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Abstract

This paper introduces new models for time series count data. The Autoregressive
Conditional Poisson model (ACP) makes it possible to deal with issues of discrete-
ness, overdispersion (variance greater than the mean) and serial correlation. A fully
parametric approach is taken and a marginal distribution for the counts is speci�ed,
where conditional on past observations the mean is autoregressive. This enables to
attain improved inference on coe�cients of exogenous regressors relative to static Pois-
son regression, which is the main concern of the existing literature, while modeling the
serial correlation in a 
exible way. A variety of models, based on the double Poisson
distribution of Efron (1986) is introduced, which in a �rst step introduce an additional
dispersion parameter and in a second step make this dispersion parameter time-varying.
All models are estimated using maximum likelihood which makes the usual tests avail-
able. In this framework autocorrelation can be tested with a straightforward likelihood
ratio test, whose simplicity is in sharp contrast with test procedures in the latent vari-
able time series count model of Zeger (1988). The models are applied to the time series
of monthly polio cases in the U.S between 1970 and 1983 as well as to the daily number
of price change durations of :75$ on the IBM stock. A :75$ price-change duration is
de�ned as the time it takes the stock price to move by at least :75$. The variable of
interest is the daily number of such durations, which is a measure of intradaily volatil-
ity, since the more volatile the stock price is within a day, the larger the counts will be.
The ACP models provide good density forecasts of this measure of volatility.
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1 Introduction

Many interesting empirical questions can be addressed by modeling a time series of count
data. Examples can be found in a great variety of contexts. In the area of accident
prevention, Johansson (1996) used time series counts to assess the e�ect of lowered speed
limits on the number of road casualties. In epidemiology, time series counts arise naturally
in the study of the incidence of a disease. A prominent example is the time series of
monthly cases of polio in the U.S. which has been studied extensively by Zeger (1988) and
Br�ann�as and Johansson (1994). In the area of �nance, besides the applications mentioned
in Cameron and Trivedi (1996), counts arise in market microstructure as soon as one starts
looking at tick-by-tick data. The price process for a stock can be viewed as a sum of discrete
price changes. The daily number of these price changes constitutes a time series of counts
whose properties are of interest.

Most of these applications involve relatively rare events which makes the use of the
normal distribution questionable. Thus, modeling this type of series requires one to deal
explicitly with the discreteness of the data as well as its time series properties. Neglect-
ing either of these two characteristics would lead to potentially serious misspeci�cation.
A typical issue with time series data is autocorrelation and a common feature of count
data is overdispersion (the variance is larger than the mean). Both of these problems are
addressed simultaneously by using an autoregressive conditional Poisson model (ACP). In
the simplest model counts have a Poisson distribution and their mean, conditional on past
observations, is autoregressive. Whereas, conditional on past observations, the model is
equidispersed (the variance is equal to the mean), it is unconditionally overdispersed. A
fully parametric approach and choose to model the conditional distribution explicitly and
make speci�c assumptions about the nature of the autocorrelation in the series. A simi-
lar modeling strategy has been explored independently by Rydberg and Shephard (1998),
Rydberg and Shephard (1999b), and Rydberg and Shephard (1999a). Two generalisations
of their framework are introduced in this paper. The �rst consists of replacing the Pois-
son by the double Poisson distribution of Efron (1986), which allows for either under- or
overdispersion in the marginal distribution. In this context, two common variance functions
will be explored. Finally, an extended version of the model is proposed, which allows for
separate models of mean and of variance. It is shown that this model performs well in a
�nancial application and that it delivers very good density forecasts, which are tested by
using the techniques proposed by Diebold and Tay (1997).

The main advantages of this model are that it is 
exible, parsimomious and easy to
estimate using maximum likelihood. Results are easy to interpret and standard hypothesis
test are available. In addition, given that the autocorrelation and the density are modeled
explicitly, the model is well suited for both point and density forecasts, which can be
of interest in many applications. Finally, due to its similarity with the autoregressive
conditional heteroskedasticity (ARCH) model of Engle (1982), the present framework can
be extended to most of the models in the ARCH class; for a review see Bollerslev, Engle,
and Nelson (1994).

The paper is organised as follows. A great number of models of time series count data
have been proposed, which will be reviewed in section 2. In section 3 the basic autoregressive
Poisson model is introduced and some of its properties are discussed. Section 4 introduces
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two versions of the Double Autoregressive Conditional Poisson (DACP) model, along with
their properties. In section 5 the model is generalised to allow for time-varying variance,
applications to the daily number of price changes on IBM and to the number of new polio
cases are presented is section 6; section 7 concludes.

2 A review of models for count data in time series

Many di�erent approaches have been proposed to model time series count data. Good
reviews can be found both in Cameron and Trivedi (1979), Chapter 7 and in MacDonald
and Zucchini (1997), Chapter 1. Markov chains are one way of dealing with count data
in time series. The method consists of de�ning transition probabilities between all the
possible values that the dependent variable can take and determining, in the same way
as in usual time series analysis, the appropriate order for the series. This method is only
reasonable, though, when there are very few possible values that the observations can take.
A prominent area of application for Markov chains is binary data. As soon as the number
of values that the dependent variable takes gets too large, these models lose tractability.

Discrete Autoregressive Moving Average (DARMA) models are models for time series
count data with properties similar to those of ARMA processes found in traditional time
series analysis. They are probabilistic mixtures of discrete i.i.d. random variables with
suitably chosen marginal distribution. One of the problems associated with these mod-
els seems to be the di�culty of estimating them. An application to the study of daily
precipitation can be found in Chang and Delleur (1984). The daily level of precipitation
is transformed into a discrete variable based on its magnitude. The method of moments
is used to estimate the parameters of the model by �tting the theoretical autocorrelation
function of each model to their sample counterpart. Estimation of the model seems quite
cumbersome and the model is only applied to a time series which can take at most three
values.

McKenzie (1985) surveys various models based on "binomial thinning". In those mod-
els, the dependent variable yt is assumed to be equal to the sum of an error term with some
prespeci�ed distribution and the result of yt�1 draws from a Bernoulli which takes value
1 with some probability � and 0 otherwise. This guarantees that the dependent variable
takes only integer values. The parameter � in that model is analogous to the coe�cient
on the lagged value in an AR(1) model. This model, called INAR(1), has the same au-
tocorrelations as the AR(1) model of traditional time series analysis, which makes it its
discrete counterpart. This family of models has been generalised to include integer valued
ARMA processes a well as to incorporate exogenous regressors. The problem with this type
of models is the di�culty in estimating them. Many models have been proposed and the
emphasis was put more on their stochastic properties than on how to estimate them.

Hidden Markov chains, advocated by MacDonald and Zucchini (1997) are an extension
of the basic Markov chains models, in which various regimes characterising the possible
values of the mean are identi�ed. It is then assumed that the transition from one to another
of these regimes is governed by a Markov chain. One of the problems of this approach is
that it there is no accepted way of determining the appropriate order for the Markov chain.
Whereas in some cases there is a natural interpretation for what might constitute a suitable
regime, in most applications, and in particular in the applications considered in this paper,
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this is not the case. Another problem is that the number of parameters to be estimated can
get big, especially when the number of regimes is large. Finally, the results are, in most
cases, not very easy to interpret.

