be interpreted as a 25% boost in citations in
the post shock period.

5.1 Impact of Openness Shocks on Total Annual Forward
Citations

Our regression results begin in Table 4 with a negative binomial specification us-
ing TotalCitations as the dependent variable. All specifications use the full set
of fixed effects. Equation (4-1) column represents our baseline model, with the
PostOverallShock variable. After accounting for the window period, we find
that the the coefficient on PostOverallShock is significant. On average, mouse-
articles affected by the shocks (Cre-lox and Onco mouse-articles) received an
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additional 24% increase in their annual citation rates after the MoUs are signed.
The effect is identified both from the large set of control mouse-article papers
and from the pre- and post- variations in article ages. Under specification (4-2)
we divide the primary explanatory variable into PostOverallShockShortRun
and PostOverallShockLongRun but make no other changes to the analysis.
We find that the boost in overall citation rates is significant in both periods
and is actually growing over time, with a 17% increase through 2003 and a
34.5% increase for 2004-2006. More than simply a lag in publishing after the
initial PostOverallShock period (which is accounted for with the window vari-
able), the significant and increasing boost in both periods represents a positive
feedback effect, where the initial boost focuses greater attention on the lines of
research affected by the shocks, resulting in even higher citation rates in the
next round of scientific articles.
In (4-3) we repeat these analysis but make separate estimates for the coef-

ficients on the Cre-lox and Onco shocks - a specification that more accurately
captures the differences in the two shocks (with respect to openness in the pre pe-
riod). In (4-3), we show that the PostCreLoxShock variable is associated with
a statistically significant increase of 32% in citations for Cre-lox mouse-articles,
compared to only a 21% for the PostOncoShock variable. The difference, we
interpret, as reflecting both the fact that there was some Oncomouse sharing
and access prior to the Onco MoU and to the fact that the Cre-lox agreement
was the first one signed by DuPont, and was therefore a greater surprise to the
research community. The statistical significance of the OncoWindow variable
also supports our latter interpretation. Note that the main Cre-lox and Onco
effects are significant at the 1% level under this specification.
These results provide strong support for one key claim of this paper — that

positive shocks to openness foster research intensity, rather than hindering
it because appropriability concerns surround critical research outputs. This
adds support to previous empirical results, for example by Furman and Stern
(2006), showing that the deposit of individual cell-lines (which provides openness
through formal access) also increase follow-on innovation. In a complementary
result, Murray and Stern (2007) find that limits on openness with the grant of
intellectual property rights over knowledge have the converse effect; it decreases
follow-on citations. Taken together, these results highlight the sensitivity of
follow-on researchers to a variety openness conditions, and provides increasing
support for the perspective that these results are driven by researchers shifting
their research choices rather than shifting their citations — it is hard to imagine
the research community being so strategic in their citations that they increase
and decrease their citations according to the precise timing and degree of open-
ness shocks. Furthermore, our results on temporal dynamics are consistent with
our theoretical setup, specifically the multi-staged view of innovation: if open-
ness leads to more research activity and potentially to a branching out of new
research lines (a conjecture we test in our next set of regressions) then these
new lines would themselves generate follow-on research activity, amplifying over
time the effects of any shocks to openness.
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TABLE 4 HERE

To examine the impact of the openness shocks on the horizontal expansion
of follow-on research, and to move to specifications that capture our core the-
oretical insight - that openness will have a more significant impact on new,
early-stage research lines, where openness is complementary with freedom - we
examine the impact of the openness shocks on several citation margins. As ex-
plained in the Estimated Equations section, we consider a series of two-equation
systems that allows us to contrast various margins of the annual citations, help-
ing to clarify the overall changes in behavior. When dividing citations into such
mutually exclusive categories, such as basic and applied citations, we allow for
separate age trends for the two citation categories; however, we impose common
publication-year and individual article fixed effects.

