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Abstract

In Internet auctions bidders frequently bid in one of two ways:
either they bid only late (late bidding) or, initially, they bid early and
then revise their bids just before the auction closes (early bidding). In
this paper we build a model of a dynamic auction with two bidders who
can search for outside prices while bidding in the auction. For the case
of common price draws (realized value is the same for both bidders) we
characterize an equilibrium in which both bidders bid early and then
coordinate who searches for the outside price, i.e., the bidder with the
lower early bid searches and the other bidder does not. When outside
prices are independent and identically distributed, then, there is an
equilibrium in which bidders with the low search costs bid only late
and always search, while the remaining bidders bid early and then
coordinate searching. A contribution of our model is in explaining
both frequently occurring bidding patterns (late and early bidding)
within a single equilibrium. In terms of total welfare the equilibrium
in which buyers coordinate their searching is always better than the
equilibrium in when they don�t coordinate. However, buyers are not
always better o¤ in the coordinating equilibrium. When outside prices
are iid buyers could collectively improve their surplus if they only bid
late.

�I am grateful to John Wooders for his guidance and numerous discussions. I also
thank workshop participants at the University of Arizona for their valuable feedback. All
remaining errors are mine.
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1 Introduction

Understanding bidding behavior is the �rst step in building e¢ cient elec-
tronic markets. Bidding in online auctions, however, is no easy task. Before
making a bid each bidder must make several tough decisions regarding the
amount and the timing of her bid. Over time, many bidders �nd bidding
strategies that are successful and continue to use them. A few recent studies
(i.e., Shah et al., 2004, Gonzales et al., 2004, and Morgan and Hossain, 2003)
collect data on bids from several Internet auction sites and identify two bid-
ding patterns that occur more frequently than others. The �rst is formed by
bidders who make only a single bid in the last moments of auction - a practice
called "late bidding" or "sniping." The second bidding pattern involves mul-
tiple bids by the same bidder in the same auction, i.e., she makes her initial
bid early and then revises it later as the auction nears its end. We will call
this pattern of behavior "multiple bidding." Most of the current literature
has focused on late bidding which is commonly observed among experienced
traders. Roth and Ockenfels (2002) argue that one of the main advantages of
late bidding is that it is a best response to myopic behavior by bidders who
increase their bids by an increment every time they are outbid. Furthermore,
in auctions that close at an exact speci�c time (e.g., eBay), bidders might
tacitly collude by bidding only in the last few seconds of the auction. In light
of this support for late bidding it seems puzzling that many bidders in fact
choose to bid early. What motivates multiple bidding and why is it that in
the data multiple bidding appears almost as frequently as the late bidding
remains an open question. In this paper we propose a framework in which
late and multiple bidding emerge together as a part of a single equilibrium.
Late and multiple bidding are common behaviors. Shah et al. (2004)

analyzed the bidding histories of eBay auctions for Sony Playstation 2 and
Nintendo consoles. In their sample, 38% of all bidders placed a single bid
in the last hour of the auction while 34% of bidders made multiple bids. In
another study, Gonzales et al. (2004) looked at computer monitor auctions
on eBay. They found that there is at least one bidder who bids more than
once in 77% of all auctions in their sample. Similarly, Morgan and Hossain
(2003) conducted a �eld experiment and observed multiple bidding in 75% of
their auctions. More evidence of late and multiple bidding is found by Roth
and Ockenfels (2002), Bajari and Hortacsu (2003) and Yang et al. (2003).
Given that so many bidders use multiple bidding strategy, we must ask a
following question: What is the merit to placing multiple bids? In this paper
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we will construct an environment in which multiple bidding is a product
of optimal behavior by rational bidders. We further demonstrate that in
this environment, incentives for late bidding (or sniping) do not entirely
disappear. Thus, in the equilibrium of our model some bidders �nd it optimal
to bid several times while others will only bid late. Most importantly, our
equilibrium has a descriptive as well as intuitive appeal since it gives rational
interpretation to both bidding patterns.
When could one bene�t from bidding early? Our argument is based on

the idea of price searching. Bidders in Internet auctions are not necessarily
interested in buying the object at any price, but rather are looking for a
good deal. In the auction, if the price rises too high, they might decide to
look for a better deal elsewhere. What complicates the matter is that price
searching is not easy and one often has to go to considerable e¤ort in order to
�nd a good price. The cost of this e¤ort varies across bidders. It might, for
example, depend on the buyer�s location or individual time constraints. A
buyer looking for a car in Los Angeles is going to have many opportunities to
shop around at di¤erent dealers compared to a buyer in Montana. Therefore,
a buyer in Montana will �nd it much more di¢ cult to check di¤erent dealers
and her only chance of �nding a car she wants could be on the Internet.
She can bene�t from signaling her high search costs to the other bidders by
making a high early bid. Then, when the bidder in Los Angeles is outbid,
she will realize that she faces an opponent who is not very �exible in terms
of her alternatives and she will respond by intensifying her search e¤orts. As
a result, both bidders bene�t. The �exible bidder bene�ts from a low price
that she �nds and the in�exible bidder bene�ts from reduced competition in
the auction. The model we propose in this paper is a simpli�cation of this
story.
In modeling the bidding behavior in Internet auctions it is important to

recognize two distinguishing features of the Internet auctions mechanism.
The �rst is the dynamic structure of the auction. Typical Internet auction
normally last for several days. However, bidders do not permanently sit at
their computers; they revise their bids in discrete time intervals. Therefore,
an online auction could be modeled as a sequence of discrete time intervals
during which bidders submit their bids simultaneously. The second feature
is proxy bidding, which is implemented at numerous sites, including eBay.
When a bidder enters a proxy bid, the auction automatically bids for the
bidder up to the minimum of either the amount which is necessary to make
her a winning bidder or the amount of her proxy bid. Thus, proxy bidding
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e¤ectively gives the auction the properties of a dynamic, second-price auction.
The auction format that we consider is the simplest version of a dynamic

second-price auction. It has two bidding rounds: early and late. In both
rounds bidders submit their bids simultaneously. On the demand side we
consider two bidders who have a common valuation equal to one and inde-
pendent and private search costs that are distributed uniformly on the unit
interval. The game unfolds in three stages. In the �rst stage both bidders
place bids simultaneously. In the second stage both bidders �rst observe the
standing price, which equals the second highest bid from the initial round,
and then decide whether to search for the outside price-o¤er or not. The out-
side price-o¤er is a random draw from the unit interval. If a bidder decides
to search she gets the price-o¤er but has to pay her private search cost. A
bidder who doesn�t search, moves directly into the third stage. In the third
stage both bidders submit another round of bids.
We characterize two equilibria of this game. In the �rst equilibrium, all

bidders bid only in the late bidding round and use threshold strategies for
their search decisions. This means that bidders with lower search costs will
always search in the equilibrium and the remaining bidders with high search
costs will never search. The outcome of this equilibrium is consistent with
the late bidding pattern but fails to explain multiple bidding.
The second equilibrium is more interesting and includes bidding activity

in both bidding rounds. Whether a bidder only bids late or places multiple
bids depends on her search cost. Bidders who have su¢ ciently high search
costs bid multiple times, i.e., early and late. Their early bids are increasing in
their search costs and allow implicit coordination their searching decisions.
In particular, when a bidder submits the highest bid in the early bidding
round, she can infer that she has higher search cost than the other bidder.
Therefore, she does not search and bids her valuation in the �nal bidding
round, i.e., she bids one. On the other hand, the low bidder will search in
the second stage because she can infer that her opponent is not searching;
therefore, she can only win the auction at the price of one, which would
give her a payo¤ of zero. Thus, she can improve her payo¤ by �nding an
outside price o¤er which is almost surely less than one1. In this part of
the equilibrium bidders with su¢ ciently high search costs generate multiple
bidding.

1In our model the search costs are su¢ ciently low so that searching will almost always
generate positive expected payo¤.
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The second part of this equilibrium is the late bidding part. Suppose that
a bidder has a very low search cost, e.g., zero. For example a bidder lives right
next to �ve di¤erent car dealerships and can easily check out the prices on her
way home from work. Then, she might want to search irrespective of whether
she expects her opponent to search as well. In that case, it makes no sense
for her to bid early in the auction, because than she would be risking winning
the auction at a higher price than what her best outside price-o¤er could be.
Therefore, she will check the prices at the car dealers �rst and then she will
bid her best price-o¤er in the �nal bidding round of the auction. In this part
of the equilibrium bidders with low search costs generate late bidding.
To summarize, in this equilibrium bidders for whom searching is relatively

e¤ortless always search and therefore always bid only late in the auction. On
the other hand, bidders for whom searching is more costly bid in both bidding
rounds and search only if they were outbid in the early round. In equilibrium
the early-round bidding induces bidders to act as if they coordinated their
searching.
A paper which is most closely related to ours is by Hossain (2003). He

constructs a model in which some bidders are fully informed about their
private valuations for the object and the remaining bidders have to learn
their valuations from signals they receive throughout the auction. Bidding
takes place in a dynamic second-price auction with discrete bidding rounds
- an environment very much like ours. In each round the uninformed bidder
observes the standing price and receives a private signal about whether her
true valuation is above (positive signal) or below (negative signal) the stand-
ing price. In the equilibrium the uninformed bidder revises her bid in every
round as long as her signal is positive and quits bidding when the signal turns
negative. Informed bidders bid just once, i.e., early, if their valuations are
su¢ ciently low, and late, if they are su¢ ciently high. Gradual learning of
her value by the uninformed bidder drives the bidding in the equilibrium of
this model. Our model di¤ers in several respects: it is symmetric, it does not
rely on behavioral assumptions and it is driven by price-searching instead of
value discovery.
A similar framework to ours was proposed by Rasmussen (2001). In his

model, two bidders, one informed and one uninformed, bid in a dynamic
auction. The uninformed bidder can learn her private value but has to pay a
discovery cost. In equilibrium the uninformed bidder has an incentive to place
an early, �preemptive bid�which increases in her cost and which allows her
to avoid paying the discovery cost whenever she wins the auction with that
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bid. Once she is outbid then she invests in discovering her true value. The
information acquisition is endogenous in the same spirit as it is in our case
and the early bidding re�ects the trade-o¤ between the cost of information
versus the bene�t of winning the auction when it�s pro�table. Our framework
di¤ers Rasmussen�s in that he focuses on the process of individual value
discovery which causes bidders to bid late in the equilibrium. In our case we
model the process of price searching which motivates bidders to bid early.
Furthermore, we consider symmetric bidders and our auction mechanism is
explicitly modeled.
The rest of the paper proceeds as follows. In the next section we set up

our model. Then, in section two we �rst characterize two equilibria that exist
in the environment with common price draws and then we do the same for
the the environmemnt with independent and private price draws. Section
four then looks at welfare properties of both equilibria. Lastly, we conclude
by a short discussion of our results.

