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Abstract

We study the propagation of financial crises between regions characterized by
moral hazard problems. The source of the problem is that banks are protected by
limited liability and may engage in excessive risk taking. The regions are affected
by negatively correlated liquidity shocks, so that liquidity coinsurance is Pareto
improving. The moral hazard problem can be solved if banks are sufficiently cap-
italized. Under autarky, a limited investment is needed to achieve optimality, so
that a limited amount of capital is sufficient to prevent risk-taking. With interbank
deposits the optimal investment increases, and capital becomes insufficient to pre-
vent excessive risk-taking. Thus bankruptcy occurs with positive probability and
the crises spread to other regions via the financial linkages. Opening the financial
markets is nevertheless Pareto improving; consumers benefit from liquidity coin-
surance, although they pay the cost of excessive risk-taking. Finally, we show that
in this framework a completely connected deposit structure is more conducive to
financial crises than an incompletely connected structure.
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1 Introduction

It is sometimes claimed that the opening of financial markets may increase
the instability of financial systems. In this paper we show that this claim
may be correct, but that it does not necessarily imply that the creation of
financial linkages across countries should be restrained.

The main idea is the following. Consider a two-region economy where, in
each region, the banking sector has access to long-term investment opportu-
nities and consumers give their assets to the banks in order to exploit such
opportunities. The two regions have negatively correlated liquidity needs
so that there are gains from trade from pooling the financial resources, for
example through an interbank deposit market.

Banks can choose between a safe long-term asset and a riskier asset
yielding a lower expected return (we will call this the ‘gambling asset’).
Investing in such risky assets may become attractive if the banks are pro-
tected by limited liability and are undercapitalized, since in that case the
bank is gambling with depositors’ money. The sub-optimal investment in
the excessively risky asset may be prevented if the banks are sufficiently
capitalized.

Suppose now that, under autarky, depositors optimally choose a low level
of long-term investment. Then, under autarky, banks have enough capital
and the moral hazard problem does not appear. Suppose next that, when
financial linkages are established, depositors want to substantially increase
the long-term investment; this will be the case if long—term investment be-
comes more attractive when liquidity coinsurance is present. At this point
the depositors face a trade off. If they allow the banks to increase substan-
tially the long—term investment then they will be undercapitalized, so that
they will gamble with depositors’ money. As an alternative they may restrict
the amount of long—term investment (making therefore sure that banks re-
main sufficiently capitalized), thus giving up a substantial part of the gains
from the creation of financial linkages. Provided that the gambling asset is
not too bad, the depositor will prefer to have undercapitalized banks. This
leads to a situation in which bankruptcy occurs with positive probability
(when the ‘gambling asset’ has low returns), and bankruptcy in one country
spreads to other countries.

Nevertheless, depositors are better off when financial linkages are estab-
lished. The two regions can achieve a Pareto-superior allocation by exchang-
ing deposits in the interbank market, thus providing liquidity coinsurance.
This has to be traded off against the costs of greater exposure to financial
crises. Notice that financial links will be established only when the benefits
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are greater than the costs, that is when the possibility of financial crises is
limited. As a consequence, crises and financial contagion are rare events.

Furthermore, it turns out that the probability of contagion is greater the
larger is the number of interbank deposit’s cross-holdings. Thus, contrary to
previous models, we find that a market organization in which each region is
financially linked only to another region is less conducive to contagion than
a market structure in which each region is financially linked to all other
regions.

Various papers have analyzed contagion in the presence of financial links
among banks. In particular, banks are connected to each other through in-
terbank deposit markets that are desirable ex-ante, but during a crisis the
failure of one institution can have direct negative payoff effects on the in-
stitutions to which it is linked (see Rochet and Tirole [14], Allen and Gale,
[2], Aghion, Bolton and Dewatripoint [1], Freixas, Parigi and Rochet [10]).
A common feature of these models is the reliance on some exogenous unex-
pected shock that causes a financial crisis to spill over into other financial
institutions. Other explanations for financial contagion have looked at liq-
uidity constraints (Kodres and Pritsker [13]), wealth constraints (Kyle and
Xiong [12]), the incentive structure of financial intermediaries (Schinasi and
Smith [15]), information asymmetry among investors (Kodres and Pritsker
[13], Chen [6], Calvo [4], Calvo and Mendoza [5]). These are not mutually
exclusive approaches, but they all involve a certain inability for the agents
to correctly anticipate future events.

Moreover, recent empirical papers suggest that the inter-bank linkage
channel may not be so important in spreading contagion as the theoretical
literature has assumed so far. Sheldon and Maurer [16] for Switzerland,
Furfine [11] for the US, Upper and Worms [17] for Germany, and Wells [18]
for the UK estimate the matrix of bilateral exposure among banks, and then
simulate the extent of contagion following a single bank failure. They find
little potential for failures resulting from interbank linkages. However, these
works assume a fixed structure of interbank claims, and therefore fail to
capture all the ramifications of a bank failure. Cifuentes, Ferrucci and Shin
[7] have in fact shown that when prices are allowed to change endogenously,
the impact of an initial shock may be increased considerably.

At any rate, this empirical literature tries to measure the extent of con-
tagion for a given exogenous shock on the solvency of one bank, an issue that
we do not directly address in this paper. Instead, our paper models con-
tagion in interbank deposit market as an endogenous phenomenon. Banks
establish link and accept the risk of contagion only when the risk is not too
big. The main implication is that contagion is a rare phenomenon, since
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otherwise the banks avoid establishing financial linkages.
The rest of the paper is organized as follows. Section 2 sets up the model

and characterizes optimal risk-sharing. Section 3 presents the decentralized
solution when the regions are in autarky. In this framework we study the
role of bank capital, and its relation with moral hazard and aggregate uncer-
tainty. Section 4 analyzes the decentralized environment when the regions
are allowed to interact, with and without the moral hazard problem, and
shows the conditions under which the establishment of financial linkages
leads to increased instability. Section 5 contains the conclusions, and an
appendix contains the proofs.

2 The Model

There are three dates (t = 0, 1, 2) and a single good, which serves as nu-
meraire. There are three types of assets. A liquid asset (the short asset)
that takes one unit of the good at date t and converts it into one unit of
the good at date t + 1. An illiquid asset (the safe asset) that takes one
unit of the good at date 0 and transforms it into R > 1 units of the good
at date 2. Finally, in order to model moral hazard, a second illiquid asset
is considered (the gambling asset) that takes one unit of the good at t = 0
and transforms it either into λR units (λ > 1) with probability η, or 0 units
with probability 1− η at date 2. We assume ηλ < 1, so that risk-averse and
risk-neutral agents strictly prefer the safe asset to the gambling asset. While
the short asset and the safe asset are always available, the opportunity of
investing in the gambling asset only appears with probability p.

We will assume that when the return on the gambling asset is λRx, only
the portion Rx of the return is observable and can be used to pay the de-
positors. The fraction (λ− 1)Rx is not observable and can be appropriated
by the bank owners; for example, this may be on-the-job perks or simply
extra money which is illegally diverted to other accounts.

An equivalent formulation is that a dollar invested in the gambling asset
yields R with probability η and 0 with probability 1 − η, but it also pro-
duces unobservable private benefits for an amount of B for the owners of the
bank whenever it is successful. Setting B = λ− 1 makes the ‘private bene-
fit’ model analytically equivalent to the ‘unobservable extra return’ model.
Thus, our model can represent various situations that may cause a moral
hazard problem.

Banks are protected by limited liability, so that when the return on the
gambling asset is 0, the depositors obtain zero at time 2. These assumptions
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A B
S1 ωH ωL
S2 ωL ωH

Table 1: Regional liquidity shocks

imply that no contract can be made contingent on the realization λR of the
gambling asset.

