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Abstract

This paper develops and applies new methods for estimating marginal and average returns to
economic activities when returns vary in the population and people sort into these activities with
at least partial knowledge of their returns. Different valid instruments identify different parameters
which do not, in general, answer well-posed economic questions or identify traditional treatment
effects. We start with a well-posed economic question and develop methods for answering it. We
extend the standard instrumental variables literature to estimate marginal returns and to construct
policy relevant parameters. Applying our methods to an analysis of the economic returns to college
education, we find that marginal entrants earn substantially less than average college students,
that comparative advantage is a central feature of modern labor markets and that ability bias is
an empirically important phenomenon.
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Economics is all about returns at the margin. Yet most empirical work on returns in economics

estimates average returns. This paper develops methods for estimating both marginal and average

returns to economic activities. We apply our methods to estimate the return to education for

persons at the margin of attending college. We contrast the higher return earned by all college

goers with the lower return earned by marginal entrants to college.

This paper contributes to an emerging literature that documents that people respond differ-

ently to the same policy, intervention, or economic choice.1 There is no single “effect” of a choice

but rather a distribution of effects. There are many ways to summarize this distribution. A

major contribution of this paper is to define summary measures that answer policy relevant ques-

tions and to contrast these measures with those produced from conventional instrumental variable

estimators.

The distinction between the average and the marginal return is an economically very important

one, and can be illustrated by the following example. Suppose we consider schooling choices which

can take only two values (S = 0 or S = 1) and let R be the absolute dollar return and C be the

dollar cost of going to school. Assume that R varies in the population but everyone faces the same

C. Individuals decide to enroll in school (S = 1) if R − C > 0. Figure 1 plots the density of R,

f (R), and also presents the cost everyone faces, C. Individuals who have values of R to the right

of C choose to enroll in school, while those to the left choose not to enroll. The average return for

the individuals who choose to go to school, E (R | R ≥ C) , is computed with respect to the part

of f (R) that is to the right of C. The marginal return (the return for individuals at the margin),

is exactly equal to C. Figure 1 presents the average and the marginal return for this example.

Suppose that there is a policy such as a tuition subsidy that changes the cost of attending school

from C to C 0. Those individuals who are induced to enroll in school by this policy have R below

C (they were not enrolled in school before the policy) and R above C 0 (they decide to enroll after

the policy), and the average return for these individuals is E (R|C 0 < R ≤ C). In this example,

the marginal entrant into college has a lower return than the average entrant. The return for

the average student is not the relevant return to evaluate the policy. The goal of this paper is to
1See Heckman (2001) for a summary of the evidence from this literature.
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estimate marginal and average returns when there is self-selection into economic sectors.

The method of instrumental variables (IV ) is the most commonly used method to control for

the econometric problems of endogeneity and self selection. In the standard regression model for

outcome lnY as a function of scalar S,

lnY = α+ Sβ + U

where α, β are parameters and where S is correlated with mean zero error U , least squares es-

timators of β are biased and inconsistent. Economists since Haavelmo (1943) have defined the

“causal effect,” or “effect” of S on lnY, as β. This corresponds to a manipulation of S holding

U fixed - what Marshall (1890) called a “ceteris paribus” effect of S on lnY . If an instrument

Z can be found so that (a) Z is correlated with S but (b) it is not correlated with U , β can be

identified, at least in large samples. Both valid social experiments and valid natural experiments

can be interpreted as generating instrumental variables.

The standard model makes very strong assumptions. In particular, it assumes that the (causal)

effect of S on lnY is the same for everyone. If β varies in the population and people sort into

economic sectors on the basis of at least partial knowledge of β, then the marginal β may be

different from the average β. In this case, there is no single “effect” of S on lnY and different

estimators produce different scalar summary measures of the distribution of β. In the empirical

work reported in this paper, S is schooling, and lnY is log earnings, so in the example motivating

Figure 1, R =
¡
eβ − 1¢ eα+U .We estimate marginal and average returns to schooling when β varies

in the population and is correlated with S. Our methods apply more generally to the estimation of

a wide variety of returns including those to migration, unionism, and medical care, and outcomes

may be discrete or continuous.2

We compare economically motivated parameters with the estimands produced by instrumental

variable estimators and find that conventional IV does not, in general, answer well posed economic

questions, although by accident it may sometimes do so. Only if the instrument is the same as the

policy being studied, and the policy is exogenously imposed, does the instrument identify the effect
2Carneiro, Hansen and Heckman (2003) estimate entire distributions of returns to schooling.
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of the exogenously imposed policy on the outcome being studied. Different valid instruments define

different parameters, all of which can be called “effects” of S, but which only rarely answer well-

posed economic problems. We show how to use the economic theory of choice to combine multiple

instruments into a scalar instrument. We use this instrument to improve on conventional IV to

estimate economically interpretable average and marginal returns and to estimate conventional

treatment parameters.

We use the Marginal Treatment Effect (MTE), introduced in Björklund and Moffitt (1987) and

extended in Heckman and Vytlacil (1999, 2000), to construct estimates of marginal and average

returns, to construct policy relevant parameters and to characterize what instrumental variable

methods estimate. Our empirical analysis of the returns to schooling is of interest in its own

right. In it, we establish that (a) comparative advantage or self-selection is an empirically impor-

tant feature of schooling choice, (b) marginal college attendees earn less than average attendees

and the fall off in their returns is sharp, (c) OLS (“Mincer”) and conventional IV estimators

substantially underestimate the average marginal return and policy relevant effects, (d) support

problems (limitations on the ranges of instrumental variables) compromise the ability of analysts

to estimate conventional summary measures of returns, such as the average return to schooling in

the population, but not marginal returns which in general are economically more interesting, and

(e) many of the instruments used in the recent literature on estimating the returns to schooling

are questionable, given the absence of ability measures in most data sets.

The plan of the paper is as follows. Section 1 contrasts two basic models that are currently

used in the empirical literature: a common coefficient model and a random (or variable) coefficient

model. These models motivate the empirical work we report in this paper. In this section, we

also define the Benthamite policy parameter estimated in this paper. Section 2 characterizes

the nonparametric framework and assumptions that we will use for the rest of the paper. The

framework we use is the one developed by Heckman and Vytlacil (1999, 2000, 2001b, 2004a,b).

Section 3 presents the policy relevant treatment effect introduced in Heckman and Vytlacil (2001b)

that is a central object of attention in this paper. Section 4 asks and answers the question

“What Does The Instrumental Variable Estimator Estimate?” Section 5 shows how to estimate
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the marginal treatment effect (MTE) which is the building block for all of our analyses. Section

6 discusses estimates of marginal and average returns to schooling. Section 7 discusses limitations

of the empirical literature using instrumental variables to estimate the returns to schooling when

ability measures are not available and documents the empirical importance of ability bias. Section

8 concludes.

1 Models with Heterogeneous Returns to Schooling

The familiar semilog specification of the earnings-schooling equation popularized byMincer (1974),

and used in the introduction, writes log earnings lnY as a function of S. The framework developed

in this paper applies to a general class of models analyzing the consequences of economic choice.

In this paper, S will be binary corresponding to two schooling (or treatment) levels (S = 0 “high

school” or S = 1 “college”) to simplify the exposition and connect to the empirical work reported

in Section 6. For simplicity throughout this paper we suppress explicit notation for dependence of

the parameters on the covariates X unless it is clarifying to make this dependence explicit. Under

special conditions discussed in Willis (1986) and Heckman, Lochner and Todd (2001), β is the

rate of return to schooling.3 Our methods apply more generally to analyzing returns to unionism,

migration, job training, medical interventions, and the like, and the outcomes may be discrete or

continuous.

When β is a constant for all persons (conditional on X), we obtain the conventional model.

Measured S may be correlated with unmeasured U because of omitted ability factors and because

of measurement error in S. Following Griliches (1977), many advocate using instrumental variable

estimators for β to alleviate these problems. In this framework, because β is a constant, there is

a unique effect of schooling. Indeed, β is “the” effect of schooling, and the marginal return is the

same as the average return (conditional on X).

In terms of a model of counterfactual states or potential outcomes of the sort developed in the
3R0 = eα+U

¡
eβ − 1¢ is the absolute return and R =

£
eα+U

¡
eβ − 1¢¤ /eα+U = eβ − 1 .

= β is the rate of return
to schooling, where eα+U is earnings when S is fixed at 0.
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Roy (1951) model, there are two potential outcomes (lnY0, lnY1):

lnY0 = α+ U, lnY1 = α+ β + U (1)

and causal effect lnY1 − lnY0 = β is a common effect, conditional on X.

From its inception, the modern literature on the returns to schooling has recognized that

returns may vary across schooling levels and across persons of the same schooling level.4 This

early literature was not clear about the sources of variation in β. The Roy model, as applied by

Willis and Rosen (1979), gives a more precise notion of why β varies and how it depends on S. In

that framework, the potential outcomes are generated by two random variables (U0, U1) instead

of one as in the common coefficient model:

lnY0 = α+ U0 (2a)

lnY1 = α+ β̄ + U1 (2b)

where E(U0) = 0 and E(U1) = 0 so α (= E(lnY0)) and α+ β̄ (= E (lnY1)) are the mean potential

outcomes for lnY0 and lnY1 respectively. The causal effect of educational choice S = 1 is

β = lnY1 − lnY0 = β̄ + U1 − U0.

There is a distribution of returns across individuals.

Observed earnings are

lnY = S lnY1 + (1− S) lnY0 = α+ βS + U0 = α+ β̄S + {U0 + S(U1 − U0)}. (3)

In the Roy framework, the choice of schooling is explicitly modeled. In its simplest form

S = 1 if lnY1 ≥ lnY0 ⇐⇒ β ≥ 0
= 0 otherwise.

(4)

If agents know or can partially predict β at the time they make their schooling decisions, there is

dependence between β and S in equation (3). This justifies the title “correlated random coefficient

model” that is often applied to general versions of (3). Decision rules similar to (4) characterize

other economic choices.
4See Becker and Chiswick (1966), Chiswick (1974) and Mincer (1974).
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In this setup there are three sources of potential econometric problems; (a) S is correlated

with U0; (b) β is correlated with S (i.e., U1−U0 is correlated with S); (c) β is correlated with U0.

Source (a) arises in ability bias or measurement error models. Source (b) arises if agents partially

anticipate β when making schooling decisions so that Pr(S = 1 | X,β) 6= Pr(S = 1 | X). In this
framework, β is an ex post causal effect. Ex ante agents may not know β. In the case where

decisions about S are made in the absence of information about β, β is independent of S. (β ⊥⊥S
where “ ⊥⊥”denotes independence).
Source (c) arises from the possibility that the gains to schooling (β) may be dependent on the

level of earnings in the unschooled state as in the Roy model. The best unschooled (those with

high U0) may have the lowest return to schooling.

When β varies in the population, the return to schooling is a random variable and there is

a distribution of causal effects. There are various ways to summarize this distribution and, in

general, no single statistic will capture all aspects of the distribution.

Many summary measures of the distribution of β are used. Among them are

E(β | X = x) = E(lnY1 − lnY0 | X = x)

= β̄(x)

the return to the population average person given characteristics X = x. This quantity is some-

times called “the” causal effect of S.5 Others report the return for those who attend school:

E(β | S = 1, X = x) = E(lnY1 − lnY0 | S = 1,X = x)

= β̄(x) +E(U1 − U0 | S = 1, X = x).6

This is the parameter emphasized by Willis and Rosen (1979) where E(U1 − U0 | S = 1, X = x)

is the sorting gain, how people who take S = 1 differ from a randomly sampled person.

Other parameters are the return for those who are currently not going to school:

E(β | S = 0,X = x) = E(lnY1 − lnY0 | S = 0,X = x)

= β̄(x) +E(U1 − U0 | S = 0,X = x).
5It is the Average Treatment Effect (ATE) parameter. Card (1999, 2001) defines it as the “true causal effect”

of education. See also Angrist and Krueger (2001).
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Angrist and Krueger (1991) and Meghir and Palme (2001) estimate this parameter. In addition

to these “effects” is the effect for persons indifferent between the two levels of schooling, which in

the simple Roy model is

E (lnY1 − lnY0 | lnY1 − lnY0 = 0) = 0.

A more general expression for this marginal effect incorporating discounting and tuition costs is

given in the next section.

Depending on the conditioning sets and the summary statistics desired, a variety of “causal

effects” can be defined. Different causal effects answer different economic questions. As noted by

Heckman and Robb (1986;2000), and Heckman (1997), under two conditions

I: U1 = U0 (common effect model)
or more generally
II: Pr(S = 1 | X = x, β) = Pr(S = 1 | X) (conditional on X, β does not affect choices)

all of the mean treatment effects conditional onX collapse to the same parameter. Otherwise there

are many candidates for the title of causal effect and this has produced considerable confusion in

the empirical literature as different analysts use different definitions in reporting empirical results

so the different estimates are not strictly comparable.7

Which, if any, of these effects should be designated as “the” causal effect? This question

is best answered by stating an economic question and finding the answer to it. In this paper,

we adopt a standard welfare framework. Aggregate per capita outcomes under one policy are

compared with aggregate per capita outcomes under another. One of the policies may be no

policy at all. For utility criterion V (Y ), a standard welfare analysis compares an alternative

policy with a baseline policy:

E(V (Y ) | Alternative Policy)−E(V (Y ) | Baseline Policy).

