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Abstract

We propose a computational model to study (the evolution of) post-secondary
education.“Consumers” that differ in quality shop around for desirable colleges
or universities. “Firms” that differ in quality signal the availability of their
services to desirable students. Colleges and universities, as long as they have
capacity, make offers to students that apply and qualify.
We study the dynamics and asymptotics for three nested variants of this

matching model: the first variant replicates the Vriend (1995) model, the second
stratifies both firms and consumers by quality, while the third variant of our
model equips some firms additionally with economies of scale. The last variant of
our model is motivated by the entry of for-profit providers into some segements
of post-secondary education in the USA and empirical evidence that, while
traditional nonprofit or state-supported providers of higher education do not
have significant economies of scale, the new breed of for-profit providers seems
to capture economies of scale in core functions such as advertising, informational
infrastructure, and regulatory compliance. Our computational results suggest
that this new breed of providers is likely to capture additional segments of that
market.
Our model lends itself also to the study of such issues as the consequences

of opportunistic behavior of firms (admittance of unqualified students for fis-
cal reasons) and the emergence of behaviorally different consumers (traditional
“patronizers” vs “hoppers”), among others. Our computational results sug-
gest that opportunism is a poor long—run strategy, that consumers are rather
heterogenous in their shopping behavior but that the mix of behaviorally differ-
ent consumers is unaffected by the presence of for—profits or opportunistically
behaving firms.



1 Introduction

Post—secondary education in the USA, formerly known there as higher educa-
tion, has undergone dramatic changes over the past decade, see Ortmann (1997).
The new label reflects new realities such as the increasing orientation of tradi-
tional higher education providers toward vocationalism, Breneman (1994), and
the emergence of a new breed of higher education providers – publicly traded,
degree—granting providers of post—secondary education, see Ortmann (2001)
and Ortmann (1998), that we shall call for-profits from now. These for—profit
“mutants” now represent about 10 percent of the post—secondary education
institutions in the USA1.
That for—profits have managed to invade the higher education sector as we

knew it is little short of sensational. Higher education in the USA was, and
still is for the most part, a heavily subsidized industry whose private not—for—
profit and public segments were, and still are, subsidized through significant tax
and regulatory breaks, Facchina, Showell, and Stone (1993), as well as significant
donations. In addition, not—for—profit and public institutions of higher education
in the USA do not have to pay investors a reasonable return. For—profits were,
and are, thus clearly handicapped. How then could they succeed? This is the
first question we address below.
For—profits invaded higher education initially by providing services to market

niches such as information technology training and continuing education/workplace
training for adults, see Ortmann (1998). In terms of the classification proposed
by Zemsky, Shaman, and Iannozzi (1997), for—profits entered post—secondary
education through segments 7 and 6, i.e. the segments in which one typically
also finds community colleges. Over the past few years, for—profits have success-
fully moved up to segments 5 and 4, i.e., the segments in which one typically
also finds state universities. It is thus an interesting question whether this inva-
sion of ever higher segments of higher education through for—profit “mutants”
can be stopped, or whether for—profits will ultimately invade segments 1 — 3,
i.e. the “brand—name segment”. This is the second question we address below.
In addition to understanding why for—profits managed to invade higher edu-

cation as we knew it, and what the future of these “mutants” is, we are interested
in studying the consequences of opportunistic behavior of colleges and univer-
sities (e.g., admittance of unqualified students for fiscal reasons), viable quality
improvement strategies for such firms, the emergence of behaviorally different
consumers (traditional “patronizers” versus “hoppers”), and various other issues

1The major publicly traded, degree-granting providers of post-secondary education in the
USA (by way of their stock market symbols, APOL, UOPX, CECO, COCO, DV, EDMC,
ESI, STRA, WIX) will generate an estimated $4 billion in revenue in 2002 which represents
about 2% of the higher education market as traditionally understood. The divergence be-
tween market share in terms of number of institutions and revenue reflects the particularities
of the ways for-profits operate. Typically they have centralized administrative and curric-
ular development facilities. Curricula are fairly regulated and replicated wherever possible.
“Campuses”/learning centers are no frills and located for easy access. For more details, see
Ortmann (1997, 1998, 2001).
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explained below.2

Toward those ends, we propose a computational model that we ultimately
intend to calibrate with data from post—secondary education in the USA (e.g.,
the data on which the VIRTUAL U simulation is based)3. Our model is a
progression of three increasingly refined variants. Following exhortations in
the literature (e.g., Axelrod (1997)), the first variant “reverse—engineers” and
somewhat generalizes (especially the classifier system) an influential model of
decentralized markets consisting of locally interacting boundedly rational and
heterogeneous agents, Vriend (1995). This variant of our model is meant to
establish a baseline and reference point that ties our refined versions to the lit-
erature. Indeed, we have been able to replicate reasonably well Vriend’s results
(e.g., the service ratio approaching 1, approximately one third of consumers
patronizing previously attended firms, etc.) Since his model presented a de-
centralized market with buyers and sellers not stratified by quality (as buyers
and sellers of post—secondary education in the USA surely are), we introduce
in our second variant (from here on “Q—model”) stratification by quality both
of buyers and sellers. Our third variant (from here on “QES—model”) adds to
the Q—model a new kind of firm that distinguishes it from other firms by its
cost configuration, namely economies of scale. The QES— and Q—models are the
computational laboratories in which we study the invasion of traditional higher
education by publicly traded, degree—granting providers, their likely future tra-
jectories, and the various other issues already mentioned.
The paper is structured as follows: Section 2 presents an outline of the

matching process that we capture in our evolutionary model, a summary of the
general form of our computational agents, and a summary of the basic structure
and the pseudo—code of one of our programs. Section 3 summarizes briefly the
experimental design and implementation and section 4 presents our findings so
far. Section 5 provides a brief discussion of relevant literature. In Section 6
we proffer some concluding remarks including a sketch of work we intend to do
next.

2 Structure of the matching model

In this section we discuss first the basic structure of the matching model. We
then present the pseudo code for the evolutionary modelling technique that we
used, namely the Steepest—Ascent Hill—Climbing algorithm cum GENITOR.4

2While our study is motivated by recent developments in post-secondary education in the
USA, similar developments can also be observed in countries such as Germany that historically
were much less open to curricular and other educational innovations.

3... but haven’t yet. VIRTUAL U is an ambitious attempt to build a Sim City like
simulation of higher education in the US. It draws on real-world data in parameterizing the
underlying simulation machines. See http://www.virtual-u.org/ for more details.

4In the GENITOR algorithm, rules are ranked according to their fitness, and the probabil-
ity of selecting a particular rule is proportional to its rank. Every nth period, two evolutionary
operators (crossover and mutation) are applied to produce a new rule, which is inserted into the
existing ranking and replaces an old rule. One of the advantages of the GENITOR algorithm,
according to Chattoe (1998) and Whitley (1989), is the relative stability of the ranking, which
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2.1 Summary of the matching model

Buyers (prospective students and/or their parents) and sellers (colleges and uni-
versities) of post-secondary education try to match optimally in a decentralized
market for a number of periods. In the first period, buyers are randomly and
uniformly distributed along a quality spectrum that is normalized to the inter-
val [0, 100]. Likewise, in the first period sellers are randomly and uniformly
distributed along a qaulity spectrum that is normalized to the interval [0, 100].
Each period sellers have two actions available to them: producing slots which

they then signal to prospective (and desirable) buyers. Currently we assume
that firms know the quality of such buyers and require a minimum quality
(defined as own quality minus MAX CONS DIFF). Each period buyers have
three actions available to them: they can either try to patronize the firm they
attended (PATR) or go to a firm that signalled them (KNOWN) and meets a
given quality threshold (defined as own quality minus MAX FIRMS DIFF) or
randomly choose some firm (RAND) with probability 1

Nfirms
.5 If a buyer has

to take into consideration the firm’s quality, as in our Q— or QES—models, the
RAND action does not apply and is not available. Buyers who are not able
to take the PATR, KNOWN, or RAND actions (because firms do not accept
them), do not get matched.
Table 1 summarizes behavioral rules (= actions), (number of) rules, our

agents’ internal states and preferences, their internal behavioral rules, and their
interaction with the world. More detailed explanations following Table 1.

results in stable actions. Chattoe (1998) argues furthermore that the GENITOR algorithm
closely resembles the real—world decision—making process in companies and humans.
In addition, the evolutionary technique that we use here is arguably the simplest program-

ming technique and as such is a desirable baseline (e.g., see Chen, Duffy, and Yen (2002) and
the critique of Valente (2002).)
Currently, firms update both parts of their rules (pairs of numbers of slots produced and

signals) in every period, taking into account such perceived characteristics of the relevant
market niche as actual demand and maximally possible demand. The probability of selecting
a particular rule is proportional to its fitness, and every 50 periods one completely new rule
is generated. Unlike firms, consumers have a set of rules (such as if satisfied last period then
patronize same company again) that never changes.

