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Conventional wisdom tells us that making decisions becomes
difficult whenever multiple priorities, appetites, goals, values, or
simply the attributes of the alternative options are in conflict.
Should one undergo a medical treatment that has some chance of
curing a life-threatening illness but comes with the risk of debil-
itating side effects? Should one report a crime committed by a
friend? Should one buy an expensive, high-quality camera or an
inexpensive, low-quality camera? How do people resolve con-
flicts, ranging from the prosaic to the profound?

The common denominator of many theories of human behavior
is the premise that conflicts are mastered by making trade-offs.
Since the Enlightenment, it has been believed that weighting and
summing are the processes by which such trade-offs can be made
in a rational way. Numerous theories of human behavior—includ-
ing expected value theory, expected utility theory, prospect theory,

Benjamin Franklin’s moral algebra, theories of moral sense such as
utilitarianism and consequentionalism (Gigerenzer, 2004), theories
of risk taking (e.g., Wigfield & Eccles, 1992), motivational theo-
ries of achievement (Atkinson, 1957) and work behavior (e.g.,
Vroom, 1964), theories of social learning (Rotter, 1954), theories
of attitude formation (e.g., Fishbein & Ajzen, 1975), and theories
of health behavior (e.g., Becker, 1974; for a review see Heck-
hausen, 1991)—rest on these two processes. Take how expected
utility theory would account for the choice between two invest-
ment plans as an example. The reasons for choosing are often
negatively correlated with one another. High returns go with low
probabilities, and low returns go with high probabilities. Accord-
ing to a common argument, negative correlations between reasons
cause people to experience conflict, leading them to make trade-
offs (Shanteau & Thomas, 2000). In terms of expected utility, the
trade-off between investment plans is performed by weighting the
utility of the respective monetary outcomes by their probabilities
and by summing across the weighted outcomes of each plan. The
plan chosen is that with the higher expected utility.

Weighting and summing are processes that have been used to
define not only rational choice but also rational inference (Giger-
enzer & Kurz, 2001). In research on inference, weighting was the
first to be challenged. In the 1970s and 1980s, evidence emerged
that simple unit weights such as �1 and �1 often yield the same
predictive accuracy—that is, the same ability to predict rather than
simply “postdict,” or fit—as the “optimal” weights in multiple
regression (Dawes, 1979). According to these results, weighting
does not seem to affect predictive accuracy as long as the weight
has the right sign.

Next, summing was called into question. The 1990s brought
evidence that the predictive accuracy of lexicographic heuristics
can be as high as or higher than the accuracy of complex strategies
that perform both weighting and summing. This was shown for
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both inferences (e.g., Gigerenzer & Goldstein, 1996; Gigerenzer,
Todd, & the ABC Research Group, 1999) and preferences (e.g.,
Payne, Bettman, & Johnson, 1993). The heuristics in question
order attributes—which can be seen as a simple form of weight-
ing—but do not sum them. Instead, they rely on the first attribute
that allows for a decision. These results suggest that summing is
not always necessary for good reasoning. In addition, some of the
environmental structures under which weighting (ordering) with-
out summing is ecologically rational have been identified (Hogarth
& Karelaia, 2005; Katsikopoulos & Martignon, in press; Mar-
tignon & Hoffrage, 2002; Payne et al., 1993).

Here is the question that concerns us: If, as the work just
reviewed demonstrates, both summing without weighting and
weighting without summing can be as accurate as weighting and
summing, why should humans not use these simpler heuristics?
Specifically, might human choice that systematically contradicts
expected utility theory be a direct consequence of people’s use of
heuristics? The success of a long tradition of theories seems to
speak against this possibility. Although deviations between the
theory of expected utility and human behavior have long since
been experimentally demonstrated, psychologists and economists
have nevertheless retained the weighting and summing core of the
theory, but they have adjusted the functions to create more com-
plex models such as prospect theory and security-potential/aspira-
tion theory. In this article, we demonstrate that a simple heuristic
that forgoes summing and therefore does not make trade-offs can
account for choices that are anomalies from the point of view of
expected utility theory. In fact, it does so in the very gambling
environments that were designed to demonstrate the empirical
validity of theories of risky choice that assume both weighting and
summing. By extension, we suggest that other areas of human
decision making that involve conflicting goals, values, appetites,
and motives may likewise be explicable in terms of simple heu-
ristics that forgo complex trade-offs.

The Bernoulli Framework and Its Modifications

Very few great ideas have an exact date of origin, but the theory
of mathematical probability does. In the summer of 1654, the
French mathematicians Blaise Pascal and Pierre Fermat exchanged
letters on gambling problems posed by a notorious gambler and
man-about-town, the Chevalier de Méré. This exchange resulted in
the concept of mathematical expectation, which at the time was
believed to capture the nature of rational choice (Hacking, 1975).
In modern notation, the principle of choosing the option with the
highest expected value (EV) is defined as

EV � � pixi , (1)

where pi and xi are the probability and the amount of money,
respectively, of each outcome (i � 1, . . . , n) of a gamble. The
expected value theory was a psychological theory of human rea-
soning, believed to describe the reasoning of the educated homme
éclairé.

Despite its originality and elegance, the definition of a rational
decision by EV soon ran into trouble when Nicholas Bernoulli, a
professor of law in Basel, posed the perplexing St. Petersburg
paradox. To solve the paradox, his cousin Daniel Bernoulli (1738/
1954) retained the core of the expected value theory but suggested

replacing objective money amounts with subjective utilities. In his
view, the pleasure or utility of money did not increase linearly with
the monetary amount; instead, the increases in utility declined.
This phenomenon entered psychophysics a century later in the
form of the Weber–Fechner function (Gigerenzer & Murray,
1987), and it entered economics in the form of the concept of
diminishing returns (Menger, 1871/1990). Daniel Bernoulli mod-
eled the relation between objective and subjective value of money
in terms of a logarithmic function. In modern terminology, the
resulting expected utility (EU) is defined as

EU � � piu(xi), (2)

where u(xi) is a monotonically increasing function defined on
objective money amounts xi. At the time of Daniel Bernoulli, the
maximization of expected utility was considered both a description
and prescription of human reasoning. The present-day distinction
between these two concepts, which seems so obvious to research-
ers today, was not made, because the theory was identical with its
application, human reasoning (Daston, 1988). However, the “ra-
tional man” of the Enlightenment was dismantled around 1840,
when probability theory ceased to be generally considered a model
of human reasoning (Gigerenzer et al., 1989). One motive for the
divorce between expected utility and human reasoning was appar-
ent human irrationality, especially in the aftermath of the French
Revolution. Following the demise of expected utility, psycholog-
ical theories of thinking virtually ignored the concept of expected
utility as well as the laws of probability until the 1950s. The
revival of expected utility began with von Neumann and Morgen-
stern (1947), who based expected utility on axioms. After their
landmark book appeared, followed by influential publications such
as Edwards (1954, 1962) and Savage (1954) on subjective ex-
pected utility, theories of the mind once again started to model
human reasoning and choice in terms of probabilities and the
expected utility framework (e.g., Fishbein & Ajzen, 1975; Heck-
hausen, 1991).

However, it was not long until the first experiments were con-
ducted to test whether people’s choices actually follow the predic-
tions of expected utility. Evidence emerged that people systemat-
ically violated expected utility theory (Allais, 1953; Ellsberg,
1961; MacCrimmon, 1968; Mosteller & Nogee, 1951; Preston &
Baratta, 1948), and this evidence has accumulated in the subse-
quent decades (see Camerer, 1995; Edwards, 1968; Kahneman &
Tversky, 2000). Although specific violations of expected utility,
including their normative status, are still under debate (Allais,
1979; Hogarth & Reder, 1986), there is widespread consensus
among experimental researchers that not all of the violations can
be explained away.

This article is concerned with how to react to these empirical
demonstrations that human behavior often contradicts expected
utility theory. So far, two major reactions have surfaced. The first
is to retain expected utility theory, by arguing that the contradic-
tory evidence will not generalize from the laboratory to the real
world. The arguments for this assertion include that in most of the
experiments, participants were not paid contingent on their perfor-
mance (see Hertwig & Ortmann, 2001) or were not paid enough to
motivate them to behave in accordance with expected utility and
that outside the laboratory, market pressures will largely eliminate
behavior that violates expected utility theory (see Hogarth &
Reder, 1986). This position is often reinforced by the argument
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that even if one accepts the empirical demonstrations, no powerful
theoretical alternative to expected utility exists, and given that all
theories are false idealizations, a false theory is still better than no
theory.

The second reaction has been to take the data seriously and, just
as Bernoulli did, to modify the theory while retaining the original
expected utility scaffolding. Examples include disappointment the-
ory (Bell, 1985; Loomes & Sugden, 1986), regret theory (Bell,
1982; Loomes & Sugden, 1982), the transfer-of-attention-
exchange model (Birnbaum & Chavez, 1997), decision affect
theory (Mellers, 2000), prospect theory (Kahneman & Tversky,
1979), and cumulative prospect theory (Tversky & Kahneman,
1992). These theories are noteworthy attempts to adjust Bernoul-
li’s framework to the new empirical challenges by adding one or
more adjustable parameters. They represent a “repair” program
that introduces psychological variables such as emotions and ref-
erence points to rescue the Bernoullian framework (Selten, 2001).

Despite their differences, all of these modifications retain the
assumption that human choice can or should be modeled in the
same terms that Bernoulli used: that people behave as if they
multiplied some function of probability and value, and then max-
imized. Because of the complex computations involved in some of
these modifications, they have often been interpreted to be as-if
models. That is, they describe and ideally predict choice outcomes
but do not explain the underlying process. The originators of
prospect theory, for instance, set themselves the goal “to assemble
the minimal set of modifications of expected utility theory that
would provide a descriptive account of . . . choices between simple
monetary gambles” (Kahneman, 2000, p. x). Prospect theory deals
with empirical violations of expected utility by introducing new
functions that require new adjustable parameters. For instance, a
nonlinear function � was added to transform objective probabili-
ties (assuming “regular prospects”):

V � � �( pi)v(xi), (3)

where V represents the value of a prospect. The decision weights
� ( pi) are obtained from the objective probabilities by a nonlinear,
inverse S-shaped weighting function. Specifically, the weighting
function � overweights small probabilities and underweights mod-
erate and large ones (resulting in an inverse S shape). The value
function v(xi) is an S-shaped utility function. Just as Bernoulli
introduced individual psychological factors (diminishing returns
and a person’s wealth) to save the expected value framework,
Kahneman and Tversky (1979) postulated � and v to account for
the old and new discrepancies. In the face of new empirical
discrepancies and to extend prospect theory to gambles with more
than three outcomes, Tversky and Kahneman (1992) further mod-
ified prospect theory into cumulative prospect theory.

The essential point is that the weighting function (defined by
two adjustable parameters in cumulative prospect theory) and the
value function (defined by three adjustable parameters) interpret
people’s choices that deviate from Bernoulli’s framework within
that very same framework. For example, the empirical shape of the
weighting function is inferred by assuming a multiplication calcu-
lus. Overweighting small probabilities, for instance, is an interpre-
tation of people’s cognition within Bernoulli’s framework—it is
not the empirical phenomenon itself. The actual phenomenon is a
systematic pattern of choices, which can be accounted for without
reference to functions that overweight or underweight objective

probabilities. We demonstrate this in the alternative framework of
heuristics. The aim of models of heuristics is to both describe the
psychological process and predict the final choice.