2 The Model

We construct a model of an auction which is similar to auctions commonly
found on the Internet. The prime di¤erences between the Internet-type auc-
tions and standard "textbook" auction formats are multiple bidding rounds,
availability of outside buying opportunities and proxy-bidding. In this sec-
tion we integrate these features into our model.
There are two identical units of the same object for sale. Both objects

are worthless to the seller(s), i.e., v0 = 0; where the zero-index indicates the
seller(s). The �rst unit is sold in the auction. The second unit is sold outside
of the auction for a posted price. There are two buyers, i 2 fA;Bg; who
bid in the auction. Both are risk neutral and have common valuation, i.e.
vA = vB = 1. Before the auction closes, both buyers may invoke a private
price-o¤er, oi, on a second unit. The price-o¤er is a random draw from the
uniform distribution, i.e., oi v U [0; 1]: To obtain the price-o¤er, a bidder i
has to pay a search cost ci v U [0; 1=2]; which represents her private type.
The bidding format is a dynamic (multi-round), second-price auction.

It has two bidding rounds, r 2 f1; 2g. Each round, r; begins with both
bidders simultaneously placing their bid bi;r 2 [0; 1]. In the second round, let
Bi = max

k2f1;2g
bi;k be the highest bid submitted by bidder i. For example, the
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highest bid of bidder A in the second bidding round is BA = max[bA;1; bA;2].
In the auction we de�ne three types of prices: the starting price, p0, the
standing price, p1, and the �nal price p2. The starting price is set to zero,
i.e., p0 = 0: The standing price, p1; equals to min[bA;1; bB;1] and the �nal
auction price, p2, equals to min[BA; BB]:
The game unfolds in three stages: the initial bidding round (s = 0), the

searching round (s = 1), and the �nal bidding round (s = 2). The auction
begins with the initial bidding round. All bidders observe p0 = 0 and then
simultaneously place bids in the auction. In the searching round, each bidder
�rst observes the standing price, p1; and whether she is the current high
bidder.2 Then, both bidders decide whether they want to search for the
outside price-o¤er, oi. If bidder i searches, then she incurs a search cost, ci,
and gets a price-draw, oi; in return, where oi v U [0; 1]. In the �nal bidding
round bidders submit another round of bids. After all bids are submitted the
auction closes and any bidder who has searched can purchase the object for
her outside price. Then the game ends and payo¤s are realized.
Denote Hs a set of all histories in stage s. Then, H0 contains a single

element h0 = p0 = 0: H1 contains all histories h1 � fp1;Wg; where the �rst
element is p1 2 [0; 1]; the current standing price after the initial bidding-
round. The second element, W 2 fA;Bg; gives the index of the current high
bidder, i.e.,

W (bA;1; bB;1; �) =

8>><>>:
A if

bA;1 > bB;1 or
bA;1 = bB;1 and I = A

� if bA;1 = bB;1 = 0
B if otherwise

:

Ties are broken with positive probability and I 2 fA;Bg indicates the bid-
der in who�s favor the tie was broken. For the purposes of our discussion
tiebreaking rule is irrelevant. Notice that if bi;1 = 0, then W 6= i, i.e., in
our framework bidding zero has exactly the same e¤ect as not bidding at all.
Finally, H2 contains all elements h2 = fh1; oig: If no price-o¤er was drawn
then we set oi = 1:
To examine the payo¤s let � i 2 f0; 1g be an indicator of whether bidder

i has searched, (� i = 1), or passed, (� i = 0). Similarly, let i 2 f0; 1g be the
indicator of whether i has bought the unit for the o¤ered price oi, (i = 1)

2The current high bidder is the one who would be awarded the object if the auction
ended in that instance.
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or not, (i = 0). The ex-post payo¤ to bidder i if she had won the auction
is given by

Vi(� i; i) =

8<:
1� p2 � ci � oi if � i = 1 and i = 1
1� p2 � ci if � i = 1 and i = 0
1� p2 if � i = 0

:

Her payo¤ in case she had lost the auction is given by

Vi(� i; i) =

8<:
1� ci � oi if � i = 1 and i = 1
�ci if � i = 1 and i = 0
0 if � i = 0

:

A strategy for a bidder i is a triple

(�1i (ci); � i(ci;h1); �
2
i (ci; h2));

where �1i : [0; 1=2]! [0; 1] is the initial-round bidding function; � i : [0; 1=2]�
f[0; 1] � f1; 2gg ! [0; 1] is the probability of searching in the middle stage
and �2i : [0; 1=2]� f[0; 1]� f1; 2g � [0; 1]g ! [0; 1] is the bidding function in
the �nal round.

3 Equilibrium

In this section we characterize the equilibria of this model. The concept we
use is the Perfect Bayesian Equilibrium. We also restrict our attention to
symmetric, pure and undominated strategies. Notice, that due to symmetry
restriction, a strategy which could be considered an equilibrium candidate has
no bidder subscript, i.e., (�1(ci); �(ci;h1); �

2(ci; h2)): Furthermore, consider-
ing only pure strategies implies that in the searching round each bidder either
searches or passes with probability one, i.e. � : [0; 1=2]� f[0; 1]� f1; 2gg !
f0; 1g:
Finally, we disallow the use of dominated strategies in equilibrium. The

standard argument, due to Vickrey (1961), by which value bidding is a
(weakly) dominant strategy in the second-price sealed bid auction applies
to our context as well. In the �nal bidding round, if the bidder did not
search, then if she loses the auction she gets zero payo¤. This is equivalent
to setting her outside price to 1, i.e., oi = 1. If she did search then her outside
price is drawn from the unit interval, i.e., oi 2 [0; 1]. The value of the outside
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price-o¤er completely de�nes bidder i�s maximum willingness to pay for the
object in the �nal round. This puts us to Vickrey�s world in which bidding
oi is an undominated strategy. In the rest of the paper we will assume that
bidders bid their outside price-o¤ers in the �nal round.

Assumption: Bidders bid their outside price in the �nal round, i.e.

�2(c;h2) = o:

Bidding outside price (weakly) dominates any other bid in the �nal bid-
ding round. We will use this assumption to characterize bidders�behavior
in the �nal bidding round. This implies that our equilibria in this section
di¤er in their prescribed behavior solely in the initial and middle stages of
the game, i.e. initial round bids and searching decisions.

3.1 Common Price Draws.

In this section we present a simpli�ed version of our model in which price
draws are common, i.e., oA = oB = o, where o v U [0; 1]: Both bidders get
the same draw if they decide to search. We focus our attention on two classes
of equilibria: bid-separating and bid-pooling.

De�nition: Any symmetric equilibrium in which bidders use the increas-
ing bidding function in the initial bidding round, i.e., bidding function �1 is
strictly increasing, we bid-separating equilibrium. Any symmetric equilib-
rium in which bidders bid the same amount in the initial bidding round we
call a bid-pooling equilibrium.

Below we characterize two equilibria. The �rst is bid-separating, i.e.,
all bidders use increasing bidding function in the early bidding round. The
second is bid-pooling, i.e., all bidders bid zero in the early bidding round.
We start by looking at the expected payo¤s in the searching stage. In

this stage, a bidder�s payo¤ from searching or passing will depend on whether
she was outbid after the initial bidding round or not. There are two cases:
W = A and W = B. We look at these two cases in turn.
Suppose �rst that in the searching stage bidder A is the high bidder, i.e.,

bA � bB and the history is h1 2 fbB; Ag. A�s expected payo¤ will depend on
whether she searches or not and whether her opponent, bidder B; searches or
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not. If A searches then she will pay her search cost cA, get the outside price o
and bid it the �nal bidding round. Hence, A�s �nal round bid BA will be the
maximum of her initial round bid and the outside price, i.e., BA = max[bA; o].
However, since A is the high bidder after the initial bidding round, she cannot
use her outside price unless she is outbid in the �nal bidding round, i.e., unless
BB � BA = max[bA; o]: Thus, if bidder B searches, then BB = o and A will
win the auction with certainty when o � bA: The �nal auction price will equal
to the standing price bB if o � bB and it will equal to o otherwise. When
o > bA then the �nal round bids of both bidders are tied, i.e., BA = BB = o;
and A will pay o whether she wins or loses the auction. The second case is
when B does not search. Then, BB = 1 � BA = max[bA; o]. Now A is outbid
almost surely which means that she will end up paying the outside price o.
The following expression gives A�s expected payo¤ from searching

V S(cA;h1) = �B

�Z bB

0

(1� bB)do+
Z 1

bB

(1� o)do
�
+ (1)

(1� �B)
�Z 1

o

(1� o)do
�
� cA

=
1� �B
2

+
�B
2
(1� b2B)� cA;

where �B denotes the probability with which B searches and h1 = fbB; Ag:
Alternatively, suppose that A passes. Then, BA = 1. If bidder B has

searched, then she will bid the outside price in the �nal bidding round, i.e.,
BB = o and A will win the auction almost surely. She will pay the standing
pice bB if o � bB and she will pay the outside price o if o > bB. On the other
hand, if B hasn�t searched, then BB = 1, and because neither bidder has
searched and BA = BB = 1; both bidders earn zero payo¤. The following
expression gives A�s expected payo¤ from passing, i.e.,