5.2 Impact of Openness Shocks on Horizontal Exploration
Across Research Lines

In Tables 5, 6 and 7, we present our analysis for the second main theoretical
claim in our model predicting that greater openness will lead to greater horizon-
tal experimentation, spawn a diverse array of new research lines and encourage
the participation of new researchers who have previously not contributed to this
arena of knowledge. We first present our evaluation of impact of openness shocks
on the diversity of researchers participating in follow-on research. Our key com-
parison is between researchers listed as the last author (the senior scientist) on
citations who have never previously been listed on a citation to the mouse-article
of interest, captured in our measure, NewAuthorCitations, and those previ-
ously listed in a citation to the particular mouse-article: OldAuthorCitations.
In the stacked regressions presented in (5-1a) and (5-1b) we estimate whether
the marginal impact of the PostOverallShock is different for new versus old
last-authors. We find a 28% increase in citations by new authors, compared to
only an 11% increase in citations by old authors (with the difference of the co-
efficients significant at the 1% level). We find similar results when dividing the
overall openness shock into short-run and long-run dynamics (5-2a and 5-2b):
a 22% short-run increase to new author citations compared with a 2% increase
for old authors, and 40% versus 24% for new versus old authors in the long-run.
This provides strong evidence for the hypothesis that an increase in openness
leads to new lines of research, as the shocks led to new authors focusing on the
field.
When we separately evaluate the Cre-lox and Onco shocks on new and exist-

ing authors (5-3a) and (5-3b), we find that the Cre-lox openness shock leads to a
44% increase in new last-author citations, but only a marginally significant 14%
increase in old last-author citations. Similarly, the Onco shock leads to a 22%
increase in new-author citations, but only a 13% increase in old-author cita-
tions. The short-run and long-run effects follow a similar pattern to the Overall
Openness Shock dynamics: the PostCreLoxShock has a 33% short-run increase
and a 76% long-run increase in new-author citations, but an insignificant 0.2%
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short-run rise and a significant 40% long-run rise in old-author citations. The
PostOncoShock similarly leads to a 21% short-run increase and a 25% long-run
increase in new citations, but only a marginally significant 8% short-run rise
and a significant 19% long-run rise in old citations. Our results are robust to
an alternative measure of authorship that uses reprint authors to designate new
versus old (repeated) researcher participation.
In the final set of specifications in Table 5, we turn to an alternative measure

of the diversity captured by the institutional affiliation. In this case institutions
are coded from the address field of the particular mouse-article citation. This is
particularly informative because it allows us to explore the micro-foundations of
openness and mouse exchange at the institutional level. If researchers within a
given institution (e.g. Northwestern University) share mice freely with one an-
other once one of their colleagues has made the investment in accessing a mouse
(or engineering one) then we would expect the surge in new authors to come pre-
dominantly from new institutions. Furthermore, any university-level agreement
made prior to the MoU made follow-on research possible for all scientists within
the university. As in Table 5, we used stacked regressions to estimate spec-
ifications comparing NewInstitutionCitations and OldInstitutionCitations.
Comparing (5-4a) and (5-4b), the impact of the overall openness shock increases
citations from new institutions by 22.5% compared to 16.3% from old (existing)
institutions. In other words, while the effect is less dramatic than the increased
diversity of authors, the boost in marginal citations does accrue (significantly)
to authors affiliated with new institutions.

