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Abstract

In the first chapter, we show that a biased principal can strictly benefit from hiring an
agent with misaligned preferences or beliefs. We consider a “delegated expertise” problem
in which the agent has an advantage in acquiring information relative to the principal.
We show that it is optimal for a principal who is ex ante biased towards one action to
select an agent who is less biased. Such an agent is more uncertain ex ante about what the
best course of action is and would acquire more information. The benefit to the principal
of a better-informed decision always outweighs the cost of a small misalignment. Further,
we show that selecting an optimally misaligned agent is a valuable tool that performs on
par with optimal contracting (while imposing no additional cost on the principal) and
outperforms restricted delegation. Finally, we show that all results continue to hold if
the agent has to recommend an action instead of being able to choose it directly.

In the second chapter, I study a game between an agent and a principal in a dynamic
information design framework. A principal funds a multistage project and retains the
right to cut the funding if it stagnates at some point. An agent wants to convince the
principal to fund the project as long as possible, and can design the flow of information
about the progress of the project in order to persuade the principal. If the project is
sufficiently promising ex ante, then the agent commits to providing only the good news
that the project is accomplished. If the project is not promising enough ex ante, the
agent persuades the principal to start the funding by committing to provide not only
good news but also the bad news that a project milestone has not been reached by
an interim deadline. I demonstrate that the outlined structure of optimal information
disclosure holds irrespective of the agent’s profit share, benefit from the flow of funding,
and the common discount rate.

In the third chapter, we study an information design model in which the state space
is finite, the sender and the receiver have state-dependent quadratic loss functions, and
their disagreement regarding the preferred action is of arbitrary form. This framework
enables us to focus on the understudied sender’s trade-off between the informativeness of
the signal and the concealment of the state-dependent disagreement about the preferred
action. In particular, we study which states are pooled together in the supports of
posteriors of the optimal signal. We provide an illustrative graph procedure that takes
the form of preference misalignment and outputs potential representations of the state-
pooling structure. Our model provides insights into situations in which the sender and
the receiver care about two different but connected issues, for example, the interaction of
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a political advisor who cares about the state of the economy with a politician who cares
about the political situation.
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Introduction

Information is valuable for efficient decision-making, and thus, in many situations, the

owners of information can strategically use it to their advantage. Retail goods sellers

tend to conceal certain attributes of a product while being transparent about others,

biased prosecutors strategize when inviting a witness to a court hearing, and experts

obfuscate specific pieces of evidence when advising a policymaker - all these are examples

of strategic information provision, which is the overarching theme of this dissertation.

The first chapter examines a setting in which a boss and an expert agree on an issue

ex post but disagree ex ante due to differences in opinions on the issue, and studies the

boss’s choice of expert based on these differences. The second and third chapters consider

the expert and the decision-maker with misaligned preferences, focusing on the dynamic

and static aspects of the expert’s choice of information provision to the decision-maker,

respectively.

In the first chapter, we consider a principal and an agent who share the same preference

for choosing an action that matches the unobservable state of the world, but who have

different prior beliefs regarding the state. In contrast to the principal, the agent can

access costly information about the state of the world. We study the principal’s choice

in the “delegated expertise” problem: the principal selects an agent based on the agent’s

prior belief, and then the agent acquires information and chooses the action. Surprisingly,

we show that it is not optimal for the principal to delegate the task to an agent whose

prior belief is perfectly aligned with the principal’s prior. Instead, we demonstrate that it

is optimal for the principal to delegate the task to an agent who agrees with the principal

1



on the best action choice ex ante but who is more uncertain than the principal (i.e.,

the optimal agent’s prior belief is relatively closer to the uniform prior belief than the

principal’s). We demonstrate that, instead of delegating to an agent with a misaligned

prior, the principal can achieve the optimal delegation outcome by delegating to an agent

with misaligned preferences over the action choices. Finally, we show that delegation

to a misaligned agent as an incentive tool performs at least as well as action-contingent

or outcome-contingent transfers to the agent. The results serve as a useful directional

behavioral tool for delegation in public organizations and provide support for diversity

in large organizations.

In the second chapter, I examine a game between a principal who funds an innovative

multi-stage project and decides when to cut funding, and an agent who controls the

information on the project’s progress toward completion. I assume that the project has

two stages, the agent prefers the principal to postpone cutting the funding, and the agent

can commit to a dynamic information policy specifying which pieces of information will be

provided to the principal and when. I study the agent’s choice of information policy and

show that if the project is sufficiently attractive to the principal ex ante, then the agent

promises to disclose only the completion of the second stage of the project, doing so with

a postponement. However, if the project is not sufficiently attractive ex ante, the agent

promises to provide information regarding the completion of both the second and first

stages of the project. This particular structure of optimal disclosure is preserved under a

more general preference specification. Intriguingly, the optimal form of disclosure for the

first stage completion is a deterministic interim deadline: at the outset of the game, the

agent announces a date at which she will disclose if the first stage is already completed or

not, and upon receiving the bad news, the principal cuts funding for the project precisely

at the interim deadline. The results shed light on the information disclosure in venture

finance and bureaucracies.

In the third chapter, we explore the structure of optimal signals in the Bayesian

persuasion model with a continuous action space and discrete state space. We assume

that both the sender and the receiver share quadratic loss preferences, which implies

that they have state-dependent preferred actions. The main twist is that we assume the

difference between the sender’s and the receiver’s state-dependent preferred actions can

have an arbitrary form, and we show how this form determines the sender’s choice of

optimal signal. In particular, we define the state-pooling structure of a signal. Given

a signal, this structure specifies which states of the world are pooled together in the

2



supports of posterior beliefs constituting the signal. Unexpectedly, we demonstrate that

the state-pooling structure of an optimal signal can be explored using a simple condition

on the alignment of the sender’s and receiver’s preferred actions at pairs of states. Using

this condition, we provide a graph procedure that takes the set of states of the world and

the form of preference misalignment as input, and delivers the optimal and candidate-

optimal pools of states as the output.

3
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Chapter 1
Optimally Biased Expertise

Co-authored with Pavel Ilinov (Ecole Polytechnique Fédérale de Lausanne, School of

Architecture, Civil and Environmental Engineering), Andrei Matveenko (University of

Mannheim, Department of Economics), and Egor Starkov (University of Copenhagen,

Department of Economics).

1.1 Introduction

Presidents, CEOs, and other leaders are often touted as visionaries, paving the way to a

brighter tomorrow. However, they cannot do this alone. They regularly rely on the advice

and expertise of others, and they may hire advisors and experts who do not necessarily

share the same vision. For example, Lyndon Johnson was passionate about his economic

reform, “the War on Poverty”: “That’s my kind of program. I’ll find money for it one way

or another. If I have to, I’ll take away money from things to get money for people. ...

Give it the highest priority. Push ahead full tilt” (Bailey and Duquette, 2014, p. 354).

Chairing Johnson’s Council of Economic Advisers was Walter Heller, who, while being

one of the original authors of the War on Poverty, was no stranger to pushing against it,

advocating for fiscal responsibility and frugality, especially later in the 1960s.1 Similarly,

Ronald Reagan’s radical “Reaganomics” reforms clashed from their early days with a

more restrained position of the Federal Reserve and its then-chairman Paul Volcker,2 but
1Crichton, K. 1987. “Walter Heller: Presidential Persuader.” The New York Times, June 21. https:

//www.nytimes.com/1987/06/21/business/walter-heller-presidential-persuader.html
2Atkinson, C. 1982. “Reagan, Volcker Meet to Discuss Policy Rift.” Washing-

ton Post, February 17. https://www.washingtonpost.com/archive/business/1982/02/17/
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that did not stop Reagan from renominating Volcker to a second term in 1983.

Why can it be beneficial for a partisan principal to hire an agent with a misaligned

vision? At first sight, such a decision looks counterintuitive – e.g., Holmström (1980) sug-

gests that misalignment between a principal and an agent leads to a conflict of interest,

because, from the principal’s point of view, the agent then makes suboptimal decisions.

A similar conclusion could be drawn from the political economy literature, which suggests

that political leaders trade off competence for loyalty when selecting appointees (Lewis,

2011) – one would think that misalignment depresses loyalty, while not necessarily ben-

efitting the competence. Nevertheless, in this paper we show that even conditional on

competence, misalignment between a principal and an agent can lead to better decisions

or recommendations, and thus benefit a partisan principal.

To show this, we consider a delegation model in which a principal (she) and an agent

(he) have common payoffs from different actions, given an unobserved state of the world,

but have misaligned prior beliefs about the state of the world.3 The agent does not have

any preexisting knowledge about the case he is asked to consider, but can use his expertise

to acquire additional information to make the best decision. The agent’s cost of learning

is not internalized by the principal, and her own cost of learning is prohibitively high.

This setting was labeled by Demski and Sappington (1987) as the “delegated expertise”

problem.

We show that when the principal is ex ante biased towards some action (in the sense

of having a non-uniform prior belief over which of the actions is optimal), it is optimal

for her to hire a misaligned agent. In particular, she benefits the most from delegating

to an agent who is ex ante less biased and hence more uncertain than she is about what

the best course of action is (Propositions 1.1 and 1.7, Theorem 1.1). This is because,

the more uncertain the agent is, the more he learns about the state, and the better his

action fits the state – which benefits the principal. This, however, must be balanced

against the tilt: any kind of misalignment between the principal and the agent leads to

a tilt in the agent’s decisions relative to what the principal would prefer. In the end,

the principal prefers to hire an agent who is more uncertain than she is, and who thus

reagan-volcker-meet-to-discuss-policy-rift/f0e448ae-a08d-46b9-aefd-5f4d5449b04f/
3In the context of our motivating examples, this can be interpreted as both the President and the

Economist having the same objective (strong economy, low inflation, high employment, etc.), but different
views on which monetary and fiscal tools should be used in order to achieve these objectives in a given
situation. For instance, the President could believe tax cuts are more likely to benefit the economy,
whereas the Economist could advocate for a more restricted fiscal policy for sake of maintaining control
over monetary policy.
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conducts a more thorough investigation than an aligned agent would, – but who still

favors the same action ex ante. This result holds regardless of who has the final decision

rights: the optimal delegation strategy is the same whether the principal delegates the

decision rights to the agent or merely expects a recommendation on the optimal course

of action (Proposition 1.8).

This conclusion has implications in various settings. One relates to bilateral relation-

ships – e.g., when an authority in a public organization wants to find the best expert to

delegate a decision to. Our findings offer conditions on the set of experts for delegation

to be beneficial, as well as an upper bound for the expected gains from such a delegation.

Moreover, if it is relatively straightforward for the authority to rank available experts in

regards to their attitudes, we provide a useful directional behavioral tool: the authority

should look for an expert who shares similar views but who is more uncertain or moder-

ate. Our second interpretation covers large organizations. We take heterogeneous priors

as different views of the people in organizations such as research teams, firms, and po-

litical parties. Our results speak in favor of diversity of views in such organizations. We

characterize a useful diversity strategy for the leader: she benefits from having workers

with slightly more moderate views. Although the optimal agent is unique in our model,

our problem is static and one-shot. For other decision problems, the leader may have

different opinions and, therefore, benefits from having workers with different views in the

organization.4

Importantly, the optimal degree of misalignment is non-monotone in the strength of

principal’s own bias (Corollary 1.1). If the principal is unbiased, then she would prefer

an unbiased agent, who would hence be aligned with her vision. The same would apply

if a principal is extremely biased – in this case she is almost certain that one action is

better than all others, and may either take this action on her own, or find an agent who

is equally as biased. Hiring a misaligned agent is hence most optimal for the somewhat-

biased principal, who has some ex ante preference for one action over another, but who

still values the information that would be collected by the agent.

We further show that the principal can equivalently benefit from leveraging misalign-

ment in preferences rather than misalignment in beliefs. Our Theorem 1.2 states that the

best delegation outcome can be implemented by hiring an agent with either optimally

4Banerjee and Somanathan (2001) and Li and Suen (2004) present a counterargument to the benefits
of diversity, arguing that if a decision needs to be made by a collective, diverse collectives can have a
harder time agreeing on a decision and may produce worse outcomes. For a recent review on diversity
in organizations, see Shore et al. (2009).
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misaligned beliefs, or optimally misaligned preferences (or, equivalently, offering action-

contingent payments). This result has a mirror implication for the empirical literature

estimating discrete choice models: Theorem 1.2 implies that the agent’s observed action

choice probabilities alone do not allow an external observer to jointly identify the decision

maker’s beliefs and preferences in our setting.

The main conclusion of our paper is that delegation to an agent with misaligned

beliefs is an instrument that is available – and valuable – to the principal. Further, in our

setting, this instrument can perform equally as well as contracts with action-contingent

payments (Theorem 1.2) and outcome-contingent payments (Proposition 1.4), – and even

better if we take the principal’s contract costs into account. Further, misalignment is

typically better than restricting the agent’s choice set (Proposition 1.5). This benefit

of misalignment challenges the opinion that disagreement between the principal and the

agent inevitably leads to conflict, and thus the principal should seek to hire an agent

who is most aligned with her preferences and beliefs (see Holmström, 1980; Crawford and

Sobel, 1982a; Prendergast, 1993; Alonso and Matouschek, 2008; Egorov and Sonin, 2011;

Che et al., 2013 for some examples of such a message).

The existence of the principal’s trade-off between the amount of information acquired

by an agent and the tilt in his resulting decisions relies on the flexibility of the agent’s

learning technology. We capture this flexibility using the Shannon model of discrete ra-

tional inattention, which allows the agent to acquire arbitrary signals and parametrizes

the cost of such a signal through the expected entropy reduction (see Maćkowiak et al.,

2023 for a recent survey of the literature on rational inattention).5 The choice of a signal

in this model depends on the agent’s prior belief: an agent whose prior is skewed towards

some state of the world chooses a signal which is relatively more informative regarding

that state and thus allows him to make a better decision in that state. This dimension of

flexibility is what enables the relative tilt in the misaligned agent’s decisions. We demon-

strate (see Section 1.6.2) that our results are not specific to the entropy parametrization

and continue to hold with other information cost specifications that allow for flexible

learning, such as the channel capacity cost (Woodford, 2012) and the log-likelihood ratio

cost (Pomatto et al., 2023). These robustness exercises also confirm that our results are
5The entropy parametrization has been rationalized in both information theory as a cost function

arising from the optimal encoding problem (see Cover and Thomas, 2012) and decision theory as arising
naturally from Wald’s sequential sampling model (see Hébert and Woodford, 2019), and has been shown
to work as a microfoundation of the logit choice rule commonly used in choice estimation (Matějka and
McKay, 2015). We mainly explore the model of finding the best alternative, studied in Caplin et al.
(2019); the Shannon model with general preferences is studied in Section 6.1.
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driven by the fact that agents with different prior beliefs seek out different information,

as opposed to the cost of information being dependent on the agent’s prior belief in the

Shannon model.

Our paper is mainly connected to the literature on delegation. Most papers on del-

egation follow Holmström (1980) in assuming that the agent has preexisting private in-

formation relevant to the decision. We adopt instead the “delegated expertise” setting

of Demski and Sappington (1987), where the agent has no information advantage over

the principal ex ante, but rather has to collect information, and the expertise grants

him a learning advantage over the principal.6 Demski and Sappington (1987) explore

a contracting problem in a setting in which the agent chooses between a finite number

of signal structures. Lindbeck and Weibull (2020) extend this analysis to a rationally

inattentive agent (who can acquire any information subject to entropy costs). Szalay

(2005) shows that restricting the agent’s action set can be a useful tool in such a setting,

because banning an ex ante optimal “safe” action can nudge the agent to acquire more

information about which of the risky actions is the best. Our overarching message is sim-

ilar: the principal is willing to sacrifice something in exchange for the agent’s acquiring

more information, but we present a different channel through which the principal can

achieve this.

The closest study to our paper is contemporary work by Ball and Gao (2021). They

consider a model of delegated expertise and demonstrate a result similar to that of Szalay

(2005): that banning ex ante safe actions can lead to more information acquisition by the

agent, which benefits the principal. However, where Szalay (2005) looks at a scenario in

which the principal’s and the agent’s preferences coincide ex post (i.e., net of information

costs), Ball and Gao (2021) explore a model with misaligned preferences and show that the

principal may benefit from some misalignment between her preferences and those of the

agent. In their setting, this is due to divergence between the principal’s and the agent’s

ex ante optimal actions (due to preference misalignment), which makes banning the ex

ante agent-preferred action less costly for the principal. Our paper suggests a different

channel through which misalignment may incentivize the agent’s information acquisition:

using a flexible information acquisition framework, we show that misalignment can lead

to more information acquisition by the mere virtue of the agent being more uncertain

6Graham et al. (2015) show that delegation tends to be applied when the decision-making demands
more evidence that the delegatee can provide. Alternatively, the choice to delegate a decision is often
is often exercised when a delegator faces a volatile environment (Foss and Laursen, 2005; Ekinci and
Theodoropoulos, 2021), in which any knowledge quickly becomes obsolete.
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than the principal about what the optimal action is.

The effects of misalignment in prior beliefs have also been studied by Che and Kartik

(2009). They analyze a delegated expertise game in which the principal retains the

decision rights, and the agent, after acquiring the relevant information, chooses whether

to disclose it to the principal. They show that the need to communicate may incentivize

a misaligned agent to acquire more information than an aligned one, in order to more

effectively persuade the principal about which action needs to be taken, as well as to avoid

punishment for concealing evidence. As we show in Section 1.6.3, both the persuasion

and the prejudice avoidance channels are absent from our model, even if we consider

communication (as opposed to delegation, as in the baseline model). Our explanation of

the desirability of misalignment is thus completely separate from that of Che and Kartik

(2009). We argue instead that agents are heterogeneous in their ex ante uncertainty

regarding the optimal action, and this heterogeneity can be exploited by hiring a more

uncertain agent, who will put more effort into learning the state – even if such an agent

would be misaligned relative to the principal. Our setup further allows us to obtain novel

comparative statics results and to show that the optimal misalignment is non-monotone

in the principal’s bias.

Finally, a literature exists that argues in favor of misaligned delegation in strategic

settings, as a way to commit to a certain strategy. Examples include Rogoff (1985); Segen-

dorff (1998); Kockesen and Ok (2004); Stepanov (2020), and Ispano and Vida (2022). We

differ from that literature by focusing on delegation of non-strategic decisions, showing

how misalignment may be beneficial even in the absence of a strategic counterparty.

The remainder of the paper is organized as follows: Section 1.2 formulates the main

model, which is analyzed in Section 1.3 for the special case of binary states and actions,

while Section 1.4 analyzes the general problem. Section 1.5 compares misaligned beliefs as

a delegation tool to other tools, such as misaligned preferences, payments, and restricting

the action set. Section 1.6 explores a number of extensions of the baseline model, and

Section 1.7 concludes.
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1.2 Model

1.2.1 The Story

We begin by explaining verbally the outline of the model and justifying some of the

assumptions made therein; the formal setup follows in Section 1.2.2.

Consider a principal (she) who would like to implement an optimal decision that

depends on the unknown state of the world. To choose the best course of action, the

principal delegates the decision to an expert (an agent, he), who has a learning advan-

tage in acquiring information about the state and the optimal decision. For simplicity, we

assume that the agent’s learning costs (defined further) are finite and the principal’s are

infinite, but the results extend naturally to the case when the principal’s learning costs

are finite but larger than the agent’s. Further, Section 1.6.3 demonstrates that commu-

nication is equivalent to delegation in our setting (barring the equilibrium multiplicity),

so it is not important for our results whether the principal or the agent makes the final

decision.

There are many experts available to the principal, and all experts have a common

interest with the principal, but differ in their opinions on the issue (Section 1.5.1 demon-

strates the connection of our results to the case of common beliefs but misaligned prefer-

ences). These prior beliefs of different agents are observable by the principal – e.g., due

to the agents’ reputation concerns (i.e., agents needing to publicly establish a particular

stance on a broad policy question for sake of earning, and subsequently capitalizing on, a

specific reputation). Experts with different initial opinions would acquire different infor-

mation, and thus possibly make different final decisions. The principal is thus concerned

with choosing the best agent for the job. Alternatively, our results can be interpreted as

comparative statics for a game between a principal and a given agent with some fixed

misalignment, w.r.t. the degree of misalignment. That said, we believe that a literal

interpretation of selecting one agent from a population with heterogeneous beliefs is valid

as well. Kahneman et al. (2021) survey a large body of evidence suggesting that similar

experts and decision-makers in similar conditions make extremely different judgement

and predictions, with a large share of these differences attributable to the interpersonal

heterogeneity (and a smaller share being due to intra-personal noise in decision-making).

We argue that this heterogeneity can be leveraged by the principal through selecting an
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agent whose bias fits a given problem the most.7

1.2.2 The Setup

The above can be modeled as a game played between a principal and a population of

agents. Let A denote the set of actions with a typical element a, and Ω denote the set of

states with a typical element ω. We assume that both A and Ω are finite. The principal

has a prior belief µp ∈ ∆(Ω), where ∆(Ω) denotes the set of all probability distributions

on Ω. Every agent in the population has some prior belief µ ∈ ∆(Ω), which is observable

by the principal.8 In what follows, we refer to an agent according to his prior belief. Let

M ⊆ ∆(Ω) denote the set of prior beliefs of all agents in the population.9

The terminal payoff that both the principal and the agent selected by the principal

receive when action a is chosen in state ω is given by u(a, ω). Prior to making the

decision, the selected agent can acquire additional information about the realized state.

We assume that the agent can choose any signal structure defined by the respective

conditional probability system ϕ : Ω → ∆(S), which prescribes a distribution over signals

s ∈ S for all states ω ∈ Ω, where S is arbitrarily rich. The information is costly: when

choosing a signal structure ϕ, the agent must incur cost c(ϕ, µ) that depends on the

informativeness of the signal ϕ and the agent’s prior belief µ.10

The cost function we consider is the Shannon entropy cost function used in rational

7Note that the evidence presented by Kahneman et al. (2021) implies that the population of principals
would also be heterogeneous in their judgements of a given decision problem. This, together with the
inherent heterogeneity of problems, would create demand for a wide variety of experts – and hence
mitigate the agents’ desire to conceal or misrepresent their biases.

8To clarify, we work with a model of non-common prior beliefs about ω, and we take this assumption at
face value. Such settings are not uncommon in economic theory: see Morris (1995); Alonso and Câmara
(2016); Che and Kartik (2009) for some examples and discussion. It is well known (see Aumann, 1976;
Bonanno and Nehring, 1997) that agents starting with a common prior can not commonly know that
they hold differing beliefs. We allow the agents to have heterogeneous prior beliefs, and thus to “agree to
disagree”. In our model, this implies that agents with different prior belief incur different subjective cost
of information acquisition. While it may be possible to replicate our results in a common-prior model
with asymmetric information, where an agent’s ex ante belief is affected by some private information
not observed by the principal, such a model would feature signaling concerns (e.g., an agent learning
something about the principal’s information about the state from the fact that he was chosen for the
job, and the principal then exploiting this inference channel). We prefer to abstract from such signaling
and simply assume non-common priors from the start.

9For many of the results we assume that the population of agents is rich enough to represent the
whole spectrum of viewpoints: M = ∆(Ω).

10Similar to, e.g., Alonso and Câmara (2016), we assume that the agent and the principal share the
understanding of the signal structure. Combined with them having different (subjective) prior beliefs
over states, this implies they would also have different (subjective) posterior beliefs if both observed the
signal realization.
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inattention models (Matějka and McKay, 2015). In this specification, the cost is propor-

tional to the expected reduction in entropy of the agent’s belief resulting from receiving

the signal (we consider other cost functions in Section 1.6.2 to show that our results do

not depend on this particular specification). Namely, let η : S → ∆(Ω) denote the agent’s

posterior belief system, obtained from µ and ϕ using the Bayes’ rule. The cost is then

defined as

c(ϕ, µ) ≡ λ

(
−
∑
ω∈Ω

µ(ω) lnµ(ω)+

+
∑
ω∈Ω

∑
s∈S

(∑
ω′∈Ω

µ(ω′)ϕ(s|ω′)

)
η(ω|s) ln η(ω|s)

)
, (1.1)

where λ ∈ R++ is a cost parameter.11 We assume that the principal does not internalize

the cost of learning, and the agent fully bears this cost. The main interpretation (shared

by, e.g., Lipnowski et al., 2020) of this assumption is that the cost reflects the cognitive

process of the agent. Information acquisition costs thus lead to moral hazard, with the

agent potentially not willing to acquire the amount of information desired by the principal.

This is the main conflict between the two parties in our model.

In line with the delegation literature, we assume that the principal cannot use mone-

tary or other kinds of transfers to manage the agent’s incentives. This is primarily because

learning is non-contractible in most settings – indeed, it is difficult to think of a setting,

in which a learning-based contract could be enforceable, i.e., either the principal or the

agent could demonstrate beyond reasonable doubt exactly how much effort the agent has

put into learning the relevant information, and what kind of conclusions he has arrived

at. A simpler justification of the no-transfer assumption could be that such transfers

are institutionally prohibited in some settings (see Laffont and Triole, 1990; Armstrong

and Sappington, 2007; Alonso and Matouschek, 2008 for some examples and a discussion

of such settings). Section 1.5 shows that even when contracting is feasible, it does not

improve upon hiring an agent with a misaligned belief, and neither can restricting the

set of actions that the agent is allowed to choose from.

The game proceeds as follows. In the first stage, the principal selects an agent from

the population based on the agent’s prior belief µ. In the second stage, the selected agent

chooses signal structure ϕ and pays cost c(ϕ, µ). In the third stage, the agent receives

11We follow the standard convention and let 0 ln 0 = 0.

13



signal s according to the chosen signal structure ϕ and selects action a given s. Payoffs

u(a, ω) are then realized for the principal and the agent.

The following subsections describe the respective optimization problems faced by the

principal and her selected agent, and introduce the equilibrium concept.

1.2.3 The Agent’s Problem

The agent selected by the principal chooses a signal structure ϕ : Ω → ∆(S) and a choice

rule σ : S → A to maximize his expected payoff net of the information costs. The agent’s

objective function is

E[u(a, ω)|µ]− c(ϕ, µ) =
∑
ω∈Ω

µ(ω)
∑
s∈S

ϕ(s|ω)u(σ(s), ω)− c(ϕ, µ).

The agent’s problem can then be written down as

max
ϕ,σ

{∑
ω∈Ω

µ(ω)
∑
s∈S

ϕ(s|ω)u(σ(s), ω)− c(ϕ, µ)

}
. (1.2)

Lemma 1 in Matějka and McKay (2015) shows that problem (1.2) with entropy cost

function can be reframed as a problem of selecting a collection of conditional choice

probabilities. This reformulation is presented in Section 1.2.6.

1.2.4 The Principal’s Problem

The principal’s problem is to choose an agent based on his prior belief µ ∈ M in order

to maximize her expected utility from the action eventually chosen by the agent. Her

objective function is

E[u(a, ω)|µp] =
∑
ω∈Ω

µp(ω)
∑
s∈S

ϕ(s|ω)u(σ(s), ω),

so her optimization problem can be written down as

max
µ

{∑
ω∈Ω

µp(ω)
∑
s∈S

ϕµ(s|ω)u(σµ(s), ω)

}
,

s.t. (ϕµ, σµ) solves (1.2) given µ,

(1.3)
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where the choice of agent µ affects the signal structure ϕµ and the choice rule σµ chosen

by the agent. Therefore, the principal’s problem is effectively that of choosing a pair

(ϕ, σ) from a menu given by the agents’ equilibrium strategies.

1.2.5 Equilibrium Definition

We now present the equilibrium notion used throughout the paper; the discussion follows.

Definition 1.1 (Equilibrium). An equilibrium of the game is given by (µ∗, {ϕ∗
µ, σ

∗
µ}µ∈M):

the principal’s choice µ∗ ∈ M of the agent who the task is delegated to and a collection of

the agents’ information acquisition strategies ϕ∗
µ : Ω → ∆(S) and choice rules σ∗

µ : S → A
for all µ ∈ M, such that:

1. ϕ∗
µ and σ∗

µ constitute a solution to (1.2) for every µ ∈ M;

2. µ∗ is a solution to (1.3) given (ϕ∗
µ, σ

∗
µ).

Note that the above effectively defines a Subgame-Perfect Nash Equilibrium. While

our game features incomplete information (about the state of the world chosen by Nature),

and the players’ beliefs play a central role in the analysis, problem formulations (1.2)

and (1.3) allow us to treat these beliefs as just some exogenous functions entering the

terminal payoff functions. This is primarily because one player’s actions do not affect

another player’s beliefs in this game, hence a belief consistency requirement is not needed

(however, we do require internal consistency in that the agent’s posterior belief η is

obtained by updating his prior belief µ via Bayes’ rule given his requested signal structure

ϕ).