There are two regions, labeled A and B. Each region contains a contin-
uum of ex-ante identical consumers—depositors with an endowment of one
unit of consumption good at date 0. Consumers have Diamond-Dybvig [9]
preferences, that is,

U(c1, c2) =

½
u(c1) with probability ωi

u(c2) with probability (1− ωi),

where the utility function u(·) is defined over non-negative levels of con-
sumption, is strictly increasing, strictly concave, twice continuously differ-
entiable, and satisfies Inada conditions. The probability ωi represents the
fraction of early consumers in region i, and it can take values ωH and ωL,
with ωH > ωL. There are two equally likely states, S1 and S2. The real-
ization of the liquidity preference shocks is state-dependent, and is given in
Table 1.

Ex-ante, each region has the same probability of having a high liquidity
preference. All the uncertainty related to liquidity is resolved at t = 1, when
the state of nature is revealed and each consumer learns whether she is an
early or late consumer. Consumer’s type is private information. Notice that
if we consider the two regions as a single economy there is no aggregate
uncertainty, since the proportion of early consumers is γ ≡ 1

2ωL +
1
2ωH in

both states of the world.
Finally, in order to introduce bank capital we follow Allen and Gale [3]

and consider a second class of agents (called investors) with risk neutral
preferences. At each period t they are endowed with et units of the con-
sumption good, and we assume (e0, e1, e2) = (e, 0, 0). They either consume
or buy shares of the banks. If they become bank’s shareholders, they are
entitled to get dividends at t = 1 and t = 2. We denote by dt the dividends
paid to investors at time t, and assume the following utility function:

u (d0, d1, d2) = Rd0 + d1 + d2,

with dt ≥ 0 for t = 0, 1, 2. Since the investors can obtain a utility of Re by
consuming immediately their endowment, they have to be rewarded at least
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R for each unit of consumption they give up today. If they buy the shares
of the banks for an amount e0 then d0 = e− e0, and they get dividends d1
and d2 in the following periods. Overall, their utility is R (e− e0)+ d1+ d2.
Investors buy bank’s capital if the utility of doing so is higher than the
utility of immediate consumption, that is R (e− e0) + d1 + d2 ≥ Re. The
participation constraint of the investors can be written as

d1 + d2 ≥ Re0.

Notice that we assume that investors are risk neutral but their consump-
tion is restricted to be positive. If negative consumption for investors were
possible then full insurance could be achieved. The non—negativity of con-
sumption for the investors, coupled with the assumption of zero endowments
at t = 1 and t = 2 implies that the only way to share risk with depositors
is through investment in bank capital remunerated by state contingent divi-
dends. The consequence is that, when aggregate uncertainty is present, the
optimal risk-sharing contract allows for different levels of consumption in
different states.

Remark 1. We have chosen the simplest structure delivering the result that,
when moral hazard is present, rational depositors may decide to accept the
risk of having the owners taking gambles with their money in exchange of
liquidity insurance. In general moral hazard can be completely eliminated if
it is possible to capitalize sufficiently the banks. Therefore, the crucial ingre-
dient for achieving the result is that there must be some cost, for depositors,
in capitalizing the banks.

Given the assumption that the opportunity cost of capital for investors
is R (equal to the return that banks can guarantee on the safe long—term
asset), if the investors had an unlimited amount of capital it would always be
possible to achieve the first best for depositors and avoid any moral hazard
problem. This is the reason why we assume that amount of capital is limited.
Essentially, limiting the existing capital is equivalent to say that the cost of
capitalizing banks becomes infinite after a certain point.

Alternatively, we could assume that the supply of capital is unlimited
but the opportunity cost of capital for investors is R∗ > R. In this case
there is a trade—off between capitalizing the banks and obtaining liquidity
insurance. The premium R∗ −R acts as price for insurance that the depos-
itors have to pay. In general the amount of insurance that the depositors
want to buy is finite, so that the amount of bank capital will be finite and
determined in equilibrium. Opening the financial markets will change the
insurance opportunities for depositors, and therefore the optimal amount
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of bank capital. In such a framework we can obtain the same qualitative
results as the ones obtained assuming that capital is limited. We will come
back to the issue after proving our main result in section 4.

In this economy the Pareto efficient allocation can be characterized as
the solution to the problem of a planner maximizing the expected utility of
the consumers. The planner overcomes the problem of asymmetric liquidity
needs of the two regions by pooling resources. Let y, x and z be the per
capita amounts invested in the short, safe, and gambling assets, respectively.
Since the gambling asset is dominated by the safe asset, optimality requires
z = 0. The planner’s problem is

max
{x,y,c1,c2}

γu (c1) + (1− γ)u (c2)

subject to the feasibility constraints:

x+ y ≤ 1; γc1 ≤ y; (1− γ)c2 ≤ Rx;

x ≥ 0; y ≥ 0; c1 ≥ 0; c2 ≥ 0.
It is obvious that optimality requires that the feasibility constraints are
satisfied with equality, so we can write the problem as

max
y∈[0,1]

γu

µ
y

γ

¶
+ (1− γ)u

µ
1− y

1− γ
R

¶
. (1)

Since u is strictly concave and satisfies the Inada conditions, the solution to
problem 1 is unique and interior. The optimal value y∗ ∈ (0, 1) is obtained
from the first order condition

u0
µ
y∗

γ

¶
= Ru0

µ
1− y∗

1− γ

¶
, (2)

and once y∗ has been determined by equation 2 we can use the feasibility
constraints to determine the other variables, that is

c∗1 =
y∗

γ
, c∗2 =

(1− y∗)
1− γ

R, x∗ = 1− y∗. (3)

Notice that (2) and (3) imply u0 (c∗1) = Ru0 (c∗2), which in turn implies
u0(c∗1) > u0(c∗2) and c∗2 > c∗1. Thus, the first-best allocation automatically
satisfies the incentive constraint c2 ≥ c1, that is late consumers have no
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incentive to behave as early consumers. We will denote the first-best alloca-
tion as δ∗ ≡ (y∗, x∗, c∗1, c∗2), and U∗ the expected utility achieved under the
first best allocation.

We remark here that in the first best allocation, the capital owned by
risk-neutral investors does not play a role. In fact, the allocation of risk-
neutral investors’ capital is indeterminate. They can give their money to
the banks (as bank capital) for investment in the safe asset or they can
consume their capital at time 0. This result is obtained because, when
we analyze the first best allocation, we effectively rule out both aggregate
uncertainty and moral hazard. We will see that the amount of bank capital
plays an important role when either aggregate uncertainty or moral hazard
are present.

3 Decentralized Economies in Autarky

The first best can be achieved only if the two regions pool their resources,
so that aggregate uncertainty is eliminated. We now want to study the allo-
cations that can be attained by a region in autarky, when there is aggregate
uncertainty and (possibly) moral hazard. The structure we consider is the
following:

• Banks can offer fully contingent contracts, specifying the fraction of
each dollar of deposit to be invested in the short and safe assets re-
spectively and the amount that the depositor can withdraw at each
time t contingent on the realization of ωi. A contract is therefore an
array

δ =
©
x, y, cL1 , c

H
1 , c

L
2 , c

H
2

ª
,

where cst is the amount that a depositor can withdraw at time t if the
value of the liquidity shock is ωs, with s = L,H.

• The fraction x invested in the illiquid asset can be misused by the
bank owners and invested in the gambling asset; when this happens,
the bank will pay cst if the realization is λR, and 0 otherwise.

In our model the moral hazard problem cannot be solved through contracts,
since outside parties cannot observe the investment choice of the bank or the
extra return that it produces. On the other hand, limited liability prevents
punishment when the return on the long-term investment turns out to be
zero. Therefore, the only way to provide incentives to the bank to choose
the safe asset is to require that the owners put enough of their capital in the
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bank. We now analyze the form of the optimal contract in autarky, with
and without moral hazard.