5Adelman (2000) is a eminently readable sketch of the emerging “parallel universe of
postsecondary credentials ... an education and training enterprise that is transnational and
competency—based, confers certifications not degrees, and exists beyond governments’ notice
or control.”
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Table 1
CONSUMERS FIRMS

BEHAVIORAL RULES

IF (SAT, no SAT, indifferent to SAT) (production, signal)
AND (INFO, no INFO, indifferent to INFO)
THEN (PATR, KNOWN, RAND)

NUMBER OF RULES

18 (27 ) 20

INTERNAL STATES

Weights; own Q, Weights; own Q, demand,
firm attended last period, avg. Q of consumers,
list of schools that are desirable target number of consumers,

profit, average profit

PREFERENCES

MAX FIRM DIFF MAX CONS DIFF

INTERNAL BEHAVIORAL RULES

Rules for Selecting Rules Rules for Selecting Rules
stoch. auction; reinforcement stoch. auction; reinforcement

Rules for Changing Rules
production and signaling
adjustment, GA

MATCHING PROTOCOLS

Specification of firm Specification of consumer
selection selection

The (behavioral) rules, internal behavioral rules of buyers, and internal
states and preferences are as follows: Buyers maintain lists of rules, each with
a conditional and an action part. The conditional part determines if a rule will
be activated given the current state of the world, and enter the stochastic auc-
tion; the action part describes the action encoded in the rule that emerges the
winner from the auction. Specifically, the action part encodes actions PATR,
KNOWN, and RAND. In addition, buyers keep track of “strengths” (to be ex-
plained presently) of these rules, their own quality6, the index of the firm which

6Currently, our consumers do not change their quality. I.e. what school exactly they attend
has no consequence for their educational outcomes. Firms thus face a fixed distribution of
consumers in quality space. Given our current focus nothing seems lost through this restriction
which could be relaxed easily. We note that there is quite some discussion about the value
that colleges and universities add, see Altonji and Dunn (1996), Behrman, Rosenzweig, and
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they attended last period, and a list of schools that are desirable (i.e., have a
minimum quality). Every period, each buyer’s rules participate in a “stochastic
auction”, with “bids” being proportional to the rules’ strengths plus an error
term. The winning rule’s action is then performed and the consumer’s payoff is
realized next. Dependent on the consumer’s satisfaction (satisfied when served,
unsatisfied when not), the winning rule is reinforced positively (negatively) by
adding (subtracting) a fixed number to (from) its “strength”.
Like buyers, sellers maintain lists of rules that encode actions and the “strengths”

of these rules as well as internal states and preferences, and internal behavioral
rules. Rules encode pairs of integer numbers, one representing the number of
units produced and the other the number of signals to be sent. Note that rules
in this sense translate directly into actions. There are twenty such rules that
are initialized randomly so as to represent various production—signaling combi-
nations. As is the case for buyers, every period every seller’s rules participate in
a stochastic auction with bids being again proportional to the rules’ strengths
plus an error term. As in the case of buyers, the winning rule is then imple-
mented and the firm’s payoff is realized next. Dependent on the profit the firm
made relative to some moving average of profits, the winning rule is reinforced
positively (negatively) by adding (subtracting) a fixed number to (from) its
“strength”.
Note that the stochastic auction mechanism is equivalent to various forms

of probabilistic enforcement learning recently proposed in the literature (e.g.,
Goeree and Holt (2001), Goeree and Holt (1999); Camerer, Ho, and Chong
(2001); see also Bush and Mosteller (1951), Bush and Mosteller (1955)) as an
approach that formalizes a wide array of experimental results on human decision
making.

Table 2:

FIRMS CONSUMERS
— make production and
signaling decisions
— signal

— choose firms,
apply to one

— accept or reject
consumers

— if rejected, choose
another firm

. . . . . .

— calculate profits,
adjust quality

Table 2 details top—down the timeline of interactions of sellers and buyers in

Taubman (1996), and Tamura (2001).

5



each period. Every period, firms first make production and signalling decisions.
Next, firms signal potential buyers. Only those buyers get signalled that are
within a pre—specified range of quality ([Q−MAX CONS DIFF,Q+MAX FIRM DIFF])
that currently centers on the seller’s own quality, up to the pre—determined num-
ber of signals that the firm has chosen to send in that period. This reflects the
practice of colleges and universities to admit only those students that fulfill
certain minimum quality standards and to diligently track the yield of vari-
ous advertising and recruiting channels (i.e., not to waste recruiting efforts on
candidates that can be expected to be out of reach or undesirable.)
Consumers then choose their firm from among the offers. Only those firms

become candidates that are above a pre—specified quality that equals buyers’
own quality minus MAX FIRM DIFF. This reflects the practice of the over-
whelming number of students not to go to colleges and universities that are
significantly worse than they are. It can also be interpreted as the result of
decision making under constraints such as time or knowledge.
Since typically a student will be signalled by several colleges or universities,

the question arises how he or she prioritizes among multiple offers. We assume
that consumers collect all their offers and put those firms that satisfy a minimum
quality on the list of desired firms. Consumers with winning rules that encode
the KNOWN action then “apply” successively to randomly selected firms on
their list of preferred providers. As soon as such a firm can and wants to
provide, a match is accomplished.7 Consumers with winning rules that encode
action PATR go directly to the firm that they attended the previous period
(without checking quality because it must have been done at some point in past
and because quality changes typically do not happen suddenly).8 Firms do not
discriminate between consumers who patronize or those responding to offers.9

After buyers and sellers have been matched, firms compute their revenues,
costs, and profits. They also update their quality as the weighted average of the
quality of students that have chosen to enroll and current profits, with weight
on profits being relatively small.10 While this approach to determine the quality
of colleges and universities – essentially defining the quality of a school as the
average of the quality of the students that it attracts – is admittedly simplistic,
it captures arguably the most important aspect of what determines the quality
of an institution (e.g., Rothschild and White (1993)). Specifically, it allows us

7Think of a student that collects all information he gets in a large folder and on D—day
takes the first one that fulfills her or his aspiration level. If this attempt fails, the students
randomly selects another firm with sifficiently high quality out of the folder.

8Other procedures are, of course, thinkable. For example, rather than selecting firms
randomly, consumers might call on schools according to their quality. We doubt, however,
that the majority of students make their selections with that kind of high—level rationality
or that they have the information that would allow them to optimize in such a sophisticated
manner, see Boylan (1998).

9This is, in a sense, in contrast to Kirman and Vriend (2001) where loyal customers could
receive more or less preferential treatment. The implications of loyalty on the part of sellers
remains an issue for future research. Again, we believe that this issue is not of material
relevance for the issues we are interested in here.
10We calibrate this weight by requiring the average firm quality to be equal to 50. Other

ways of calibration are, of course, possible.
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to study the trade—off any typical college faces on the margin of admitting a
rich but not so smart rather than a poor but brilliant student. Below we call
such admittance of unqualified students for fiscal reasons opportunistic behavior.
Last but not least, firms reflect on the usefulness of their strategy and adjust
their production—signaling decision in a manner described in the next subsection.
This process repeats round after round after round. The matching process,

in other words, is a dynamic process that evolves over a number of periods. The
dynamic process is defined algorithmically in terms of the (behavioral) rules
of our agents, their internal states and preferences, their repeated interactions,
and – through internal behavioral rules that govern how rules are selected and
changed – the evolution of rules toward some stable outcome.

2.2 Pseudo code

The following pseudo code presents the preceding summary of our matching
model in a manner probably more palatable to programmers. Subroutines and
parameters are in CAPITAL LETTERS while variables and programming lan-
guage reserved words are expressed in lower case.

program MAIN;
begin
CREATE FIRMS, CREATE CONSUMERS
for iteration 1 to RUNLENGTH do

RESET FIRMS AND CONSUMERS
FIRMS CALCULATE PRODUCTION AND SIGNALING
FIRMS SIGNAL DESIRABLE CONSUMERS
CONSUMERS SELECT DESIRABLE FIRMS
FIRMS ACCEPT/REJECT CONSUMERS
FIRMS COMPUTE PROFITS
FIRMS COMPUTE AVE CONSUMER QUALITY
FIRMS UPDATE QUALITY
FIRMS REINFORCE WEIGHTS
CONSUMERS REINFORCE WEIGHTS
if iteration modulo 50 then run GA on firms’ rules

end

CREATE FIRMS
profit[0:MEMORY SIZE]=0.
rules[1:NUM FIRM RULES].weight=INIT FIRM WEIGHT
RANDOMLY GENERATE RULES [PRODUCTION & SIGNALING PAIRS]
RANDOM QUALITY[0:99]

CREATE CONSUMERS
rules[1:NUM CONS RULES].weight=INIT CONS WEIGHT
rules[1] = ’IF not SAT AND no INFO THEN PATR’
rules[2] =’...
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rules[5] = ’IF not SAT AND INDIFFERENT to INFO THEN PATR’
rules[6] = ’...
rules[18] = ’IF INDIFFERENT to SATAND INDIFFERENT to INFO