TABLE 5 HERE

While our theoretical predictions highlight the importance of openness on
reducing the fixed cost of critical upstream inputs into research projects, an-
other important aspect of openness is the degree to which it facilitates horizontal
experimentation by researchers now free to match with a variety of ideas, par-
ticulary given the conditions of freedom existing in the academic sector that we
examine here. We capture this horizontal diversity using the measure of key
words represented in a particular citation. Recall that these key words are de-
fined by the cataloguing service (ISI Web of Science) and therefore not subject
of strategic intervention by researchers themselves. We compare the citation
margin between NewKeywordCitations and OldKeywordCitations in (6-1a)
and (6-1b) finding that the PostOverallShock is 26% for new key words and
-1.5% (and insignificant) for old key words. This confirms our prediction that
openness does indeed have a substantial impact on the diversity of new research
lines. When we include the time dynamics (6-2a) and (6-2b) we find that the
short run PostOverallShock effect on new key words is 20%, and increases to
36% in the long run (both are significant at the 1% level). The old key word
impact is small: -7% in the short run compared to 6% in the long run. Taken
together these provide strong evidence for expanding research lines. When we
decompose the openness shock into the Crelox and Onco shocks, the results are
also dramatic. The PostCreLoxShock is 36% while the Onco shock is only 20%
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(although both are significant at the 1% level) suggesting that it is the Cre-lox
shock that has the most salient impact on the initiation of diverse early-stage
lines. Neither the Cre-lox nor the Onco Shocks have a significant impact on old
key words.

TABLE 6 HERE

Our final investigation to establish the impact of openness on diversity is the
emergence of research lines focusing on new areas of scientific study captured in
journals. As a proxy for this breadth of research, we compare the citation mar-
gin between NewJournalCitations and OldJournalCitations, where a ”new”
journal is one which has never before published an article citing the original
mouse-paper article in question. In Table 7, we see that the PostOverallShock
in (7-1a) and (7-1b) leads to a 26% increase (significant at the 1% level) in cita-
tions from new journals, and only a 13% increase in citations from old journals.
We further investigate the impact of openness in (7-2a) and (7-2b). For cita-
tions from new journals, the Cre-lox shock increased NewJournalCitations by
42% with the OldJournalCitations increasing by 27%. The effect of the Onco
shock is more limited by in the same direction: a 24% increase to citations in
new journals, versus an 11% increase to citations in old journals.

TABLE 7 HERE

5.3 Impact of Openness Shocks on Vertical Exploitation
along Research lines

We now turn to the effects of openness shocks on the vertical distribution of
research, in other words, whether openness shocks move research along any par-
ticular line towards later stage projects. We do this by examining the marginal
impact of the openness shocks on the production of research in basic versus ap-
plied research journals. Recall that these categories a determined by examining
the journal in which citations are published, categorized according to how close
to clinical application the work typically published (across the entire stock of
articles published in the journal over a five year time period). In (8-1a) and (8-
1b), we find that the BasicCitations dependent variable increases 24% during
the post-shock period; at the same time, the AppliedCitations variable expe-
riences 19.6% increase during the post-shock period. This suggests that across
both shocks, the average impact accrues to both basic and applied citations. In
our next regressions, however, we provide deeper insights into these patterns by
again considering the contrasting natures of the Cre-lox and Onco shocks and
disentangling their distinctive implications. Recall that in the pre-shock period,
not only were there stringent reach-through rights associated with Cre-lox mice,
but also very limited access as ex ante enforcement of IP rights had limited their
circulation and exchange. In contrast, Onco mice were made available through
JAX - although these researchers remained concerned that if they found inter-
esting commercial applications they may be subject to ex post IP enforcement.
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As a result, the Onco shock also reduced reach-through rights but had a more
limited impact on access. The specifications in (8-2a) and (8-2b) reveal that
the Cre-lox shock is concentrated in basic citations, while the Onco shock has a
significant effect only on applied citations. Specifically, the Cre-lox shock leads
to a dramatic 108% increase in basic citations during the post-shock period,
but has negligible effects on applied-research citation flows, prompting signifi-
cant uptake of basic research in the area. By contrast, the impact of the Onco
shock is concentrated in the more applied research stages and leads to a 56%
increase during the period through 2006 for applied citations; at the same time,
the Onco shock has no significant impact on basic citations. This is consistent
with the view that when upstream access is already secured (as in the case for
Onco mice), then an agreement that shifts the balance of appropriability toward
follow-on innovators and away from the initial innovator (DuPont), then there
is more applied research.