Harvey and Fernandes (1989) use state-space models with conjugate prior distributions.
Counts are modeled as a Poisson distribution whose mean itself is drawn from a gamma
distribution. The Gamma distribution depends on two parameters a and b which are
treated as latent variables and whose law of motion is atjt�1 = !at�1 and btjt�1 = !bt�1.
As a result, the mean of the Poisson distribution is taken from a gamma with constant
mean but increasing variance. Estimation is done by maximum likelihood and the Kalman
�lter is used to update the latent variables.

In the static case overdispersion is usually viewed as the result of unobserved hetero-
geneity. One way of dealing with this problem is to keep an equidispersed distribution,
but introduce new regressors in the mean equation which are believed to capture this het-
erogeneity. Zeger and Qaqish (1988) apply ths intuition to the time series case and add
lagged values of the dependent variable to the set of regressors in a static Poisson regression.
They adopt a generalised linear model formulation in which conditional mean and variance
are modeled instead of marginal moments. For count data, the authors propose using the
Poisson distribution with the log, its associated link function. The mean is set equal to a
linear combination of exogenous regressors and the time series dependence is accounted for
by a weighted sum of past deviations of the dependent variable from the linear predictor:

log(�t) = x
0

t� +
Pq

i=1 �i

h
log(y�t�i)� x

0

t�i�
i
where y�t = max(yt�i; c). These models have

not been used very much in applications. One of the weaknesses of this speci�cation is that
had hoc assumptions are needed to handle zeros.

Zeger (1988) extends the generalised linear models and introduces a latent multiplicative
autoregressive term �t with unit expectation , variance �2 and autocorrelation ��(�) which
is responsible for introducing both autoregression and overdispersion into the model. The
dependent variable is is assumed to be a function of exogenous regressors xt with conditional
mean �t = exp(xt�), where � is the coe�cient of interest. Conditionally on the latent
variable, the model is equidispersed (E[ytj�t] = V [ytj�t] = �t�t), but the marginal variance
depends both on the marginal mean and its square: E[yt] = �t�t and V [ytj�t] = �t+�

2�2t . In
order to estimate this model with maximum likelihood, one would need to specify a density
for ytj�t and for �t. In most cases, no closed-form solution would be available. Instead, a
quasilikelihood method is adopted which only requires knowledge of mean, variance and
covariances of yt. Given estimates of the parameters of the latent variable, obtained by
the method of moments, the variance-covariance matrix V of the dependent variable is
formed: V = A+ �2AR�A, where A = diag(�i) and R is the autocorrelation matrix of the

latent variable Rj;k
� = ��(jj � kj). The quasilikelihood approach then consists in using the

inverse of the variance matrix V as a weight in the �rst order conditions. Since inversion
of V is quite cumbersome when the time series is long, an approximation is proposed.
This method can be viewed as a count data analog of the Cochrane-Orcutt method for
normally distributed time series in which all the serial correlation is assumed to come from
the error term. The method has been applied to sudden infant death syndrom by Campbell
(1994). While conceptually this method is quite close to what is proposed in this paper in
this paper, there are nonetheless important di�erences in that it is fundamentally a static
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model, whereas the model in this paper is an explicitly dynamic one. The interest is not
limited to getting correct inference about the parameters on the exogenous variables but
also lies in adequately capturing the dynamics of the system. In order to achieve this, a
more parametric approach is taken, which, among other things, allows forecasting.

3 The ACP Model

The �rst model proposed in this paper has counts follow a Poisson distribution with an
autoregressive mean. The Poisson distribution is the natural starting point for counts. One
characteristic of the Poisson distribution is that the mean is equal to the variance. This
property is referred to as equidispersion. Most count data however exhibit overdispersion.
Modeling the mean as an autoregressive process generates overdispersion in even the simple
Poisson case.

In the simplest model, the counts are generated by a Poisson distribution

NtjFt�1 = P (�t) ; (3.1)

with an autoregressive conditional intensity as in the ACD model of Engle and Russell
(1998) or the conditional variance in the GARCH (Generalised Autoregressive Conditional
Heteroskedasticity) model of Bollerslev (1986):

E[NtjFt�1] = �t = ! +

pX
j=1

�jNt�j +
qX

j=1

�j�t�j : (3.2)

The following properties of the unconditional moments of the ACP can be estabished.

Proposition 3.1 (Unconditional mean of the ACDP(p,q) or the ACP(p,q)). The

unconditional mean of the DACP(p,q) or the ACP(p,q) is

E[Nt] = � =
!

1�Pmax(p;q)
j=0 (�j + �j)

:

This proposition shows that, as long as the sum of the autoregressive coe�cients is less
than 1, the model is stationary and the expression for its mean is identical to the mean of
an ARMA process.

Proposition 3.2 (Unconditional variance of the ACP(1,1) Model). The unconditio-

nal variance of the ACP(1,1) model, when the conditional mean is given by

E[NtjFt�1] = �t = !1 + �1Nt�1 + �1�t�1 ;

is equal to

V [Nt] = �2 =
�(1� (�1 + �1)

2 + �21)

1� (�1 + �1)2
� � :
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Proof of Proposition 3.2. Proof in appendix

Proposition 3.2 shows that the ACP exhibits overdispersion, even though it uses an equidis-
persed marginal distribution. The model is overdispersed, as long as �1 6= 0 and the amount
of overdispersion is an increasing function of �1 and also, to a lesser extent, of �1. The
following proposition establishes an expression for the autocorrelation function of the ACP.

Proposition 3.3 (Autocorrelation of the ACP(1,1) Model). The unconditional au-

tocorrelation of the ACP(1,1) model is given by

Corr[Nt; Nt�s] = (�1 + �1)
s�1�1 (1� �1(�1 + �1))

1� (�1 + �1)2 + �21
:

Proof of Proposition 3.3. Proof in appendix

It can be shown that the result in Proposition 3.3 holds also for the GDACP developed in
the next section and for both the exponential and the Weibull versions of the ACD model
of Engle and Russell (1998).

For the ACP the likelihood is

lt(�) = Nt ln(�t)� �t � ln(yt!) ;

where � is a vector containing all the parameters of the autoregressive conditional intensity
and the conditional intensity �t is autoregressive as in 3.2. The score and Hessian take the
very simple form:

@lt

@�
=

�
Nt � �t

�t

�
@�t

@�
;

@2lt

@�2
= �Nt

�2t

@2�t

@�2
;

where

@�t

@�
= z

0

t +

pX
t=1

�t
@�t�1
@�

; (3.3)

and

zt = [1; Nt�1; Nt�2; : : : ; Nt�p; �t�1; �t�2; : : : ; �q�t�q] : (3.4)

The score can easily be seen to be equal to zero in expectation. It is of interest in this
model to test whether there is signi�cant autocorrelation. In most time series applications
a massive rejection can be expected. This can be done very simply with a likelihood ratio
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test (LR). The statistic will be equal to twice the di�erence between the unrestricted and the
restricted likelihoods, which follows the usual �2 distribution with two degrees of freedom.
Both the restricted and the unrestricted models are easy to estimate. The simplicity of
this test contrast sharply with the di�culties associated with tests and estimation of the
autocorrelation of a latent variable in the model of Zeger (1988) which have been recently
addressed in Davis and Wang (2000).