Heuristics in Risky Choice

In this article, we pursue a third way to react to the discrepancy
between empirical data and expected utility theory: to explain
choice as the direct consequence of the use of a heuristic. Unlike
proponents of expected utility who dismiss the empirical data (e.g.,
de Finetti, 1979), we take the data seriously. In fact, we test
whether a sequential heuristic can predict classic violations of
expected utility as well as four major bodies of choice data.
Heuristics model both the choice outcome and the process, and
there is substantial empirical evidence that people’s cognitive
processes and inferences can be predicted by models of heuristics
(e.g., Bröder, 2000; Bröder, 2003; Bröder & Schiffer, 2003;
Dhami, 2003; Huber, 1982; Newell, Weston, & Shanks, 2003;
Payne et al., 1993; Payne, Bettman, & Luce, 1996; Rieskamp &
Hoffrage, 1999; Schkade & Johnson, 1989).

Which Heuristic?

Two classes of heuristics are obvious candidates for two-
alternative choice problems: lexicographic rules and tallying (Gig-
erenzer, 2004). Lexicographic rules order reasons—probabilities
and outcomes—according to some criterion, search through m � 1
reasons, and ultimately base the decision on one reason only. The
second class, tallying, assigns all reasons equal weights, searches
through m � 2 reasons, and chooses the alternative that is sup-
ported by most reasons. For choices between gambles, the empir-
ical evidence suggests that people do not treat the reasons equally,
which speaks against the tallying family of heuristics (Brandstätter
& Kühberger, 2005; Deane, 1969; Loewenstein, Weber, Hsee, &
Welch, 2001; Sunstein, 2003). This result was confirmed in the
empirical tests reported below. We are then left with a heuristic
from the class of lexicographic rules and two questions. First, what
are the reasons and in what order are they examined? Second,
when is examination stopped? Based on the empirical evidence
available, our first task is to derive a candidate heuristic from the
set of all possible heuristics.

Priority Rule: In What Order Are Reasons Examined?

First we consider simple monetary gambles of the type “a
probability p to win amount x; a probability (1 � p) to win amount
y” (x, p; y). Here, the decision maker is given four reasons: the
maximum gain, the minimum gain, and their respective probabil-
ities (for losses, see below). All reasons are displayed simulta-
neously; they are available at no cost. Thus, unlike in tasks for
which information needs to be searched in memory (Gigerenzer &
Goldstein, 1996) or in the environment (such as search in external
information stores), all the relevant information is fully displayed
in front of the participant. The resulting choices are thus “decisions
from description” and not “decisions from experience” (Hertwig,
Barron, Weber, & Erev, 2004). The priority rule refers to the order
in which people go through the reasons after screening all of them
once to make their decision.

411PRIORITY HEURISTIC



Four reasons result in 24 possible orderings. Fortunately, there
are logical and empirical constraints. First, in two-outcome gam-
bles, the two probabilities are complementary, which reduces the
number of reasons to three. This in turn reduces the number of
possible orders from 24 to 6. The number can be further con-
strained by empirical evidence. What is perceived as more impor-
tant, outcomes or probabilities?

The primacy of outcome over probability had already been
noted in Arnauld and Nicole’s (1662/1996) Enlightenment classic
on the art of thinking. As an example, lottery buyers tend to focus
on big gains rather than their tiny probabilities, which is histori-
cally grounded in the fact that winning the lottery was one of the
very few ways to move upward socially in traditional European
societies (Daston, 1988). Similarly, empirical research indicates
that emotional outcomes tend to override the impact of probabil-
ities (Sunstein, 2003). Loewenstein et al. (2001) suggest that, in
the extreme, people neglect probabilities altogether and instead
base their choices on the immediate feelings elicited by the gravity
or benefit of future events. Similarly, Deane (1969) reported that
anxiety (as measured by cardiac activity) concerning a future
electric shock was largely influenced by the intensity of the shock,
not by the probability of its occurrence. A series of choice exper-
iments supports the hypothesis that outcome matters more than
probability (Brandstätter & Kühberger, 2005).1

From these studies, we assume that the first reason for choosing
is one of the two outcomes, not the probability. This reduces the
number of orders once again, from six to four. But which outcome
is considered first, the minimum or the maximum outcome? The
empirical evidence seems to favor the minimum outcome. The
frequent observation that people tend to be risk averse in the gain
domain (Edwards, 1954) is consistent with ranking the minimum
outcome first. This is because the reason for focusing on the
minimum outcome is to avoid the worst outcome. In contrast,
ranking the maximum outcome first would imply that people are
risk seeking with gains—an assumption for which little empirical
evidence exists. Further empirical support is given by research
documenting that people try to avoid disappointment (from ending
up with the worst possible outcome of the chosen gamble) and
regret (from obtaining an inferior outcome compared with the
alternative not chosen). This motivation to avoid winning nothing
(or the minimum amount) is incorporated in regret theory (Loomes
& Sugden, 1982), disappointment theory (Bell, 1985), and in the
motivation for avoidance of failure (Heckhausen, 1991).

We conclude that the empirical evidence favors the minimum
gain. This reduces the number of possible orders of reasons from
four to two. To distinguish between the two remaining orders, we
conducted an experiment in which the minimal outcome was held
constant, and thus all decisions depended on maximum gains and
the probabilities of the minimum gains. These two reasons always
suggested opposite choices. Forty-one students from the Univer-
sity of Linz, Austria (22 women, 19 men; M � 23.2 years, SD �
5.3 years) were tested on four problems:

(500, .50) and (2,500, .10) [88%]

(220, .90) and (500, .40) [80%]

(5,000, .50) and (25,000, .10) [73%]

(2,200, .90) and (5,000, .40) [83%]

For instance, the first choice was between €500 (US$600) with p �
.50, otherwise nothing, and €2,500 (US$3,000) with p � .10, other-
wise nothing. Faced with this choice, 36 of 41 participants (88%)
selected this first gamble, which has the smaller probability of the
minimum gain but the lower maximum gain. On average, 81% of the
participants chose the gamble with the smaller probability of the
minimum gain. This result suggests the probability of the minimum
gain—rather than the maximum gain—as the second reason. The
same conclusion is also suggested by another study in which the
experimenters held the minimum outcomes constant across gambles
(Slovic, Griffin, & Tversky, 1990; Study 5). Thus, in the priority rule,
below, we propose the following order in which the reasons are
attended to:

Priority Rule. Consider reasons in the order: minimum gain,
probability of minimum gain, maximum gain.

Stopping Rule: What Is a Good-Enough Reason?

Heuristic examination is limited rather than exhaustive. Limited
examination makes heuristics different from expected utility the-
ory and its modifications, which have no stopping rules and
integrate all pieces of information in the final choice. A stopping
rule defines whether examination stops after the first, second, or
third reason. Again, we consult the empirical evidence to generate
a hypothesis about the stopping rule.

What difference in minimum gains is good enough (“satisfic-
ing”) to stop examination and decide between the two gambles
solely on the basis of this information? Just as in Simon’s (1983)
theory of satisficing, in which people stop when an alternative
surpasses an aspiration level (see also Luce, 1956), our use of the
term aspiration level refers to the amount that, if met or exceeded,
stops examination of reasons. Empirical evidence suggests that the
aspiration level is not fixed but increases with the maximum gain
(Albers, 2001). For instance, consider a choice between winning
$200 with probability .50, otherwise nothing ($200, .50), and
winning $100 for sure ($100). The minimum gains are $0 and
$100, respectively. Now consider the choice between $2,000 with
probability .50 ($2,000, .50) and $100 for sure ($100). The min-
imum gains still differ by the same amount, the probabilities are
the same, but the maximum outcomes differ. People who select the
sure gain in the first pair may not select it in the second. Thus, the
difference between the minimum gains that is considered large
enough to stop examination after the first reason should be depen-
dent on the maximum gain.

A simple way to incorporate this dependency is to assume that
people intuitively define it by their cultural number system, which
is the base-10 system in the Western world (Albers, 2001). This
leads to the following hypothesis for the stopping rule:

1 The results depend on the specific set of gambles: When one of the
reasons is not varied, it is not likely that people attend to this reason. For
instance, in a “dublex gamble” (Payne & Braunstein, 1971; Slovic &
Lichtenstein, 1968), one can win $x with probability p1 (otherwise noth-
ing), and lose $y with probability p2 (otherwise nothing). Here, the mini-
mum gain of the winning gamble and the minimum loss of the losing
gamble are always zero, rendering the minimum outcomes uninformative.
Similarly, Slovic et al. (1990) argued that probabilities were more impor-
tant than outcomes, but here again all minimum outcomes were zero.
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Stopping Rule. Stop examination if the minimum gains differ
by 1/10 (or more) of the maximum gain.

The hypothesis is that 1/10 of the maximum gain, that is, one order of
magnitude, is “good enough.” Admittedly, this value of the aspiration
level is a first, crude estimate, albeit empirically informed. The aspi-
ration level is a fixed (not free) parameter. If there is an independent
measure of individual aspiration levels in further research, the esti-
mate can be updated, but in the absence of such an independent
measure, we do not want to introduce a free parameter. We refer to
this value as the aspiration level. For illustration, consider again the
choice between winning $200 with probability .50, otherwise nothing
($200, .50), and winning $100 for sure ($100). Here, $20 is “good
enough.” The difference between the minimum gains exceeds this
value ($100 � $20), and therefore examination is stopped. Informa-
tion concerning probabilities is not used for the choice.

What if the maximum amount is not as simple as 200 but is a
number such as 190? Extensive empirical evidence suggests that
people’s numerical judgments are not fine-grained but follow prom-
inent numbers, as summarized in Albers (2001). Prominent numbers
are defined as powers of 10 (e.g., 1, 10, 100, . . .), including their
halves and doubles. Hence, the numbers 1, 2, 5, 10, 20, 50, 100, 200,
and so on, are examples of prominent numbers. They approximate the
Weber–Fechner function in a culturally defined system. We assume
that people scale the maximum gain down by 1/10 and round this
value to the closest prominent number. Thus, if the maximum gain
were $190 rather than $200, the aspiration level would once again be
$20 (because $19 is rounded to the next prominent number).

If the difference between minimum gains falls short of the
aspiration level, the next reason is examined. Again, examination
is stopped if the two probabilities of the minimum gains differ by
a “large enough” amount. Probabilities, unlike gains, have upper
limits and hence are not subject to the Weber–Fechner property of
decreasing returns (Banks & Coleman, 1981). Therefore, unlike
for gains, the aspiration level need not be defined relative to the
maximum value. We define the aspiration level as 1/10 of the
probability scale, that is, one order of magnitude: The probabilities
need to differ by at least 10 percentage points to stop examination.
This leads to the following hypothesis for the stopping rule:

Stopping Rule. Stop examination if probabilities differ by
1/10 (or more) of the probability scale.

If the differences in the minimum outcomes and their probabilities
do not stop examination, then finally the maximum outcome—
whichever is higher—decides. No aspiration level is needed.

The Priority Heuristic

The priority and stopping rules combine to the following pro-
cess model for two-outcome gambles with nonnegative prospects
(all outcomes are positive or zero). We refer to this process as the
priority heuristic because it is motivated by first priorities, such as
to avoid ending up with the worst of the two minimum outcomes.
The heuristic consists of the following steps:

Priority Rule. Go through reasons in the order: minimum
gain, probability of minimum gain, maximum gain.

Stopping Rule. Stop examination if the minimum gains differ
by 1/10 (or more) of the maximum gain; otherwise, stop
examination if probabilities differ by 1/10 (or more) of the
probability scale.

Decision Rule. Choose the gamble with the more attractive
gain (probability).

The term attractive refers to the gamble with the higher (minimum
or maximum) gain and the lower probability of the minimum gain.
The priority heuristic models difficult decisions, not all decisions.
It does not apply to pairs of gambles in which one gamble dom-
inates the other one, and it also does not apply to “easy” problems
in which the expected values are strikingly different (see the
General Discussion section).