1.2.6 Preliminary Analysis

Matějka and McKay (2015) show that with entropy costs, the agent’s problem of choosing

the information structure and choice rule can be reduced to the problem of choosing

the conditional action probabilities. Namely, the maximization problem of the agent

can be rewritten as that of choosing a decision rule π : Ω → ∆(A) (which is a single

state-contingent action distribution, as opposed to the combination of a signal strategy

ϕ : Ω → ∆(S) and a choice rule σ : S → A):

max
π

{∑
ω∈Ω

µ(ω)

(∑
a∈A

π(a|ω)u(a, ω)

)
− c(π, µ)

}
, (1.4)
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where c(π, µ) denotes, with abuse of notation, the information cost induced by the action

distribution π.12 Lemma 2 in the online appendix of Matějka and McKay (2015) implies

in our setting that the agent’s problem has a unique solution in either formulation (up

to signal labels). Let β(ai) denote the respective unconditional probability of choosing

alternative ai (calculated using the agent’s own prior belief µ):

β(a) ≡
∑
ω∈Ω

µ(ω)π(a|ω). (1.5)

The principal’s problem can then be rewritten as choosing µ ∈ M that solves

max
µ

{∑
ω∈Ω

µp(ω)

(∑
a∈A

πµ(a|ω)u(a, ω)

)}
s.t. πµ solves (1.4) given µ.

(1.6)

In what follows, we refer to problem (1.6) as the principal’s full problem. Our main

interest in what follows lies in the properties of the solution µ∗ of the full problem and

the chosen agent’s optimal strategy πµ∗ .

We now proceed to analyze the model described above.

1.3 Binary Case

We start by looking at the binary-state, binary-action version of the model, since the

results can be presented more clearly in such a setting than in the general model.13 We

show that the principal has to balance off the amount of information acquired against the

nature of information acquired – since agents with different prior beliefs tilt their learning

towards different states. This makes the principal favor agents who are somewhat more

uncertain than her regarding the state, but who do not necessarily have a uniform prior

belief (Proposition 1.1).

12Cost c(π, µ) is calculated as the cost c(ϕ, µ) of the cheapest strategy (ϕ, σ) that generates π. The
choice rule in such a strategy is deterministic, and the signal strategy prescribes at most one signal per
action (Matějka and McKay, 2015, Lemma 1). Given this, we have that

c(π, µ) = λ

(∑
ω∈Ω

µ(ω)

(∑
a∈A

π(a|ω) lnπ(a|ω)

)
−
∑
a∈A

β(a) lnβ(a)

)
.

13Such a binary model is common in the delegation literature, see e.g. Li and Suen (2004) with a
slightly different informal story.
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Assume that the state space is Ω = {l, r} and with abuse of notation let us represent

beliefs µ by the probability they assign to state r, so µ ∈ [0, 1]. Assume further that

the action set is A = {L,R}, and the common utility net of information costs that

the principal and the agent get from the decision is given by u(L|l) = u(R|r) = 1

and u(L|r) = u(R|l) = 0. These are state-matching preferences commonly used in the

rational inattention literature, see e.g. Caplin et al. (2019, 2021); Hansen et al. (2022).

We proceed by the backward induction, looking at the agent’s problem first, and then

using the agent’s optimal behavior to solve the principal’s problem of choosing the best

agent.

The agent is allowed to choose any informational structure (Blackwell experiment) he

wants, paying the cost which is proportional to the expected reduction of the Shannon

entropy of his belief. Using the result presented in Section 1.2.6, the agent’s problem can

be reformulated as the problem of choosing a stochastic decision rule π : Ω → ∆(A),

which solves

max
π

{
µπ(R|r) + (1− µ)π(L|l)− c(π, µ)

}
. (1.7)

The solution to this problem can be summarized by the two precisions {π(R|r), π(L|l)}
or, alternatively, the two unconditional probabilities {β(R), β(L)}. Using Theorem 1 in

Matějka and McKay (2015), we get that

π(L|l) = β(L)e
1
λ

β(L)e
1
λ + β(R)

, π(R|r) = β(R)e
1
λ

β(L) + β(R)e
1
λ

, (1.8)

and their Corollary 2 implies that

β(R) =
µe

1
λ − (1− µ)

e
1
λ − 1

, β(L) =
e

1
λ (1− µ)− µ

e
1
λ − 1

, (1.9)

cropped to [0, 1]. Combining (1.8) and (1.9), we get that the solution to problem (1.7) is
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Figure 1.1: Solution of problem (1.7) for different prior beliefs µ.

given by14

π(R|r) =

(
µe

1
λ − (1− µ)

)
e

1
λ(

e
2
λ − 1

)
µ

,

π(L|l) =

(
(1− µ)e

1
λ − µ

)
e

1
λ(

e
2
λ − 1

)
(1− µ)

,

(1.10)

cropped to [0, 1]. Figure 1.1 demonstrates how the agent’s action precisions choice de-

pends on his prior belief.

In turn, the principal’s problem is

max
µ

{µpπµ(R|r) + (1− µp)πµ(L|l)}

s.t. πµ solves problem (1.7) given µ.
(1.11)

It is easy to see by comparing the payoffs in (1.7) and (1.11) that the principal benefits

from higher precisions π(R|r) and π(L|l), the same as the agent. However, the relative

weights the principal and the agent assign to these precisions depend on their respective

priors µp and µ, and are hence different. Hence, in order to understand the trade-offs

that the principal faces in hiring agents with different priors, we need to explore how the

agent’s optimal strategy (1.10) depends on his prior belief µ.

When solving problem (1.7), the agent faces a trade-off between increasing the preci-

sion of his decisions, π(R|r) and π(L|l), and the cost of information. Further, he prefers

14This solution takes the form of the so-called rational inattention (RI) logit. In comparison to the
standard logit behavior, under RI-logit the decision-maker (the agent in our case) has a stronger tendency
to select the ex ante optimal alternatives more frequently.
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to learn more about the more probable event: the higher is the probability that the

agent’s prior belief assigns to ω = r, the more important is precision π(R|r) for his

payoff, compared to π(L|l). Therefore, two agents with different beliefs would acquire

different information, leading to different precisions π(R|r) and π(L|l).15 At the same

time, the closer is the prior belief µ to the extremes (µ = 0 or µ = 1), the more confident

is the agent about what the state is, and the less relevant is the precision in the other

state for him, leading to such an agent acquiring less information in total.

To summarize, the agent’s belief µ affects his optimal decision precisions in two ways:

a more uncertain agent acquires more information (and hence makes a better decision

on average) than an agent who believes one state is more likely. However, the latter is

more concerned with choosing the correct action in the ex ante more likely state, while

neglecting the other state.

The principal prefers, ceteris paribus, to hire an agent who acquires more information

and hence makes better choices – i.e., a more uncertain agent (µ close to 0.5). However,

if she believes that, e.g., state r is ex ante more likely (µp > 0.5), then she, for all the

same reasons as the agent, cares more about the agent choosing the optimal action in

state r than in state l. The latter leads her to prefer an agent who is not completely

uncertain (µ ̸= 0.5), favoring those who agree with her in terms of which state is more

likely (µ > 0.5). Balancing the two issues leads to the principal optimally hiring an agent

who has a belief different from hers: µ ̸= µp, yet who agrees with her ex ante on the

optimal action: µ ≥ 0.5 ⇐⇒ µp ≥ 0.5.

Figure 1.2 plots the principal’s expected utility from hiring an agent as a function of

the agent’s belief µ when µp = 0.7. We can see the principal with a prior belief µp = 0.7

would prefer to hire an agent with a prior belief µ ≈ 0.6. Note that the graph is flat for

very high and very low µ, which corresponds to the agents who do not learn anything, and

simply always choose the ex ante optimal action. Further, agents with low µ ∼ (0.15, 0.2)

acquire non-trivial information, but hiring them is worse for the principal than taking

the ex ante optimal action (equivalent to hiring an agent with µ = 1). In other words, if

an agent is too biased, the information he acquires does not benefit the principal due to

the tilt in the agent’s actions relative to what the principal would have chosen.

Proposition 1.1 below formalizes this intuition and provides a closed-form solution for

15This feature of the flexible information acquisition model was analyzed in the application to belief
polarization by Nimark and Sundaresan (2019), as well as in the marketing literature (see Jerath and
Ren, 2021).
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Figure 1.2: Expected utility of principal with prior belief µp = 0.7 as a function of the
agent’s prior belief µ.
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Figure 1.3: The optimal delegation strategy µ∗ as a function of the principal’s prior
belief µp.

the optimal delegation strategy given the principal’s prior belief µp. Figure 1.3 visualizes

the optimal delegation strategy as a function of µp.

Proposition 1.1. If M = [0, 1], then the principal’s optimal delegation strategy is given

by

µ∗(µp) =

√
µp

√
µp +

√
1− µp

. (1.12)

Therefore, if µp ∈
(
1
2
, 1
)
, the principal optimally delegates to an agent with belief µA ∈(

1
2
, µp

)
.

From Proposition 1.1 and Figure 1.3 we can immediately see that misalignment is the

most beneficial to a moderately-biased principal, while if µp is close to either 0.5 or 1,

then it is best to hire an (almost-)aligned agent. This is summarized by Corollary 1.1

below.
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Figure 1.4: Action precisions under optimal delegation and delegating to the aligned
agent.

Corollary 1.1. The optimal misalignment |µp − µ∗(µp)| is single-peaked in µp ∈
(
1
2
, 1
)
.

One thing to note about Proposition 1.1 is that the optimal delegation strategy (1.12)

does not depend on the agent’s information cost factor, λ. While it is immediate that the

higher is λ, the less information the agent with any given prior µ collects, Proposition

1.1 serves to show that the trade-off between the quantity of information and the tilt in

the decisions does not depend on the absolute quantity of information the agent acquires.

Section 1.6.2 does, however, suggest that this specific conclusion is likely an artifact

produced by the entropy information cost function.

Figure 1.4 demonstrates the difference in the action precisions between delegating

to a perfectly aligned agent (µ = µp) and the optimally misaligned agent as given by

(1.12). Optimal delegation leads to the agent consuming more information, lowers the

probability of correctly matching the ex ante more likely (according to the principal’s

belief µp) state, π(R|r), and increases π(L|l), thereby bringing the two closer together.

Overall, under the optimal delegation, the ex ante less attractive option (as seen by both

the principal and the agent) is implemented relatively more frequently as compared to

the case of the aligned delegation. The principal’s benefit from a higher π(L|l) under

optimal delegation outweighs her loss from a lower π(R|r) than under aligned delegation.

Here, an interesting connection can be made to prospect theory (see Barberis, 2013

for a review). In particular, Tversky and Kahneman (1992) suggest that in problems of

choice under risk, individual decision-makers tend to succumb to cognitive biases such
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as overweighing small probabilities and underweighing large probabilities. They propose

a probability weighting function that decision-makers unconsciously use, which is remi-

niscent of our optimal delegation strategy (1.12), with µp being the objective probability

and µ∗ being the decision-maker’s perceived probability. Our result can thus be inter-

preted as one possible evolutionary explanation of the probability weighting functions.

Namely, suppose that “Nature” (evolutionary pressure) is the principal and “Human” is

the agent. They both have common utility function u(a, ω) representing the survival

probability of the individual/population, but natural selection is indifferent towards the

human’s cognitive costs c(ϕ, µ) involved in the decision-making process. In this setting,

natural selection would lead humans to develop probabilistic misperceptions according to

(1.12), since these maximize the survival probability.16

In the next section, we generalize the binary model, assuming more available alterna-

tives, while keeping the structure of the payoffs the same.

1.4 General Case

In this section, we extend the analysis to a general problem of finding the best alternative,

allowing for N > 2 actions and states. We show that the principal’s optimal delegation

strategy is qualitatively the same as in the binary case, i.e., it is optimal to hire a

“more uncertain” agent who investigates more actions in search of the best one than a

fully aligned agent. Further, we characterize the whole set of decision rules that can be

achieved by selecting the agent’s prior belief and show that it coincides with what can be

achieved by selecting action-contingent subsidies for the agent.

We are now looking at the model with A ≡ {a1, ..., aN} and Ω ≡ {ω1, ..., ωN} for

some N , and the preferences are given by u(ai, ωi) = 1 and u(ai, ωj) = 0 if i ̸= j.17

Without loss of generality, we assume that the principal’s belief µp is such that µp(ω1) ≥
µp(ω2) ≥ . . . ≥ µp(ωN) (otherwise states and actions can be relabeled as necessary). As

before, results from Section 1.2.6 apply, meaning that the agent’s problem is equivalent

to choosing the action distribution π : Ω → ∆(A) to maximize (1.4), and the principal

selects an agent according to his prior µ ∈ M to maximize (1.6). We do not restrict the

choice of agents and let M = ∆(Ω) (i.e., for any probability distribution µ ∈ ∆(Ω), the

16Steiner and Stewart (2016) suggest an alternative explanation of probabilistic misperceptions using
a similar nature-as-a-principal approach, but a different source of conflict between Nature and Human.

17These are state-matching preferences commonly used in the rational inattention literature, see e.g.
Caplin et al. (2019, 2021); Hansen et al. (2022).
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principal can find and hire an agent with prior belief µ).

1.4.1 Agent’s Problem

Proceeding by backward induction, we start by looking at the problem of an agent with

some prior belief µ. Invoking Theorem 1 from Matějka and McKay (2015), as we did in

the binary case, we obtain that the agent’s optimal decision rule satisfies:

π(ai|ωj) =
β(ai)e

u(ai,ωj)

λ∑N
k=1 β(ak)e

u(ak,ωj)

λ

, (1.13)

where β(ai), defined in (1.5), is the unconditional choice probability according to the

agent’s prior belief µ, and itself depends on {π(ai|ωj)}Nj=1. While (1.13) does not provide

a closed-form solution for the decision rule π(ai|ωj), it implies that the conditional choice

probabilities π are uniquely determined given the unconditional choice probabilities β,

and this mapping depends solely on the agent’s payoffs and not on his prior belief. In what

follows, we use the implication that a collection of the unconditional choice probabilities

β pins down the whole decision rule π and use β to summarize the agent’s chosen decision

rule.

The above is not to say that closed-form expressions cannot be obtained. Caplin et al.

(2019) show (see their Theorem 1) that an agent with a prior belief µ optimally chooses

a decision rule that generates unconditional choice probabilities

β(ai) = max

0,
1

δ

(K(β) + δ)µ(ωi)∑
j∈C(β)

µ(ωj)
− 1


 , (1.14)

where δ ≡ e
1
λ−1; C(β) ≡ {i ∈ {1, ..., N} : β(ai) > 0} denotes the consideration set, i.e.,

the set of actions that are chosen with strictly positive probabilities, and K(β) ≡ |C(β)|
denotes the power (number of actions in) this set.

1.4.2 Principal’s Relaxed Problem

As mentioned previously, (1.13) implies that a collection of the unconditional choice

probabilities β pins down the whole decision rule π. Let us then consider a relaxed

problem for the principal, in which instead of choosing the agent’s prior µ, she is free
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to select the unconditional choice probabilities β ∈ ∆(A) directly:

max
β

{
N∑
j=1

µp(ωj)

(
N∑
i=1

β(ai)e
u(ai,ωj)

λ∑N
k=1 β(ak)e

u(ak,ωj)

λ

u(ai, ωj)

)}
. (1.15)

In the above, we used (1.13) to represent the conditional probabilities π(ai|ωj) in (1.6) in

terms of the unconditional probabilities β(ai). In Section 1.4.3 we show that the solution

to this relaxed problem is implementable in the full problem – i.e., that there exists an

agent’s belief µ that generates the principal-optimal choice probabilities β.

Note that β(ai) in the above represents the probability with which an agent ex-

pects to select action ai. The principal’s expected probability of ai being selected,∑N
j=1 µp(ωj)π(ai|ωj), would generically be different, since her prior belief µp is different.

Despite the potential confusion this enables, analyzing the principal’s problem through

the prism of choosing β is the most convenient approach due to the RI-logit structure of

the solution to the agent’s problem.

Given the state-matching preferences u(aj, ωj) = 1, u(ai, ωj) = 0 if i ̸= j, we can

simplify (1.15) to

max
β

{
N∑
j=1

µp(ωj)
β(aj)e

1
λ

1 + δβ(aj)

}
. (1.16)

We can now state the solution to the principal’s problem as follows.

Lemma 1.1. The solution to the principal’s relaxed problem (1.16) is given by

β∗(ai) = max

0,
1

δ

(K(β∗) + δ)
√

µp(ωi)∑
j∈C(β∗)

√
µp(ωj)

− 1


 ,

where δ ≡ e
1
λ − 1.

Lemma 1.1 describes the solution in terms of the action choice probabilities, which do

not necessarily give the reader a good idea of its features and the intuition behind this

solution. We explore these in more detail in Section 1.4.4. Before that, however, we need

to ensure that this solution is attainable in the principal’s full problem, which is done in

the following section.
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1.4.3 Principal’s Full Problem

The question this section explores is: can the principal generate choice probabilities β∗

by appropriately choosing the agent’s prior belief µ? In the binary case, the answer was

trivially “yes”: due to continuity of the agent’s strategy, by varying the agent’s belief µ(r)

between 0 and 1, the principal could induce any unconditional probability β(R). In the

multidimensional case, this is not immediate. However, the following result shows that

the result still holds with N actions and states under state-matching preferences.

Lemma 1.2. In the principal’s full problem (1.6), any vector β ∈ ∆(A) of unconditional

choice probabilities is implementable: there exists a prior belief µ ∈ ∆(Ω) such that

β(ai) =
∑N

j=1 µ(ωj)π
∗
µ(ai|ωj), where π∗

µ solves the agent’s problem (1.4) given µ.

The lemma states that if M = ∆(Ω), then the principal can generate any vector of

unconditional action probabilities. Note that this does not imply that she is able to select

any decision rule π(ai|ωj) – if this were the case, under the state-matching preferences

she would simply choose to have π(ai|ωi) = 1 for all i. However, Lemma 1.2 does imply

that the choice probabilities described in Lemma 1.1 – those that solve the principal’s

relaxed problem, – are implementable and thus also solve her full problem. The result

does, however, rely on the state-matching preferences: we show in Section 1.5.1 that it

does not hold for arbitrary payoff functions.

1.4.4 Properties of the Optimal Delegation Strategy

While Lemma 1.1 presents the solution of the principal’s problem in terms of the uncondi-

tional choice probabilities, this representation is not the most visual. We now demonstrate

some implications of this solution in terms of other variables. Namely, Theorem 1.1 ex-

tends Proposition 1.1 and shows how the chosen agent’s prior belief relates to that of

the principal. Proposition 1.2 then compares actions taken under optimal delegation vs

aligned delegation.

We begin by looking at the optimal agent choice in terms of the agent’s belief µ∗.

Theorem 1.1. The principal’s equilibrium delegation strategy µ∗ is such that for all

i, j ∈ {1, ..., N}:

µ∗(ωi)

µ∗(ωj)
=

√
µp(ωi)√
µp(ωj)

.
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In particular, µ∗(ω1) ≥ ... ≥ µ∗(ωN). Further, µ∗(ω1) ≤ µp(ω1) and µ∗(ωN) ≥ µp(ωN),

with equalities if and only if µp(ω1) = ... = µp(ωj).

The intuition behind the result above is the same as that behind Proposition 1.1:

the optimally chosen agent is more uncertain than the principal between any given pair

of states. To see this, note that if µp(ωi) > µp(ωj) then 1 < µ∗(ωi)
µ∗(ωj)

< µp(ωi)

µp(ωj)
– i.e.,

the agent believes state ωi is ex ante more likely than ωj, as the principal does, but

he assigns relatively less weight to ωi. This applies to any pair of states. Thus, the

implication is that the optimal agent must assign a lower ex ante probability to ω1,

the most likely state according to the principal, than she does, and vice versa for ωN .

Note further that the result in Theorem 1.1 is again independent of λ, implying that the

optimal delegation strategy is determined by the relative trade-off between the quantity

of information acquired and the tilt introduced in actions by the misalignment in beliefs,

but the absolute quantity of information acquired is irrelevant. In particular, hiring an

agent with µ∗ is optimal even when he acquires no information, and another agent µ is

available, who would be willing to invest effort in learning ω (since such a µ-agent would

be too misaligned relative to the principal).

We now switch to comparing the choices made under optimal delegation to those

that would arise under aligned delegation – i.e., if the principal selected an agent with

µ = µp. Let β̄ denote the choice probabilities that would be generated under aligned

delegation. Caplin et al. (2019) show that these probabilities β̄, as a function of the

agent’s prior µ, are given by (see their Theorem 1)

β̄(ai) = max

0,
1

δ

(K(β̄) + δ)µ(ωi)∑
j∈C(β̄)

µ(ωj)
− 1


 . (1.17)

Since µp(ω1) > ... > µp(ωN), the consideration set in the aligned problem is then simply

C(β̄) = {1, ..., K̄}, and its size K̄ ≡ K(β̄) is the unique solution of

µp(ωK̄) >
1

K̄ + δ

K̄∑
j=1

µp(ωj) ≥ µp(ωK̄+1). (1.18)

In turn, we can see from Lemma 1.1 that under optimal delegation, size K∗ = K(β∗) of
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the consideration set under optimal choice is

√
µp(ωK∗) >

1

K∗ + δ

K∗∑
j=1

√
µp(ωj) ≥

√
µp(ωK∗+1). (1.19)

These two conditions allow us to compare K∗ and K̄ directly, which is done by the

following proposition.

Proposition 1.2. Optimal delegation weakly expands the consideration set relative to

aligned delegation:

K(β∗) ≥ K(β̄).

In other words, delegating to an optimally misaligned agent leads to a wider variety

of actions played in equilibrium. This is a direct consequence of delegation to a more

uncertain agent – since he is less sure than the principal of what the optimal action is

ex ante, he considers more actions worth investigating. Every action has some positive

probability of actually being optimal, and thus a more uncertain agent plays a wider

range of different actions ex post. We could already see this effect at play in the binary

case, where if µp is extreme, then an aligned agent takes the ex ante optimal action

without acquiring any additional information, whereas the optimally chosen agent could

investigate both actions.

1.5 Misaligned Beliefs Versus Other Instruments

The preceding analysis set the foundation for using misalignment in beliefs as an in-

strument in delegation. This section studies how this instrument compares to the other

instruments, such as contracting or restricting the delegation set. We keep the overall

structure of the problem the same as in Sections 1.3 and 1.4, but modify the problem to

allow for different tools at the principal’s disposal, and compare the outcomes in these

modified problems to those in the baseline problem of choosing an agent with the optimal

beliefs.
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1.5.1 Contracting on Actions/Misaligned Preferences

The most basic delegation tool is contracting: if the principal could offer the agent a

contract that specifies contingent payments, this would be the most direct way to provide

incentives (see Laffont and Martimort (2009) for many examples). We begin by looking at

action-contingent contracts τ : A → R, which allow the principal to incentivize the agent

by offering payments that depend on the action that the agent selects. This assumes

that actions are contractible (i.e., observable and verifiable) and the principal has the

institutional power to make such contracts – either of which may or may not hold in any

given setting. We assume that all agents and the principal have a common prior belief µp,

all players’ preferences are quasilinear in payments, and the principal’s marginal utility

of money is ρ, and the agent’s marginal utility of money is 1.18

Note that instead of contracting, we can interpret this setup as a problem of selecting

an agent with misaligned preferences by setting ρ = 0. Schedule τ then represents

not payments, but rather an agent’s “biases”, i.e., inherent preferences towards certain

actions on top of the “unbiased” utility u(a, ω). Such a problem of selecting an agent

with optimally misaligned preferences is a natural counterpart to our baseline problem

of selecting an agent with optimally misaligned beliefs.

The agent’s problem (again using the equivalence presented in 1.2.6) is then given by

max
π

{
N∑
j=1

µp(ωj)
N∑
i=1

π(ai|ωj)
(
u(ai, ωj) + τ(ai)

)
− c(ϕ, µp)

}
, (1.20)

given τ , and the principal’s contracting problem is

max
τ

{
N∑
j=1

µp(ωj)
N∑
i=1

π(ai|ωj)
(
u(ai, ωj)− ρτ(ai)

)}
s.t. π solves (1.20) given τ.

(1.21)

Instead of providing a closed-form solution to this problem, we appeal to Lemma 1.2

to argue that regardless of ρ, the principal cannot obtain higher expected utility than

in the baseline problem of choosing an agent with a misaligned belief µ. In particular,

18In line with the baseline problem, we do not impose any explicit participation constraints on the
agent that would impose a lower bound on the transfers. The implicit assumption here is that the
agent is being paid some non-negotiable unconditional salary if he is hired, which is sufficient to ensure
participation. Payments {τ(ai)} should then be treated as premia, with the limited liability assumption
implying they must be non-negative.
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Lemma 1.2 implies that any unconditional choice probabilities β ∈ ∆(A) generated by an

agent, who is incentivized by payments or misaligned preferences, can also be obtained by

selecting an agent with appropriately misaligned beliefs. Moreover, by using Proposition

3 of Matveenko and Mikhalishchev (2021) we can also show the converse – that any

decision rule achievable with misaligned beliefs can be replicated with payments τ (or by

setting the quotas, i.e., imposing specific unconditional choice probabilities for a different

action). These results are formalized by the following theorem.19

Theorem 1.2. The principal’s problem of contracting on actions (1.21) is equivalent to

her full (delegation) problem (1.6):

1. For any vector τ : A → R of payments/biases and a corresponding β : Ω → ∆(A)

that solves (1.20) given τ , there exists a prior belief µ ∈ ∆(Ω) such that β also

solves (1.4) given µ.

2. For any µ ∈ ∆(Ω) and the corresponding β : Ω → ∆(A) that solves (1.4) given µ,

there exist payments τ : A → R such that β also solves (1.20) given τ .

The theorem above directly implies that neither of the two instruments (contracting

on actions or searching for an agent with stronger/weaker preferences for specific actions)

can yield strictly better results than hiring an agent with an optimally misaligned belief.

Further, if the principal’s contract choice is subject to the limited liability constraint

(τ(ai) ≥ 0 for all i), then it is immediate that contracting on actions is strictly worse,

since it cannot yield a better decision rule, but requires payments from the principal –

payments which are avoidable if she instead hires an agent who is intrinsically motivated

by his beliefs over states or preferences towards specific actions.

Further, our Lemma 1.2 and the results of Matveenko and Mikhalishchev (2021) also

imply that no combination of misaligned beliefs, misaligned preferences, and payments

for actions can perform better than any individual instrument. Moreover, they also imply

that suboptimal misalignment along any single dimension can be amended using other

instruments. That is, if a given agent holds a non-optimal prior belief (that does not

coincide with the principal’s either), the optimal behavior might be induced via action-

contingent transfers. Conversely, if an agent has biased preference towards certain actions,

this misalignment can be compensated for by selecting an agent with an approprite prior

19The result regarding quotas is not included in the theorem, yet it follows immediately from Lemma
1 of Matveenko and Mikhalishchev (2021).
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belief. The following proposition presents one example of such equivalence, in the context

of a model with N = 2.

Proposition 1.3. Consider the binary setting of Section 1.3. Consider the principal’s

problem of contracting on actions (1.21), where ρ = 0 and the agent holds prior belief

µ ̸= µp. Then:

1. for any µ, there exist payments/biases {τ ∗(L), τ ∗(R)} that implement the optimal

conditional choice probabilities from Section 1.3;

2. these payments/biases are such that20

τ ∗(R) ≥ τ ∗(L) ⇐⇒ µ ≤ µ∗ =

√
µp

√
µp +

√
1− µp

.

It is easy to see the intuition behind the proposition: if the agent’s prior belief µ

assigns lower probability to state ω = r compared to the principal-optimal prior µ∗ given

in Proposition 1.1, such an agent is ex ante too biased towards action a = L for the

principal’s taste, even though he potentially acquires more information than an agent

with belief µ∗. Therefore, the principal can nudge the agent towards action a = R by

offering higher payment if he selects R (or find an agent whose preference bias towards

R offsets his belief bias towards state l).21 This discussion also emphasizes that what

matters for our results is not the agent’s uncertainty about the state per se, but the

agent’s uncertainty about what the optimal action is. E.g., an agent who assigns very

high probability to state ω = l can be optimal for the principal, as long as the agent’s

preferences are sufficiently biased in favor of action a = R – so the agent is actually

uncertain about which action to take and chooses to acquire additional information to

break the indifference.

1.5.2 Contracting on Outcomes

We now turn to exploring outcome-contingent contracts. An outcome in our model can

be measured by whether a correct action was chosen (a = aj when ω = ωj) or not. We

thus let the principal select payments τ̄ , τ that the agent receives, so that τ(ai, ωi) = τ̄

20The closed-form expressions are available in the proof in the Appendix.
21This is broadly related to the findings of Espitia (2023), who shows that the bias in the agent’s

preferences can be counteracted by the bias in beliefs (although, the belief biases in his paper are limited
to over- and underconfidence).
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and τ(ai, ωj) = τ if i ̸= j.22 We assume limited liability (τ̄ , τ ≥ 0), quasilinearity of

preferences in payments for all agents, and let the agent’s marginal utility of money to

be 1, and the principal’s marginal utility of money to be ρ.