Adopting the common coefficient model, a log utility specification (V (Y ) = lnY ) and ignoring

general equilibrium effects, where β is a constant, β̄, the mean change in welfare is

E(lnY | Alternative Policy)−E(lnY | Baseline Policy) = β̄(∆P ) (5)
7For example, Heckman and Robb (1985) note that in his survey of the union effects on wages, Lewis (1986)

confuses these different “effects.” This is especially important in his comparison of cross section and longitudinal
estimates where he inappropriately compares conceptually different parameters.
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where (∆P ) is the change in the proportion of people induced to attend school by the policy. This

can be defined conditional on X = x or overall for the population. In terms of gains per capita

to recipients, the effect is β̄. This is also the mean change in log income if β is a random variable

but independent of S so condition II applies.

In the general case, when agents partially anticipate β, and comparative advantage dictates

schooling choices, none of the traditional treatment parameters plays the role of β̄ in (5) or answers

the stated economic question. Instrumental variables methods do not generally identify β̄. Later in

this paper, we develop the appropriate policy parameter, show how to estimate it, and contrast it

with conventional treatment parameters and what IV estimates. We first introduce our framework

and assumptions.

2 A Framework for Evaluating the Effects of Schooling

Consider a standard model of schooling choice. Let Y1(t) be the earnings of the schooled at

experience level t while Y0(t) is the earnings of the unschooled at experience level t. Assuming

that schooling takes one period, a person takes schooling if

1

(1 + r)

∞X
t=0

Y1(t)

(1 + r)t
−

∞X
t=0

Y0(t)

(1 + r)t
− C∗ ≥ 0

where C∗ is direct costs which may include psychic costs, r is the discount rate, and lifetimes

are assumed to be infinite to simplify the expressions. This is the prototypical discrete choice

model applied to human capital investments. We follow Mincer (1974) and assume that earnings

profiles in logs are parallel in experience. Thus Y1(t) = Y1e(t) and Y0(t) = Y0e(t), where e(t) is a

post-school experience growth factor.

The agent attends school ifµ
1

(1 + r)
Y1 − Y0

¶ ∞X
t=0

e(t)

(1 + r)t
≥ C∗.

Let K =
∞X
t=0

e(t)

(1 + r)t
and absorb K into C∗ so C = C∗

K
, and define discount factor γ = 1

(1+r)
. Using

growth rate g to relate potential earnings in the two schooling choices we may write Y1 = (1+g)Y0
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where from equation (1), β = ln(1 + g). Thus the decision to attend school (S = 1) is made if

Y0[γ(1 + g)− 1] ≥ C.

This is equivalent to

β ≥ ln(1 + C

Y0
) + ln(1 + r).

For r ≈ 0 and C
Y0
≈ 0, we may write the decision rule as S = 1 if

β ≥ r +
C

Y0
. (6)

Ceteris paribus, a higher r or C lowers the likelihood that S = 1. As long as g > r (so γ (1 + g)−
1 > 0), a higher Y0 implies a higher absolute return and leads people to attend college. Equation (6)

generalizes decision rule (4) by adding borrowing and tuition costs as determinants of schooling.

Assuming C = 0, the marginal return for those indifferent between going to school and facing

interest rate r is E (β|β = r) . Below we introduce variables Z that shift costs and discount factors

(C = C(Z), r = r(Z)).

The conventional approach to estimating selection models postulates normality of (U0, U1) in

equations 2(a) and 2(b), writes β̄ and α as linear functions of X and postulates independence

between X and (U0, U1). Parallel normality and independence assumptions are made for the

unobservables and observables in selection equation (6). From estimates of the structural model,

it is possible to answer a variety of economic questions and to construct the various treatment

parameters and distributions of treatment parameters.8 However these assumptions are often

viewed as unacceptably strong.

A major advance in the recent literature in econometrics is the development of frameworks that

relax conventional linearity, normality and separability assumptions to estimate various economic

parameters. In this paper, we draw on the framework developed by Heckman and Vytlacil (1999,

2000).
8Willis and Rosen (1979) is an example of the application of the Roy model. Aakvik, Heckman and Vytlacil

(2000), Heckman, Tobias and Vytlacil (2001;2003) derive all of the treatment parameters and distributions of
treatment parameters for several parametric models including the normal. Carneiro, Hansen and Heckman (2003)
estimate the distribution of treatment effects under semiparametric assumptions.
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Using their setup we write

lnY1 = µ1(X,U1) and lnY0 = µ0(X,U0). (7)

The return to schooling is lnY1 − lnY0 = β = µ1(X,U1)− µ0(X,U0), which is a general nonsepa-

rable function of (U1, U0). It is not assumed that X ⊥⊥(U0, U1) so X may be correlated with the

unobservables in potential outcomes. Here and throughout this paper we use “ ⊥⊥” to denote
statistical independence.

A latent variable model determines enrollment in school (this is the nonparametric analogue

of decision rule (6)):
S∗ = µS(Z)− US

S = 1 if S∗ ≥ 0. (8)

A person goes to school (S = 1) if S∗ ≥ 0. Otherwise S = 0. In this notation, (Z,X) are observed
and (U1, U0, US) are unobserved. US may depend on U1 and U0 in a general way. The Z vector

may include some or all of the components of X.

Heckman and Vytlacil (2000, 2004b) establish that under the following assumptions, it is

possible to develop a model that unifies different treatment parameters, that shows how the

conventional IV estimand relates to these parameters and what policy questions IV answers.

Those conditions are

(A-1) µS(Z) is a nondegenerate random variable conditional on X;

(A-2) The distribution of US is absolutely continuous with respect to Lebesgue measure;

(A-3) (U0, U1, US) is independent of Z conditional on X;

(A-4) lnY1 and lnY0 have finite first moments

and

(A-5) 1 > Pr(S = 1 | X) > 0.

Assumption (A-1) postulates the existence of an “instrument” - more precisely a variable or set

of variables that are in Z but not in X, and thus shift S∗ but not potential outcomes Y0, Y1 (which
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are determinants of C and r in equation (6)). The recent empirical literature on the returns

to schooling also assumes the existence of instruments. The literature on natural experiments

and social experiments uses, respectively, natural experimental variation in variables or social

experimental induced variation in treatment assignments as instruments. Assumption (A-2) is

made for technical convenience and can be relaxed at greater cost of notation. Assumption (A-3)

allowsX to be arbitrarily dependent on the errors. X need not be “exogenous” in any conventional

definition of that term. However, a no feedback condition is required for the interpretability of the

estimates. Defining Xs as the value of X if S is set to s, a sufficient condition for interpretability is

that X1 = X0 almost everywhere. This ensures that conditioning on X does not mask the effect of

realized S on outcomes.9 Assumption (A-4) is necessary for the definition of the mean parameters

and assumption (A-5) ensures that in very large samples for each X there will be people with

S = 1 and other people with S = 0, so comparisons of schooling and nonschooling outcomes can

be made at all X values.

Denoting P (z) as the probability of receiving treatment S = 1 conditional on Z = z, P (z) ≡
Pr(S = 1|Z = z) = FUS(µS(z)). Without loss of generality we may write US ∼ Unif[0,1] so

µS(z) = P (z). Thus with no loss of generality if S∗ = ν(Z) − VS, we can always reparameterize

the model so µS(Z) = FV (ν(Z)) and US = FV (V ). Vytlacil (2002) establishes that the model

of equations (7), (8) and (A-1) - (A-5) is equivalent to the LATE model of Imbens and Angrist

(1994)10

The index structure produced by assumptions (A-1) - (A-5) joined with the model of equations

(7) and (8) allows us to define a new treatment effect: the marginal treatment effect (MTE)

∆MTE(x, uS) ≡ E(β | X = x,US = uS).

9However this condition is not strictly required. If imposed, it produces the “total effect” of S on Y . See Pearl
(2000). Heckman and Vytlacil (2004a,b) relax this condition.
10These conditions impose testable restrictions on (Y, S, Z,X). See Heckman and Vytlacil (1999, 2000, 2004b).

One restriction is index sufficiency, Pr(lnYj ∈ A | X = x,Z = z, S = j) = Pr(lnYj ∈ A | X = x,P (Z) =
P (z), S = j) for j = 0, 1. This says that Z enters the conditional distribution of lnY1, lnY0, only through the
index P (Z). Another restriction is a monotonicity restriction. Let g(·) denote any function such that g(lnY ) > 0
w.p.1. Then E(Sg(lnY )|X = x, P (Z) = p) is strictly increasing in p and E((1 − S)g(lnY )|X = x, P (Z) = p) is
strictly decreasing in p. For example, if lnY > 0 w.p.1, then taking g(·) to be the identity function we have that
E(S lnY |X = x,P (Z) = p) is strictly increasing in p and E((1−S) lnY |X = x, P (Z) = p) is strictly decreasing in
p.
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This is the mean gain to schooling for individuals with characteristics X = x just indifferent

between taking schooling or not at level of unobservable US = uS. It is a willingness to pay

measure for people at the margin of indifference for schooling given X and US.11 The LATE

parameter of Imbens and Angrist (1994) may be written in this framework as

∆LATE(x, u0S, uS) = E(β | X = x, uS ≤ US ≤ u0S)

where uS 6= u0S. MTE is the limit of LATE as u
0
S → uS.12

Heckman and Vytlacil (1999, 2000) establish that under assumptions (A-1) - (A-5) all of the

conventional treatment parameters are different weighted averages of the MTE where the weights

integrate to one. See Table 1A for the treatment parameters expressed in terms of MTE and

Table 1B for the weights. We discuss the other weights in later sections.

If β is a constant conditional onX or more generally if E(β | X = x, US = us) = E(β | X = x),

(β mean independent of US), then all of these mean treatment parameters conditional on X are

the same. This arises in cases I and II analyzed in Section 1 where, respectively, there is no

heterogeneity (β is constant given X) or agents do not act on it.13

3 Policy Relevant Treatment Effects

With the framework of Section 2 in hand, we can answer the policy question framed at the end

of Section 1, when β is heterogeneous and people act on β in making decisions about S.14 We

focus on this parameter in the empirical work we report below. We consider a class of policy

interventions that affect P but not (lnY1, lnY0). This is the standard assumption in the partial

equilibrium treatment effect literature.15

11Björklund and Moffitt (1987) introduced this parameter in the context of the parametric normal Roy model.
12Assumptions (A-2) to (A-4) imply that the limit exists (a.e.).
13All of these parameters in Tables 1A and 1B can be defined even if (a) US ⊥/⊥Z or (b) for S = 1(Ω(Z,US) ≥ 0)

there is no additively separable version of Ω in terms of US , Z or (c) Z = X (no instrument). However, the
conditions presented in the text are required to identify the MTE . See Heckman and Vytlacil (2000).
14Ichimura and Taber (2000) present a related analysis of policy evaluation. Their framework does not use the

MTE to unify estimators and policy counterfactuals.
15For evidence against this in the case of large-scale social programs, see Heckman, Lochner and Taber (1998,

1999). In the context of schooling, tuition can affect the choice of S and hence P and also (lnY1, lnY0) if changes
in aggregate schooling participation affect skill prices.
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Let P be the baseline probability of S = 1 with density fP . We keep the conditioning on X

implicit. Define P ∗ as the probability produced under an alternative policy regime with density

fP∗. Then we can write

E(V (Y ) | Alternative Policy∗)−E(V (Y ) | Baseline Policy) =
Z 1

0

ω(u)MTE(u)du

where ω(u) = FP (u)− FP∗(u) where FP and FP∗ denote the cdf of P and P ∗, respectively.16

To define a parameter comparable to β̄ in equation (5), we normalize the weights by ∆P , the

change in the proportion of people induced into the program, conditional on X = x. Thus if we

use the weights

ω̃(u) = (ω(u))/∆P

we produce the gain in the outcome for the people induced to change into (or out of) schooling

by the policy change. These weights define the Policy Relevant Treatment Effect (PRTE).

Observe that these weights differ from the weights for the conventional treatment parameters.

Knowing TT or ATE does not answer a variety of well posed policy questions except in special

cases (Heckman and Smith, 1998). We next show that in the general case where β varies among

individuals conditional on X and people make schooling decisions based on it, IV weights MTE

differently than the weighting required for the PRTE or required to generate the conventional

treatment parameters.

4 What Does The Instrumental Variable Estimator Esti-
mate?

The intuition underlying the application of instrumental variables to the common coefficient model

is well understood. It is misleading in the more general case where β varies in the population and

choices of S are made on the basis of it.