The heuristic combines features from three different sources: Its
initial focus is on outcomes rather than on probabilities (Brand-
stätter & Kühberger, 2005; Deane, 1969; Loewenstein et al., 2001;
Sunstein, 2003), and it is based on the sequential structure of the
Take The Best heuristic (Gigerenzer & Goldstein, 1996), which is
a heuristic for inferences, whereas the priority heuristic is a model
of preferential choices. Finally, the priority heuristic incorporates
aspiration levels into its choice algorithm (Luce, 1956; Simon, 1983).
The generalization of the priority heuristic to nonpositive prospects
(all outcomes are negative or zero) is straightforward. The heuristic is
identical except that “gains” are replaced by “losses”:

Priority Rule. Go through reasons in the order: minimum loss,
probability of minimum loss, maximum loss.

Stopping Rule. Stop examination if the minimum losses differ
by 1/10 (or more) of the maximum loss; otherwise, stop
examination if probabilities differ by 1/10 (or more) of the
probability scale.

Decision Rule. Choose the gamble with the more attractive
loss (probability).

The term attractive refers to the gamble with the lower (minimum
or maximum) loss and the higher probability of the minimum loss.

Next, we generalize the heuristic to gambles with more than two
outcomes (assuming nonnegative prospects):

Priority Rule. Go through reasons in the order: minimum
gain, probability of minimum gain, maximum gain, probabil-
ity of maximum gain.

Stopping Rule. Stop examination if the gains differ by 1/10
(or more) of the maximum gain; otherwise, stop examination
if probabilities differ by 1/10 (or more) of the probability
scale.

Decision Rule. Choose the gamble with the more attractive
gain (probability).

This priority rule is identical with that for the two-outcome gam-
bles, apart from the addition of a fourth reason. In gambles with
more than two outcomes, the probability of the maximum outcome
is informative because it is no longer the logical complement of the
probability of the minimum outcome. The stopping rule is also
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identical, except for the fact that the maximum gain is no longer
the last reason, and therefore the same aspiration levels apply to both
minimum and maximum gains. The decision rule is identical with that
for the two-outcome case. Finally, the algorithm is identical for gains
and losses, except that “gains” are replaced by “losses.”

The priority heuristic is simple in several respects. It typically
consults only one or a few reasons; even if all are screened, it bases
its choice on only one reason. Probabilities are treated as linear,
and a 1/10 aspiration level is used for all reasons except the last,
in which the amount of difference is ignored. No parameters for
overweighting small probabilities and underweighting large prob-
abilities or for the value function are built in. Can this simple
model account for people’s choices as well as multiparameter
models can? To answer this question, we test whether the priority
heuristic can accomplish the following:

1. Account for evidence at variance with expected utility
theory, namely (a) the Allais paradox, (b) risk aversion
for gains if probabilities are high, (c) risk seeking for
gains if probabilities are low (e.g., lottery tickets), (d) risk
aversion for losses if probabilities are low (e.g., buying
insurance), (e) risk seeking for losses if probabilities are
high, (f) the certainty effect, (g) the possibility effect, and
(h) intransitivities; and

2. Predict the empirical choices in four classes of problems:
(a) simple choice problems (no more than two nonzero
outcomes; Kahneman & Tversky, 1979), (b) problems
involving multiple-outcome gambles (Lopes & Oden,
1999), (c) problems inferred from certainty equivalents
(Tversky & Kahneman, 1992), and (d) problems involv-
ing randomly sampled gambles (Erev, Roth, Slonim, &
Barron, 2002).

Can the Priority Heuristic Predict Violations of Expected
Utility Theory?

The Allais Paradox

In the early 1950s, choice problems were proposed that chal-
lenged expected utility theory as a descriptive framework for risky
choice (Allais, 1953, 1979). For instance, according to the inde-
pendence axiom of expected utility, aspects that are common to
both gambles should not influence choice behavior (Savage, 1954;
von Neumann & Morgenstern, 1947). For any three alternatives X,
Y, and Z, the independence axiom can be written (Fishburn, 1979):

If pX � �1 � p�Z � pY � �1 � p�Z, then X � Y (4)

The following choice problems produce violations of the axiom
(Allais, 1953, p. 527):

A: 100 million p � 1.00

B: 500 million p � .10

100 million p � .89

0 p � .01

By eliminating a .89 probability to win 100 million from both A
and B, Allais obtained the following gambles:

C: 100 million p � .11

0 p � .89

D: 500 million p � .10

0 p � .90.

The majority of people chose A over B, and D over C (MacCrim-
mon, 1968), which constitutes a violation of the axiom.

Expected utility does not predict whether A or B will be chosen;
it only makes predictions of the type “if A is chosen over B, then
it follows that C is chosen over D.” The priority heuristic, in
contrast, makes stronger predictions: It predicts whether A or B is
chosen, and whether C or D is chosen. Consider the choice
between A and B. The maximum payoff is 500 million, and
therefore the aspiration level is 50 million; 100 million and 0
represent the minimum gains. Because the difference (100 million)
exceeds the aspiration level of 50 million, the minimum gain of
100 million is considered good enough, and people are predicted to
select the sure gain A. That is, the heuristic predicts the majority
choice correctly.

In the second choice problem, the minimum gains (0 and 0) do
not differ. Hence, the probabilities of the minimum gains are
attended to, p � .89 and .90, a difference that falls short of the
aspiration level. The higher maximum gain (500 million vs. 100
million) thus decides choice, and the prediction is that people will
select gamble D. Again, this prediction is consistent with the
choice of the majority. Together, the pair of predictions amounts to
the Allais paradox.

The priority heuristic captures the Allais paradox by using the
heuristic building blocks of order, a stopping rule with a 1/10
aspiration level, a lexicographic decision rule, and the tendency to
avoid the worst possible outcome.

The Reflection Effect

The reflection effect refers to the empirically observed phenom-
enon that preferences tend to reverse when the sign of the out-
comes is changed (Fishburn & Kochenberger, 1979; Markowitz,
1952; Williams, 1966). Rachlinski’s (1996) copyright litigation
problem offers an illustration in the context of legal decision
making. Here, the choice is between two gains or between two
losses for the plaintiff and defendant, respectively:

The plaintiff can either accept a $200,000 settlement [*] or face a trial
with a .50 probability of winning $400,000, otherwise nothing.

The defendant can either pay a $200,000 settlement to the plaintiff or
face a trial with a .50 probability of losing $400,000, otherwise
nothing [*].

The asterisks in brackets indicate which alternative the majority of
law students chose, depending on whether they were cast in the
role of the plaintiff or the defendant. Note that the two groups
made opposite choices. Assuming that plaintiffs used the priority
heuristic, they would have first considered the minimum gains,
$200,000 and $0. Because the difference between the minimum
gains is larger than the aspiration level ($40,000 rounded to the
next prominent number, $50,000), plaintiffs would have stopped
examination and chosen the alternative with the more attractive
minimum gain, that is, the settlement. The plaintiff’s gain is the
defendant’s loss: Assuming that defendants also used the priority
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heuristic, they would have first considered the minimum losses,
which are $200,000 and $0. Again, because the difference between
these outcomes exceeds the aspiration level, defendants would
have stopped examination and chosen the alternative with the more
attractive minimum loss, that is, the trial. In both cases, the
heuristic predicts the majority choice.

How is it possible that the priority heuristic predicts the reflec-
tion effect without—as prospect theory does—introducing value
functions that are concave for gains and convex for losses? In the
gain domain, the minimum gains are considered first, thus imply-
ing risk aversion. In the loss domain, the minimum losses are con-
sidered first, thus implying risk seeking. Risk aversion for gains and
risk seeking for losses together make up the reflection effect.

The Certainty Effect

According to Allais (1979), the certainty effect captures peo-
ple’s “preference for security in the neighborhood of certainty” (p.
441). A simple demonstration is the following (Kahneman &
Tversky, 1979):

A: 4,000 with p � .80

0 with p � .20

B: 3,000 with p � 1.00

A majority of people (80%) selected the certain alternative B.

C: 4,000 with p � .20

0 with p � .80

D: 3,000 with p � .25

0 with p � .75

Now the majority of people (65%) selected gamble C over D.
According to expected utility theory, the choice of B implies that
u(3,000)/u(4,000) � 4/5, whereas the choice of C implies the
reverse inequality.

The priority heuristic starts by comparing the minimum gains of
the alternatives A (0) and B (3,000). The difference exceeds the
aspiration level of 500 (400, rounded to the next prominent num-
ber); examination is stopped; and the model predicts that people
prefer the sure gain B, which is in fact the majority choice.
Between C and D, the minimum gains (0 and 0) do not differ; in
the next step, the heuristic compares the probabilities of the min-
imum gains (.80 and .75). Because this difference does not reach
10 percentage points, the decision is with the higher maximum
gain, that is, gamble C determines the decision.

As the example illustrates, it is not always the first reason
(minimum gain) that determines choice; it can also be one of the
others. The priority heuristic can predict the certainty effect with-
out assuming a specific probability weighting function.

The Possibility Effect

To demonstrate the possibility effect, participants received the
following two choice problems (Kahneman & Tversky, 1979):

A: 6,000 with p � .45

0 with p � .55

B: 3,000 with p � .90

0 with p � .10

The majority of people (86%) selected gamble B.

C: 6,000 with p � .001

0 with p � .999

D: 3,000 with p � .002

0 with p � .998

In the second problem, most people (73%) chose gamble C. This
problem is derived from the first by multiplying the probabilities of
the nonzero gains with 1/450, making the probabilities of winning
merely “possible.” Note that in the certainty effect, “certain” proba-
bilities are made “probable,” whereas in the possibility effect, “prob-
able” probabilities are made “possible.” Can the priority heuristic
predict this choice pattern?

In the first choice problem, the priority heuristic starts by compar-
ing the minimum gains (0 and 0). Because there is no difference, the
probabilities of the minimum gains (.55 and .10) are examined. This
difference exceeds 10 percentage points, and the priority heuristic,
consistent with the majority choice, selects gamble B. Analogously, in
the second choice problem, the minimum gains (0 and 0) are the
same; the difference between the probabilities of the minimum gains
(.999 and .998) does not exceed 10 percentage points. Hence, the
priority heuristic correctly predicts the choice of gamble C, because of
its higher maximum gain of 6,000.

The Fourfold Pattern

The fourfold pattern refers to the phenomenon that people are
generally risk averse when the probability of winning is high but
risk seeking when it is low (as when buying lotteries) and risk
averse when the probability of losing is low (as with buying
insurance) but risk seeking when it is high. Table 1 exemplifies the
fourfold pattern (Tversky & Fox, 1995).

Table 1 is based on certainty equivalents C (obtained from
choices rather than pricing). Certainty equivalents represent that
amount of money where a person is indifferent between taking the
risky gamble or the sure amount C. For instance, consider the first
cell: The median certainty equivalent of $14 exceeds the expected
value of the gamble ($5). Hence, in this case people are risk
seeking, because they prefer the risky gamble over the sure gain of
$5. This logic applies in the same way to the other cells.

The certainty equivalent information of Table 1 directly lends
itself to the construction of simple choice problems. For instance,
from the first cell we obtain the following choice problem:

Table 1
The Fourfold Pattern

Probability Gain Loss

Low C(100, .05) � 14 C(�100, .05) � �8
Risk seeking Risk aversion

High C(100, .95) � 78 C(�100, .95) � �84
Risk aversion Risk seeking

Note. C(100, .05) represents the median certainty equivalent for the
gamble to win $100 with probability of .05, otherwise nothing (based on
Tversky & Fox, 1995).
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A: 100 with p � .05

0 with p � .95

B: 5 with p � 1.00

The priority heuristic starts by comparing the minimum gains (0
and 5). Because the sure gain of $5 falls short of the aspiration
level of $10, probabilities are attended to. The probabilities of the
minimum gains do not differ either (1.00 � .95 � .10); hence,
people are predicted to choose the risky gamble A, because of its
higher maximum gain. This is in accordance with the certainty
equivalent of $14 (see Table 1), which implies risk seeking.
Similarly, if the probability of winning is high, we obtain:

A: 100 with p � .95

0 with p � .05

B: 95 with p � 1.00

Here, the sure gain of $95 surpasses the aspiration level ($10) and the
priority heuristic predicts the selection of the sure gain B, which is in
accordance with the risk-avoidant certainty equivalent in Table 1
($78 � $95). The application to losses is straightforward:

A: �100 with p � .05

0 with p � .95

B: �5 with p � 1.00

Because the minimum losses (0 and �5) do not differ, the probabil-
ities of the minimum losses (.95 and 1.00) are attended to, which do
not differ either. Consequently, people are predicted to choose the
sure loss B, because of its lower maximum loss (�5 vs. �100). This
is in accordance with the risk-avoidant certainty equivalent in Table 1.
Similarly, if the probability of losing is high we obtain:

A: �100 with p � .95

0 with p � .05

B: �95 with p � 1.00

In this case, the minimum losses differ (0 � [�95] � 10) and the
priority heuristic predicts the selection of the risky gamble A,
which corresponds to the certainty equivalent of Table 1.