The agent’s problem is then choosing π : Ω → ∆(A) that solves23

max
π

{
N∑
j=1

µ(ωj)
N∑
i=1

π(ai|ωj)
(
u(ai, ωj) + τ(ai, ωj)

)
− c(ϕ, µ)

}
, (1.22)

given τ , and the principal’s contracting problem is

max
τ̄ ,τ

{
N∑
j=1

µp(ωj)
N∑
i=1

π(ai|ωj)
(
u(ai, ωj)− ρτ(ai, ωj)

)}
, (1.23)

s.t. τ(ai, ωi) = τ̄ for all i,

τ(ai, ωj) = τ for all i, j ̸= i,

π solves (1.22) given τ̄ , τ .

It is trivially optimal for the principal to set τ = 0, since her objective is to provide

incentives for the agent to match the state. Then the agent’s (ex post) payoff net of

information cost becomes u(ai, ωj)+τ(ai, ωj) = (1+ τ̄)u(ai, ωj), and the principal’s payoff

is u(ai, ωj) − τ(ai, ωj) = (1 − ρτ̄)u(ai, ωj). In other words, by increasing the incentive

payment τ̄ , the principal effectively lowers the relative cost of information for the agent,

at the cost of decreasing her own payoff. It then appears like an instrument that could

be universally useful for the principal – even when she chooses an agent with the optimal

prior belief, she could still benefit from reducing the agent’s information cost, which would

result in him acquiring more information. The following proposition shows, however, that

this is not the case: while contracting on outcomes may be a useful instrument, it cannot

improve on delegating to the optimally misaligned agent when payments are costly to the

principal.

Proposition 1.4. Consider the principal’s contracting problem (1.23) in the binary set-

ting of Section 1.3 and suppose µp ≥ 1/2. Then for any ρ ≥ min
{
1, 1

2λ

}
there exist

22If the principal could contract on both actions and outcomes, she would have the freedom to select
any payment schedule {τ(ai, ωj)}. Lindbeck and Weibull (2020) study such a problem with N states
and two actions.

23While it is more common in the literature to consider an agent who yields no intrinsic utility from
actions and is motivated exclusively via payments, for sake of consistency, we maintain the assumption
that the agent enjoys the same intrinsic utility u(a, ω) as the principal, albeit possibly to a different
magnitude.
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µ̄L, µ̄R and µ̂L, µ̂R such that:

1. µ̂L ≤ µ̄L < µ∗ < µp < µ̄R ≤ µ̂R, where µ∗ is given by (1.12);

2. the principal’s problem (1.23) is solved by τ̄ > 0 if µ ∈ (µ̂L, µ̄L) ∪ (µ̄R, µ̂R);

3. the principal’s problem (1.23) is solved by τ̄ = 0 otherwise.

The proposition states that the principal uses the incentive payments, τ̄ > 0, when

she has an intermediate degree of misalignment in opinions with the agent. This may

happen if the agent is moderately more biased than the principal, µ > µp, and acquires

too little information for the principal’s taste (which is the case when µp < µ̄R < µ < µ̂R).

An additional reward for matching the state then incentivizes the agent to acquire more

information and improves the principal’s payoff, despite her giving a part of it to the

agent. If the agent is too biased, however (µ > µ̂R), then the incentives become too

costly for the principal to provide, and she chooses τ̄ = 0. The logic is analogous if the

agent is sufficiently biased in the opposite direction (µ ≪ 0.5). Finally, if the agent is

sufficiently aligned with the principal, µ ∈ [µ̄L, µ̄R], then providing bonus payments does

not provide enough of an additional incentive to the agent to justify the cost for the

principal. This latter case includes both the aligned agent (µ = µp) and the optimally

biased agent (µ = µ∗(µp)). Therefore, the principal’s ability to offer incentive payments

is not beneficial to her when she has access to a broadly-aligned agent.

1.5.3 Restricting the Delegation Set

Another instrument commonly explored in the delegation literature is restricting the

delegation set – i.e., the set of actions that the agent may take (see, e.g., Holmström,

1980). In particular, in the context of “delegated expertise” problems, Szalay (2005) and

Ball and Gao (2021) show that it may be optimal to rule out an ex ante optimal action

in order to force the agent to exert effort and learn which of the ex post optimal (but ex

ante risky) actions is best. Lipnowski et al. (2020) show a similar result in a Bayesian

Persuasion setting in which the receiver is rationally inattentive to the sender’s message.

In our setting, however, there are no “safe” actions that the principal could rule out,

as Propostion 1.2 suggests. Assuming that the principal and the agent hold the same

prior belief µp, and µp(ω1) > ... > µp(ωN), action a1 is the “safest” in the sense of being

the most likely ex ante to be optimal. However, it would be trivially suboptimal for the

principal to ban a1 – since, indeed, this is the action that is ex ante most likely to be
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ex post optimal! In other words, while excluding a1 from the delegation set would lead

the agent to acquire more information, it would also lead to larger ex post losses due

to the agent being unable to select action a1 in cases in which it is optimal to do so.

Thus while the general idea of the principal being willing to nudge the agent to acquire

more information/information about ex ante suboptimal actions holds true in our setting,

restricting the delegation set is not an instrument that lends any value to the principal.

Proposition 1.5 below summarizes this logic. Consider the agent’s problem as given

by

max
π

{
N∑
j=1

µp(ωj)
N∑
i=1

π(ai|ωj)u(ai, ωj)− c(ϕ, µp)

}
, (1.24)

given A∗ ⊆ A (and the maximization is w.r.t. a mapping π : Ω → ∆(A∗)), and the

principal’s restriction problem

max
A∗

{
N∑
j=1

µp(ωj)
N∑
i=1

π(ai|ωj)u(ai, ωj)

}
,

s.t. π : Ω → ∆(A∗) solves (1.24) given A∗.

(1.25)

Then we can state the result as follows.

Proposition 1.5. The unrestricted delegation set A∗ = A is always a solution to the

principal’s restriction problem (1.25).

1.6 Extensions

1.6.1 Alternative Preference Specifications

The analysis in Sections 1.4 and 1.5.1 is heavily reliant on state-matching preferences

that we assume are shared by both the principal and the agent(s). It is reasonable to

ask whether our conclusions hold under other preference specifications. Since the utility

function u(a, ω) is shared by both the principal and the agent, it is reasonable to generalize

one at a time.

We begin by generalizing the principal’s utility function up(a, ω) while maintaining

the agent’s intrinsic preference for matching the state: uA(ai, ωi) = 1, uA(ai, ωj) = 0

if i ̸= j. Naturally, the specific functional forms of the optimal delegation strategies
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(such as those presented in Proposition 1.1, Theorem 1.1, and Lemma 1.1) depend on

the specific form of the principal’s utility function. However, Lemma 1.2 only depends

on the agent’s utility function, meaning that Theorem 1.2 still holds: any outcome that

can be achieved by contracting on actions or hiring an agent with misaligned intrinsic

preferences, can also be achieved by hiring an agent with misaligned beliefs (and vice

versa). Meaning that regardless of the principal’s objective function, hiring an agent

with state-matching preferences and a suitable belief is as good as hiring an agent with

aligned prior belief, state-matching preferences, and either some additional preference

over actions, or action-contingent payments on top of that.

The above does, however, hinge on the agent having state-matching preferences as

a baseline. If we allow arbitrary preferences for the agent – even if they align with the

principal’s preferences net of the information cost – the equivalence stated in Theorem

1.2 breaks down. In such a general case, finding an agent with optimally misaligned

preferences may yield strictly better results for the principal than hiring an agent with

an optimally misaligned belief, and hence contracting on actions may, in principle, yield

better results too. This is due to the equivalence presented in Section 1.4.2 breaking

down with general preferences, as stated by the following proposition.

Proposition 1.6. There exists a utility function u(a, ω) such that the solution to the

principal’s relaxed problem (1.16) cannot be attained as a solution to the full problem

(1.6).

Corollary 1.2. There exists a non-state-matching utility function u(a, ω) such that the

conclusions of Theorem 1.2 do not hold.

The proposition above states that with general preferences, the principal is no longer

able to implement any vector of unconditional choice probabilities β via an appropriate

choice of the agent’s prior µ – which is still possible through the choice of action-contingent

contracts as in Section 1.5.1 (see Proposition 3 in Matveenko and Mikhalishchev, 2021).

1.6.2 Alternative cost functions

Our analysis uses the Shannon entropy cost function (1.1) to model the agent’s cost of

acquiring information. It has an undesirable property, that the cost of a given signal

structure/Blackwell experiment depends on the agent’s prior belief (see Mensch, 2018).

To demonstrate that our main result does not hinge on this or any other specific properties
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of the entropy cost parametrization, this section explores three alternative specifications

of the cost function in the binary setting of Section 1.3. We show that, in all cases, the

principal’s optimal delegation strategy looks similar to what we obtain in Proposition

1.1: unless µp is too extreme, it is optimal for the principal to delegate to an ex ante

more unbiased agent: µ∗(µp) ∈ [0.5, µp).

As noted, in the binary setting of Section 1.3, we assumed Ω = {l, r}, A = {L,R},
and the common utility function net of information costs given by u(L|l) = u(R|r) = 1

and u(L|r) = u(R|l) = 0. In all settings below, we look for an equilibrium as defined

in Section 1.2.5, with the c(ϕ, µ) in the agent’s problem (1.4) replaced by one of the

respective cost functions defined below.

Channel capacity cost function. The first cost function we consider is the channel

capacity cost proposed by Woodford (2012). We follow the analysis by Nimark and

Sundaresan (2019), hereinafter referred to as NS. The channel capacity cost of a given

signal structure ϕ : Ω → ∆(S) is given by

cC(ϕ) ≡ max
µ∈∆(Ω)

c(ϕ, µ),

where c(ϕ, µ) is the entropy cost (1.1). Intuitively, the channel capacity measures the

maximum amount of information that can be extracted from signal ϕ by any agent. By

definition, the cost cC(ϕ) of a given signal structure does not depend on the selected

agent’s prior µ, unlike the Shannon entropy cost function.

NS show that the argument from Section 1.2.6 continues to hold with the channel

capacity cost: the agent optimally selects a “recommender” signal structure, where each

signal realization is associated with a unique action. Thus we can reduce the agent’s

problem to that of choosing a decision rule π : Ω → ∆(A) which solves

max
π

{
µπ(R|r) + (1− µ)π(L|l)− cC(π, µ)

}
, (1.26)

where cC(π, µ) denotes the information cost induced by π (which, in this formulation,

does depend on µ).

NS show that the agent’s problem (1.26) is well-defined and a solution always exists. It

shares the same broad features as the solution with entropy costs: an agent with µ > 0.5

chooses an experiment such that π(R|r) > π(L|l) and vice versa. More broadly, π(R|r)
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Figure 1.5: The optimal delegation strategy µ∗(µp) with channel capacity cost function.

is continuous and increasing in µ, while the opposite is true for π(L|l); a more uncertain

agent also acquires more information in total.

The continuity of π w.r.t. µ implies that the principal’s problem (1.11) always has a

solution. The fact that the agent’s behavior is qualitatively the same as a function of µ as

it was with entropy costs implies that the principal’s trade-off also remains fundamentally

the same: more information vs less tilt. While the principal’s problem proved to be

analytically intractable, Figure 1.5 presents numerical solutions for two values of λ and

all µp.

Both plots in Figure 1.5 demonstrate a delegation strategy that is qualitatively the

same as in Figure 1.3, which plotted the same strategy for entropy costs: if the principal’s

belief µp is not too extreme, she chooses an agent with belief µ between µp and 0.5.

For extreme µp, same as before, she selects (an agent who acquires no information and

chooses) the ex ante optimal action. However, Figure 1.5 also highlights a difference

relative to the Shannon model, in that the principal’s solution now depends on the cost

parameter λ: higher λ leads to less delegation under channel capacity costs. This suggests

that the independence of the principal’s strategy from λ is a special feature of the Shannon

model.

Log-likelihood ratio cost function. We now move on to consider the log-likelihood

ratio (LLR) cost function proposed by Pomatto et al. (2023), hereinafter referred to as

PTS. PTS derive the LLR cost function axiomatically as the cost of acquiring information

(as opposed to the entropy cost being that of processing information, according to their

argument) from a set of intuitive cost linearity axioms. The LLR cost of a given signal
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Figure 1.6: The optimal delegation strategy µ∗(µp) with LLR cost function.

structure ϕ : Ω → ∆(S) is defined as

cL(ϕ) ≡
∑

ωi,ωj∈Ω

λij

∫
S
ln

(
ϕ(s|ωi)

ϕ(s|ωj)

)
dϕ(s|ωi),

where λij are the parameters encoding the “closeness” of states ωi and ωj (how difficult it

is to distinguish them). In our binary setting, we assume λLR = λRL = λ. As in the case

of channel capacity costs, PTS’ main representation theorem shows that the LLR cost of

a given experiment ϕ does not depend on the prior belief µ.

In the binary setting, the agent optimally chooses no more than two signal realizations,

because LLR cost is monotone with respect to the Blackwell order. Therefore, we can

again invoke the logic of Section 1.2.6 and reduce the agent’s problem to that of choosing

a decision rule π : Ω → ∆(A) subject to cost cL(π).24

PTS explore a binary problem in their Sections 6.1 and 6.6 but only demonstrate an

analytical solution to the agent’s problem for the case µ = 0.5. We have found the agent’s

problem to be analytically intractable for µ ̸= 0.5, and therefore solve both the agent’s

and the principal’s problems numerically. Figure 1.6 demonstrates our findings. The

principal’s optimal delegation strategy plotted therein looks qualitatively the same as for

entropy and channel capacity costs (Figures 1.3 and 1.5, respectively): if the principal’s

belief µp is not too extreme, the principal chooses an agent with belief µ between µp

and 0.5. Further, similarly to the setting with channel capacity costs in Figure 1.5, the

principal delegates less for higher values of the information cost parameter λ.

24PTS provide a representation for cL(π) not presented here.
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Symmetric cost functions. Finally, we explore a family of simple “symmetric” cost

functions, which restrict the agent to symmetric signals. This analysis highlights the

importance of flexibility in the agent’s learning technology for the trade-off we identify.

In particular, suppose that, instead of being able to choose an arbitrary signal structure

ϕ : Ω → ∆(S), the agent is restricted to a binary signal space S ≡ {l, r} and can only

choose the signal precision that we denote, abusing notation, by ϕ ≡ ϕ(r|r) = ϕ(l|l) ∈
[1/2, 1]. The cost of information is then given by some function cS(ϕ) that is strictly

increasing, convex, differentiable in ϕ ∈ [1/2, 1], and satisfies cS(1/2) = 0 and the Inada

conditions c′S(1/2) = 0, lim
ϕ→1

c′S(ϕ) = +∞.

Let ϕ∗
µ denote the precision optimally chosen by an agent with prior belief µ. The

agent only acquires information (ϕ∗
µ > 1/2) if he intends to follow the signal (σ(r) = R

and σ(l) = L), because this trivially dominates doing the converse, and conditional on

ignoring the signal, acquiring an uninformative signal ϕ = 1/2 is strictly cheaper. Hence

if ϕ∗
µ > 1/2, then

ϕ∗
µ = argmax

ϕ
{µϕ+ (1− µ)ϕ− cS(ϕ)} . (1.27)

Let ϕ∗∗ denote the candidate solution given by the FOC of (1.27): c′S(ϕ∗∗) = 1. Note that

ϕ∗∗ does not depend on the agent’s belief µ. The agent’s expected utility from acquiring

no information (ϕ = 1/2) and taking the ex ante optimal action is given by max{µ, 1−µ}.
The expected utility from choosing ϕ = ϕ∗∗ is given by ϕ∗∗ − cS(ϕ

∗∗) ∈ [1/2, 1].25 Then

denoting the agents who are indifferent between the two options by µ̄R ≡ ϕ∗∗ − cS(ϕ
∗∗)

and µ̄L ≡ 1− (ϕ∗∗ − cS(ϕ
∗∗)), we can describe the agent’s optimal choice of precision by

ϕ∗
µ =

ϕ∗∗ if µ ∈ [µ̄L, µ̄R] ,

1/2 otherwise.

Moving on to the principal’s problem (and maintaining the assumption that µp > 1/2),

the principal’s payoff is given by ϕ∗∗ if ϕ∗
µ = ϕ∗∗, by µp if ϕ∗

µ = 1/2 and µ > 1/2, and by

25Function ϕ − cS(ϕ) is strictly concave in ϕ due to the assumptions made, evaluates to 1/2 when
ϕ = 1/2 (hence ϕ∗∗ − cS(ϕ

∗∗) ≥ 1/2), and because cS(ϕ) ≥ 0, we have that ϕ− cS(ϕ) ≤ 1 for all ϕ ≤ 1.
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1− µp if ϕ∗
µ = 1/2 and µ < 1/2. Therefore, the principal’s preferred agent is

µ∗(µp) =

µ ∈ [µ̄L, µ̄R] if µp ≤ ϕ∗∗,

µ ∈ (µ̄R, 1] if µp > ϕ∗∗.
(1.28)

Notably, if µp ∈ (µ̄R, ϕ
∗∗), then the principal strictly prefers a misaligned agent, whose

prior belief is more uncertain than the principal’s. Further, there exists a selection from

(1.28) that supports the following proposition (which is proved by the preceding argu-

ment):

Proposition 1.7. Given a symmetric information cost function cS(ϕ), there exists an

equilibrium in which the principal always delegates to a more uncertain agent: for any

µp > 1/2, µ∗(µp) ∈ [1/2, µp).

It is evident, however, that the statement of Proposition 1.7 is quite weak. Symmetric

information cost leads to the principal actually being indifferent between all agents µ ∈
[µ̄L, µ̄R], as well as between all agents µ ∈ (µ̄R, 1], because, within these intervals, µ

affects neither the tilt in the agent’s decisions, nor the amount of information acquired.

Consequently, if µp /∈ (µ̄R, ϕ
∗∗), then hiring an aligned agent or, possibly, even a more

certain agent, is equally as optimal for the principal as hiring a more uncertain agent.

Conversely, if the principal strictly prefers to hire a learning agent, then she might as

well hire an agent with µ = 1/2, whose decisions will not be any more tilted than those

of an agent with µ = µ̄R.

It is straightforward that the result above continues to hold for any weakly increasing

cS(ϕ), whereas all the other assumptions on cS(ϕ) are not strictly necessary and were

adopted to simplify the argument. For example, we could also consider a “Pandora’s

box” cost function, under which the agent can either learn the state perfectly at a cost,

or learn nothing. This can be captured as cS(ϕ) = λ · I{ϕ > 1/2}, where I{·} is the

indicator function. Under such a cost function, the agent would learn the state perfectly

if he is sufficiently uncertain, and stick to his prior belief otherwise; and it is thus always

weakly optimal for the principal to choose the most uncertain agent: µ∗(µp) = 1/2.

Another learning technology that is also symmetric across states and signals, but does

not fall under the parametrization above, is the one used by Szalay (2005) and Ball and

Gao (2021). In their respective models, the agent selects an effort e ∈ [0, 1] subject to

cost cF (e), which allows him to perfectly learn the state with probability e, and with
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the complementary probability 1− e the agent observes no signal. It is easy to see that

under this technology, the learning effort e∗µ is higher when µ is closer to 1/2 (more

uncertain agents learn more). However, same as with symmetric cost functions, there is

no disadvantage to hiring a misaligned agent – the principal would strictly prefer to hire

the most uncertain agent, µ = 1/2.

The goal of this exercise is to demonstrate that, to fully capture the trade-off that

the principal faces – that between the quantity of information acquired by a misaligned

agent and the decision tilt that such a misalignment introduces, – a flexible learning

technology is necessary. Inflexible technologies, such as those described by the symmetric

cost functions, lack the detail to fully capture the trade-off that the principal faces. At

the same time, the robustness checks presented above that use the channel capacity and

the log-likelihood ratio cost functions demonstrate that our results are not specific to the

entropy cost – that it is indeed the flexibility of the agent’s learning technology and not

the specific features of the cost function that drive our results.

1.6.3 Communication

In this section, we consider the importance of decision rights in our model with misaligned

beliefs. In particular, we juxtapose the delegation scheme explored so far, under which

the agent has the power to make the final decision, to communication, where an agent

must instead communicate his findings to the principal, who then chooses the action.

A large literature in organizational economics is devoted to comparing delegation and

communication in various settings (see Dessein, 2002; Alonso et al., 2008; Rantakari,

2008 for some examples). We show that in our setting, communication performs as

well as delegation – i.e., the principal will always find it optimal to follow the agent’s

recommendation.

Although the principal and the agent have the same preferences, it is generally unclear

whether it is optimal for the principal to follow a recommendation of an agent due to

the misalignment in their beliefs. Namely, since the principal and the agent start from

different prior beliefs, the same is true for posteriors: if the principal could observe the

information that the agent obtained, her posterior belief would be different from that

of the agent. This implies that ex interim, the principal could prefer an action different

from the agent’s choice, and could benefit from overruling the agent’s decision if she had

the power to do so. However, this would mean that the agent’s incentives to acquire
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information are different from the baseline model, and the principal could have some

influence over the agent’s learning strategy via her final choice rule.26 We show below

that, in the end, none of these effects come into play, and there exists a communication

equilibrium that replicates the delegation equilibrium.

The setup follows the baseline model from Section 1.2 with state-matching preferences,

with the exception that the final stage (“agent selecting action a ∈ A”) is replaced by two.

First, after observing signal s ∈ S generated by his signal structure ϕ, the agent selects a

recommendation (message) ã ∈ A to the principal. After that, the principal observes the

recommendation ã, uses it to update her belief µp(ω|ã) about the state of the world, and

then selects an action a ∈ A that determines both parties’ payoffs.27 The equilibrium of

the communication game is then defined as follows.

Definition 1.2 (Communication Equilibrium). An equilibrium of the cheap talk game

is characterized by (µ∗, {ϕ∗
µ, σ̃

∗
µ}µ∈M, σ∗, µp), which consists of the following:

1. the principal’s posterior beliefs µp : A → ∆(Ω) that are consistent with (ϕ∗
µ, σ

∗
µ)

(i.e., satisfy Bayes’ rule on the equilibrium path);

2. the principal’s choice rule σ∗ : A → A, which solves the following for every ã ∈ A,

given the posterior µp:

max
σ(ã)

{∑
ω∈Ω

µp(ω|ã)u(σ(ã), ω)

}
;

3. a collection of the agents’ information acquisition strategies ϕ∗
µ : Ω → ∆(S) and

communication strategies σ̃∗
µ : S → A that solve the following given σ for every

µ ∈ M:

max
ϕ,σ̃

{∑
ω∈Ω

µ(ω)
∑
s∈S

ϕ(s|ω)u(σ(σ̃(s)), ω)− c(ϕ, µ)

}
;

4. the principal’s choice µ∗ ∈ M of the agent to whom the task is delegated, which

26Argenziano et al. (2016) provide one example of how the principal can manipulate the agent’s infor-
mation acquisition incentives under cheap talk communication.

27Given that message labels are arbitrary, we focus w.l.o.g. on “direct” equilibria, in which the agent’s
message corresponds to an action recommendation. Further, for simplicity we assume that the principal
only observes the recommendation made by the agent, and not the signal he received or the signal
structure he requested.
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solves the following given (ϕ∗
µ, σ

∗
µ), σ∗, and µp:

max
µ

{∑
ω∈Ω

µp(ω)
∑
s∈S

ϕ(s|ω)u(σ(σ̃(s)), ω)

}
.

We can then state the result as follows.

Proposition 1.8. There exists a communication equilibrium (µ∗, {ϕ∗
µ, σ̃

∗
µ}µ∈M, σ∗, µp)

that is outcome-equivalent to the equilibrium (µ∗, {ϕ∗
µ, σ

∗
µ}µ∈M) of the original game, in

the sense that µ∗ and ϕ∗
µ∗ coincide across the two equilibria, σ̃∗

µ∗ = σ∗
µ∗, and σ∗ is the

identity mapping.

The result is, perhaps, unsuprising, since Holmström (1980) showed that communi-

cation is equivalent to restricting the agent’s action set, and this latter instrument was

shown in Section 1.5.3 to be irrelevant in our setting, as long as the principal can select an

agent with the prior belief she prefers. The result in Proposition 1.8, however, is subject

to a few caveats. First, cheap talk models are plagued by equilibrium multiplicity: for

any informative equilibrium, there exist equilibria with less informative communication,

up to completely uninformative (babbling) equilibria. In our setting, this means that, in

addition to the equilibrium outlined in Proposition 1.8 above, there also exists a babbling

equilibrium in which the agent acquires no information and makes a random recommen-

dation, and the principal always ignores it and selects the ex ante optimal action.28 There

would also likely exist multiple equilibria of intermediate informativeness – e.g., equilib-

ria with a limited vocabulary, where only some actions Ã ⊂ A are recommended on the

equilibrium path. In practice, this means that, under communication, there is a risk of

miscoordination on uninformative equilibria, whereas under delegation the equilibrium is

unique. The same force may also work the other way, and there may be equilibria that

are preferred by the principal to the delegation equilibrium, that can only be sustained

under cheap talk (see Argenziano et al., 2016 for an example of how such equilibria may

arise). However, the question of whether such equilibria exist is beyond the scope of this

paper.

The second caveat lies in the fact that Proposition 1.8 relies on state-matching pref-

erences. In our setting (with the exception of Section 1.6.1), any action is either “right”

28If an agent makes uninformed recommendations, it is optimal for the principal to ignore it. If the
principal ignores the recommendation, it is optimal for the agent to not acquire any information. Neither
agent in this situation can unilaterally deviate to informative communication.
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or “wrong”, without any degrees of correctness. The misalignment of beliefs across the

principal and the agent is thus small enough to not warrant the principal overriding the

agent’s suggested action. In contrast, in a uniform-quadratic framework of Argenziano

et al. (2016) or a normal-quadratic framework of Che and Kartik (2009), both states

and actions lie in a continuum, and the principal’s loss is proportional to the distance

between the realized state and the chosen action. In such a setting, any misalignment

(be it in preferences or beliefs) between the principal and the agent would lead to the

principal being willing to override the agent’s recommendation, leading to the delegation

equilibrium being no longer directly sustainable under communication. This ability to

exploit interim misalignment is also what drives the persuasion and prejudice avoidance

channels that underlie the result of Che and Kartik (2009). By shutting these channels

down we provide a novel explanation for the optimality of bias in delegation.

On a separate note, it is immediate from Proposition 1.8 that the same equilibrium

would survive in a setting with verifiable communication a là Che and Kartik (2009),

where an agent chooses between disclosing a signal that he received and disclosing nothing

– as opposed to cheap talk communication assumed above, where the agent can send any

message. Since in the cheap talk equilibrium described in Proposition 1.8, the principal

always finds it optimal to follow the (optimally chosen) agent’s recommendation and take

the agent’s most preferred action even in the absence of evidence, the same is true when

evidence can be presented. In other words, the agent would never have an incentive to

conceal evidence from the principal.

1.7 Conclusion

We show that hiring an agent with beliefs that are misaligned with those of the principal

can be beneficial for the principal, especially when the principal is ex ante biased. We

show this in the context of a model where the agent can acquire costly information before

making a decision. A biased principal prefers to delegate to an agent who is ex ante

more uncertain about what the best action is, but who is somewhat biased towards the

same action as the principal. This is mainly due to a more uncertain agent being willing

to acquire more information about the state, which enables more efficient actions to be

taken. As we show, exploiting belief misalignment can be a valid instrument that a

principal can use in delegation, which in our setting performs on par with or better than

contingent transfers or restriction of the action set from which the agent can choose. The
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value of this instrument is greatest to a moderately-biased principal, whereas both an

unbiased and an extremely biased principals would optimally select an aligned agent.

In the analysis, we use the workhorse rational inattention model for discrete choice,

the Shannon entropy model. It allows us to provide a richer demonstration of the conse-

quences of delegation to a misaligned agent by allowing the agent to acquire information

flexibly, which tilts the decisions of an agent with misaligned beliefs relative to an aligned

agent. We show that misaligned delegation is optimal despite the tilt introduced by this

flexibility. While the exact trade-offs obviously do depend on the particular cost function

specification, we do show that, qualitatively, our results are not specific to the entropy

information cost.

Due to the added complexity of entropy models, we confine our exploration to a

discrete state-matching model, which strays from the continuous models more commonly

used in delegation problems. In a model with continuous actions, the scope for an agent

to manifest his tilt is much larger, and hence the trade-off between the agent’s information

acquisition and tilted decision-making would again be different. Exploration of the effects

of misalignment in a continuous model of delegated expertise could be an interesting

direction for further research.

Yet another assumption that may feel excessively strong in our analysis is the com-

mon knowledge of all agents’ and the principal’s prior beliefs. It may be more reasonable

to assume that agents are strategic in presenting their viewpoints to the principal and

that they make inferences from the fact that they were chosen for the job. Such signal-

ing concerns could yield an economically meaningful effect, but we abstract from them

completely in our paper. A more careful investigation is in order.
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1.A Main Proofs

1.A.1 Proof of Proposition 1.1

Throughout this proof, we will refer to the delegation rule under consideration,

µ∗ =

√
µp

√
µp +

√
1− µp

,

as the candidate rule. It is straightforward that under the candidate rule, if µp > 1
2

then µ∗ ∈
(
1
2
, µp

)
, since

µ∗

1− µ∗ =

√
µp√

1− µp

<
µp

1− µp

when µp > 1
2
, so µ∗ < µp, and also √

µp >
√
1− µp in that case, so µ∗ > 1

2
. It thus

remains to show that the candidate rule is indeed optimal for the principal. While a

shorter proof exists that invokes Lemma 1.1 that derives an optimal strategy for the case

of N states and actions, we choose to present a more direct, albeit a somewhat longer,

proof.