LetW denote a potential instrument. For example, in our framework, W might be an element

of Z or any function of Z. In the common coefficient model (1) the econometric problem is that

Cov(U, S) 6= 0. If there is an instrument W with the properties (a) Cov(U,W ) = 0 and (b)
16For a proof see Heckman and Vytlacil (2001b). Other criteria produce different weights.
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Cov (W,S) 6= 0 then we may identify (consistently estimate) β by IV even though OLS is biased

and inconsistent. Thus

plimβ̂IV =
Cov(W, lnY )

Cov(W,S)
= β +

Cov(W,U)

Cov(W,S)
= β.

This intuition breaks down in the more general case of equation (3):

lnY = α+ β̄S + {(U1 − U0)S + U0}.

Finding an instrument W correlated with S but not U0 or U1 − U0 is not enough to identify β̄,

or β̄ +E(U1 − U0 | S = 1), or other conventional treatment parameters.17 Simple algebra reveals
that

plimβ̂IV =
Cov(W, lnY )

Cov(W,S)
= β̄ +

Cov(W,U0)

Cov(W,S)
+

Cov(W,S(U1 − U0))

Cov(W,S)
.

By the standard IV condition (a), the second term vanishes (Cov(W,U0) = 0). But in general the

third term does not:

Cov(W,S(U1 − U0))/Cov(W,S) =

P

½
Cov[W, (U1 − U0) |S = 1] + [E (W |S = 1)− E(W )]E(U1 − U0|S = 1)

¾
/Cov(W,S)

where P = Pr(S = 1). If U1−U0 ≡ 0 (a common coefficient model, condition I) or more generally
if U1 − U0 is independent of S and W (condition II) this term vanishes.18 But in general U1 − U0

is dependent on S and the term does not vanish.19

To see why, consider the schooling choice model of equation (6) when C = 0 and r depends on

Z (r = Zγ). Take the instrument to be an element of Z, sayW = Zk where Zk is the kth element

of Z. Then

S = 1⇐⇒ β̄ + U1 − U0 ≥ Zγ,

and Cov(Zk, U1 − U0 | S = 1) = Cov(Zk, U1 − U0 | β̄ + U1 − U0 ≥ Zγ). One can show that the

sign of Cov(Zk, U1−U0 | β̄ +U1−U0 ≥ Zγ) is the same as the sign of γk, so that this covariance
17Recall that we keep the conditioning on X implicit.
18If U1 − U0 is independent of W and if U1 − U0 does not determine S conditional on W , then U1 − U0 will be

independent of (S,W ).
19See Heckman and Robb (1985, 1986; 2000) and Heckman (1997).
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will be nonzero for any element of Z with a nonzero γ coefficient. Intuitively, suppose that Z is

a scalar with a positive effect on the discount rate r. Then if an individual selects into college

despite having a high Z (and thus a high discount rate), then the individual must have a large

direct gain from going to college to have chosen to attend college despite the high discount rate.

Thus, even if Z ⊥⊥(U1 − U0), Z is not independent of U1 − U0 conditional on S = 1.

Another way to make this general point is to explore what we estimate by using an instrument

based on compulsory schooling. Compulsory schooling is sometimes viewed as an ideal instrument

(see Angrist and Krueger 1991). But when returns are heterogeneous, and agents act on that

heterogeneity in making schooling decisions, compulsory schooling as an instrument identifies

only one of many possible treatment parameters. Define P (x) = Pr(S = 1 | X = x) as the

probability of attending school conditional on X = x if there is no compulsion. Let T = 1 if the

individual is in the regime with compulsion, and T = 0 otherwise. We assume that T is exogenous,

in the sense that T ⊥⊥ (US, U0, U1)|X.
Compulsory schooling selects at random persons who ordinarily would not be schooled (S = 0)

and forces them to be schooled. Observed earnings for individuals in the compulsory schooling

regime (conditional on X) are

E(lnY |X = x, T = 1)

= E(lnY1 | X = x, S = 1)P (x) +E(lnY1 | X = x, S = 0)(1− P (x)),

and for individuals in the regime with no compulsion

E(lnY |X = x, T = 0)

= E(lnY1 | X = x, S = 1)P (x) +E(lnY0 | X = x, S = 0)(1− P (x)).

From the difference in conditional means we can identify:

E(lnY |X = x, T = 1)−E(lnY |X = x, T = 0) = (1− P (x))E(lnY1 − lnY0 | X = x, S = 0).

Since in a non-compulsory schooling regime we identify P (x), we can identify treatment on the

untreated:

E(lnY1 − lnY0 | X = x, S = 0) = E(β|X = x, S = 0)
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but not ATE = E(lnY1 − lnY0) = β̄ or treatment on the treated TT = E(lnY1 − lnY0 | X =

x, S = 1) = E(β|X = x, S = 1). However under the two special cases I and II of Section 1, we

identify all three treatment parameters because

E(lnY0 | X = x, S = 0) = α(x), E(lnY1 | X = x, S = 0) = α(x) + β̄(x)

and TT = ATE =MTE = LATE = PRTE because ∆MTE(x, uS) does not vary with us.

Treatment on the untreated answers an interesting policy question. It is informative about the

earnings gains for a policy directed toward those who ordinarily would not attend schooling and

who are selected into schooling at random from this pool. If the policy we want to evaluate is

compulsory schooling then the instrumental variable estimand and the policy relevant treatment

effect coincide. More generally, if the instrumental variable we use is exactly the policy we want to

evaluate, then the IV estimand and the policy relevant parameter coincide. But whenever that is

not the case, the IV estimand does not identify the effect of the policy when returns vary among

people and they make choices of treatment based on those returns. For example, if the policy

we want to consider is a tuition subsidy directed toward the very poor within the pool, then an

instrumental variable estimate based on compulsory schooling will not be the relevant return to

evaluate the policy.20

So what exactly does linear IV estimate? Heckman and Vytlacil (2000) establish that linear

IV using P (Z) as an instrument (conditional on X = x) identifies a weighted average of MTE

parameters.

plimβ̂IV = ∆IV (x) =

Z 1

0

∆MTE(x, u)hIV (x, u)du

where

hIV (x, u) =
(E(P (Z)− E(P (Z)) | P (Z) ≥ u,X = x)) Pr(P (Z) ≥ u,X = x)

V ar(P (Z) | X = x)

and
Z 1

0

hIV (x, u)du = 1. These weights do not, in general, coincide with the policy weights of

Section 3 or the weights for the treatment parameters presented in Table 1B.
20Heckman and Vytlacil (2004b) show that for every policy it is possible in principle to define an instrumental

variable that generates the correct policy relevant treatment effect. However, such an instrument may not be feasible
in any given data set because of support problems. Different policies define different policy relevant instrumental
variables.
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A closer look at these weights reveals that

hIV (x, u) =

Z 1

u

(p−E(P (Z) | X = x))fP (p | X = x)dp

V ar(P | X = x)

where fP (·|X = x) is the density of P (Z) conditional on X = x.21 Using this expression, one can

easily see the following properties of hIV . For any given x, hIV is a proper weight as a function of

u, hIV (x, u) ≥ 0 for all u ∈ [0, 1] and hIV (x, ·) integrates to one,Z 1

0

hIV (x, u)du = 1.

For any given x, hIV (x, ·) achieves a maximum value at E(P (Z)|X = x), so that for any x,

hIV (x,E(P (Z) | X = x)) ≥ hIV (x, u) ∀u ∈ [0, 1]

with the inequality being strict if fP (p|X = x) > 0 for p in a neighborhood of E(P (Z) | X = x).

hIV (x, ·) places zero weight outside of the support of the distribution of P (Z) conditional on
X = x,

hIV (x, P
Max
x ) = 0 = hIV (x, P

Min
x )

and

hIV (x, p) = 0 for p ≤ PMin
x , p ≥ PMax

x ,

where PMax
x and PMin

x are the maximum and minimum of the support of the distribution of P (Z)

conditional on X = x. For proofs, see Heckman and Vytlacil (2000).22 ,23

We can also fit OLS into this framework. Table 1B gives the exact weights for OLS. The OLS

weights are not guaranteed to be positive or to integrate to one.24

21For this expression we are assuming that the distribution of P (Z) conditional on X has a density with respect
to Lebesgue measure.
22Take a more general instrument J , and recenter J so that E(J) = 0. Keeping conditioning on X implicit,

plimβ̂IV =
E(JY )
E(JS) where plimβ̂IV (J) =

R
MTE (u)h(u;J)du and h(u;J) = E(J|P (Z)≥u) Pr(P (z)≥u)

E(JP ) ,

Z 1

0

h(u;J)du =

1. We have the following properties: (i) h(u;J) non-negative iff E(J | P ≥ p) weakly increasing in p, (ii) Support
h(u;J) ⊆ [PMin, PMax] (Support of P ); (iii) defining T (p) = E(J | P = p), we have h(u;J) = h(u;T (P )). (See
Heckman and Vytlacil, 2000, 2004b).
23The idea of interpreting IV as a weighted average of the limit of LATE can also be found in Card (1999, 2001)

(weighted average of the distribution of return to schooling), Angrist, Graddy and Imbens (2000) (weighted average
of Wald estimators) and Yitzhaki (1996, 1999). However, these authors do not relate the weights to those of the
policy relevant treatment effects or to the weights required to estimate the conventional treatment parameters.
24Moreover, they are also not defined for values of uS where MTE (x, uS) = 0.
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Observe that if Z is a vector, then given our conditions (A-1) to (A-5) we have that any element

of Z that is not an element of X is a valid instrument according to the traditional definition of an

instrument. And yet each possible element of Z will result in an IV estimand that is weighting

MTE differently and hence estimating a different object than the IV estimand corresponding to

any other element of Z. We illustrate this point in the empirical analysis reported in section 6.

This dependence of estimated parameters on the choice of instruments is a central feature of

a model that fails condition I or II - a correlated random coefficient model.25 This highlights a

central point of this paper. When returns vary in the population, and are correlated with the

choice of activity (S), different summary measures (in this case different instrumental variable

estimators) of the distribution exist.

Summarizing the paper thus far, under assumptions (A-1) - (A-5) and the model of equations

(7) and (8), the IV estimand, the policy relevant treatment effect, and the conventional treatment

parameters are all weighted averages of the MTE. Using theMTE we unify the estimation, treat-

ment effect and policy evaluation literatures as generating parameters or estimands as integrals of

MTE using different weights:

Estimand j or parameter j (given X) =
Z 1

0

∆MTE(x, uS)ωj(x, uS)duS

where different estimands or different treatment parameters correspond to different weights ωj(x, uS).

Table 1 summarizes a central result of this paper and the various weights for the different

estimands and parameters. The treatment effect parameters weight MTE differently than what

is required to produce the policy relevant treatment effect. Thus the conventional treatment

parameters do not, in general, coincide with the policy relevant parameters. The weighting for the

OLS or IV estimand do not correspond to the weights required to generate the policy relevant

treatment parameters.

Figure 2A plots the MTE and the weights used to form ATE, TT and TUT for a generalized

Roy model (with tuition costs) with the parameter values displayed at the base of Table 2.26

25Angrist, Graddy and Imbens (2000) also emphasize the dependence of the IV estimand on the choice of
instruments in a random coefficient framework.
26The form of the Roy model we use assumes additive separability and generates U0,U1 and US from a common

unobservable ε. Thus the distribution of U1 − U0 given US is degenerate.

18



This is the model of equation (3) with decision rule (6). TT overweights the MTE for persons

with low values of US who, ceteris paribus, are more likely to attend school. TUT overweights

the MTE for persons with high values of US who are less likely to attend school. ATE weights

MTE evenly. The decline in MTE reveals that the gross return (β) declines with US. Those

more likely to attend school (based on lower US) have higher gross returns. Not surprisingly,

in light of the shape of MTE and the shape of the weights, TT > ATE > TUT . See Table

2. There is a positive sorting gain (E(U1 − U0 | X = x, S = 1)) and a negative selection bias

(E(U0 | X = x, S = 1)− E(U0 | X = x, S = 0)). Figure 2B displays the MTE and the OLS and

IV weights using P (Z) as the instrument. IV weights the MTE more symmetrically and in a

different fashion than ATE, TUT or TT. OLS weights MTE very differently.

The most direct way to produce the policy relevant treatment parameters is to estimate MTE

directly and then generate all of the treatment effect parameters using the appropriate weights.

We develop a strategy for doing this next.27

5 Using Local Instrumental Variables to Estimate theMTE

Using equation (3) the conditional expectation of log Y given Z is

E(lnY | Z = z) = E(lnY0 | Z = z) +E(lnY1 − lnY0 | Z = z, S = 1)Pr(S = 1 | Z = z)

where we keep the conditioning on X implicit. By the exclusion condition for Z, (A-1), and the

index sufficiency assumption embodied in (A-3) and (8), we may write this expectation as

E(lnY | Z = z) = E(lnY0) +E(β | P (z) ≥ US, P (Z) = P (z))P (z).

Given our assumptions, we have the following index sufficiency restriction:

E(lnY | Z = z) = E(lnY | P (Z) = P (z)).