V P (cA;h1) = �B

�Z bB

0

(1� bB)do+
Z 1

bB

(1� o)do
�

(2)

=
�B
2
(1� b2B):

Now we turn to the second case and suppose that bidder B is the high
bidder after the initial round, i.e., bA � bB and h1 = fbA; Bg. Notice that
in second price auction bidder A does not observe bB. However, for the
purposes of clarity let us suppose for a moment that bB were observable to
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both bidders. This will simplify our expressions considerably and illustrate
the intuition behind the payo¤s.
As before, suppose �rst that A has searched: Then, she pays her search

cost cA and gets the outside price. Her �nal round bid is BA = o. If B
searches, then BB = o and if B passes, then BB = 1. Hence, when A
wins the auction, she will pays the �nal auction price, o; and if she loses the
auction, then she pays the outside price, o; i.e., she ends up paying o whether
she wins or loses the auction. Her expected payo¤ from searches is

V S(cA;h1) =

Z 1

0

(1� o)do� cA =
1

2
� cA; (3)

where h1 = fbA; Bg.
Finally, when A does not search then she bids in the �nal bidding round,

i.e., BA = 1. Bidder B�s �nal round bid is either BB = o if she searched or
BB = 1 if she hasn�t searched. In the former case A wins the auction and
pays bB if o < bB; and o if o > bB. In the latter case both bidders get zero.
Hence, conditional on bB; A�s payo¤ from passing is3

V P (cA;h1) = �B

�Z bB

0

(1� bB)do+
Z 1

bB

(1� o)do
�

(4)

=
�B
2
(1� b2B):

Notice that (2) and (4) are exactly equivalent. When bidder A does not
search she rises her bid to the maximum, 1; and wins the auction at the price
of the second highest bid, i.e., max[bB; o], no matter whether she was the
high or the low bidder after the initial bidding round.
The following strategy pro�le is the early-bidding equilibrium.

Proposition 1: There is an early-bidding (EB)4 equilibrium in which
each bidder bids according to the increasing and concave bidding function
in the initial bidding round and bids her price-o¤er, i.e., min[o; 1], in the
�nal round. In the middle stage the low bidder searches and the high bidder
passes. Bidder i uses

�1(ci) =
p
2ci

3Here we make use of our temporary assumption that A is able to observe the winning
bid bB . Then, A�s expected payo¤ is largely simpli�ed. Without this assumption we would
have to integrate over the relevant types of bidder B.

4where the abbreviation EBcv stands for early-bidding (equilibrium) common prices
case.
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in the �rst round,

�(ci;h1) =

�
0 if W = i
1 if otherwise

in the searching round and

�2(ci;h2) = o

in the �nal round. All information sets are on equilibrium path and hence
beliefs are determined by the equilibrium strategies.
Proof: Appendix.

An interesting feature of this equilibrium is that bidders implicitly co-
ordinate5 their searching decisions in the searching round. The high bidder
passes while the low bidder searches. This strategy is important since as
we will see later this type of coordinated searching has an impact on the
e¢ ciency of the market. We will call this searching-when-loosing strategy.

De�nition: Any strategy by a bidder "searches when she is losing (after
the initial biding round) and pass otherwise" we call the searching-when-
losing strategy.

The searching-when-losing strategy makes the equilibrium strong in the
following sense: when bidders use the searching-when-losing strategy in the
continuation game (searching stage), then bidding

p
2ci is a weakly dominant

strategy for bidder i 2 fA;Bg, i.e., it is the best response to any bid by the
other bidder. To see the intuition behind this consider what happens when A
bids slightly more or slightly less, i.e., when

p
2cA�� for an arbitrarily small

and positive �. We will only illustrate the upward deviation,
p
2cA+�, but

the same logic applies to the opposite case of
p
2cA ��: Take an arbitrary

bid bB, by bidder B. If bB <
p
2cA; then both bids,

p
2cA and

p
2cA + �;

win the auction and in both cases A gets the same payo¤ (2) where �B = 1.
Alternatively, if

p
2cA +� < bB; then A loses the auction in both cases and

her payo¤s from both bids are the same, i.e., given by (3) where �B = 0.

5The word coordinate implies some sort of communication on the part of the bidders.
Since our environment is purely non-cooperative we want to emphasize that the coordina-
tion in our case is implicit - or, in other words, in the equilibrium bidders act as if they
coordinated.
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The only case in which payo¤s from bidding
p
2cA versus

p
2cA+� di¤er

is when
p
2cA � bB <

p
2cA+�: In this case, bidding bA causes A to become

the low bidder after the initial bidding round, W = B, and her expected
payo¤ is given by (3) where �B = 0, i.e.,

1

2
� cA =

1

2
� (
p
2cA)

2

2
: (5)

Now consider what happens when A bids
p
2cA + � instead. Then, she

becomes the high bidder, W = A, and her payo¤ is given by (2), where
�B = 1, i.e.,

1

2
� b

2
B

2
: (6)

The optimality of bA requires that (5) is as least as big as (6) which is true
since

p
2cA � bB: Similar arguments apply for the deviation in the opposite

direction, bA ��:
The EB equilibrium is fairly intuitive. The searching-when-losing strategy

allows the implicit coordination of searching decisions. Notice that in this
equilibrium there is always precisely one bidder who searches while the other
bidder passes. This type of coordination is facilitated by the initial round
bidding which is intuitively appealing.
A question one could be asking is whether there are any other increasing

bidding functions that could support the EB equilibrium. The answer is no
as established by the following corollary

Corollary 1: Early-bidding equilibrium given in Proposition 1 is a bid-
separating equilibrium which is unique in symmetric, undominated and pure
strategies.
Proof: Appendix.

Next, we discuss another equilibrium which has empirical as well as in-
tuitive appeal. It is a late-bidding equilibrium. Recall that in the initial
bidding round a zero bid, i.e. bi = 0, has the same e¤ect as if the bidder did
not bid at all �a bidder cannot become the high bidder with a zero bid just
as she cannot become the high bidder if she hasn�t bid at all. There exists
an equilibrium in which all bidders bid zero in the initial bidding round and
then use a threshold strategy in the searching round. A threshold strategy is
a value ĉ 2 [0; 1=2] such that all bidders with ci < ĉ search and the rest pass.
The next proposition gives the equilibrium.
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Proposition 2: There is a late-bidding (LBcp) equilibrium in which all
bidders bid zero in the initial bidding round and bid their price-o¤ers in the
�nal round. Searching decisions follow cut-o¤ strategies, such that all types
with low search costs, i.e., ci < 1=4; search and types with high search costs,
i.e., ci > 1=4; pass. Bidder i uses

�1(ci) = 0

in the �rst round,

�(ci;h1) =

�
1 if ci < 1=4
0 if otherwise

in the searching round and

�2(ci;h2) = o

in the �nal round. For all histories fh1 2 H1 j p1 2 h1 and p1 > 0g bidder i
believes that cj � U [0; 1=4]:
Proof: Appendix.

In the equilibrium above all bidders pass in the initial bidding round.
In that case the history h1 is f0;�g, i.e., the standing price equals to the
starting price and neither of the bidders is the high bidder after the initial
bidding round. The main di¤erence between this equilibrium and the early-
bidding equilibrium is that in this case the history will reveal nothing about
bidders�respective types (search costs), and hence, the bidders will remain
uncertain about whether their opponent is going to be searching or passing.
This causes all bidders for whom searching is relatively cheap (c < ĉ) to
search and the others for whom searching is costly (c > ĉ) to pass.
The pattern of behavior which appears in the LBcp equilibrium is con-

sistent with the empirical evidence of late bidding that we outlined in the
introduction. The equilibrium, however, su¤ers from the coordination prob-
lem. Since bidders use threshold strategies in the searching round it will be
the case that with positive probability both bidders search. This is wasteful
and cannot be a Pareto e¢ cient outcome as one could for example generate
extra surplus by having one of the bidders pass instead and save the search
cost.
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3.2 Independent Price Draws

In this section we relax the assumption of common price draws and consider
the case in which price draws are identically and independently distributed
with the uniform distribution, i.e., oi � U [0; 1] for i 2 fA;Bg. This assump-
tion seems more realistic. One could argue that people do not shop in the
same store which was one of the interpretations of the common price draws.
We will illustrate the impact of independent price draws on the behaviors
in our two equilibria from the previous section. A remarkable result of this
section is that the heterogeneity of price draws causes some late bidding in
the early bidding equilibrium. In what follows we characterize two equilibra
that are very similar to our equlibria from the previous section. The �rst is
late-bidding equilibrium and the second is early-bidding equilibrium.
Next proposition gives the late bidding equilibrium.

Proposition 3: There is a late-bidding (LBip)6 equilibrium in which all
bidders bid zero in the initial round and bid their outside prices in the �nal
round. Searching decisions follow cut-o¤ strategies, such that all types with
low search costs, i.e., ci < 3=10; search and types with high search costs, i.e.,
ci > 3=10; pass. Bidder i uses

�1(ci) = 0

in the �rst round

�(ci;h1) =

�
1 if ci < 3=10
0 if otherwise

in the searching round and

�2(ci;h2) = o

in the �nal round. For all histories fh1 2 H1 j p1 2 h1 and p1 > 0g bidder i
believes that cj � U [0; 3=10]:
Proof: Appendix.