Plugging the solution to the agent’s problem (1.10) (assuming this solution is interior

for now) into the principal’s problem (1.11), we get that the principal’s payoff looks as

follows:

µpπ(R|r) + (1− µp)π(L|l) = µp

(
µe

1
λ − (1− µ)

)
e

1
λ(

e
2
λ − 1

)
µ

+ (1− µp)

(
(1− µ)e

1
λ − µ

)
e

1
λ(

e
2
λ − 1

)
(1− µ)

=
e

1
λ

e
2
λ − 1

[
µp

(
e

1
λ − 1− µ

µ

)
+ (1− µp)

(
e

1
λ − µ

1− µ

)]
∝ e

1
λ − µp

1− µ

µ
− (1− µp)

µ

1− µ
.

The FOC for the principal’s maximization problem above w.r.t. µ is

µp

µ2
− 1− µp

(1− µp)2
= 0

⇐⇒ µ

1− µ
=

√
µp√

1− µp

. (1.29)

It is trivial to verify that the second-order condition holds as well, hence as long as (1.29)
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yields an interior solution (i.e., the probabilities in (1.10) are in [0, 1]), the candidate

solution is indeed optimal among all such interior solutions.

We now check for which µ the solution (1.10) is interior. Using the expressions (1.10),

one can easily verify that π(R|r) ≥ 0 ⇐⇒ µ
1−µ

≥ e−
1
λ and π(R|r) ≤ 1 ⇐⇒ µ

1−µ
≤ e

1
λ ,

and the conditions π(L|l) ∈ [0, 1] yield the same two interiority conditions. This implies

that if µ
1−µ

∈
[
e−

1
λ , e

1
λ

]
, then the agent acquires some information and selects both ac-

tions with positive probabilities, and otherwise (π(R|r), π(L|l)) ∈ {(1, 0), (0, 1)}, meaning

that the agent simply chooses the ex ante optimal action for sure without acquiring any

information about the state.

The candidate rule then suggests that the principal delegates to a learning agent iff
µp

1−µp
∈
[
e−

2
λ , e

2
λ

]
, and otherwise delegates to an agent who plays the ex ante optimal

action. We have shown that the candidate rule selects the optimal among the learning

agents; it is left to verify that such a criterion for choosing between learning and non-

learning agents is optimal for the principal.

Consider µp ≥ 1
2
; then among the non-learning agents, the principal would obviously

choose the one who plays a = R (rather than a = L), and such a choice yields the

principal expected payoff µp ·1+(1−µp) ·0 = µp. Optimal delegation to a learning agent

yields (by plugging the candidate rule into the principal’s payoff obtained above)

e
1
λ

e
2
λ − 1

[
e

1
λ − µp

1− µ∗

µ∗ − (1− µp)
µ∗

1− µ∗

]
=

e
1
λ

e
2
λ − 1

[
e

1
λ − 2

√
µp(1− µp)

]
. (1.30)

Taking the difference between (1.30) and µp, the payoff from delegating to a non-learning

agent, let us find belief µp of a principal who would be indifferent between the two:

e
1
λ

e
2
λ − 1

[
e

1
λ − 2

√
µp(1− µp)

]
− µp = 0

⇐⇒ e
2
λ − 2e

1
λ

√
µp(1− µp) = µpe

2
λ − µp

⇐⇒
(
e

1
λ

√
1− µp −

√
µp

)2
= 0

⇐⇒
√
µp√

1− µp

= e
1
λ .

Hence, the principal prefers a learning agent when
√
µp√
1−µp

< e
1
λ and a non-learning agent

when
√
µp√
1−µp

> e
1
λ . Therefore, the candidate rule is indeed optimal for µp ≥ 1

2
. A mirror

argument can be used to establish optimality for µp ≤ 1
2
. This concludes the proof of
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Proposition 1.1.

1.A.2 Proof of Corollary 1.1

Proof of Proposition 1.1 shows that µ∗(µp) < µp for all µp ∈ (0.5, 1), hence we can ignore

the absolute value operator. Using expression (1.12) we then obtain

d

dµp

(µp − µ∗(µp)) =
4µp(1− µp) + 2

√
µp(1− µp)− 1

2
√

µp(1− µp) ·
(√

µp +
√

1− µp

)2 ,
where the denominator is weakly positive for all µp ∈ (0.5, 1), and the numerator is

positive if and only if
√

µp(1− µp) /∈
(

−1−
√
5

4
, −1+

√
5

4

)
, which is equivalent to µp ≤

1
2
+ 1

2
·
√√

5−1
2

≈ 0.893. Then |µp − µ∗(µp)| is increasing for these values of µp and

decreasing otherwise, meaning it satisfies single-peakedness.

1.A.3 Proof of Lemma 1.1

The goal is to find the optimal choice probabilities β∗ ∈ ∆(A) which maximize the

principal’s expected utility (1.16). First, let us rewrite expression (1.16) using δ ≡ e
1
λ −1:

N∑
j=1

µp(ωj)
β(aj)e

1
λ

1 + δβ(aj)
=
∑

j∈C(β)

e
1
λ

µp(ωj)

δ
(1 + δβ(aj))− µp(ωj)

δ

1 + δβ(aj)

=
∑

j∈C(β)

e
1
λ

(
µp(ωj)

δ
− µp(ωj)

δ (1 + δβ(aj))

)
.

The first term in the brackets above is independent of β, so the principal’s maximization

problem is equivalent to

min
β

∑
j∈C(β)

µp(ωj)

1 + δβ(aj)
. (1.31)

Let ξ denote the Lagrange multiplier corresponding to the constraint
N∑
j=1

β(aj) = 1. Then

the first-order condition for β(ai) with i ∈ C(β) is

(1 + δβ(ai))
2 = −µp(ωi)

ξ
. (1.32)
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Summing up these equalities over all j ∈ C(β), we get that

∑
j∈C(β)

(1 + δβ(aj))
2 = −

∑
j∈C(β) µp(ωj)

ξ
(1.33)

Combining (1.32) and (1.33):

1 + δβ(ai) =

√
µp(ωi)√∑

j∈C(β) µp(ωj)

√ ∑
j∈C(β)

(1 + δβ(aj))2 (1.34)

Once again summing up these equalities over all j ∈ C(β), we get that

K(β) + δ =

∑
j∈C(β)

√
µp(ωj)√∑

j∈C(β) µp(ωj)

√ ∑
j∈C(β)

(1 + δβ(aj))2.

Expressing
√∑

j∈C(β)(1 + δβ(aj))2 from this expression and plugging it into (1.34) allows

us to express β(ai) (for i ∈ C(β)) in closed form as

β(ai) =
1

δ

(
(K(β) + δ)

√
µp(ωi)∑

j∈C(β)

√
µp(ωj)

− 1

)
. (1.35)

The necessary condition for option i to be in a consideration set (i ∈ C(β)) is β(ai) ≥ 0

or, equivalently, √
µp(ωi) >

1

K(β) + δ

∑
j∈C(β)

√
µp(ωj).

Now let ξk denote the Lagrange multiplier for the constraint β(ak) ≥ 0. Then the

first-order condition for an alternative k /∈ C(β) that is not chosen is

µp(ωk) = −ξ − ξk ⇒ µp(ωk) ≤ −ξ.

Plugging in ξ from (1.32) into the inequality above yields

µp(ωk) ≤
∑

j∈C(β) µp(ωj)∑
j∈C(β)(1 + δβ(aj))2

⇔
√
µp(ωk) ≤

1

K(β) + δ

∑
j∈C(β)

√
µp(ωj)

for all k /∈ C(β).
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Since the minimization problem has a convex objective function and linear constraints,

the Kuhn-Tucker conditions are necessary and sufficient. Thus the necessary and sufficient

conditions that the solution β∗ must satisfy are given by:
√

µp(ωi) >
1

K(β∗)+δ

∑
j∈C(β∗)

√
µp(ωj) for all i ∈ C(β∗),√

µp(ωk) ≤ 1
K(β∗)+δ

∑
j∈C(β∗)

√
µp(ωj) for all k /∈ C(β∗).

Recall that we assumed, without loss of generality, that µp(ω1) ≥ µp(ω2) ≥ . . . ≥
µp(ωN). Suppose that the solution β∗ is such that K(β∗) = K ′. Clearly then, in the

optimum, the consideration set C(β∗) will consist of the first K ′ alternatives.

Denote ∆L ≡ (L+ δ)
√

µp(ωL)−
L∑

j=1

√
µp(ωj). Notice that for all L > 1:

∆L ≡(L+ δ)
√

µp(ωL)−
L∑

j=1

√
µp(ωj)

=(L− 1 + δ)
√

µp(ωL−1)−
L−1∑
j=1

√
µp(ωj)−

√
µp(ωL)

− (L− 1 + δ)
√

µp(ωL−1) + (L+ δ)
√
µp(ωL)

=∆L−1 − (L− 1 + δ)

(√
µp(ωL−1)−

√
µp(ωL)

)
.

Therefore, ∆L decreases in L. Since ∆1 > 0, there either exists unique K ′ such that

∆K′ > 0 and ∆K′+1 ≤ 0, or ∆L > 0 for all L. In the former case, K(β∗) = K ′, and in

the latter case, K(β∗) = N .

In the end, the solution to the principal’s problem is given by β∗(ai) as in (1.35) if

i ∈ C(β∗), β∗(ai) = 0 if i /∈ C(β∗), and C(β∗) = 1, ..., K(β∗), where K(β∗) is as described

above.

1.A.4 Proof of Lemma 1.2

Corollary 2 from Matějka and McKay (2015) shows that a vector of the unconditional

choice probabilities β ∈ ∆(A) solves (1.13) only if it solves the system of equations given
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by

N∑
j=1

µ(ωj)
e

u(ai,ωj)

λ∑N
k=1 β(ak)e

u(ak,ωj)

λ

= 1, (1.36)

for every i ∈ {1, ..., N} such that β(ai) > 0.

The question then is: given a vector β ∈ ∆(A) of unconditional choice probabilities,

can we find µ ∈ RN
+ that solves the following system:


µ(ω1) + µ(ω2) + . . .+ µ(ωN) = 1,
N∑
j=1

µ(ωj)
e
u(ai,ωj)

λ

N∑
k=1

β(ak)e
u(ak,ωj)

λ

= 1 ∀i ∈ C(β).
(1.37)

The system above is a linear system of K(β) + 1 equations with N unknowns. To prove

the solution exists, we use the Farkas’ lemma (Aliprantis and Border, 2006, Corollary

5.85). It states that given some matrix A ∈ Rm×n and a vector b ∈ Rm, the linear system

Ax = b has a non-negative root x ∈ Rn
+ if and only if there exists no vector y ∈ Rm

such that A′y ≥ 0 with b′y < 0. The two latter inequalities applied to our case form the

following system:
y0

(
N∑
k=1

β(ak)e
u(ak,ωj)

λ

)
+

( ∑
i∈C(β)

yie
u(ai,ωj)

λ

)
≥ 0 ∀j ∈ {1, ..., N},

y0 +
∑

i∈C(β)

yi < 0.

(1.38)

We need to show there exists no y ∈ RK(β)+1 that solves the system above. Let us define

zi ≡ yi + y0β(ai) for i ∈ C(β). Then, recalling that e
u(ai,ωi)

λ = e
1
λ and e

u(ai,ωj)

λ = 1 for

i ̸= j, system (1.38) transforms to

zje
1
λ +

∑
i∈C(β)\{j}

zi ≥ 0 ∀j ∈ C(β),∑
i∈C(β)

zi ≥ 0 ∀j ∈ {1, ..., N}\C(β),∑
i∈C(β)

zi < 0.

(1.39)

System (1.39) above does not have a solution. Indeed, if C(β) ⊊ {1, ..., N}, then the

middle set of inequalities directly contradicts the latter inequality. If C(β) = {1, ..., N},
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then subtracting the latter inequality from the former, for a given j ∈ C(β), yields

zjδ ≥ 0 ⇐⇒ zj ≥ 0. Since this must hold for all j ∈ C(β), we obtain a contradiction

with the latter inequality,
∑

i∈C(β)

zi < 0.

By the Farkas’ lemma, we then conclude that for any vector β ∈ ∆(A) there exists a

belief µ ∈ ∆(Ω) that solves system (1.37). This concludes the proof.

1.A.5 Proof of Theorem 1.1

This proof proceeds in two parts. First, we show that the delegation strategy introduced

in the proposition (hereinafter referred to as “the candidate strategy”) is optimal for the

principal. Then we establish that it does indeed possess the stated properties.

Consider an agent with a prior belief

µ(ωi) =

√
µp(ωi)

N∑
j=1

√
µp(ωj)

. (1.40)

It is trivial to verify that prior belief µ defined this way satisfies the candidate strategy in

the statement of the proposition, and hence represents the candidate strategy. Consider

an agent hired in accordance with the candidate rule. Substituting (1.40) into (1.14)

yields

β(ai) = max

0,
1

δ

(K(β∗) + δ)
√

µp(ωi)∑
j∈C(β∗)

√
µp(ωj)

− 1


 , (1.41)

which are exactly the probabilities stated in Lemma 1.1. Therefore, an agent hired

according to the candidate strategy makes decisions in such a way that generates the

principal-optimal unconditional choice probabilities. Therefore, delegation according to

the candidate strategy is indeed optimal for the principal.

Now we show that the candidate strategy satisfies the properties stated in the propo-

sition. Firstly, it follows clearly from (1.40) that µ∗(ω1) ≥ µ∗(ω2) ≥ . . . ≥ µ∗(ωN). It

remains to show that µ∗(ω1) ≤ µp(ω1) and µ∗(ωN) ≥ µp(ωN). The former inequality can

be shown as follows:

µ∗(ω1) ≤ µp(ω1)
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⇐⇒
√

µp(ωi)
N∑
j=1

√
µp(ωj)

≤ µp(ω1)

⇐⇒ 1 ≤
√

µp(ω1) ·

(
N∑
j=1

√
µp(ωj)

)

⇐⇒ 1 ≤ µp(ω1) +
√

µp(ω1)µp(ω2) + ...+
√

µp(ω1)µp(ωN),

and the latter inequality holds because µp(ω1) + ... + µp(ωN) = 1 and
√

µp(ω1)µp(ωj) ≥
µp(ωj) for all j ∈ {1, ..., N}, since µp(ω1) ≥ µp(ωj). Note that µ∗(ω1) = µp(ω1) only if

µp(ω1) = ... = µp(ωN).

Similarly, the inequality µ∗(ωN) ≥ µp(ωN) is equivalent to

1 ≥
√

µp(ω1)µp(ωN) + ...+
√

µp(ωN−1)µp(ωN) + µp(ωN),

which holds because
√

µp(ωj)µp(ωN) ≤ µp(ωj) for all j ∈ {1, ..., N}, with equalities only

if µp(ω1) = ... = µp(ωN). This concludes the proof of Theorem 1.1.

1.A.6 Proof of Proposition 1.2

It follows from (1.18) that the size of the consideration set in the aligned problem, K̄, is

such that

K̄∑
j=1

µp(ωj)

µp(ωK̄)
< K̄ + δ ≤

K̄∑
j=1

µp(ωj)

µp(ωK̄+1)

Since µp(ωi)

µp(ωK̄)
> 1 for all i < K̄, we have that µp(ωi)

µp(ωK̄)
>

√
µp(ωi)√
µp(ωK̄)

> 1 holds for all i < K.

Therefore,

K̄∑
j=1

√
µp(ωj)√
µp(ωK̄)

< K̄ + δ. (1.42)

From (1.19), K∗ is the unique solution of

K∗∑
j=1

√
µp(ωj)√
µp(ωK∗)

< K∗ + δ ≤
K∗∑
j=1

√
µp(ωj)√

µp(ωK∗+1)
. (1.43)
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Two cases are possible, depending on whether

K̄ + δ ⋛
K̄∑
j=1

√
µp(ωj)√

µp(ωK̄+1)
. (1.44)

If K̄ + δ ≤ RHS in (1.44) (where RHS refers to the right-hand side), then together with

(1.42) this implies that K̄ solves (1.43), and thus K̄ = K∗, which satisfies that statement

of the proposition.

If, however, K̄ + δ > RHS in (1.44), then K̄ does not solve (1.43). In this case, note

that going from K by K + 1 increases the LHS of (1.44) by 1 and increases the RHS

by the amount strictly greater than 1, since a new term
√

µp(ωK+1)√
µp(ωK+2)

> 1 is added to the

sum, and all existing terms increase because µp(ωK+1) < µp(ωK). This holds for all K,

meaning that if K̄ + δ > RHS in (1.44), then K + δ >
K∑
j=1

√
µp(ωj)√

µp(ωK+1)
for all K < K̄.

Therefore, the unique solution K∗ of (1.43) must be such that KM > K̄. This concludes

the proof.

1.A.7 Proof of Theorem 1.2

Part 2 of the statement follows immediately from Proposition 3 of Matveenko and Mikhal-

ishchev (2021).

To show part 1, we invoke Theorem 1 from Matějka and McKay (2015) stated in

(1.13), which claims that in the contracting problem, the β : Ω → ∆(A) that solves the

agent’s problem (1.20) is given by

π(ai|ωj) =
β(ai)e

u(ai,ωj)+τ(ai)

λ∑N
k=1 β(ak)e

u(ak,ωj)+τ(ak)

λ

=
β′(ai)e

u(ai,ωj)

λ∑N
k=1 β

′(ak)e
u(ak,ωj)

λ

, (1.45)

where β(ai) =
N∑
j=1

µ(ωj)π(ai|ωj).

and β′(ai) ≡
β(ai)e

τ(ai)

λ∑N
k=1 β(ak)e

τ(ak)

λ

.

Since β′ is a valid probability distribution on A, representation (1.45) together with

(1.13) imply that such a collection of conditional probabilities π is a valid solution to the
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agent’s problem (1.4) when the agent’s preferences net of information costs are given by

u(ai, ωj). That is, the principal can implement the desired conditional choice probabilities

π by choosing an agent with unbiased preferences and some belief µ, such that the

unconditional choice probabilities selected by this agent are given by β′. Lemma 1.2

implies that such a belief µ ∈ ∆(Ω) does indeed exist.

1.A.8 Proof of Proposition 1.3

Plugging (1.12) in (1.10) yields the optimal conditional choice probabilities for the binary

model, given by

π∗(R|r) =
(
e

2
λ − 1

)−1

e
1
λ

(
e

1
λ −

√
1− µp

µp

)
,

π∗(L|l) =
(
e

2
λ − 1

)−1

e
1
λ

(
e

1
λ −

√
µp

1− µp

)
,

(1.46)

cropped to [0, 1].

The agent’s preferences only depend on the difference τ(R) − τ(L). Assuming all

τ(R) ∈ R are available to the principal (no limited liability), it is without loss to set

τ(L) = 0. The agent’s problem is given by (1.20). Solving it given τ = (τ(R), 0) yields

π(R|r) = 1− e
2
λ (1− µ)− e

1+τ(R)
λ + µ(

e
2
λ − 1

)(
e

1+τ(R)
λ − 1

)
µ
,

π(L|l) =
e

1
λ

(
e

2
λ (1− µ)− e

1+τ(R)
λ + µ

)
(
e

2
λ − 1

)(
e

1
λ − e

τ(R)
λ

)
(1− µ)

,

(1.47)

cropped to [0, 1].

The principal’s contracting problem (1.21) in the binary setting with ρ = 0 is similar

to (1.11):
max
τ(R)

{µpπ(R|r) + (1− µp) π(L|l)}

s.t. π(R|r), π(L|l) are given by (1.47).
(1.48)

Assuming the probabilities in (1.47) are interior, the F.O.C. for (1.48) yields the candidate

solution τ(R) given by

τ ∗(R) = λ ln

 1−µ
µ
e

1
λ +

√
1−µp

µp

1−µ
µ

+ e
1
λ

√
1−µp

µp

 , (1.49)
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where the expression under the ln(·) is non-negative for any λ, µp, µ, and thus the candi-

date τ(R) exists for any µ that yields interior probabilities (1.47).

Plugging (1.49) into (1.47) yields, after some routine manipulations, the conditional

choice probabilities that coincide with (1.46) (hence, the probabilities (1.47) are interior

given µ and τ ∗(R) if and only if the probabilities (1.46) are interior). Thus, the condition

(1.49) is not only necessary, but also sufficient. Hence, for any µp for which (1.46) are

interior, τ ∗(R) as given by (1.49) solves the principal’s problem (1.48), and this solution

exists for any µ.

If λ and µp are such that probabilities (1.46) are not interior, then the principal would

like the agent to take the ex ante (principal-)preferred action (it can be verified that the

expressions in (1.46) are such that π∗(R|r) ≥ 1 ⇐⇒ π∗(L|l) ≤ 0 and vice versa). The

candidate transfers (1.49) yield exactly such non-interior probabilities (when plugged into

(1.47)), and hence they still solve the principal’s problem (1.48) for any respective µ.29

This concludes the proof of part 1 of the proposition.

To show part 2, consider (1.49) as a function of µ. It is strictly decreasing in µ on

[0, 1], and the equation τ ∗(R)(µ) = 0 has a unique root in [0, 1] equal to

µ∗ =

√
µp

√
µp +

√
1− µp

,

meaning that τ(R) ≥ 0 ⇐⇒ µ ≤ µ∗.

1.A.9 Proof of Proposition 1.4

As argued in the text, it is immediate that τ = 0. Proceeding analogously to Section 1.3,

we obtain that the agent’s problem (1.22) given the incentive payment τ̄ ≥ 0 is solved by

π(R|r) = min {1,max {0, πu(R|r)}} and π(L|l) = min {1,max {0, πu(L|l)}} ,

where πu (R|r) =
e

1+τ̄
λ

(
e

1+τ̄
λ µ− (1− µ)

)
(
e

2(1+τ̄)
λ − 1

)
µ

=
e

1+τ̄
λ

e
2(1+τ̄)

λ − 1

(
e

1+τ̄
λ − 1− µ

µ

)
,

πu (L|l) =
e

1+τ̄
λ

(
e

1+τ̄
λ (1− µ)− µ

)
(
e

2(1+τ̄)
λ − 1

)
(1− µ)

=
e

1+τ̄
λ

e
2(1+τ̄)

λ − 1

(
e

1+τ̄
λ − µ

1− µ

)
.

(1.50)

29Note that τ∗(R) is not the unique solution in this case. If π∗(R|r) = 1, π∗(L|l) = 0, then any
τ(R) ≥ λ ln

(
µ+ (1− µ)e

2
λ

)
− 1 yields the optimal choice probabilities, and if π∗(R|r) = 0, π∗(L|l) = 1,

then any τ(R) ≤ 1− λ ln
(
µe

2
λ + (1− µ)

)
solves the principal’s problem.
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The principal’s full contracting problem (1.23) can be rewritten as

max
τ̄∈R+

{
(1− ρτ̄)

(
µpπ(R|r) + (1− µp)π(L|l)

)}
,

s.t. π(R|r), π(L|l) are given by (1.50).
(1.51)

We use τ ∗ to denote the solution to this problem.

To begin with, note that τ ∗ ≥ 0 (due to limited liability) and τ ∗ < 1/ρ (otherwise the

principal’s payoff is zero or negative, hence such τ ∗ are dominated by τ̄ = 0). Further, if

τ ∗ > 0, then π = πu, since otherwise the principal could reduce τ̄ without affecting the

agent’s choice.

Let us define the principal’s relaxed contracting problem as

max
τ̄∈R

{
(1− ρτ̄)

(
µpπu(R|r) + (1− µp)πu(L|l)

)}
,

s.t. πu(R|r), πu(L|l) are given by (1.50).
(1.52)

It differs from the full problem (1.51) in that it ignores the constraints τ̄ = 0 and

π(R|r), π(L|l) ∈ [0, 1]. We use τ ∗∗ to denote the interior solution of this relaxed problem,

whenever it exists. So far, we can conclude that the principal’s problem (1.51) is solved

by τ ∗ ∈ {0, τ ∗∗}. The local maximizer τ ∗∗ is optimal if it satisfies all of the following

three properties (and τ ∗ = 0 otherwise):30

Feasibility: τ ∗∗ exists and τ ∗∗ ∈ [0, 1/ρ].31

Effectiveness: τ ∗∗ generates π = πu.

Preferability: τ ∗∗ is preferred to τ̄ = 0.

The FOC of problem (1.52) (that must be solved by τ ∗∗) is given by

µp
1− µ

µ
+ (1− µp)

µ

1− µ
= e

1+τ̄
λ ·

λρ
(
e2

1+τ̄
λ − 1

)
+ 2(1− ρτ̄)

λρ
(
e2

1+τ̄
λ − 1

)
+
(
e2

1+τ̄
λ + 1

)
(1− ρτ̄)

. (1.53)

Let γ(µ, µp) denote the LHS and χ(τ̄) the RHS of (1.53), respectively. Note that χ(τ̄) is

continuous in τ̄ and only depends on τ̄ , λ, and ρ, but not on µ or µp. Further, Lemma
30Feasibility and preferability should be self-explanatory. Effectiveness means that the incentive pay-

ment is effective at inducing the agent to acquire a non-trivial amount of information. Note that τ̄ = 0
is effective when the agent acquires information in the absence of a transfer.

31Note that τ∗∗ ≤ 1/ρ is not an exogenous restriction, but is rather implied by preferability, as
established previously. It is, however, convenient to include this an explicit restriction.
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1.3 below shows that if ρ ≥ min
{
1, 1

2λ

}
then for all λ, χ(τ̄) is increasing in τ̄ ∈ [0, 1/ρ]

(recall that τ ∗∗ > 1/ρ obviously violates preferability, hence we drop this case). We

maintain this restriction on ρ throughout the rest of the proof. Monotonicity implies

that a feasible τ ∗∗ exists for given µ, µp, λ, ρ if and only if χ(0) ≤ γ(µ, µp) ≤ χ(1/ρ),

where the “if” part follows from the intermediate value theorem, and the “only if” part

follows from τ ≥ 1/ρ never being optimal. The strict monotonicity of χ(τ̄) also means

that the objective function in (1.51) is strictly concave in τ̄ , so if τ ∗∗ exists, then it is

unique and it is a local maximizer of (1.51).

Lemma 1.3. Function χ(τ̄) is continuous and increasing in τ̄ ∈ [0, 1/ρ) for all λ and all

ρ ≥ min {1, 1/2λ}.

Proof. Denote ξ = ξ(τ, λ) ≡ e
1+τ
λ . For sake of brevity we drop the arguments of ξ(τ, λ)

and the bar from τ̄ throughout the proof of this lemma. Then we can rewrite

χ(τ) = ξ
λρ(ξ2 − 1) + 2(1− ρτ)

λρ(ξ2 − 1) + (ξ2 + 1)(1− ρτ)
.

This function is trivially continuous and differentiable in τ ∈ [0, 1/ρ]. Hence it suffices to

show that dχ(τ)
dτ

> 0:

dχ(τ)

dτ
=
(λρ(3ξ2 − 1) + 2(1− ρτ)) ∂ξ

∂τ
− 2ρξ

λρ(ξ2 − 1) + (ξ2 + 1)(1− ρτ)

−
[
2ξ(λρ+ 1− ρτ)

∂ξ

∂τ
− ρ(ξ2 + 1)

]
· ξ [λρ(ξ2 − 1) + 2(1− ρτ)]

[λρ(ξ2 − 1) + (ξ2 + 1)(1− ρτ)]2

=
ξ (ξ2 − 1)

λ
·
2
(
ξ2 − 1 + 21−ρτ

λρ

)
+ 1−ρτ

λρ
·
(
ξ2 − 1− 21−ρτ

λρ

)
[
(ξ2 − 1) + (ξ2 + 1)1−ρτ

λρ

]2 .

The latter expression is strictly positive for τ ∈ [0, 1/ρ) if and only if

2

(
ξ2 − 1 + 2

1− ρτ

λρ

)
+

1− ρτ

λρ
·
(
ξ2 − 1− 2

1− ρτ

λρ

)
> 0. (1.54)

The first term is strictly positive (since ξ > 1 and τ ≤ 1/ρ). The second term is

nonnegative for the given range of τ if ξ2 − 1 ≥ 21−ρτ
λρ

. Note that ξ2 − 1 ≥ 21+τ
λ

, hence

(1.54) holds if 1+τ
λ

≥ 1−ρτ
λρ

for all τ ∈ [0, 1/ρ), which holds if ρ ≥ 1.
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Alternatively, we can rewrite (1.54) as

(
ξ2 − 1

)(
2 +

1− ρτ

λρ

)
+ 2

1− ρτ

λρ

(
2− 1− ρτ

λρ

)
≥ 0.

In the above expression, the first term is again always strictly positive; the second term

is nonnegative if λρ ≥ 1/2 (since τ ≤ 1/ρ).

We thus conclude that if either ρ ≥ 1, or ρ ≥ 1/2λ, then dχ(τ)
dτ

> 0 for τ ∈ [0, 1/ρ), so

χ(τ) is indeed increasing in τ on that interval.