Applying the Wald estimator for two different values of Z, z and z0 assuming P (z) 6= P (z0),
27We note parenthetically that the method of matching assumes that β ⊥⊥ S|X or β ⊥⊥ S|X,Z where the

variables after“|” denote the conditioning sets (see Heckman and Navarro, 2003). It assumes that for all X, or for
all X,Z, the marginal return equals the average return and begs the stated question of interest in this paper.
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we obtain the IV formula:

E(lnY | P (Z) = P (z))-E(lnY | P (Z) = P (z0))
P (z)-P (z0)

= β̄ +
E(U1-U0 | P (z) ≥ US)P (z)-E(U1-U0 | P (z0) ≥ US)P (z

0)
P (z)− P (z0)

= ∆LATE(P (z), P (z0)),

where ∆LATE was defined in Section 2. When U1 ≡ U0 or (U1 − U0) ⊥⊥ US, corresponding to the

two special cases in the literature, IV based on P (Z) estimates ATE (= β̄ ) because the second

term on the right hand side of this expression vanishes. Otherwise IV estimates an economically

difficult-to-interpret combination of MTE parameters as discussed in the last section.

Another representation of E(lnY | P (Z) = P (z)) that reveals the index structure underlying

this model more explicitly writes

E(lnY | P (Z) = P (z)) = α+β̄P (z)+

Z ∞

−∞

Z P (z)

0

(U1−U0)f(U1−U0 | US = uS)duSd(U1−U0). (9)

We can differentiate with respect to P (z) and obtain MTE :

∂E(lnY | P (Z) = P (z))

∂P (z)
= β̄ +

Z ∞

−∞
(U1 − U0)f(U1 − U0 | US = P (z))d(U1 − U0)

= ∆MTE(P (z)).

IV estimates β̄ if ∆MTE(uS) does not vary with uS. Under this condition E(lnY | P (Z) = P (z))

is a linear function of P (z). Thus, under our assumptions, a test of the linearity of the conditional

expectation of ln Y in P (z) is a test of the validity of linear IV for β̄. It is also a test for the

validity of conditions I and II.

More generally, a test of the linearity of E(lnY | P (Z) = P (z)) in P (z) is a test of whether

or not the data are consistent with a correlated random coefficient model and is also a test of

comparative advantage in the labor market for educated labor. If E (lnY |P (z)) is linear in
P (z), standard instrumental variables methods identify “the” effect of S on lnY . In contrast, if

E (lnY |P (z)) is nonlinear in P (z), then there is heterogeneity in the return to college attendance,
individuals act at least in part on their own idiosyncratic return, and standard linear instrumental

variables methods will not in general identify the average treatment effect or any other of the
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treatment parameters defined earlier. This test is simple to execute and interpret and we apply it

below.

We consider E(lnY |P (Z) = P (z)) and differentiate this conditional expectation to obtain

MTE. We also could have considered E(lnY |Z) or E(lnY |Zk) where Zk is the kth component

of Z. However, conditioning on P (Z) instead of either Z or individual components of Z has

several advantages. By examining derivatives of E(lnY |P (Z) = P (z)), we are able to identify

the MTE function for a broader range of values than would be possible by examining derivatives

of E(lnY |Zk = zk) while removing the ambiguity of which element to condition upon. Also, by

connecting theMTE to E(lnY |P (Z) = P (z)), we are able to exploit the structure on P (Z) when

making out of sample forecasts. If Z1 is a component of Z that is associated with a policy, but

has limited support, we can simulate the effect of a new policy that extends the support of Z1

beyond historically recorded levels by varying the other elements of Z.28 See Heckman (2001) and

Heckman and Vytlacil (2001b, 2004b).

It is straightforward to estimate the levels and derivatives of E(lnY | P (Z) = P (z)) and

standard errors using the methods developed in Heckman, Ichimura, Smith and Todd (1998). The

derivative estimator of MTE is the local instrumental variable (LIV ) estimator of Heckman and

Vytlacil (1999, 2000).

This framework can be extended to consider multiple treatments, which in this case can be

either multiple years of schooling, or multiple types or qualities of schooling. These can be either

continuous (see Florens, Heckman, Meghir and Vytlacil, 2002) or discrete (see Carneiro, Hansen

and Heckman, 2003, Carneiro and Heckman, 2003, and Heckman and Vytlacil 2004a).

6 Estimating the MTE and Comparing Treatment Para-
meters, Policy Relevant Parameters and IV Estimands

In this section we report estimates of the MTE using a sample of white males from the National

Longitudinal Survey of Youth. The data are described in the appendix. S = 1 denotes college
28Thus if µ(Z) = Zγ, we can use the variation in the other components of Z to substitute for the missing

variation in Z1 given identification of the γ up to a common scale.
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attendance. In our data set there are 713 high school graduates who never attend college and

731 individuals who attend any type of college.29 Table 3 documents that individuals who attend

college have on average a 32% higher wage than those who do not attend college. They also have

one year less of work experience since they spend more time in school.30 The scores on a measure

of cognitive ability, the Armed Forces Qualifying Test (AFQT), are much higher for individuals

who attend college than for those who do not.31 Persons who only attend high school come from

larger families and have less educated parents than individuals who attend college. They also live

in counties where tuition is higher, and they live farther away from a college, two measures of

direct costs of schooling. Those who do not go on to college live in counties where local wages for

unskilled labor are higher, a measure of the opportunity cost of schooling. The wage equations

include, as variables in X, experience, experience squared and schooling-adjusted AFQT. Our

instruments are the number of siblings, parental education, distance to college, tuition, local wage

and local unemployment variables.32 AFQT enters the schooling choice equation (and therefore

the Z vector) but it does not play the role of an instrument since it is included in the X vector as

well.

We use a probit model for schooling choice with µs (z) = zγ, US ∼N(0, 1), and thus P (z) =
Φ(zγ) and S = 1[Φ(US) ≤ P (z)] where Φ(·) is the standard normal cdf. Alternative functional
form specifications for the choice model produce very similar results to the ones reported here.

Under standard conditions, the distribution of US can be estimated nonparametrically up to

scale so our results do not in principle depend on arbitrary functional form assumptions about
29These are white males, in 1992, with either a high school degree or above and with a valid wage observation,

as described in appendix A. We average over wage observations in adjacent years. We obtain comparable results
for adjacent years of the data. For these results and for other results using different data sets, see Carneiro (2002).
30Wages are constructed as an average of all nonmissing wages between 1990 and 1994 for each individual. Actual

work experience (not potential experience) is measured in 1992. Since individuals in the NLSY are born between
the years of 1957 and 1964, in 1992 they are 28 to 35 years of age.
31We use a measure of this score corrected for the effect of schooling attained by the participant at test date,

since at the date the test was taken, in 1981, different individiduals have different amounts of schooling and the
effect of schooling on AFQT scores is important. We use a version of the nonparametric method developed in
Hansen, Heckman and Mullen (2003). We perform this correction for all demographic groups in the population
and then standardize the AFQT to have mean 0 and variance 1.
32Our basic empirical results are barely changed if we include family background variables in both the outcome

and schooling choice equations and so do not use these variables as instruments. We discuss results excluding
family background measures below.
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unobservables.

Table 4 gives estimates of γ and the corresponding average marginal derivatives. The Z

variables are strong predictors of schooling. An exception is “distance to college at 14” which

appears with a positive sign in the choice equation, but the effect of this variable is very impre-

cisely estimated.33 Our tuition effects conform to the ones found in the literature that measures

enrollment-tuition responses in the US: a $1000 reduction in (four year college) tuition leads to

an increase in enrollment of 5% (see Kane, 1994 or Cameron and Heckman, 2001 for summaries

of the literature).34

The support of the estimated P (Z) is shown in Figure 3 and it is almost the full unit interval,35

although at the extremes of the interval the cells of data become very thin. The sparseness of data

in the tails results in a large amount of noise (variability) in the estimation of E(Y |X,P (Z) = p)

for values of p close to zero or one, which in turn makes estimation of the parameters defined

over the full support of US (and thus requiring estimation of E(Y |X,P (Z) = p) over the full unit

interval) problematic. We discuss these problems below. Note, however that the MTE can be

estimated pointwise for a wide range of evaluation points without full support.

Fully nonparametric estimation of the derivatives of E(lnY |X,P (Z)) is not feasible due to

the curse of dimensionality that plagues nonparametric statistics. We impose additional structure

on the model that results in a feasible semiparametric estimation problem. In particular, we

assume linearity in X and separability between X and U1 and U0 in the outcome equations,

lnY1 = α1 + Xθ1 + U1 and lnY0 = α0 + Xθ0 + U0. In addition to reducing the dimensionality

of the estimation problem, these restrictions also make our empirical results comparable to those

obtained from specifications of schooling equations estimated in the preceding literature. Our

linearity assumptions on the outcome equations imply that the return to college attendance can
33Use of slightly different samples or a slightly different measure of distance to college leads to reversals of this

sign, although the estimated effect is never very strong.
34These are partial equilibrium estimates of the effects of tuition. Heckman, Lochner and Taber (1998, 1999)

show that partial and general equilibrium analyzes of tuition policy can lead to very different conclusions.
35Formally, for nonparametric analysis, we need to investigate the support of P (Z) conditional on X. However,

the partially linear structure that we will impose below implies that we only need to investigate the marginal
support of P (Z).
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be written as a linear function of observables (X) and unobservables (U1 − U0):

β = α1 − α0 +X (θ1 − θ0) + U1 − U0.

Thus the outcome equation can be written as

lnY = α0 +Xθ0 + S [α1 − α0 +X (θ1 − θ0)] + U0 + S (U1 − U0) (10)

with (U0, U1, US) ⊥⊥(X,Z).36 Combining the model for S with the model for Y implies a partially

linear model for the conditional expectation of Y :

E(lnY |X,P (Z)) = α0 +Xθ0 + P (Z) (α1 − α0) + P (Z)X (θ1 − θ0) +K(P (Z)) (11)

where

K(P (Z)) = E(U1 − U0|P (Z), S = 1)P (Z) = E (U1 − U0|Φ(US) ≤ P (Z))P (Z)

where Φ(·) is the standard normal cdf. No parametric assumption is imposed on the distribution
of (U0, U1), and thus K(·) is an unknown function that must be estimated nonparametrically. In
general, unless P has full support in the unit interval, it is not possible to separately identify the

intercept of the regression (α0), the intercept term in (P (Z) (α1 − α0)) and the intercept of the

function K (P ).37 However the MTE can still be identified at US evaluation points within the

support of P (Z) since

∆MTE(x, p) =
∂E [α0 + P (α1 − α0) + P (z)x(θ1 − θ0) +K (P )]

∂P
|P=p

= (α1 − α0) + x(θ1 − θ0) + E (U1 − U0|US = p) .

The semiparametric, partially linear, form for the conditional expectation has several ad-

vantages in conducting empirical work. It imposes a dimension reduction compared to a fully

nonparametric model, while not restricting the form of the K function and thus allowing greater
36(A-3) only requires that (U0, U1, US) ⊥⊥Z|X, so we do not estimate the most general possible model within our

framework.
37This is the “identification at infinity” point made by Heckman (1990).
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flexibility than traditional parametric approaches.38 ,39 For simplicity (and in accordance with the

traditional Mincer model and the model of Willis and Rosen, 1979), we restrict the coefficients on

experience and experience squared to be the same in the high school and in the college outcome

equations (θexperience1 = θexperience0 , θexperience
2

1 = θexperience
2

0 )40. AFQT is the only X variable that

influences the return to schooling (θAFQT1 6= θAFQT0 ).41

The coefficient on the interaction between P (Z) and X (= θ1 − θ0) indicates whether ability

affects returns to schooling. Simple least squares regressions of log wages on schooling, ability

measures, and interactions of schooling and ability (ignoring selection arising from uncontrolled

unobservables) have been widely estimated in this and other data sets and generally show that

cognitive ability is an important determinant of the returns to schooling42. We include AFQT in

the model as an observable determinant of the returns to schooling and of the decision to go to

college. In the absence of such a measure of cognitive ability, selection arising from unobservables

should be important. Most data sets that are used to estimate the returns to education (such as

the Current Population Survey or the Census) lack such ability measures. We discuss the empirical

consequences of omitting ability in section 7.

We can test for selection on the individual returns to attending college by using equation (9) to

check whether E(lnY |X,P ) is a linear or a nonlinear function of P . Nonlinearity in P means that

there is heterogeneity in the returns to college attendance and that individuals select into college

based at least in part on their own idiosyncratic return (conditional on X). A simple way to

implement this test is to approximate K(P ) with a third order polynomial in P and test whether
38The partially linear model was introduced by Robinson (1988).
39Imposing the partially linear model weakens the support condition that otherwise would be required for P (Z).