Note that in this last demonstration, probabilities are not at-
tended to and one does not need to assume some nonlinear func-
tion of decision weights. As shown above, the priority heuristic
correctly predicts the reflection effect, and consequently, the entire
fourfold pattern in terms of one simple, coherent strategy.

Intransitivities

Intransitivities violate expected utility’s fundamental transitivity
axiom, which states that a rational decision maker who prefers X to
Y and Y to Z must then prefer X to Z (von Neumann & Morgen-
stern, 1947). Consider the choice pattern in Table 2, which shows
the percentages of choices in which the row gamble was chosen
over the column gamble. For instance, in 65% of the choices,
gamble A was chosen over gamble B. As shown therein, people
prefer gambles A � B, B � C, C � D, and D � E. However, they
violate transitivity by selecting gamble E over A.

If one predicts the majority choices with the priority heuristic,
one gets gamble A � B because the minimum gains are the same,
their probabilities do not differ, and the maximum outcome of A is

higher. Similarly, the heuristic can predict all 10 majority choices
with the exception of the .51 figure (a close call) in Table 2. Note
that the priority heuristic predicts gamble A � B, B � C, C � D,
D � E, and E � A, which results in the intransitive circle. In
contrast, cumulative prospect theory, which reduces to prospect
theory for these simple gambles, or the transfer-of-attention-
exchange model attach a fixed overall value V to each gamble and
therefore cannot predict this intransitivity.

Can the Priority Heuristic Predict Choices in Diverse Sets
of Choice Problems?

One objection to the previous demonstration is that the priority
heuristic has been tested on a small set of choice problems, one for
each anomaly. How does it fare when tested against a larger set of
problems? We tested the priority heuristic in four different sets of
choice problems (Erev et al., 2002; Kahneman & Tversky, 1979;
Lopes & Oden, 1999; Tversky & Kahneman, 1992). Two of these
sets of problems were designed to test prospect theory and cumu-
lative prospect theory, and one was designed to test security-
potential/aspiration theory (Lopes & Oden, 1999); none, of course,
were designed to test the priority heuristic. The contestants used
were three modifications of expected utility theory: cumulative
prospect theory, security-potential/aspiration theory, and the
transfer-of-attention-exchange model (Birnbaum & Chavez,
1997). In addition, we included the classic heuristics simulated by
Thorngate (1980); the lexicographic and the equal-weight heuristic
(Dawes, 1979) from Payne et al. (1993); and the tallying heuristic
(see Table 3). The criterion for each of the four sets of problems
was to predict the majority choice. This allows a comparison
between the various heuristics, as well as between heuristics,
cumulative prospect theory, security-potential/aspiration theory,
and the transfer-of-attention-exchange model.

The Contestants

The contesting heuristics can be separated into two categories:
those that use solely outcome information and ignore probabilities
altogether (outcome heuristics) and those that use at least rudi-
mentary probabilities (dual heuristics).2 These heuristics are de-

2 We did not consider three of the heuristics listed by Thorngate (1980).
These are low expected payoff elimination, minimax regret, and low payoff
elimination. These strategies require extensive computations.

Table 2
Violations of Transitivity

Gamble B C D E

A (5.00, .29) .65 .68 .51 .37
B (4.75, .33) — .73 .56 .45
C (4.50, .38) — .73 .65
D (4.25, .42) — .75
E (4.00, .46) —

Note. Gamble A (5.00, .29), for instance, offers a win of $5 with prob-
ability of .29, otherwise nothing. Cell entries represent proportion of times
that the row gamble was preferred to the column gamble, averaged over all
participants from Tversky (1969). Bold numbers indicate majority choices
correctly predicted by the priority heuristic.
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fined in Table 3, in which their algorithm is explained through the
following choice problem:

A: 80% chance to win 4,000

20% chance to win 0

B: 3,000 for sure

Cumulative prospect theory (Tversky & Kahneman, 1992)
attaches decision weights to cumulated rather than single
probabilities. The theory uses five adjustable parameters. Three
parameters fit the shape of the value function; the other two fit
the shape of the probability weighting function. The value
function is

Table 3
Heuristics for Risky Choice

Outcome heuristics

Equiprobable: Calculate the arithmetic mean of all monetary outcomes within a gamble. Choose the gamble
with the highest monetary average.

Prediction: Equiprobable chooses B, because B has a higher mean (3,000) than A (2,000).

Equal-weight: Calculate the sum of all monetary outcomes within a gamble. Choose the gamble with the
highest monetary sum.

Prediction: Equal-weight chooses A, because A has a higher sum (4,000) than B (3,000).

Minimax: Select the gamble with highest minimum payoff.
Prediction: Minimax chooses B, because A has a lower minimum outcome (0) than B (3,000).

Maximax: Choose the gamble with the highest monetary payoff.
Prediction: Maximax chooses A, because its maximum payoff (4,000) is the highest outcome.

Better-than-average: Calculate the grand average of all outcomes from all gambles. For each gamble, count
the number of outcomes equal to or above the grand average. Then select the gamble with the highest
number of such outcomes.

Prediction: The grand average equals 7,000/3 � 2,333. Because both A and B have one outcome above this
threshold, the better-than-average heuristic has to guess.

Dual heuristics

Tallying: Give a tally mark to the gamble with (a) the higher minimum gain, (b) the higher maximum gain,
(c) the lower probability of the minimum gain, and (d) the higher probability of the maximum gain. For
losses, replace “gain” by “loss” and “higher” by “lower” (and vice versa). Select the gamble with the
higher number of tally marks.

Prediction: Tallying has to guess, because both B (one tally mark for the higher minimal outcome, one for
the higher probability of the maximum outcome) and A (one tally mark for the lower probability of the
minimal outcome, one for the higher maximum outcome) receive two tally marks each.

Most-likely: Determine the most likely outcome of each gamble and their respective payoffs. Then select the
gamble with the highest, most likely payoff.

Prediction: Most-likely selects 4,000 as the most likely outcome for A and 3,000 as the most likely outcome
for B. Most-likely chooses A, because 4,000 exceeds 3,000.

Lexicographic: Determine the most likely outcome of each gamble and their respective payoffs. Then select
the gamble with the highest, most likely payoff. If both payoffs are equal, determine the second most
likely outcome of each gamble, and select the gamble with the highest (second most likely) payoff.
Proceed until a decision is reached.

Prediction: Lexicographic selects 4,000 as the most likely outcome for A and 3,000 as the most likely
outcome for B. Lexicographic chooses A, because 4,000 exceeds 3,000.

Least-likely: Identify each gamble’s worst payoff. Then select the gamble with the lowest probability of the
worst payoff.

Prediction: Least-likely selects 0 as the worst outcome for A and 3,000 as the worst outcome for B. Least-
likely chooses A, because 0 is less likely to occur (i.e., with p � .20) than 3,000 ( p � 1.00).

Probable: Categorize probabilities as “probable” (i.e., p � .50 for a two-outcome gamble, p � .33 for a
three-outcome gamble, etc.) or “improbable.” Cancel improbable outcomes. Then calculate the arithmetic
mean of the probable outcomes for each gamble. Finally, select the gamble with the highest average
payoff.

Prediction: Probable chooses A, because of its higher probable outcome (4,000) compared with B (3,000).

Note. Heuristics are from Thorngate (1980) and Payne et al. (1993). The prediction for each heuristic refers to
the choice between A (4,000, .80) and B (3,000).
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v�x� � x� if x � 0, and (5)

v�x� � ��(�x)� if x 	 0. (6)

The � and � parameters modulate the curvature for the gain and
loss domain, respectively; the � parameter (� � 1) models loss
aversion. The weighting function is:

w��p� � p
/�p
 � �1 � p�
�1/
, and (7)

w��p� � p�/�p� � �1 � p���1/�, (8)

where the 
 and � parameters model the inverse S shape of the
weighing function for gains and losses, respectively.

Another theory that incorporates thresholds (i.e., aspiration lev-
els) in a theory of choice is security-potential/aspiration theory
(Lopes, 1987, 1995; for details, see Lopes & Oden, 1999). Secu-
rity-potential/aspiration theory is a six-parameter theory, which
integrates two logically and psychologically independent criteria.
The security-potential criterion is based on a rank-dependent al-
gorithm (Quiggin, 1982; Yaari, 1987) that combines outcomes and
probabilities in a multiplicative way. The aspiration criterion is
operationalized as the probability to obtain some previously spec-
ified outcome. Both criteria together enable security-potential/
aspiration theory to model people’s choice behavior.

The third modification of expected utility theory entering the
contests is the transfer-of-attention-exchange model (Birnbaum &
Chavez, 1997), which was proposed as a response to problems
encountered by prospect theory and cumulative prospect theory.
This model has three adjustable parameters and is a special case of
the more general configural weight model (Birnbaum, 2004). Like
prospect theory, the transfer-of-attention-exchange model empha-
sizes how choice problems are described and presented to people.
Unlike prospect theory, it offers a formal theory to capture the
effects of problem formulations on people’s choice behavior.

In models with adjustable parameters, parameter estimates are
usually fitted for a specific set of choice problems and individuals.
Data fitting, however, comes with the risk of overfitting, that is,
fitting noise (Roberts & Pashler, 2000). To avoid this problem, we
used the fitted parameter estimates from one set of choice prob-
lems to predict the choices in a different one. For cumulative
prospect theory, we used three sets of parameter estimates from
Erev et al. (2002); Lopes and Oden (1999) and Tversky and
Kahneman (1992). For the choice problems by Kahneman and
Tversky (1979), no such parameter estimates exist. The three sets
of parameter estimates are shown in Table 4. As one can see, they
cover a broad range of values. Thus, we could test the predictive
power of cumulative prospect theory with three independent sets
of parameter estimates for the Kahneman and Tversky (1979)
choice problems, and with two independent sets of parameter
estimates for each of the other three sets of problems. In addition,
for testing security-potential/aspiration theory, we used the param-
eter estimates from Lopes and Oden (1999); for testing the
transfer-of-attention-exchange model, we used its prior parameters
(see Birnbaum, 2004), which were estimated from Tversky and
Kahneman (1992), to predict choices for the other three sets of
choice problems.

Contest 1: Simple Choice Problems

The first test set consisted of monetary one-stage choice
prob4lems from Kahneman and Tversky (1979).3 These 14 choice
problems were based on gambles of equal or similar expected
value and contained no more than two nonzero outcomes.

Results. Figure 1 shows how well the heuristics, cumulative
prospect theory, security-potential/aspiration theory, and the
transfer-of-attention exchange model each predicted the majority
response. The maximum number of correct predictions is 14. The
white parts of the columns show correct predictions due to guess-
ing. All heuristics, with the exceptions of the priority, equiprob-
able, and the lexicographic heuristics, had to guess in this set of
problems.