3.1 Bank Capital and Aggregate Uncertainty

Call cst and dst the consumption of depositors and the dividend paid to
investors at time t, with t = 1, 2, in state ωs, with s = L,H. Notice that we
allow for the possibility to roll over deposits from t = 1 to t = 2.

The allocation in autarky with aggregate uncertainty is given by the
solution of the following problem:

max
x,y,e0,{cst ,dst}s=L,Ht=1,2

1

2

£
ωHu

¡
cH1
¢
+ (1− ωH)u

¡
cH2
¢¤
+
1

2

£
ωLu

¡
cL1
¢
+ (1− ωL)u

¡
cL2
¢¤

subject to
ωsc

s
1 + ds1 ≤ y; s = L,H

(1− ωs) c
s
2 + ds2 ≤ Rx+ (y − ωsc

s
1 − ds1) ; s = L,H

1

2

¡
dH1 + dH2

¢
+
1

2

¡
dL1 + dL2

¢ ≥ Re0;

y + x ≤ 1 + e0; e0 ≥ 0; e0 ≤ e; dst ≥ 0; cst ≥ 0; s = L,H t = 1, 2.

The first set of constraints says that the resources used at t = 1 to pay off
depositors and investors have to be less than the amount invested in the
short asset in every state of the world. The second set of constraints looks
at the second period. In this case the resources available are given by the
return on the investment in the safe asset Rx plus the resources rolled over
from period 1, if any. The third constraint is the investors’ participation
constraint, and finally we have non-negativity and feasibility constraints.
Let

δ (e) =
n
y (e) , x (e) , {cst (e)}s=L,Ht=1,2

o
(4)

be the optimal allocation offered to consumers under autarky when the
amount of capital available is e. We have the following result.

Proposition 1 There is a level of capital ea such that, for each e ≥ ea the
optimal allocation δ is the same and satisfies

cH1 < cL1 ≤ cL2 = cH2 .

For values of e < ea the expected utility of the consumers is strictly increasing
in e, and it is constant for e ≥ ea.
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The intuition for the result is as follows. First, dividends are paid only at
date 2, since this way the capital can be invested in the (more profitable)
safe asset rather than in the short asset. Second, the risk neutral investor
only cares about the expected value of dividends. Thus, provided the non-
negativity constraint for dividends is not violated, dividends can be made
state-dependent in order to achieve identical consumption across states at
period 2. If there is enough capital we don’t have to worry about the non-
negativity constraints for dividends in the second period, so that equality of
consumption across states can be achieved when enough capital is present.

Notice that we have ruled out negative dividends and we have assumed
e1 = 0, so that no further injections of capital are possible at date 1. This
implies that consumption in period 1 cannot be smoothed out. The presence
of liquidity shocks that cannot be smoothed out implies that consumption in
the first period must be lower when the liquidity shock is high. In particular,
when the liquidity shock is high the consumers are entirely paid out the value
of the short asset, i.e. cH1 =

y
ωH
. When the shock is low, part of the short

asset is consumed immediately and part is rolled over to the next period.
The allocation δ (e) obviously gives a lower expected utility than the

first-best allocation δ∗. We will call U (e) the expected utility achievable
under the contract δ (e). Also, define δa =

n
ya, xa, {cs,at }s=L,Ht=1,2

o
the contract

offered when the capital is e ≥ ea. Thus δa is the optimal contract when the
region is under autarky, there is no shortage of bank capital and there is no
moral hazard.

3.2 Bank Capital and Moral Hazard

The previous analysis assumed that the bank was willing to invest money
earmarked for long-term investment in the safe asset. Intuitively, this should
be the case when the amount of bank capital is large with respect to the
amount invested in the long-term asset, since bank’s owners will be more
reluctant to gamble with their own money. In particular, we want to answer
the following question: If the consumers want a fraction x of deposits to be
invested in the safe long asset, what is the minimum amount of bank capital
needed to make sure that the bank will actually prefer the safe long asset
to the gambling asset?

When the bank capital is e and a fraction x of deposits is earmarked
for long term investment, the amount of money available for long term in-
vestment is x + e. The bank can split this amount between the safe asset
and the gambling asset. Let (bx, bz) be the amounts invested in the safe as-
set and the gambling asset respectively. Essentially, we want to find the
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minimum amount of capital e such that the optimal choice of the bank is
(bx, bz) = (x+ e, 0).

If the bank invests the whole amount x+ e in the safe asset, the return
will be R (x+ e) and the profit at state s = L,H is

ds2 = R (x+ e) + (y − ωsc
s
1)− (1− ωs) c

s
2.

On the other hand, if the bank puts the money in the gambling asset the
profit in state s depends on the realization of the gambling asset, and it is
therefore the random variable

eds2 =


λR (x+ e) + (y − ωsc
s
1)− (1− ωs) c

s
2 with prob. η

0 with prob. (1− η) .

The values of ds2 have to satisfy the participation constraint for risk neutral
investors, and competition among investors will imply that the constraint is
satisfied with equality. Therefore

1

2
dL2 +

1

2
dH2 = Re.

On the other hand, we have

E

·
1

2
edL2 + 12 edH2

¸
= η

·
(λ− 1)R (x+ e) +

1

2
dL2 +

1

2
dH2

¸
= η [λR (x+ e)−Rx]

Therefore, the bank will choose the safe asset if

Re ≥ η [λR (x+ e)−Rx] .

Define

ξ ≡ η (λ− 1)
1− ηλ

. (5)

We have proved the following result.

Proposition 2 If the deposit contract offers a level of long-term investment
x then the bank will invest in the safe asset only if the bank capital is e ≥ ξx.

The value ξ is the lowest value of the ratio e/x such that the bank does not
have incentives to select the gambling asset. If a contract includes a value
of e and x such that e < ξx then it becomes common knowledge that the
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bank will invest the money in the gambling asset whenever it is available.
Therefore, for a given level e of available capital, the investors have the
choice between a contract with an investment x such that e < ξx in which
the bank will gamble or a contract with an investment x such that e ≥ ξx,
so that the bank will choose the safe asset.

For each given value e, define the problem

max
x,y,{cst ,dst}s=L,Ht=1,2

1

2

£
ωHu

¡
cH1
¢
+ (1− ωH)u

¡
cH2
¢¤
+
1

2

£
ωLu

¡
cL1
¢
+ (1− ωL)u

¡
cL2
¢¤

(6)
subject to

ξx ≤ e;

ωsc
s
1 + ds1 ≤ y; s = L,H

(1− ωs) c
s
2 + ds2 ≤ Rx+ (y − ωsc

s
1 − ds1) ; s = L,H

1

2

¡
dH1 + dH2

¢
+
1

2

¡
dL1 + dL2

¢ ≥ Re;

y + x ≤ 1 + e; x ≥ 0; y ≥ 0; dst ≥ 0; cst ≥ 0; s = L,H; t = 1, 2.

Program (6) maximizes the expected utility of the consumer subject to the
constraint that the bank is willing to put the money earmarked for the
illiquid investment into the safe asset rather than the gambling asset. Let’s
call δng (e) the solution and Ung (e) the expected utility attained solving
program (6). The function Ung (e) is continuous in e.

Furthermore, let xa be the value of the long term investment in the con-
tract solving the optimization problem without moral hazard as defined in
(4) when ea is the available capital (i.e., the capital that allows consump-
tion smoothing in the second period, as described in Proposition 1). Then
Ung (e) is strictly increasing up to max {ea, ξxa}. In fact, if e < ea then the
expected utility must be strictly increasing since more capital implies that
more risk sharing is possible, and if e < ξxa the expected utility is increasing
because more capital relaxes the moral hazard constraint.