In particular, fully nonparametric analysis of all treatment parameters and policy counterfactuals would require
that the support of the distribution of P (Z) conditional on X be the full unit interval. In contrast, the analysis
with the partially linear model requires that X be full rank conditional on P (Z) and that the marginal distribution
of P (Z) have support equal to the full unit interval, without requiring that distribution of P (Z) conditional on X
have support equal to the full unit interval.
40Allowing θexperience1 6= θexperience0 and θexperience

2

1 6= θexperience
2

0 produces some instability in the estimates of
these and other parameters of the regression. Our main conclusions reported below are robust when we use the
more general specification but the estimates are less precise.
41Results where AFQT2 and AFQT3 are added to the model are available on request. They are qualitatively

similar to the ones we present in this paper.
42See Blackburn and Neumark (1993), Bishop (1991), Grogger and Eide (1995), Heckman and Vytlacil (2001a),

Murnane, Levy and Willett (1995), Meghir and Palme (2001), Carneiro (2002) and Table A3 in the appendix of
the paper.
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the coefficients in the second and third order terms are statistically significant.43 We reject the

null hypothesis that these coefficients are jointly equal to zero (p-value = 0.0564). Nonlinearity

of E(Y |X,P (Z)) in P (Z) implies that the MTE is not constant in uS and that the IV estimate

of the return to schooling is not an estimate of β̄(x) = ATE.44

Following Heckman, Ichimura, Smith and Todd (1998), we estimate the partially linear model

using a double residual regression procedure involving the use of local linear regression.45 We

use a biweight kernel with a bandwidth of 0.346 and all the standard errors we present are boot-

strapped.47 Figure 4 plots the estimated function for E (lnY |P = p) as a general function of P

(along with a model which imposes linearity of this expectation in P ). There is a substantial

departure from linearity.

We can partition the MTE into two components, one depending on X and the other on uS:

MTE (x, uS) = E (lnY1 − lnY0|X = x,US = uS)

= α1 − α0 + x (θ1 − θ0) +E (U1 − U0|US = uS) .

The component dependent on X is a linear function of AFQT. Table 5 reports the coefficients

on the X variables. The effect of AFQT on returns is positive and quantitatively important but

is imprecisely estimated.48 The local IV estimate is close to the OLS estimate but with larger

standard errors. Individuals with higher AFQT have a higher return to schooling. (See also

Carneiro, 2002 for further evidence.)49 Figure 5 plots the component of the MTE that depends
43The results from this test are reported in Table A2. The tests are based on a bootstrap procedure with 51

bootstrap replications.
44The standard errors used to perform this test are adjusted to account for parameter estimation in P (Z).
45In a first stage we estimate a local linear regression of each variable in the X vector (as well as all interactions

between X and P ) on P . Then we compute the residuals corresponding to each of these regressions and regress
wages (lnY ) on each of the residuals of this first stage to estimate θ0, α1 − α0 and θ1 − θ0. Finally, we compute
the residual of this latter regression and regress it (using a local linear regression) on P to estimate K(P (Z)). An
alternative to estimating K (P (Z)) nonparametrically would be to use polynomials in P (Z) or splines. Carneiro
(2002) shows that using polynomials of degree three and four in P (Z) generates basically the same results as those
presented in this paper.
46The results are robust to variations in the bandwidth between 0.15 and 0.35, with some sensitivity in the tails

due to the sparseness of the data in the tails.
47We use 51 bootstrap replications. In each iteration of the bootstrap we reestimate P (Z) so that all standard

errors account for the fact that P (Z) is itself an estimated object.
48The effect of AFQT on the return, (θ1 − θ0) , is the coefficient on P (Z)AFQT in Table 5.
49Since the measure of AFQT ranges from -2.6 to 2.7 the difference in the return to college between two individuals

with the same level of US , one with an AFQT score of 2.7 and the other with an AFQT score of -2.6 is 46.95%
(dividing by 3.5, the difference in the averafference in the return of 13.41% per year of college).
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on US but not on X (= α1−α0+E (U1 − U0|US = uS)), derived from Figure 4 using the formula

of equation (9).50 We approximate the derivative of K (P (Z)) by taking discrete differences:

∂K (P )

∂P
.
=

K (P + h)−K (P )

h

where h = 0.01. E(U1 − U0 | US = uS) is declining in uS for values of uS up to 0.4 and then it is

rising.51 Returns are annualized to reflect the fact that college goers attend 3.5 years of college.

The most college worthy persons in the sense of having high gross returns are more likely to go to

college. They have low values of uS, the “cost” of college. But for high values of uS (above 0.4)

the estimated MTE is increasing in uS indicating that individuals not likely to go to college (in

terms of their unobservables) would also benefit substantially from attending college. The lowest

returns are for individuals in the middle ranges of uS.52 The magnitude of the heterogeneity in

returns is substantial: returns can vary from slightly above 5% to above 40% per year of college.

The rising portion of E(U1 − U0|US = uS) indicates that other factors besides financial returns

determine the decision to go to college since individuals with high returns are choosing not to

attend college.

Carneiro, Hansen and Heckman (2003) estimate that a major determinant of college attendance

is the psychic cost of going to school. In their framework, psychic cost is a function of a measure

of cognitive ability, but they also allow the psychic cost to depend on other unobservables. They

show that substantial changes in the ex-ante distribution of financial returns (perceived by the

agent at the time he is deciding whether or not to enroll in college) have trivial effects on college

attendance, precisely because psychic cost plays such an important role in this decision relative

to the role of financial returns. Therefore, individuals with high levels of uS may well have high

financial returns to college (although not as high as the returns for those with low values of uS)

but still decide not to attend college because their (psychic) costs are very high.53

50For better visualization of the pointwise estimates of the MTE, in appendix figure A1 we plot the same curve
as in figure 4 without the standard errors.
51Note that the decision rule in (8) is S = 1 if µS(Z) − US ≥ 0 so, for a given Z, individuals with a higher US

are less likely to go to college.
52Figure A2 (in the appendix) plots both components of the marginal treatment effect: returns are highest for

individuals with a high level of AFQT (X in the figure) and a high level of uS , and are lowest for individuals with
a low level of AFQT and with values of uS close to 0.4.
53This pattern is also consistent with the existence of credit constraints affecting a segment of the population.
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Table 6 presents estimates of different summary measures of returns to one year of college.

The ATE, TT, TUT, AMTE and the return for individuals induced to go to college by a $1000

tuition subsidy are obtained in the following way. First we construct different weighted averages

of the MTE by applying the weights of Table 1A. Recall, however, that these weights are defined

conditional on X and they define parameters conditional on X. Therefore, after computing each

of these parameters for each value of X = x, we need to integrate them against the appropriate

distribution of X, which depends on the parameter we want to compute:

∆ATE =

Z
∆ATE(x)fX (x) dx

∆TT =

Z
∆TT (x)fX (x | S = 1) dx

∆TUT =

Z
∆TUT (x)fX (x | S = 0) dx

∆AMTE =

Z
∆AMTE(x)fX (x |Marginal) dx

∆PRT =

Z
∆PRT (x)fX (x | PRT ) dx

where fX(x | PRT ) is the density of X for individuals induced to go to college by the policy. The

schooling choice equation is: S = 1[Zγ − US ≥ 0], so

fX (x | S = 1) = fX (x | Zγ − US ≥ 0)

fX (x | S = 0) = fX (x | Zγ − US < 0)

fX (x | Marginal) = fX (x | Zγ = US)

fX (x | PRT ) = fX (x | Zγ − US < 0, Z 0γ − US ≥ 0)

where Z and Z 0 are the values of the instruments under the baseline regime and under the new

policy regime, respectively.54 These densities are also weights, but instead of weighting functions

of US they weight functions of X (see also Carneiro, 2002).

Instead of high psychic costs, individuals with high uS may face high borrowing costs which discourage college
attendance This pattern is also consistent with high rates of time preference.
54PRT is defined conditional on two policies. The baseline policy is the current policy in the data, for which

each individual has his or her actually observed random vector Z. The policy experiment is to shift Z to Z0. In
our example, the policy experiment leaves each element of Z unchanged except for tuition, and reduces tuition by
1000. Thus, Z0k = Zk for all elements k of Z that do not correspond to the tuition variable, and Z0k = Zk−1000 for
the element k of Z that does correspond to the tuition variable. Both Z and Z0 are assumed to be nondegenerate
random vectors.
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The limited support of P near the boundary values of P = 0 and P = 1 creates a practical

problem for the computation of the treatment parameters such as ATE, TT, and PRTE, since we

cannot evaluateMTE for values of US outside the interval [0.01, 0.96]. Furthermore, the sparseness

of the data in the extremes does not allow us to accurately estimate theMTE at evaluation points

close to 0 or 1. The numbers presented in Table 6 are constructed after restricting the weights to

be defined only over the region [0.01, 0.96]. These can be interpreted as the parameters defined

in the empirical support of P (Z), which is close to the full unit interval. The close to full

support for P (Z) in this paper is in marked contrast to the limited support found in Heckman,

Ichimura, Smith and Todd (1998), where lack of full support of P (Z) and failure to account for

it was demonstrated to be an empirically important source of bias for conventional evaluation

estimators.

Alternative ways to deal with the problem of limited support are to construct bounds for

the parameters or to use a parametric extrapolation outside of the observed support. We report

various bounds and extrapolations in Table A-4 in the appendix. Bounds on the treatment effects

are generally wide even though the support is almost full. Parametric extrapolation outside of the

support is potentially sensitive to the choice of extrapolation model. Estimates based on locally

adapted extrapolations showmuch less sensitivity than do estimates based on global approximation

schemes.

The sensitivity of estimates to lack of support in the tails (P = 0 or P = 1) is important for

parameters, such as ATE or TT, that put substantial weight on the tails of theMTE distribution.

Even with support over most of the interval [0, 1], such parameters cannot be identified unless 0

(for both ATE and TT) and 1 (for ATE) are contained in the support of the distribution of P (Z).

Estimates of these parameters are highly sensitive to imprecise estimation or extrapolation error

for E(Y |X,P (Z) = p) for values of p close to 0 or 1. Even though empirical economists often

seek to identify these parameters, often they are not easily estimated nor are they always the

economically interesting ones. In contrast, PRTE parameters typically place little weight on the

tails of theMTE distribution, and as a result are often relatively robust to imprecise estimation or
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extrapolation error in the tails.55 AMTE places weight fP (u|X = x) on MTE where fP (·|X = x)

is the density of P (Z) conditional on X.56 This implies that (1) if the distribution of P (Z) has a

density with respect to Lebesgue measure, then identification of AMTE does not require a support

condition on P (Z) since AMTE only weights MTE where the density of P (Z) is positive;57 and

(2) AMTE will put the most weight on MTE where there is the most data and thus the most

precise estimates and the least weight on MTE where there is the least data and thus the least

precise estimates. AMTE and PRTE are thus much easier to estimate because they place little

weight on the tails of the MTE.58 As demonstrated in Table A-4, these parameters are much less

sensitive to alternative methods for extrapolating MTE than are TT, ATE and TUT.

Integrating only over the support of the distribution of P (Z), [0.01, 0.96], Table 659 reports

estimates of the average annual return to college for a randomly selected person in the population

ATE of 18.70%, which is between the annual return for the average individual who attends college

(TT ), 20.69%, and the average return for high school graduates who never attend college (TUT ),

16.77%. The average marginal individual (AMTE) has an annual return of 15.95% which is below

the annual return for the average person (TT ). These estimates are slightly above the range of

the instrumental variables estimates of returns to schooling reported by Card (1999, 2001) in his

surveys of literature, which range from 6% to 16% per year of schooling.60 Our linear IV estimate
55However, we could also define a policy that affects people at either tail of the MTE and hence reverse this

conclusion.
56We are assuming for the AMTE weights that the distribution of P (Z) conditional on X has a density with

respect to Lebesgue measure.
57Formally, the identification condition is that there be no isolated points in the support of the distribution of

P (Z) so that local variation in P (Z) identifies E(lnY |X,P (Z) = p) at each p in the support of the distribution
of P (Z) conditional on X. The assumption that the distribution of P (Z) conditional on X has a density with
respect to Lebesgue measure implies that there are no isolated points in the support of the distribution of P (Z)
conditional on X.
58This has an interesting consequence. We can formally reject that AMTE = ATE (and that PRTE = ATE)

at a 10% significance level, but we cannot formally reject that PRTE = TT nor that PRTE = TUT . Both TT
and TUT substantially weight sections of the MTE (in the tails of the support of P ) where it is very imprecisely
estimated, while AMTE and ATE place a much smaller weight on the tails. Therefore the standard errors of the
estimates of the latter two parameters are much smaller than the standard errors of the estimates of the former
two parameters.
59The numbers presented in the second column of Table A4 in the appendix are constructed by restricting the

weights to only integrate over the region [0.05, 0.90].
60However most of the estimates reported in these papers are based on samples constructed from earlier years, in

which we expect the returns to schooling to be lower than in the more recent dataset we are using. Furthermore,
none of these papers estimates all of the parameters reported in Table 6. The averaging of wages across five different
years of data also leads to an increase of return. If we restrict ourselves to 1992 wages (instead of averaging wages
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of 12.5% is in the range of the IV estimates reported in the literature. None of these numbers

corresponds to the average annual return to college for those individuals induced to enroll in college

by a $1000 tuition subsidy (PRTE), which is 15.92%, although this estimate is very close to the

return for the average marginal person.61 This is the relevant return for evaluating this specific

policy using a Benthamite welfare criterion. It is below TT , which means that the marginal entrant

induced to go to college by this specific policy has an annual return well below (five log points)

that of the average college attendee. Figure 6 graphs the weights for E(Y1−Y0|US = uS) for ATE,

TT and PRTE. ATE gives a uniform weight to all US
62, while TT overweights individuals with

low levels of US (and therefore very likely to have enrolled in college) and PRTE puts more weight

on individuals in middle ranges of US. Figure 7 presents these weights for E (Y1 − Y0|AFQT ).
The PRTE places more weight at the center of the distribution of AFQT than does TT or ATE.