4 The DACP Model

This section introduces two models based on the double Poisson distribution, which di�er
only by their variance function. The DACP1 has its variance proportional to the the mean,
whereas the DACP2 has a quadratic variance function.

In some cases one might want to break the link between overdispersion and serial corre-
lation. It is quite probable that the overdispersion in the data is not attributable solely to
the autocorrelation, but also to other factors, for instance unobserved heterogeneity. It is
also possible that the amount of overdispersion in the data is less than the overdipsersion
resulting from the autocorrelation, in which case an underdispersed marginal distribution
might be appropriate. In order to account for these possibilities the Poisson is replaced by
the double Poisson, introduced by Efron (1986) in the regression context, which is a natural
extension of the Poisson model and allows one to break the equality between conditional
mean and variance. This density is obtained as an exponential combination with parameter

 of the Poisson density of the observation y with mean � and of the Poisson with mean
equal to the observation y, which can be thought of as the likelihood function taken at its
maximum value.

The density of the Double Poisson is:

f(y; �; 
) =
�



1

2 e�
�
��e�yyy

y!

��
e�

y

�
y

: (4.1)

f(y; �; 
) is not strictly speaking a density, since the probabilities don't add up to 1, but
Efron (1986) shows that the value of the multiplicative constant c(�; 
)which makes it into
a real density is very close to 1 and varies little across values of the dependent variable. He
also suggests an approximation for this constant:

1

c(�; 
)
= 1 +

1� 


12�


�
1 +

1

�


�
:

As a consequence, he suggests maximising the approximate likelihood (leaving out the
highly nonlinear multiplicative constant) in order to �nd the parameters and using the
correction factor when making probability statements using the density.

The advantages of using this distribution are that it can be both under- and overdis-
persed, depending on whether 
 is smaller or larger than 1. This will prove particularly
useful in a later section of this paper, when two separate processes are used for the variance
and mean, because this density ensures that there is no possibility that the conditional
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mean become larger than the conditional variance, which would not be allowable with
strictly overdispersed distributions. In the case of the Double Poisson (DP hereafter), the
distributional assumption 3.1 is replaced by the following:

NtjFt�1 = DP (�t; 
) : (4.2)

It is shown in Efron (1986) (Fact 2) that the mean of the Double Poisson is � and that the
variance is approximately equal to �



. Efron (1986) shows that this approximation is highly

accurate, and it will be used in the more general speci�cations.
For the simplest model, called the DACP1, the variance is a multiple of the mean:

V [NtjFt�1] = �2t =
�t



: (4.3)

The coe�cient 
 of the conditional mean will be a parameter of interest, as values di�erent
from 1 will represent departures from the Poisson distribution. The following proposition
gives an expression for the variance of the DACP1.

Proposition 4.1 (Unconditional variance of the DACP1(1,1) Model). The uncon-

ditional variance of the DACP1(1,1) model, when the conditional mean is given by

E[NtjFt�1] = �t = !1 + �1Nt�1 + �1�t�1 ;

is equal to

V [Nt] = �2 =
1




�(1� (�1 + �1)
2 + �21)

1� (�1 + �1)2
� � :

Proof of Proposition 4.1. Proof in appendix

Proposition 4.1 shows that, like the ACP, the DACP1 model exhibits overdispersion. Re-
sults for the ACP(1,1) are obtained by setting 
 = 1. The amount of overdispersion is an
increasing function of �1 and also, to a lesser extent, of �1. When �1 is zero, the overdis-
persion of the model comes exclusively from the Double Poisson distribution and is purely
a function of the parameter 
, a measure of the departure from the Poisson distribution.
The overdispersion can be seen to be a product of two terms which can be interpreted
as the overdispersion due to the autocorrelation and the overdispersion of the marginal
distribution, which is due to other factors:

�2

�
=

1




1� (�1 + �1)
2 + �21

1� (�1 + �1)2
:

Another popular way of parameterising the dispersion is to allow for a quadratic relation
between variance and mean, and this, along with the distributional assumption 4.2 de�nes
the DACP2:
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V [NtjFt�1] = �2t = �t + ��2t : (4.4)

This parameterisation can be used along with the expression for the variance of the double
Poisson, replacing 
 in 4.1 with �t

�t
= 1

1+��t
. One potential problem with this speci�cation,

however, is that even though it can accommodate some underdispersion when � < 0, it is
then not possible to exclude negative values of the variance when �t < �1

�
. For this reason,

when underdispersion is observed, the DACP1 should be preferred.
In this case the unconditional variance takes a somewhat di�erent form, which is the object
of the following proposition.

Proposition 4.2 (Unconditional variance of the DACP2(1,1) Model). The uncon-

ditional variance of the DACP2(1,1) model, when the conditional mean is given by

E[NtjFt�1] = �t = !1 + �1Nt�1 + �1�t�1 ;

is equal to

V [Nt] = �2 =
�(1� (�1 + �1)

2 + �21)(1 + ��)

1� ��21 � (�1 + �1)2
� � :

Proof of Proposition 4.2. Proof in appendix

This shows that the DACP2 is overdispersed in general (when � > 0, which is the case
considered in this paper) and that overdispersion is an increasing function of the parameters
of the mean equation and of the dispersion parameter. The two e�ects cannot be separated
here as they could in the case of the DACP1.
As mentioned earlier on, the autocorrelation of both versions of the DACP is identical to
the one of the ACP, which means that the dispersion properties of the marginal density do
not a�ect the time series properties of the model.

For the DACP1 the likelihood is:

lt(�; 
) = �1

2
ln (
)� �t



+Nt (ln (Nt)� 1)� ln (Nt!) +

Nt




�
1 + ln

�
�t

Nt

��
;

where � is a vector containing all the parameters of the autoregressive conditional intensity
and the conditional intensity �t is autoregressive:

E[NtjFt�1] = �t = ! +

pX
j=1

�jNt�j +
qX

j=1

�j�t�j :

Di�erentiating with respect to � and 
,

9



@lt

@�
= 


Nt � �t

�t

@�t

@�

@lt

@

=

1

2

1



+ (Nt � �t) +Nt ln

�
�t

Nt

�
:

The �rst condition with respect to � is just the ACP condition multiplied by the dispersion
parameter 
. Taking the expectation, one gets:

E

�
@lt

@�

�
= 0 :

The DACP1 is therefore a quasi maximum likelihood estimator: it is consistent as long as
the mean is correctly speci�ed, even if the true density is not double Poisson. The Hessain
is given by:

@2lt

@�@�
0
= �
 Nt

�2t

@2�t

@�2

@2lt

@�@

=

Nt � �t

�t

@�t

@�

@2lt

@
2
= �1

2

1


2
;

where @�t
@�

and zt are as in 3.3 and 3.4.
Taking the expectation of the cross-derivative, one gets:

E

�
@2lt

@�@


�
= 0 :

The cross derivative has an expectation of zero, so the expected Hessian is a block-diagonal
matrix, which means that it is e�cient to estimate 
 independently from � and that the
variance of the estimators of the mean and dispersion are just the inverse of the diagonal
elements of the Hessian.

For the DACP2 the likelihood is more complicated. It can be obtained from the likeli-
hood of the DACP1 by the following transformation:

Lt(�; �) = lt (�; 
 (�t(�); �)) :

Lt(�; �) = �1
2 ln (1 + ��t)� �t

1+��t
+Nt (ln (Nt)� 1)� ln (Nt!)