The equilibrium is almost the same as the LBcp equilibrium from the
previous section. The only element that changes is the value of the threshold,
ĉ. In the LBcp equilibrium it was the case that when both bidders searched

6where LBip refers to late-bidding equilibrium with independent price draws.
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they both received the same price draw from the unit interval. Hence, on
average, the �nal auction price was just equal to the average of the unit
interval, i.e., 1=2. With independent private price draws, however, if both
bidders search, then each bidder gets her own draw. Then, after bidders have
bid their outside prices in the auction, the �nal auction price will become the
lower of the two draws. Hence, the expected �nal auction price in this case
is the value of the second order statistic from a sample of two, i.e., 1=3. The
extra gain that the additional draw brings to the table causes the threshold
value to decrease in the LBip equilibrium.
Now we turn to early-bidding equilibrium �EB. Here the independent

price draws have more serious consequences than it was in the case of late
bidding. In fact we will illustrate that with independent price draws the EB
equilibrium in which all bidders use a strictly increasing bidding function
fails: some low search cost types will pro�tably deviate to late bidding. To
see how this happens consider the following example. Assume for a moment
that price draws are common and that bidders use strategies given by EB
equilibrium. Further suppose that cB = 0 and cA = " for some very small
". Then, in equilibrium, B bids zero and A bids

p
2" (which is very small

but positive). Bidder B is the low bidder, and hence, searches �costlessly.
Since the standing price is p1 = 0, both bidders pay the price-o¤er that B
draws, o. Had A searched as well it would have cost her very little, i.e., ", but
the marginal bene�t from searching would have been zero as her price-o¤er
would also be o: Hence, by bidding early A was able to avoid searching while
giving up no extra surplus.
Now suppose that price-draws are independent, i.e., oi � U [0; 1] for

i 2 fA;Bg, and that bidders use the equilibrium strategy pro�le from Propo-
sition 1. As before, B initially bids zero and then searches. Bidder A bidsp
2" and passes. Her payo¤ is be given by (2) where p1 = 0 and �B = 1,

i.e., the payo¤ is 1=2. Now suppose that A deviates and searches instead.
Then, she draws oA: Recall, that in the �nal bidding round bidders bid their
respective outside prices. If oA � oB and A wins the auction, then she pays
the �nal auction price oB. If oA � oB and A loses the auction, then we have
two cases: 1. oB �

p
2" and 2. oB <

p
2". In the �rst case bidder A is

outbid in the �nal round and pays her outside price oA. In the second case,
however, A wins the auction with her initial round bid

p
2" and pays the

�nal auction price oB. This is the case when she is unable to use her own
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(low) price-o¤er oA. As a result, A�s expected payo¤ from searching isZ p
2"

0

(1�
p
2")doB +

Z 1

p
2"

�Z oB

0

(1� oA)doA +
Z 1

oB

(1� oB)doA
�
doB � "

or,
2

3
� (2")

3=2

6
� ":

We conclude that all bidder-types that satisfy

2

3
� (2cA)

3=2

6
� cA �

1

2
(7)

will deviate from the proposed EB equilibrium and search even when they are
winning the auction after the initial bidding round. Hence, with independent
price draws EB equilibrium fails.
This motivates the multiple-bidding equilibrium which is given in the next

proposition.

Proposition 4: There is a symmetric multiple-bidding (MB) equilibrium
in which bidder i 2 fA;Bg, with search cost ci � 1=6 bids according to
increasing and concave bidding function in the initial round and bids her
outside price-o¤er in the �nal round. If her search cost is low, i.e., ci < 1=6;
than she bids zero in the initial round. In the searching round she passes
whenever she is the high bidder W = i and her search cost is su¢ ciently
high, i.e., ci < 1=6. Otherwise, she passes. For bidder i 2 fA;Bg and j 6= i
we have7

�1(ci) =

�
0 if ci < 1=6p
2ci if ci � 1=6

;

in the �rst round,

�(ci;h1) =

�
0 if W = i
1 if otherwise

;

in the searching round and

�2(ci;h2) = oi

7The strategies pro�le describes the equilibrium path. The full characterization of the
best response strategies that form the equilibrium is given in the Appendix.
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in the �nal round.
Proof: Appendix.

The equilibrium is very similar to the EB equilibrium with the excep-
tion that some bidder-types bid zero in the initial bidding round while the
remaining types use increasing bidding function. When price-draws are in-
dependent each bidder realizes extra private gains from searching which in-
duces some bidder-types (those with low search costs) to pass in the initial
bidding round. The equilibrium interprets early bidding as an attempt to
avoid searching when it is relatively costly to search, while the late bidding
is interpreted as the response to potentially large gains from searching when
searching is relatively cheap. Just as it was the case in the EB equilibrium,
it is also true here, that at all times at least one of the bidders searches. The
main di¤erence between the two equilibria is that in the MB equilibrium it
can also happen that both bidders search. These are precisely the bidders
who bid zero in the initial bidding round. The power of the equilibrium
is in explaining both major empirical bidding regularities within the same
incentive structure.

4 Welfare Comparisons

Our model contains two types of equilibria: the late-bidding (LBcp/LBip)
equilibrium and, the early-/multiple-bidding (EB/MB) equilibrium. In this
section we compare these two equilibria in terms of how they divide the
surplus between buyers and sellers both when price draws are common and
when they are independent.

4.1 Common Price Draws

We begin by looking at the simpler, common price draws case, such that
oA = oB = o, and look at the volume of total surplus. Throughout this
section we will use Figure 1 to guide us. Figure 1 shows the areas for which
the equilibrium behavior in the LBcp equilibrium di¤ers. The behavior in the
EB equilibrium is the same for all areas A1-A3. We will focus our attention
on the shaded region in which cB � cA: The picture is symmetric around the
45� line.

18



A1

A2

A3

cA

cB

1/4

1/4
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Figure 1.

In each equilibrium two units can be traded �one in the auction and the
second for the outside price. The total surplus depends on how many units
sell and how many buyers have searched. In the EB equilibrium only the
more e¢ cient buyer searches and both units sell with certainty. Therefore
the total (ex-post) surplus is

2� cB.
In the LBcp equilibrium both items sell with probability 3=4 (areas A1

and A2) and only a single item is sold with probability 1=4 (area A3): With
probability 1=4 both bidders search (area A1) and with probability 1=2 only
the more e¢ cient buyer searches (area A2): Finally, with probability 1=4
neither of the two buyers searches (area A3). The total (ex-post) surplus in
this equilibrium is 8<:

2� cB � cA if (cA; cB) 2 A1
2� cA if (cA; cB) 2 A2
1 if (cA; cB) 2 A3

:

We compare the two equilibria in terms of their ex-ante surpluses.

Observation 1: The EB equilibrium reaches the total (ex-ante) sur-
plus 11=6 which is greater than the surplus of 13=8 generated in the LBcp
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equilibrium.

The reason for the loss of surplus in the LBcp equilibrium is that there
the implicit coordination of searching is not possible. The LBcp equilibrium
su¤ers from two types of ine¢ ciency. The �rst is on the area A1 where both
buyers search. Here, buyer A searches in vain since her marginal gain from
searching is zero. If only the more e¢ cient buyer, B; searched, then buyers
would increase their joined surplus. The second ine¢ ciency occurs on area
A3 where both buyers pass. Here, one of the buyers does not trade causing a
loss of surplus equal to 1: As before, if buyer B searched, then buyers would
increase their joined surplus.
Next, we look at the division of surplus between buyers and sellers. The

behavior in the EB equilibrium does not vary across buyer-types. In the
initial bidding round, both buyers make nontrivial bids which causes the
standing price to increase, i.e., p1 = �1(cB). Then, in the searching round
only the more e¢ cient buyer, B, searches. Buyer B then pays the outside
price, o, with certainty while buyer A pays the higher of o and p1. Below, we
break down the total surplus between buyers (the �rst term) and the sellers
(the second term), i.e.,

2� (o+max[o; p1])� cB; o+max[o; p1]:

In the LBcp equilibrium both buyers bid zero in the initial bidding round
and search only if ci � 1=4, where i 2 fA;Bg. In area A1 both buyers search
and both pay the outside price, o. In area A2 only the more e¢ cient buyer,
B, searches and since the standing price is zero, i.e., p1 = 0, both pay the
outside price, o: Finally, in the last area, A3, both buyers pass and bid 1 in
the �nal round. In the expression below the �rst term gives the surplus of
the sellers and the second term gives (ex-post) surplus of the buyers for each
respective area, i.e.,8<:

2(1� o)� cB � cA; 2o if (cA; cB) 2 A1
2(1� o)� cB; 2o if (cA; cB) 2 A2
0; 1 if (cA; cB) 2 A3

:

We compare the two equilibria in terms of the (ex-ante) surplus they
generate for both, buyers and sellers. Table 1 gives the di¤erences in (ex-
ante) surplus that buyers and sellers get in the EB and the LBcp equilibrium
for each respective area A1, A2 and A3. The results are summarized in the
following observation.
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Observation 2: By comparing the EB and the LBcp equilibria we �nd
that:
In all areas A1-A3 the sellers are always better o¤ in the EB equilibrium

than they are in the LBcp equilibrium. The early bidding in the EB equilib-
rium deprives buyers of some surplus in the area A2 but this is more than
o¤set by gains from the coordinated searching in the remaining areas A1 and
A3.
Table 1 shows distribution of gains and losses between the two equilibria.

Di¤erences in
total surplus:
(EB - LBcp)

Buyers: Sellers: Total:

A1 : 1=48 1=48 1=24
A2 : �1=16 1=16 0
A3 : 1=12 1=12 1=6

A1+2+3 : 1=24 1=6 5=24

Table 1.

4.2 Independent Price Draws

In this section we compare equilibrium LBip with the MB equilibrium. The
division of surplus in the MB and LBip equilibrium di¤ers from the previous
section. Figure 2 shows the areas with di¤erent equilibrium behavior in both
cases of the MB and LBip equilibrium. Areas B1, B2 [ B4 and B3 [ B5 [ B6
describe di¤erent equilibrium behavior in the MB equilibrium and areas B1
[ B2 [ B3 and B4 [ B5 [ B6 do the same for the case of LBip equilibrium.
Hence, we have six areas where equilibrium behavior di¤ers between the EB
and the LBip equilibrium.
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Figure 2.