The priority heuristic predicted all 14 choice problems correctly.
In no instance did it need to guess. All other heuristics performed
at or near chance level, except for the equiprobable and tallying
heuristics: Equiprobable correctly predicted 10 of 14, whereas
tallying predicted 4 of 11 choices correctly.4 It is interesting that
among the 10 heuristics investigated, those that used only outcome
information performed slightly better than did those also using
probability information.

For testing cumulative prospect theory, we used three different
parameter sets. The first parameter set was from Lopes and Oden
(1999) and resulted in 64% correct predictions. The second set was
from Tversky and Kahneman (1992) and resulted in 71% correct
predictions. The third was from Erev et al.’s (2002) randomly
constructed gambles, which resulted in chance performance (50%
correct).

On average, cumulative prospect theory correctly predicted 64%
of the majority choices.5 One might assume that each of the
parameter sets failed in predicting the same choice problems.
However, this was not the case; the failures to predict were

3 These are the choice problems 1, 2, 3, 4, 7, 8, 3�, 4�, 7�, 8�, 13, 13�, 14,
14� in Kahneman and Tversky (1979).

4 Note that tallying does not predict choice behavior for problems with
more than two outcomes. Whereas it is easy to compare the highest and the
lowest outcomes of each gamble as well as their respective probabilities, it
is unclear how to evaluate the probabilities of an intermediate outcome.

5 As one can see from Table 4, the Erev et al. (2002) estimates of
prospect theory’s parameters only refer to gains. Therefore, only a subset
of the problems studied by Kahneman and Tversky (1979) could be
predicted, which was accounted for by this and the following means.

Table 4
Parameter Estimates for Cumulative Prospect Theory

Set of problems

Parameter estimates

� � � 
 �

Erev et al. (2002) 0.33 0.75
Lopes & Oden (1999) 0.55 0.97 1.00 0.70 0.99
Tversky & Kahneman (1992) 0.88 0.88 2.25 0.61 0.69

Note. The parameters � and � capture the shape of the value function for
gains and losses, respectively; � captures loss aversion; 
 and � capture the
shape of the probability weighting function for gains and losses, respec-
tively. See Equations 5–8 in the text. The Erev et al. (2002) set of problems
is based on gains only.
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distributed across 10 problems. This suggests that choice problems
correctly predicted by one parameter set were incorrectly predicted
by another set and vice versa. Finally, security-potential/aspiration
theory correctly predicted 5 of 14 choice problems, which resulted
in 36% correct predictions, and the transfer-of-attention-exchange
model correctly predicted 71% of the choice problems (i.e., 10 of
14).

Why did the heuristics in Table 3 perform so dismally in
predicting people’s deviations from expected utility theory? Like
the priority heuristic, these heuristics ignore information. How-
ever, the difference lies in how information is ignored.

For gains, the priority heuristic uses the same first reason that
minimax does (see Table 3). Unlike minimax, however, the prior-
ity heuristic does not always base its choice on the minimum
outcomes, but only when the difference between the minimum
outcomes exceeds the aspiration level. If not, then the second
reason, the probability of the minimum outcome, is given priority.
This reason captures the policy of the least-likely heuristic (see
Table 3). Again, the priority heuristic uses an aspiration level to
“judge” whether this policy is reasonable. If not, the maximum
outcome will decide, which is the policy of the maximax heuristic
(see Table 3). The same argument holds for gambles with losses,
except that the positions of minimax and maximax are switched.
Thus, the sequential nature of the priority heuristic integrates
several of the classic heuristics, brings them into a specific order,
and uses aspiration levels to judge whether they apply.

In summary, the priority heuristic was able to predict the ma-
jority choice in all 14 choice problems in Kahneman and Tversky
(1979). The other heuristics did not predict well, mostly at chance
level, and cumulative prospect theory did best when its parameter
values were estimated from Tversky and Kahneman (1992).

Contest 2: Multiple-Outcome Gambles

The fact that the priority heuristic can predict the choices in
two-outcome gambles does not imply that it can do the same for
multiple-outcome gambles. These are a different story, as illus-
trated by prospect theory (unlike the revised cumulative version),
which encountered problems when it was applied to gambles with
more than two nonzero outcomes. Consider the choice between the
multiple-outcome gamble A and the sure gain B:

A: 0 with p � .05

10 with p � .05

20 with p � .05

. . .

190 with p � .05

B: 95 with p � 1.00

The expected values of A and B are 95. According to the proba-
bility weighting function in prospect theory, each monetary out-

Figure 1. Correct predictions of the majority responses for all monetary one-stage choice problems (14) in
Kahneman and Tversky (1979). The black parts of the bars represent correct predictions without guessing; the
union of the black and white parts represents correct predictions with guessing (counting as 0.5). The Erev et al.
(2002) set of problems consists of positive gambles; its fitted parameters allow only for predicting the choice
behavior for positive one-stage gambles (making eight problems). Parameters for cumulative prospect theory
(CPT) were estimated from Lopes and Oden (L&O; 1999); Tversky and Kahneman (T&K; 1992), and Erev et
al., respectively. SPA � security-potential/aspiration theory; TAX � transfer-of-attention-exchange model.
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come in gamble A is overweighted, because � (.05) � .05. For the
common value functions, prospect theory predicts a higher sub-
jective value for the risky gamble A than for the sure gain of 95.
In contrast, 28 of 30 participants opted for the sure gain B (Brand-
stätter, 2004).

The priority heuristic gives first priority to the minimum out-
comes, which are 0 and 95. The difference between these two
values is larger than the aspiration level (20, because 19 is rounded
to 20), so no other reason is examined and the sure gain is chosen.

The second set of problems consists of 90 pairs of five-outcome
lotteries from Lopes and Oden (1999). In this set, the expected
values of each pair are always similar or equal. The probability
distributions over the five rank-ordered gains have six different
shapes: Lotteries were (a) nonrisk (the lowest gain was larger than
zero and occurred with the highest probability of winning), (b)
peaked (moderate gains occurred with the highest probability of
winning), (c) negatively skewed (the largest gain occurred with the
highest probability of winning), (d) rectangular (all five gains
were tied to the same probability, p � .20), (e) bimodal (extreme
gains occurred with the highest probability of winning), and (f)
positively skewed (the largest gain occurred with the lowest prob-
ability of winning). An example is shown in Figure 2.

These six gambles yielded 15 different choice problems. From
these, Lopes and Oden (1999) created two other choice sets by (a)
adding $50 to each outcome and (b) multiplying each outcome by
1.145, making 45 (3 	 15) choice problems. In addition, negative
lotteries were created by appending a minus sign to the outcomes
of the three positive sets, making 90 choice problems. This pro-
cedure yielded six different choice sets (standard, shifted, multi-
plied—separately for gains and losses), each one comprising all
possible choices within a set (i.e., 15).

Results. The priority heuristic yielded 87% correct predic-
tions, as shown in Figure 3. All other heuristics performed around
chance level or below. The result from the previous competition—
that outcome heuristics are better predictors than the dual heuris-
tics—did not generalize to multiple-outcome gambles.

The parameter values for cumulative prospect theory were es-
timated from two independent sets of problems. With the param-
eter estimates from the Tversky and Kahneman (1992) set of
problems, cumulative prospect theory predicted 67% of the ma-
jority responses correctly. With the estimates from the Erev et al.
(2002) set of problems, the proportion of correct predictions was
87%. With the second set of parameter estimates, cumulative

prospect theory tied with the priority heuristic, whereas cumulative
prospect theory’s performance was lower with the first set. Its
average predictive accuracy was 73%. The fact that it did not
perform better than the heuristic did is somewhat surprising, given
that cumulative prospect theory was specifically designed for
multiple-outcome gambles. Finally, the transfer-of-attention-
exchange model correctly predicted 63% of the majority
responses.

Lopes and Oden (1999) fitted cumulative prospect theory to
their set of problems. We used these parameter estimates and
“tested” cumulative prospect theory on the Lopes and Oden set of
problems, which is known as “data fitting.” The resulting fitting
power with five adjustable parameters was 87%. A slightly higher
result emerged for security-potential/aspiration theory, for which
the fitting power with six parameters was 91%.

To sum up, the 90 five-outcome problems no longer allowed the
priority heuristic to predict 100% correctly. Nevertheless, the
consistent result in the first two contests was that the priority
heuristic could predict the majority response as well as or better
than the three modifications of expected utility theory or any of the
other heuristics. We were surprised by the heuristic’s good per-
formance, given that it ignores all intermediate outcomes and their
probabilities. It is no doubt possible that gambles can be deliber-
ately constructed with intermediate outcomes that the priority
heuristic does not predict as well. Yet in these six systematically
varied sets of gambles, no other model outperformed the priority
heuristic.

Contest 3: Risky Choices Inferred From Certainty
Equivalents

The previous analyses used the same kind of data, namely
choices between explicitly stated gambles. The next contest intro-
duces choices inferred from certainty equivalents. The certainty
equivalent, C, of a risky gamble is defined as the sure amount of
money C, where a person has no preference between the gamble
and the sure amount. Certainty equivalents can be translated into
choices between a risky gamble and a sure payoff. Our third test
set comprised 56 gambles studied by Tversky and Kahneman
(1992). These risky gambles are not a random or representative set
of gambles. They were designed for the purpose of demonstrating
that cumulative prospect theory accounts for deviations from ex-
pected utility theory. Half of the gambles are in the gain domain

Figure 2. A typical choice problem used in Contest 2, from Lopes and Oden (1999). Each lottery has 100
tickets (represented by marks) and has an expected value of approximately $100. Values at the left represent
gains or losses. Reprinted from Journal of Mathematical Psychology, 43, L. L. Lopes & G. C. Oden, “The role
of aspiration level in risky choice: A comparison of cumulative prospect theory and SP/A theory,” p. 293.
Copyright 1999 with permission from Elsevier.
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($x � 0); for the other half, a minus sign was added. Each certainty
equivalent was computed from observed choices (for a detailed
description, see Brandstätter, Kühberger, & Schneider, 2002).
Consider a typical example from this set of problems:

C($50, .10; $100, .90) � $83

Because this empirical certainty equivalent falls short of the ex-
pected value of the gamble ($95), people are called risk averse. We
can represent this information as a choice between the risky
gamble and a sure gain of equal expected value:

A: 10% chance to win 50

90% chance to win 100

B: 95 for sure.

The priority heuristic predicts that the minimum outcomes, which
are $50 and $95, are compared first. The difference between these
two values is larger than the aspiration level ($10). No other reason
is examined and the sure gain is chosen.

Results. The priority heuristic made 89% correct predictions
(see Figure 4). The equiprobable heuristic was the second-best
heuristic, with 79%, followed by the better-than-average heuristic.
All other heuristics performed at chance level or below, and
tallying had to guess all the time (see Table 3). The pattern
obtained resembles that of the first competition; the outcome

heuristics fared better than did those that also used probability
information.

Cumulative prospect theory achieved 80% correct predictions
with the parameter estimates from the Lopes and Oden (1999) set
of problems, and 75% with the Erev et al. (2002) data set (see
Figure 4). Thus, the average predictive accuracy was 79%. Secu-
rity-potential/aspiration theory fell slightly short of these numbers
and yielded 73% correct forecasts. In contrast, when one “tests”
cumulative prospect theory on the same data (Tversky & Kahne-
man, 1992) from which the five parameters were derived (i.e., data
fitting rather than prediction), one can correctly “predict” 91% of
the majority choices. The parameters of the transfer-of-attention-
exchange model were fitted by Birnbaum and Navarrete (1998) on
the Tversky and Kahneman (1992) data; thus, we cannot test how
well it predicts the data. In data fitting, it achieved 95% correct
“predictions.”