TABLE 8 HERE

These results are further reenforced when we look at the time dynamics
(8-3a) and (8-3b). In this case, rather than look at the time dynamics for
the overall shock, we examine the time dynamics for the Cre-lox and Onco
shocks separately. We find that the Cre-lox shock has a 92% increase in basic
citations in the short ruun and a dramatic 253% increase over the next three
years (through 2006). There is no significant impact on applied citations in
either the short run or the long run. While we might have anticipated that
there would be a gradual shift to applied research in the long run, this suggests
that the early stages of the Cre-lox research lines take time and that applications
are relatively far away. Conversely, in the Onco case, the shock to citations is
entirely concentrated in applied research with a 51% boost in the short run and
63% in the long run.

6 Conclusion
Academia has two central features: scientific freedom and openness. For re-
searchers working within academia, the ability to control their research agenda
choices and choose the ways in which they allow others to build on their re-
search discoveries is critical (Stern 2004). In prior work Aghion, Dewatripont
and Stein (2007) developed a model emphasizing the economic foundations of
scientific freedom as being grounded in the granting of control rights to re-
searchers (rather than funders). This approach emphasizes the defining char-
acteristic of freedom within academia, rather than the more traditional view of
academia as a setting in which research takes place that, on account of weak
IP rights, would be subject to considerable under-investment in the private
sector. Nonetheless, IP rights are still salient in academia and have been the
subject of considerable debate, particularly with the proliferation of patents on
key upstream innovations, include the Oncomouse and Cre-lox but also human
genes (Jensen & Murray 2005), recombinant DNA techniques and even human
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embryonic stem cells. As we have shown, the control rights approach pro-
vides a powerful framework within which to reexamine the role of IP rights in
academia. Because the framework is grounded in the recognition that research
takes place through step-by-step innovation, it is possible to examine the ways
in which changing IP rights over the very early stages of research will change
downstream exploitation — a view of IP rights consistent with theories that ex-
amine a single research line (Scotchmer 1996). More importantly, because the
model allows for the possibility of multiple research lines, it also highlights an
important, and previously overlooked, implication of IP rights over upstream
knowledge. Within the control rights framework, the impact of openness of
upstream research tools raises the incentives for additional upstream basic re-
search by encouraging the establishment of entirely new research directions. In
other words, within academia, restrictions on scientific openness (such as those
created through formal intellectual property such as patents) limits the level of
diversity and experimentation of basic research itself.
Overall we find, perhaps not surprisingly, that there is an increased overall

level of follow-on research taking place after the NIH-DuPont-JAX agreements.
Building on this initial result, we explored the particular margins where this
increased innovation is taking place, developing measures of innovation that
allowed us to test the predictions of our theory. Our findings are consistent
with the two distinct implications of our framework for an increase in openness.
First, we have robust evidence that increased openness was associated with the
exploration of a wider range of more diverse research paths i.e. horizontal exper-
imentation. This finding highlights a feature of early stage knowledge overlooked
in many of the current models of innovation - the fact that it is non-rivalrous
and as a consequence, can, in principle, be applied across multiple later-stage
domains and applications. Second, when we compared the impact of openness
on horizontal exploration versus vertical exploitation we find that on balance,
when pre-existing IP restrictions limited access to research materials (rather
than simply serve as a threat of potential future enforcement), the main impact
of openness is concentrated in an increase in more basic and more high-quality
follow-on research publications. In contrast, when prior arrangements (informal
or formal) have allowed for access even with some threat of enforcement, the
openness shock is concentrated in more applied follow-on research.
Our results highlight that the current literature on intellectual property and

innovation has neglected a key potential cost of intellectual property - the limits
that IP rights may place on the diversity research that would otherwise be
pursued by follow-on innovators taking a single powerful idea and experimenting
across multiple research lines.
Our results also have strong implications for the organization of research