THEN KNOWN’
RANDOM QUALITY[0:100]

RESET FIRMS AND CONSUMERS
ADJUST WEIGHTS TO [0,1]
RESET DESIRED FIRMS LIST
RESET SATISFACTION
WRITE THE STATE VECTOR

FIRMS CALCULATE PRODUCTION & SIGNALING
SELECT RULE (stochastic auction)
CALC (production, number of signals)

FIRMS SIGNAL DESIRABLE CONSUMERS
for i = 1 to number of signals

SELECT RANDOM CONSUMER
if MIN CONS QUAL ≤ CONS QUAL ≤ MAX CONS QUAL
then SEND SIGNAL

CONSUMERS SELECT DESIRABLE FIRMS
SELECT RULE (stochastic auction)
if action = ’PATR’ then firm selected = last firm
if action = ’KNOWN’ then

firm selected = ’NONE’
for i = 1 to NUM FIRMS

SELECT FIRM FROM AMONG THOSE THAT SIGNALED
if FIRM QUAL ≥ MIN FIRM QUAL then

firm selected = i
firm desired[i] = true

end
end
last firm = firm selected

end

FIRMS ACCEPT/REJECT CONSUMERS
stock = production
demand = 0
for i = 1 to NUM CONSUMERS

for j = 1 to NUM FIRMS
if CONS.firm desired = firm and firm.quality =>MIN FIRM QUAL

then
demand = demand + 1
if stock > 0 then
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SERVE
stock = stock - 1
last firm = firm

end
end

end
end

FIRMS COMPUTE PROFITS
profit = {price*min (production, demand) - cost(production, number of signals)}*qual

FIRMS COMPUTE AVERAGE CONSUMER QUALITY

FIRMS UPDATE THEIR QUALITY
quality = weight quality*ave consumer quality + weight profit*profit

FIRMS REINFORCE WEIGHTS

CONSUMERS REINFORCE WEIGHTS

RUN GA
For k = 1 to NUM FIRMS

SELECT TWO PARENTS FROM TOP 25% OF RULES
DO CROSSOVER
DO MUTATION
REPLACE RULE FROM BOTTOM HALF

3 Experimental design and implementation

3.1 Experimental design

The program code consists of 10 modules: MAIN.CPP, PARAMETER.H; RULE.H,
RULE.CPP; AGENT.H, AGENT.CPP; CONSUMER.H, CONSUMER.CPP;
FIRM.H, FIRM.CPP.
Consumers and firms are defined (= declared) in the respective .H modules

and implemented in the respective .CPP modules. Both, consumers and firms
are instantiations of AGENT.H and AGENT.CPP. This super—class declares
data components of agents such as the given number of rules and their initial
weights (parameterized in PARAMETER.H) and implements them.
The RULES modules define and implement the data components (such as

the number of segments = actions, and the number of bits per segment) as well
as the functions components (such as the crossover and mutation operators).
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3.2 Experimental implementation

The key component of our modeling technique is the probabilistic selection of the
active rule. As already pointed out, this is accomplished by way of a stochastic
auction that is equivalent to various forms of probabilistic enforcement learning
that have been proposed in the literature; it is also an approach that formalizes
a wide array of experimental results on human decision making.
Every rule submits a “bid” proportional to its current weight or “strength”.

A random number is then added to the bid. With a small probability, every bid
can be discarded. Following Holland (1992), the winning bid pays an activation
fee equal to its bid (without the random addition). This procedure makes sure
that the “best” rule typically wins the auction but that inferior rules have a
small chance to win, too. This operationalizes the fact that real—life buyers
and sellers are boundedly rational and make their decisions under incomplete
information, time pressure, or other cognitive constraints (Gigerenzer, Todd, &
the ABC Research Group (1999); Todd and Gigerenzer (2000); Payne, Bettman,
and Johnson (1988)).
Selection of the initial strength of a rule, its possible range (from zero to one

in our case), the variance of the auction’s error term (especially if it is modelled
as a uniformly distributed variable as it is currently in our case), and the discard
probability, all influence two characteristics of the stochastic process generated
by the stochastic auction: expected number of rules (not more than three or
four in our case) and the variance of the number of rules that will be called to
duty on a regular basis.
As can be seen from the pseudo code, strengths of rules are restricted to

[0,1]. This is done to prevent early in the simulation the emergence of “runaway”
rules that might lead to premature convergence. This renormalization reinforces
certain parameterizations of the variance of the auction’s error term and the
discard probability. (Note that for the same reason the standard deviation of
the auction’s error term is larger early in the simulation.)
The reinforcement of firms’ active rules depends on the ratio of the current

period profit to the average profit over the last 200 periods. This is motivated,
first, by the parameterization in Vriend (1995) and, second, by our desire to
stabilize our computational model within a reasonable runlength. Parameters of
the model are selected in such a way that rules which consistently produce profits
equal to the average cannot achieve the maximum strength of “1”; rather they
converge to some 1 > δ > 0 instead. This construction is meant to reflect the
never ending emergence of strategies that aim to beat the average performance.
In our set—up, no seller rule will therefore be used forever and eventually new
combinations of (production, signalling) pairs will be experimented with. This
“new broom effect” facilitates adjustment to rapidly changing environment if
other firms are behaving in out—of—equilibrium manner.
The specific modelling technique that we have employed – a Steepest—

Ascent Hill—Climbing algorithm cum GENITOR – works as follows: If a firm’s
demand (number of consumers that selected a firm in the current period) dif-
fers from its production, production is adjusted by 10% of the difference or 1
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unit if 10% of the gap is less than 1. To adjust the number of signals, firms
ignore patronizers and assume that consumers that show interest were signalled
before. Firms calculate the expected marginal revenues of additional signals,
and compare the marginal costs of additional signals. For firms with very low
quality, this mode of calculating the optimal number of signals might lead to
negative profits. To avoid making losses, firms cap the number of signals by a
value that allows them to break even, assuming that every unit that is produced
is sold. Firms adjust towards their optimal expected signal 10% of the gap if
their demand in this period is insufficient (less than production). If the current
demand is higher than current production, firms cut 5% of the current signal
level11.

4 Findings

Below we first describe specific parameter values that we used to implement our
model as well as various treatments that we ran to explore some of the issues
that we are interested in.

4.1 Parameters and treatments

Table 3 below summarizes all relevant parameters common to our three treat-
ments (the Q—model, the Q—model with moral hazard, and the QES—model) and
also relates these parameters to those employed by Vriend (1995). For all these
treatments we used a uniform distribution of both producers and consumers on
the interval [0,100].

11As can be verified by looking at the FOCs of the profit function, the derivative of profit
with respect to signals is negative if demand is greater than production (although is does not
give us quantitative guidance); if demand is less than production then the FOC allows us to
compute the optimal adjustment.
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Table 3

Run-length 3000 periods Vriend (1995)
Production cost (maximal quality) .25 Vriend (1995)
Signal cost (maximal quality) .025 Vriend (1995) = .08
Price (maximal quality) 1 Vriend (1995)
Average number of consumers per firm 100 Vriend (1995)
Maximum acceptable quality gap, consumers 10 NA
Initial rule weight, firms 0.3 Vriend (1995)
Initial rule weight, consumers 0.5 Vriend (1995)
Steady state weight δ of an average rule, firms 0.65 NA
Stand dev of the auction error term, 0.075 to 0.03 Vriend (1995)
firms, N(0, R)
Stand dev of the auction error term, 0.00875 Vriend (1995)
consumers, N(0, R)
Parameter b1, firms 0.25 Vriend (1995)
Parameter b1, consumers 0.1 Vriend (1995)
Parameter b2, firms 0.4 Vriend (1995)
Parameter b2, consumers 0.1 Vriend (1995)

The first of the three treatments that we used (from here on T1) employs the
Q—model in order to generate baseline equilibrium distributions of firms across
the quality spectrum. It was furthermore, and importantly, used to calibrate
our other treatments. The second of the three treatments (from here on T2) still
employed the Q—model but inserted a small fraction of opportunistic firms in the
set—up. Such firms accepted consumers whose minimum quality was 12 rather
than 10 points below their own quality. The last treatment (T3) employs the
QES—model to study the emergence of for-profits in post—secondary education.
Specifically, to recall, we equip a subset of firms with economies of scale once it
has reached minimum efficient scale.
Since scaling effects are notorious, we controlled for them by implement-

ing treatments T1 through T3 with combinations of 10 firms/1000 consumers
(Scale0 from here on), 12 firms.1200 consumers (Scale1) and 24 firms/2400 con-
sumers (Scale2). Table 4 below summarizes our 3x3 design, detailling the num-
ber of runs in each cell and the number of mutants for treatments T2 and T3
across all scales.