+
Nt

1 + ��t

�
1 + ln

�
�t

Nt

��
;
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where � is a vector containing all the parameters of the autoregressive conditional intensity
and the conditional intensity �t is autoregressive:

E[NtjFt�1] = �t = ! +

pX
j=1

�jNt�j +
qX

j=1

�j�t�j

Di�erentiating with respect to � and 
,

@Lt

@�
=

1

1 + ��t

�
��

2
+
Nt

�t
� 1

1 + ��t

�
1 + �Nt

�
1 + ln

�
�t

Nt

����
@�t

@�

@Lt

@�
=

�t

1 + ��t

�
�1

2
� 1

1 + ��t

�
�t +Nt

�
1 + ln

�
�t

Nt

����
:

It can be seen, by setting � equal to zero in the score with respect to the parameters of the
mean, that one gets back the �rst order condition of the Poisson model:

@Lt

@�
=

Nt � �t

�t

@�t

@�
:

@2Lt

@�@�
0
=

�1
(1 + ��t)

2

�
1

2
+ �

Nt

�t
+

2�

1 + ��t

�
1 + �Nt

�
1 + ln

�
�t

Nt

����
@2�t

@�2

@2Lt

@�@

=

�1
(1 + ��t)

2

�
1

2
+Nt +Nt

1� �2�2t

(1 + ��t)
2

�
1 + ln

�
�t

Nt

���
@�t

@�

@2Lt

@
2
=

�
�t

1 + ��t

�2�1
2
+

2

1 + ��t

�
�t +Nt

�
1 + ln

�
�t

Nt

����

Again @�t
@�

and zt are as in 3.3 and 3.4.
In these models excess overdispersion can be tested with a simple Wald test for 
 =

1 in the DACP1 and for � = 0 in the DACP2. Autocorrelation can be tested with a
likelihood ratio test of a model in which the autoregressive parameters of the conditional
mean are restricted to be zero against a more general alternative. One potential problem
may lie in the fact that the double Poisson models are estimated by approximate maximum
likelihood. The test is really an approximate likelihood ratio where the approximation error

log
�
c(�u;
u)
c(�r ;
r)

�
is assumed to be close to zero.

In this section the equidispersion assumption of the Poisson model was relaxed and
replaced it by two alternative speci�cations of the mean variance relation. In the �rst one,
the conditional variance was allowed to be a multiple of the conditional mean, whereas in
the DACP2 model, the variance was a quadratic function of the mean. In both of these
formulations, however, the mean and variance are bound to covary in a rather restricted
way. In the DACP1, by construction, the mean and variance have a correlation of 1. In
the DACP2 this isn't the case, but mean and variance have to move together. Whenever
the mean increases, the variance increases as well. This might be too restrictive in certain
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situations, for example with a rare disease where one does not really know whether a disease
is spreading out or whether the large number of cases was just an isolated occurrence. When
the number of cases is small it tends to be followed by small counts and both mean and
variance are then small. On the contrary, a larger count can be followed either by a large
count (the disease is spreading out) or by a small count, in which case the mean does not
change much, but the variance increases signi�cantly as a result of this uncertainty. In
order to deal with series of that sort, more 
exible models have to be considered.

5 Extension to time-varying variance

This section introduces two di�erent types of generalisations of the double Poisson models.
The �rst, which will be called Generalised DACP (GDACP), adds a GARCH variance
function to the DACP. The second type of extension consists of modeling the dispersion
parameters of the DACP1 and DACP2 as autoregressive variables and the resulting models
are called the Generalised DACP1 (GDACP1) and Generalised DACP2 (GDACP2).

The advantage of the Double Poisson distribution is that it allows for separate models
of the mean and of the dispersion. In the regression applications of Efron (1986), the mean
is made to depend on one set of regressors and the dispersion depends on a di�erent set, via
a logistic link function. This is a natural parameterisation for the cases most often analysed
in the biostatistics literature, where certain variables are thought to a�ect the dispersion of
the dependent variable. For example, in the toxoplasmosis data analysed by Efron (1986),
which involves a double logistic, the dependent variable is the percentage of people a�ected
by the disease in every city, the annual rainfall in every city is the explanatory variable and
the sample size in each city determines the amount of overdispersion. However, in the time
series case which is the focus of this paper, there are in general no such variables. This is
obviously true for univariate time series but it is also the case for many other applications.
In the univariate time series context dispersion will be modeled as a function of the past
of the series. Two alternative speci�cations will be proposed, one in terms of the variance
and the other in terms of the dispersion parameter.

The model which is written in terms of the variance will be examined �rst. This is
a natural way to think about this problem since in the modeling of economic time series,
based implicitly on thinking about the normal distribution, the focus has been more on
models of the variance than on models of the dispersion. Moreover in terms of writing an
autoregressive model of dispersion, it is not obvious what the lagged variable should be. As
a consequence, it will also be di�cult to calculate the theoretical unconditional moments of
the model. In the case of variance however, one can adopt GARCH type variance functions
and choose conditional variance as the lagged variable. With a GARCH process for the
conditional variance, the dispersion parameter of the double Poisson can be expressed as
a function of both the conditional mean and variance. The mean speci�cation will be the
same as in 3.2, but in addition, the conditional variance will be modeled as:

ht � E
�
�2t jFt�1

�
= !2 + �2 (Nt�1 � �t�1)2 + �2ht�1 : (5.1)

From here on coe�cients appearing in the conditional mean are indexed by 1 and coe�cients
of the conditional variance process are indexed by 2. For this speci�cation, the dispersion
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coe�cient 
 of the simple double Poisson is expressed in terms of the conditional mean and
variance of the process:


t =
�t

ht
: (5.2)

The following proposition gives an expression for the unconditional variance of the
GDACP when both the conditional mean and variance have one autoregressive and one
moving average parameter.

Proposition 5.1 (Unconditional variance of the GDACP(1,1,1,1) Model). The vari-

ance of the generalised model is given by:

V [Nt] = �2 =
!2

(1� �2 � �2)

(1� (�1 + �1)
2 + �21)

(1� (�1 + �1)2)
:

Proof of Proposition 5.1. Proof in appendix

The variance is a product of the unconditional mean of the variance process and a term
depending on the mean equation parameters. Some insight can be gained by dividing both
sides of this equation by the unconditional mean of the counts and making use of 3.2:

�2

�
=

!2

(1� �2 � �2)

!1(1� (�1 + �1)
2 + �21)

(1 + �1 + �1)
:

It is now apparent that the overdispersion of the GDACP is a product of the long term mean
of the variance process and of a term which is decreasing in �1 and �1. This somewhat
counterintuitive result is due to the fact that the variance process gives rise to most of
the overdispersion and that the autoregressive parameters of the mean, while increasing
the unconditional variance, actually increase the mean even more for a given !1, which in
aggregate decreases the overdispersion.

It is of interest to see how the GDACP relates to the models presented in the previous
sections. The GDACP model nests the plain double Poisson (obtained when �1 = �1 =
�2 = �2 = 0) with 
 = !2

!1
in the case of the DACP1 and � = !2�!1

!2
1

in the case of the

DACP2) and the plain Poisson (obtained when �1 = �1 = �2 = �2 = 0 and !2 = !1), but it
does not nest non-trivial ACP or DACP models (where �1 6= 0 and �1 6= 0). A consequence
of this is that it is not possible to test the GDACP against the previous models with a test
of nested hypotheses. One would have to resort to tests of non-nested hypotheses, which
in the present case would be quite cumbersome, due to the fact that the conditional mean
and variance are unobserved autoregressive processes.