and its contribution to innovation and growth both in academia and the private
sector. For nations such as China, for example, who seek to increase knowledge
production through greater funding and an emphasis on incentives to publish in
academia, we argue that without a commitment to openness as well as freedom,
these investments are unlikely to be effective (see Murray 2007 for a related
discussion). This commitment to openness requires careful consideration and
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must be balanced against the current enthusiasm for IP rights in academia.
The prevailing view on openness (and IP rights) is shaped by the technology
transfer model of the United States as structured by the 1980 Bayh-Dole Act.
By placing IP rights in the hands of the universities Bayh-Dole allowed them
to shape the ways in which their IP was enforced upon follow-on innovators.
The goal was to provide key incentives for follow-on exploitation and the trans-
formation of basic research investments into commercial products. Our results
highlight one of the possible dangers of excessive IP enforcement: if IP is used
to restrict openness particularly at very early stages of the research line, then
it is possible that the rich array of exploration projects that are key to diverse
follow-on innovation will stifled. In practical terms, there are a number of ways
of managing IP and access rights to try and maximize horizontal exploration
and vertical exploitation. However, this will require policy makers, univer-
sity administrators and academics themselves to pay greater attention to the
organization of research, particularly the terms and conditions that pertain to
access to patented research inputs, but also more broadly, the institutions that
enhance openness.
Lastly, these results should affect the way we think about the role and impor-

tance of IP protection throughout the innovation process in the private sector. In
particular, our framework suggests that more attention be paid by economists to
recent attempts by the corporate sector to generate new sources of profit built on
the openness of knowledge production by others (Huang & Murray 2008). Thus,
Tapscott and Williams (2006) explain how IBM has managed to recover from
competition with Microsoft by engaging in the openness promoted by Linux.
More generally, a systematic analysis of the forces and trade-offs at work in an
economic environment with both proprietary and open firms competing with
each other, awaits future research.
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TABLE 1: VARIABLES & DEFINITIONS  
 

VARIABLE  DEFINITION  SOURCE  

 
PUBLICATION CHARACTERISTICS  
Publication Yearj  Year in which article j is published  PM  

# Authorsj  Count of the number of authors of Article j  PM  

Total Citationsj  # of FORWARD CITATIONS from publication date through 2006  SCI  
 
CITATION-YEAR CHARACTERISTICS  
Annual Citations  # of Forward Citations to Article j in Year t  SCI 

Citation Yearjt  Year in which FORWARD CITATIONS are received  SCI  
 
CITATION CHARACTERISTICS  
New Author Citation Dummy variable equal to 1 if the last author has not appeared in the citations 

to the mouse-article in prior years; 0 otherwise 
PM  

Old Author Citation Dummy variable equal to 1 if the last author has appeared in the citations to 
the mouse-article in prior years; 0 otherwise 

PM  

New Institution Citation Dummy variable equal to 1 if the institutional affiliation has not appeared in 
the citations to the mouse-article in prior years; 0 otherwise 

PM  

Old Institution Citation Dummy variable equal to 1 if the institutional affiliation has not appeared in 
the citations to the mouse-article in prior years; 0 otherwise 

PM  

New Key Word Citation Dummy variable equal to 1 if the key word has not appeared in the citations to 
the mouse-article in prior years; 0 otherwise 

PM  

Old Key Word Citation Dummy variable equal to 1 if the key word has appeared in the citations to the 
mouse-article in prior years; 0 otherwise 

PM  

New Journal Citation Dummy variable equal to 1 if the publishing journal has not appeared in the 
citations to the mouse-article in prior years; 0 otherwise 

PM  

Old Journal Citation Dummy variable equal to 1 if the publishing journal has appeared in the 
citations to the mouse-article in prior years; 0 otherwise 

PM  

Basic Citation Dummy variable equal to 1 if the publishing journal is identified as a basic-
research journal (SOURCE: CHIBasic variable); 0 otherwise  

PM  

Applied Citation Dummy variable equal to 1 if the publishing journal is identified as an applied-
research journal (SOURCE: CHIBasic variable); 0 otherwise  

PM  

At Least One Public Author  Dummy variable equal to 1 if at least one institutional affiliation associated 
with the citing article is a university or government organization; 0 otherwise  

PM  

Private Author Dummy variable equal to 1 if all institutional affiliations associated with the 
citing article is a biotechnology or pharmaceutical firm; 0 otherwise  

PM  

 
OPENNESS SHOCK CHARACTERISTICS  
Post Overall Shockjt  Dummy variable equal to 1 if Article j is associated with an openness MOU 

agreement (Cre-Lox, Onco) which is in effect in year t. 
MGI 

Post Overall Windowjt  Dummy variable equal to 1 if Article j is associated with an openness MoU 
agreement (Cre-Lox, Onco) which is in its initial period in year t. 