Consider now the highest utility which can be achieved when the banks
are allowed to gamble. This can be obtained solving the problem

max
x,y,{cst ,dst}s=L,Ht=1,2

1

2

£
ωHu

¡
cH1
¢
+ (1− ωH)

¡
(1− p+ pη)u

¡
cH2
¢
+ p (1− η)u (0)

¢¤
+
1

2

£
ωLu

¡
cL1
¢
+ (1− ωL)

¡
(1− p+ pη)u

¡
cL2
¢
+ p (1− η)u (0)

¢¤
(7)
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subject to
ξx ≥ e;

ωsc
s
1 + ds1 ≤ y; s = L,H

(1− ωs) c
s
2 + ds2 ≤ Rx+ (y − ωsc

s
1 − ds1) ; s = L,H

1

2

¡
dH1 + dH2

¢
+
1

2

¡
dL1 + dL2

¢ ≥ Re;

y + x ≤ 1 + e; x ≥ 0; y ≥ 0; dst ≥ 0; cst ≥ 0; s = L,H; t = 1, 2.

Notice that in this case the consumption offered at time 2 for every state of
the world will be stochastic, of the form

ecs2 = ½ cs2 with prob. (1− p) + pη
0 with prob. p(1− η).

where cs2 is the solution to program (7). Also notice that the constraints
define a non-empty feasible set only if e ≤ ξx, that is only for low levels of
capital. We will call Ug (e) the expected utility obtained solving program
(7).

4 Liquidity Coinsurance and Moral Hazard

Absent moral hazard problems the first-best allocation can be attained us-
ing an interbank market of deposits (Allen and Gale [2]). Since the two
regions have negatively correlated liquidity needs, banks belonging to the
two regions find it useful to exchange deposits between themselves. When a
region turns out to have high liquidity needs then it liquidates the deposits
held in the other region, and it gives them back when the other region needs
them.

The first-best allocation can be attained by a decentralized banking sys-
tem using interbank deposits as follows:

• each bank offers the contract δ∗ = (y∗, x∗, c∗1, c∗2) to the consumers and
the banks of the other region;

• each bank deposits (ωH − γ) cents in a bank belonging to another
region for each dollar deposited by consumers (and receives a deposit
of (ωH − γ) from a bank of the other region).
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Under this arrangement, banks in the region hit by the high liquidity shock
(i.e. ωi = ωH) withdraw their deposits from the bank in the other region at
time 1, and at time 2 the funds move in the opposite direction. The interbank
deposits are used as coinsurance instrument against the liquidity shock1.
With perfect competition in the banking sector (and absent moral hazard),
the equilibrium outcome will be that banks offer the contract yielding the
first best allocation, thus maximizing consumers’ expected utility.

Also observe that, if there is no moral hazard and the interbank deposit
market is active, the level of bank capital does not play any role. All the
capital is invested in the safe asset and paid back to investors, without
affecting the first-best allocation for consumers.

Proposition 3 If there is no moral hazard problem and the two represen-
tative banks exchange an amount (ωH − γ) of deposits at t = 0 then the
first best allocation δ∗ can be implemented by a decentralized banking system
offering standard deposit contracts.

The interaction between the two regions eliminates aggregate uncertainty
and is able to implement the first-best allocation. This makes the presence
of bank capital not necessary, and its level would be indeterminate in both
regions. We now study what allocations can be achieved when moral hazard
is present.

4.1 Moral Hazard and Contagion

We now discuss what happens when we allow for both liquidity coinsurance
and moral hazard. In general the optimal contract offered to depositors
in the two regions will take into account both the possibility of liquidity
coinsurance and the risk that, when banks are not sufficiently capitalized,
the banks’ owners may decide to invest in the gambling asset. Moral hazard
can be prevented when a sufficient amount of capital is available, and in that
case it will be possible to implement the full—insurance allocation discussed
in Proposition 3.

In fact, the conditions under which banks in region Aare willing to invest
in the safe asset are exactly the same as before, i.e. an investment x in the
safe asset can be supported only if e ≥ ξx. Remember that the optimal
contract can specify how deposits (both from depositors of the own region

1Since the liquidity shocks in the two regions are perfectly negatively correlated, the
insurance is perfect. Interbank deposits still play a role in smoothing out liquidity shocks
as long as the shocks are not perfectly positively correlated across regions.
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and from banks from other regions) should be invested. The moral hazard
problem only appears when the contract requires to invest in the long—term
asset. Thus, interbank deposits that are invested in the short—term asset do
not create a moral hazard problem.

The highest possible utility that can be achieved is the one given by the
first best allocation δ∗ = (y∗, x∗, c∗1, c∗2). This allocation can be achieved
through liquidity coinsurance between the two regions provided that banks
have no incentive to invest in the gambling asset, i.e. e ≥ ξx∗ in both
regions. We can therefore state the following result.

Proposition 4 If e ≥ ξx∗ then the first best is attainable.

When there is abundant capital moral hazard is not a problem and financial
links between banks of the two regions do not increase the risk of bankruptcy
or contagion in any region. Things are different when capital is scarce.
In this case we can prove that there are always values of the parameters
such that, under the optimal contract, the depositors prefer the ‘gambling’
contract. In other words, since the possibility of coinsurance makes the
investment in the long-term asset very attractive, the depositors accept to
take the risk that the assets may sometimes be misused (see Proposition
5). In fact, since the long—term investment is more attractive when liquidity
coinsurance is possible than under autarky we will show (Proposition 7)
that, under certain conditions on the parameters, the optimal contracts for
depositors will prevent moral hazard under autarky but not when financial
markets are opened.

To better understand the issue, suppose that the banks in both regions
offer a contract δ = (y, x, c1, c2) to the depositors of their region, and allow
banks of other regions to make interbank deposits. In order to achieve
coinsurance, each bank will deposit an amount (ωH − γ) c1 into a bank of
the other region, and the investments in the short—term and long—term assets
will be y = γc1 and x = (1− γ) c2.

Suppose, to fix ideas, that banks in region A invests the amount x in
the gambling asset, rather than in the safe asset, while the banks in region
B invest in the safe asset. Then the following will happen:

• With probability (1− p)+pη either the gambling asset does not appear
or it appears and the gamble is successful. In the both cases the
depositors of both regions receive the first best allocation and the
banks in region B make zero profits. The bank in region A makes zero
profits when the gambling asset does not appear and strictly positive
profits otherwise.
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• With probability p (1− η) the gambling asset appears and the gamble
fails. This, however, only becomes known in period 2. Early depositors
get their first best allocation in both regions. Furthermore, in the
second period bank A is bankrupt and

— If ωA = ωL then banks in region A lend money to banks in region
B for liquidity insurance purposes at t = 1, and banks in region
B give the money back at t = 2. Since banks in region A have
gambled and get zero from the investment, the money returned
by banks in region B is the only one available to pay depositors.
Thus, late consumers of region A receive ωH−γ

1−ωL c
∗
2 while the late

consumers in region B receive the first best allocation. The banks
in region B breaks even, and are unaffected by the bankruptcy in
region A.

— If ωA = ωH then banks in region A borrow money from banks in
region B at t = 1. However, at t = 2 banks in region A will be
unable to give back the money, so that bankruptcy will spread
also to region B. Late consumers in region B receive 1−γ

1−ωL c
∗
2, and

the banks in region B goes bankrupt.