In the MB equilibrium both units always sell and the more e¢ cient buyer,
B, always searches. The less e¢ cient buyer, A, searches only if her search
cost is su¢ ciently low, i.e., cA � 1=6. Hence, the the total (ex-post) surplus
in the MB equilibrium is given by�

2� cB � cA if (cA; cB) 2 B1
2� cB if (cA; cB) 2 B2-B6

:

In the LBip equilibrium both items sell with probability 21=25 (areas B1-
5) and only a single item is sold with probability 4=25 (area B6):With prob-
ability 9=25 both buyers search (areas B1-3) and with probability 12=25 only
the more e¢ cient buyer, B, searches (areas B4-5). Finally, with probability
4=25 both buyers pass (area B6). Hence, the total surplus in this equilibrium
is given by 8<:

2� cB � cA if (cA; cB) 2 B1-B3
2� cB if (cA; cB) 2 B4-B5
1 if (cA; cB) 2 B6

:

Observation 3: The MB equilibrium reaches greater surplus, 1:82; than
the LBip equilibrium, 1:66.

Next we look at the division of surplus between buyers and sellers. We
�rst focus on the MB equilibrium. In the area B1 both buyers bid zero in
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the initial round and then search. Hence, both of them draw an outside price
and bid their price draws it in the auction. The lower draw, i.e., min[oA; oB],
becomes the price for both of them. In areas B2 and B4 only the more
e¢ cient buyer, B, searches while the other buyer passes. Since buyer B bids
zero in the initial round the standing price remains at zero, i.e., p1 = 0, and
both buyers pay a �nal price equal to B�s price draw, i.e., oB. Finally, in
areas B3, B5 and B6, both buyers bid positive amounts early raising the
standing price above zero. The standing price then becomes a price �oor
in the auction. Hence, the more e¢ cient buyer, B, pays her price draw, oB
while her opponent, buyer A, wins the auction and pays the higher of oB and
the standing price p1. The (ex-post) surpluses of buyers (the �rst term) and
sellers (the second term) are summarized below8<:
2(1�min[oA; oB])� cB � cA; 2min[oA; oB] if (cA; cB) 2 B1
2(1� oB)� cB; 2oB if (cA; cB) 2 B2 [ B4
2� oB �max[oB; p1]� cB; oB +max[oB; p1] if (cA; cB) 2 B3 [ B5 [ B6

:

In the LBip equilibrium the division of the surplus is almost the same as it
was for the LBcp equilibrium in the preceding section. Here, in areas B1-3
buyers realize extra gains from an additional price draw. Both pay the �nal
price equal to min[oA; oB]. The division of surplus is8<:

2(1�min[oA; oB])� cB � cA; 2min[oA; oB] if (cA; cB) 2 B1-B3
2(1� oB)� cB; 2oB if (cA; cB) 2 B4-B5
0; 1 if (cA; cB) 2 B6

:

For both, buyers and sellers, we subtract their (ex-ante) surplus in the LBip
equilibrium from that in the MB equilibrium and summarize in the following
observation.

Observation 4: By comparing MB and LBip equilibria we �nd that:
(i) In all parts of equilibria (areas B1-B6) sellers capture more surplus in

the MB than in the LBip equilibrium.
(ii) Buyers are worse o¤ in the MB equilibrium than in the LBip equilib-

rium despite their implicit coordination of searching in the MB equilibrium.
Table 2 shows the distribution of gains and losses between the MB and

LBip equilibrium. We exclude areas B1 and B4 since in these areas both
equilibria render the same behavior and hence the same surplus.
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Di¤erences in
total surplus:
(MB - LBip)

Buyers: Sellers: Total:

B2 : �0:018 0:06 0:042
B3 : �0:021 0:039 0:018
B5 : �0:05 0:05 0
B6 : 0:042 0:059 0:101

B2+3+4+6 : �0:047 0:208 0:161

Table 2.

By comparing observations 2 and 4 we notice a little paradox: buyers�
gain in the EB relative to the LBcv equilibrium when price draws are com-
mon, but lose when price draws become independent. In both cases, the
equilibrium (EB/MB) in which early bidding occurs is more e¢ cient than
the corresponding late-bidding (LBcp/LBip) equilibrium. However, while
the extra surplus in the EB equilibrium (common price draws) is shared by
both, buyers and sellers, the extra surplus in the MB equilibrium (indepen-
dent price draws) is entirely captured by the sellers. Parts of equilibrium
where buyers do worse in MB than in LBip equilibrium are in areas B2,
B3 and B5. In the reminder of this section we examine what causes this
phenomenon.
To resolving this paradox we have to �rst understand how searching af-

fects buyer�s surplus in both cases of common and independent price draws.
Suppose that after the initial bidding round the standing price is zero, i.e.,
p1 = 0. In the case of common price draws buyers can reach the greatest
joined surplus if only the more e¢ cient buyer, i.e., buyer B, search. The
situation is di¤erent in the case of independent price draws. Here, buyers
reach their maximum combined surplus if they both search. To illustrate this
we focus on areas B1-3 where buyers always search in LBip equilibrium. To
make this as simple as possible consider a borderline case where cA = 3=10
and cB = 0. When both buyers search, then their joined surplus is given by

2(1� 1
3
)� 3=10 = 31=30:

If, however, only the more e¢ cient buyer searches, then the expected joined
surplus is

2(1� 1
2
) = 1:
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This suggests that in the LBip equilibrium buyers have greater incentives to
search when outside prices are independent. One direct implication of this
is that the equilibrium searching threshold in the LBip equilibrium, 3=10, is
higher in the case of independent price draws than it is in the case of common
price draws, i.e., 1=4. Consequently, the area B6 is smaller than the area A3
and the loss of trading surplus in the LBip equilibrium is reduced. The second
implication is that in areas B2 and B3 buyers maximize their joint surplus in
the LBip equilibrium �since they both bid zero in the initial round and then
both search. It follows then that the joined surplus of buyers�s have to be
smaller in the MB than in the LBip equilibrium, since there (in the MB eq.)
only the more e¢ cient buyer searches and the other buyer passes. In area
B3 buyers�surplus is reduced even more in the MB equilibrium because both
buyers make positive bids in the initial bidding round and raise the standing
price above zero. Hence, the ine¢ cient searching in the MB equilibrium
explains the negative entry in the cell B2 of the buyers�column (Table 2)
and a combination of ine¢ cient searching and early bidding explains the
negative entry in cell B3.
Finally, the negative entry in cell B5 of buyers column is entirely due to

the early bidding. There, in both equilibria only buyer B searches. The early
bidding in the MB equilibrium set a price �oor in the auction and becomes a
pure transfer of surplus from buyer and sellers �a tax for the buyers�actions
that implicitly coordinate searching.

5 Conclusion

Empirical studies of bidding behavior in Internet auctions show that large
proportion of bidders bid multiple times while others bid only at the end. We
designed a model that incorporates two key features found in typical Inter-
net auction: bidding takes place in multiple and discrete rounds and proxy
bidding is allowed. There are two types of equilibria. In the �rst equilibrium
some bidders bid multiple times and some only bid late. In the second equi-
librium all bidders bid late. The �rst equilibrium shows that we can see both
multiple bidding and late bidding in an auction where all bidders are rational.
The key to this �nding is that the bidders face di¤erent costs of searching
for outside prices. Buyers with high search costs bid multiple times, while
those with low search costs only bid late. The main distinguishing feature of
my model from other models of multiple bidding is that it is symmetric and
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does not rely on some buyers being uninformed about their private values at
the beginning of the auction.
We considered two cases: common outside prices (the outside price is the

same for both bidders) and independent outside prices (each bidder draws
her own outside price). The late-bidding (LBcp/LBip) equilibrium exists in
both cases and remains qualitatively unchanged. The equilibrium in which
bidders bid multiple times also exists in both cases but varies substantially
from one case to the other. When outside prices are common all bidders bid
multiple times �the early-bidding (EB) equilibrium. On the other hand when
outside prices are independent only the high-search-cost bidders bid multiple
times while the rest bid late �the multiple-bidding (MB) equilibrium. The
timing of the bids depends on the statistical structure of the outside prices.
The case of independent outside prices is more realistic and the equilibrium
in this case generates both the late and multiple bidding behaviors which �ts
nicely with the empirical patterns found in the bidding data.
Finally, we addressed some issues regarding welfare implications. Accord-

ing to our expectations we found that multiple-bidding (EB/MB) equilibrium
dominates the late-bidding (LBcp/LBip) equilibrium in terms of generated
total surplus. This is due to the fact that bidders act as if they coordinated
searching, and as a result, both bidders always trade in the EB/MB equilib-
rium as opposed to the LBcp/LBip equilibrium in which some bidders may
not always trade. However, a surprising result appears when we look at the
division of surplus between buyers and sellers in both equilibria. While sell-
ers are always better o¤ in the equilibrium with early bidding (EB/MB) than
in the LBcp/LBip equilibrium, the buyers are better of in the EB relative to
LBcp but worse o¤ in the MB relative to LBip equilibrium.
The main contribution of our model is in providing an explanation for

the practice of early bidding which is commonly dismissed as a product of
irrational or myopic behavior. The next step is to test how our theory fares in
the reality. Future research might, for example, use an experiment to address
this issue. Our model also suggests important implications for auction design.
Since the sellers always receive greater pro�t in the equilibrium in which
bidders coordinate searching, they might be interested in �nding ways of
implementing that equilibrium. For example, using secret instead of public
reserve prices might be one way of accomplishing this.
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6 Appendix

Proposition 1.:
Consider strategy pro�le given by Proposition 1. Consider two bidders A

and B.