Let us define the following cutoffs on µ that will prove helpful in establishing the

properties of interest of τ ∗∗ (feasibility, effectiveness, and preferability):

1. Let µL1 ∈ (0, µ∗) and µR1 ∈ (µp, 1) be such that γ(µL1, µp) = γ(µR1, µp) = χ(0).

Lemma 1.4 below establishes that these cutoffs exist.

2. Let µL2 ≡ max
{
µ : π0

µ(L|l) = 1
}
, µR2 ≡ min

{
µ : π0

µ(R|r) = 1
}
, where π0

µ(L|l) and

π0
µ(R|r) stand for the respective probabilities (1.50) given µ and τ = 0. In words,

µL2 and µR2 are the most extreme beliefs µ for which the agent voluntarily acquires

information in the absence of incentive payment. Closed-form expressions can be

obtained from (1.50), with µL2 =
1

1+e
1
λ

and µR2 =
e
1
λ

1+e
1
λ
.

3. Let µL3 ≡ inf {µ : τ ∗ > 0}, µR3 ≡ sup {µ : τ ∗ > 0}. In words, these denote the most

extreme beliefs µ up to which the principal is willing to offer incentive contracts.

Lemma 1.6 below shows that µL3 and µR3 are always well-defined (i.e., that the set

{µ : τ ∗ > 0} is nonempty).

4. Let µL4 ≡ max
{
µ : π∗

µ(L|l) = 1
}
, µR4 ≡ min

{
µ : π∗

µ(R|r) = 1
}
, where π∗

µ(L|l) and

π∗
µ(R|r) stand for the respective probabilities (1.50) given µ and τ = τ ∗∗. In words,

µL4 and µR4 are the most extreme beliefs µ for which the agent acquires information

given the candidate-optimal incentive τ ∗∗. Closed-form expressions can be obtained,

with µL4 =
1

1+e
1+τ∗∗

λ

and µR4 =
e
1+τ∗∗

λ

1+e
1+τ∗∗

λ

.

5. Let µL5 ∈ (0, µ∗) and µR5 ∈ (µ∗, 1) be such that γ(µL5, µp) = γ(µR5, µp) = χ(1/ρ).

These cutoffs exists due to the properties of γ(µ, µp) established for µL1, as well as

the fact that χ(1/ρ) = e
1+1/ρ

λ > 1. Closed-form expressions can be obtained, with

µL5, µR5 =
e

1+1/ρ
λ + 2µp ∓

√
e2

1+1/ρ
λ + 4µp(µp − 1)

2
(
1 + e

1+1/ρ
λ

) .
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As χ(0) < χ(1/ρ) for all λ (see Lemma 1.3), it follows that µL5 < µL1 and µR5 > µR1.

We now proceed to establishing the conditions on µ for which the three properties

of τ ∗∗ (feasibility, effectiveness, preferability) do or do not hold. To begin with, as was

previously claimed, a feasible τ ∗∗ exists if and only if χ(0) ≤ γ(µ, µp) ≤ χ(1/ρ), which,

due to the monotonicity of χ(τ̄) in τ̄ , is equivalent to

µ ∈ [µL5, µL1] ∪ [µR1, µR5]. (1.55)

As shown by construction above, µL5, µR5 are always well-defined and are located to the

outside of µL1 and µR1, respectively. It thus remains to verify that µL1 and µR1 are also

well-defined, which is done by the following lemma.

Lemma 1.4. For all λ, if ρ ≥ min {1, 1/2λ}, then µL1 and µR1 exist.

Proof. Function χ(τ̄) is independent of µ. Function γ(µ, µp) is single-dipped in µ, with

minµ γ(µ, µp) = 2
√

µp (1− µp) < 1 achieved at µ = µ∗(µp) as given by (1.12), and

supµ γ(µ, µp) = +∞ achieved by µ → {0, 1}. Hence a sufficient condition for the cutoffs

of interest to exist is

χ(0) ≥ γ(µ∗(µp), µp). (1.56)

In the inequality above, only χ(0) depends on ρ. Note further that dχ(0)
dρ

> 0. Therefore,

if (1.56) holds for some ρ̃, then it also holds – and, consequently, µL1 and µR1 exist – for

all ρ ≥ ρ̃.

Observe that χ(0) ≥ 1 for ρ = 1
2λ

: denoting ξ = ξ(λ) ≡ e
1
λ , we have

χ(0) = ξ
λρ(ξ2 − 1) + 2

λρ(ξ2 − 1) + (ξ2 + 1)
≥ 1

⇐⇒ (ξ − 1)2 (λρ(ξ + 1)− 1) ≥ 0 (1.57)

Since ξ = e
1
λ ≥ 1, a sufficient condition for (1.57) is given by

ρ ≥ 1

λ(ξ + 1)
, (1.58)

which obviously holds if ρ ≥ 1
2λ

. Further, e
1
λ ≥ 1 + 1

λ
⇐⇒ λ(ξ + 1) ≥ 1, hence the RHS

of (1.58) is weakly smaller than 1, so the inequality also holds for all ρ ≥ 1.

We conclude that if ρ ≥ min
{
1, 1

2λ

}
, then χ(0) ≥ 1, and hence (1.56) is satisfied and

the relevant cutoffs exist.
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Moving on to effectiveness, it should be immediate from the analysis in Section 1.3 that

for a feasible τ ∗∗ to yield interior choice probabilities (1.50), it must be that µ ∈ [µL4, µR4].

The following lemma establishes the location of µL4, µR4 relative to other cutoffs.

Lemma 1.5. Cutoffs µL4 and µR4 are such that µL4 ∈ [µL5, µL2] and µR4 ∈ [µR2, µR5].

Proof. Denoting µL(τ̄) ≡ max {µ : πµ(L|l, τ̄) = 1} = 1

1+e
1+τ
λ

and observing that it is

strictly decreasing in τ , we get µL(0) ≥ µL(τ
∗∗) ≥ µL(1/ρ), which is equivalent to

µL2 ≥ µL4 ≥ µL(1/ρ). Routine calculations using the closed-form expression for µL5

then demonstrate that µL(1/ρ) ≥ µL5, implying that in the end, µL4 ∈ [µL5, µL2]. The

result for µR4 is shown analogously.

Finally, we need to establish when the principal prefers a feasible τ̄ = τ ∗∗ to τ̄ = 0,

which is done by the following lemma.

Lemma 1.6. The principal weakly prefers a feasible τ̄ = τ ∗∗ to τ̄ = 0 if and only if

µ ∈ [µL3, µR3]. Further, these cutoffs satisfy µL3 ∈ [µL4, µL2] and µR3 ∈ [µR2, µR4].

Proof. For µ ∈ [µL4, µL2], the principal compares his payoff from choosing τ = 0, given by

1−µp, and his payoff from choosing τ = τ ∗∗. Thus, µL3 satisfies the following indifference

condition

E[u(a, ω) | µp, τ
∗∗] ≡

(
1− ρτ ∗∗(µ)

)(
µpπ

∗
µ(R|r) + (1− µp)π

∗
µ(L|l)

)
= 1− µp. (1.59)

The LHS of (1.59) is single-peaked in µ:

dE[u(a, ω) | µp, τ
∗∗]

dµ
=

∂E[u(a, ω) | µp, τ
∗∗]

∂µ

= (1− ρτ ∗∗(µ))

(
µp

∂π∗
µ(R|r)
∂µ

+ (1− µp)
∂π∗

µ(L|l)
∂µ

)
= (1− ρτ ∗∗(µ))

e2
1+τ̄
λ

e
2(1+τ̄)

λ − 1

(
µp

µ2
− 1− µp

(1− µ)2

)
where the first equality follows from the envelope theorem. The final expression is strictly

positive for µ < µ∗(µp) and strictly negative for µ > µ∗(µp), hence the single-peakedness

follows.

Thus, d
dµ
E[u(a, ω) | µp, τ

∗∗] > 0 for µ ∈ [µL4, µL2] (since also µL2 < 1/2 ≤ µ∗). Hence

we can show that µL3 ∈ [µL4, µL2] by establishing that

E[u(a, ω) | µp, τ
∗∗;µ = µL4] ≤ 1− µp ≤ E[u(a, ω) | µp, τ

∗∗;µ = µL2]
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and applying the intermediate value theorem. The first inequality follows from the fact

that at µL4, τ ∗∗ is such that the agent does not acquire information, yet the principal pays

a positive transfer to him (which is trivially dominated by τ̄ = 0). The second inequality

follows from the fact that given µ = µL2, (1.53) holds for all τ̄ ∈ [0, 1/ρ], so if τ ∗∗ exists,

it is preferred to τ̄ = 0. We conclude that µL3 ∈ [µL4, µL2], and the mirror argument can

establish that µR3 ∈ [µR2, µR4].

Finally, the single-peakedness of E[u(a, ω) | µp, τ
∗∗] in µ implies that τ̄ = τ ∗∗ is

preferred to τ̄ = 0 for all µ ∈ [µL3, µR3].

To summarize, the principal’s problem (1.23) is solved by τ ∗ ∈ {0, τ ∗∗}, with τ ∗∗

being the solution if and only if it is feasible, effective, and preferable. It is feasible if

and only if (1.55) holds; effective if and only if µ ∈ [µL4, µR4], and preferable if and only

if µ ∈ [µL3, µR3]. Further, we have established that µL5 ≤ µL4 ≤ µL3 ≤ µL2 (and the

converse holds for the other set of cutoffs), as well as µL1 < µ∗ ≤ µp < µR1. Therefore,

τ ∗ = τ ∗∗ if and only if µ ∈ [µL3, µL1]∪ [µR1, µR3], whenever these intervals are non-empty.

After denoting µ̂L ≡ µL3, µ̂R ≡ µR3, µ̄L ≡ max{µL3, µL1}, µ̄R ≡ min{µR1, µR3} and

excluding the endpoints, at which τ ∗∗ = 0, we obtain the statement of the Proposition.

1.A.10 Proof of Proposition 1.5

Using Theorem 1 of Caplin et al. (2019), the agent’s problem (1.24) given some restriction

set A∗ is solved by π such that the corresponding β ∈ ∆(A∗) satisfies (1.17) for all ai ∈ A∗.

Further, recall from Section 1.4 that π and β are connected in the optimum by relation

(1.13) (where we set π(ai|ωj) ≡ β(ai) ≡ 0 for all ai /∈ A∗ and all ωj ∈ Ω). Then by

plugging (1.13) and the state-matching utility into the principal’s expected payoff, it can

be rewritten as in (1.16):

N∑
i=1

µp(ωi)
β(ai)e

1
λ

1 + δβ(ai)
=
∑

i∈C(β)

µp(ωi)
(1 + δ)β(ai)

1 + δβ(ai)
.

Plugging in (1.17) for β in the expression above transforms it to

∑
i∈C(β)

1+δ
δ
µp(ωi)

[
(K(β) + δ)µp(ωi)−

∑
j∈C(β)

µ(ωj)

]
(K(β) + δ)µp(ωi)
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=
1 + δ

δ

 ∑
i∈C(β)

µp(ωi)−
∑

i∈C(β)

∑
j∈C(β)

µ(ωj)

(K(β) + δ)


=

1 + δ

K(β) + δ

∑
i∈C(β)

µp(ωi). (1.60)

To prove the proposition statement, we proceed by induction. Consider some arbitrary

action set A− ⊂ A such that ak /∈ A− for some k ∈ {1, ..., N} and another action set

A+ ≡ A− ∪ {ak}. Let β+ denote the unconditional choice probabilities corresponding to

the solution of (1.24) given A+, let C+ ≡ C(β+) and K+ ≡ K(β+), and define β−, C−, K−

analogously given A−.

Our goal is to show that that selecting A∗ = A+ is weakly better for the principal than

A∗ = A−. If ak /∈ C+, then the payoffs in the two cases are equal, and the statement is

trivially true. Otherwise, using (1.60) for the principal’s expected payoff, the statement

amounts to:

0 ≤

 1 + δ

K+ + δ

∑
i∈C+

µp(ωi)

−

 1 + δ

K− + δ

∑
i∈C−

µp(ωi)


⇐⇒ 0 ≤

(K− + δ)
∑
i∈C+

µp(ωi)

−

(K+ + δ)
∑
i∈C−

µp(ωi)


⇐⇒ 0 ≤(K− + δ)µp(ωk)−

∑
i∈C−

µp(ωi)

 . (1.61)

Since ak ∈ C+ by assumption, β+(ak) > 0, which, from (1.17), implies that

0 <
(K(β̄) + δ)µ(ωi)∑

j∈C(β̄)

µ(ωj)
− 1

⇐⇒ 0 <(K+ + δ)µp(ωk)−

∑
i∈C+

µp(ωi)


⇐⇒ 0 <(K− + 1 + δ)µp(ωk)−

∑
i∈C−

µp(ωi) + µp(ωk)


⇐⇒ 0 <(K− + δ)µp(ωk)−

∑
i∈C−

µp(ωi)

 ,
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which immediately implies that (1.61) holds. Therefore, it is indeed better for the princi-

pal to choose A+ over A−. Since A− was arbitrary, this proves by induction that allowing

a larger action set is always weakly better for the principal, and hence proves the original

proposition.

1.A.11 Proof of Proposition 1.6

We provide an example for N = 3. We use the same version of the Farkas’ Lemma as in

the proof of Lemma 1.2. To show that there is no prior belief that solves the system of

the first-order conditions for the problem, it is sufficient to show that there is a solution

to the following dual inequality system

z1e
u(a1,ω1)

λ + z2e
u(a1,ω2)

λ + z3e
u(a1,ω3)

λ ≥ 0,

z1e
u(a2,ω1)

λ + z2e
u(a2,ω2)

λ + z3e
u(a2,ω3)

λ ≥ 0,

z1e
u(a3,ω1)

λ + z2e
u(a3,ω2)

λ + z3e
u(a3,ω3)

λ ≥ 0,

z1 + z2 + z3 < 0.

(1.62)

Let us normalize λ = 1 and consider payoffs given by the following matrix:
u(a1, ω1) u(a2, ω1) u(a3, ω1)

u(a1, ω2) u(a2, ω2) u(a3, ω2)

u(a1, ω3) u(a2, ω3) u(a3, ω3)

 =


ln 3 0 ln(2 + ε)

0 ln 3 ln(2 + ε)

0 0 ln(2 + ε)


Notice that vector (z1, z2, z3) = (−1 − δ,−1 − δ, 2) for small enough δ, ε ≥ 0 solves

system (1.62): the two latter inequalities hold trivially for all such z, and the two former

inequalities hold if ε ≥ 3
1+δ
2 − 2. Therefore, there exists no µ that solves system (1.37)

given β ∈ ∆(Θ).

1.A.12 Proof of Proposition 1.8

We first show that there exists an equilibrium in the communication game that replicates

the deletation equilibrium: the optimal agent acquires the same information, makes a

truthful action recommendation, and the principal follows the recommendation.

Suppose that under delegation, the optimally chosen agent follows a decision rule β∗
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that yields a consideration set C(β∗) = {1, ..., K∗}. By Lemma 1.1, we have that

√
µ(ωK∗) ≥ 1

K∗ + δ

K∗∑
i=1

√
µ(ωi)

⇐⇒ δ
√
µ(ωK∗) ≥

K∗−1∑
i=1

(√
µ(ωi)−

√
µ(ωK∗)

)
(1.63)

Suppose the agent reports truthfully. Given the state-matching payoffs, for the principal

to follow recommendation ã = ãK∗ whenever it is issued, it must hold that

µp(ωK∗|ãK∗) = max
i

µp(ωi|ãK∗), (1.64)

where µp(ω|ã) is the probability that the principal’s posterior belief assigns to state ω

after hearing recommendation ã from the agent. In equilibrium, the principal’s posterior

µp(ωK∗|ãK∗) must satisfy Bayes’ rule:

µp(ωK∗|ãK∗) =
π(aK∗|ωK∗)µp(ωK∗)∑N
i=1 µp(ωi)π(aK∗|ωi)

=
β(aK∗)e

1
λ

β(a1) + ...+ β(aK∗−1) + β(aK∗)e
1
λ

· µp(ωK∗)∑N
i=1 µp(ωi)π(aK∗|ωi)

=
β(aK∗)e

1
λ

1 + δβ(aK∗)
· µp(ωK∗)∑N

i=1 µp(ωi)π(aK∗|ωi)

=

∑K∗

i=1

√
µp(ωi)

K∗ + δ
· β(aK∗)e

1
λ ·

√
µ(ωK∗)∑N

i=1 µp(ωi)π(aK∗|ωi)
,

Where the last line is obtained by plugging the expression for β(aK∗) from Lemma 1.1 in

the denominator of the preceding line. Similarly, we can calculate the probability that

the principal’s posterior assigns to any other state ωj:

µp(ωj|ãK∗) =


∑K∗

i=1

√
µp(ωi)

K∗+δ
· β(aK∗)e

1
λ ·

√
µ(ωj)∑N

i=1 µp(ωi)π(aK∗ |ωi)
if j < K∗,

0 if j > K∗.

For condition (1.64) to hold, it is then enough for

e
1
λ

√
µ(ωK∗) ≥

√
µ(ω1) ⇐⇒ δ

√
µ(ωK∗) ≥

√
µ(ω1)−

√
µ(ωK∗), (1.65)
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to be satisfied. Note, however, that it is strictly weaker than (1.63), since

√
µ(ω1)−

√
µ(ωK∗) <

K∗−1∑
i=1

(√
µ(ωi)−

√
µ(ωK∗)

)
.

Therefore, we conclude that (1.65) holds, and thus it is optimal for the principal to choose

action aK∗ when the agent with prior belief µ∗ recommends it.

Following the same argument, we can show the same for any other recommendation

ãi for i ∈ C(β∗): the necessary and sufficient condition for the principal to find it optimal

to follow the recommendation would be

e
1
λ

√
µ(ωi) ≥

√
µ(ω1),

which is implied by (1.64), since µ(ωi) ≥ µ(ωK∗) for i ∈ C(β∗). This concludes the proof.
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Chapter 2

Setting Interim Deadlines to Persuade

2.1 Introduction

The development of any innovation requires investment of both time and capital, while

the outcome of this investment is inherently stochastic. Usually, the investor, being the

principal, retains the option to stop funding the innovative project if at some point it

proves unsuccessful. It is widely documented that the agent running the project tends

to prefer the principal to postpone the stopping of the funding to enjoy either the extra

funds or an additional chance to turn her research idea into a success story.1 In such

an agent-principal relationship, the agent’s technological expertise and the quality of her

innovative idea often allow her to manipulate the principal by designing how and when

the outcomes of the research and development process are announced.

Recently, venture capital firms have started to pour billions into startups focused on

the development of quantum computers, which are known for their technological com-

plexity and difficulty of construction. The economic viability of quantum computing is

questioned by a number of experts; however, the startups promise the investors a com-

pleted product in the foreseeable future.2 For instance, a quantum startup PsiQuantum

announced to potential investors that it hopes to develop a commercially-viable quantum

computer within five years and managed to raise more than $200 million in 2019.3

1Agency conflict in which the agent prefers the principal to postpone abandoning the project that the
agent is working on is studied in Admati and Pfleiderer (1994); Gompers (1995); Bergemann and Hege
(1998, 2005); Cornelli and Yosha (2003).

2”The Quantum Computing Bubble.” Financial Times, August 25, 2022.
3”Bristol Professor’s Secretive Quantum Computing Start-Up Raises £179m.” The Telegraph, Novem-
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This paper studies the implications of the agent’s control of information during the

progress of a research and development project when the agent and the principal disagree

about the timing of when to abandon the research idea. I ask: What is the degree of

transparency to which an agent should commit before starting to work on an innovative

project? In particular, which terms for self-reporting on the progress of the project should

a startup propose while discussing the term sheet with a venture capitalist? As I show,

depending on the properties of the project, the startup would strategically choose both

the timing for the disclosure of updates on the progress of the project and the type of

news it discloses - either good or bad.

I study the investor’s dynamic information design problem. The startup controls the

information on the progress of the project and has the power to propose the terms for

self-reporting on it to the venture capitalist.4 The startup has an intertemporal commit-

ment power and commits to a dynamic information policy, which can be interpreted as

designing the terms of the contract specifying how the information on the progress of the

project is disclosed over time as the project unfolds. In return, the investor continuously

provides funds and chooses when to stop funding the project.

The project has two stages and evolves stochastically over time toward completion,

conditional on continuous investment in it. The completion of each of the stages of

project occurs according to a Poisson process. The completion of the first stage serves

as a milestone, such as the development of a prototype, while completion of the second

stage achieves the project. The investor gets a lump-sum project completion profit if

and only if he stops investing after the project is completed and before an exogenous

project completion deadline, and the startup prefers the principal to postpone stopping

the funding.5

As the investor receives the reward only after a prolonged period of investment, he

initially invests without being able to see if the investment is worthwhile. Hence, it is

individually rational for the investor to start investing only if he is sufficiently optimistic

regarding the future of the project. An important feature of the setting that I consider

is that the information is symmetric at the outset : not only the investor, but also the

startup is unable to find out if the project will bring profit to the investor or not - this

can be inferred only as time goes on and some evidence is accumulated. The only tool

ber 16, 2019.
4I discuss the reasoning behind this assumption in Section 2.3.3.
5I discuss the reasons for the presence of the project completion deadline in Section 2.3.1.
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that the startup has for persuading the investor to start investing is the promise of future

reports on the progress of the project.

Clearly, the good news about the completion of the project is valuable to the investor

as it helps him to stop investing in a timely manner. Further, as evidence regarding

the project accumulates over time, failure to pass the milestone in a reasonable time

makes the project unlikely to be accomplished in time - and the investor prefers to stop

investing after observing such bad news. When designing the information policy, the

startup chooses optimally between the provision of these two types of evidence in order

to postpone the investor’s stopping decision for as long as possible.

I show that the startup’s choice of information policy depends on the ex ante at-

tractiveness of the project for the investor. The attractiveness is captured by the flow

cost-benefit ratio of the project. Thus, a project is relatively more attractive ex ante to

the investor when its flow investment cost is lower, its project completion profit is higher,

or the Poisson rate, at which completion of one stage of the project occurs, is higher.

When the project is sufficiently attractive ex ante to the investor, promises to provide

information only on the completion of the project serve as a sufficiently strong incentive

device to motivate the investor to start the funding at the outset. Further, the future

news on the completion of the project does not harm the total expected surplus generated

by the interaction of the startup and investor, while the future news on the project being

poor decreases the surplus that the startup can potentially extract from the investor.

Accordingly, the startup commits to providing only the good news, but not the bad news

on the project in the future: it discloses the completion of the project and postpones

the disclosure in order to ensure the extraction of as much surplus as possible from

the investor. In the context of quantum computing, the startup optimally chooses and

announces to the venture capitalist the date by which it plans to have a fully developed

quantum computer. When the date comes, the startup reports completion if the quantum

computer has been completed; if not, the startup reports the completion as soon as it

occurs.

The situation changes when the project does not look promising to the investor ex

ante. In that case, if the startup commits to disclosing only the completion of the project,

the investor will not have the sufficient motivation to start investing in it. Thus, the

startup extends the information policy to encompass not only the good news but also

the bad. As in the case of the promising project, the startup discloses the project’s

completion and does so without any postponement, thereby fully exploiting its preferred
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incentive tool. In addition, the startup sets a date at which the bad news is released if

the milestone of the project has not yet been reached - this date is the interim reporting

deadline.

Setting the interim deadline, the startup chooses a deterministic date, which it opti-

mally postpones. As the startup prefers the investor to postpone stopping the funding, it

prefers the interim deadline to be at a later expected date. Further, the completion of the

stages of project according to a Poisson process makes both the startup and the investor

risk-averse with respect to the date of the interim deadline. Thus, the startup prefers

to set the interim deadline at a deterministic date and to postpone it as late in time as

possible in order to extract all the surplus from the investor. In the context of quantum

computing, the startup optimally chooses and announces a fixed date by which it plans

to have a prototype of the quantum computer. When the date comes, reporting having

the prototype at hand convinces the investor to continue the funding, and reporting not

having the prototype leads to termination of the project.

Finally, I demonstrate that the outlined structure of the optimal information disclosure

holds for a broad class of preferences of the startup and the investor. I allow for profit-

sharing between the startup and the investor, varying degrees of the startup’s benefit

from the flow of funding, and exponential discounting, and show that the startup prefers

not to set any interim deadlines whenever the project is sufficiently promising to the

investor. The future disclosure of the completion of the project promises investor profit

in exchange for a prolonged investment, while the disclosure of the stagnation of the

project at the interim deadline promises investor only saved costs, as further investment

stops. Thus, when the project is attractive, the startup can make the funding and the

beneficial experimentation relatively longer by setting no interim deadlines.

2.2 Related literature

My paper is related to the literature on dynamic information design. The closest paper

in this strand of literature is by Ely and Szydlowski (2020). Similarly to my paper,

they study the optimal persuasion of a receiver facing a lump-sum payoff to incur costly

effort for a longer time. In my model, as in theirs, the sender is concerned to satisfy the

beginning-of-the-game individual rationality constraint of the receiver when choosing the

information policy. Further, the “leading on” information policy in Ely and Szydlowski

(2020) has a similar flavor to the “postponed disclosure of completion” information policy
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in my paper: promises of news on completion of the project serve as an incentive device

sufficient to satisfy the receiver’s individual rationality constraint.

However, there are several substantial differences between Ely and Szydlowski (2020)

and my paper. While in their model the state of the world is static and drawn at t = 0,

in my model it evolves endogenously over time, given the receiver’s investment. As a

result, the initial disclosure used in the “moving goalposts” policy in Ely and Szydlowski

(2020) cannot provide additional incentives for the receiver in my model. The sender in

my model uses another incentive device to incentivize the receiver to opt in at the initial

period: she commits to an interim deadline at which she discloses that the first stage of

the project is not completed.

Another closely related paper is by Orlov et al. (2020). The main similarity to my

paper lies in the sender’s incentive to postpone the receiver’s irreversible stopping decision.

The sender in their paper prefers to backload the information provision, which is in line

with the properties of the optimal information policy in my paper. However, there are a

number of substantial differences between our papers. In Orlov et al. (2020), the sender

does not have the intertemporal commitment power; further, the receiver potentially

obtains a non-negative payoff at each moment of time, and thus the sender does not need

to persuade the receiver to opt in at t = 0.

Ely (2017); Renault et al. (2017); Ball (2019) also analyze dynamic information design

models. However, their papers focus on persuading a receiver who chooses an action

and receives a payoff at each moment of time, whereas in my paper the receiver takes

an irreversible action and receives a lump-sum project completion payoff. Henry and

Ottaviani (2019) consider a dynamic Bayesian persuasion model in which, similarly to

my model, the receiver needs to take an irreversible decision. However, the incentives of

the sender and receiver differ from my model: the receiver wants to match the static state

of the world and the sender is concerned with both the receiver’s action choice and with

the timing of that choice. Basak and Zhou (2020) study dynamic information design in a

regime change game. The optimal information policy in their model resembles the interim

deadline policy in my model: at a fixed date, the principal sends the recommendation to

attack if the regime is substantially weak by that time.

My paper is also related to the literature on the dynamic provision of incentives for

experimentation (Bergemann and Hege, 1998, 2005; Curello and Sinander, 2020; Madsen,

2022). The closest papers in this strand of literature are by Green and Taylor (2016) and

Wolf (2017). Similarly to my model, both papers consider design of a contract regarding
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a two-stage project, in which the completion of stages arrives at a Poisson rate. In Green

and Taylor (2016), there is no project completion deadline and the quality of the project

is known to be good, while in Wolf (2017) the quality of the project is uncertain. In

contrast to my paper, both papers focus on a canonical moral-hazard problem and give

the power to design the terms of the contract to the investor (principal) rather than the

startup (agent). In particular, the contract in Green and Taylor (2016) specifies the terms

for the agent’s reporting on the completion of the first stage of the project. Similarly to

my model, the optimal reporting takes the form of a deterministic interim deadline: at a

principal-chosen date, the agent truthfully reports if she has already completed the first

stage, which determines the further funding of the project.6

2.3 The model

2.3.1 The setup

I consider an environment with an agent (she, sender) and a principal (he, receiver).

Time is continuous and there is a publicly observable deadline T , t ∈ [0, T ].7 For each t,

the principal chooses sequentially to invest in the project (at = 1) or not (at = 0). The

flow cost of the investment is constant and given by c. The choice of at = 0 at some t is

irreversible and induces the end of the principal-agent relationship.8

The assumption that the project needs to be completed in finite time is natural

in many economic settings. The main interpretation for T is an expected change in

market conditions that renders the project unprofitable. In the context of a research and

development project, T could stand for the date at which the competitor’s innovative

product is expected to enter the market, or the date at which the competitor is expected

to get a patent on the competing innovation.

The state of the world at time t is captured by the number of stages of the project

completed by t, xt, and the project has two stages, xt ∈ {0, 1, 2}. The state process begins

6In a broad sense, my paper also relates to the small strand of theoretical literature on dynamic
startup-investor and startup-worker relations under information asymmetry (Kaya, 2020; Ekmekci et al.,
2020). However, while these papers focus on the signaling of the type of startup, I study the provision
of information by the startup on the progress of the project.