Contest 4: Randomly Drawn Two-Outcome Gambles

The final contest involved 100 pairs of two-outcome gambles
that were randomly drawn (Erev et al., 2002). Almost all minimum
outcomes were zero. This set of problems handicapped the priority
heuristic, given that it could rarely make use of its top-ranked
reason. An example from this set is the following (units are points
that correspond to cents):

Figure 3. Correct predictions of the majority responses for the 90 five-outcome choice problems in Lopes and
Oden (1999). The black parts of the bars represent correct predictions without guessing; the union of the black
and white parts represents correct predictions with guessing (counting as 0.5). Tallying was not applicable (see
Footnote 4). The parameters taken from Erev et al. (2002) predict gains only. Parameters for cumulative prospect
theory (CPT) are from Tversky and Kahneman (T&K; 1992) and Erev et al., respectively. TAX � transfer-of-
attention-exchange model.
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A: 49% chance to win 77

51% chance to win 0

B: 17% chance to win 98

83% chance to win 0

These pairs of lotteries were created by random sampling of the
four relevant values x1, p1, x2, and p2. Probabilities were randomly
drawn from the uniform distribution (.00, .01, .02, . . . 1.00) and
monetary gains from the uniform distribution (1, 2, 3, . . . 100).
The constraint (x1 – x2) ( p1 – p2) � 0 eliminated trivial choices,
and the sampling procedures generated choices consisting of gam-
bles with unequal expected value.

Results. Although the priority heuristic could almost never use
its top-ranked reason, it correctly predicted 85% of the majority
choices reported by Erev et al. (2002). In this set, the outcome
heuristics performed worse than those also using probability in-
formation did (see Figure 5). As a further consequence, the per-
formance of minimax was near chance level, because its only
reason, the minimum gains, was rarely informative, and it thus had
to guess frequently (exceptions were four choice problems that
included a sure gain). Cumulative prospect theory achieved 89%
and 75% correct predictions, depending on the set of parameters,
which resulted in an average of 82% correct predictions. The
security-potential/aspiration theory correctly predicted 88%, and
the transfer of exchange model achieved 74% correct forecasts. In

the four contests, with a total of nine tests of cumulative prospect
theory, three tests of security-potential/aspiration theory, and three
tests of the transfer-of-attention-exchange model, these 89% and
88% figures were the only instances in which the two models
could predict slightly better than the priority heuristic did (for a tie,
see Figure 3).

Again, we checked the fitting power of cumulative prospect
theory by the Erev et al. (2002) set of problems. This resulted in a
fitting power of 99%. As in the previous analyses, a substantial
discrepancy between fitting and prediction emerged.

The Priority Heuristic as a Process Model

Process models, unlike as-if models, can be tested on two levels:
the choice and the process. In this article, we focus on how well the
priority heuristic can predict choices, compared with competing
theories. Yet we now want to illustrate how the heuristic lends
itself to testable predictions concerning process. Recall that the
priority heuristic assumes a sequential process of examining rea-
sons that is stopped as soon as an aspiration level is met. There-
fore, the heuristic predicts that the more reasons that people are
required to examine, the more time they need for making a choice.
Note that all three modifications of expected utility theory tested
here (if interpreted as process models) assume that all pieces of
information are used and thus do not imply this process prediction.

Figure 4. Correct predictions of the majority responses for the 56 certainty equivalence problems in Tversky
and Kahneman (1992). The black parts of the bars represent correct predictions without guessing; the union of
the black and white parts represents correct predictions with guessing (counting as 0.5). The parameters taken
from Erev et al. (2002) predict gains only. Parameters for cumulative prospect theory (CPT) are from Lopes and
Oden (L&O; 1999) and Erev et al., respectively. In the latter set of problems, predictions refer to gains only.
SPA � security-potential/aspiration theory.
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To illustrate the prediction, consider the following choice:

A: 2,500 with p � .05

550 with p � .95

B: 2,000 with p � .10

500 with p � .90

Given the choice between A and B, the priority heuristic predicts
that people examine three reasons and therefore need more time
than for the choice between C and D, which demands examining
one reason only:

C: 2,000 with p � .60

500 with p � .40

D: 2,000 with p � .40

1,000 with p � .60

In summary, the prediction is as follows: If the priority heuristic
implies that people examine more reasons (e.g., three as opposed
to one), the measured time people need for responding will be
longer. This prediction was tested in the following experiment for
two-outcome gambles, for five-outcome gambles, for gains and
losses, and for gambles of similar and dissimilar expected value.

Method. One hundred twenty-one students (61 females, 60 males; M �
23.4 years, SD � 3.8 years) from the University of Linz participated in this
experiment. The experimental design was a 2 (one reason or three reasons
examined) 	 2 (choice between 2 two-outcome gambles or choice between
2 five-outcome gambles) 	 2 (gambles of similar or dissimilar expected
value) 	 2 (gains vs. losses) mixed-factorial design, with domain (gains vs.
losses) as a between-participants factor and the other three manipulations
as within-participants factors. The dependent variable, response time (in
milliseconds), was measured from the first appearance of the decision

problem until the moment when the participant indicated his or her choice
by clicking either gamble A or B. Then the next choice problem appeared
on the computer screen. Each participant responded to 40 choice problems,
which appeared in random order within each kind of set (i.e., two-outcome
and five-outcome set). The order was counterbalanced so that half of the
participants received the five-outcome gambles before the two-outcome
gambles, whereas this order was reversed for the other half of the partic-
ipants. All 40 choice problems from the gain domain (gains were converted
into losses by adding a minus sign) are listed in the Appendix.

Results and discussion. The prediction was that the response
time is shorter for those problems in which the priority heuristic
implies that people stop examining after one reason, and it is
longer when they examine all three reasons. As shown in Figure 6,
results confirmed this prediction.

This result held for both choices between two-outcome gambles
(one reason: Mdn � 9.3, M � 10.9, SE � 0.20; three reasons:
Mdn � 10.1, M � 11.9, SE � 0.21; z � �3.8, p � .001) and
choices between five-outcome gambles (one reason: Mdn � 10.3,
M � 12.6, SE � 0.26; three reasons: Mdn � 11.8, M � 14.1, SE �
0.41; z � �2.9, p � .004). It is not surprising that five-outcome
gambles need more reading time than two-outcome gambles,
which may explain the higher response time for the former. We
additionally analyzed response times between the predicted num-
ber of reasons people examined (one or three) when the expected
values were similar (one reason: Mdn � 9.8, M � 12.1, SE � 0.24;
three reasons: Mdn � 11.1, M � 13.2, SE � 0.30; z � �4.5, p �
.001) and when expected values were dissimilar (one reason:
Mdn � 9.7, M � 11.5, SE � 0.22; three reasons: Mdn � 10.1,
M � 12.1, SE � 0.26; z � �1.7, p � .085); when people decided
between two gains (one reason: Mdn � 9.3, M � 11.5, SE � 0.22;
three reasons: Mdn � 10.5, M � 12.7, SE � 0.27; z � �4.2, p �
.001) and when they decided between two losses (one reason:

Figure 5. Correct predictions of the majority responses for the 100 random choice problems in Erev et al.
(2002). The black parts of the bars represent correct predictions without guessing; the union of the black and
white parts represents correct predictions with guessing (counting as 0.5). Parameters for cumulative prospect
theory (CPT) are from Lopes and Oden (L&O; 1999) and Tversky and Kahneman (T&K; 1992), respectively.
SPA � security-potential/aspiration theory; TAX � transfer-of-attention-exchange model.
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Mdn � 10.2, M � 12.1, SE � 0.25; three reasons: Mdn � 10.5,
M � 12.5, SE � 0.29; z � �1.7, p � .086). In addition to our
predictions, we observed that the effects are stronger for gambles
from the gain domain than from the loss domain and when the
expected values are similar rather than dissimilar.

The priority heuristic gives rise to process predictions that go
beyond those investigated in this article. One of them concerns the
order in which people examine reasons. Specifically, the priority
heuristic predicts that reasons are considered in the following
order: minimum gain, probability of minimum gain, and maximum
gain. This and related predictions can be examined with process-
tracing methodologies such as eye tracking. Using mouse lab, for
instance, Schkade and Johnson (1989) reported evidence for
choice processes that are consistent with lexicographic strategies
like the priority heuristic.

Frugality

Predictive accuracy is one criterion for comparing models of
choice between gambles; frugality is another. The latter has not
been the focus of models of risky choice. For instance, expected
utility theory and cumulative prospect theory take all pieces of
information into account (exceptions to this are sequential search
models such as heuristics and decision field theory; see Busemeyer
& Townsend, 1993).

How to define frugality? All heuristics and modifications of
expected utility theory assume a specific reading stage, in which
all pieces of information are read and the relevant one (which
varies from model to model) is identified. For instance, a person
who relies on the minimax heuristic will read the text and deter-
mine what the minimal outcomes are. A person who relies on
cumulative prospect theory will read the text and identify all
relevant pieces of information from the point of view of this

theory. This reading phase is common to all choice models and is
not what we refer to in our definition of frugality. The frugality of
a strategy refers to the processes that begin after the text is read.

We define frugality as the proportion of pieces of information
that a model ignores when making a decision. Guessing, for
instance, is the most frugal strategy; it ignores 100% of the
information, and therefore its frugality is 100%. In a two-outcome
gamble, the probabilities are complementary, which reduces the
number of pieces of information from eight to six (the two mini-
mum outcomes, their probabilities, and the two maximum out-
comes). Minimax, for instance, ignores four of these six pieces of
information; thus its frugality is 67%. The modifications of ex-
pected utility theory do not ignore any information (regardless of
whether one assumes six or eight pieces of information), and thus
their frugality is 0%.

Unlike heuristics such as minimax, which always derive their
decision from the same pieces of information, the frugality of the
priority heuristic depends on the specific choice problem. For
two-outcome gambles, the probabilities of the maximum outcomes
are again complementary, reducing the number of pieces of infor-
mation from eight to six. In making a choice, the priority heuristic
then ignores either four pieces of information (i.e., the probabilities
of the minimal outcomes and the maximal outcomes), two pieces
of information (i.e., the maximal outcomes), or no information.
This results in frugalities of 4/6, 2/6, and 0, respectively. However,
for the stopping rule, the heuristic needs information about the
maximum gain (or loss), which reduces the frugalities to 3/6, 1/6,
and 0, respectively.6

For each of the four sets of choice problems, we calculated the
priority heuristic’s frugality score. In the first set of problems (see
Figure 1; Kahneman & Tversky, 1979), the priority heuristic
ignored 22% of the information. For the five-outcome gambles in
Figure 3, the heuristic ignored 78%. As mentioned before, one
reason for this is that the heuristic solely takes note of the mini-
mum and maximum outcomes and their respective probabilities,
and it ignores all other information. The modifications of expected
utility theory, in contrast, ignored 0%. In other words, for five-
outcome gambles, the heuristic predicted people’s choices (87%)
as good as or better than the modifications of expected utility
theory with one fourth of the information. In the Tversky and
Kahneman (1992) set of problems, the priority heuristic frugality
score was 31%; for the set of randomly chosen gambles, the
heuristic ignored 15% of the information. This number is relatively
low, because as mentioned before, the information about the
minimum gain was almost never informative. In summary, the
priority heuristic predicted the majority choice on the basis of
fewer pieces of information than multiparameter models did, and
its frugality depended strongly on the type of gamble in question.

6 For two-outcome gambles, six instead of eight pieces of information
yield a lower-bound estimate of the frugality advantage of the heuristics
over parameter-based models such as cumulative prospect theory, which do
not treat decision weights as complementary. For n-outcome gambles, with
n � 2, all 4n pieces of information were used in calculating frugalities.
Similarly, in the case of ambiguity, we calculated a heuristic’s frugality in
a way to give this heuristic the best edge against the priority heuristic.

Figure 6. Participants’ median response time dependent on the number of
outcomes and the number of reasons examined.