Table 4
treatments\scales 10 firms/1000 consumers 12 firms/1200 cons 24 firms/2400 cons

T1: Q–model 20 runs 20 runs 20 runs
T2: T1 + MH 20 runs (one mutant) 20 runs (one mutant) 20 runs (three mutants)
T3: QES–model 20 runs (one mutant) 20 runs (two mutants) 20 runs (three mutants)
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4.2 Results

For the most we refrain from too detailled a summary and restrict ourselves to
what we consider the essential characteristics of all runs in a treatment cell. A
set of figures presenting all 180 runs may be obtained from the authors upon
request.

4.2.1 Equilibrium distributions of firms across the quality spectrum

We first look at the distribution of firms after 3000 iterations.12 As we will
see, firms occupy well—defined “slots” in the quality spectrum, or market niches
characterized by quality ranges (which we shall call, following Zemsky, Shaman,
and Iannozzi (1997), “segments”.) As we will also see, these segments are typ-
ically occupied by clusters of firms. We shall use the terms “segments” and
“clusters” interchangeably throughout the remainder of this manuscript.
Baseline treatment T1. In appendix A we show that, theoretically, we should

have 6 clusters for all firm numbers modulo 6.13 We also show that other
numbers of firms (such as 10 in Scale0) lead to less stable configurations of
clusters for small numbers of firms.
Looking at 10 firms and 1000 consumers (Scale0), we find indeed that firms

“flock” into 6 to 8 clusters, with the clear mode being 7, Figure 1, and 8 being a
not to distant second, Figure 2. Switching to Scale1 (12 firms/1200 consumers)
and Scale2 (24 firms/2400 consumers) we observe 6 clusters of 2 and 4, as the-
oretically predicted, Figures 3, 4. The number of firms in each cluster is rather
constant, with occasional eruptions and displacements reflecting the probabilis-
tic nature of our modeling technique, Figure 5. Interestingly, but in light of our
calculations in appendix A not surprisingly, such displacements regularly result
in an exchange of members of adjacent clusters. We note that similar results
pertain for exploratory runs with scales of 20/2000 firms/consumers, as well as
40/4000, 48/4800, and 120/12000. This suggests that the design laid out in
Table 4 is sensible. We note, finally, that clusters are distributed equi—distantly.
This result is also independent of scale.
From the above it follows that scale is important in two respects. First,

only scales modulo 6 can be accurately described by our symmetric steady state
calculations. In other words, there is a large degree of freedom for scales that are
not of modulo 6, especially if the number of firms is rather small. As we increase
the number of firms, it becomes less important whether the number of firms is
modulo 6 or not. This is good news because it means that the computational

12As we document in the following subsection, convergence to relatively stable configurations
occurs in T1within the first few hundred iterations. Even in T2 and T3, the distribution of
firms stabilizes between 500 and 700 iterations (in a sense that we shall make more precise
below).
13We note that this number is a function of the width of the quality range and the width

of the segment (to be made precise later). Ceteris paribus, increasing the quality range leads
monotonically to higher number of clusters.
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model that we propose here is rather insensitive to integer constraints. Second,
as we increase scales, we find – somewhat contradicting our initial intuition –
a rather stable configuration of six clusters or segments which attract whatever
number of firms populate our computational laboratory.
Moral hazard treatment T2. Looking at 10 firms and 1000 consumers (Scale0),

we find that a sole opportunistic firm almost never increases its position in the
quality spectrum after the initial adjustment process. In fact, firms roughly
maintain their position, Figure 6, or drift down in the qualtiy spectrum with
about equal probabilities, Figure 7. In Scales 1 and 2 the opportunistic firms
never manage to markedly increase their position in the quality spectrum af-
ter the initial adjustment process. In fact, these firms roughly maintain their
position of drift down in the quality spectrum with about equal probabilities
(but they sometimes do so quite dramatically, Figure 8). We note that this
detrimental effect is particularly pronounced for firms that start with very high
quality. We observed instances of firms losing 60 quality points. We note also
that drift downward is truncated for firms that start with low quality, hence for
all scales firms actually are slightly more likely to drift down than to maintain
their position. The results reported here emerge from the very mild parameter-
ization of moral hazard that we chose; increasing the moral hazard parameter
shifts systematically more weight to downward drift. In fact, doubling the moral
hazard parameter (i.e., decreasing the quality of the worst student from Q− 12
to Q−14) in Scale2 leads to the offending firm almost always (more 90%) going
to the bottom of the quality spectrum.
For—profit invasion treatment T3. Looking at 10 firms and 1000 consumers

(Scale0), we find that a sole for—proft firm never decreases its position in the
quality spectrum after the initial adjustment process. In fact, for—profits in-
crease their quality 80% of the times, often dramatically so, Figure 9. In three
of the four cases where they did not, they started out being the firms with the
lowest quality, in the remaining case the one with the second lowest. Looking at
Scale2 (24 firms, 2400 consumers, three mutants), we find that the for—profits
always move up to the top cluster, displacing in the process incumbent high
quality firms. The key difference lies in the timing; some for—profits take longer
than others – in a few cases nearly the complete run, Figure 10. However, more
often than not they move up the quality spectrum with amazing speed (within
a couple of hundred iterations). Looking at Scale1 (12 firms, 1200 consumers,
two mutants), we find that about three out of four for-profits move up all the
way to the top, with the remainder almost always moving up but often getting
stuck in segments below the top.
There are various metrics that could quantify the trends above. Table 5

summarizes one such metric.
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Table 5
Qend −Qstart

min avg±std max

T1, average for all firms -3.0 3.1±4.2 9.8
Scale0 T2, opportunistic firm -20.3 -4.5±8.8 8.9

T3, for—profit mutant -0.3 24.0±20.1 68.3

T1, average for all firms -3.6 3.5±5.3 12.6
Scale1 T2, opportunistic firm -10.6 -0.4±3.4 5.3

T3, for—profit mutant -1.03 29.6±25.1 84.8

T1, average for all firms -9.0 1.8±5.0 14.2
Scale2 T2, opportunistic firms -56.7 -8.5±11.6 3.9

T3, for—profit mutants 0.5 40.9±25.7 85.6

Qend and Qstart denote average quality of a firm during the last 500 periods
and periods 100 – 500, respectively14; therefore Qend - Qstart is a measure of
the change of a firm’s position in the quality spectrum over time. This measure
quantifies in particular the default outcome of opportunistic firms moving down
and for-profits moving up in quality for all investigated scales discussed above
informally. Compare, for example, row 1 of Scale0 with rows 2 and 3 respec-
tively. Clearly the average quality change for all firms in T1 (3.1) is larger than
that of opportunistic firms in T2 (-4.5) and smaller than that of for-profits in
T3 (24.0). Along similar lines note that the quality change range has increased
dramatically for for-profits (going from 9.8 to 68.3 at the upper limit.) Similar
effects can be observed for Scale1 and Scale2.
Turning to the difference across Scale1 and Scale2 (in order to avoid the

confounding influence of integer constraints), the key result is that opportunistic
firms tend to fare much worse in Scale2 (lower end of range being -56.7) than
in Scale1 (lower end of range being -10.6). Relatedly, we see a stronger average
downward movement of opportunistic firms for Scale2 (-8.5; in contrast to -0.4
for Scale1). And somewhat analogously, we see a stronger upward movement of
for-profits for Scale2 (40.9; in contrast to 29.6 for Scale1).
The correlation between firms’ mobility and scale has a straightforward ra-

tionale: when a firm, for some reason, manages to get more than its equilibrium
share of its segment, its increment in quality will be proportional to profits,
which are in turn proportional to the number of consumers. Grabbing an addi-
tional 5% of a segment with 300 consumers adds 0.18 quality units to an average
firm; an additional 5% of a segment with 100 consumers adds just 0.06 quality
units to an average firm. Analogously, competitive advantage (for for—profits)
or disadvantage (for opportunistic firms) translates more readily into more pro-
nounced quality changes and hence into more turbulent environments as the

14We do not incorporate the first 100 periods because several hundred periods are needed
for the initial noise to get worked out of the system. Including these 100 periods makes the
data noisier but does not change any of the qualitative results. Excluding more initial periods
would not leave enough periods for averaging before the increasing returns to scale regime for
for—profits kicks in in period 501.
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number of firms and consumers per segment increases. Less stability creates, of
course, more opportunities, both positive and negative, for mutants.