When it is understood that bank capital is insufficient to prevent moral
hazard, the contract offered by the banks will maximize the consumers ex-
pected utility taking into account both the opportunities for coinsurance
and the probability of bank failure in each region. The exact program for
the determination of the optimal contract in spelled out in the appendix,
as part of the proof of the next proposition. The main point however is
that the expected utility generated by the optimal contract is a decreasing
function of p, the probability that the gambling asset will appear, and in
fact it will converge to the first—best utility as p goes to zero. This leads to
the following result.

Proposition 5 For each value e < ξx∗ there is a value pe > 0 such that if
p < pe the depositors in the two regions prefer to let the banks to invest in
the gambling asset.

The intuition for the result can be grasped in the following way. Sup-
pose that the banks are undercapitalized but still offer the contract δ∗ =
(y∗, x∗, c∗1, c∗2) and exchange interbank deposits for an amount (ωH − γ) c∗1.
Since the contract is not necessarily the optimal one, it puts a lower bound
on the expected utility for depositors. In fact, when the gambling asset does
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not appear or it appears but does not fail, the depositors receive an expected
utility of U∗. Thus, a lower bound on the expected utility that the deposi-
tors can obtain when they allow the banks to gamble is (1− p+ pη)U∗. As
p goes to zero this expression converges to U∗, and it is therefore strictly
higher than the expected utility that can be obtained when the investment
in the long—term asset is limited in order to prevent moral hazard.

Proposition 5 implies that, provided bank capital is less than ξx∗, the
depositors prefer to bear the burden of financial instability rather than re-
stricting long-term investment. This, of course, provided that the burden of
financial instability is limited, that is p is low. Thus, if financial instability
is accepted as a consequence of the opening of financial markets, it must be
the case that instability is a rare event.

In order to complete the argument and establish a link between the
opening of financial markets and financial instability, we have to show that
there are values of the parameters for which depositors prefer to prevent
investment in the gambling asset under autarky, but allow it when financial
markets open. This happens if the opening of the markets, by bringing new
opportunities for coinsurance, increases substantially the utility of long-term
investment. As a consequence, depositors will want to increase the long-term
investment beyond the level e

ξ , thus accepting that banks will gamble. On
the other hand, under autarky the desired level of long-term investment is
smaller, so the depositors prefer to invest less than e

ξ and avoid gambling.
We first establish conditions under which the long-term investment is

higher when the regions exchange deposits than in autarky.

Proposition 6 If R is sufficiently close to 1 and e > eathen xa < x∗.

The simplest way to grasp the intuition for Proposition 6 is to consider
the case R = 1. When capital is abundant, under autarky the optimal
allocation will allow for an investment ya in the short asset which is entirely
consumed when the liquidity shock is high, while deposits are partially rolled
over when the liquidity shock is low2. If R = 1 then it is optimal to consume
the same amount in each state of the world and period, i.e. cst = 1. This
requires setting ya = ωH , so that cH1 =

ya

ωH
= 1. This automatically implies

cH2 = 1−ya
1−ωH = 1. When the liquidity shock is low, individual consumption

is cL1 = 1, and aggregate consumption is ωLcL1 = ωL. The second-period

2When R = 1 the optimal policy is not unique. Any investment y ≥ ωH will sustain
the optimal consumption. However, for R > 1 the optimal policy is unique, and the policy
we describe is the limit as R goes to one of the optimal policy.
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consumption is cL2 =
1−ωH+(ωH−ωL)

1−ωL = 1, obtained by rolling over an amount
ya − ωL = ωH − ωL to the second period.

The first best policy when coinsurance is allowed also sets cst = 1 in each
period and state, but now the investment in the short asset necessary to
achieve this allocation is y∗ = γ < ωH = ya. Thus, for R = 1 we have
y∗ < ya, and consequently x∗ > xa. Under autarky, we need a higher level
of investment in the short asset to guarantee enough consumption in the
ωH state. When R is slightly above 1, the same intuition will apply. The
difference is now that consumption in period 1 becomes more costly, since
the return on the short asset is inferior to the return on the safe asset, and in
particular it becomes costly to sustain consumption when the liquidity shock
is high. Thus, the optimal allocation requires cH1 < cL1 . We have therefore
two forces moving in opposite directions. On one hand, autarky requires
investing more in the short asset in order to ensure enough consumption in
state ωH . On the other hand, for R > 1 optimality requires to curb cH1 and
therefore the investment in the short asset. When R = 1 only the first effect
is present, so we have unambiguously ya > y∗, but more in general when R
is sufficiently close to 1 the first effect will dominate over the second.

When xa < x∗ and ea = ξxa, so that the optimal banking contract pre-
vents moral hazard under autarky, then the opening of the markets leads
to better coinsurance of liquidity needs and a positive probability of bank-
ruptcy whenever p is sufficiently close to zero.

Proposition 7 Suppose xa < x∗, e ∈ [max {ξxa, ea} , ξx∗) and p < pe.
Then the two regions invest in the safe asset under autarky and in the gam-
bling asset when interbank deposits are possible. Under the optimal allocation
there is a strictly positive probability of bankruptcy and contagion.

When e ≥ ea each region selects the allocation δa, and e ≥ ξxa implies that
banks prefer to invest in the safe asset rather than in the gambling asset.
Thus, under autarky there is no bankruptcy.

When financial linkages are established, coinsurance against liquidity
shocks becomes possible. The condition xa < x∗ implies that, absent moral
hazard problems, the depositors in the two countries would like to increase
the investment in the long-term asset. In other words, the possibility of coin-
surance makes long—term investment more valuable. However, since e < ξx∗

the capital available is not sufficient to prevent investment in the gambling
asset by the banks. The depositors have therefore to choose between curb-
ing the long-term investment to e

ξ or increase it and accept that firms will
gamble whenever possible. When the probability that the gambling asset
will appear is sufficiently small, the second alternative is more attractive.
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It is interesting to analyze exactly what is the probability of bankruptcy
and contagion when the situation is the one described in Proposition 7.
Under the optimal contract each bank will invest an amount yg in the short
asset and a quantity xg = 1− yg in the long-term asset. Furthermore, each
bank deposits an amount (ωH − γ) cg1 in the other region.

A region goes bankrupt in two cases. First, and obviously, when the
gambling asset appears and the gamble fails, an event having probability
(1− η) p. Second, when the bank has enough money from the long-term
investment (either because the gambling asset did not appear or because
the gamble was successful) but in the second period the other region is
unable to pay the interbank deposits. This is the case of contagion, since
the inability to pay by the bank in region A is only due to the bankruptcy
of the banks in region B. In general, a bank in region A is owed money from
the bank of the region B when the liquidity shock of region A was high, i.e.
ωA = ωH . This has probability 1

2 . On the other hand, the probability that
the bank in region B is bankrupt is (1− η) p. Thus, contagion from region
B to region A occurs with probability 1

2p (1− η) [1− p (1− η)], where the
last term is the probability that bank A is solvent.

In our model contagion is a rare phenomenon due to the existence of
the interbank deposit markets. It is rare because only if the probability
of bankruptcy is low it is optimal to create financial linkages and invest
in the long-term asset. The basic idea is that the possibility of coinsurance
obtained by creating financial linkages increases the optimal amount of long—
term investment. When bank capital is low, depositors optimally accept to
let the banks gamble with the long-term investment, since it would be too
costly to curb long—term investment at a level that prevents moral hazard.