MGI  

Post Crelox Shockjt  Dummy variable equal to 1 if Article j is associated with the Cre-Lox openness 
MoU and that agreement is in effect in year t. 

MGI  

Post Crelox Windowjt  Dummy variable equal to 1 if Article j is associated with the Cre-Lox openness 
MoU and that agreement is in its initial period in year t. 

MGI  

Post Onco Shockjt  Dummy variable equal to 1 if Article j is associated with the Onco openness 
MoU and that agreement is in effect in year t. 

MGI  

Post Onco Windowjt  Dummy variable equal to 1 if Article j is associated with the Onco openness 
MoU and that agreement is in effect in year t. 

MGI  



TABLE 2: MEANS & STANDARD DEVIATIONS  
 

VARIABLE  N  MEAN  STD. DEV. MIN  MAX  
 
PUBLICATION CHARACTERISTICS (N = 2,223 original publication) 
Publication Yearj  2223 1995.35 2.83 1983 1998
# Authorsj  2223 7.034188 3.41921 1 34
Total Citationsj  2223 209.60 231.22 1 2543
 
CITATION-YEAR CHARACTERISTICS (N = 27,442 citation-year observations) 
Citation Yearjt  27442 2001.100 3.331 1993 2006
Annual Citations jt  27442 18.317 21.132 0 336

New Author Citations jt 27442 11.027 13.000 0 243

Old Author Citations jt 27442 3.712 5.212 0 58

New Institution Citationsjt 27442 16.616 17.427 0 287

Old Institution Citations jt 27442 9.671 13.346 0 135

New Key Word Citationsjt 27442 32.782 34.308 0 492

Old Key Word Citations jt 27442 11.008 16.235 0 202

New Journal Citations jt 27442 70.879 65.864 0 794

Old Journals Citations jt 27442 52.252 59.326 0 620

Basic Citation jt 27442 8.725 10.942 0 151

Applied Citation jt 27442 6.947 10.378 0 157
All Public Authors 
Citation jt

27442 15.115 17.110 0 253

At Least One Private 
Author Citationjt

27442 1.349 2.697 0 45

 
OPENNESS SHOCK CHARACTERISTICS (N = 27,442 citation-year observations) 
Post Overall Shockjt  27442 27442 0.0482 0.2143 0

Overall Windowjt  27442 27442 0.0147 0.1204 0

Post Crelox Shockjt  27442 27442 0.0133 0.1144 0

Crelox Windowjt  27442 27442 0.0031 0.0552 0

Post Onco Shockjt  27442 27442 0.0350 0.1837 0

Onco Windowjt  27442 27442 0.0117 0.1074 0

 
 



 TABLE 3: SUMMARY STATISTICS BY MOUSE TECHNOLOGY 
 

 MOUSE TECHNOLOGY 
VARIABLE N CRELOX ONCO OTHER GM SPONTANEOUS 

 
PUBLICATION CHARACTERISTICS (N = 2,223 original publication) 
Publication Yearj  2223 1996.549 1991.737 1995.448 1990.789
# Authorsj  2223 5.250 5.944 7.341 4.718
Total Citationsj  2223 158.831 228.959 234.198 68.411
 
CITATION-YEAR CHARACTERISTICS (N = 27,442 citation-year observations) 