4.2.2 Convergence toward equilibrium distributions

Typically, especially in baseline treatments T1, the segment in which the firm
will find itself depends on its initial rank: If a firm is, to take the Scale2 example,
one of the top four firms initially, it is likely to end up in the top segment even
if its initial quality lies significantly below the predicted quality of the cluster.
The implicit adjustment process takes roughly between 200 (Scale1) and 400
(Scale2) iterations.
Thus, while convergence to the equilibrium location is relatively fast, we do

observe occasional eruptions and displacements in quality even in the absence
of opportunistic firms or entrants with economies of scale. A firm that moves
up or down the quality spectrum for some reason typically dislodges another
firm from the segment it invades. While the number and location of segments
is relatively stable, there is quite some jockeying going on for those segments.
Opportunistic firms (T2) or entrants with economies of scale (T3) compli-

cate the picture, generating more eruptions and displacements and slower con-
vergence toward the equilibrium distribution. In fact, we often see cascade—like
sequential convergence toward the equilibrium distribution, see Figures 10, 11.15

4.2.3 Signaling, production, and demand trends

Even though we initialize with widely off—equilibrium quantity—signalling pairs
(recall that both number of slots and number of signals are drawn from an initial
distribution whose support is the integers between 0 and 1023), production and
demand tend to converge to their equilibrium values (independent of scale 100
for slots, dependent on scale 450 — 950 for signals) within the first 500 periods,
both in the aggregate and for individual firms, see a typical aggregate picture
in Figure 12. Signaling, however, converges much more slowly, and is much
more volatile: a typical stochastic fluctuation in the firms’ demand (10 to 15
%) can lead to a much larger change in the perceived optimal signal level. As
a result, adjustments to the signaling level are much larger than adjustments
in production. An additional source of uncertainty arises because of the local
nature of the information that firms collect. To calculate their optimal signal
level, firms have to estimate their “target audience”, or the number of consumers
who can potentially accept a firm’s offer. Even if the firm correctly knows the
consumers’ preferences (the maximum acceptable quality gap), as we currently
assume, it still has to know the number of consumers in its segment to correctly
calculate the target. We assume that the firms know only the total number of

15We have computed a measure of deviations of firms from the theoretical equilbrium –
essentially the sum of squares of deviations – for all runs mentioned in Table 4. These
computations give a measure of convergence beyond our informal discussion above; they are
available from the authors upon request.
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consumers and estimate the share of their “target audience” during the process
of signal allocation. This estimation introduces an additional error term into
the calculation of optimal signal level. Obviously, this can be easily corrected.

4.2.4 Consumers: “patronizers” versus “hoppers”

We now turn out attention to the emergence of behaviorally different consumers
(traditional “patronizers” versus “hoppers”.)
Rule weights versus rule usage. There is no real difference regarding rule

weights and rule usage across treatments (T1 — T3). Specifically, the same four
KNOWN and the same four PATRonizing rules have some significant albeit
differing weights and usage across all treatments as well as all scales.16

Rule weights and usage of KNOWN and PATRonizing rules. The usage
of PATRonizing rules decreases while the usage of KNOWN rules increases
with the number of firms. For large numbers of firms (such as Scale2 in our
computations), usage of PATRonizing and KNOWN rules bifurcates quickly
but is ultimately stable (at roughly .3 and .7).17 For smaller number of firms
(such as Scale0 and Scale1 in our computations), the usage of these two kinds
of rules converges quicker than for larger numbers. Additionally, PATRonizing
rules are used more often.
Rule weights and usage of specialized and generic rules18. While the usage of

specialized and generic rules seems to be independent of scale, specialized rules
are used much less than generic ones (roughly 1 out of 5 times). This results
seems due to the already documented fact that only eight rules are typically
used of which two are specialized. Therefore, the usage pattern seems for the
most part determined by the relative number of relevant specialized and generic
rules.
Heterogeneity of consumers as measured by rule usage. Some consumers

never use KNOWN and some never use PATRonizing rules. Some consumers
use one of the eight “good rules” about half of the time. This is true for all
treatments and all scales. The latter result is due to the (rather small) standard

16In our model, consumer rules have the following form: ’IF (SAT, not SAT, indifferent to
SAT) AND (INFO, not INFO, indifferent to INFO) THEN (KNOWN, PATR)’. There are
thus 3×3×2 = 18 different rules for every consumer. Here SAT means satisfaction last period,
and INFO a presence of signals from firms in a current period. Out of 18 rules, 10 include
’not SAT’, ’no INFO’, or both. These contingencies are very rare. Average satisfaction rate is
0.96—0.97 across scales and treatments, leaving 3—4% to cases of ’not SAT’. Average number
of signals per consumers varies between 4.5 for Scale1 and 9.5 for Scale2, thus making the
prospect of a consumer being not signaled a highly unlikely one. In a symmetric steady state,
all consumers can be potentially served by a firm, and thus the situation when a consumer
finds herself outside of all firms’ segments is extremely improbable as well. The remaining 8
rules are the ones that are actualy used by the consumers.
17The same result was obtained for exploratory runs with 120 firms and 12000 consumers.

We note that this result coincides with Vriend (1995) where consumers were patronizing
approximately 1/3 of a time. This is interesting because the stochastic auction in Vriend
(1995) was skewed towards KNOWN rules (they were given two tries in a stochastic auction).
18We call a rule “specialized” if it is not indifferent to both SAT and INFO in its condition

part. If condition part of the rule includes at least one “indifferent to. . . ” statement, we call
such a rule “generic”.
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deviation of the error term in the auction for consumers. A larger standard
deviation would lead to somewhat more varied rule usage.

5 Related literature

The computational matching model presented above has at least three reference
points in the literature.
First, there is the classic work by Gale and Shapley (1962) on college admis-

sions and the stability of marriage and later related work on two-sided match-
ing (e.g., Roth and Sotomayor (1990), Roth and Xing (1994), Roth and Xing
(1997); Roth and Peranson (1999); Todd and Billari (2002); Simao and Todd
(2002); Pingle and Tesfatsion (2001); Vriend (1995); Kirman and Vriend (2001);
Weisbuch, Kirman, and Herreiner (2000)). This literature has theoretically il-
lustrated the heavy mathematical machinery necessary to model matching pro-
cesses; it has also provided compelling evidence both theoretically and empiri-
cally on the importance of institutional arrangements that prevent, say, lower—
ranked market participants from “jumping the gun” on other (higher—ranked)
market participants and, exploiting well—known psychological phenomena such
as loss aversion, push them into decisions that they might come to regret. In the
context of post—secondary education in the USA, this issue is currently on the
front—burner as a number of colleges and universities are considering throwing
out their “early admissions” policies, see Schemo (April 26, 2002). Computa-
tional models like ours are well suited to study such issues and we shall do so
in future work.
Second, there is work that documents the important changes in higher educa-

tion. What little is out there in academic journals, has already been mentioned
in the introduction above, so we just mention that much of the relevant infor-
mation on those developments is currently available only in official SEC forms
or the research reports of investment houses; for details, see Ortmann (1998).
Third, the literature on modeling of social processes through GAs and re-

lated evolutionary programming techniques. Arthur (1994), Arthur (1991) ar-
gued persuasively the case for agent—based models of interactions of boundedly
rational, and heterogeneous agents. Arthur (1994) pointed out that such mod-
els are grounded in plenty of evidence. Indeed, much of the recent evidence in
experimental economics (e.g., Nagel (1995); Stahl (1996), Stahl (1999), Stahl
(2000); Stahl and Wilson (1995); Costa-Gomes, Crawford, and Broseta (2001))
and experimental psychology (e.g., Cosmides and Tooby (1996); Gigerenzer,
Todd, and ABC Research Group (1999)) has reinforced the impression that
Arthur got it right – people (whether real of fictitious such as organizations)
are “intuitive statisticians” (Cosmides & Tooby) who inductively keep track of
the performance of a set of plausible, simple models of the world that they can
cope with. When it comes time to make choices, people act upon the currently
most credible (and possibly most profitable) one. The others they keep at the
back of their mind, so to speak. Arthur (1994, p. 407, sligthly edited), Arthur
(1991) made a similar argument but also stressed the importance of calibrat-
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ing computational agents so as to accurately reflect how human agents learn.
Not much attention has been paid during the last decade to this exhortation
(although recent developments to compare the performance of human and com-
putational agents in more or less identical settings, e.g., Chen, Duffy, and Yen
(2002), Pingle and Tesfatsion (2001), are encouraging signs).
What Arthur (1991) did not stress was the analogous importance of embed-

ding both computational and human agents in environments that mimic the
essential features of the real—world situation that they attempt to study. Plott
(1987) has proposed, in a different context, a “parallelism postulate” – the
challenge to experimental economists, especially if they give advice to policy
makers, to create as test—beds small—scale versions of the situation that they
study. Simon (1956) has captured the need to understand both – agents and
environment – in his metaphor of the two being like a pair of blades of scissors;
one without the other is of little use.
A number of authors (e.g., the already mentioned Michalewicz (1999); Mitchell