Suppoise � is arbitrary function that is strictly increasing. �

Claim 1.: Suppose A is the low bidder, i.e., W 6= A: Then, bidder A
searches, i.e., �A = 1.
Proof: Consider biddersA andB and supposeW 6= A: Then, bB � bA > 0

and since � is strictly increasing we have cB � U [��1(bB); 1=2]. SinceW 6= A;
then �B = 0 and A�s payo¤ from searching is given by (3), i.e., 12� cA. When
A passes she gets 0, by (4): Since 1

2
� cA � 0; then the pro�t from searching

is no less than zero, i.e. searching is optimal. �

Claim 2.: Suppose W = A: Then, bidder A optimally passes, i.e., �A =
0:
Proof: Since W = A we have that bA � (>)bB > (�)0 and �B = 1.

Then, p1 = bb and A�s payo¤ from passing is given by (2), i.e.,

1

2
� b

2
A

2
:
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Her payo¤ from searching is given by (1), i.e.,

1

2
� b

2
A

2
� cA:

The di¤erence between passing and searching is cA � 0, i.e., A optimally
passes. �

Claim 3.: In the initial bidding round �1(cA) =
p
2cA is a A�s best

response.
Proof: Suppose bidder A with cA 2 [0; 1=2] bids bA =

p
2cA: When

W = A then we have bA � bB = p1 � 0 and cB 2 [0; cA): Then, in the
searching round, A passes, i.e., �A = 0 and B searches, i.e., �B = 1. The
payo¤ that A gets in this case is given by (2) � the �rst term of (8). If
W 6= A, then bB � bA = p1 � 0 and we have �A = 1 and �B = 0. The payo¤
in this case is given by (3) �the second term of (8). Hence, A�s expected
payo¤ in the initial round isZ cA

0

(
1

2
� z)2dz +

Z 1=2

cA

(
1

2
� cA)2dz; (8)

where we used a substitution bB =
p
2cB in the �rst term.

To establish that bA =
p
2cA is a best response consider a deviation

b̂A 6= bA. Then, with probability b̂2A we have cB 2 [0; b̂2A=2] and W = A: In
this case A�s payo¤ is given by (2) where �B = 1. With the complementary
probability 1� b̂2A we have cB 2 [b̂2A=2; 1=2] and W 6= A. Bidder A�s payo¤ is
now given by (2) where �B = 0. Hence, the expected payo¤ from deviation
is Z b̂2A=2

1=6

(
1

2
� z)2dz +

Z 1=2

b̂2A=2

(
1

2
� cA)2dz: (9)

Taking the di¤erence between (8) and (9) we getZ b̂2A=2

cA

(
1

2
� cA)2dz �

Z b̂2A=2

cA

(
1

2
� z)2dz > 0;

i.e., bidding bA gives higher payo¤.
Thus, bA =

p
2cA is A�s best response since any deviation gives lower

payo¤. �
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Corollary 1:
Assume there are two bidders A and B. Consider a bidding equilibrium

(�1(�); �(�;h1); o) in symmetric and pure strategies. Assume bidding function
� is strictly monotone, continuous and �(0) = 0.

Claim 1: For a given history fbB; Ag if �(cB; fbB; Ag) = 1 (0) is part of
equilibrium, then �A = 0 (1) is also a part of the equilibrium.
Proof: Suppose h1 = fbB; Ag and B searches in the equilibrium, �B = 1:

Consider bidder A. If A searches as well, �A = 1, she gets payo¤ given by
(1),

1

2
� b

2
B

2
� cA:

If she passes, �A = 0, then her payo¤ is given by (2),

1

2
� b

2
B

2
:

Since cA � 0 passing is a best response for A, i.e., �A = 0 is part of equilib-
rium.
Next, suppose h1 = fbB; Ag and B passes in the equilibrium, �B = 0:

Then, if A searches, �A = 1, her payo¤ is given by (1), 1=2 � cA. And her
payo¤ from passing is given by (2), i.e., 0. Since cA � 1=2 searching is a best

response for A, i.e., �A = 1 is part of equilibrium. �

Claim 2: In any equilibrium when bidder A is the low bidder after the
initial bidding round, W 6= A; then she searches, i.e., �A = 1.
Proof: Assume that in the equilibrium � is strictly monotone, continuous

and �(0) = 0. Suppose that cB � cA. Suppose there was a particular
type �c such that �(�c; f�(�c); Bg) = 0, where � is the symmetric equilibrium
searching function. Then, if cA = �c; then in equilibrium we would have
W = B (W 6= A) and bB � bA = p1 � 0: The history of play after the
initial bidding round would be h1 = fbA; Bg and, by Claim 1, B would be
searching, �B = 1:
Suppose that cA = �c and consider bider B with (the highest) cost cB =

1=2. Then, in equilibrium, her bid is �(cB) = �b (the maximum bid one would
observe in the equilibrium). It follows, that in the searching roundB becomes
the high bidder, W = B; with certainty. Hence, for any given type of her
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opponent, cA 2 [0; 1=2], if A passes in the equilibrium, �(cA; f�(cA); Bg) = 0,
then, by Claim 1, B searches. Her payo¤ in this case is given by (1), where
�B = 1 and we use the fact that 1=2 � cB = 0. If instead A searches in the
equilibrium, �(cA; f�(cA); Bg) = 1, then B passes. Her payo¤ is given by (2)
where �B = 0: Thus, her (ex-ante) expected equilibrium payo¤ is given byZ 1=2

0

�(z; f�(z); Bg)(1
2
� �(z)

2

2
)2dz: (10)

Now, consider following deviation by B. In the initial bidding round she bids
�b = �(�c) and, in the searching round, she passes if she is the high bidder, i.e.,
�B = 0 if W 6= B: In other words, B mimics the equilibrium strategy of a
type�c. Then, for all types of bidder A, cA 2 [�c; 1=2]; the equilibrium history
is h1 = f�b; kg, i.e., A becomes the high bidder after the initial bidding round
and the standing price is �b. Since in the equilibrium �(�c; f�(�c); Bg) = 0;
then, by Claim 1, bidder A searches, i.e., �A = 1. Bidder B�s payo¤ in this
case is given by (4) where �A = 1 �don�t forget to �ip the indexes, now B
is A in the formula. For the remaining types, cA 2 [0;�c], B�s equilibrium
play remains una¤ected (by the deviation). The expected payo¤ to bidder
B from bidding�b isZ �c

0

�(z; f�(z); Bg)(1
2
� �(z)

2

2
) +

Z 1=2

�c

(
1

2
� �(z)

2

2
)2dz: (11)

Since the di¤erence between (11) and (10) isZ 1=2

�c

(1� �(z; f�(z); Bg))(1
2
� �(z)

2

2
)2dz � 0

we found a pro�table deviation by B, i.e., our supposed equilibrium fails.
Since passing when losing, i.e., �A = 0 when W 6= A, is not part of any

equilibrium, then it must be that in any equilibrium: �A = 1 when W 6= A:
�

Claim 3: In any equilibrium, when W = A; then bidder A passes, i.e.,
�A = 0.
Proof: We combine Claims 1 and 2. Suppose W = A. Hence, bA � bB

and W 6= B: Then, in any equilibrium, by Claim 2, �B = 1 and, by Claim
1, we have �A = 0: �
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Claim 4: Suppose we had an equilibrium such that in the searching stage
bidder A passes when she is the high bidder and searches when she is the
low bidder, i.e., �A = 1 when W 6= A and �A = 0 when W = A: Then, in
any such equilibrium, �1(cA) =

p
2cA is the bidding function in the initial

bidding round:
Proof: Suppose that in the equilibrium � has the property such that

for a given type cA and a history fbA; Bg, we had �A = 1 and for history
fbB; Ag, we had �A = 0. Suppose that the equilibrium bidding function, �;
is increasing, continuous and �(0) = 0. Consider bidder A. Suppose she bids
bA 2 [0; 1]: For x 2 [0; 1]; de�ne C(x) = min[��1(�(1=2)); ��1(x)]: Function
C returns the ��1 for any bA which is in the range of � and returns 1=2 (the
value of the highest type) if bA is outside of the range of �. For a given bid by
bidder A, bA, she becomes the high bidder,W = A, if cB 2 [0; C(bA)]: In that
case her equilibrium payo¤ is given by (2) where �B = 1. If cB 2 [C(bA); 1=2],
then she becomes the loosing bidder, i.e., W 6= A: Her payo¤ in that case is
given by (3) where �B = 1. Her (ex-ante) expected payo¤ from bidding bA isZ C(bA)

0

(
1

2
� �(z)

2

2
)2dz +

Z 1=2

C(bA)

(
1

2
� cA)2dz: (12)

To �nd her optimal bid we maximize (12). The �rst order condition is

C 0(bA)((1� �(C(bA))2)� (1� 2cA)) = 0:

Notice that C is a continuous function which is di¤erentiable everywhere but
at a single point �(1=2): Hence, for all bA < �(1=2) we have

1� bA2 = 1� 2cA
bA =

p
2cA;

The optimal bid b�A satis�es optimality condition

b�A

�
=
p
2cA if

p
2cA < �(1=2)

2 [�(1=2); 1] if
p
2cA � �(1=2)

: (13)

Since, in any equilibrium, bidders behave optimally at each information
set the equilibrium bidding function � has to satisfy the optimality condition
(13). There is only a single such function �(cA) =

p
2cA which satis�es (13).

Hence, in any equilibrium the bidding function is �1(cA) =
p
2cA: �
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Proposition 2:
Consider strategy pro�le given by Proposition 2.

Claim 1: Bidder A best responds by searching, �A = 1; when cA < 1=4
and by passing, �A = 0; when cA > 1=4:
Proof: Consider bidder A with search cost cA: Then, bA = bB = p1 = 0.