424 BRANDSTÄTTER, GIGERENZER, AND HERTWIG



Overall Performance

We now report the results for all 260 problems from the four
contests. For each strategy, we calculated its mean frugality and
the proportion of correct predictions (weighted by the number of
choice problems per set of problems). As shown in Figure 7, there
are three clusters of strategies: the modifications of expected utility
and tallying, the classic choice heuristics, and the priority heuristic.
The clusters have the following characteristics: The modifications
of expected utility and tallying could predict choice fairly accu-
rately but required the maximum amount of information. The
classic heuristics were fairly frugal but performed dismally in
predicting people’s choices. The priority heuristic achieved the
best predictive accuracy (87%) while being relatively frugal.

Security-potential/aspiration theory, cumulative prospect the-
ory, and the transfer-of-attention-exchange model correctly pre-
dicted 79%, 77%, and 69% of the majority choices, respectively.
With the exception of the least-likely heuristic and tallying, most
classic heuristics did not predict better than chance. For instance,
the performances of the minimax and lexicographic rules were
49% and 48%, respectively.

The four sets of problems allowed for 15 comparisons between
the predictive accuracy of the priority heuristic and cumulative
prospect theory, security-potential/aspiration theory, and the
transfer-of-attention-exchange model.7 The priority heuristic

achieved the highest predictive accuracy in 12 of the 15 compar-
isons (Figures 1, 3, 4, and 5), and cumulative prospect theory and
security-potential/aspiration theory in one case each (plus one tie).

Discussion

The present model of sequential choice continues the works of
Luce (1956), Selten (2001), Simon (1957), and Tversky (1969).
Luce (1956) began to model choice with a semiorder rule, and
Tversky (1969, 1972) extended this work, adding heuristics such
as “elimination by aspects.” In his later work with Kahneman, he
switched to modeling choice by modifying expected utility theory.
The present article pursues Tversky’s original perspective, as well as
the emphasis on sequential models by Luce, Selten, and Simon.

Limits of the Model

Our goal was to derive from empirical evidence a psychological
process model that predicts choice behavior. Like all models, the
priority heuristic is a simplification of real world phenomena. In
our view, there are four major limitations: the existence of indi-
vidual differences, low-stake (“peanuts”) gambles, widely discrep-
ant expected values, and problem representation.

Individual differences and low stakes. The priority heuristic
embodies risk aversion for gains and risk seeking for losses. Even
if the majority of people are risk averse in a particular situation, a
minority will typically be risk seeking. Some of these risk lovers
may focus on the maximum gain rather than on the minimum one
as the first reason. Thus, the order of reasons is one potential
source of individual differences; another one is the aspiration level
that stops examination. We propose order and aspiration as two
sources of individual differences. Moreover, risk seeking can also
be produced by the properties of the choice problem itself. For
instance, low stakes can evoke risk seeking for gains. Thus, low
stakes can lead to the same reversal of the order of reasons as
postulated before for individual differences.

Discrepant expected values. Another limiting condition for
the application of the priority heuristic is widely discrepant ex-
pected values. The set of random gambles by Erev et al. (2002)
revealed this limitation. For instance, gamble A offers 88 with p �
.74, otherwise nothing, and gamble B offers 19 with p � .86,
otherwise nothing. The expected values of these gambles are 65.1
and 16.3, respectively. The priority heuristic predicts the choice of
gamble B, whereas the majority of participants chose gamble A.

To investigate the relation between the ratio of expected values
and the predictive power of the priority heuristic, we analyzed a set
of 450 problems with a large variability in expected values
(Mellers, Chang, Birnbaum, & Ordóñez, 1992). In this set, all
minimal outcomes are zero; thus the priority heuristic could not
use its top-ranked reason. We also tested how well cumulative
prospect theory, security-potential/aspiration theory, the transfer-
of-attention-exchange model, and expected value theory predict
the majority choices.

7 For the first set of problems, there were 3 independent parameter sets
for cumulative prospect theory, 1 for security-potential/aspiration theory,
and 1 for the transfer-of-attention-exchange model, resulting in 5 compar-
isons. For the second set, these numbers were 2, 0, and 1; for the third set,
2, 1, and 0; and for the fourth set, 2, 1, and 1; resulting in 15 comparisons.

Figure 7. Predictability–frugality trade-off, averaged over all four sets of
problems. The percentage of correct predictions refers to majority choices
(including guessing). PRIORITY � priority heuristic; SPA � security-
potential/aspiration theory; CPT � cumulative prospect theory; TAX �
transfer-of-attention-exchange model; TALL � tallying; LL � least-likely
heuristic; BTA � better-than-average heuristic; PROB � probable heuris-
tic; MINI � minimax heuristic; GUESS � pure guessing; EQUI �
equiprobable heuristic; LEX � lexicographic heuristic; ML � most-likely
heuristic; MAXI � maximax heuristic; EQW � equal-weight heuristic.
For a description of the heuristics, see Table 3.
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Figure 8 shows the proportion of correct predictions as a func-
tion of the ratio between expected values.8 As was suggested by
our analysis of the Erev et al. (2002) set of problems, the priority
heuristic’s accuracy decreased as the ratio between expected val-
ues became large. For instance, in the fourth quartile, its perfor-
mance was only slightly above 50%. In the first quartile, however,
the priority heuristic outperformed all other contestants by a min-
imum of 16 percentage points (security-potential/aspiration the-
ory) and a maximum of 40 percentage points (transfer-of-
attention-exchange model). In the second quartile, the priority
heuristic still outperformed the other modifications of expected
utility theory. These performed better than the priority heuristic
when the ratio between expected values exceeded about two. It is
interesting, however, that expected value theory performed virtu-
ally as well as the best-performing modification for larger ratios.
Tallying (not shown in Figure 8) performed identically to security-
potential/aspiration theory in the first two quartiles and worse than
any other model when the ratios between expected values were
larger. Thus, the results suggest that when choices become diffi-
cult—because of similar expected values—a simple sequential
heuristic performs best. When choices become easy—because of
widely discrepant expected values—expected value theory pre-
dicts choices as well as or better than the parameterized models.
Both the priority heuristic and expected value theory successfully
predict behavior without transforming probabilities and outcomes.

Figure 8 suggests that people do not rely on the priority heuristic
indiscriminately. How can we model when they rely on the heu-
ristic and when they do not? One way would be to assume that
people estimate the expected values, and if the ratio is smaller than

two, they turn to the priority heuristic. But calculating expected
values is not the only method. Alternatively, people may first look
at the three (four) reasons, and if no difference is markedly larger
than the others, they apply the priority heuristic. Screening the
reasons for a large difference is akin to what Tversky, Sattath, and
Slovic (1988) called “looking for a decisive advantage” (p. 372).

Problem representation. A final potential limitation refers to
the impact of different representations of the same decision prob-
lems on people’s choices. For illustration, consider the following
two problems reported by Birnbaum (2004):

A marble will be drawn from an urn, and the color of the marble
drawn blindly and randomly will determine your prize. You can
choose the urn from which the marble will be drawn. In each choice,
which urn would you choose?

Urn A: 85 red marbles to win $100

10 white marbles to win $50

5 blue marbles to win $50

Urn B: 85 black marbles to win $100

10 yellow marbles to win $100

5 purple marbles to win $7

The same participants were also asked to choose between the
following two urns:

Urn A�: 85 black marbles to win $100

15 yellow marbles to win $50

Urn B�: 95 red marbles to win $100

5 white marbles to win $7

The Urn A versus Urn B problem is the same as the Urn A� versus
Urn B� problem, except that the latter adds up the probabilities of
the same outcomes (e.g., 10 white marbles to win $50 and 5 blue
marbles to win $50 in Urn A are combined to 15 yellow marbles
to win $50 in Urn A�). According to Birnbaum (2004), 63% of his
participants chose B over A and only 20% chose B� over A�. His
transfer-of-attention-exchange model predicts this and other new
paradoxes of risky decision making (see also Loomes, Starmer, &
Sugden, 1991). The priority heuristic, in contrast, does not predict
that such reversals will occur. The heuristic predicts that people
prefer Urn A and A�, respectively (based on the minimum gains).

In evaluating the validity of models of risky choice, it is impor-
tant to keep in mind that it is always possible to design problems
that elicit choices that a given model—be it the expected utility
theory, prospect theory, cumulative prospect theory, the transfer-
of-attention-exchange model, or the priority heuristic—can and
cannot explain. For this reason, we refrained from opportunistic
sampling of problems. Instead, we tested the priority heuristic on

8 For each problem, we calculated the ratio between the larger and the
smaller expected value. We then divided the ratios into four quartiles and
calculated the mean ratio for each quartile, which were 1.0, 1.8, 2.6, and
5.8. We used the same parameter estimates as in the four contests. For
cumulative prospect theory, Figure 8 shows the mean performance across
the three analyses using the parameter estimates from Erev et al. (2002),
Lopes and Oden (1999), and Tversky and Kahneman (1992).

Figure 8. Correct predictions dependent on the ratio between expected
values for the set of problems in Mellers et al. (1992). For parameter
estimates, see Footnote 8. PRIORITY � priority heuristic; TAX �
transfer-of-attention-exchange model; SPA � security-potential/aspiration
theory; CPT � cumulative prospect theory; EV � expected value theory.
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a large set of existing problems that were initially designed to
demonstrate the validity of several of its contestants.

Process Models

The priority heuristic is intended to model both choice and
process: It not only predicts the outcome but also specifies the
order of priority, a stopping rule, and a decision rule. As a
consequence, it can be tested on two levels: choice and process.
For instance, if a heuristic predicts choices well, it may still fail in
describing the process, thus falsifying it as a process model.
Models of choice that are not intended to capture the psychological
processes (i.e., as-if models), however, can only be tested at the
level of choice. In discussions with colleagues, we learned that
there is debate about what counts as a process model for choice.
For instance, whereas many people assume that cumulative pros-
pect theory is mute about the decision process, some think the
theory can be understood in terms of processes. Lopes (1995)
explicitly clarified that the equations in theories such as security-
potential/aspiration theory are not meant to describe the process.
She even showed that the outcomes of lexicographic processes—
similar to those in the priority heuristic—can resemble those of
modifications of subjective expected utility theories.

The priority heuristic can be seen as an explication of Rubin-
stein’s (1988) similarity-based model (see also Leland, 1994;
Mellers & Biagini, 1994). The role of “similarity” in his model is
here played by the aspiration level, and the priority rule imposes a
fixed order on the reasons. Unlike the algebra in expected utility
theory and its modifications, which assume weighting, summing,
and exhaustive use of information, the priority heuristic assumes
cognitive processes that are characterized by order, aspiration
levels, and stopping rules. In Rubinstein’s (2003) words, “we need

to open the black box of decision making, and come up with some
completely new and fresh modeling devices” (p. 1215). We be-
lieve that process models of heuristics are key to opening this
black box.

Predicting Choices: Which Strategies Are Closest?

Which of the strategies make the same predictions and which
make contradictory ones? Table 5 shows the percentage of iden-
tical predictions between each pair of strategies tested on the entire
set of 260 problems. The strategy that is most similar to the priority
heuristic in terms of prediction (but not in terms of process) is not
a heuristic, but rather cumulative prospect theory using the param-
eters from the Erev et al. (2002) set of problems. The least similar
strategy in terms of prediction is the equal weight heuristic, which,
unlike the priority heuristic, ignores probabilities and simply adds
the outcomes.