(1996); and Chattoe (1998)) have voiced concern about the leeway that evolu-
tionary modelling techniques allow and that – like a parameterization of an
experiment – subjects any computational model to the real danger of being a
mere example, an example for that matter that may be rather unrepresentative
as regards the complete set of sensible parameterizations. Axelrod (1997) has
enumerated some of the problems that complicate replication of computational
simulations (and re—engineering of extant model).
Our own experience supports Axelrod’s specific exhortation to make as un-

ambiguous and complete model description and presentation of results and to
facilitate other researchers’ attempt to re—engineer one’s model (see also the
related discussion in Valente and Andersen (2002) although we have our own
reservations about the approach they propose.) Replicability, in our view, is
the hallmark of good science among experimental economists and psychologists
alike (Hertwig and Ortmann (2001) and the commentaries on that article) and
it seems worthwhile to establish it as a fundamental methodological tenet; for
other tenets see Hollenbeck (2000).19

6 Concluding remarks

We have proposed a computational model to study (the evolution of) post—
secondary education. While our model is motivated by developments in the
USA, the insights it generates should be easily transferable to related develop-
ments in other countries. While we intend to calibrate our model with data
from the USA (or other countries, for that matter), and while we believe that it
captures key aspects of post—secondary education, we currently use our compu-
tational model primarily as a computational laboratory. It is useful to concep-
tualize such a laboratory as culture—dish, as Tesfatsion (2002) does, that allows
us to explore how macro regularities might emerge through the repeated local

19In this spirit, we will make available our code to interested researchers.
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interactions of boundedly rational, heterogeneous agents and from the bottom
up.
The computational model proposed here improves on existing matching mod-

els in the Evolutionary Programming literature (e.g., Vriend (1995); Kirman and
Vriend (2001); Tesfatsion (2001); Pingle and Tesfatsion (2001)) by introducing
differences in quality on both the demand and supply side.Our compuational
laboratory enables us to do comparative statics exercises of changes in key pa-
rameters like the degree of opportunism that colleges and universities allow
in their admittance policies. Likewise, it allows us to understand better the
likelihood of for—profits making inroads into post—secondary education. One
might also want to study successful implementation of strategies against early
admission or different matching mechanisms.
While for the time being we consider our computational model a mere rep-

resentation of existing or actual processes rather than an accurate model of
post—secondary education, we believe that our computational agents’ decision
making is a reasonable approximation of real agents’ decision making. Making
our computational model a more reliable laboratory of post—secondary education
requires, in our view, not so much a more refined calibration of our computa-
tional agents than a more refined mapping from post—secondary education to
our computational model.
Toward such a refined mapping, we shall implement in future work a dis-

tribution of consumer quality that represents more closely the distribution of
students in the USA (which surely is not uniform, as we have assumed so far:
we intend to proxy it through measures of quality distribution such as GRE or
SAT scores that are readily available in the literature.) One interesting thing
to observe will be how different distributions of consumer quality affect rank-
ings of firms. (Or, how in turn it will affect the distribution of consumers if we
endogenize quality.)
Another refinement that we intend to introduce is a turnover in buyers and

sellers, with continued entry and exit especially of buyers. (Sellers in higher
education tend to exist for remarkably long periods of time; the birth and death
rate is less than 2 percent.) Varying population size, in contrast, does not strike
us as a problem worth pursuing since enrollments — while steadily growing — are
rather stable, even through business cycles.
Yet another refinement we intend to study are the effects of (differential)

levels of knowledge. We are particularly interested in understanding what hap-
pens if firms do not know consumers’ quality or preferences (as parameterized by
MAX FIRMS DIFF) well, or if consumers systematically overestimate their own
quality (a psychological fact for individuals well—documented in the literature.)
For example, firms believe that consumers will accept a firm that is 10 quality
units below her, but consumers accept only the schools that are at least as good
as themselves. We could also have more complicated situations of asymmetric
information such as firms or buyers having heterogeneous perceptions.
In the introduction we enumerated the key questions that motivated our

study. As mentioned, these questions were motivated by recent developments
in post—secondary education in the USA. If indeed our computational model
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speaks to that issue (a point that at this point we would be hesitant to gamble
on with high bets), then preliminary answers to our initial questions are as
follows:
Questions: For—profits were, and are, clearly handicapped. How then could

they succeed? Can the invasion of ever higher segments of higher education
through for—profit “mutants” be stopped, or will for—profits ultimately invade
segments 1 – 3, i.e. the “brand—name segment”?
The answer is clear – if firms manage to produce beyond their minimum

efficient scale (which in our current parameterization they are very likely to do),
they are bound to move up in the quality spectrum. The speed of this process
is moderated by the initial quality of the mutant, by the degree of economies of
scale, and by the degree of competitiveness of the environment (what we called
“scale” above).
Question: What are the consequences of opportunistic behavior of colleges

and universities (e.g., admittance of unqualified students for fiscal reasons)?
Recall that opportunistic firms are those that admit more than their fair

share of unqualified students for fiscal reasons. So far we have observed that
opportunistic firms tend to drift down the quality spectrum. In fact, they do so
remarkably quickly for what seems rather small degrees of opportunism (e.g.,
already for a move from a maximum acceptable gap of 10 to one of 12 and 14,
i.e., by an increase of the admittance interval of 10% and 20%, respectively.) In
the long run, the equilbrium level of quality for opportunistic firms is that at
the bottom of the quality distribution.

21



References

Adelman, C. (2000): “A Parallel Universe: Certification in the Information
Technology Guild,” Change, May/June, 20 — 29.

Altonji, J. G., and T. Dunn (1996): “The Effects of Family Characteristics
on the Return to Education,” Rev. Econ. Statis., 78, 692—704.

Arthur, W. B. (1991): “Designing Economic Agents That Act Like Human
Agents: A Behavioral Approach to Bounded Rationality,” American Eco-
nomic Review, 81(2), 353—59.

(1994): “Inductive Reasoning and Bounded Rationality,” Complexity
in Economic Theory, 84(2), 406—411.

Axelrod, R. (1997): The Complexity of Cooperation: Agent-Based Models of
Conflict and Cooperation. Princeton, N.J.: The Princeton University Press.

Behrman, J. R., M. R. Rosenzweig, and P. Taubman (1996): “College
Choice and Wages: Estimates Using Data on Female Twins,” Rev. Econ.
Statis., 78, 672—85.

Boylan, J. F. (1998): Getting In. Warner Books, New York.

Breneman, D. W. (1994): Liberal Art Colleges: Thriving, Surviving, or En-
dangered? Washington, DC: The Brookings Institution.

Bush, R. R., and F. Mosteller (1951): “A Mathematical Model for Simple
Learning,” Psychological Review, 58, 313—23.

(1955): Stochastic Models for Learning. Wiley, New York.

Camerer, C. F., T.-H. Ho, and J. K. Chong (2001): “Behavioral Game
Theory: Thinking, Learning, and Teaching,” .

Chattoe, E. (1998): “Just How (Un)Realistic are Evolutionary Algorithms as
Representation of Social Process?,” Journal of Artificial Society and Social
Simulation, 1(3).

Chen, S.-H., J. Duffy, and C.-H. Yen (2002): “Equilibrium Selection Via
Adaptation: Using Genetic Programming to Model Learning in a Coordina-
tion Game,” The Electronic Journal of Evolutionary Modeling and Economic
Dynamics, 1, 1—44.

Cosmides, L., and J. Tooby (1996): “Are Humans Good Intuitive Statisti-
cians After All?: Rethinking some Conclusions of the Literature on Judgment
under Uncertainty,” Cognition, 58, 1—73.

Costa-Gomes, M., V. Crawford, and B. Broseta (2001): “Cognition and
Behavior in Normal-Form Games: An Experimental Study,” Econometrica,
69, 1193—1235.

22



Facchina, B., E. Showell, and J. Stone (1993): “Privileges and Exemp-
tions Enjoyed by Nonproft Organizations,” University of San Francisco Law
Review, 28, 85—121.

Gale, D., and L. Shapley (1962): “College Admissions and Stability of Mar-
riage,” American Mathematical Monthly, 69, 9—15.

Gigerenzer, G., P. M. Todd, and ABC Research Group (1999): Simple
Heuristics That Make Us Smart. Oxford University Press, Oxford, UK.

Goeree, J. K., and C. A. Holt (1999): “Stochastic Game Theory: For
Playing Games, Not Just for Doing Theory,” Proceedings of the National
Academy of Sciences, 96, 10564—7.

(2001): “Ten Little Treasures of Game Theory and Ten Intuitive Con-
tradictions,” The American Economic Review, 91(5), 1402—22.

Hertwig, R., and A. Ortmann (2001): “Experimental Practices in Eco-
nomics: A Methodological Challenge for Psychologists?,” Behavioral and
Brain Sciences, 24, 383—403.

Holland, J. H. (1992): Adaptation in Natural and Artificial Systems. MIT
Press, Cambridge, MA.

Hollenbeck, J. R. (2000): “Consequences of Organizational Reward Sys-
tems,” in Computational Modeling of Behavior in Organizations : The Third
Scientific Discipline, ed. by D. R. Ilgen, and C. L. Hulin. APA Books, Wash-
ington, D.C.