Furthermore, �B = 1 for cB < 1=4 and �B = 0 for cB � 1=4: Since bA =
bB = 0; then expressions (1) and (3) are equal and (2) and (4) are also equal
which implies that W has no e¤ect on bidder A�s payo¤.
Bidder A�s payo¤ from searching isZ 1=2

0

(
1

2
� cA)2dz = 1=2� cA; (14)

where we used (1) inside the integral. On the other hand when A passes her
payo¤ is Z 1=4

0

1

2
2dz = 1=4; (15)

by using (3). Hence, bidder A optimally searches when (14) is greater than
(15), i.e.

1=2� cA > 1=4

cA < 1=4;

and she optimally passes when when

cA > 1=4:

Thus, A best responds by playing �A = 1 when cA < 1=4 and �A = 0 when
cA > 1=4: �

Claim 2.: Bidding zero, i.e., bA = 0; is A�s best response for all cA 2
[0; 1=2].
Proof: Consider bidder A with cA < 1=4: Since bA = bB = p1 = 0 we have

W = �: Furthermore, when cB < 1=4; then �B = 1 and when cB � 1=4, then
�B = 0: Bidder A searches, i.e., �A = 1: The payo¤ from bA = 0; isZ 1=2

0

(
1

2
� cA)2dz =

1

2
� cA; (16)
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where we used (3). Next, suppose that A makes a di¤erent bid, i.e., ~bA > 0:
Now, ~bA > bB = p1 = 0: Hence, W = A and �A = 0: Then, the expected
payo¤ is Z 1=2

0

(
1

2
� cA)2dz =

1

2
� cA; (17)

where we used (1). Since (16) and (17) are equal all bids are optimal, i.e.,
bA = 0 is optimal.
Next, suppose that cA > 1=4: All remains the same from the previous

case except that now �A = 0; i.e., A passes after the �rst stage. The payo¤
from bidding zero is Z 1=4

0

1

2
2dz =

1

4
;

by using (4). When A bids more than zero, i.e., ~bA > 0; then W = A but
the payo¤ stays una¤ected since (3) and (4) are the same. Thus, bidder A is
indi¤erent and hence bidding zero is optimal.
In both cases, when cA < 1=4 and when cA > 1=4; bA = 0 is a best

response by bidder A: �

� � �

Before we give proofs of Propositions 3 and 4 we �rst generalize payo¤
functions (1)-(4) to accomodate the independent price draws. In the search-
ing stage, suppose bA and bB are bids submitted in the initial round. First
we take up (1). This is the case when A is the high bidder, i.e., bA � bB and
the history is h1 = fbB; Ag:When A searches, i.e., �A = 1, then her payo¤ is

�B(

Z bB

0

(1� bB)dy+Z bA

bB

(1� oB)doB +
Z 1

bA

(

Z oB

0

(1� oA)doA +
Z 1

oB

(1� oB)doA)doB)+

(1� �B)
Z 1

0

(1� oA)doA � cA

=
1� �B
2

+ �B(
2

3
� b

2
B

2
� b

3
A

6
)� cA: (18)
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Notice that the di¤erence from (1) is only in the middle term (the nested
integral). This is the case when B searches, i.e., �B = 1, and oB � bA: In
the �nal bidding round B rises her bid to oB. Now A is outbid and hes a
chance to use her price-o¤er oA: When oA � oB and A wins the auction she
pays oB: When oA � oB and A loses the auction she gets the object for her
price o¤er oA:
When A passes, i.e., �A = 0, her payo¤ is equivalent to that under com-

mon price draws, i.e., (2),

�B(

Z bB

0

(1� bB)doB +
Z 1

bB

(1� oB)doB) = �B(
1

2
� b

2
B

2
): (19)

The other case is when A is the loosing bidder, i.e. bA � bB and the
history is h1 = fbA; Bg:The expression (3) becomes

�B(

Z bB

0

(1� oA)doA+Z 1

bB

(

Z bB

0

(1� bB)doB +
Z oA

bB

(1� oB)doB +
Z 1

oA

(1� oA)doB)doA)+

(1� �B)
Z 1

0

(1� oA)doA � cA

=
1� �B
2

+ �B(
2

3
� b

2
B

2
+
b3B
3
)� cA: (20)

The di¤erence from (3) is again in the middle term. This is the case when
B searches, i.e., �B = 1, and oA � bB. In the �nal bidding round A rises her
bid to oA and auction price rises to bB: If oB � bB then B does not rise her
bid and A wins the auction at price bB: If bB � oB < oA, then B bids oB but
A still wins the auction at price oB: Finally, when oA � oB, then A pays oA
no matter if she winns or loses the auction.
When A passes, i.e., �A = 0, her payo¤ is equivalent to (19).

Proposition 3:
Consider strategy pro�le given by Proposition 3.

*The proof is eqvivalent to the proof of Proposition 2 only here we use
expressions (18)-(20) in place of expressions (1)-(4).

Proposition 4.:
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In equilibrium bidders use

�1(ci) =

�
0 if ci < 1=6p
2ci if ci � 1=6

iin the �rst round and

�(ci;h1) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0 if

W = i and ci > 1=6(1� b3A)
or

W 6= i and
cA >

1
6(1�2k)(3� 2(2q + �

�1(bA)) + (q � ��1(bA))4b3B)

1 if otherwise

when p1 > 0

0 if

W = i and cA > 1
20y
(1� b3A � 10y)

or
W 6= i and ci > 3=10

1 if otherwise

when p1 = 0

in the searching round, where �(c) = 0 for c < x and �(c) is strictly increasing
for c � x; y = max[3=10; x] and q = 1=6(1� �(q)3). In the �nal round

�2(ci;h2) = oi:

For all histories fh1 2 H1 j p1 2 h1 and p1 2 (0; 1=3)g bidder i believes
that cj � U [0; 1=6]:

Suppose that �(c) = 0 for c < x and �(c) is strictly increasing for c � x:

Claim 1.: Suppose p1 = 0: Then, when W 6= A, i.e., bidder A is the
low bidder, she optimally searches if cA < 3=10 and passes when cA � 3=10.
For W = A, bidder A optimally searches when cA � 1

20y
(1 � b3A � 10y) and

optimally passes when cA � 1
20y
(1� b3A � 10y); where y = max[3=10; x]:

Proof: Further suppose that x � 3=10. Consider bidder A. Since p1 = 0
then we have either bB � bA = 0 or bA > bB = 0. In the �rst case, W = �
and bB � bA = 0: Beliefs remain unchanged, i.e., cB � U [0; 1=2]: Since bB = 0
and �B = 1 for cB < x and bB > 0 and �B = 0 for cB � x the payo¤ to A
from searching isZ x

0

2

3
2dz +

Z 1=2

x

1

2
2dz � cA =

1

2
+
x

3
� cA; (21)
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by using (20) and the payo¤ from passing isZ x

0

1

2
2dz = x; (22)

by using (19). Notice that (21) is strictly greater than (22) for all cA < 3=10
and hence bidder A optimally searches. When cA � 3=10 she optimally
passes.
If x > 3=10; then since �B = 1 for cB < 3=10 and �B = 0 for cB � 3=10

the payo¤ to A from searching, i.e., expression (21) is 6
10
� cA: The payo¤

from passing, i.e., expression (22) is 3
10
. Hence, A will search when cA < 3=10

and pass otherwise.
The second case is when bA > bB = 0. Here, W = A and the beliefs are

cB � U [0; ��1(x)]: Suppose that x > 3=10 �rst. Then, bidder B searches,
i.e., �B = 1, if cB � 3=10 and passes if cB > 3=10: Then, if A searches she
gets Z 3=10

0

(
2

3
� b

3
A

6
)
1

x
dz +

Z x

3=10

1

2

1

x
dz � cA (23)

and if she passes she gets 1=2. Then she will search if (23) is greater than
1=2, i.e., when

cA �
1

20x
(1� b3A � 10x):

For x � 3=10 we have that bidder B searches, i.e., �B = 1, and hence A�s
payo¤ from searching is

2

3
� b

3
A

6
� cA: (24)

The payo¤ from passing remains at 1=2 and so A searches when (24) exceeds
1=2, i.e., when cA � 1=6(1� b3A), and pass otherwise. �

Suppose that �(c) = 0 for c < x and �(c) is strictly increasing for c � x

Claim 2.:Suppose p1 > 0: Then, when W 6= A, i.e., bidder A is the low
bidder, she optimally searches if cA � 1

6(1�2k)(3� 2(k+2q)+ (q� k)4b
3
B) and

optimally passes when cA > 1
6(1�2k)(3� 2(k+2q) + (q� k)4b

3
B). For W = A,

bidder A optimally searches when cA < 1=6(1 � b3A) and optimally passes
when cA � 1=6(1� b3A):
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Proof: Consider bidder A and suppose that p1 > 0 and W 6= A: Then,
bB � bA > 0 and since � is strictly increasing we have cB � U [k; 1=2],
where k = ��1(bA). Since cB � cA and W = B; we have that �B = 0 when
cB � 1=6(1�b3B) and �B = 1 when cB � 1=6(1�b3B): De�ne q as a solution to
q = 1=6(1� �(q)3) and suppose that q > x: Then, A�s payo¤ from searching
is given by (20), i.e.,Z q

k

(
2

3
� b

2
B

2
+
b3B
3
)

1

1=2� kdz +
Z 1=2

q

1

2

1

1=2� kdz � cA: (25)

Her payo¤ from passing is given byZ q

k

(
1

2
� b

2
B

2
)

1

1=2� kdz: (26)

Bidder A optimnally searches when (25) is greater than (26), i.e., when

cA �
1

6(1� 2k)(3� 2(k + 2q) + (q � k)4b
3
B):

Otherwise she passes. When q � x; then the payo¤ from searching isZ 1=2

cA

1

2

2

cA
dz � cA (27)

and payo¤ from passing is 0: As before, (27) is always greater than 0, i.e.,
searching is optimal.
Next suppose that W = A, i.e., A is the high bidder. Than bA � bB > 0

and the standing price equals to B�s bid, i.e., p1 = bB: Then, since � is
increasing and invertible on [x; 1=2], we update beliefs to cB = (�)�1(bB):
Since W 6= B we have that �B = 1; and when A searches she gets