Figure 8 presents the joint (US, AFQT ) policy weights.63 Individuals attracted into college by a

tuition subsidy differ from the average individual who attends college both in terms US and in

terms of AFQT. There is a tradeoff in AFQT and cost (US). Low cost people attracted into college

by the subsidy have lower AFQT.64

We next compare all of these estimated summary measures of returns with the OLS and IV

estimates of the annual return to college, where the instrument is P̂ (Z), the estimated probability

of attending college for individuals with characteristics Z. Our OLS estimate is based on equation

(10). It estimates ATE if S and X are orthogonal to U0+S(U1−U0). The IV estimate is derived
between 1990 and 1994) then TT is 15.90%, ATE is 18.52%, TUT is 13.27%. AMTE is 12.91% and PRTE is
12.88%. This sample has 1280 individuals.
61We do not correct AFQT for effect of schooling at test we obtain ATE 0.1862, TT 0.2275, TUT 0.1478, AMTE

0.1596 and PRTE 0.1584. The only sizeable effects are on TT and TUT.
62Since the density of US is uniform in the population, this corresponds to weighting E(U1 − U0|US) by the

density of US .
63E (Y1 − Y0|AFQT ) is plotted in this figure. It is a straight line. The slope of this line is given by the coefficient

on the interaction of P and AFQT in the regression reported above. E (Y1 − Y0|AFQT ) is scaled to fit in the
figure. The joint (US , AFQT ) weights of figure 8 apply to the MTE graphed in appendix figure A2.
64When we exclude family background variables in X, but these variables appear in the outcome equation,

the instruments become tuition, distance and local labor market variables. We included number of siblings and
father’s education in levels, but not in returns, in the wage equation. The main patterns of the findings just
described in the text do not change very much. The estimated parameters are: ATE = 0.1842, TT = 0.2045,
TUT = 0.1645, AMTE = 0.1570. When we include family background variables both in levels and in returns
the function E (Y1 − Y0|US) has roughly the same shape as the one presented but all the estimates become more
imprecisely estimated (standard errors increase substantially).
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from the same equation. Since the returns estimated by OLS and by IV both depend on X (in

this case, AFQT), we evaluate the OLS and IV returns at the average value of X for individuals

induced to enroll in college by a $1000 tuition subsidy65, so that we can compare these estimates

with the policy relevant treatment effect. The OLS estimate of the return to a year of college is

7.60% while the IV estimate is 12.56%, well below the policy relevant treatment effect. Figure 9

plots the weight for E(U1 − U0|US = uS) for IV and for PRTE. Compared to the IV estimator,

PRTE weights high values more both in the initial declining segment and in the final rising

segment of MTE. IV places greater weights relatively on the lower values of MTE at the middle

of the figure. Therefore, in this sample (and for this instrument), the IV estimate is below the

PRTE. Only by accident does IV identify policy relevant treatment effects when the MTE is not

constant in US and the instrument is not the policy.66

A recurrent finding of the recent literature on the returns to schooling is that OLS estimates

are below IV estimates of returns to schooling (see Card, 1999, 2001). Figure 10 plots the MTE

weight for IV and the MTE weight for OLS on a comparable scale.67 Because of the large

negative components of the OLS weight, it is not surprising that the OLS estimate is lower than

the IV estimate. One common interpretation for this fact is that returns are heterogeneous and

IV estimates the return for the marginal person68 and OLS estimates the return for the average

person (or is an upward biased estimate of the average return). Therefore the fact that IV

estimates are larger than OLS estimates suggests that the return for the marginal person is above

the return for the average person (Card, 2001). However in this section we show that the marginal

person has a return substantially below the return for the average person, and still βIV > βOLS.

The least squares estimator does not identify the return to the average person attending college

E(β | S = 1) = E(lnY1 − lnY0 | S = 1). Rather it identifies (keeping the conditioning on X

65This is obtained by integrating X with respect to fX (x|PRT ) = fX (x|Zγ − US < 0, Z0γ − US ≥ 0).
66The weight for the marginal individual in this sample is very close to the weight for PRTE. Appendix Figure

A3 contrasts the weights for the marginal person (AMTE) with the weights for the average person (TT ).
67In order to place the weights on a comparable scale, we rescale the OLS weight. Estimation of the OLS

weight requires the estimation of both E (Y1|X,US) and E (Y0|X,US). It is easy to show that E (Y1|X,US = p) =
∂E(SY |X,P )

∂P |P=p and E (Y0|X,US = p) = −∂E[(1−S)Y |X,P ]
∂P |P=p. These derivatives are estimated using the same

procedure we described for the estimation of E (Y1 − Y0|X,US = p) = ∂E(Y |X,P )
∂P |P=p.

68It estimates the return for the “switchers”.
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implicit)

E(lnY | S = 1)− E(lnY | S = 0) = E(β | S = 1) + [E(U0 | S = 1)−E(U0 | S = 0)]

= β̄ +E (U1 − U0 | S = 1) + [E (U0 | S = 1)−E (U0 | S = 0)] .

In a model without variability in the returns to schooling, E(β | S = 1) = E(β) = β is the same

constant for everyone, so it is plausible that if U0 is ability, the last term in brackets in the final

expression will be positive (more able people attend school). This is the model of ability bias

that motivated Griliches (1977). It suggests that OLS may provide an upward biased estimated

of the average return to schooling. However, as noted by Willis and Rosen (1979), if there is

comparative advantage the term in brackets may be negative. People who go to college may be

the worst persons in the Y0 distribution, i.e. E(U0|S = 1) − E(U0|S = 0) < 0 even though they

could be the best persons in the Y1 distribution. This could offset the positive E(U1 − U0|S = 1)
and make the OLS estimate below that of the IV estimate, even if the IV estimate is below the

return for the average person (E (β|S = 1)).69 Thus the evidence reported in the recent literature
comparing OLS and IV is not informative on the comparison of average and marginal returns.

A major advantage of our approach to instrumental variables over the approach adopted in

the recent literature is that it enables us to use the economic theory of choice to combine multiple

instruments into one scalar instrument P (z) = Pr (S = 1|Z = z). In the general case when con-

ditions I and II of section 1 do not apply, each instrument defines a different parameter. Table 7

compares the conventional IV estimates for each of the instruments used in P (z) in this paper.

The estimates range all over the map. They are different from each other and from the estimate

generated by using P (z). None of these numbers is of intrinsic economic interest and none is

close to the policy relevant treatment effect or the average marginal treatment effect. Using local

instrumental variables (LIV ), we can identify theMTE and construct economically interpretable

parameters that answer precisely posed policy questions.
69Carneiro and Heckman (2002) develop this argument further.
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7 Ability Bias and the Validity of the Conventional In-
struments

Except for the OLS estimates reported in this paper, all of our estimates rely on instrumental

variables. The instruments used in this paper are those conventionally used in the literature

estimating the returns to schooling. (See, e.g., Card 1999, 2001.) In this section, we examine the

validity of the conventional instruments. Many data sets on earnings and schooling do not possess

measures of cognitive ability. For example, the CPS and many other data sets used to estimate

the returns to schooling do not report measures of cognitive ability. In this case, ability becomes

part of U1, U0 and US instead of being in X.

The assumption of independence (between the instrument and U1 and U0) implies that the

instruments have to be independent of cognitive ability. However, the instruments that are com-

monly used in the literature are correlated with AFQT. The first column of Table 8A shows

the correlations between different instruments (Z) and college attendance (S), denoted by ρZ,S.
70

With the exception of local unemployment rate, all candidate instruments are strongly correlated

with schooling. The second column of this table presents the correlation between instruments

and AFQT scores (A), denoted by ρZ,A. It shows that most of the candidates for instrumental

variables in the literature are also correlated with cognitive ability. Therefore, in data sets where

cognitive ability is not available most of these variables are not valid instruments since they violate

assumption (A-3). Notice that the local wage for unskilled workers and the local unemployment

rate are not strongly correlated with AFQT. However, they are weakly correlated with college

attendance as well. In the third column of Table 8A we present the F-statistic for the test of

the hypothesis that the coefficient on the instrument is zero in a regression of schooling on the

instrument. Staiger and Stock (1997) suggest using an F-statistic of 10 as a threshold for separat-

ing weak and strong instruments71. The table shows that the local wage and local unemployment
70When constructing this table we include all white males individuals with with nonmissing observations for each

pairwise correlation, so the sample sizes for each correlation are larger than in the sample used in the previous
section (in particular because we do not need wage observations to construct this table). We obtain a similar set
of results if we restrict ourselves to the sample used in the previous section.
71In a recent paper Stock and Yogo (2003) propose a different test. However they still find that the rule of thumb

first proposed in Staiger and Stock (1997) works well in general.
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variables have F statistics well below 10 which suggests that they are weak instruments. Therefore

either the candidate instrumental variable is correlated with ability or it is weakly correlated with

schooling.

Table 8B presents partial correlations between instruments, schooling and ability, after control-

ling for family background variables (number of siblings and parental education).72 Conditioning

on family background weakens the correlation between AFQT and the instruments. However the

F-test for a regression of schooling on the residualized instrument is low by Staiger-Stock stan-

dards. Residualizing on family background attenuates the correlation between the instruments

and ability but also between the instruments and schooling. This correlation is reported in the

third column of Table 8B. The instrument we use in the empirical work reported in this paper is

P (Z). If we regress schooling on experience, experience squared, corrected AFQT (the variables

we include in the wage regression) and P (Z), the F-statistic of the coefficient on P is 160. If

we add number of siblings and parental education to the regression the F-statistic on this same

coefficient becomes 154.73 By including AFQT in the wage regression we avoid the problem of

using invalid instruments. By using an index of instruments instead of a single instrument, we

overcome the weak instrument problem. Furthermore, using an index of instruments instead of a

single instrument tends to reduce support problems for any instrument. Even if one instrument

has limited support, other instruments can sometimes augment the support of P .

Our use of ability measures in the empirical work reported in this paper makes our estimates

more credible. When we exclude ability from the estimating equation, or use data sets for years

comparable to those used in this analysis that exclude an ability measure, the estimates of most

measures of returns are often implausibly large (see Carneiro, 2002). See the substantial increase

in the IV estimate in Table 9 when AFQT is omitted from the model. Ability bias is an important

empirical phenomenon and failure to control for it leads to substantial upward biases in estimated
72We exclude the family background variables from this table since we want to use these variables as controls.
73Because P (Z) is a nonlinear function of the instruments these high F−statistics may be driven by this non-

linearity. When we only include tuition, distance, local wage and local unemployment rates in P (Z) and then
we residualize schooling by AFQT and family background, the reported F−statistic on P becomes 16.41. If we
construct P as the predicted value of a linear regression of schooling on tuition, distance, local wage and local
unemployment then this F−statistic becomes 16.28. This is equivalent to using a standard linear IV procedure
where the instruments are tuition, distance, local wage and local unemployment.
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returns.

8 Summary and Conclusions

This paper presents a framework for estimating marginal and average returns to economic choices

when returns differ among individuals and persons select into economic activities based in part

on their return to them. We show that different conventional average return parameters and IV

estimators are weighted averages of the marginal treatment effect (MTE). Different instruments

define different parameters. Unless the instruments are the policies being studied, these parameters

answer well-posed economic questions only by accident. We show how to identify and estimate

theMTE using a robust nonparametric selection model. Our method allows us to combine diverse

instruments into a scalar instrument motivated by economic theory. This combined instrument

expands the support of any one instrument, and allows the analyst to perform out-of-sample policy

forecasts. Focusing on a policy relevant question, we construct estimators based on the MTE to

answer it, rather than hoping that a particular instrumental variable estimator happens to answer

a question of economic interest.

Using this framework we estimate the returns to college using a sample of white males extracted

from the National Longitudinal Survey of Youth (NLSY). We propose and implement a test for

the importance of comparative advantage and self-selection in the labor market.

The data suggest that comparative advantage is an empirically important phenomenon govern-

ing schooling choices. This confirms in a semiparametric setting a central finding of the parametric

Willis and Rosen (1979) analysis. Individuals sort into schooling on the basis of both observed

and unobserved gains where the observer is the economist analyzing the data.