7The results for the setting without a deadline are easily obtained by considering T → ∞. They are
presented in Appendix 2.C.

8The absence of the principal’s commitment to an investment policy and the irreversibility of the
stopping decision capture the venture capitalist’s option to abandon the project, e.g., in the case of its
negative net present value.
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at the state x0 = 0 and, conditional on the continuation of the investment by the principal,

it increases at a Poisson rate λ > 0. Information on the number of stages completed is

controlled by the agent. Thus, when making investment decisions, the principal relies on

the information provided by the agent.

The project brings the profit v if and only if the second stage of the project has been

completed by the time of stopping, and a payoff of 0, otherwise. I assume that all of the

profit goes to the principal. This assumption simplifies the exposition without affecting

the main results of the paper. I relax this assumption and consider the profit-sharing

between the agent and the principal in Section 2.6.

There is a conflict of interest between the agent and the principal as the agent benefits

from using the funds provided by the principal for running the project, possibly diverting

them for her benefit. Thus, the agent faces the flow payoff of c and wants the principal

to postpone his irreversible decision to stop as long as possible.

I assume that the agent has intertemporal commitment power and study the agent’s

dynamic information design problem. The agent chooses an information policy, which is

a rule that specifies a probability distribution on the exogenously given and sufficiently

rich set of messages M for each date and for each past history. I apply the revelation

principle and without loss of generality restrict attention to information policies, which

provide action recommendations to the principal at each date. Formally, M = {0, 1}.
Further, ât ∈ {0, 1} denotes the action recommended at date t. Ht denotes the set

of histories up to date t with a typical element ht =
{
{xs}ts=0 , {âs}

t
s=0 , {as}

t
s=0

}
, i.e.,

history includes all realizations of the state process, all recommendations, and all of the

principal’s action choices up to date t. Given this, a pure information policy is given

by σ = (σt)t∈[0,T ], σt : Ht− × {0, 1, 2} → {0, 1},∀t, i.e., at each date t, σt maps from

history up to, but not including, date t and date t draw of state process, xt, to an

action recommendation. Timing within some date t is such that first xt is drawn, then

ât is determined according to σ, and, finally, at is chosen by the principal. A mixed

information policy is a probability distribution over pure information policies σ. The

mixed information policy induces stopping time τ , which is the first date at which ât = 0

is drawn according to the mixed information policy.

Given this formalism, it is straightforward to write out the long run payoffs of the

agent and the principal. P (xτ = 2) captures the ex ante probability that two stages of

the project will be completed by the first date at which the stopping recommendation

is drawn, according to the mixed information policy. Further, E [τ ] captures the t =
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0 perspective on the expectation of the first date at which stopping is recommended,

according to the mixed information policy. The long-run payoff of the agent and the

principal are given, respectively, by

W (τ) := E [τ ] c,

V (τ) := P (xτ = 2) v − E [τ ] c.

Throughout the paper, I assume that whenever the principal is indifferent about

investing or not, he chooses to invest. Finally, I use the following notational convention:

for any two stopping times, S and τ ,

S ∧ τ := min {S, τ} ,

S ∨ τ := max {S, τ} .

2.3.2 Agent’s problem

I start with Lemma 2.1 that presents the agent’s problem of choosing the mixed informa-

tion policy. This choice is formulated in terms of choosing the distribution of the stopping

time τ induced by the mixed information policy. Without loss of generality, I formalize

the choice of this distribution using the choice of conditional distributions of τ . F0(t) is

the cdf of the stopping time t ∈ [0, T ] when xt = 0, F1(t|t1) is the cdf of the stopping

time t ∈ [t1, T ] when xs = 0 for s ∈ [0, t1) and xs = 1 for s ∈ [t1, t], F2(t|t1, t2) is the cdf

of the stopping time t ∈ [t2, T ] when xs = 0 for s ∈ [0, t1), xs = 1 for s ∈ [t1, t2), and

xs = 2 for s ∈ [t2, T ]. The agent’s mixed information policy is given by the collection of

conditional distributions

σµ := {F0, F1, F2} .

Lemma 2.1. The agent’s problem can be formulated as

max
F0,F1,F2

{c · E [τ ]}

s.t. [P (xτ = 2|t < τ)] v − E [τ − t|t < τ ] c ≥ P (xt = 2|t < τ) v,∀t < τ.

(2.1)

To grasp the intuition behind Lemma (2.1), it is useful to note that, becasue the mixed

information policy is a recommendation policy, the action recommendations generated by

this policy have to be obedient to the principal. In other words, at each date and for each

possible history the action recommendations drawn from the conditional distributions
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σµ have to be optimal for the principal. A useful object for characterizing if the policy

σµ generates obedient action recommendations is given by the principal’s continuation

value at some interim date t given the mixed information policy. This continuation value

depends on the beliefs of the principal.

The principal updates his belief given policy σµ and assesses the costs and benefits

of either further following the recommendations drawn from the policy or deviating from

them. The information disclosed by the agent up to date t serves as a source of in-

ference for the principal. First, he forms a belief regarding the number of completed

stages of the project by t, conditional on no stopping recommendation being drawn by

t, P (xt = n|t < τ). Second, given the information available up to t, he forms a belief

regarding the number of completed stages of the project at the random date τ when the

stopping recommendation will be drawn in future, P (xτ = n|t < τ).

The principal’s continuation value at t given the mixed information policy σµ is the

difference between the expected payoff promised by the policy and the expected payoff

from stopping at t, I denote it by Vt (τ):

Vt (τ) := [P (xτ = 2|t < τ)− P (xt = 2|t < τ)] v − E [τ − t|t < τ ] c. (2.2)

The system of constraints in the agent’s problem (2.1) ensures that at each date before

the stopping recommendation is drawn according to σµ, the principal’s continuation value

must be non-negative. As the principal’s choice to postpone the stopping of funding is

costly, it is natural to interpret the system of constraints in (2.1) as the system of the

principal’s individual rationality constraints.

2.3.3 Discussion of assumptions

The main interpretation of the considered dynamic information design problem is the

contracting between the agent (startup) and the principal (investor) on the terms of

reporting on the completion of stages of the project that are not publicly observed.

The terms could take the form of a proposed formal reporting schedule or a schedule of

meetings with the investor. Non-observability of the stage completions stems from the

fact that, while the technology is being developed in the lab, the principal either does

not have sufficient expertise to assess the progress or the full access to the lab.

I assume that the principal does not have the power to propose the terms for reporting

to the agent and, e.g., make her fully disclose the progress achieved in the lab. The most
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natural interpretation of such an asymmetry in the bargaining power is the asymmetry

in the market for private equity: there are sufficiently many investors willing to invest

in a particular technology or sufficiently few startups working on the technology.9 For

instance, investors’ interest in quantum computing has grown markedly in recent years,

while there are reports of a shortage of human capital in this industry.1011 Another

example is the communication software industry, which has recently experienced increased

investment activity.12

As the agent enjoys the power of full control over the information on the progress

of the project, she is completely free to offer what is disclosed and when. In particular,

the contract between the agent and the principal can specify that the completion of the

second stage of the project is disclosed with a delay rather than immediately. The agent

who has an advantage in expertise over the principal can rationalize such a condition by

saying that before the success is reported to the principal, it is worth re-checking the

data, which takes time.

Even though the principal can not dictate to the agent which information and how

she should disclose, the principal can potentially hire an external monitor who would

visit the lab and prepare an additional report on the progress of the project. In that

case, the contract signed between the agent and the principal will account for both free

information that the agent promised to provide and additional costly information which

the principal obtains with the help of a monitor. In the baseline version of the model,

I assume that the principal can not use the help of a monitor. This can be rationalized

by the shortage of experts in the field, which makes hiring a monitor prohibitively costly.

Alternative interpretation is that the agent restricts the principal’s access to additional

information on the progress of the project by stating that a potential information leak

would put the technology being developed at risk.13

The information policy relies upon the agent’s commitment power, which holds not

9In the alternative interpretation of the model, contracting concerns internal corporate research and
development and takes place between the leading researcher and the headquarters of a company. The
leading researcher’s bargaining power in proposing the terms for disclosure again stems from the market
asymmetry: the specialists having the desired level of expertise might be in a short supply.

10”The Quantum Computing Bubble.” Financial Times, August 25, 2022.
11“Quantum Computing Funding Remains Strong, but Talent Gap Raises Concern”, a report by McK-

insey Digital, https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/quantum-
computing-funding-remains-strong-but-talent-gap-raises-concern/.

12”This Is Insanity: Start-Ups End Year in a Deal Frenzy.” Best Daily Times, December 07, 2020.
13In particular, this rationale was used to restrict the investors’ access to information on the progress of

the project in the case of Theranos, see ”What Red Flags? Elizabeth Holmes Trial Exposes Investorsâ€™
Carelessness.” The New York Times, November 04, 2021.
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only within each date but also between the dates. The agent’s commitment within each

date follows from prohibitively high legal costs of cooking up the evidence. The agent’s

intertemporal commitment stems from the rigidity of terms and form of reporting fixed

in the contract that the agent and the principal sign at t = 0.

2.4 No-information and full-information benchmarks

2.4.1 No-information benchmark

First, I consider the simple case when the information policy is given by σNI : the same

message m is sent for all histories h (t) and all dates t. Thus, the agent provides no

information regarding the progress of the project. As I demonstrate, in this case the

principal starts investing in the project if and only if it is sufficiently promising for the

principal from the ex ante perspective and invests until a deterministic interior date.

As no news arrives, the principal bases his decision about when to stop investing on

his unconditional belief regarding the completion of the second stage of the project. I

denote the unconditional belief that n stages of the project were completed by t, by pn (t),

i.e., pn (t) := P (xt = n). The state of the world is fully determined by p (t) given by

p0 (t) = e−λt,

p1 (t) = λte−λt,

p2 (t) = 1− e−λt − λte−λt.

The principal’s sequential choice of at ∈ {0, 1} can be restated equivalently as the

choice of deterministic stopping time SNI ∈ [0, T ] chosen at t = 0.14 Given the prin-

cipal’s continuous investment, the probability of completion of the second stage of the

project, p2 (t), increases monotonously over time, making obtaining the payoff v more

likely. However, postponing the stopping is costly.

To decide on SNI , the principal trades off the flow benefits and flow costs of postponing

the stopping decision, while keeping the individual rationality constraint in mind. The

flow cost of postponing the stopping for ∆t is given by c ·∆t and the flow benefit is given

by v · p1 (t)λ∆t.15 Thus, the necessary condition for the principal’s stopping at some

14Note that the dynamic belief system that he faces is deterministic in a sense of being fully specified
from t = 0 perspective.

15To observe this, note that the probability of the completing both the first and second stages within a

77



interior moment of time (0 < S < T ) is given by

v · p1 (S)λ = c. (2.3)

Let

κ :=
c

vλ
,

the ratio of the flow cost of investment c to the gross project payoff v normalized using λ,

the rate at which a project stage is completed in expectation. The intuitive interpretation

of κ is the flow cost-benefit ratio of the project. κ is an inverse measure of how ex ante

promising the project is for the principal. (2.3) is equivalently given by16

p1 (S)︸ ︷︷ ︸
flow benefit of waiting

= κ︸︷︷︸
flow cost of waiting

(2.4)

and presented graphically in Figure 2.1. As the state process transitions monotonously

from 0 to 1 and then to 2, p1 (t) first increases and after some time starts to decrease.

Thus, the principal has two candidate interior stopping times satisfying (2.4), S̄ and S̄NI .

The principal prefers to postpone stopping to S̄NI , as during
(
S̄, S̄NI

)
the flow benefits

are higher than the flow costs.

0 t

1
p2(t), probability of completion

of 2nd stage of project

0 t

1
e

p1(t), flow benefit
of waiting

c
vλ

, flow cost
of waiting

optimal
choice

S̄ S̄NI

Figure 2.1: Principal’s choice under no information:
left plot: postponing stopping increases the chance of getting a project payoff v;
right plot: principal trades off costs and benefits and optimally stops at S̄NI .

The forward-looking principal can guarantee himself a payoff of 0 if he does not start

very short time ∆t is negligibly small; thus, during some ∆t, the principal receives the project completion
payoff v iff the first stage has already been completed.

16Here I WLOG express the flow benefits and flow costs of investing for the principal in different units
of measurement.

78



investing at t = 0. Thus, he will choose to start investing at t = 0 only if his flow gains

accumulated up to T ∧ S̄NI are larger than his flow losses, and his expected payoff is

given by

V NI := max

{
0,

∫ T∧S̄NI

0

(v · p1 (s)λ− c) ds

}
. (2.5)

Geometrically, the integral in (2.5) represents the difference between the shaded areas

in Figure 2.2 that correspond to the accumulated gains and losses. The principal starts

investing at t = 0 if, given T and λ, the normalized cost-benefit ratio κ is low enough,

so that the shaded area of the accumulated gains is at least as large as that of the

accumulated losses. I denote such a cutoff value of κ by κNI (T, λ) and summarize the

principal’s choice without information in Lemma 2.2.

S̄NI

1
e

y = x2

y = x

κ := c
vλ

p1(t)

accumulated
gains

accumulated
losses

t T S̄NI

1
e

y = x2

y = x

κ := c
vλ

p1(t)

accumulated
gains

accumulated
losses

t

Figure 2.2: Principal’s choice to start investing at t = 0 or not under no information:
left plot: T > S̄NI ; the project deadline is distant and decision-irrelevant;

right plot: T ≤ S̄NI ; the project deadline is close, which leads to lower expected
benefits of investing.

In both plots the expected accumulated gains are higher than the losses, so the
principal starts to invest at t = 0.

Lemma 2.2. Assume no information regarding the progress of the project arrives over

time. Denote the time at which the principal stops investing by SNI . If κ > κNI (T, λ),

then the principal does not start investing in the project, i.e., SNI = 0. If κ ≤ κNI (T, λ),

then the principal’s choice of stopping time is given by

SNI =

S̄NI , if 1
λ
≤ T and κ ≥ e−λTλT

T, otherwise ,
(2.6)
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the closed-form expressions for S̄NI and κNI (T, λ) are presented in the proof in Appendix

2.B.

2.4.2 Full-information benchmark

Here, I consider the case in which the information policy is given by σFI : M = {m0,m1,m2}
and the message mn is sent for all t such that xt = n, n ∈ {0, 1, 2}. Thus, the principal

fully observes the progress of the project at each t. I characterize the cutoff level of the

cost-benefit ratio below which the principal is willing to start investing. Further, I show

that the principal chooses to stop when no stages of the project are completed and the

project completion deadline T is sufficiently close.

At each t, the principal uses the information on the number of stages completed to

decide either to stop investing or to postpone stopping. News of the completion of the

second stage of the project causes the principal stop immediately, so that he immediately

receives the project payoff v and stops incurring the costs of further investment. If only

the first stage of the project is completed, the principal faces the following trade-off. The

instantaneous probability that the second stage will be completed during ∆t is given by

λ∆t. Thus, the expected benefit of postponing the stopping for ∆t is given by

v · λ∆t + V FI
t+∆t|1 · (1− λ∆t) , (2.7)

where V FI
t|1 is the continuation value of the principal at time t under full information and

conditional on xt = 1. Meanwhile, the cost of postponing the stopping is given by c·∆t. If

κ < 1, then v ·λ∆t > c·∆t. Further, it can be shown that in this case V FI
t|1 > 0,∀t.17 Thus,

the principal who knows that the first stage of the project has already been completed

invests either until the second stage is complete or until the project deadline T is reached.

If κ > 1, then the expected benefit (2.7) is smaller than the cost c ·∆t for all t < T , which

implies that the principal chooses not to start investing at t = 0 under full information.

To rule out this trivial case, I assume κ ≤ 1.

Assumption 2.1. κ ≤ 1.

I now consider the case in which the principal knows that the first stage has not yet

been completed. The principal’s trade-off with respect to the stopping decision is now

more complex. Postponing the stopping for ∆t leads to completion of the first stage of the
17See the derivation in the proof of Lemma 2.3 in the Appendix.
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project with instantaneous probability λ∆t. Completion of the first stage of the project

at some t implies that the principal receives V FI
t|1 (rather than v). Thus, the expected

benefit of postponing the stopping for ∆t is now given by

V FI
t|1 · λ∆t + V FI

t+∆t|0 · (1− λ∆t) , (2.8)

where V FI
t|0 is continuation value of the principal at time t under full information and

conditional on xt = 0. The cost of postponing the stopping is, as before, given by c ·∆t.

In contrast to (2.7), where the principal obtains the completion payoff v, which is constant

over time, now the principal obtains the continuation value, V FI
t|1 , which shrinks over time

because there is less time left to complete the second stage before T . It turns out that

there exists a date t < T sufficiently close to the final date T such that the optimal

policy prescribes the principal to stop at such date if the first stage of the project is still

incomplete. I denote this date by SP
0 . The economic interpretation of SP

0 is that it is

the interim deadline that the principal sets for the project. Further, if the first stage is

completed by SP
0 , then the optimal policy prescribes the principal to continue until either

the second stage is completed or T is reached.

Finally, given the optimal policy, the principal chooses to opt out of investing at t = 0

(i.e., SP
0 = 0) if the cost-benefit ratio of the project, κ, is sufficiently high. I denote

the upper bound for κ such that the principal starts investing at t = 0 by κFI (T, λ).

Intuitively, κFI (T, λ) > κNI (T, λ): whenever the principal is willing to start investing

under no information, he is also willing to start under full information. I summarize the

principal’s choice under full information in Lemma 2.3.

Lemma 2.3. Assume that the progress of the project is fully observable at each moment

in time. If κ > κFI (T, λ), where κFI (T, λ) > κNI (T, λ), then the principal does not start

investing in the project. If κ ≤ κFI (T, λ), the principal invests either until the random

date at which the second stage of the project is completed, t = τ2, or until the interim

deadline, t = SP
0 , at which he stops if the first stage has not yet been completed. Formally,

the time at which the principal stops investing is a random variable τFI given by:

τFI =

τ2 ∧ T, if xSP
0
̸= 0

SP
0 , otherwise ,

where SP
0 = T + 1

λ
log
(
1−2κ
1−κ

)
and the expression for κFI (T, λ) is presented in the proof
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in Appendix 2.B.

Assume now that the agent chooses which information to provide to the principal. As

for κ > κFI (T, λ) the principal is not willing to start investing even under full information,

there is no way in which the agent can strategically conceal the information to her benefit.

In Section 2.5, I assume κ ≤ κFI (T, λ) and analyze how the agent can strategically provide

information on the progress of the project and extract the principal’s surplus.

2.5 Agent’s choice of information policy

In this Section, I present how the agent’s choice of information policy changes with the

ex ante attractiveness of the project, which is captured by the cost-benefit ratio κ. In

Section 2.5.1, I provide the big picture of the solution to the agent’s problem. In Sections

2.5.2-2.5.3, I introduce the results formally and discuss the economic mechanisms that

determine the outlined structure of the optimal information policy.

2.5.1 The structure of optimal information disclosure

The structure of optimal information disclosure is formally established in Propositions

2.1 and 2.2 (see Sections 2.5.2 and 2.5.3) as the solution to the agent’s problem (2.1). In

this Section, I put the results of these two Propositions together to present an overview

of optimal information disclosure. It follows the simple and intuitive pattern. There exist

cost-benefit ratio cutoffs κND (T, λ) , κND (T, λ) < κNI (T, λ), and κ̃ (T, λ) , κNI (T, λ) <

κ̃ (T, λ) < κFI (T, λ). κND (T, λ) is defined as follows: for any κ ≤ κND (T, λ), the

principal invests until T in the no-information benchmark. κ̃ (T, λ) is defined in Lemma

2.4. Depending on the cost-benefit ratio of the project, the optimal information policy

has the following form:

1. when κ ≤ κND (T, λ), the agent provides no information and the principal invests

until T ;

2. when κND (T, λ) < κ ≤ κ̃ (T, λ), the agent discloses only the completion of the

second stage of the project and does that with the postponement;

3. when κ̃ (T, λ) < κ < κFI (T, λ), the agent immediately discloses the completion

of the second stage of the project whenever it occurs and specifies a deterministic

interim deadline, at which it discloses if the first stage is already completed;
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4. when κ ≥ κFI (T, λ), the agent provides no information as the principal’s long-run

payoff is non-positive even under full information.

Figure 2.3 illustrates the optimal structure of information disclosure and presents the

partition of the cost-benefit ratio space based on the corresponding forms of the optimal

information policy.

κ (T, λ)0 κ̃ κFIκNIκND 1
2

Postponed disclosure
of stage 2 completion

Immediate disclosure of
stage 2 completion and

interim deadline for stage 1

Non-disclosure
(principal

invests until T )

Non-disclosure
(principal rejects

the project)

Figure 2.3: Comparative statics of the form of optimal information policy with respect
to the cost-benefit ratio of the project, κ (T, λ).

The lower is the value of cost-benefit ratio, the higher is ex ante attractiveness of

the project to the principal. First, for κ ≤ κND (T, λ), the project is so attractive that

the principal is willing to keep investing until the project deadline T even in the no-

information benchmark. Thus, there is no need to disclose any information. For the

higher values of κ, there emerges a room for strategic disclosure, and the higher is the

value of κ (i.e., the lower is the ex ante attractiveness of the project), the more information

the agent has to disclose to incentivize the principal. For κ ≥ κFI (T, λ), the project gets

so unattractive that the principal can not strictly benefit from investing even in the

full-information benchmark. In this extreme case, the agent chooses not to disclose any

information.

From Figure 2.3, one can see which additional pieces of information the agent chooses

to disclose and when she chooses to discloses them as κ gets higher and higher. When

κ ∈ (κND (T, λ) , κ̃ (T, λ)], the agent discloses only the completion of the second stage of

the project and does not promise any information on the completion of the first stage

of the project. Further, as κ increases from κND (T, λ) to κ̃ (T, λ), the agent adjusts the

timing of the disclosure: she postpones the disclosure of the second stage completion less

and less and discloses immediately for κ̃ (T, λ). For κ ∈ (κ̃ (T, λ) , κFI (T, λ)), the agent

not only discloses the completion of the second stage of the project immediately, but also

provides information on the completion of the first stage at the interim deadline that she

optimally chooses.

Throughout the analysis, I maintain the following technical assumption:
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Assumption 2.2. eλT − λT (λT + 1) > 1.

This assumption imposes a lower bound on T and rules out the case in which T is so low

that whenever the principal is willing to start investing in the no-information benchmark,

he invests until T . As a result, κND < κNI , which allows for a richer comparative statics

analysis in Section 2.5.2. I formally demonstrate the implications of this assumption for

the optimal structure of information disclosure in Appendix 2.B.

In Sections 2.5.2 and 2.5.3, I formally establish the comparative statics results pre-

sented in Figure 2.3. I start the discussion from the optimal information policy under

κ ∈ (κND (T, λ) , κ̃ (T, λ)]. The trivial case of non-disclosure under κ ≤ κND (T, λ) is

analysed in the discussion of Assumption 2.2 in Appendix 2.B.

2.5.2 Postponed disclosure of project completion

In this Section, I restrict attention to κ ∈ (κND (T, λ) , κ̃ (T, λ)] and explain why the

optimal information policy is such that the agent discloses only the completion of the

project and does this with the postponement. The agent’s problem is complex, and thus

I solve it in steps. First, I characterize the information policy, which solves the relaxed

version of (2.1) with the principal’s individual rationality constraints only for some initial

periods. Second, I demonstrate that there exists an information policy solving the relaxed

agent’s problem and satisfying the full system of the principal’s individual rationality

constraints in (2.1).

Solution to the agent’s relaxed problem

In this Section, I consider the agent’s relaxed problem and discuss its solution. This

sheds light on the technical intuition behind the key properties of the optimal information

policy. The agent’s relaxed problem for the parametric case of κ ∈ (κND (T, λ) , κNI (T, λ)]

is given by (2.1) with the principal’s individual rationality constraint only for t ∈ [0, S̄NI ].

The agent’s relaxed problem for the parametric case of κ ∈ (κNI (T, λ) , κ̃ (T, λ)] is given

by (2.1) with the principal’s individual rationality constraint only for t = 0.

Consider W (τ), the agent’s long-run payoff given some mixed information policy,
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represented by a stopping time τ . This can be restated equivalently as follows:

W (τ) = [W (τ) + V (τ)]− V (τ)

= P (xτ = 2) v︸ ︷︷ ︸
total surplus

− [P (xτ = 2) v − E [τ ] c]︸ ︷︷ ︸
principal’s surplus

. (2.9)

The solution to the agent’s relaxed problem for both considered parametric cases follows

a simple idea: the optimal information policy ensures that the total surplus is maximal

and that the principal’s surplus is minimal. Consider τ such that the stopping occurs

after the completion of the second stage of the project, unless the project deadline T was

hit, i.e., the policy satisfies the condition τ ≥ τ2 ∧ T . Such a policy leads to

P (xτ = 2) = P (xT = 2) . (2.10)

Given a mixed information policy, represented by τ , satisfying (2.10), if τ is individ-

ually rational for the principal at date t = 0 then the total surplus generated achieves

its upper bound and is given by P (xT = 2) v, which depends on the exogenously given

project deadline T and the profit v. However, the stopping only after the second stage

completion is not individually rational for the principal at t = 0 when the cost of funding

is sufficiently high, the profit is sufficiently low, or the expected time until a project stage

completion is sufficiently high.

Lemma 2.4 elaborates on the cost-benefit ratio cutoff value κ̃ (T, λ): it distinguishes

the case in which stopping only after the second stage completion is individually rational

at t = 0 from the case in which it is not. Based on this partition, when κ ∈ (κND, κ̃ (T, λ)],

I call the project ex ante promising for the principal.

Lemma 2.4. For each (T, λ) there exists κ̃ (T, λ), κNI (T, λ) < κ̃ (T, λ) < κFI (T, λ),

such that if κ ≤ κ̃ (T, λ) (κ > κ̃ (T, λ)) then an information policy, represented by τ , in

which stopping after τ2 ∧ T happens with probability one is individually rational at t = 0

(not individually rational at t = 0) for the principal.

For κ ∈ (κND (T, λ) , κ̃ (T, λ)], the stopping time τ ≥ τ2 ∧ T is individually rational

for the principal at t = 0, and it maximizes the total surplus. In addition to choosing

τ ≥ τ2∧T , it is optimal for the agent to choose the stopping time with a higher expected

date of stopping the funding to extract all the principal’s surplus subject to his individual

rationality constraints. For κ ∈ (κNI (T, λ) , κ̃ (T, λ)], the agent chooses such τ that the
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principal’s individual rationality constraint at t = 0 is binding. As a result, V (τ) = V NI ,

i.e., the principal gets his no-information benchmark payoff given by 0.

For κ ∈ (κND (T, λ) , κNI (T, λ)], as in the no-information benchmark the principal

invests until S̄NI with certainty, the agent chooses the information policy as to postpone

the start of information provision at least until S̄NI . Further, the agent chooses τ with a

higher expected date of stopping so that the principal’s individual rationality constraint at

t = S̄NI is binding. The absence of stopping until at least S̄NI and the fact that individual

rationality constraint binds at t = S̄NI taken together imply that V (τ) = V NI , i.e., from

t = 0 perspective, the principal gets her no-information benchmark payoff, which is non-

negative and given by (2.5).

The next Lemma summarizes the necessary conditions for an information policy to

solve the agent’s relaxed problem when the project is promising. These conditions are

shared both by the relaxed problem formulated for the case of κ ∈ (κND (T, λ) , κNI (T, λ)]

and the relaxed problem formulated for the case of κ ∈ (κNI (T, λ) , κ̃ (T, λ)]. The condi-

tions that are both necessary and sufficient for an information policy to solve the agent’s

relaxed problem are presented in the Proof of Lemma 2.5.

Lemma 2.5. Assume κ ∈ (κND, κ̃ (T, λ)]. If an information policy, represented by τ ,

solves agent’s relaxed problem, then

1. with probability one, stopping occurs after τ2 ∧ T ;

2. V (τ) = V NI , where V NI is the principal’s expected payoff in the no-information

benchmark, given by (2.5).

Optimal information policy

In this Section, I show that there exists an information policy that both solves the agent’s

relaxed problem and satisfies the full system of the individual rationality constraints.

Given this, as Lemma 2.5 describes the solution to the relaxed problem, it also sheds

light on the properties of the optimal information policy for the case of a promising

project.

As the stopping time τ is induced by a direct recommendation policy σµ, it is clear

from Lemma 2.5 that the optimal information policy has to satisfy the following con-

ditions. First, whenever the agent recommends the principal to stop, the second stage

of the project is already completed. Second, the recommendation to stop is postponed
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so that the principal’s individual rationality constraint is binding, which manifests in

V (τ) = V NI . The first condition presents the key feature of the optimal information

policy for the case of promising project: the agent discloses the completion of the second

stage of the project, but stays silent regarding the completion of the first stage of the

project. The intuition behind the agent’s choice is simple: a recommendation to stop

when no stages of the project are completed and the project deadline T is close does

indeed incentivize the principal; however, it also reduces the total surplus generated that

can be extracted via the agent’s control of information. Meanwhile, the recommenda-

tion to stop when the two stages of the project are completed incentivizes the principal

without reducing the total surplus generated. When κ ≤ κ̃ (T, λ), a partially informative

policy that discloses only the completion of the second stage provides sufficient incentives

to the principal, and thus the agent uses it.18

I proceed with obtaining an information policy that not only satisfies the conditions

in Lemma 2.5 and solves the relaxed problem, but also satisfies the full system of the

principal’s individual rationality constraints in Lemma 2.1. Ensuring both is non-trivial.