Remark 2. A result similar to the one in Proposition 7 holds when the
supply of capital is unlimited and the opportunity cost of capital for investors
is R∗ > R. As previously pointed out, the premium R∗−R acts as price for
insurance that the depositors have to pay. Putting more capital into a bank
is costly for depositors, since they have to pay the premium R∗ − R, but
helps them in smoothing consumption across states and periods. Thus there
will be a trade—off between costs and benefits, and the amount of capital
will be determined in equilibrium as part of the optimal contract. Let ea be
the amount of bank capital determined under autarky and xa the amount of
long term investment, and suppose that ea is large enough to prevent moral
hazard problems. Next, suppose that coinsurance between regions becomes
available. Since coinsurance between regions acts as a substitute for the
insurance provided by bank capital and it costs less, the optimal contract
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A B C D
S1 ωH ωL ωH ωL
S2 ωL ωH ωL ωH

Table 2: Regional liquidity shocks with multiple regions

will now require a lower level of bank capital and a higher level of long
term investment, i.e. e∗ < ea and x∗ > xa (in fact, absent moral hazard
problems the depositors can achieve full insurance with no bank capital).
At the lower level of bank capital the moral hazard problems will appear.
Thus the depositors have to choose between keeping the level of bank capital
high (paying the cost R∗ − R per unit) and avoid moral hazard problems,
or keeping bank capital low and accept the risk of instability. When p is
sufficiently low they will prefer the second alternative. Thus, the qualitative
prediction is the same as the one in Proposition 7. The model could be
further generalized allowing for variable cost of capital. In this case we
would have an increasing inverse supply function R∗ (·), with R∗ (e) being
the return needed to attract e units of bank capital.

4.2 Multiple Regions

So far we have assumed a two region economy. In such economy contagion
occurs when the bank with the high liquidity shock in the first period faces
a bank with a low return on the gambling asset.

Allowing for multiple regions does not change this basic transmission
channel of contagion. However, with multiple regions we can analyze what
structure of interbank deposit market is more resistant to contagion.

The current consensus in the literature seems to be that the more con-
nected are the interbank deposit markets the better it is for the resilience
of the banking system. The interbank deposit market turns out to be more
vulnerable to contagion when the claim structure is less connected (Allen
and Gale, [2]; Freixas, Parigi, and Rochet, [10]). This is not necessarily true
in our model. In fact, in our model the conclusion is just the opposite: A
more connected interbank deposit market increases the number of regions
affected.

Assume there are 4 regions (called A, B, C, and D). There are two
equally likely state of nature S1 and S2 and the realization of the liquidity
preference shocks in each region is state dependent, as reported in Table
2. Again, notice that when all regions are pooled there is no aggregate
uncertainty.
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Figure 1: Different structures of the interbank deposit market.

As in Allen and Gale [2] we consider two interbank deposit market struc-
tures. In the completely connected structure each region receives deposits
from and makes deposits to all other regions. In the incompletely connected
structure, each region has relations only with the ‘neighbors’ (see Figure 1).

Let kin be the amount of deposit that a bank put in the ‘next’ bank when
interbank deposit market is incompletely connected. In order to equalize
consumption across regions at t = 1, banks need to deposit (and receive) an
amount kin = (ωH − γ) cin1 , where c

in
1 is the consumption level promised to

early consumers by the optimal contract.
Consider now the fully connected interbank deposit market. If cco1 is

the consumption promised in the first period and each bank deposits an
equal amount in all other regions, then the amount of deposit made in each
bank must be kco = 1

2 (ωH − γ) cco1 . This way, each bank receives a total
of 32 (ωH − γ) cco1 from other banks. When the liquidity shock is high, the
other region with a high liquidity shock withdraws 12 (ωH − γ) cco1 , and the
remaining amount can be used to pay depositors.

In our model contagion occurs when an otherwise solvent bank is unable
to retrieve its deposits from another bank. Suppose for example that the
state is S1, so that region B and D have a low liquidity shock at period 1.
Suppose further that the only region in which the gambling asset appears is
A, and the gamble fails.

In the incompletely connected structure, when the state is S1 region A
withdraws deposits from region B and region C withdraws deposits from
region D. Thus, after the first period the only deposits remaining are by B
into C and by D into A. In the second period, D is supposed to receive back
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deposits from A, but it is unable to do so because A fails. Thus, financial
crisis spreads to D (the same mechanism as in the two region economy).
However, the contagious failures stop there. Region C has no linkage with
D, and it can pay back the deposit to region B. In turn, B will be able to
retrieve its deposits and it will pay its depositors.

Suppose now that the interbank deposit market is fully connected. In
this case, at state S1 regions A and C will withdraw all their deposits from
other regions. After this, the interbank deposits remaining will be by region
B and D, each holding a claim of 12 (ωH − γ) cco1 in all other regions. The net
structure of claims (i.e. after eliminating the deposits that B has in D and
D has in B) is that A owes 12 (ωH − γ) cco1 each to B and D, and the same is
true for region C. Thus, if A fails then the failure will spread to both B and
D; only region C is unaffected.

Summing up, under a fully connected interbank deposit market region
A’s bankruptcy spills over to regions D and B, while under an incomplete
structure the only region affected by contagion is D. Thus, the number of
regions affected by the contagion is higher under the connected structure. It
should be noted however that in the connected case the amount of financial
distress experienced by the banks affected by the contagion will typically be
lower. When A fails and the market is connected the amount lost by D and
B is 12 (ωH − γ) cco1 ; when the market is not connected only D is affected but
its loss is (ωH − γ) cin1 , an amount that will typically be higher

3

It is worth exploring the reason for the difference between our paper
and Allen and Gale [2]. To start with, the distribution of liquidity shocks
in different in Allen and Gale [2]. Besides states S1 and S2 they allow for
a ‘zero probability’ state S3 in which aggregate liquidity needs at t = 1
exceed γ. In this unexpected state the banks are forced to liquidate the
long—term asset at t = 1, which is assumed to be inefficient. Furthermore,
early liquidation of the long—term asset may induce a bank run, since late
consumers prefer to withdraw at t = 1 because they fear that at t = 2 they
will be unable to obtain the promised return, thus forcing other banks to
liquidate early and spreading the financial crisis.

The crucial difference with our paper is not that there is an additional
state, but that contracts cannot be written (as in our model) contingent on
the realization of the liquidity shock. If we were to introduce in our model
a new state S3 with high aggregate liquidity needs at t = 1, the optimal
contract would simply prescribe a lower level of consumption at t = 1 in

3The values cco1 and cin1 are determined solving optimal programs of the type described
in the proof of Proposition 5. When p is small, the two quantities will be very close.
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that state. Either no early liquidation would be necessary, or the optimal
contract would limit early liquidation to the amount that does not induce
bank runs (i.e. the optimal contact would take into account the incentive
compatibility constraint saying that in each state late consumers should be
willing to wait). Thus, no contagion would occur.

Because contracts can be contingent on aggregate liquidity shocks, in
our model it is irrelevant whether we allow or not for early liquidation of
long—term asset, which is instead the crucial transmission channel in Allen
and Gale [2]. In this paper we have assumed that aggregate liquidity needs
at t = 1 are constant and equal to 1, but as we have just discussed there
would be no difficulty introducing additional states with varying aggregate
liquidity needs. Again, the crucial point is that the optimal contract will
allow for state—contingent consumption at t = 1 (typically lower when liq-
uidity needs are higher), and any early liquidation would be contracted out
ex ante respecting incentive compatibility constraints.

In our model the only non—contractible variable, and the only source of
contagion, is the return on the gambling asset. Since this realizes only at
t = 2, no contagion at t = 1 occurs. Financial crises spread directly, when
a failing bank is unable to pay debts to other banks. Thus, more contacts
among banks increase the probability of contagion.

There is almost no empirical work on the relation between the structure
of the interbank deposit market and the probability of contagion. As far as
we know, the paper by Degryse and Nguyen (2004) is the only exception.
They find that, in the Belgium banking system, a change from a completely
connected structure (where all banks have symmetric links) towards an in-
complete structure (where money centers are symmetrically linked to some
banks, which are themselves not linked together) have decreased the risk
and impact of contagion. This finding appears to be in accordance with our
theoretical results. However, it is clear that more evidence is needed to shed
light on this issue.