Annual Citations  27442 15.3340 13.3326 20.9152 3.8202

New Author Citations 27442 10.1294 7.6285 12.5957 2.3799

Old Author Citations 27442 2.6305 2.2984 4.3015 0.6584

New Institutions 27442 15.6910 11.0114 18.9562 3.9763

Old Institutions 27442 8.7286 6.1850 11.1357 1.8031

New Key Words 27442 75.4572 50.7871 80.2499 17.5752

Old Key Words 27442 35.7996 39.9560 59.6379 11.1171

New Journal Citations 27442 7.5511 4.7736 8.5364 1.7752

Old Journal Citations 27442 4.7182 4.6010 6.6681 1.2618

Basic Citations 27442 8.8288 5.0855 9.9965 2.1295

Applied Citations 27442 3.3612 6.4306 7.8953 1.2437

All Public Author 
Citations 27442 13.2443 10.9772 17.2503 3.1377

At Least One Private 
Author Citations 27442 0.7724 0.9591 1.5539 0.2583

 



TABLE 4: IMPACT OF OPENNESS SHOCKS ON ANNUAL CITATION FLOWS 
 

NEGATIVE BINOMIAL  
Dep Var = ANNUAL CITATIONS  

[Incident rate ratios reported in square brackets]  
 

  

(4-1)  
Baseline Model with 

Overall Shock 

(4-2)  
Overall Shock with 

Time Dynamics  

(4-3)  
Baseline Model with  
Cre & Onco Shocks 

Post Overall Shock  [1.237]*** 
   

Post Overall Shock 
Short-run   [1.1742]*** 

  

Post Overall Shock 
Long-run   [1.3451]*** 

  

Post Cre-lox Shock    [1.3257]*** 
 

Post Onco Shock   [1.2117 ]*** 
 

Window 
- Overall 
- Cre 
- Onco 

 
[1.136]*** 

- 
- 

 
[1.1397]*** 

- 
- 

 
- 

[1.1013] 
      [1.1638]*** 

Parametric 
Restrictions  

     

Age FEs = 0     

Year FEs = 0     

Log-likelihood  -67168.977 -67153.037 -67164.516 
# of Observations  27428 27428 27428 

  
Significance levels: * 10% ** 5% *** 1% 



TABLE 5:   IMPACT OF OPENNESS SHOCKS ON CITATIONS  
BY NEW VS. OLD ‘LAST AUTHORS’ & BY NEW VS. OLD INSTITUTIONS 
 

STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

 

 

(5-1a)  
DV= 

New Author 
Citations 

(5-1b)  
DV= 

Old Author 
Citations 

(5-2a)  
DV= 

New Author 
Citations 

(5-2b)  
DV= 

Old Author 
Citations 

(5-3a)  
DV=  

New Author 
Citations 

With Time Dynamics 

(5-3b)  
DV=  

Old Author 
Citations  

With Time Dynamics 

(5-4a)  
DV= 
New 

Institution 
Citations 

(5-4b)  
DV= 
Old  

Institution 
Citations 

Post Overall Shock  
[1.2803]*** [1.1059]*** 

  
 

 
[1.2247]*** [1.1628]*** 

Post Overall Shock 
Short-run    

  
[1.2150]*** 

 
[1.0168]   

Post Overall Shock 
Long-run    

  
[1.3963]*** 

 
[1.2351]***   

Post Cre-lox Shock    [1.4441]*** [1.1414]*     

Post Onco Shock   [1.2209]*** [1.1286]***     

Parametric 
Restrictions  

           

Separate Age FEs = 
0  

        

Common Year FEs = 
0  

        

Log-likelihood  -104637.73 -104637.73 -104627.01 -104627.01 -104616.36 -104616.36 -138282.49   -138282.49   
# of Observations  26406 26406 26406 26406 26406 26406 26406 26406 

 Significance levels: * 10% ** 5% *** 1% 



TABLE 6:   IMPACT OF OPENNESS SHOCKS ON CITATIONS  
WITH NEW VS. OLD KEY WORDS  
 

STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

 

 