For instance, consider a policy solving the agent’s relaxed problem and assume it recom-

mends to continue for t ∈ [0, S∗), then at S∗ recommends stopping if the second stage is

already completed, but recommends to continue at all the subsequent dates t ∈ (S∗, T ]. A

no stopping recommendation drawn at S∗ reveals that the state is either 0 or 1. Clearly,

after sufficient time passes after S∗, the principal would attach a high probability to the

second stage already being completed and would potentially be tempted to deviate from

the recommendation to continue.19 However, the optimal policy satisfying the full system

of constraints exists. I present it in Proposition 2.1.

Proposition 2.1. Assume κ ∈ (κND (T, λ) , κ̃ (T, λ)]. The optimal information policy

is a direct recommendation mechanism that does not provide a recommendation to stop

during t ∈ [0, S∗). At t = S∗, if the second stage of the project is already completed, then

the mechanism recommends the principal to stop. If the second stage of the project is not

yet completed, then the mechanism recommends the principal to stop at the moment of

its completion t = τ2. Corresponding optimal information policy is

τ = S∗ ∨ (τ2 ∧ T ) ,

18The “leading on” information policy in Ely and Szydlowski (2020) is similar: the only information
that the policy provides is that the task is already completed and, thus, it is time to stop investing.

19In other words, Vt (τ) drifts down over time and can get negative at some date.
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where S∗ is a deterministic date chosen such that V (τ) = V NI , i.e., the respective con-

straint in the system of principal’s individual rationality constraints is binding.

The recommendation mechanism starting from S∗ generates recommendations to stop

if the second stage is completed. As the recommendation to stop comes immediately at

the completion of the second stage for all t > S∗, hearing no recommendation to stop

reveals that the state is either 0 or 1. Further, as time goes on, the principal attaches

a higher and higher probability to the state being 1, which ensures obedience to the

recommendation to continue at each date. Further, the start of information provision S∗

is sufficiently postponed to ensure that the principal’s individual rationality constraint is

binding either at t = S̄NI or at t = 0.

The choice of S∗ is driven by extraction of the principal’s surplus and depends on

κ in an intuitive way. First, consider the case κ ∈ (κND, κNI (T, λ)], the principal is

willing to start investing and invests until t = S̄NI in the no-information benchmark.

The agent’s optimal choice is to set S∗ > S̄NI . Given such an information policy, the

principal does not stop at S̄NI , the date of stopping in the no-information benchmark, and

with probability one continues to invest during t ∈ [S̄NI , S∗) even though the mechanism

provides absolutely no information for all t < S∗. This is driven by the fact that the

expected benefit from stopping at some future date t ∈ [S∗, T ] and obtaining the project

payoff v with certainty compensates the flow losses of investing during t ∈ [S̄NI , S∗).20

Further, the agent sufficiently postpones S∗ to ensure that she extracts the principal’s

surplus and the principal gets precisely V NI ≥ 0.

In the case κ ∈ (κNI (T, λ) , κ̃ (T, λ)], the principal is not willing to start in the no-

information benchmark as his expected payoff from investing is negative. Thus, the agent

chooses S∗ to guarantee that the principal gets his reservation value V NI = 0 and is thus

willing to start investing at t = 0. The value of S∗ is relatively lower as compared to

the previous case: as the project is less attractive, to provide the principal sufficient

incentives, the agent needs to start the information provision regarding the completion

of the project earlier.

Finally, there exist many information policies that both solve the agent’s relaxed

problem and satisfy the full system of constraints in (2.1). This constitutes an important

advantage for the agent: she can choose an optimal policy that is easier to implement

20Similarly to the “leading on” information policy in Ely and Szydlowski (2020), the promises of future
disclosure of the completion of the project are used as a “carrot” to make the receiver continue investing
beyond the point at which he stops in the no-information benchmark.
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from the real-world perspective, depending on the particular environment. In the optimal

mechanism from Proposition 2.1, the recommendation to stop at some date t depends

only on the current state of the world xt. In an alternative delayed disclosure mechanism,

the recommendation to stop arrives with a pre-specified delay after the second stage was

completed. Thus, the recommendation depends only on the past history and not on

the current state of the world. In an optimal delayed disclosure mechanism, the delay

becomes smaller as more time passes.21

Recall that, as Lemma 2.5 suggests, the key idea of the optimal information policy is

that the agent postpones the disclosure of the completion of the project to extract more

surplus, which makes the principal’s individual rationality constraint bind. The higher

the cost-benefit ratio of the project κ becomes, the higher additional value the agent’s

information policy needs to provide to the principal to ensure that his active individual

rationality constraint is satisfied. The implication of this for the optimal information

policy is presented in Lemma 2.6.

Lemma 2.6. Assume κ ∈ (κND (T, λ) , κ̃ (T, λ)]. Given the direct recommendation mech-

anism inducing optimal τ , for a fixed Poisson rate λ, the expected length of investment

E [τ ] decreases in the cost-benefit ratio κ.

The intuition is that the higher the cost-benefit ratio of the project becomes, the

sooner after the second stage of the project is completed the agent recommends the

principal to stop. For the cost-benefit ratio as high as κ̃ (T, λ), the agent provides the

recommendation to stop immediately at the date of completion of the second stage of

the project. Further, for κ > κ̃ (T, λ), the optimal information policy satisfying the

conditions in Lemma 2.5 ceases to be individually rational for the principal. As I show

in the next Section, for κ > κ̃ (T, λ), in addition to immediate disclosure of the project

completion, the agent provides the information regarding the completion of the first stage

of the project.

2.5.3 Immediate disclosure of completion and an interim deadline

When κ > κ̃ (T, λ), the project is not promising for the principal and any information

policy in which stopping occurs after τ2 ∧ T with probability one violates the principal’s
21The rich set of optimal direct recommendation mechanisms in my model encompasses both mech-

anisms in which the information provision depends only on the current state, similarly to the optimal
mechanism in Ely and Szydlowski (2020), and the mechanisms that use delay, similarly to the delayed
beep from Ely (2017).
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individual rationality constraint. In other words, from the ex ante perspective the future

reports disclosing only the completion of the project do not motivate the principal to start

investing. Thus, an information policy that provides an individually rational expected

payoff to the principal should assign a positive probability not only to stopping after the

completion of the project, but also to stopping in either state 0, when no stages of the

project are completed, or state 1, when only the first stage of the project is completed. I

present the necessary conditions for an information policy to be optimal when the project

is not promising in Lemma 2.7.

Lemma 2.7. Assume κ ∈ (κ̃ (T, λ) , κFI (T, λ)). If a mixed information policy σµ solves

agent’s problem, then it satisfies the conditions

1. F0(t) > 0 for some t < T ;

2. F1(t|t1) = 0 for all t ∈ [t1, T );

3. F2(t|t1, t2) = 1 for all t ∈ [t2, T ].

The condition on F0(t) implies that conditional on no completed stages of the project,

stopping of the funding happens with a positive probability before T . The condition

on F1(t|t1) implies that conditional on one completed stage of the project, stopping of

the funding never occurs before T . Finally, the condition on F2(t|t1, t2) implies that

conditional on two completed stages of the project, stopping of the funding happens

immediately, i.e., at t = τ2. I proceed discussing the intuition behind these necessary

conditions for optimality.

Stopping when only the first stage of the project is already completed is clearly inef-

ficient. In state 1, the principal prefers to continue investing until the completion of the

second stage and this principal’s incentive to wait is aligned with the agent’s incentive to

postpone the stopping. Further, stopping in state 1 does not help overcome the problem

of the violated individual rationality constraint under κ > κ̃ (T, λ). Meanwhile, assign-

ing a positive probability to stopping when no stages are completed helps to overcome

the problem of violated individual rationality constraint, as the principal benefits from

stopping at some date t when the first stage of the project is not yet completed and the

project deadline T is sufficiently close. Further, the agent chooses to induce stopping of

funding after the completion of the second stage rather than in state 0 as the former does

not harm the total surplus generated. Thus, a policy that is optimal assigns probability

1 to immediate stopping when the second stage is completed.
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Lemma 2.7 implies that in an information policy, optimal for the agent, stopping after

the completion of the second stage of the project happens immediately and stopping also

happens given that no stages of the project are completed - i.e., at the interim deadline

chosen by the agent, which I denote by SA
0 , and which is distributed according to F0.

Thus, Lemma 2.7 drastically simplifies the strategy space in the agent’s design problem:

it is only left to characterize the optimal distribution F0. At t = 0, the agent publicly

chooses a distribution F0, then an interim deadline is drawn according to it and privately

observed by the agent. Next, the information starts to flow. The action recommendation

to stop the funding satisfies the following stopping time

τ =

SA
0 , if xSA

0
= 0

τ2 ∧ T, otherwise,
(2.11)

where the principal knows only the distribution F0, but not the draw of SA
0 .

Given that the completion of the second stage of the project is disclosed immediately,

stopping at the interim deadline in state 0 leads to a loss of expected further investment

flow for the agent, and a potential savings from abandoning a “stagnating” project for the

principal. The agent’s payoff can be without loss of generality restated as the expected

loss in future investment due to stopping at the interim deadline SA
0 in state 0 (rather

than at τ2 ∧ T ). Given this, the agent’s problem can be expressed as

min
F0

EF0

[
P
(
xSA

0
= 0
)
E
[
τ2 ∧ T − SA

0 |xSA
0
= 0
]

︸ ︷︷ ︸
expected loss in future investment given SA

0

]
, (2.12)

subject to the system of the principal’s individual rationality constraints, which also have

a natural interpretation as the expectation of principal’s savings on the future investment,

which discontinues at SA
0 in state 0, minus the loss in the project completion profit due

to stopping the funding at SA
0 in state 0.22

Inspecting the agent’s expected loss in future investment in (2.12) reveals that if the

agent postpones the interim deadline SA
0 , then two effects arise. First, the probability

that stopping at the interim deadline will happen decreases. Second, the expected loss

in total surplus due to stopping at the interim deadline rather than at τ2 ∧ T decreases.

Thus, the agent’s expected loss in future investment is decreasing in the date of interim

22The principal’s individual rationality constraint is presented in (2.64).
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deadline and the agent prefers an interim deadline with a later expected date.

Agent’s choice of the interim deadline distribution F0 is affected by the two factors.

First, as the expected loss in future investment in (2.12) is decreasing and convex in the

date of the interim deadline, and thus the agent is risk-averse with respect to random

interim deadlines. Thus, given some random interim deadline, the agent directly benefits

from inducing a mean-preserving contraction. Second, the agent benefits from inducing

a mean-preserving contraction indirectly. Inspecting the principal’s long-run payoff for

some fixed SA
0 reveals that the principal is also risk-averse with respect to random interim

deadlines. Thus, inducing a mean-preserving contraction makes the principal better-off

and relaxes the individual rationality constraint at t = 0, hence, allowing the agent to

postpone the expected interim deadline further. As a result the optimal for the agent

interim deadline takes the form of a deterministic date. In other words, it is optimal for

the agent to publicly announce the interim deadline SA
0 at the outset, so that the principal

knows it.

The agent has an incentive to postpone the interim deadline and uses her control of

the information environment to postpone the deadline as much as possible so that the

principal’s individual rationality constraint at t = 0 binds. Figure 2.4 demonstrates the

principal’s long-run payoff as a function of the interim deadline, which I denote by S0.

It is maximized at the principal-preferred interim deadline SP
0 , which was characterized

in Lemma 2.3. The agent-preferred interim deadline SA
0 yields the principal’s expected

payoff of 0.

0 S0

V

SP
0

TSA
0

Figure 2.4: Principal’s long-run payoff, V , as a function of an interim reporting deadline
chosen by the agent, S0.

The next Proposition summarizes the optimal information policy, which can be with-

out loss of generality implemented using a direct recommendation mechanism:
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Proposition 2.2. Assume κ ∈ (κ̃ (T, λ) , κFI (T, λ)). The optimal information policy is

given by a direct recommendation mechanism that generates

(a) the recommendation to stop at the moment of completion of the second stage of the

project, t = τ2, and

(b) a conditional recommendation to stop at the publicly announced interim deadline

t = SA
0 . At SA

0 , stopping is recommended with certainty if the first stage of the

project has not yet been completed.

Formally,

τ =

SA
0 , if xSA

0
= 0

τ2 ∧ T, otherwise,

where SA
0 is chosen so that the principal’s individual rationality constraint at t = 0 is

binding, i.e., V (τ) = 0.

A stopping recommendation at any date other than the interim deadline t = SA
0 fully

reveals that project is accomplished. Further, observing a recommendation to stop at the

interim deadline, the principal learns that the milestone of the project has not yet been

reached and becomes sufficiently pessimistic that the project will be completed by T .

A notable feature of the optimal information policy when the project is ex ante

unattractive is its uniqueness. The only optimal instrument through which the agent

fine tunes the incentive provision to the principal is the choice of interim deadline, and

there is a unique optimal way to set the deadline to make the principal’s individual

rationality constraint bind.

I proceed by considering the comparative statics of the interim deadline. Both the

agent-preferred and the principal-preferred interim deadline, SA
0 and SP

0 , respectively,

increase in the exogenous deadline T . This is because less time pressure relaxes the

principal’s individual rationality constraint and allows the agent to postpone the deadline

further in order to extract the principal’s surplus.

As the cost-benefit ratio increases up to κFI , the agent-preferred deadline converges

to the principal-preferred deadline. An increase in the cost-benefit ratio of the project

makes the principal’s individual rationality constraint tighter.23 As a result, for a higher

κ, in the absence of completion of the first stage, the principal is willing to wait for a
23This is because the increase in κ makes the principal’s instantaneous benefit from waiting decrease,

and the normalized instantaneous cost of waiting becomes higher.
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shorter time before stopping. Thus, both the interim deadline preferred by the principal

SP
0 and the interim deadline chosen by the agent SA

0 are lower for a higher κ. Further,

for a higher κ the agent has to choose an information policy relatively closer to the

full-information benchmark to ensure that the individual rationality constraint at t = 0

is satisfied. Hence, the agent-chosen interim deadline SA
0 approaches SP

0 , the interim

deadline preferred by the principal. The comparative statics of SP
0 and SA

0 with respect

to the cost-benefit ratio of the project κ are presented in Figure 2.5.

S0
P

S0
A

κ
˜

κ��
κ

�

�

��

Figure 2.5: Interim deadline chosen by the agent SA
0 (dashed) and preferred by the

principal SP
0 (thick), as functions of the cost-benefit ratio of the project κ.

2.6 General preferences

In this Section, I allow for profit-sharing between the agent and the principal, varying

degree of the agent’s benefit from the flow of funds, and exponential discounting, and

demonstrate that the optimal information policy still has the same properties as in the

baseline model.

First, I assume that the agent and the principal share the project completion profit

v: the principal gets α · v, while the agent gets (1 − α) · v, α ∈ (0, 1]. Thus, now the

agent benefits not only from the flow of funds provided by the principal for running the

project but also from the share in the profit. The assumption that the agent gets a share

in the project completion profit is natural in many situations. In particular, the research

documents that the entrepreneurs in innovative startups are up to some extent driven

by giving vent to their entrepreneurial mindset and bringing their innovative ideas to life
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(Gundolf et al., 2017). In such a context, a positive profit share of the agent captures

that the agent is motivated by the success of the project.

Second, I assume that given a flow cost of c incurred by the principal, the agent

obtains a flow benefit βc, β ≥ 0. β can be interpreted as the agent’s marginal benefit

from using the funds provided by the principal for funding the project. Alternatively, for

β ∈ [0, 1] the loss of 1−β of the amount of the transfer at each date can be interpreted as

the transaction costs. Finally, setting β = 0 for some α < 1 allows for abstracting from

the agent’s motives for diverting the funds and considering the agent motivated only by

the success of the project.

Third, I allow for exponential discounting at a rate r > 0. Thus, the present value of

a profit obtained at a date t is given by ve−rt and the present value of a stream of funding

up to date t is given by 1
r
(1− e−rt) c. The following Proposition demonstrates that given

the more general preference specification, the structure of the optimal disclosure, present

in the baseline model, preserves.

Proposition 2.3.

(a) When the cost-benefit ratio of the project is low, κ ≤ κ̃ (T, λ, r, α), the optimal

information policy, represented by the stopping time τ , satisfies τ ≥ τ2 ∧ T , i.e.,

the agent recommends the principal to stop only after the completion of the second

stage of the project.

(b) When κ > κ̃ (T, λ, r, α), the optimal τ assigns positive probability both to the stop-

ping in state 2 and state 0, i.e., the agent not only discloses the completion of the

second stage of the project, but also specifies an interim deadline for the completion

of the first stage.

Similarly to the baseline model, allowing the principal to stop after the project com-

pletion brings profit to the principal and thus leads to a relatively higher total surplus,

which the agent can extract. Meanwhile, allowing the principal to stop at the interim

deadline does not increase total surplus and serves solely as an expected payoff transfer

from the agent to the principal. To see that, note that stopping when the first stage of

the project is still incomplete allows the principal to save on the further costs of funding

the project when over time the project proves to be “unsuccessful”. This can not be

beneficial for the agent as she does not internalize the costs of running the project. Fur-

ther, stopping at the interim deadline is strictly detrimental for the agent as she strictly
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prefers the principal to postpone the stopping of funding when no stages of the project

are completed.24

When the project is sufficiently ex-ante attractive, the agent can motivate the principal

to start funding the project without promising to stop the stagnant project at the interim

deadline, and this is strictly beneficial for the agent. Thus, when the project is promising,

the agent sets no interim deadlines, which in expectation gives her more funds and more

experimentation for free.

2.7 Conclusion

A transparent flow of information is crucial for the successful management of any inno-

vative project. However, the researcher, who controls the information on the progress of

the project, often tends to have different motives than the investor. This leads to the

question of how a researcher chooses the transparency of the flow of information about

the progress of a project in order to manipulate the investor’s funding decisions. I ad-

dress this question in a dynamic information design model in which the agent commits

to providing information to the principal with an incentive to postpone the principal’s

irreversible stopping of the funding.

I contribute to the dynamic information design literature by studying the problem

of the dynamic provision of information regarding the progress of a multistage project,

which evolves endogenously over time and needs to be completed before a deadline. I

show that the agent’s choice of which pieces of information to provide and when depends

on the project being either ex ante attractive for the principal or not. In the case of a

promising project, the agent provides only the good news that the project is completed

and postpones the reports. In the case of an unattractive project, to motivate the princi-

pal to start funding the project the agent not only reports the completion of the project,

but also helps the principal to find out when the project stagnates. To achieve this,

the agent announces an interim deadline for the project – a certain date at which she

recommends the principal to cut the funding of the project if the milestone of the project

has not been reached.

24The probability of project success and stock of obtained funds are non-decreasing in the date of
stopping irrespective of the number of the completed stages of the project.

96



2.A Notational conventions

Throughout Appendix 2.B, the following notational conventions are used:

1. I denote the random time at which the nth stage of the project is completed by

τn. Formally, τn ∈ R+ is a continuously distributed random variable that represents the

first hitting time of xt = n.

2. The continuation values of the agent and principal at time t, respectively, given τ ,

and conditional on information disclosed up to t are given by

Wt (τ) := E [τ − t|t < τ ] c,

Vt (τ) := [P (xτ = 2|t < τ)− P (xt = 2|t < τ)] v − E [τ − t|t < τ ] c.

3. Shorthand for posterior beliefs:

qn (t) := P (xt = n|t < τ) ,

rn (t) := P (xτ = n|t < τ) .

2.B Proofs

Proof of Lemma 2.2. The beliefs regarding the number of stages of the project completed

by time t, xt, evolve according to the Poisson process. The principal’s unconditional

beliefs are given by p0 (0) = 1 and for any t such that the stopping still has not occurred,

ṗ0 (t) = −λp0 (t) ,

ṗ1 (t) = λ(p0 (t)− p1 (t)), (2.13)

ṗ2 (t) = λp1 (t) ,

where p0 (t) = e−λt and p1 (t) = λte−λt, p2 (t) = 1−p0 (t)−p1 (t). The principal’s problem

is given by

max
S∈[0,T ]

{v · p2 (S)− c · S} . (2.14)

I start with analyzing the choice of S for the interior solution case, S ∈ (0, T ). F.O.C.

for (2.14) is given by

v · ṗ2 (S) = c, (2.15)

or, equivalently, p1 (S) = κ. There are two values satisfying (2.15): S̄ and S̄NI , S̄ < S̄NI .

At each t ∈
(
S̄, S̄NI

)
the principal receives a net positive payoff flow. Thus, stopping at
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S̄ is not optimal and the only candidate for optimal stopping is S̄NI .25 Further, one can

obtain the closed form expression for the interior stopping time S̄NI from (2.15):

S̄NI = −1

λ
W−1 (−κ) , (2.16)

where W−1(x) denotes the negative branch of the Lambert W function. S̄NI is well-

defined for any κ < e−1.

Thus, the solution to (2.14) could potentially be 0, S̄NI , or T . I proceed with a useful

lemma.

Lemma 2.8. The following is true regarding the principal’s continuation value in the

no-information benchmark, V NI

t : if V NI

t ≥ 0, for some t ∈
[
0, S̄NI ∧ T

]
, then V NI (s) ≥

0, for all s ∈
[
t, S̄NI ∧ T

]
.

Proof. The principal’s continuation value in the no-information benchmark is given by

V
NI

t =
[
p2
(
T ∧ S̄NI

)
− p2 (t)

]
v −

(
T ∧ S̄NI − t

)
c. (2.17)

Further,

V̇ NI (t) = vλ
(
κ− e−λtλt

)
= vλ (κ− p1 (t)) .

p1 (t) ≤ κ for all t ∈
[
0, S̄

]
and p1 (t) ≥ κ for all t ∈

[
S̄, S̄NI ∧ T

]
. Thus, V NI

t increases

for t ∈
[
0, S̄

]
, decreases for t ∈

[
S̄, T ∧ S̄NI

]
, and V NI

(
T ∧ S̄NI

)
= 0, which establishes

the result.

Lemma 2.8 implies that if V NI (0) ≥ 0 and the principal chooses to opt in at t = 0,

then V
NI

t ≥ 0, t ∈
[
0, S̄NI ∧ T

]
, i.e., he invests until t = T ∧ S̄NI . This implies that the

solution to (2.14) is either T ∧ S̄NI or 0.

Finally, at t = 0 the principal chooses to start investing or not. The condition for the

principal to start investing at t = 0 is given by

V NI ≥ 0. (2.18)

To specify the set of parameters for which (2.18) is satisfied, I obtain the cutoff value of κ

given T and λ. Such a parameterization is intuitive: κ above the cutoff level corresponds

to a project with sufficiently high normalized cost-benefit ratio and implies that the

25S̄ is a local minimum of the objective.
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principal does not opt in. I denote this cutoff by κNI (T, λ). This solves (2.18) holding

with equality. Two cases are possible.

Case 1 : T ≤ S̄NI ⇐⇒ T ≤ − 1
λ
W−1 (−κ). This inequality is satisfied when either

1
λ
> T or


1
λ

≤ T

κ ≤ e−λTλT.
Given T ≤ S̄NI , (2.18) holding with equality becomes

p2 (T ) v − Tc = 0.

Solving it for κ yields κ = e−λT
(

eλT−1
λT

− 1
)
.

Case 2: T > S̄NI . This inequality is satisfied when 1
λ
≤ T and κ > e−λTλT. Given

T > S̄NI , (2.18) holding with equality becomes

vp2
(
S̄NI

)
− cS̄NI = 0 ⇐⇒ v

(
1− p0

(
S̄NI

)
− p1

(
S̄NI

))
= cS̄NI ,

where (recall that ṗ2
(
S̄NI

)
= c

v
)

p0
(
S̄NI

)
=

1

λ2S̄NI
ṗ2
(
S̄NI

)
=

c

λ2S̄NIv
=

κ

λS̄NI

and

p1
(
S̄NI

)
=

1

λ
ṗ2
(
S̄NI

)
=

c

λv
= κ.

Consequently,

vp2
(
S̄NI

)
− cS̄NI = v − v · κ

(
1 + λS̄NI +

1

λS̄NI

)
.

Let y := λS̄NI . Note that, by definition, y > 1. Then κ = ye−y, and so

(
vp2
(
S̄NI

)
− cS̄NI

)
/v = 1− e−y

(
1 + y + y2

)
.

It follows that V NI (0) is nonnegative whenever λS̄NI ≥ y0
.
= 1.79328, which is equivalent

to

κ ≤ κ0
.
= 0.298426.

Finally, putting the two cases together yields
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κNI (T, λ) =

κ0
.
= 0.298426, if 1

λ
≤ T and κ ≥ e−λTλT

e−λT
(

eλT−1
λT

− 1
)
, otherwise.

(2.19)

Proof of Lemma 2.3. The principal chooses at ∈ {0, 1} sequentially given the observed

realizations of xt ∈ {0, 1, 2}. Whenever the principal observes t = τ2, he immediately

chooses at = 0 and gets v.

Consider the case xt = 1, t < T . If it is optimal to continue the project over the

internal [t, t+∆t), then

V FI
t|1 = −c∆t + λ∆t · v + (1− λ∆t) · V FI

t+∆t|1, (2.20)

where V FI
t|n stands for continuation value of the principal at date t given full information

and n completed stages of the project. Consider a candidate policy given by τ = τ2 ∧ T .

V FI
t|1 (τ2 ∧ T ) is given by

V FI
t|1 (τ2 ∧ T ) = v P (τ2 ≤ T |xt = 1)− cE [τ2 ∧ T − t|xt = 1] .

τ2|xt = 1 corresponds to the time between two consecutive Poisson arrivals, and thus has

exponential distribution. First, consider P (τ2 ≤ T |xt = 1):

P (τ2 ≤ T |xt = 1) = 1− e−λ(T−t).

Next, consider E [τ2 ∧ T − t|xt = 1]:

E [τ2 ∧ T |xt = 1]− t

=P (τ2 ≤ T |xt = 1)

∫ T

t

z · λe−λ(z−t)

P (τ2 ≤ T |xt = 1)
dz + P (τ2 > T |xt = 1)T − t

=
1

λ

(
1− e−λ(T−t)

)
+ t− e−λ(T−t)T + P (τ2 > T |xt = 1)T − t

=
1

λ

(
1− e−λ(T−t)

)
.

(2.21)

Thus,

V FI
t|1 (τ2 ∧ T ) = v

(
1− e−λ(T−t)

)
− c

1

λ

(
1− e−λ(T−t)

)
=
(
v − c

λ

) (
1− e−λ(T−t)

)
.

(2.22)
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First, consider the case v > c
λ
. From (2.22) one observes that if v > c

λ
, then

V FI
t|1 (τ2 ∧ T ) > 0,∀t ∈ [0, T ). V FI

t|1 (τ2 ∧ T ) for this parametric case is illustrated in

the Figure 2.6. As, by optimality, V FI
t|1 in (2.20) is weakly higher than V FI

t|1 (τ2 ∧ T ), it

holds that V FI
t|1 > 0, ∀t ∈ [0, T ). Thus, the principal invests until τ2∧T , which verifies that

the candidate policy is optimal and the optimal continuation value given full information

and one completed stage of the project is given by

V FI
t|1 =

(
v − c

λ

) (
1− e−λ(T−t)

)
. (2.23)

Second, consider the case v = c
λ
. In this case, the principal is indifferent between con-

tinuing and stopping at any date. Third, consider v < c
λ
. In this case, from (2.22),

V FI
t|1 (τ2 ∧ T ) < 0, ∀t ∈ [0, T ]. It can be shown that this implies that V FI

t|1 can not be

strictly positive at any date t. Thus, v < c
λ

leads to the trivial case in which the principal

does not start investing at t = 0 in the full information benchmark. Thus, I assume

v ≥ c
λ
, or, equivalently κ ≤ 1.

0 tT

Figure 2.6: V FI
t|1 (τ2 ∧ T ), the continuation value of the principal under full information,

τ = τ2 ∧ T policy, and conditional on one stage of the project being completed.

Consider now the case of xt = 0, t < T , i.e., no stages of the project have yet been

completed. If it is optimal to continue the project over the internal [t, t+∆t), then

V FI
t|0 = −c∆t + λ∆tV

FI
t|1 + (1− λ∆t)V

FI
t+∆t|0.

By Taylor expansion (V FI
t+∆t|0 = V FI

t|0 + V̇ FI
t|0 ∆t), I obtain the Hamilton-Jacobi-Bellman

equation

c = λ(V FI
t|1 − V FI

t|0 ) + V̇ FI
t|0 .

After plugging V FI
t|1 given by (2.23) into the HJB equation, one can solve this ODE for

V FI
t|0 . A generic solution is

z0 = v − 2c

λ
+ t(λv − c)e−(T−t)λ + C0e

tλ, (2.24)
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where C0 is an integration constant.