The likelihood function of the GDACP is given below:

lt(�1; �2)) =
1

2
ln

�
�t

ht

�
� �2t

ht
+Nt (ln (Nt)� 1)� ln (Nt!) +

Nt�t

ht

�
1 + ln

�
�t

Nt

��
:

where �t and ht are as de�ned above and where �1 = [!1; �1; �1] and �2 = [!2; �2; �2].
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The score of the model is given by

@lt

@�t
=

�
1

2�t
+ 2

Nt � �t

ht
+
Nt

ht
ln

�
�t

Nt

��
@�t

@�1

@lt

@ht
=

�
1

2ht
� �t

ht

Nt � �t

ht
� Nt�t

h2t
ln

�
�t

Nt

��
@ht

@�2
:

The Hessian is

@l2t

@�1@�
0

1

=

�
� 1

2�2t
� 2

h1
+

Nt

�tht

�
@2�t

@�1�
0

1

@l2t
@�1@�

0

2

=

�
2�t
h2t

� Nt

h2t

�
2 + ln

�
�t

Nt

���
@�t

@�1

@ht

�
0

2

@l2t

@�2@�
0

2

=

�
1

2h2t

�
2�t
h2t

�
Nt � �t

ht
+
Nt

ht
ln

�
�t

Nt

����
@2ht

@�2@�
0

2

:

The GDACP model is convenient because it has many features which make it familiar
for time series econometricians, however it does not nest simpler models like the DACP. This
makes testing the general model against the more restrictive ones di�cult. To remedy this,
one can model the dispersion parameter of the double Poisson directly. Unlike the variance,
when modeling time-varying dispersion, there is no natural candidate lagged dependent
variable. As a consequence a logistic link function will be used as in Efron (1986):


t =
M

1 + exp (��t) ; (5.3)

along with an autoregressive process for �:

�t = !2 + �2
Nt�1 � �t�1p

�t
t
+ �2�t�1 :

M is the maximum possible overdispersion, which, as in Efron (1986), will not be estimated
but set by trial and error. In all the applications it will be set to 10. Unlike in the previous
model, the unconditional moments are not easy to compute explicitly. In the present
formulation, however, the regressor is a martingale di�erence sequence which makes �t a
stationary ARMA process. It can be seen that this dispersion model nests the DACP1
(when �2 = �2 = 0 and the ACP (when in addition, !2 = log(M�1)), but not the DACP2.
It is possible however to build a model which nests the DACP2 by setting � de�ned in
4.4 to be a function of � as in 5.3. These models will be called GDACP1 and GDACP2
respectively by reference to the DACP1 and DACP2 models that they generalise. Table
1 contains a summary of the model speci�cations and the chart on page 29 shows how
the various models relate to each other. Testing the time-varying overdispersion in the
GDACP1 and GDACP2 can be done with a likelihood test against the null hypothesis of
DACP1 and DACP2 respectively. Gurmu and Trivedi (1993) consider arti�cial regression
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tests for dispersion models which could easily be generalised to time-varying overdispersion.
These tests would then be very similar to GARCH tests with the exception that they are
based on the deviation instead of the residuals.

An advantage of the double Poisson over any overdispersed densities alluded to earlier
on becomes more obvious now. The double Poisson distribution can be either over- or
underdispersed, which means that the conditional variance can be either larger or smaller
than the conditional mean. With a strictly overdispersed distribution, there would be
di�culies each time the mean gets larger than the variance in the GDACP or when the
dispersion gets smaller than 1 for the GDACP1 or GDACP2, which could happen in the
numerical optimisation of the likelihood or when making out-of-sample predictions. There is
no constraint on the parameters of the model which could ensure that this does not happen.
With the double Poisson, however, there is no need to worry about this possibility.

The models can easily be generalised to include explanatory variables. It is possible
to multiply the conditional mean, variance or overdispersion by a function of exogenous
regressors in exactly the same way as in Zeger (1988). In the case of the Poisson, this
can be done by using the natural link function, which is the exponential. Instead of using
directly �t and ht, one could use �t expX�1 and ht expX�2 as the new conditional mean
and variance. Another possibility is to include regressors directly in the conditional mean
or variance equation. Obviously the model proposed here can also be extended to most of
the variations of the GARCH family, which is a very rich class of models.

6 Data analysis

In order to demonstrate how the model works, it is applied to two datasets in completely
di�erent areas. The �rst is a medical example and the second is an application to stock
market data.

6.1 Incidence of poliomyelitis in the U.S.

The �rst application of the model is to the monthly number of cases of poliomyelitis in
the United States between 1970 and 1983, which was analysed as an example in Zeger
(1988). Zeger estimated three models, two of which assume that repeated observations are
independent and follow a negative binomial distribution in one case or have a constant
coe�cient of variation in the other case. The model proposed by Zeger considers that there
is a latent process which generates overdispersion and autocorrelation. The time series of
polio cases seems to have become a benchmark for time series count models. It has been
analysed by Br�ann�as and Johansson (1994), who study properties of di�erent estimators
for the parameters of the latent variable in the Zeger model which are responsible for
overdispersion and autoregression. Davis and Wang (2000) propose a test for the presence
of a latent variable and a correction for the standard errors of the coe�cients on exogenous
regressors based on asymptotic theory. They apply their method to the polio series to show
that their theoretical standard errors are close to simulated ones. Jorgensen, Lundbye-
Christensen, Song, and Sun (1999) propose a nonstationary state space model and apply
it to the same dataset. Fahrmeir and Tutz (1994) reports results from the estimation of a
log-linear Poisson model which includes lagged dependent variables.
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Upon examining the series of polio cases (see Figure 2), it is not at all obvious whether
this dataset provides evidence of declining incidence of polio in the U.S. which is one of
the questions of interest. The histogram reveals that, with the exception of an outlier at
14 which could well be a recording error, the counts are very small with more than 60% of
zeros. The series is clearly overdispersed with a mean of 1:33 and a variance of 3:50. Figure
3 shows the autocorrelogram of the number of polio cases after an outlier has been taken
away. There is signi�cant autocorrelation in levels and squares, and there is a clear pattern
in the sign of the autocorrelation, which is �rst positive, then negative and positive again
at very high lags.

Results from models without exogenous regressors are reported in table 2. The outlier
of 14 has been taken out, as it had a strong impact on some of the coe�cients. Models are
evaluated on the basis of their log-likelihood, but also on the basis of their Pearson residuals,
which are de�ned as: �t =

1p
T�K

Nt��t
�t

, where a correction for the number of degrees of

freedom was used. If a model is well speci�ed, the Pearson residuals will have variance
one and no signi�cant autocorrelation left. Autocorrelation is tested with a likelihood ratio
test (LR) which gives a test statistic of 57:4 much larger than the �2[2] 5% value of 5:99.
The simplest model is the ACP which, while providing a good �t and capturing some
autocorrelation, leaves an overdispersed residual with a variance of 1:70. The DACP1 and
DACP2 correct for this, reducing this variance to 1:05 and :96 respectively. Both a Wald
test, which in this case is the same as a simple t-test of the null that 
 = 0 in the DACP1
or � = 0 in the DACP2, and a likelihood ratio (LR) test reject the ACP model. As was
to be expected, the double Poisson makes it possible to �t the autocorrelation and the
overdispersion at the same time.