(6-1a)  
DV=New 
Key Word 
Citations 

(6-1b)  
DV=Old  

Key Word 
Citations 

(6-2a)  
DV= New  
Key Word 
Citations 

With Time Dynamics 

(6-2b)  
DV= Old  
Key Word 
Citations  

With Time Dynamics 

(6-3a)  
DV=New  
Key Word 
Citations 

(6-3b)  
DV=Old Key 

Word 
Citations 

Post Overall Shock  
[1.2605]*** [0.9850]  

   

Post Overall Shock 
Short-run    [1.2076]*** 

 
[0.9339]*** 

  

Post Overall Shock 
Long-run    [1.3608]*** 

 
[1.0602]** 

  

Post Cre-lox Shock      [1.3586]*** [0.9317] 

Post Onco Shock     [1.2001]*** [1.0209] 

Parametric 
Restrictions  

        

Separate Age FEs = 
0  

      

Common Year FEs = 
0  

      

Log-likelihood  -217511.16 -217511.16 -217491.52 -217491.52 -217473.69 -217473.69 
# of Observations  27428 27428 27428 27428 27428 27428 

 Significance levels: * 10% ** 5% *** 1% 



TABLE 7:   IMPACT OF OPENNESS SHOCKS ON CITATIONS  
IN NEW VS. OLD JOURNALS  
 

STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

 

 

(7-1a)  
DV= 

New Journal 
Citations 

(7-1b)  
DV= 

Old Journal 
Citations 

(7-2a)  
DV=  

New Journal 
Citations 

With Time Dynamics 

(7-2b)  
DV=  

Old Journal 
Citations  

With Time Dynamics 

(7-3a)  
DV= 

New Journal 
Citations 

(7-3b)  
DV= 

Old Journal 
Citations 

Post Overall Shock  
[1.2594]*** [1.1263]***  

   

Post Overall Shock 
Short-run    [1.2457]*** 

 
[1.0383] 

  

Post Overall Shock 
Long-run    [1.2959]*** 

 
[1.2552]*** 

  

Post Cre-lox Shock      [1.4206]*** [1.2698]*** 

Post Onco Shock     [1.2365]*** [1.1098]*** 

Parametric 
Restrictions  

        

Separate Age FEs = 
0  

      

Common Year FEs = 
0  

      

Log-likelihood  -105698.96      
# of Observations  26448 26448 26448 26448 26448 26448 

 Significance levels: * 10% ** 5% *** 1% 
 



TABLE 8: IMPACT OF OPENNESS SHOCKS ON CITATIONS  
IN BASIC VS. APPLIED JOURNALS 
 

STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

 

 

(8-1a)  
DV=  

Basic Journal 
Citations 

(8-1b)  
DV=  

Applied Journal 
Citations 

(8-2a)  
DV= 

Basic Journal 
Citations 

(8-2b)  
DV=  

Applied Journal 
Citations  

(8-3a)  
DV= 

Basic Journal 
Citations  

with Time Dynamics 

(8-3b)  
DV= 

Applied Journal 
Citations  

with Time Dynamics 

Post Overall Shock  
[1.2383]***    [1.1963]*** 

  
  

Post Cre-lox Shock  
  [2.0751]*** 

 
[0.9246] 

   

Post Onco Shock 
  [1.0291] 

 
[1.5605]*** 

   

Post Cre-lox Shock 
Short-run      [1.9245]*** 

 
[0.8751] 

Post Cre-lox Shock 
Long-run      [2.5289]*** 

 
[1.0719]    

 
Post Onco Shock 
Short-run      [1.0300] 

 
[1.5128]*** 

 
Post Onco Shock 
Long-run      [1.0294] 

 
[1.6298]*** 

 
Parametric 
Restrictions  

      

Separate Age FEs = 
0  

      

Common Year FEs = 
0  

      

Log-likelihood  -126702.71 -126702.71 -126504.85 -126504.85 -126490.16 -126490.16 
# of Observations  27414 27414 27414 27414 27414 27414 

 Significance levels: * 10% ** 5% *** 1% 