A second striking result concerns models with adjustable pa-
rameters. The degree of overlap in prediction is not so much driven
by their conceptual similarity or dissimilarity as by whether they
are fitted to the same set of problems. Consider first the cases in
which the parameters of different models are derived from the
same set of problems. The transfer-of-attention-exchange model
(with parameter estimates from Tversky & Kahneman, 1992) most
closely resembles cumulative prospect theory when its parameters
are estimated from the same set of problems (96% identical pre-
dictions). Similarly, security-potential/aspiration theory (with pa-
rameter estimates from Lopes & Oden, 1999) most closely resem-
bles cumulative prospect theory when its parameters are estimated
from the same problem set (91% identical predictions). Consider
now the cases in which the parameters of the same model are
derived from different sets of problems. There are three such cases

Table 5
Percentage of Same Predictions of Each Pair of Strategies

Strategy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. PRIORITY —
2. CPT; L&O (1999) 78 —
3. CPT; Erev et al. (2002) 89 92 —
4. CPT; T&K (1992) 68 80 60 —
5. TAX 65 77 57 96 —
6. SPA 72 91 81 77 76 —
7. MAXI 38 40 26 57 58 44 —
8. MINI 51 49 75 59 60 47 39 —
9. TALL 70 62 56 52 51 63 20 49 —

10. ML 51 57 48 42 41 62 39 43 60 —
11. LL 64 62 48 38 36 66 36 32 81 67 —
12. BTA 49 57 46 70 72 57 67 53 43 32 39 —
13. EQUI 43 43 51 64 70 41 77 59 19 22 19 74 —
14. EQW 31 27 32 62 65 27 77 58 19 32 19 69 84 —
15. PROB 51 57 48 42 41 62 39 43 60 89 67 32 22 32 —
16. LEX 50 53 44 44 42 60 44 44 51 89 62 33 28 37 89 —

Note. The numbers specify the percentage of problems in which two strategies made the same predictions. For instance, the priority heuristic (PRIORITY)
and minimax (MINI) made the same predictions in 51% of all problems and different predictions in 49% of them. Parameters for cumulative prospect theory
(CPT) are estimated from Lopes and Oden (L&O; 1999), Erev et al. (2002), and Tversky and Kahneman (T&K; 1992), respectively. Italic numbers indicate
the percentage of same predictions when the parameters of the same model are derived from different sets of problems. Bold numbers indicate the
percentage of same predictions when the parameters of different models are derived from the same set of problems. TAX � transfer-of-attention-exchange
model; SPA � security-potential/aspiration theory; MAXI � maximax heuristic; TALL � tallying; ML � most-likely heuristic; LL � least-likely heuristic;
BTA � better-than-average heuristic; EQUI � equiprobable heuristic; EQW � equal-weight heuristic; PROB � probable heuristic, LEX � lexicographic
heuristic. For a description of the heuristics, see Table 3.
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for cumulative prospect theory, and the overlaps are 92%, 80%,
and 60%. Thus, on average the overlap is higher (94%) when the
same problem set is used rather when the same model is used
(77%). This shows that the difference between problem sets has
more impact than the difference between models does.

Can the Priority Heuristic Predict Choices in Gambles
Involving Gains and Losses?

In the four contests, we have shown that the priority heuristic
predicts choices by avoiding trade-offs between probability and
outcomes; we have not investigated trade-offs between gains and
losses. The priority heuristic can be generalized to handle gain–
loss trade-offs, without any change in its logic. This is illustrated
by the following choice between two mixed gambles (Tversky &
Kahneman, 1992):

A: 1/2 probability to lose 50

1/2 probability to win 150

B: 1/2 probability to lose 125

1/2 probability to win 225

The heuristic starts by comparing the minimum outcomes (�50
and �125). Because this difference exceeds the aspiration level of
20 (1/10 of the highest absolute gain or loss: 22.5 rounded to the
next prominent number), examination is stopped, and no other
reasons are examined. The priority heuristic selects gamble A,
which is the majority choice (inferred from certainty equivalents as
in Contest 3). Applied to all six choice problems with mixed
gambles in the Tversky and Kahneman (1992) set of problems, the
priority heuristic predicted the majority choice in each case. We
cross-checked this result against the set of problems by Levy and
Levy (2002), with six choices between mixed gambles with two,
three, or four outcomes. Again, the priority heuristic predicted the
majority choice in each case correctly. However, we did not test
the proposed generalization of the priority heuristic against an
extensive set of mixed gambles and thus cannot judge how appro-
priate this generalization is.

Choice Proportions

The priority heuristic predicts majority choices but not choice
proportions. However, a rank order of choice proportion can be
predicted with the additional assumption that the earlier the exam-
ination stops, the more extreme the choice proportions will be.
That is, when examination is stopped after the first reason, the
resulting choice proportions will be more unequal (e.g., 80/20)
than when stopping occurs after the second reason (e.g., 70/30),
and so on. To test this hypothesis, we analyzed two sets of
problems (Kahneman & Tversky, 1979; Lopes & Oden, 1999) in
which the priority heuristic predicted stopping after the first,
second, or third reason (this was not the case for the Erev et al.,
2002, choice problems, in which stopping after the first reason was
not possible in almost all problems; the problems in the Tversky &
Kahneman, 1992, data set were derived from certainty equivalents
and hence do not contain choice proportions). Thus, the hypothesis
implies that the predicted choice proportions should be higher
when fewer reasons are examined. The results show that if exam-
ination stopped after the first, second, and third reason, the respec-

tive mean choice proportions are .85 (SD � .06; n � 3), .83 (SD �
.09; n � 4), and .72 (SD � .09; n � 7) in the Kahneman and Tversky
(1979) set of problems. Similarly, in the Lopes and Oden (1999) set
of problems, these values are .75 (SD � .10; n � 30), .66 (SD � .11;
n � 48), and .54 (SD � .03; n � 12), which supports the heuristic’s
capacity to predict a rank order of choice proportions.

We suggest that the number of reasons examined offers one
account for the process underlying the observed relationship be-
tween choice proportion and response time. Our analysis showed
that when fewer reasons were examined, the choice proportions
became more extreme and the response times decreased. This
implies, everything else being equal, that more extreme choice
proportions should be associated with faster response times. Some
support for this implication is given in Mosteller and Nogee (1951)
and in Busemeyer and Townsend (1993).

Occam’s Razor

Models with smaller numbers of adjustable parameters, which
embody Occam’s razor, have a higher posterior probability in
Bayesian model comparison (MacKay, 1995; Roberts & Pashler,
2000). Consider an empirically obtained result that is consistent
with two models. One of these predicts that behavior will be
located in a small range of the outcome space, and the other
predicts that behavior will be located in a wider range. The
empirical result gives more support (a higher Bayesian posterior
probability) to the one that bets on the smaller range. Conse-
quently, if several models predict the same empirical phenomenon
equally well, the simplest receives more support (Simon, 1977).
We provided evidence that the priority heuristic (a) is simpler and
more frugal than subjective expected utility and its modifications;
(b) can predict choices equally well or better across four sets of
gambles; (c) predicts intransitivities, which some modifications of
expected utility theory have difficulty predicting; and (d) predicts
process data such as response times.

Every model has parameters; the difference is whether they are
free, adjustable within a range, or fixed. The parameters in mod-
ifications of expected utility theory are typically adjustable within
a range, because of theoretical constraints. In contrast, most heu-
ristics have fixed parameters. One can fix a parameter by (a)
measuring it independently, (b) deriving it from previous research,
or (c) deriving it theoretically. For modifications of expected
utility theories, we used parameters measured on independent sets
of problems. For the priority heuristic, we derived its order from
previous research and obtained the 1/10 aspiration level from our
cultural base-10 number system. These ways of fixing parameters
can help to make more precise predictions, thus increasing the
empirical support for a model.

Fast and Frugal Heuristics: From Inferences to
Preferences

By means of the priority heuristic, we generalize the research
program on fast and frugal heuristics (Gigerenzer et al., 1999)
from inferences to preferences, thus linking it with another re-
search program on cognitive heuristics, the adaptive decision-
maker program (Payne et al., 1993). This generalization is not
trivial. In fact, according to a widespread intuition, preference
judgments are not likely to be modeled in terms of noncompen-
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satory strategies such as the priority heuristic. The reason is that
preferential choice often occurs in environments in which rea-
sons—for example, prices of products and their quality—correlate
negatively. Some researchers have argued that negative correla-
tions between reasons cause people to experience conflict, leading
them to make trade-offs, and trade-offs in turn are not conducive
to the use of noncompensatory heuristics (e.g., Shanteau &
Thomas, 2000). The priority heuristic’s success in predicting a
large majority of the modal responses across 260 problems chal-
lenges this argument.

The study of fast and frugal heuristics for inferences has two
goals. One is to derive descriptive models of cognitive heuristics
that capture how real people actually make inferences. The second
goal is prescriptive in nature: to determine in which environments
a given heuristic is less accurate than, as accurate as, or even more
accurate than informationally demanding and computationally ex-
pensive strategies. In the current analysis of a fast and frugal
heuristic for preferences, we focused on the descriptive goal at the
expense of the prescriptive one for the following reason: When
analyzing preference judgments in prescriptive terms, one quickly
enters muddy waters because, unlike in inference tasks, there is no
external criterion of accuracy. Moreover, Thorngate (1980) and
Payne et al. (1993) have already shown that in some environments,
preference heuristics can be highly competitive—when measured,
for instance, against the gold standard of a weighted additive
model. Notwithstanding our focus on the descriptive accuracy of
the priority heuristic, we showed that it performed well on two
criteria that have also been used to evaluate the performance of fast
and frugal inference strategies, namely, frugality and transparency.

Perhaps one of the most surprising outcomes of the contest
between the priority heuristic, the neo-Bernouillian models (i.e.,
those assuming some type of weighing and summing of reasons),
and previously proposed heuristics, respectively, is the dismal
performance of the latter. Why does the priority heuristic so clearly
outperform the other heuristics? The key difference is that the
classic heuristics (with the exception of the lexicographic heuris-
tic) always look at the same piece or several pieces of information.
The priority heuristic, in contrast, relies on a flexible stopping rule.
Like the classic heuristics, it is frugal, but unlike them, it is adapted
to the specific properties of a problem and its frugality is hence not
independent of the problem in question. The sequential nature of
the priority heuristic is exactly the same as that assumed in
heuristics such as Take The Best, Take The Last, and fast and
frugal trees (Gigerenzer, 2004). These heuristics, equipped with
flexible stopping rules, are in between the classic heuristics that
always rely on the same reason(s) and the neo-Bernoulli models
that use all reasons. We believe this new class of heuristics to be
of great importance. Its heuristics combine some of the advantages
of both classic trade-off models and heuristics, thus achieving
great flexibility, which enables them to respond to the character-
istics of individual problems.

Conclusion

We have shown that a person who uses the priority heuristic
generates (a) the Allais paradox, (b) risk aversion for gains if
probabilities are high, (c) risk seeking for gains if probabilities are
low (e.g., lottery tickets), (d) risk aversion for losses if probabil-
ities are low (e.g., buying insurance), (e) risk seeking for losses if

probabilities are high, (f) the certainty effect, and (g) the possibil-
ity effect. Furthermore, the priority heuristic is capable of account-
ing for choices that conflict with (cumulative) prospect theory,
such as systematic intransitivities that can cause preference rever-
sals. We tested how well the heuristic predicts people’s majority
choices in four different types of gambles; three of these had been
designed to test the power of prospect theory, cumulative prospect
theory, and security-potential/aspiration theory, and the fourth was
a set of random gambles. Nevertheless, despite this test in “hostile”
environments, the priority heuristic predicted people’s preference
better than previously proposed heuristics and better than three
modifications of expected utility theory. We also identified an
important boundary of the priority heuristic. Specifically, the heu-
ristic performed best when the ratio between expected values was
about 2:1 or smaller. Finally, the heuristic specifies a process that
leads to predictions about response time differences between
choice problems, which we tested and confirmed.

We believe that the priority heuristic, which is based on the
same building blocks as Take The Best, can serve as a new
framework for models for a wide range of cognitive processes,
such as attitude formation or expectancy-value theories of moti-
vation. The heuristic provides an alternative to the assumption that
cognitive processes always compute trade-offs in the sense of
weighting and summing of information. We do not claim that
people never make trade-offs in choices, judgments of facts, val-
ues, and morals; that would be as mistaken as assuming that they
always do. Rather, the task ahead is to understand when people
make trade-offs and when they do not.
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432 BRANDSTÄTTER, GIGERENZER, AND HERTWIG