Kirman, A. P., and N. J. Vriend (2001): “Evolving Market Structure: An
ACEModel of Price Dispertion and Loyality,” Journal of Economic Dynamics
and Control, 25, 459—502.

Michalewicz, Z. (1999): Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag Berlin Heidelberg New York.

Mitchell, M. (1996): An Introduction to Genetic Algorithms. MIT
Press/Bradford, Cambridge, MA.

Nagel, R. (1995): “Experimental Results on Interactive Competitive Guess-
ing,” American Economic Review, 85, 1313—26.

Ortmann, A. (1997): “How to Survive in Post-Industrial Environments: Adam
Smith’s Advice for Today Colleges and Universities,” Journal of Higher Ed-
ucation, 68, 483—501.

(1998): “The Emergence of a For-Profit Higher Educational Sector:
Recent Developments.,” Presentation at the ARNOVA Conference, Seattle,
WA.

23



(2001): “Capital Romance: Why Wall Street Fell in Love with Higher
Education,” Education Economics, 9(3), 293—311.

Payne, J. W., J. R. Bettman, and E. J. Johnson (1988): “Adaptive Strat-
egy Selection in Decision Making,” J. Exp. Psych. Learning, Memory, and
Cognition, 14, 534—52.

Pingle, M., and L. Tesfatsion (2001): “Non-Employment and the Evolution
of Worker-Employer Cooperation: Experiments with Real and Computational
Agents,” ISU Economic Report No., 55.

Plott, C. R. (1987): “Dimensions of Parallelism: Some Policy Applications
of Experimental Methods,” in Laboratory Experimentation in Economics. Six
Points of View, ed. by A. E. Roth. Cambridge University Press, Cambridge,
MA.

Roth, A., and X. Xing (1994): “Jumping the Gun: Imperfections and Insti-
tutions Related to the Timing of Market Transactions,” American Economic
Review, 84, 992—1044.

Roth, A., and X. Xing (1997): “Turnaround Time and Bottlenecks in Market
Clearing: Decentralized Matching in the Market for Clinical Psychologists,”
Journal of Political Economy, 105, 284—329.

Roth, A. E., and E. Peranson (1999): “The Redesign of the Matching
Market for American Physicians: Some Engineering Aspects of Economic
Design,” American Economic Review, Forthcoming.

Roth, A. E., and M. A. O. Sotomayor (1990): Two-Sided Matching:
A Study in Game-Theoretic Modeling and Analysis. Cambridge University
Press.

Rothschild, M., and L. White (1993): “The University in the Marketplace:
Some Insights and Some Puzzles,” C. Clotfelter and M. Rothschild (Eds.)
Studies of Supply and Demand in Higher Education.

Schemo, D. J. (April 26, 2002): “A Key University Abolishes Early Decision
Admissions,” The New York Times on the Web.

Simao, J., and P. M. Todd (2002): “Mate Choice in Monogamous Mating
Systems with Courtship,” Submitted to Adaptive Behavior.

Simon, H. A. (1956): “Rational Choice and the Structure of Environments,”
Psychological Review, 63, 129—39.

Stahl, D. O. (1996): “Boundedly Rational Rule Learning in a Guessing
Game,” Games and Economic Behavior, 16, 303—30.

(1999): Sophisticated Learning and Learning Sophistication. University
of Texas at Austin Working Paper.

24



(2000): “Local Rule Learning in Symmetric Normal-Form Games:
Theory and Evidance,” Games and Economic Behavior, 32, 105—38.

Stahl, D. O., and P. Wilson (1995): “On Players Models of Other Players:
Theory and Experimental Evidance,” Games and Economic Behavior, 10,
213—54.

Tamura, R. (2001): “Teachers, Growth, and Convergence,” Journal of Political
Economy, 109(5), 1021—59.

Tesfatsion, L. (2001): “Structure, Behavior, and Market Power in an Evolu-
tionary Labor Market with Adaptive Search,” Journal of Economic Dynamics
and Control, 25, 419—57.

(2002): “Agent-Based Computational Economics: Growing Economies
from the Bottom Up,” ISU Economics Working Paper No., 1.

Todd, P. M., and F. C. Billari (2002): “Population—Wide Marriage Pat-
terns Produced by Individual Mate—Search Heuristics,” MPI Working Paper.

Todd, P. M., and G. Gigerenzer (2000): “Precis of Simple Heuristics That
Make Us Smart,” Behavioral and Brain Sciences, 23, 727—80.

Valente, M. (2002): “Comments of the Paper ”Equilibrium Selection Via
Adaptation: Using Genetic Programming to Model Learning in a Coordi-
nation”, by Chen, Duffy and Yeh,” The Electronic Journal of Evolutionary
Modeling and Economic Dynamics, http://www.e-jemed.org, 102.

Valente, M., and E. S. Andersen (2002): “A Hands-on Approach to Evolu-
tionary Simulation: Nelson-Winter Models in the Laboratory for Simulation
Development,” The Electornic Journal of Evolutionary Medelling and Eco-
nomic Dynamics, http:// www,e-jemed.org, 1003.

Vriend, N. J. (1995): “Self-Organization of Markets: An Example of a Com-
putational Approach,” Computational Economics, 8, 205—231.

Weisbuch, G., A. Kirman, and D. Herreiner (2000): “Market Organisa-
tion and Trading Relationships,” The Economic Journal, 110, 411—36.

Whitley, D. (1989): “The GENITOR Algorithm and Selection Pressure: Why
Rank-Based Allocation of Reproductive Trials is Best,” Schaffer, J. David
(Ed) the Proceedings of the Third International Conference on Genetic Algo-
rithms, George Mason University, 4-7 June 1989 (San Mateo, CA: Morgan
Kaufman), pp. 116—21.

Zemsky, R., S. Shaman, and M. Iannozzi (1997): “In Search of Strategic
Perspective: A Tool for Mapping the Market in Post Secondary Education,”
Change, pp. 23 — 38.

25



A Theoretical equilibrium configurations

In the following we describe the symmetric steady state of the Q—model. “Sym-
metric steady state” denotes situations where every firm serves the same number
of agents, where every firm has the same profit share (which is indeed what we
observe empirically), and where quality of the firm equals average quality of
its consumers. We calibrate the model so that average firm quality Q equals
average consumer quality of 50 (which given our assumption of uniform distri-
bution of consumers along the quality spectrum [0,100] is what we can expect
on average.) We note that symmetric steady state implies Q = 50 but that the
reverse implication does not necessarily hold. Since firm quality is defined as
a weighted sum of both average consumer quality and profits, we begin with
the profit weight calibration before proceeding with an analysis of the equilib-
rium number of clusters and, in fact, the exact location of the clusters (cluster
configuration).

A.1 Profit weight calibration

A firm’s quality is updated according to the following rule,

Q = w1 ·Qavg +w2 · π, (1)

where Q is the firm’s quality, Qavg the average quality of its consumers, π the
firm’s profits, and w1 and w2 are weights. Symmetric steady state profits are
given by

π =
N

[Q]
αQ,

where N is the number of consumers per firm (100 in all runs), [Q] the quality
range (100 in all runs), and α the profit share (average α is 0.46 − 0.48 for
different configurations, with a standard deviation 0.02− 0.03). Note that α is
determined experimentally.
The requirement that Q = Qavg amounts to Q(1 − αw2) = Qw1, or w2 =

(1−w1)/α. The empirical value of w2 which prompts Q = 50 is indeed very close
to the one just derived. For example, with 24 firms and α = 0.48, w1 = 0.95,
the derived value w2 = 0.107, while Q ≈ 50 requires an empirical value of
w2 ∼0.104.

A.2 Equilibrium number of clusters

In this subsection we show why the configuration that we observe in most runs
with number of firms modulo 6 (6 relatively tight clusters of firms) is a stable
symmetric steady state for our choice of the quality range. For the sake of the
argument, assume that firms’ quality is adjusted according to (1) with w1 = 1
and w2 = 0, i.e., a firm’s quality equals the average quality of its consumers.
(Runs with this quality adjustment rule reveal the same distribution of 6 rela-
tively tight clusters of firms.) Additionally assume that if a given number of T
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consumers can be served by n firms, then T/n of them will be served by every
firm, that is, competition leads to even distribution of consumers among firms
in equilibrium. A firm will accept customers who are at least of quality Q−∆,
where Q is the firm’s quality. A customer will accept a firm that has at least
quality of Qcust −∆ where Qcust is the customer’s quality. Therefore, a firm
with quality Q can serve only customers in the quality interval [Q−∆, Q+∆].
Assume that all firms are in steady state. Assume next that one of them

has, by some random disturbance, its quality adjusted upwards by dq. The firm
under consideration loses some consumers at the lower end of its segment at
quality Q−∆ but also obtains some consumers at the upper end of its segment
at quality Q+∆. If n other firms are competing at the lower end and n+j other
firms can serve consumers at the upper end, the number of consumers lost and
obtained are respectively 1

n+1
dq
[Q]Ntot and

1
n+j+1

dq
[Q]Ntot, where Ntot is the total

number of consumers. Thus, the new average quality of the firm if given by

eQ = PQ− 1
n+1

dq
[Q]Ntot · (Q−∆) + 1

n+j+1
dq
[Q]Ntot · (Q+∆)

N − 1
n+1

dq
[Q]Ntot +

1
n+j+1

dq
[Q]Ntot

,

where
P

Q is the sum of the firm’s consumers’ quality in steady state and equal
to Q ·N by assumption. Dividing the numerator and denominator byPQ and
N respectively and using the fact that 1+x1+y ≈ 1 + x− y for x ¿ 1, y ¿ 1, one
obtains

eQ ≈ Q+
dq

[Q]

Ntot

N

½
Q+∆

n+ j + 1
− Q−∆

n+ 1
− Q

n+ j + 1
+

Q

n+ 1

¾
,

or

dq0 = eQ−Q ≈ dq

[Q]

Ntot

N
·∆ · n+ 1+ n+ j + 1

(n+ 1) (n+ j + 1)
.