Most parameters are signi�cant at the 5% level. The parameters of the conditional
mean for the three models are very similar, which indicates that the ACP was adequately
capturing the time series aspect of the data while missing some of the dispersion. They
imply a relatively high degree of persistence with the sum of the autoregressive parameters
around :75 for most models. Amongst the more general models the GDACP2 performs
best in terms of the dispersion, since it leaves a standard residual with a variance of 1:00,
but the GDACP1 seems to provide a slightly better �t. The GDACP1 is preferred to the
DACP1 that it nests as shown by a LR test statistic of 8, but it is not possible to reject the
DACP2 against the more general GDACP2 (the LR test statistic is :8). For an overview of
the models, see table 1 and the chart on page 29. The model which is formulated with a
GARCH variance function does not perform as well as the dispersion models.

Figure 4 shows the autocorrelations of the Pearson residuals for the models considered
so far. There is a great overall reduction in the level of autocorrelation below the Bartlett
con�dence interval which lies at :154, except for very few values. The Ljung-Box statistic for
autocorrelation which does not allow to reject the null hypothesis of zero autocorrelations
for any lags in the original series is reversed for all lags for the standardised residuals of
the models. The pattern observed in the autocorrelogram of the series has been replaced
by a pattern at a higher frequency. It can be expected that this pattern will disappear
with the inclusion of seasonality dummies. Figure 5 reveals that all models have very small
autocorrelations in squares and have lost the low frequency pattern that is present in the
original series.

In order to compare the results to the results of Zeger (1988), models using the same set
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of regressors were estimated. These include trigonometric seasonality variables at yearly
and half yearly frequencies as well as a time trend, since interest lies in whether or not the
present dataset provides evidence of declining incidence of polio in the U.S. The results,
shown in table 3 are qualitatively similar to Zeger's results. In all the models the coe�cient
on the time trend is negative and insigni�cant. This coe�cient is systematically smaller in
absolute value across all the speci�cations than what Zeger reports. The coe�cients of the
seasonality variables are more or less the same as in Zeger (1988). The results seem to be
even closer to what Fahrmeir and Tutz (1994) report in Table 6.2 than to Zeger's results.
Magnitudes vary a little but the signs are always the same. In all models, the seasonality
variables are signi�cant as a group. Again autocorrelation is tested and the null of no serial
correlation is rejected with a test statistic of 24 very much in excess of the 5:99 value under
the null. The overall picture for the models including exogenous regressors is the same as for
the ones which do not. LR tests reject the Poisson model in favour of the double Poisson.
The DACP2 is the best amongst the simpler models both in terms of the likelihood and in
the modeling of dispersion, since it leaves an almost perfectly equidispersed residual. The
GDACP1 �ts better, but does slightly worse than the DACP2 in terms of the residuals. A
LR test rejects the DACP1 in favour of the GDACP1, but it is not possible to reject the
DACP2 against the alternative hypothesis of GDACP2 at the 5% level.

The autocorrelations of the standard errors are shown in �gure 6 and 7 and they are
quite similar to the previous ones. This is somewhat of a surprise, as it could be expected
that what seems to be a systematic seasonal pattern in the autocorrelations would disappear
after inclusion of seasonality variables. Maybe this apparent pattern is not very important,
since it is clearly below the Bartlett signi�cance level and insigni�cant also according to
the Ljung-Box statistic. Alternatively it could suggest that the seasonality has not been
taken into account properly, but a little experimenting with alternative parameterisations
suggests that this is not the case. This example shows that the ACP family of models is
able to capture autocorrelation and dispersion successfully and whiten the residuals, while
getting similar results as Zeger (1988) in terms of coe�cients on exogenous regressors and
their standard errors.

6.2 Daily number of price changes

The second application of the model that is to the daily number of price change durations
of :75$ on the IBM stock on the New York Stock Exchange. A :75$ price-change duration is
de�ned as the time it takes the stock price to move by at least :75$. The variable of interest
is the daily number of such durations, which is a measure of intradaily volatility, since the
more volatile the stock price is within a day, the more often it will cross a given threshold
and the larger the counts will be. Midquotes from the Trades and Quotes (TAQ) dataset
will be used to compute the number of times a day that the price moves by at least :75$,
using the "�ve second rule" of Lee and Ready (1991) to compute midquotes prevailing at
the time of the trade. For robustness it is required that the following midquote not revert
the price change.

Let us denote by St the midquote price of the asset and by �n the times at which the
threshold is crossed:
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�n+1 = inf
t
ft > �n : jSt � S�n j � dg (6.1)

The durations are then de�ned as �tn = �n+1��n and the object of interest is the daily
number of such durations, which is a measure of intradaily volatility. Unlike the volatility
that can be extracted from daily returns, for example with GARCH, the counts are a daily
measure based on the price history within a day and this will contain information that
volatility measures based on daily data are missing. For such a series interest lies amongst
other things in forecasting, as volatility is an essential indicator of market behaviour as well
as an input in many asset pricing problems.

As can be seen from the plotted series in Figure 9, the counts have episodes of high and
low mean as well as variance, which suggest that autoregressive modeling should be appro-
priate. The histogram reveals that the data range from 0 to 30. The data is overdispersed
with a mean of 5:98 and a variance of 20:4. Also, Figure 8 shows that the autocorrelations
of the series in level and squares are clearly signi�cant up to a relatively large number
of lags (the Bartlett's 95% con�dence interval under the null of iid is :10). Signi�cant
autocorrelation is also present in the third and fourth powers, although to a lesser degree.

A series of models is estimated, which range from the simple ACP to the most general
GDACP and the results are reported in table 4. Most parameters are signi�cant with
t-statistics well above 2. All the models imply that the series is quite persistent with
�1 + �1 in the order of :82 to :94, which . The GDACP implies that the variance is
also very persistent with a value of :912 for the sum of the autoregressive parameters.
Again the simple Poisson model is rejected in favour of the DACP1 and DACP2. The
DACP2 has standardised errors with a variance very near 1. The model in variance does
not perform well, either in likelihood or in terms of its standard errors. The DACP1 is
rejected in favour of the GDACP1, but the DACP2 cannot be rejected at the 5 % level.
The preferred model is then DACP2 which has the best likelihood of all the models and
which leaves almost an equidispersed error term. Another way to check the speci�cation
is to look at the autocorrelation of the Pearson residuals, which should be white noise if
the time series dependence has been well accounted for by the model. In Figure 10 shows
the autocorrelogram of the standardised errors of the various models. This reveals that the
standard errors have no more autocorrelation left and they have lost any of the systematic
patterns that were present in the original series. Figure 11 shows that the same is true for
the squared standard errors. The autocorrelogram of the residuals to the third and fourth
power show very low autocorrelation, which indicates that the models capture the serial
correlation in the four �rst moments well.