5 Conclusion

In this paper we show that financial contagion may arise as a phenomenon
in the due course of the working of a market economy, without relying on
unexpected contingencies or exogenous shocks. We consider an economy
with two regions characterized by negatively correlated liquidity needs. In
the presence of aggregate uncertainty and absent agency problems, the two
regions can achieve the first-best allocation by pooling their assets by means
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of an interbank deposit market, thus creating financial links between the two
regions.

The insurance provided by the interbank deposit market has to be traded
off against the costs of possible imprudent investments made by banks. The
opening of financial markets, while leading to an increase of the expected
social welfare, may also increase financial instability, which is rationally
taken into account by forward looking agents. From a positive point of
view, the model predicts the quite robust empirical finding that financial
contagion is rarely transmitted through interbank deposit markets.
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Appendix

Proof of Proposition 1. We start observing that we can restrict attention,
without loss of generality, to policies paying no dividends at time 1. Suppose
that an optimal policy requires ds1 > 0 for some s. Consider a new policy
in which all variables are unchanged except that bds1 = 0 and bds2 = ds1 + ds2.
This policy is feasible and yields the same expected utility for all agents.
Furthermore, we can restrict attention to policies in which the whole capital
e is invested. If only e0 < e is invested then we can increase the capital
to e and the dividends at time 2 by R (e− e0) in each state of the world,
leaving all other variables unchanged. The policy yields the same utility and
satisfies all the constraints.

Any optimal policy must be such that x = 1 + e − y, with y ∈ [0, 1] (it
must be the case that y ≤ 1, because otherwise the participation constraint
for the risk—neutral investors would be impossible to satisfy) and the resource
constraint of the second period has to hold with equality at each state of
the world. We can therefore write

ds2 = R (1 + e− y) + (y − ωsc
s
1)− (1− ωs) c

s
2, s = L,H.

Thus, the participation constraint for the risk-neutral investors can be writ-
ten as

R (1− y) + y ≥ 1
2

¡
ωHc

H
1 + (1− ωH) c

H
2

¢
+
1

2

¡
ωLc

L
1 + (1− ωL) c

L
2 (ωL)

¢
.

If e is sufficiently large, then the positivity constraints on ds2 will not bind.
We can therefore analyze the simpler problem:

max
y,{cst}s=L,Ht=1,2

ωHu
¡
cH1
¢
+ (1− ωH)u

¡
cH2
¢
+ ωLu

¡
cL1
¢
+ (1− ωL)u

¡
cL2
¢

subject to:
ωsc

s
1 ≤ y; s = L,H

R (1− y) + y ≥ 1
2

¡
ωHc

H
1 + (1− ωH) c

H
2

¢
+
1

2

¡
ωLc

L
1 + (1− ωL) c

L
2

¢
;

y ≤ 1; y ≥ 0; cst ≥ 0; s = H,L; t = 1, 2.
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Since u satisfies the Inada condition the optimal y will be interior, and
cst > 0 for each t, s. Also, optimality requires ωHcH1 = y. The Lagrangian
can therefore be written as

L = ωHu

µ
y

ωH

¶
+ (1− ωH)u

¡
cH2
¢
+ ωLu

¡
cL1
¢
+ (1− ωL)u

¡
cL2
¢− µ

µ
cL1 −

y

ωL

¶
−λ

µ
1

2
(1− ωH) c

H
2 +

1

2

¡
ωLc

L
1 + (1− ωL) c

L
2

¢−R (1− y)− 1
2
y

¶
The first order conditions are:

y : u0
µ

y

ωH

¶
+

µ

ωL
− λ

µ
R− 1

2

¶
= 0; (8)

cH2 : u0
¡
cH2
¢− λ

1

2
= 0; (9)

cL1 : u0
¡
cL1
¢− µ

ωL
− λ

1

2
= 0; (10)

cL2 : u0
¡
cL2
¢− λ

1

2
= 0. (11)

Conditions (9) e (11) imply cL2 = cH2 ; conditions (10) e (11) imply cL1 ≤ cL2 .
If µ > 0 then cL1 =

y
ωL

> cH1 . If µ = 0 then cL1 = cL2 = cH2 and

u0
µ

y

ωH

¶
= λ

µ
R− 1

2

¶
> λ

1

2
u0
¡
cL1
¢
,

which again implies cH1 < cL1 .
Consider now the general problem, with an arbitrary value of e.

max
y,{cst ,dst}s=L,Ht=1,2

ωHu
¡
cH1
¢
+ (1− ωH)u

¡
cH2
¢
+ ωLu

¡
cL1
¢
+ (1− ωL)u

¡
cL2
¢

subject to:
ωsc

s
1 ≤ y; s = L,H

R (1− y) + y ≥ 1
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¡
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L
1
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L
2 ≥ 0;
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¡
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H
1

¢− (1− ωL) c
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The Lagrangian can therefore be written as

L = ωHu

µ
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The first order conditions are:

y : u0
µ

y

ωH

¶
+

µ

ωL
− λ

µ
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¶
− φL (R− 1)− φH (R− 1) = 0;

cH2 : u0
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1

2
− φH = 0;
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¡
cL1
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ωL
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1

2
− φL = 0;

cL2 : u0
¡
cL2
¢− λ

1

2
− φL = 0.

If either φH or φL are strictly positive that by increasing e we strictly increase
utility.

Proof of Proposition 3. In a competitive equilibrium the deposit contract
offered by the representative banks maximizes the ex ante expected utility
of the consumers. All we need to show is that the constraints faced by the
representative banks, with the help of the interbank deposit market, are the
same as the constraints faced by the social planner both in t = 1 and t = 2.

The region with high liquidity shock has the following budget constraints
in t = 1 and t = 2:

ωHc1 ≤ y + (ωH − γ)c1,

and
(1− ωH)c2 + (ωH − γ)c2 ≤ Rx.

Both constraints are the same of the social planner problem. The region
with low liquidity shock has the following budget constraints in t = 1 and
t = 2:

ωLc1 + (ωH − γ)c1 ≤ y,

and
(1− ωL)c2 ≤ Rx+ (ωH − γ)c2.

Since ωH − γ = γ − ωL, also this region offer first-best allocation since the
constraints are the same of the social planner.
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Proof of Proposition 5. Let U∗ be the utility achieved under the first
best contract δ∗ = (y∗, x∗, c∗1, c∗2). If e < ξx∗ then the first best allocation is
not attainable, because whenever the banks offer δ∗ they will invest in the
gambling asset. As in the autarky case, banks can either offer a contract
with a limited long—term investment x that avoids the moral hazard problem
(i.e. such that ξx ≤ e) or a contract with ξx > e so that it becomes common
knowledge that banks will gamble.

Notice that now an optimal contract will also specify the amount k of
interbank deposits, i.e. each bank promises to deposit k and to receive k
from a bank in the other region.

Conditional on avoiding gambling, the contract that maximizes the de-
positors utility is obtained solving the problem

max
x,y,k,{cst ,dst}s=L,Ht=1,2

1

2

£
ωHu

¡
cH1
¢
+ (1− ωH)u

¡
cH2
¢¤
+
1

2

£
ωLu

¡
cL1
¢
+ (1− ωL)u

¡
cL2
¢¤

(12)
subject to

ξx ≤ e;

ωHc
H
1 + dH1 ≤ y + k;

ωLc
L
1 + dL1 ≤ y − k;

(1− ωH) c
H
2 + dH2 ≤ Rx+

¡
y + k − ωHc

H
1 − dH1

¢− k;

(1− ωL) c
L
2 + dL2 ≤ Rx+

¡
y − k − ωLc

L
1 − dL1

¢
+ k;

1

2

¡
dH1 + dH2

¢
+
1

2

¡
dL1 + dL2

¢ ≥ Re;

y + x ≤ 1 + e; x ≥ 0; y ≥ 0; dst ≥ 0; cst ≥ 0; s = L,H; t = 1, 2.