2

3
� b

2
B

2
� b

3
A

6
� cA; (28)

by using (18). Notice that when cB = x we could be dealing with o¤-
equilibrium path history, i.e., 0 < bB < �(x); and in that case beliefs that
support this equilibrium are that cB � U [0; cA); i.e. B searches, �B = 1: The
payo¤ that A gets is given by (28).
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The payo¤ from passing is

1

2
� b

2
B

2
; (29)

by using (19): Hence, when cA � 1=6(1 � b3A) passing is optimal and when
cA < 1=6(1� b3A) searching is optimal. �

Claim 3.: When cA < 1=6; then �(cA) = 0 is A�s best response.
Proof: Consider bidder A with cA < 1=6 and suppose that bA = 0: Then

bA = p1 = 0: When cB 2 [0; 1=6) we have bB = bA and hence both bidders
search, i.e., �A = �B = 1: The payo¤ that A gets in this case is given by (18)
or (20). When cB 2 [1=6; 1=2] we have bB > bA and hence bidder B passes,
i.e., �B = 0; and bidder A searches, i.e., �A = 1: In this case A�s payo¤ is
given by (20). Thus, the total payo¤ that A gets is given by (21), i.e. 5

9
� cA:

Now suppose A bids ~bA > 0 instead. We have to di¤erentiate between
four cases:
1. ~bA <

p
1=3 and cA < (1� ~b3A)=6,

2. ~bA <
p
1=3and cA > (1� ~b3A)=6,

3. ~bA �
p
1=3 and cA < (1� ~b3A)=6 and

4. ~bA �
p
1=3 and cA > (1� ~b3A)=6:

Case 1.: Suppose 0 < ~bA <
p
1=3 and cA < (1�~b3A)=6:When cB 2 [0; 1=6)

we have ~bA > bB = p1 = 0 and henceW = A: Thus, both bidders search, i.e.,
�A = �B = 1. The payo¤ A gets in this case is given by (18) where �B = 1
and bB = 0. When cB 2 [1=6; 1=2] we have bB > ~bA = p1 > 0 and hence
W 6= A: In this case bidder A searches, i.e., �A = 1 and bidder B passes,
i.e., �B = 0: The payo¤ that A gets is given by (20) where �B = 0: Thus A�s
total expected payo¤ isZ 1=6

0

(
2

3
�
~b3A
6
)2dz +

Z 1=2

1=6

1

2
2dz � cA =

5

9
�
~b3A
18
� cA: (30)

Notice that since ~bA > 0; (30) is less than 5=9� cA, i.e., bidding zero gives a
higher payo¤.
Case 2.: Suppose 0 < ~bA <

p
1=3 and cA > (1 � ~b3A)=6: All remains the

same as in Case 1 only with one exception. When cB 2 [0; 1=6), i.e., we
have W = A; then the condition cA > (1� ~b3A)=6 implies that A passes, i.e.,
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�A = 0: Hence in this case A�s payo¤changes and is now given by (19), where
�B = 1: Thus, the total expected payo¤ isZ 1=6

0

1

2
2dz +

Z 1=2

1=6

(
1

2
� cA)2dz =

1

3
� cA
3
: (31)

As before, (31) is less than 5=9� cA when cA < 1=6; i.e., bidding zero is gives
greater payo¤.
Case 3.: Here, suppose that ~bA �

p
1=3 and cA < (1 � ~b3A)=6: When

cA 2 [0; 1=6) we have ~bA > bB = p1 = 0 and hence W = A: In this case both
bidders search, i.e., �B = 1 and �A = 1: Bidder A gets payo¤ given by (18)
in which �B = 1 and bB = 0: When cB 2 [1=6;~b2A=2] then ~bA > bB = p1 > 0
and hence W = A: Thus, A�s payo¤ is again given by (18) in which now
we have �B = 1 and bB =

p
2cB: Finally, when cB 2 (~b2A=2; 1:2] we have

bB > ~bA = p1 > 0 and hence W 6= A: In this case A searches, i.e., �A = 1;
and B passes, i.e., �B = 0: Thus, A�s payo¤ is given by (20) where �B = 0:
Hence A�s total expected payo¤ isZ 1=6

0

(
2

3
�
~b3A
6
)2dz +

Z ~b2A=2

1=6

(
2

3
� z �

~b3A
6
)2dz +

Z 1=2

~b2A=2

1

2
2dz � cA: (32)

It helps to rewrite (21) - this is the payo¤ A gets from bidding zero �asZ 1=6

0

2

3
2dz +

Z ~b2A=2

1=6

1

2
2dz +

Z 1=2

~b2A=2

1

2
2dz � cA: (33)

Notice that the �rst two terms in (33) are both greater than their counter-
parts in (32) since ~bA > 0: And, with the last terms in both expressions being
the same we have (33) greater than (32), i.e. A prefers to bid zero.
Case 4.: Suppose ~bA �

p
1=3 and cA > (1� b3A)=6: This case is identical

to Case 3. but with the di¤erence that now A passes, i.e., �A = 0, when
W = A, i.e., when cB 2 [0;~b2A=2]. Thus, when cB 2 (0; 1=6); then A�s payo¤
is given by (19) with �B = 1 and bB = 0; and, when cB 2 [1=6;~b2A=2]; then
A�s payo¤ is given by (19) with �B = 1 and bB =

p
2cB: Hence, the total

expected payo¤ changes toZ 1=6

0

1

2
2dz +

Z ~b2A=2

1=6

(
1

2
� z)2dz +

Z 1=2

~b2A=2

(
1

2
� cA)2dz: (34)

40



As before, all terms in (33) are at least as big as those in (34), i.e., bidding
zero gives greater payo¤.
Thus, bA = 0 is A�s best response �

Claim 4.: When cA � 1=6; then �1(cA) =
p
2cA is a A�s best response.

Proof: Suppose cA � 1=6 and bA =
p
2cA: When cB 2 [0; 1=6) we have

bB = 0 and hence W = A: In the middle stage A passes, i.e., �A = 0 and B
searches, i.e., �B = 1. The payo¤ that A gets in this case is given by (19)
in which bB = 0 and �B = 1: When cB 2 [1=6; cA) then bA � bB =

p
2cB

and W = A.: In the middle stage A passes, i.e., �A = 0 and B searches, i.e.,
�B = 1. To get A�s payo¤, we plug bB =

p
2cB and �B = 1 in expression

(19). The last case occurs when cB 2 [cA; 1=2]: Then, bA � bB =
p
2cB and

we have W 6= A: Hence, in the middle stage, A searches, i.e., �A = 1 and
B passes, i.e., �B = 0. Now A�s payo¤ equals to (20) in which �B = 0: The
total expected payo¤ that A gets form bidding bA =

p
2cA isZ 1=6

0

1

2
2dz +

Z cA

1=6

(
1

2
� z)2dz +

Z 1=2

cA

(
1

2
� cA)2dz: (35)

To establish that bA =
p
2cA is a best response suppose that ~bA 6= bA and

consider three cases:
1. ~bA �

p
1=3,

2. 0 < ~bA <
p
1=3, and

3. ~bA = 0:
Case 1. ~ba �

p
1=3:

In this case ~bA � bB occurs when cB 2 [0;~b2A=2] in which case we have
W = A: The behavior of both bidders corresponds to that which we described
above. Further notice that ~b2A=2 > 1=6: Hence, when cB 2 [0; 1=6]; then the
payo¤ that bidder A gets is given by (19) with bB = 0 and �B = 1: When
cB 2 [1=6;~b2A=2]; then A�s payo¤ is given by (19) with bB =

p
2cB and �B = 1:

The last case is when cB 2 (~b2A=2; 1=2]. Then, W 6= A and bidder A gets
payo¤ given by (20) with �B = 0: Thus, A�s total expected payo¤ isZ 1=6

0

1

2
2dz +

Z ~b2A=2

1=6

(
1

2
� z)2dz +

Z 1=2

~b2A=2

(
1

2
� cA)2dz: (36)

Taking the di¤erence between (35) and (36) we getZ ~b2A=2

ci

(
1

2
� cA)2dz �

Z ~b2A=2

ci

(
1

2
� z)2dz > 0;
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i.e., bidding bA gives higher payo¤.
Case 2.: 0 < ~bA <

p
1=3:

In this case ~bA > bB when cB 2 [0; 1=6) and ~bA < bB when cB 2 [1=6; 1=2]:
Thus, when cB 2 [0; 1=6) we have W = A. Then bidder A�s payo¤ is given
by (19) in which bB = 0 and �B = 1: When cB 2 [1=6; 1=2] we have W 6= A
and A�s payo¤ is given by (19) with �B = 0: Thus, the total expected payo¤
from bidding ~bA is Z 1=6

0

1

2
2dz +

Z 1=2

1=6

(
1

2
� cA)2dz; (37)

which is clearly less than (35).
Case 3.: ~bA = 0:
In this case we have ~bA = p1 = 0: Thus, when cB 2 [0; 1=6); then bB = ~bA

and hence bidder B searches, i.e., �B = 1: Bidder A searches only whenW 6=
A and cA 2 [1=6; 3=10): Otherwise, she passes. Therefore, when cA � 3=10
then A always passes, i.e., �B = 0: The payo¤ that A gets in that case isZ 1=6

0

1

2
2dz

which is less than (35). On the other hand, when cA 2 [1=6; 3=10), then A
searches, i.e., �A = 1: Notice that when cB 2 [0; 1=6], then bids are tied and
hence W = �: Then, A�s total expected payo¤ isZ 1=6

0

(
2

3
)2dz +

Z 1=2

1=6

(
1

2
)2dz � cA;

which is less than (35) since cA � 1=6:
Thus, �1(cA) =

p
2cA is A�s best response since any deviation gives lower

payo¤. �
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