The steady state is stable if random fluctuations in quality are dampened
over time, or |dq0| < |dq|20. Therefore, stability of the steady state depends on
the magnitude of the following term

∆

[Q]
Nf · n+ 1+ n+ j + 1

(n+ 1) (n+ j + 1)
, (2)

where Nf =
Ntot

N is the number of firms in the economy.
Let us consider some special cases of (2). Suppose that a firm in steady

state does not have any competition at the lower end of it segment, n = 0. Then
(2) becomes ∆

[Q]Nf · 2+j1+j , and for parameter values (∆ = 10, [Q] = 100) this
expression is greater than one for any j > 0, and any Nf > 10. In other words,
any steady state that implies no competition at the lower end is not stable,
because a random upward quality movement is amplified. Similarly, suppose
that there is no competition at the upper end of a firm’ segment. In this case,
20In other words, we want the eigenvalue of the difference equation Qn+1 = f(Qn), lin-

earized around the steady state, to be less than one. It is always positive, therefore an
oscillating dynamics around the steady state is impossible.
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j = −n, and (2) is ∆[Q]Nf · 2+n1+n which is again greater than one for any n > 0,

and any Nf > 10. Therefore, a steady state involving zero competition at the
upper end can not be stable.
The preceing result demonstrates that steady states with less than five clus-

ters are unstable, because they necessarily involve zero competition either at the
lower or the upper end of the quality segment. How about five segments then?
Assume a steady state with five firm clusters, numbered in ascending quality
order. Given the parameter values that we used for our treatments, ∆ = 10,
[Q] = 100, the five firm clusters will be located at qualities 10, 30, 50, 70, and
90. Suppose now that clusters number 2 and 4 move down and up, respec-
tively. In this case, a firm from cluster 3 that randomly increased its quality by
dq will have dq0 > dq, while the one that had its quality decreased by dq will
have |dq0| > |dq|. (Recall that dq0 is the deviation from steady state after one
iteration.) In other words, cluster 3 will be torn apart by any non—negligible
simultaneous movements of clusters 2 and 4. Therefore, a configuration with 5
clusters is stable but the associated basin of attraction is very small. In nu-
merical simulations with Nf = 10 we have observed stable constellations with
5 clusters of firms only once or twice every 100 runs.
Why, then, do we observe constellations with 6 clusters for runs with large

number of firms, say 24 and 48? And why do we observe constellations with
between 6 and 8 clusters for runs with 10 firms? Compare two steady states,
one with C clusters and another with C + 1, where 10 > C > 5. A firm that
moved up by dq faces the same competition at its lower end from members of
its own cluster and the lower one, with the total number of other firms given by
Nf

C −1+ Nf

C (disregarding integer constraints). On the other hand, at the upper
end of its segment competition from members of its own cluster disappears, and
only that from the upper cluster remains. Therefore, j = 1 − Nf

C . (2) now is

proportional to ∆
[Q]Nf · 3

Nf
C +1

2
Nf
C ·

³
2
Nf
C +1

´ or
∆

[Q]
Nf · C · (3Nf +C)

2Nf · (2Nf +C)
. (3)

The partial derivative of the preceding expression with respect to C is propor-
tional to

2Nf ·
³
6N2f + 4CNf +C2

´
4N2f · (2Nf +C)

2 ,

which is always positive. Therefore, the movement to a higher number of clusters
implies a larger eigenvalue, and hence a less stable steady state.21

Summarizing the results, we see that configurations with 4 clusters are un-
stable and those with 5 clusters are likely to be destroyed even by small fluc-
tuations. Furthermore, configurations with more than 6 clusters are less stable
than those with 6, and indeed they are increasinlgy less stable as the number of

21A similar result is true for any number of clusters. The math, however, becomes tedious.
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clusters goes up. Therefore, in numerical simulations one is likely to observe a
configuration with 6 clusters.
Finally, observe that with C = 6, (3) equals 0.42 for Nf = 12, 0.433 with

Nf = 24, and approaches 0.45 as Nf →∞. This means that configurations of 6
clusters are always stable for any number of firms.

A.3 Cluster configurations

Having established theoretically the most likely distribution of clusters, we next
calculate their exaxt location in the symmetric steady state with C clusters.
We assume that there is an equal number of firms in each cluster. Under the
symmetric steady state assumptions spelled out in the previous subsection, cal-
culations are the same for one or n firms in a cluster, therefore we restrict our
discussion to one firm per cluster.
Order quality locations in a symmetric steady state in ascending order from

Q1 to QC . For 10 > C > 5, the first firm (remember we restrict our discussion to
one firm per cluster) has no competition at its lower end and competition from
the second firm only at the upper end. Denote as D the density of customers
per unit of quality. Then the first firm will serve customers located in [0, Q2−∆]
alone and those in [Q2 − ∆, Q1 + ∆] together with the second firm. Since in
symmetric steady state average quality of consumers equals own quality, we
have

Q1 =

D
Q2−∆R
0

QdQ+ 12D
Q1+∆R
Q2−∆

QdQ

D
Q2−∆R
0

dQ+ 12D
Q1+∆R
Q2−∆

dQ

=

1

2

(Q2 −∆)2 + (Q1 +∆)2
Q2 −∆+Q1 +∆

=
(Q2 −∆)2 + (Q1 +∆)2

2 · (Q2 +Q1)
. (4)

Consider now the second firm. It is the sole provider to consumers in [Q1+
∆, Q3 − ∆] and joint provider with first and third firm in [Q2 − ∆, Q1 + ∆]
and [Q3−∆, Q2+∆], respectively. The symmetric steady state condition then
becomes

Q2 =

1
2D

Q1+∆R
Q2−∆

QdQ+D
Q3−∆R
Q1+∆

QdQ+ 12D
Q2+∆R
Q3−∆

QdQ

1
2D

Q1+∆R
Q2−∆

dQ+D
Q3−∆R
Q1+∆

dQ+ 12D
Q2+∆R
Q3−∆

dQ

=

(Q3 −∆)2 + (Q2 +∆)2 − (Q2 −∆)2 − (Q1 +∆)2
2 · [(Q3 −∆) + (Q2 +∆)− (Q2 −∆)− (Q1 +∆)] . (5)

After some algebra, (5) transforms into

Q2 =
Q1 +Q3
2

, (6)
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which says that the symmetric steady state location of the second firm is exactly
between the first firm and the third firm. It is trivial to show that a similar result
will obtain for all other firms located in the interior of the quality spectrum,

Q3 =
Q2 +Q4
2

, (7a)

Q4 =
Q3 +Q5
2

, (7b)

. . . (7c)

QC−1 =
QC−2 +QC

2
. (7d)

Finally, for the last firm C, the symmetric steady state condition is given by

QC =
2 · [Q]2 − (QC −∆)2 − (QC−1 +∆)

2

2 · [Q]−QC−1 −QC
. (8)

Combining (6) and (7) we obtain Q4 = 3Q2 − 2Q1, Q3 = 2Q2 − Q1 or
Q3 = Q2 + (Q2 −Q1) , Q4 = Q3 + 2 (Q2 −Q1) . In other words, firms are
located at equal distance δ = (Q2 −Q1) from each other. The problem of
finding symmetric steady state locations is thus reduced to solving a system of
two quadratic equations, (4) and (8), in two unknowns, Q1 and δ (remember
that Q2 = Q1 + δ, QC−1 = Q1 + (C − 2) · δ, QC = Q1 + (C − 1) · δ). The
solution can be found numerically when C, the number of clusters in symmetric
equilibrium, is given.
In the previous subsection we have argued that given our parameter values ∆

and [Q] , the symmetric steady state with 6 clusters should be the most stable
one. Steady state positions with 6 clusters are given by [8.48; 25.09; 41.70;
58.30; 74.91; 91.52].
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