In fact, it is clear that in this case interbank deposits will perfectly insure
against liquidity shocks, so that the problem can be alternatively written as

max
x,y,{ct,dt}t=1,2

γu (c1) + (1− γ)u (c2) (13)

subject to
ξx ≤ e;

γc1 + d1 ≤ y

(1− γ) c2 + d2 ≤ Rx+ (y − γc1 − d1)

d1 + d2 ≥ Re;
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y + x ≤ 1 + e; x ≥ 0; y ≥ 0; d1 ≥ 0; ct ≥ 0; t = 1, 2.

Let Ung (e) be the expected utility when moral hazard is prevented, that
is the value of the objective function at the optimal point of program (13).
We notice that the value Ung (e) does not depend on p, and since e < ξx∗

we have Ung (e) < U∗. Define

∆ = U∗ − Ung (e) .

We now discuss the optimal contract when banks are expected to invest in
the gambling asset. Define

q = 1− p+ pη,

the probability that either the gambling asset does not appear or that it
appears and the gamble is successful. Again, let k be the amount of inter-
bank deposits that the banks exchange at time 0. Now it is understood that
the amount will be withdrawn at time t = 1when the region is hit by the
high liquidity shock, and it will be returned at t = 2 only if the gambling
succeeds.

When gambling is allowed, contracts can be written only contingent on
the realization of the liquidity shock but not on the return on the gambling
asset.4 We claim that the optimal contract is obtained solving the following
program

max
x,y,k,{cst ,dst}s=L,Ht=1,2 ,cC2 ,c

F
2

1

2

£
ωHu

¡
cH1
¢
+ (1− ωH)

¡
qu
¡
cH2
¢
+ (1− q)u (0)

¢¤
+

1

2

£
ωLu

¡
cL1
¢¤
+
(1− ωL) q

2

£
qu
¡
cL2
¢
+ (1− q)u

¡
cC2
¢¤

+
(1− ωL) (1− q)

2

£
qu
¡
cF2
¢
+ (1− q)u (0)

¤
(14)

subject to
ξx ≥ e; (15)

ωHc
H
1 + dH1 ≤ y + k; (16)

4This assumption is not essential. Allowing for contracts contingent on the return on
the gambling asset would yield a higher expected utility for the optimal contract, and it
would actually make it easier to have a higher expected utility when investment in the
gambling asset is allowed than in the case in which long—term investment is limited in
order to prevent moral hazard.
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(1− ωH) c
H
2 + dH2 ≤ Rx+

¡
y + k − ωHc

H
1 − dH1

¢− k; (17)

ωLc
L
1 + dL1 ≤ y − k; (18)

(1− ωL) c
L
2 + dL2 ≤ Rx+

¡
y − k − ωLc

L
1 − dL1

¢
+ k; (19)

(1− ωL) c
C
2 ≤ Rx+

¡
y − k − ωLc

L
1 − dL1

¢
; (20)

(1− ωL) c
F
2 ≤

¡
y − k − ωLc

L
1 − dL1

¢
+ k; (21)

1

2

¡
dH1 + qdH2

¢
+
1

2

¡
dL1 + q2dL2

¢
+ pη (λ− 1)Rx ≥ Re; (22)

y + x ≤ 1 + e; x ≥ 0; y ≥ 0; dst ≥ 0; cst ≥ 0; ; s = L,H; t = 1, 2.

k ≥ 0; cC2 ≥ 0; cF2 ≥ 0 (23)

We now explain in detail the objective function and the constraints. With

probability 1
2 the region will have a high liquidity shock ωH . In this case

the bank will withdraw the interbank deposit k from the other region and it
will pay the established amount cH1 . The payments will have to satisfy the
resource constraint (16). In the second period the bank has to pay k back
to the other region and cH2 to the depositor. With probability q it will be
able to do that, and the payment will have to satisfy the resource constraint
(17). With probability 1− q the gambling asset will fail, and the bank will
have no money left to pay the depositors or the other banks. This explains
the first row of the objective function.

With probability 1
2 the firm will have a low liquidity shock at t = 1. In

this case it pays the promised amount cL1 to the depositors, and allows the
firm in the other region to withdraw funds for k. The payments will have to
satisfy the resource constraint (18). In the second period, with probability
q the bank will have Rx from the gambling investment. If banks in the
other region are also solvent, which happens with probability q, then they
will pay back the deposit k. In this case the payments will have to satisfy
the resource constraint (19). However, if the bank in the other region fails,
which happens with probability 1 − q, the bank will be unable to retrieve
the interbank deposits k, and the resource constraint will be given by (20).
In this case the bank is affected by contagion and the depositors obtain a
lower amount cC2 (we have also assumed that no dividends are paid, which
will always be true at the optimum). This explains the second row of the
objective function.

Finally, the third row deals with the case in which the liquidity shock is
low at t = 1 and the gambling asset fails, which happens with probability
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1 − q. If banks in the other region do not fail, then they will pay back
their deposit, so that there will be some money left for late consumers. The
resource constraint will be given by (21). If the other region also fails, the
depositors get 0.

The participation constraint for investors (22) can be explained as fol-
lows. With probability 1

2 the region will have a high liquidity shock. In that
case the investors will receive dH1 in the first period and dH2 in the second
period provided that the gambling asset does not fail, which happens with
probability q. With probability 1

2 the region will have a low liquidity shock,
so that banks in the other region will withdraw k. In the first period in-
vestors receive dL1 , but the dividend in the second period will be paid only
if both the gambling asset in the region and the gambling asset in the other
region do not fail. This happens with probability q2. At last, whenever the
gambling asset appears and yield λR, which happens with probability pη,
the investors will be able to retain an amount (λ− 1)Rx.

We can now complete the proof. Call Ug (p) the utility achieved under
liquidity coinsurance when the banks are allowed to gamble, i.e. the value
of the objective function at the optimal point of program 14. The function
Ug (p) is continuous and decreasing in p, and limp↓0 Ug (p) = U∗. But this
implies that, for p low enough Ug (p) > U∗−∆ = Ung (e), so that gambling
is preferred.

Proof of Proposition 6. The first-best value y∗ is determined by the
equation

u0
µ
y

γ

¶
= Ru0

µ
R (1− y)

1− γ

¶
. (24)

Consider now the determination of ya, the short term investment under
autarky when there is enough capital to make sure that consumption is
constant in the second period. Look first at the case cL1 < y

ωL
(some deposits

are rolled to the second period when the liquidity shock is ωL) so that µ = 0
in the first order conditions (8) and (10). Since optimality requires cH1 =

y
ωH
,

the value ya is determined by the equation

u0
µ

y

ωH

¶
= (R+ (R− 1))u0

µ
R (1− y)

1− ωH

¶
. (25)

The LHS of (24) is lower than the LHS of (25). If R = 1 then the RHS
of (24) is higher than the RHS of (25). It follows ya > y∗ (in fact, when
R = 1 it is easy to see that the solution is ya = ωH > γ = y∗). Since the
solutions ya (R) and y∗ (R) are continuous in R, the inequality still holds for
R sufficiently close to 1.
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Consider now the case µ > 0, so that cL1 =
y
ωL
. In this case the solution

implies cH1 < cL1 < cL2 = cH2 and the first order conditions imply

1

2
u0
¡
cH1
¢
+
1

2
u0
¡
cL1
¢
= Ru0 (c2) . (26)

Thus, this solution can never arise whenR = 1, since the LHS of the equation
would be strictly higher than the RHS.
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