Instrumental variables are not guaranteed to estimate policy relevant treatment parameters

or conventional treatment parameters. Different instruments define different parameters, and in

our empirical analysis produce wildly different “effects” of schooling on earnings. In our empirical

analysis, IV understates the Policy Relevant return by three log points.

The marginal return is substantially below the average return to college for those who attend

it. Controlling for ability greatly reduces the estimated marginal and average returns to schooling.
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Ability bias is an important empirical phenomenon. Most of the standard instrumental variables

used to estimate returns to schooling are not valid if ability is not properly accounted for.
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Return, Cost

(Average Return of College Goers) 

(Marginal Return) (Average Return in the Population) 

Average Person 

Marginal Person 



Table 1A
Treatment Effects and Estimands as Weighted Averages

of the Marginal Treatment Effect

ATE(x) =

Z 1

0

MTE(x, uS)duS

TT (x) =

Z 1

0

MTE(x, uS)hTT (x, uS)duS

TUT (x) =

Z 1

0

MTE(x, uS)hTUT (x, uS)duS

AMTE(x) =

Z 1

0

MTE(x, uS)hAMTE(x, uS)duS

Policy Relevant Treatment Effect (x)=

Z 1

0

MTE(x, uS)hPRT (x, uS)duS

IV(x) =

Z 1

0

MTE(x, uS)hIV(x, uS)duS

OLS(x) =

Z 1

0

MTE(x, uS)hOLS(x, uS)duS

Table 1B
Weights

hATE(x, uS) = 1

hTT (x, uS) =

·Z 1

uS

fP (p | X = x)dp

¸
1

E(P | X = x)

hTUT (x, uS) =

·Z uS

0

fP (p | X = x)dp

¸
· 1

E((1− P ) | X = x)

hAMTE(x, uS) = fP (p | X = x)

hPRT (x, uS) =

·
FP∗,X(uS)− FP,X(uS)

∆P

¸

hIV(x, uS) =

·Z 1

uS

(p-E(P | X = x))f(p | X = x)dp

¸
1

V ar(P | X = x)

hOLS =
E(U1 | X = x,US = uS)h1(x, uD)-E(U0 | X = x,US = uS)h0(x, uS)

MTE(x, uS)

h1(x, uS) =

·Z 1

uS

fP (p | X = x)dp

¸
1

E(P | X = x)

h0(x, uS) =

·Z uS

0

fP (p | X = x)dp

¸
1

E((1− P ) | X = x)
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Ordinary Least Squares
Treatment on the Treated
Treatment on the Untreated
Average Treatment Effect
Sorting Gain (1)

Selection Bias (2)

Linear Instrumental Variables (3)

(1) E[U1-U0|S=1]=TT-ATE
(2) E[U0|S=1]-E[U0|S=0]=OLS-TT
(3) Using Propensity Score as the Instrument

 S=1 (N=731)  S=0 (N=713) 
Years of Schooling 15.5007 11.9677

(1.7543) (0.5087)
Log Wage 2.6123 2.2994

(0.4797) (0.4067)
Years of Experience 9.4083 10.3410

(2.9711) (2.8365)
Corrected AFQT 1.0137 0.1408

(0.7083) (0.8494)
Number of Siblings 2.6484 3.0477

(1.7590) (1.8407)
Father's Years of Schooling 13.9959 11.6255

(3.1373) (2.7710)
 Average County Tuition at 17 19.2496 20.9525
(in $100) (8.0055) (8.0905)
Distance to College at 14 2.9811 4.5303

(9.7070) (10.7643)
Average State Blue Collar Wage at 17 6.6217 6.8129
(in dollars) (1.1994) (1.2137)
County Unemployment Rate at 17 6.2778 6.3077
(in %) (1.6625) (1.6967)

-0.0708
0.2017

Treatment Parameters in the Generalized Roy Example
Table2

0.1735
0.2442
0.1570
0.2003
0.0402

Corrected AFQT corresponds to a standardized measure of the Armed Forces Qualifying

Test score corrected for the fact that different individuals have different amounts of

schooling at the time they take the test (see Hansen, Heckman and Mullen, 2003; see also

the data appendix of this paper). The tuition variable corresponds to average tuition of four-

year colleges in the county of residence. Distance to College at 14 is measured in miles

and measures distance to the nearest college at age 14. Local wage at 17 measures average

blue collar wages in the state of residence at 17, and the unemployment variable

corresponds to average unemployment in the county of residence at 17. High School

dropouts are excluded from this sample. Wages are constructed to be weighed averages of

all nonmissing wages between the years of 1990 and 1994. Work experience is measured

in 1992. We use only white males from the NLSY79, excluding the oversample of poor

whites and the military sample. Standard deviations are in parenthesis

Table 3
Sample Statistics



b  E(dF/dZ)
Corrected AFQT 0.7595 0.2222

(0.0500) (0.0107)
Number of Siblings -0.0369 -0.0108

(0.0216) (0.0075)
Father's Years of Schooling 0.1217 0.0356

(0.0134) (0.0035)
 Average County Tuition at 17 -0.0138 -0.0040
(in $100) (0.0049) (0.0012)
Distance to College at 14* 0.0471 0.0138

(0.3710) (0.1028)
Average State Blue Collar Wage at 17 -0.1275 -0.0373
(in dollars) (0.0348) (0.0103)
County Unemployment Rate at 17 0.0650 0.0190
(in %) (0.0261) (0.0076)
(*) Distance in hundreds of miles.

Years of Experience 0.0771
 (0.0175)
Years of Experience Squared -0.0022
 (0.0009)
AFQT   (θ0)                                                     -0.0055
 (0.0624)
Phat*AFQT (θ1 − θ0)                                      0.0887
 (0.1029)

Table 4
 Probit Coefficients and

Average Derivatives for the College Decision Model

The first column of the table reports the coefficients of a probit regression of
college attendance (a dummy variable that is equal to 1 if an individuals has ever
attended college and equal to 0 if he has never attended college but has graduated
from high school) on the set of variables listed in the table. The second column
corresponds to average marginal derivatives. For each individual we compute the
effect of increasing each variable by one unit (keeping all the others constant) on
the probability of enrolling in college and then we average across all individuals.
Standard errors are in parenthesis and boostrapped.

Standard errors are in parenthesis (standard errors are boostrapped)

ans account for estimation of P.

The estimates reported in this table come from a regression of log
wages on experience, experience squared, corrected AFQT,
P*AFQT (where P, or Phat in the table, is the predicted probability
of attending college), and K(P), a nonparametric function of P,
K(P) is estimated by local linear regression. We report the
coefficients on the remaining variables in the regression. 

Table 5
 Coefficients from Partial Linear Regression of Wages

on Experience, Experience Squared, AFQT,
P*AFQT and K(P)
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The estimated function in this figure comes from a regression of log wages on experience,
experience squared, corrected AFQT, P*AFQT (where P is the predicted probability of
attending college), and K(P), a nonparametric function of P. K(P) is estimated by local linear
regression. The function graphed above is E(Y1-Y0|Us) and it is estimated in the following way.
First we compute the first derivative of K(P) with respect to P. Then we add a constant term to
this function which is simply the average AFQT in the population multiplied by the coefficient on
P*AFQT. E(Y1-Y0|Us) is divided by 3.5 to account for the fact that individuals that attend college
have on average 3.5 more years of schooling than those who do not. Therefore these
correspond to estimates of returns to one year of college.
We could evaluate this function at a different level of AFQT. These affect the level of the MTE 
func tion but not the curve of the function. Standard errors are bootstrapped.



0.01 ≤ P ≤ 0.96
Average Treatment Effect 0.1870

(0.0427)
Treatment on the Treated 0.2069

(0.0722)
Treatment on the Untreated 0.1677

(0.0586)
Average Marginal Treatment Effect 0.1595

(0.0351)
Policy Relevant Treatment Effect 0.1592
($1000 tuition subsidy) (0.0346)
Ordinary Least Squares 0.0760

(0.0068)
Instrumental Variables 0.1256

(0.0027)

Instrumental Variable
Number of Siblings 0.1100

(0.2242)
Father's Years of  Schooling 0.1748

(0.0484)
Average County  Tuition at 17 0.0901

(0.1060)
Distance to College at 14 0.4610

(0.4773)
Average State blue Collar Wage at 17 0.0311

(1.0541)
County Unemployment Rate at 17 -0.0522

(0.3457)
Phat 0.1285

(0.0197)

Linear Instrumental Variable Estimates of the Returns to Schooling

This table presents linear IV estimates of the returns to one year of college using different
instruments. We regress log hourly wages on schooling (college attendence), experience,
experience squared, AFQT and an interaction of schooling and AFQT Since the returns to
college depend directly on AFQT, we evaluate them at mean level of AFQT for white
males, which is 0.58. Phat is the predicted value of a probit regression of college
attendance on corrected AFQT, number of siblings, father's years of schooling, tuition,
distance, local wage and local unemployment.

Table 6
Estimates of Various Returns to one Year of College

To compute the first four parameters in this table we first estimate the marginal treatment
effect (using local linear regression) and then we weight it using the appropiate weights
developed in the paper. The OLS and IV estimates are evaluated at the same average
value of AFQT as the PRTE estimate (i.e., the average AFQT score for individuals
induced to enroll in college by $1000 tuition subsidy).

Table 7
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Instruments ρz,s ρz,a F-statistic
Number of Sibling -0.1159 -0.1016 26.05

(0.0206) (0.0221)
Father's Education 0.3821 0.3527 312.76

(0.0175) (0.0185)
 Average County Tuition at 17 -0.0956 -0.0420 17.64
(in $100) (0.0228) (0.0249)
Distance to College at 14 -0.0705 -0.0795 8.92

(0.0233) (0.0250)
Average State Blue Collar Wage at 17 -0.0560 0.0194 5.86
(in dollars) (0.0212) (0.0223)
County Unemployment Rate at 17 -0.0097 -0.0015 0.18
(in %) (0.0231) (0.0228)

Instruments ρz,s ρz,a F-statistic
 Average County Tuition at 17 -0.0519 0.0108 4.94
(in $100) (0.0234) (0.0236)
Distance to College at 14 -0.0313 -0.0407 1.67

(0.0249) (0.0260)
Average State Blue Collar Wage at 17 -0.0508 0.0369 4.59
(in dollars) (0.0218) (0.0226)
County Unemployment Rate at 17 0.0061 0.0124 0.07
(in %) (0.0237) (0.0245)

Model Including AFQT
Average Marginal Treatment Effect 0.1502

(0.0345)
OLS 0.0760

(0.0067)
IV 0.1256

(0.0272)(0.0176)
Both regressions estimate a random coefficient model: ln Y=α+β S +ε where β varies among individuals. The
only difference is that for the model underlying the numbers in the column on the right of the table AFQT
influences both α and β , while in the model for the column on the left of the table AFQT is excluded from
the model. The OLS and IV estimates in the column on the right are evaluated at the average level of AFQT
for the marginal individual. The instrumental variable we use to compute the IV estimate is the predicted value
of a probit regression of college attendance on corrected AFQT, number of siblings, father's years of schooling,
tuition, distance, local wage and local unemployment.

(0.0214)
0.0989

(0.0187)
0.1758

Table 9
Estimates of Returns to One Year of College

Model Without Including AFQT
0.1702

Table 8B
Residualized Correlation of the Instrumental Variables (Z) with Schooling (S) and AFQT(A)

Schooling Instruments and Test Scores are first residualized on number of siblings and father's education using linear regression. Then the

first column presents the correlation between the instruments and college attendance.The second column presents the correlation between

the instrument and measured ability (AFQT). For each correlation in the first and second column I use all white males in NLSY with

nonmissing values for the variables needed (instrument,college attendance and AFQT).GED recipients and high school dropouts are

excluded. Standard errors are bootstrapped, the number of replications is 100

Table 8A
Correlation of the Instrumental Variables (Z) with Schooling (S) and AFQT(A)