The models are also evaluated with respect to the quality of their out-of-sample fore-
casts. The models are estimated on a starting sample of 202 observations, then a one-
step-ahead forecast is calulated and the model is reestimated for every period with all the
available information. First the quality of the point forecasts from each one of the models
is evaluated. The Root Mean Squared Errors (RMSE) of the various models are quite close
to each other. The models which do best are the DACP2 and GDACP2, but the ACP
and he DACP1 do almost as well. In terms of the Standardised Sum of Errors the DACP2
performs best with a variance of 1:29, the closest to one from all models. A decomposi-
tion of the forecasting error shows that the bias is very small in most models which means
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that the forecasts are right on average. The variance proportion of the forecast for most
models is around :25% which means that the variance of the forecast and the variance of
the original are quite close to each other. The remaining part of the forecasting error is
unsystematic forecasting error. It is a good sign for the forecasts that most of the error
is of the unsystematic type. Using that measure, the DACP2 is again seen to be the best
with 77% of the forecasting error being of the unsystematic type.

Another way to test the accuracy of the models is to evaluate how good they are at
forecasting the density of the counts out-of-sample. For this purpose the method developed
by Diebold and Tay (1997) is used, which consists in computing the cumulative probability
of the observed values under the forecast distribution. If the density from the model is
accurate, these values will be uniformly distributed and will have no signi�cant autocorre-
lation left neither in level nor when raised to integer powers. In order to assess how close
the distribution of the Z variable is to a uniform, quantile plots of Z against quantiles of
the uniform distribution are shown. The closer the plot is to a 45%-line, the closer the
distribution is to a uniform. The quantile plots of the various models are shown in �gure
12. The Z statistic for most models is quite close to the 45%-line. The GDACP1 is the
model which performs best. The Poisson model gives too little weight to large observations
as is re
ected in the fact that the curve is clearly below the 45%-line between :6 and 1.
This is present to a certain degree in all of the plots, but less so for more sophisticated
models. The ACP and GDACP1 give too little weight to zeros whereas all other models
attribute too much probability mass to them. All the models seem to have di�culty with
the right tail: they cannot quite accommodate as many large values as are present in the
data. Diebold and Tay (1997) propose to graphically inspect the correlogram along with
the usual Bartlett con�dence intervals. For the present case, this means that all corre-
lations smaller in absolute value than :141 can be considered not to be signi�cant. The
autocorrelations for the models are displayed in �gures 13 and 14. In general the models
perform very well with only very few signi�cant correlations left. It is di�cult to discrimi-
nate between models base on these autocorrelograms. It seems though that the GDACP1
has large negative autocorrelations for small lags, both in levels and in squares. In terms
of the Ljung-Box, which has acceptable properties according to the Monte Carlo study in
Br�ann�as and Johansson (1994), the GDACP and GDACP2 have the highest p-values for
levels and squares, followed by the DACP1. The GDACP which does quite poorly in-sample
seems to capture the time-series adequately out-of-sample.

7 Conclusion

This paper introduces new models for time series count data. These models have proved very

exible and easy to estimate. They make it possible to correct standard errors and improve
inference on parameters of exogenous regressors compared to Static Poisson regression
like other methods, particularly the one proposed by Zeger (1988), which has attracted
a lot of attention recently, while modeling the time series dependence in a more 
exible
way. It is shown that these models perform well and can explain both autocorrelation and
dispersion in the data. The biggest advantage of this framework is that it is possible to
apply straightforward likelihood based tests for autocorrelation or overdispersion. Finally
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this method also makes it possible to perform point and density forecasts, which successfully
pass a series of forecast evaluation tests. An interesting question is how this model can be
generalised in a multivariate framework and this is the object of ongoing research.

8 Appendix

Proof of Proposition 3.1. Same as the proof of lemma 1 in Engle and Russell (1998).

Proof of Proposition 4.1. Upon substitution of the mean equation in the autoregressive
intensity, one obtains:

�t � � = �1(Nt�1 � �) + �1(�t�1 � �) ;

�t � � = �1(Nt�1 � �t�1) + (�1 + �1)(�t�1 � �) :

Squaring and taking the expectation gives:

E[(�t � �)2] = �21E
�
(Nt�1 � �t�1)2

�
+ (�1 + �1)

2E
�
(�t�1 � �)2

�
:

Using the law of iterated expectations and substituting the conditional variance �t�1 for
its expression, one gets:

E
�
(�t � �)2

�
= �21E[

�t�1



] + (�1 + �1)
2E

�
(�t�1 � �)2

�
: (8.1)

Collecting terms, one gets:

V [�t] = E[(�t � �)2] =
�21�


(1� (�1 + �1)2)
: (8.2)

Now, applying the following property on conditional variance

V [y] = Ex

�
Vyjx(yjx)

�
+ Vx

�
Eyjx(yjx)

�
; (8.3)

to the counts, one obtains:

E
�
(Nt � �)2

�
= E

�
(Nt � �t)

2
�
+E

�
(�t � �)2

�
: (8.4)

Again using the law of iterated expectations, substituting the conditional variance �t for
its expression, then making use of the previous result, and after �nally collecting terms,
one gets the announced result.
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Proof of Proposition 4.2. This proof is similar to the proof of Proposition 4.1. When sub-
stituting the conditional variance �2t for its expression, instead of 8.1, one gets:

E
�
(�t � �)2

�
= �21E[�t�1 + ��2t�1] + (�1 + �1)

2E
�
(�t�1 � �)2

�
:

Similarly, instead of 8.2, one gets:

V [�t] = E[(�t � �)2] =
�21�(1 + ��)

1� �21� � (�1 + �1)2
:

Now, applying 8.3 to the counts, one obtains 8.4. The result then follows after applying
the same steps as in the previous proof.

Proof of Proposition 3.3. As a consequence of the martingale property, deviations between
the time t value of the dependent variable and the conditional mean are independent from
the information set at time t. Therefore:

E[(Nt � �t)(�t�s � �)] = 0 8 s � 0 :

By distributing Nt � �t, one gets:

Cov[Nt; �t�s] = Cov[�t; �t�s] 8 s � 0 : (8.5)

By the same "non-anticipation" condition used above, it must be true that:

E[(Nt � �t)(Nt�s � �)] = 0 8 s � 0 :

Again, distributing Nt � �t, one gets:

Cov[Nt; Nt�s] = Cov[�t; Nt�s] 8 s � 0 : (8.6)

Now,

Cov[�t; �t�s] = �1Cov[Nt; �t�s+1] + �1Cov[�t; �t�s]
= (�1 + �1)Cov[�t; �t�s]
= (�1 + �1)

sV [�t] :

The �rst line was obtained by replacing �t by its expression, the second line by making use
of 8.5, the last line follows from iterating line two.

Cov[�t; �t�s+1] = �1Cov[�t; Nt�s] + �1Cov[�t; �t�s] :

Rearranging and making use of 8.6, one gets:

21



Cov[Nt; Nt�s] =
1

�1
Cov[�t; �t�s+1]� 1

�
Cov[�t; �t�s]

=
1

�1
(1� �(�+ �)) (�1 + �1)

sV [�t] :

Finally,

Corr[Nt; Nt�s] =
1

�1
(1� �1(�1 + �1)) (�1 + �1)

s V [�t]

V [Nt]
:

Replacing V [�t] and V [Nt] by their respective values, the result follows.

Proof of Proposition 5.1. This proposition can be proved by proceeding in a similar fashion
as in the Proof of 3.2, but making use of the expression for the conditional variance ht. As
a result of the �rst step, instead of 8.2, one obtains:

V [�t] = E[(�t � �)2] =
�21E[ht�1]

1� (�1 + �1)2
: (8.7)

It can be seen from 5.1 that:

E[ht] =
!2

1� �2 � �2
: (8.8)

Applying property 8.3, making use of 8.8 and after simpli�cation, one gets the announced
result.
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Model Mean Variance Dispersion
�t �2t

ACP !1 + �1Nt�1 + �1�t�1 �t 1

DACP1 !1 + �1Nt�1 + �1�t�1 �t



1



DACP2 !1 + �1Nt�1 + �1�t�1 �t + � �2t 1 + ��t

GDACP !1 + �1Nt�1 + �1�t�1 !2 + �2Nt�1 + �2(Nt � �t)
2 �t

�2
t

GDACP1 !1 + �1Nt�1 + �1�t�1 �t

t


t =
M

1+exp (��t)
�t = !2 + �2

Nt�1��t�1p
�t�1
t�1

+ �2�t�1

GDACP2 !1 + �1Nt�1 + �1�t�1 �t + �t �
2
t �t =

M
1+exp (��t)

�t = !2 + �2
Nt�1��t�1p
�t�1+�t�1�

2

t�1

+ �2�t�1

Table 1: Summary of the model speci�cations
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Coe�cients ACP DACP1 DACP2 GDACP GDACP1 GDACP2

!1 .29 .28 .56 .12 .37 .34
(2.46) (1.49) (2.00) (.93) (1.72) (1.52)

�1 .23 .23 .36 .08 .28 .28
(4.83) (2.84) (3.47) (1.33) (2.49) (2.33)

�1 .55 .56 .21 .82 .44 .46
(5.02) (3.13) (.92) (5.31) (2.09) (2.12)

!2 .20 -2.89 -3.45
(1.35) (-2.73) (-1.22)

�2 .06 -.21 .26
(1.51) (-2.66) (1.25)

�2 .84 -.09 -.12
(10.5) (-.24) (-.13)

dispersion .62 .53
(7.40) (2.36)

Log-L -261.8 -250.2 -247.8 -254.1 -246.2 -248.2

Variance of s.e 1.70 1.05 .96 1.11 1.02 1.00

Table 2: Results from the polio dataset: no exogenous variables (T-statistics are given in
parenthesis).
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Coe�cients ACP DACP1 DACP2 GDACP GDACP1 GDACP2 Zeger

!1 .15 .37 .14 .15 .19 .15
(1.64) (1.25) (1.01) (1.29) (1.18) (1.07)

�1 .16 .23 .17 .12 .17 .18
(2.92) (2.18) (1.75) (1.78) (1.77) (1.62)

�1 .73 .52 .72 .74 .70 .71
(7.65) (2.14) (4.81) (5.01) (4.37) (4.68)

!2 1.45 -2.72 -3.81
(1.99) (-2.18) (-1.20)

�2 .30 -.21 .33
(-2.01) (-2.48) (1.30)

�2 .51 -.07 -.13
(2.90) (-.14) (-.14)

trend -.0013 -.0021 -.0010 -.0003 -.0019 -.0014 -.0044
(-1.05) (-1.22) (-.50) (-.13) (-.57) (-.96) (-1.62)

cos12 -.26 -.24 -.29 -.02 -.18 -.25 -.11
(-3.14) (-1.89) (-2.39) (-.12) (-1.51) (-2.02) (-.69)

sin12 -.37 -.33 -.36 -.20 -.40 -.40 -.48
(-3.60) (-2.19) (-2.65) (-1.29) (-2.55) (-2.82) (-2.82)

cos6 .18 .14 .21 .02 .21 .22 .20
(1.93) (1.03) (1.45) (.14) (1.55) (1.52) (1.43)

sin6 -.40 -.41 -.38 -.20 -.40 -.40 -.41
(-4.08) (2.91) (-2.68) (-1.27) (-1.96) (-2.37) (-2.93)

dispersion .69 .38
(7.16) (2.07)

Log-L -246.5 -239.6 -238.2 -250.5 -235.9 -236.4

Variance of s.e 1.51 .98 1.01 1.11 1.04 1.18

Table 3: Results from the polio dataset: exogenous variables (T-statistics are given in
parenthesis).
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Coe�cients ACP DACP1 DACP2 GDACP GDACP1 GDACP2

!1 .79 .73 .69 .66 .82 .66
(6.35) (3.16) (3.13) (3.43) (3.50) (3.12)

�1 .42 .41 .41 .25 .39 .39
(17.5) (8.75) (8.55) (5.61) (6.82) (7.04)

�1 .45 .53 .48 .57 .47 .50
(13.2) (13.22) (7.34) (7.62) (6.37) (7.35)

!2 1.07 -3.76 1.71
(2.64) (-3.89) (1.11)

�2 .21 -.09 -.04
(4.16) (-2.42) (-.60)

�2 .70 -.32 .59
(11.2) (-.94) (1.61)

dispersion .52 .15
(13.9) (6.11)

Log-L -1062.7 -1009.3 -1001.2 -1023.6 -1004.1 -998.8

Variance of s.e 1.99 1.04 1.02 1.10 1.04 1.02

Forecast

RMSE 4.25 4.25 4.24 4.43 4.29 4.24

SSE 2.55 1.46 1.29 1.51 3.12 1.40

Bias % .03 .03 .02 .08 .04 .03

Variance % .22 .22 .21 .35 .27 .22

Covariance % .75 .75 .77 .57 .69 .75

Table 4: Number of price changes larger than $:75 on the IBM stock (T-statistics are given
in parenthesis.).
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Figure 2: Plot and histogram of the monthly number of polio cases
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Figure 3: Autocorrelations of the number of polio cases
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Figure 4: Autocorrelations of the Pearson residuals: no regressors
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Figure 5: Autocorrelations of the squared Pearson residuals: no regressors
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Figure 6: Autocorrelations of the Pearson residuals with time trend and seasonality
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Figure 7: Autocorrelations of the squared Pearson residuals with time trend and seasonality
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Figure 8: Autocorrelations of the daily number of price changes larger than $ .75 on IBM

0

10

20

30

40

0

20

40

60

80

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 9: Plot and histogram of the daily number of price changes larger than $ .75 on
IBM
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Figure 10: Autocorrelations of the Pearson residuals for the IBM price-change data

36



-0.2

0.0

0.2

0.4

0.6

0.8

50 100 150 200

ACP

-0.2

0.0

0.2

0.4

0.6

0.8

50 100 150 200

DACP

-0.2

0.0

0.2

0.4

0.6

0.8

50 100 150 200

DACP2

-0.2

0.0

0.2

0.4

0.6

0.8

50 100 150 200

GDACP

-0.2

0.0

0.2

0.4

0.6

0.8

50 100 150 200

GDACP1

-0.2

0.0

0.2

0.4

0.6

0.8

50 100 150 200

GDACP2

Figure 11: Autocorrelations of the squared Pearson residuals for the IBM price-change data
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Figure 12: Plot of the quantiles of the distribution of Z against the uniform quantiles
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Figure 13: Autocorrelations of the Z statistics for the IBM price-change data
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Figure 14: Autocorrelations of the squared Z statistics for the IBM price-change data
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