The first column presents the correlation between the instruments and college attendance.The second column presents the correlation

between the instrument and measured ability (AFQT). For each correlation in the first and second column I use all white males in NLSY

with nonmissing values for the variables needed (instrument,college attendance and AFQT).GED recipients and high school dropouts are

excluded. Standard errors are bootstrapped, the number of replications is 100



Appendix A Description of the Data

We restrict the NLSY1 sample to white males with a high school degree or above. We deÞne
high school graduates as individuals having high school degree, or having completed 12
grades and never reporting college attendance. We deÞne participation in college as having
ever gone to college or having complete more than 12 grades in school. GED recipients who
do not have a high school degree, who have less than 12 years of schooling completed and
who never reported college attendance are excluded from the sample. The wage variable
that is used is an average of all deßated (to 1983) no missing hourly wages from 1990
to 1994. Experience is actual work experience in weeks accumulated from 1979 to 1992
(annual weeks worked are imputed to be zero if they are missing in any given year). The
remaining variables that we include in the X and Z vectors are number of siblings, father�s
years of schooling, schooling corrected AFQT, year of birth dummies, average deßated (to
1993) tuition of the colleges in the county the individual lives in at 17 (we simulate the
policy change by decreasing this variable by $1000 for each individual), distance to the
nearest college at 14, average local blue collar wage in state of residence at 17 (or in 1979,
for individuals entering the sample at ages older than 17) and local unemployment rate
in county of residence in 1979. For the construction of the tuition variable see Cameron
and Heckman (2001). Distance to college is constructed by matching college location data
in the Higher Education General Information Survey (HEGIS)2 with county of residence
in NLSY. State average blue collar wages are constructed using data from the BLS by
matching state blue collar wages with state of residence at 17 (or in 1979, for individuals
entering the sample at ages older than 17). For a description of the NLSY sample see
BLS (2001). The NLSY79 has an oversample of poor whites which we exclude from this
analysis. We also exclude the military sample. We are left with 2439 white males, and 1916
of these have a high school degree (or equivalent) or above. Of these 1916 white males, 1718
have a valid hourly wage observation for 1992, 1813 have a nonmissing corrected AFQT,
1831 have nonmissing father�s education, 1790 have nonmissing distance, and 1862 have
nonmissing local labor market observations (there are no missing values for the variables
not mentioned). The main variables causing the reduction in the sample to 1444 are the
wage variable and the distance variable. Many individuals report having a bachelors degree
or more and at the same time having only 15 years of schooling (or less). We recode years of
schooling for these individuals to be 16. This variable is only used to annualize the returns
to schooling. If we did not perform this recoding, when computing returns to one year of
college we would divide the returns to schooling by 3.2 instead of dividing by 3.5. This
corresponds to multiplying all the estimated returns in the paper by 3.5/3.2 = 1.09. To
remove the effect of schooling on AFQT we implement the following procedure (based on
Hansen, Heckman and Mullen, 2003). Let T be test score, ST schooling at test date and A
cognitive ability. Assume that T is an additive function of ST , A and ε:

T = φ (ST ) + δ (A)

For exposition, assume φ (ST ) = θST and δ (A) = A (the scale of the test score does not
have intrinsic meaning and therefore we normalize the scale of ability to be the scale of the
test score). Assume A = Ā+ ν, where Ā is mean ability in the population. The goal is to
recover A, and for that we need to estimate θ. Individuals have to take the test in 1981.

1For a description of the NLSY 1979, see Bureau of Labor Statistics (2001).
2For a description, see National Center for Education Statistics (2003).
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Since they were born in different years, they start school at different dates and in 1981 they
have different amounts of schooling. If everybody was still in school in 1981, there was no
grade repetition and no school interruptions (nobody in the sample dropped out of school
in some year prior to 1981 and then return in a subsequent year, also prior to 1981), then
we could assume that A ⊥⊥ST since ST is random. However, if in 1981 some individuals
dropped out of school already then

E (T |ST ) = θST +E (A|ST )

where A and ST are likely to be correlated if individuals with low A drop out of school
earlier. If COV (A,ST ) > 0 then

plim�θOLS = θ +
COV (ST , A)

V (ST )
> θ

and therefore �A = T − �θOLSST < A. Restricting the exercise to individuals who have not
completed schooling at the test date does not solve the problem because we get choice-based
sampling bias. However, we observe individuals in the NLSY into their adult years and
therefore we know the completed level of schooling for everyone. Let SC denote completed
schooling. Then,

E (T |ST , SC) = θST +E (A|ST , SC)
Suppose completed schooling is a function of ability:

SC = λ (A) + η

where the η are other factors that inßuence schooling attainment and are uncorrelated with
A. Then for those individuals who have completed their schooling at test date, ST = SC
and therefore E (A|ST , SC) = E (A|SC). For those who have not completed schooling in
1981, the date of the test is exogenous. In particular, consider the set of individuals with
SC = sC . For this group of people, we will assume that ST and A are independent precisely
because the date of the test is exogenous. Everybody completes the same level of schooling
at the end and therefore we do not need to worry about the fact that those who had less
schooling at test date dropped out of school early because of low ability. In other words,
we assume that E (A|ST , SC) = E (A|SC). Therefore, the solution to the problem is to run
a regression of test scores on schooling at test date within groups of individuals with the
same level of completed schooling. Another way to state this is

E (T |ST , SC) = θST +E (A|SC)

and therefore all we need to do is to include a general function of SC in the regression
(what is usually called a control function). In this paper, we group individuals in 7 levels
of schooling at test date (≤8, 9, 10, 11, 12, 13-15, 16+) and 4 levels of completed schooling
(high school dropout, high school graduate, some college, college graduate) and run a
regression of AFQT on dummy variables for schooling at test date (we do not assume that
φ (ST ) is linear in S) and dummy variables for completed schooling (E (A|SC), the control
function). Then we use the coefficients on the former set of dummy variables to correct
AFQT. These coefficients are presented in Table A1. Finally, after correcting AFQT (not
only for white males, but for all race and gender groups) we standardize it to have mean
zero and variance one.
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Schooling at Test Date Coefficient
9 12.6802

(1.5105)
10 16.9406

(1.5158)
11 22.0232

(1.5354)
12 23.1203

(1.4901)
13 to 15 26.6032

(1.7298)
16 or greater 29.0213

(2.1278)

 AFQT=δ0+ΣST DST δST +ΣSC DSC δSC+η  

Phat Squared -3.0879
(1.3461)

Phat Cubed 2.1155
(0.8817)

F test F(2,1390)=2.8806
p-value 0.0564

Table A1
Regression of AFQT on Schooling at Test Date 

and Completed Schooling

These are coefficients of a regression of the AFQT score on schooling
at test date and complete schooling:     

Standard errors are bootstrapped to account for the fact that P is an
estimated object.The regression is only run over the relevant support
of P, i.e., for P between 0.001 and 0.96

Table A2
Formal Test of Selection

On Unobservable Returns

The last two lines refer to a test of joint significance of the
coefficients on phat squared and phat cubed. The estimates on this
table come from a regression of log wages on experience, experience
squared, corrected AFQT, P (or Phat in the table, th predicted
probability of attending college), P*AFQT, P squared and P cubed.
We report the coefficients on the last two variables. Standard errors
are in parenthesis.

 

DST are dummy variables, one for each level of schooling at test date
and δST are the coefficients on these variables. DSC are dummy
variables, one for each level of completed schooling and δSC are the
coefficients on these variables. The omitted category in the table is
"less or equal to eight years of schooling".



Experience 0.0756
(0.0185)

Experience Square -0.0020
(0.0010)

CAFQT 0.0595
(0.0188)

College 0.2088
(0.0318)

College*CAFQT 0.0862
(0.0292)

Intercept 1.7392
(0.0849)

Min(AFQT)=-2.66 Mean(AFQT)=0.58 Max(AFQT)=2.72
β -0.0060 0.0740 0.1268

The estimated regression is:

Lower Upper Lower Upper
0.1779 0.2437 0.0878 0.2852

(0.0464) (0.0464) (0.0357) (0.0357)

($1000 subsidy)
OLS

IV

Bounds for ATE

TT

TUT

AMTE

PRTE

Table A3
OLS Estimates of a Regression of Log Wage

on Experience, AFQT and College Attendance

Estimates of Return to College at Different Values of AFQT

lnY=α0+Xθ0+S[α1−α0+X(θ1−θ0)]+U, where U is the error term of the regression. Therefore: 
β=α1−α0+X(θ1−θ0) where α1−α0 is estimated from the coefficient on College and θ1−θ0 is the

coefficient on College*AFQT (we assume θ1−θ0 =0 for experience and experience squared). Since the

difference in the average years of schooling of high school graduates and individuals that attend

college is 3.5 we divide β by this number in order to generate returns per year of schooling. Those are

reported in the bottom panel of the table for different values of AFQT

Returns to College
Table A4

Instruments
ATE

(0.0346)
0.0760

0.01 < P < 0.96
0.1870

(0.0427)
0.2069

(0.0722)

0.1595

(0.0027)

0.05 < P < 0.90
0.1625

(0.0319)
0.1807

(0.0572)

0.1502
(0.0345)(0.0351)

0.1592

(0.0068)(0.0068)
0.1256 0.1256

(0.0027)

0.1677
(0.0586)

0.1456
(0.0415)

0.1505
(0.0289)
0.0760

The bounds estimated in the bottom panel of this table are developed in Heckman and Vytlacil

(2000). Let ATE (x) = E (Y1 − Y0|X), pmaxx and pminx be the minimum and maximum values of P
in the sample, and yux and y

l
x be the upper and lower bounds for the values of log wages. We assume

these variables do not depend on x and choose yu = *n (100) and yl = *n (1). Then these bounds
are the following (We evaluate these bounds at x = E (X)) :.

ATE (X = x) ≤ pmaxx E [*nY1|X = x, P (Z) = pmaxx ,D = 1] + (1− pmaxx ) yux
− ¡1− pminx

¢
E
£
*nY0|X = x, P (Z) = pminx ,D = 0

¤− pminx ylx

ATE (X = x) ≥ pmaxx E [*nY1|X = x, P (Z) = pmaxx ,D = 1] + (1− pmaxx ) ylx
− ¡1− pminx

¢
E
£
*nY0|X = x, P (Z) = pminx ,D = 0

¤− pminx yux



Ta b l e A 4
Returns to College Under Different Extrapolations and Definitions of Support

0.01 < P < 0.96 0.05 < P < 0.90 E1 E2 E3 (P 3) E4 (P 5) E5 (P 5) E6 (P 6)
ATE 0.1870 0.1625 0.2073 0.2086 0.2082 0.2077 0.2721 0.2663
TT 0.2069 0.1807 0.2213 0.2233 0.1886 0.2406 0.2993 0.3225
TUT 0.1677 0.1456 0.1931 0.1935 0.2282 0.1742 0.2443 0.2090
AMTE 0.1595 0.1502 0.1616 0.1617 0.1561 0.1565 0.1671 0.1662
PRTE 0.1592 0.1505 0.1612 0.1612 0.1568 0.1558 0.1660 0.1650
Bounds for ATE Lower Upper Lower Upper

0.1779 0.2437 0.0878 0.2852

The bounds estimated in the bottom panel of this table are developed in Heckman and Vytlacil (2000).
Let ATE (x) = E (Y1 − Y0|X), pmaxx and pminx be the minimum and maximum values of P in the sample,
and yux and y

l
x be the upper and lower bounds for the values of log wages. We assume these variables do not

depend on x and choose yu = cn (100) and yl = cn (1). Then these bounds are the following:

ATE (X = x) ≤ pmaxx E [cnY1|X = x, P (Z) = pmaxx ,D = 1] + (1− pmaxx ) yux
− ¡1− pminx

¢
E
£
cnY0|X = x, P (Z) = pminx ,D = 0

¤− pminx ylx

ATE (X = x) ≥ pmaxx E [cnY1|X = x, P (Z) = pmaxx ,D = 1] + (1− pmaxx ) ylx
− ¡1− pminx

¢
E
£
cnY0|X = x, P (Z) = pminx ,D = 0

¤− pminx yux

We evaluate these bounds at x = E (X).
For extrapolation 1 (E1) we fit a linear regression at the extremes of MTE (last 10% on each tail:

0 ≤ P ≤ 0.1 and 0.9 ≤ P ≤ 1) and extrapolate. Then I do calculations assuming full support. For
extrapolation 2 (E2) we fit a quadratic regression on each tail. For E3-E6 we estimate K(P) using polynomials
in P and assuming support from 0 to 1 (full support). The label in the column indicates the degree of the
polynomial: P 3 means that we fit a cubic (K (P ) = α+ βP + γP 2 + θP 3).
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The estimated function in this figure comes from a regression of log wages on experience,
experience  squared, corrected AFQT, P*AFQT (where P is the predicted probability of 
attending college), and K(P), a nonparametric function of P. K(P) is estimated by local linear 
regression. The function graphed above is E(Y1-Y0|Us) and it is estimated in the following way. 
First we compute the first derivative of K(P) with respect to P. Then we add a constant term to
this function which is simply the average AFQT in the population multiplied by the coefficient on
P*AFQT. E(Y1-Y0|Us) is divided by 3.5 to account for the fact that individuals that attend college
have on average 3.5 more years of schooling than those who do not. Therefore these
correspond to estimates of returns to one year of college.
We could evaluate this function at a different level of AFQT. Different levels of AFQT shift this
function in a parallel fashion.
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The estimated function in this figure comes from a regression of log wages on experience,
experience squared, corrected AFQT, P*AFQT (where P is the predicted probability of
attending college), and K(P), a nonparametric function of P. K(P) is estimated by local linear
regression. Let gamma be the coefficient on P*AFQT. Then the function graphed above is
E(Y1-Y0|AFQT,Us) = gamma*AFQT + E(U1-U0|Us) (in this case the only relevant X variable
is AFQT), where E(U1-U0|Us) is equal to the first derivative of K(P) with respect to P. E(Y1-Y0|AFQT,Us)
is divided by 3.5 to account for the fact that individuals that attend college have on average
3.5 more years of schooling than those who do not. Therefore these correspond to estimates
of returns to one year of college
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