It can be shown that the stopping boundary for the principal’s optimal stopping

problem is a regular boundary, i.e., the smooth pasting condition holds at the stopping

boundary. Applying value matching (V FI
S0|0 = 0) and smooth pasting (V̇ FI

S0|0 = 0) conditions

to the HJB equation, I can get the stopping boundary S0. It is implicitly given by

c = λV FI
S0|1, (2.25)

where V FI
S0|1 is given by (2.23).

The equation (2.25) can be solved for S0. I denote the solution by SP
0 :

SP
0 = T +

1

λ
log

(
1− 2κ

1− κ

)
. (2.26)

Finally, (2.26) pins down C0, which is implicitly given by

v − 2c

λ
+ SP

0 (λv − c)
1− 2κ

1− κ
+ C0e

SP
0 λ = 0, (2.27)

and by the standard verification theorem, it can be demonstrated that the value function

V FI
t|0 given by (2.24) with C0 given by (2.27) and SP

0 given by (2.26) is optimal.

The principal is willing to start investing at t = 0 iff SP
0 ≥ 0. I denote the upper

bound on the cost-benefit ratio κ such that the principal chooses to start investing in

t = 0 under full information by κFI (T, λ), I solve SP
0 = 0 for κ and obtain

κFI (T, λ) =
1− e−λT

2− e−λT
. (2.28)

In summary, under full information, if κ ≤ κFI (T, λ), then the principal starts in-

vesting at t = 0. Further, he stops at SP
0 if the first stage of the project has not been

completed by that time. Otherwise, he proceeds to invest until τ2 ∧ T .

Proof of Lemma 2.1. Any information policy σµ induces an action process, which is a

stopping time with respect to a filtration of the probability space. Thus, an information

policy σµ can be represented as a stopping time τ . A stopping time τ is the principal’s

best response to at least one information policy σµ if and only if

Vt (τ) ≥ 0, ∀t ≥ 0 and V NI
τ < 0, (2.29)
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where Vt(τ) is the principal’s continuation value given by (2.2) and V NI
t is the principal’s

optimal continuation value in the absence of any additional information from the agent

starting from the date t. I proceed with proving this claim.

Necessity. Assume Vt(τ) < 0 for some t. In that case, it is optimal for the principal

to deviate to stopping at t < τ . Thus, there is no information policy σµ, for which this τ

is the principal’s best reply. Assume V NI
τ ≥ 0. Thus, the principal deviates to stopping

at t > τ , and there is no σµ, for which this τ is the best reply.

Sufficiency. Assume (2.29) holds. Vt (τ) ≥ 0 for all t < τ implies that the principal

prefers to continue rather than to stop the funding for all t < τ . Thus, it can not be

that case that the principal stops before τ . Further, V NI
τ < 0 implies that, conditional

on reaching the date of stopping τ , it is better for the principal to stop immediately

rather than to stop at t > τ . Finally, given τ , there exists σ implementing it: consider

a direct recommendation mechanism σ with M = {0, 1} such that whenever, based on

the realizations of the state process and randomization devices, the considered stopping

time τ suggests stopping the funding, the direct recommendation mechanism sends the

message m = 0 to the principal. As it is optimal for the principal to stop at τ , τ is the

principal’s best reply to σ.

As the agent chooses the distribution of the stopping time τ to maximize her long-run

payoff, the constraint V NI
τ < 0 is inactive at optimum. Otherwise, the agent can prolong

the expected funding by choosing a different τ . Thus, without loss of generality, I omit

this constraint from the agent’s problem, and the problem that the agent solves at t = 0

is given by (2.1).

Discussion of Assumption 2.2. κND (T, λ) is defined as follows: for any κ ≤ κND (T, λ),

the principal invests until T in the no-information benchmark. From Lemma 2.2, if the

principal is willing to start investing, i.e., κ ≤ κNI (T, λ), then

SNI = S
NI ∧ T.

For the sake of instruction, below I consider relaxing the Assumption 2.2 and demonstrate

how the relation between κND (T, λ) and κNI (T, λ) changes between Case a (assumption

alternative to the Assumption 2.2) and Case b (Assumption 2.2 holds).

Case a. eλT ≤ λT (λT + 1) + 1. In this case, whenever the principal is willing to

start investing in the no-information benchmark, she invests until T , i.e., κND (T, λ) =

κNI (T, λ), where κNI (T, λ) is given by (2.19). To see that, first, consider the extreme

103



sub-case in which T < 1
λ
. As −λS

NI must belong to −1 axis of Lambert W function,

it has a lower bound corresponding to 1
λ
. Thus, T < S

NI for any κ (T, λ). Second,

consider λT ∈
[
1, λ̃T

]
, where λ̃T solves eλT = λT (λT + 1) + 1. In this case, from

(2.16), if κ (T, λ) ≤ e−λTλT (κ (T, λ) ≥ e−λTλT , respectively), then T ≤ S
NI (T ≥ S

NI ,

respectively). However, κNI (T, λ) ≤ e−λTλT . Thus, κND (T, λ) = κNI (T, λ).

Case b. eλT > λT (λT + 1)+1. As before, it holds that if κ (T, λ) ≤ e−λTλT (κ (T, λ) ≥
e−λTλT ), then T ≤ S

NI (T ≥ S
NI , respectively). Denote

κND (T, λ) := e−λTλT.

As κNI (T, λ) > κND (T, λ), two cases emerge. If 0 < κ ≤ κND (T, λ), then T ≤ S
NI ,

and from κ ≤ κNI (T, λ), it holds that SNI = T and as the agent does not strictly benefit

from disclosing any information, she chooses non-disclosure. If κ > κND (T, λ), then

T > S
NI and the agent can potentially benefit from information disclosure.

Proof of Lemma 2.4. Consider an information policy such that stopping of funding hap-

pens immediately at the completion of the second stage of the project; it is given by

τ = τ2 ∧ T . There exists such κ̃ (T, λ) that solves the principal’s binding t = 0 individual

rationality constraint when τ = τ2 ∧ T :

V (τ2) = 0, (2.30)

where
V (τ2) = p2 (T ) v − E [τ2 ∧ T ] c

= v
(
1− e−λT − λTe−λT

)
− c

1

λ

(
2− 2e−λT − λTe−λT

)
.

(2.31)

The solution to equation (2.30) is given by

κ̃ (T, λ) =
1− eλT + λT

2− 2eλT + λT
. (2.32)

Further, κ > κ̃ (T, λ) ⇒ V (τ2) < 0 and κ ≤ κ̃ (T, λ) ⇒ V (τ2) ≥ 0.

Proof of Lemma 2.5. Consider the case of κ ∈ (κND (T, λ) , κNI (T, λ)]. The agent’s re-

laxed problem for this case has the individual rationality constraints only for t ∈ [0, S̄NI ],

and it is given by
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max
F0,F1,F2

{c · E [τ ]}

s.t.Vt (τ) ≥ 0, ∀t ∈
[
0, S̄NI

]
,

(2.33)

where Vt(τ) is given by (2.2).

Consider the candidate information policy represented by τ such that τ ≥ S̄NI ∨
(τ2 ∧ T ) and V (τ) = V NI , where V NI is given by (2.5). I start with arguing that the

candidate τ satisfies the system of individual rationality constraints. From Lemma 2.2,

given candidate τ , the principal invests until S̄NI with certainty and the constraints in

(2.33) are satisfied for all t ∈ [0, S̄NI). Further, τ implies that VS̄NI (τ) = 0, i.e., the

individual rationality constraint at t = S̄NI is binding.

I proceed with arguing that the candidate τ maximizes the agent’s objective function

in (2.33). The agent’s objective can be WLOG written out as:

W (τ) = P (xτ = 2) v︸ ︷︷ ︸
total surplus

− V (τ).︸ ︷︷ ︸
principal’s surplus

(2.34)

By Lemma 2.4, a stopping time τ that assigns probability one to τ ≥ τ2 ∧ T satisfies

the individual rationality constraint at t = 0 in (2.33). Note that, given τ ≥ τ2 ∧ T , the

total surplus in (2.34) is given by P (xT = 2) v, i.e., total surplus achieves its upper bound

determined by the exogenously given project deadline T . The principal’s surplus in (2.34)

is given by V (τ) = V NI , i.e., principal’s surplus achieves its lower bound specified by

(2.5). This can be seen from the principal’s decision problem, in which he best replies

to an information policy σµ. As σµ allows the principal to condition his actions on

the information regarding the evolution of the state process, the principal’s equilibrium

payoff can not be lower than V NI , his equilibrium payoff when he is restricted to choosing

actions without conditioning them on the information about the state process. Thus, τ

solves the relaxed problem (2.33).

Consider the case of κ ∈ (κNI (T, λ) , κ̃ (T, λ)]. The agent’s relaxed problem for this

case has the individual rationality constraint only for the initial period, and it is given

by
max

F0,F1,F2

{c · E [τ ]}

s.t.V (τ) ≥ 0,

(2.35)

where V (τ) = P (xτ = 2) v − E [τ ] c.

Consider candidate information policy represented by τ such that τ ≥ τ2 ∧ T and
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V (τ) = V NI . For such τ , agent’s expected payoff (2.34) is given by P (xT = 2) v − V NI .

As discussed for the parametric case κ ∈ (κND (T, λ) , κNI (T, λ)], the first term is at its

upper bound. To see that the second term is at its lower bound, note that, from Lemma

2.2, V NI = 0, and thus the individual rationality constraint in (2.35) is binding. Hence,

τ solves the relaxed problem (2.35).

Proof of Proposition 2.1. The proof covers the case κ ∈ (κND (T, λ) , κNI (T, λ)] and the

case κ ∈ (κNI (T, λ) , κ̃ (T, λ)] separately.

1. The case of κ ∈ (κND (T, λ) , κNI (T, λ)].

I start with proving the existence of S∗ such that V (τ) = V NI . Assume that S∗ >

S̄NI . For all t ∈ [S̄NI , S∗), stopping never occurs, at t = S∗ it occurs if xS∗ = 2, and for

all t ∈ (S∗, τ) it occurs at t = τ2 ∧ T . For t ∈ [S∗, τ), the absence of stopping induces

posteriors qn (t). Further, for t ∈ [S∗, τ) the principal discounts future benefits from

postponing stopping using the probability of the state being 2. Hence, the continuation

value at t = S̄NI can be written as

VS̄NI (τ) = vλ

(∫ S∗

S̄NI

p1 (z)− κdz +

∫ T

S∗
(q1 (z)− κ) (1− P (xz = 2)) dz

)
. (2.36)

The principal’s long-run payoff is given by

V (τ) =

∫ S̄NI

0

(v · p1 (s)λ− c) ds+ VS̄NI (τ) ,

where
∫ S̄NI

0
(v · p1 (s)λ− c) ds = V NI . Thus, to ensure that S∗ makes the individual

rationality constraint bind at t = S̄NI , i.e., V (τ) = V NI , it is necessary and sufficient

that VS̄NI (τ) = 0. Using (2.36), this equation can be written as

∫ S∗

S̄NI

κ− p1 (z) dz =

∫ T

S∗
(q1 (z)− κ) (1− P (xz = 2)) dz.

Let g (S) :=
∫ S

S̄NI κ − p1 (z) dz and k (S) :=
∫ T

S
(q1 (z)− κ) (1− P (xz = 2)) dz, S ∈

[S̄NI , τ). q1 (t) ≥ κ, for all t ∈ [S∗, T ). Thus, g
(
S̄NI

)
= 0, k

(
S̄NI

)
> 0. Further,

p1 (t) < κ, for all t ∈ (S̄NI , T ]. Hence, g (T ) > 0, k (T ) = 0. Finally, p1 (t) ≤ κ, for all

t ∈
[
S̄NI , T

]
implies that g′ (S) ≥ 0, for all s ∈

[
S̄NI , T

]
, and q1 (t) ≥ κ, for all t ∈ [S∗, T ]

implies that k′ (S) ≤ 0, for all s ∈ [S∗, T ]. Thus, by the intermediate value theorem,
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there exists S∗ solving VS̄NI (τ) = 0. Thus, there exists S∗ > S̄NI such that principal’s

individual rationality constraint is binding at t = S̄NI .

I proceed with proving that the stopping time τ satisfies the conditions in Lemma 2.1

and thus it is obedient.

First, consider t ≤ S̄NI . The principal’s continuation value for all t ∈ [0, S̄NI ] can be

written as

Vt (τ) =

∫ S̄NI

t

vλ (p1 (s)− κ) ds+ VS̄NI (τ) .

Given the binding individual rationality constraint, it becomes

Vt (τ) =

∫ S̄NI

t

vλ (p1 (s)− κ) ds, for all t ∈ [0, S̄NI).

Finally, note that Vt (τ) above is equivalent to V NI
t given by (2.17). Lemma 2.2 implies

that given κ ∈ (κND (T, λ) , κNI (T, λ)], V NI (0) = V (τ) ≥ 0. Further, Lemma 2.8 implies

that V (τ) ≥ 0 ⇒ Vt (τ) ≥ 0, ∀t ∈ [0, S̄NI).

Second, consider t ∈
[
S̄NI , S∗]. Given κ ∈ (κND (T, λ) , κNI (T, λ)], p1 (t) ≤ κ,∀t ∈[

S̄NI , S∗]. Thus, V NI
t = 0,∀t ∈

[
S̄NI , S∗]. The principal’s continuation value is given by

Vt (τ) =

∫ S∗

t

vλ (p1 (s)− κ) ds+ VS∗ (τ) . (2.37)

As p1 (t) ≤ κ,∀t ∈
[
S̄NI , S∗], ∫ S∗

t
vλ (p1 (s)− κ) ds ≤ 0 and it is increasing in t. As

VS̄NI (τ) = 0, where VS̄NI (τ) is given by (2.36), it follows that Vt (τ) ≥ 0,∀t ∈
[
S̄NI , S∗].

Third, consider t ∈ [S∗, τ). The absence of stopping at t ≥ S∗ reveals that xt ̸= 2.

Thus, q1 (t) = p1(t)
p0(t)+p1(t)

= λt
1+λt

, ∀t ∈ [S∗, τ), and, thus, q̇1 (t) > 0. Further, q1 (S∗) > κ.

The continuation value ∀t ∈ [S∗, τ) is given by

Vt (τ) = E
[∫ τ

t
vλ (q1 (z)− κ) dz | t < τ

]
.

Thus, Vt (τ) ≥ 0, ∀t ∈ [S∗, τ).

2. The case of κNI (T, λ) < κ ≤ κ̃ (T, λ).

I start with proving the existence of S∗ such that V (τ) = 0. For all t ∈ [0, S∗),

stopping never occurs, at t = S∗ it occurs if xS∗ = 2, and for all t ∈ (S∗, T ] it occurs at
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t = τ2 ∧ T . The principal’s long-run payoff can be written as

V (τ) = vλ

(∫ S∗

0

p1 (z)− κdz +

∫ T

S∗
(q1 (z)− κ) (1− P (xz = 2)) dz

)
. (2.38)

To ensure that S∗ makes the individual rationality constraint bind at t = 0, it is

necessary and sufficient that V (τ) = 0. The next step of the proof consist of inspecting

(2.38) to establish that there exists S∗ ensuring that V (τ) = 0. It follows the respective

part from the proof for the parametric case κND (T, λ) < κ ≤ κNI (T, λ), imposing

S̄NI = 0 in it everywhere; thus, I omit it for the sake of space.

I proceed with proving that the stopping time τ satisfies the conditions in Lemma

2.1 and thus it is obedient. The principal’s continuation value is given by (2.37). As

κ ∈ (κNI (T, λ) , κ̃ (T, λ)], it follows from Lemma 2.2 that V NI
t = 0,∀t ∈ [0, S∗]. First,

assume S∗ ≤ S̄NI . From the proof of Lemma 2.2, it follows that p1 (t) ≤ κ,∀t ∈ [0, S],

and p1 (t) ≥ κ,∀t ∈ [S, S̄NI ]. Thus,

∫ S̄NI

t

vλ (p1 (s)− κ) ds ≥
∫ S̄NI

0

vλ (p1 (s)− κ) ds,∀t[0, S̄NI ]. (2.39)

As Vt(τ) is given by (2.37), V (τ) = 0 and (2.39) imply that Vt(τ) ≥ 0,∀t ∈ [0, S∗].

Second, assume S∗ ≥ S̄NI . As V (τ) = 0 and
∫ S̄NI

0
vλ (p1 (s)− κ) ds < 0, it must be

that V (S̄NI) > 0. Further,
∫ S∗

t
vλ (p1 (s)− κ) ds increases in t for t ∈ [S̄NI , S∗]. Thus,

Vt(τ) ≥ 0, ∀t ∈ [0, S∗].

Finally, the proof that Vt(τ) ≥ 0, ∀t ∈ [S∗, τ) follows the the respective part of the

proof for the parametric case κ ∈ (κND (T, λ) , κNI (T, λ)]; thus, I omit it for the sake of

space.

Proof of Lemma 2.6. I provide the proof for the parametric cases κND (T, λ) < κ ≤
κNI (T, λ) and κNI (T, λ) < κ ≤ κ̃ (T, λ) separately.

1. The case of κND (T, λ) < κ ≤ κNI (T, λ).

Under any obedient optimal policy, the principal’s individual rationality constraint is

binding, thus, V (τ) = V NI , or equivalently p2 (T ) v − E [τ ] c = p2
(
S̄NI

)
v − S̄NIc. Thus,

E [τ ] =
1

λκ

(
p2 (T )− p2

(
S̄NI

))
+ S̄NI .
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Differentiating both sides with respect to κ yields

∂ E [τ ]

∂κ
=

e−Tλ (1 + Tλ)− e−S̄NIλ − κ

κ2λ
.

The equation

e−Tλ (1 + Tλ)− e−S̄NIλ − κ = 0

can be equivalently rewritten as

e−Tλ − e−S̄NIλ = κ− e−TλTλ.

It has a unique solution corresponding to κ = κND (T, λ) := e−TλTλ. As κ > κND (T, λ) ,

it holds that ∂ E [τ ] /∂κ < 0.

2. The case of κNI (T, λ) < κ ≤ κ̃ (T, λ).

The principal’s long-run payoff under any obedient optimal policy is given by

E [τ ] c = p2 (T ) v.

Rewriting it equivalently, E [τ ] = 1
λ
1
κ
p2 (T ) ⇒ ∂ E [τ ] /∂κ < 0.

Proof of Lemma 2.7. Lemma 2.4 implies that if the distribution of the stopping time τ

assigns zero probability to stopping in states 0 and 1 then V (τ) < 0 and the individual

rationality constraint is violated. Thus, the necessary condition for a information policy

represented by τ to be individually rational under κ ∈ (κ̃ (T, λ) , κFI (T, λ)) is that it

assigns a positive probability to stopping not only in state 2, but also to stopping in

either state 0 or state 1.

First, consider a stopping time τ that assigns a positive probability to stopping in

state 1, i.e. F1(t|t1) > 0 for some t ∈ [t1, T ). A pure information policy σ induces a

stopping time τπ defined on the probability space (H,F , P ), where H is the space of

histories and F is the natural filtration of the state process xt. Assume there is a positive

mass of histories H1 ⊆ H for some given stopping time τπ:

H1 :=
(
HA := {h|τ1(h) ≤ τπ(h) < τ2(h) ≤ T}

)
∪
(
HB := {h|τ1(h) ≤ τπ(h) < T < τ2(h)}

)
∪
(
HC := {h|τ1(h) ≤ τπ(h) = T < τ2(h)}

)
.
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I proceed with showing that at optimum, P (HA ∪ HB) = 0, i.e., stopping in state 1 is

possible only at T . Assume P (HA∪HB) > 0 and consider a new stopping time τ̃π, which

differs from τπ as follows: ∀h ∈ H1, let τ̃π(h) = τ2(h) ∧ T (so that under τ̃π, ∀h ∈ HA

stopping occurs in state 2), and ∀h ∈ H\H1, nothing is changed. Hereafter, for the sake

of conciseness, I drop the argument h of the stopping time τπ(h). Assessing the change

in the principal’s payoff yields:

V (τ̃π)− V (τπ)

=

∫
HA

vdP (h)−
∫
HA∪HB

c · τ2 ∧ TdP (h)−
(∫

HA∪HB

(0− c · τπ) dP (h)

)
=v P(HA)− c

∫
HA∪HB

(τ2 ∧ T − τπ) dP (h).

(2.40)

Let H∪ := HA ∪ HB, HA ∪ HB = {h|τ1 ≤ τπ < τ2 ∧ T}. Further, note that HA =

H∪ ∩ {τ2 ≤ T}. Given this, the expression (2.40) becomes

V (τ̃π)− V (τπ)

=v P (H∪ ∩ {τ2 ≤ T})− cE (τ2 ∧ T − τπ|H∪) P(H∪)

=v P (τ2 ≤ T |H∪) P (H∪)− cE (τ2 ∧ T − τπ|H∪) P(H∪)

=P (H∪)
(
v P (τ2 ≤ T |H∪)− cE (τ2 ∧ T − τπ|H∪)

)
.

(2.41)

Further, inspecting the expression in the brackets in the last line of (2.41) yields:

v P (τ2 ≤ T |H∪)− cE (τ2 ∧ T − τπ|H∪)

=

∫
Ĥ

v P (τ2 ≤ T |H∪ ∩ {τπ = S ± ε} ∩ {τ1 = t1 ± ε})

− cE (τ2 ∧ T − S|H∪ ∩ {τπ = S ± ε} ∩ {τ1 = t1 ± ε}) dP (h) ,

(2.42)

where {τπ = t± ε} is a shorthand for τπ ∈ [t− ε, t+ ε] and

Ĥ = {h|{τπ = S ± ε} ∩ {τ1 = t1 ± ε}S ∈ [0, T ] , t1 ∈ [0, T ]} .

It can be show that

{H∪ ∩ {τπ = S}} = {xS = 1} . (2.43)
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Further, it can be shown that for all 0 < t1 ≤ S ≤ T ,

P (τ2 ≤ T | {xS = 1} ∩ {τ1 = t1}) = P (τ2 ≤ T |xS = 1) ,

E (τ2 ∧ T − S| {xS = 1} ∩ {τ1 = t1}) = E (τ2 ∧ T − S|xS = 1) .
(2.44)

Given (2.43) and (2.44), consider (2.42), where I integrate over the set Ĥ. Consider

subset of Ĥ such that t1 > S, taking limε→0 of the integral over this subset yields 0 as the

bounded convergence theorem applies. Now consider taking limε→0 of integral over the

complement subset such that t1 ≤ S (and applying the bounded convergence theorem):

given (2.43), limε→0 of the expression under the integral in (2.42) becomes

v P (τ2 ≤ T | {xS = 1} ∩ {τ1 = t1})− cE (τ2 ∧ T − S| {xS = 1} ∩ {τ1 = t1}) . (2.45)

Further, given (2.44), for any t1, S in the t1 ≤ S subset of Ĥ, (2.45) is given by

v P (τ2 ≤ T |xS = 1)− cE (τ2 ∧ T − S|xS = 1) = (v − c

λ
)
(
1− e−λ(T−S)

)
> 0, (2.46)

where the sign of expression follows from κ ≤ κFI < 1 and the expression for E (τ2 ∧ T − S|xS = 1)

is obtained in (2.21). Thus limε→0 of the integral over this subset yields a strictly

positive value, and (2.42) is positive. Finally, as P (H∪) > 0 in (2.41), I get that

V (τ̃π)−V (τπ) > 0. Given this, it is straightforward that W (τ̃π)−W (τπ) > 0. Thus, for

a pure information policy σ to be optimal, it should not assign a positive probability to

stopping in state 1. It can be shown that this necessary condition carries over to a mixed

information policy σµ, and thus

F1(t|t1) = 0,∀t ∈ [t1, T ). (2.47)

Given (2.47), I can wlog restrict attention to τπ which assigns a positive probability

to stopping in states 0 and 2. Our goal here is to show that at optimum stopping in state

2 happens immediately. Given (2.47), wlog consider the following partition of H for some

given τπ:

(i). H0 := {h|τπ < τ1 ∧ T}, i.e., such histories that stopping occurs in state 0,

(ii). H1 := {h|τ1 ≤ τπ = T < τ2}, i.e., stopping occurs in state 1,

(iii). H2 :=
(
HA

2 := {h|τ2 < τπ ≤ T}
)
∪
(
HB

2 := {h|τ2 = τπ ≤ T}
)
, i.e., stopping occurs
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in state 2.

Showing that at optimum stopping in state 2 happens immediately boils down to showing

that optimality requires that P(HA
2 ) = 0. Note that as histories are induced by pure

information policy σ, while choosing τπ, which occurs before τ1, the principal does not

distinguish between any of the histories, and thus

τπ(h) = S0 ∈ [0, T ],∀h ∈ H0,

where S0 is deterministic. Given this, the partition becomes:

H0 :={h|S0 < τ1 ∧ T},

H1 :={h|τ1 ≤ S0 ≤ τπ = T < τ2},

H2 :=
(
HA

2 := {h|τ1 ≤ S0} ∩ {h|τ2 < τπ ≤ T}
)
∪

∪
(
HB

2 := {h|τ1 ≤ S0} ∩ {h|τ2 = τπ ≤ T}
)
.

(2.48)

The goal is to show that optimality requires that P
(
HA

2

)
= 0. I proceed with con-

structing τ̂π which gives the principal a payoff higher than τπ. τ̂π is constructed as

follows. First, for all h ∈ HA
2 , at t = τ2, flip a coin with a distribution θ ∈ [0, 1]. In the

case of heads, stop right away, i.e., at τ2. In the case of tails, proceed according to τπ.

Second, for all h ∈ H, add ∆S ∈ [0, T − S0] to S0 to ensure that

V (τπ) = V (τ̂π) ≥ 0, (2.49)

where the inequality is implied by the t = 0 IR constraint for the agent. I proceed with

showing that such ∆S ≥ 0 exists. Denote for each h:

∆τπ(h) :=

τπ(h)− τ2(h), if τ2(h) < τπ(h)

0, otherwise.

Writing out (2.49):

v P(H2)− c

(∫
H2

τ2 +∆τπdP + S0 P(H0) + T P(H1)

)
=v P(Ĥ2)− c

(∫
Ĥ2

τ2 +∆τπdP − θ ·
∫
ĤA

2

∆τπdP + (S0 +∆S) P(Ĥ0) + T P(Ĥ1)

)
,

(2.50)
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where the sets Ĥ0, Ĥ1, Ĥ2 are defined as follows:

Ĥ0 :={h|S0 +∆S < τ1 ∧ T}

Ĥ1 :={h|τ1 ≤ S0 +∆S ≤ τ̂π = T < τ2(h)}

Ĥ2 :=
(
HA

2 := {h|τ1 ≤ S0 +∆S} ∩ {h|τ1 ≤ τ2 < τ̂π ≤ T}
)
∪

∪
(
HB

2 := {h|τ1 ≤ S0 +∆S} ∩ {h|τ1 ≤ τ2 = τ̂π ≤ T}
)
.

(2.51)

The goal is to prove that the equation (2.50) has a solution in ∆S. Rewriting equation

(2.50) equivalently, while keeping V (τπ) = 0 in mind yields:

0 =v P(Ĥ2)− c

(∫
Ĥ2

τ2 +∆τπdP − θ ·
∫
ĤA

2

∆τπdP

)
− c

(
(S0 +∆S) P(Ĥ0) + T P(Ĥ1)

)
,

⇐⇒

c

(∫
Ĥ2

∆τπdP − θ ·
∫
ĤA

2

∆τπdP

)

=v P(Ĥ2)− c

(∫
Ĥ2

τ2dP + (S0 +∆S) P(Ĥ0) + T P(Ĥ1)

)
.

(2.52)

Consider stopping times τ̃π and ˜̃τπ given by

τ̃π =

τ2 ∧ T, if xS0 > 0

S0, otherwise.

˜̃τπ =

τ2 ∧ T, if xS0+∆S > 0

S0 +∆S, otherwise.

The equation (2.52) can be written as

c

(∫
Ĥ2

∆τπdP − θ ·
∫
ĤA

2

∆τπdP

)
=v P (x˜̃τπ = 2)− cE

[
˜̃τπ
]

⇐⇒

c

(∫
Ĥ2

∆τπdP − θ ·
∫
ĤA

2

∆τπdP

)
=V

(
˜̃τπ
)
.

(2.53)
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Let µ(∆S) denote the LHS and λ(∆S) denote the RHS of (2.53). It can be shown

that µ(∆S) and λ(∆S) are continuous in ∆S. First, consider the left bound, ∆S = 0,

and the LHS:

µ(0) = c

(∫
H2

∆τπdP − θ ·
∫
HA

2

∆τπdP

)

= c

(∫
HB

2

∆τπdP +

∫
HA

2

∆τπ (1− θ) dP

)
> 0.

(2.54)

Next, consider the RHS.

λ(0) = v P(H2)− c

(∫
H2

τ2dP + S0 P(H0) + T P(H1)

)
= V (τ̃π). (2.55)

Further, it can be shown from V (τπ) = 0 that V (τ̃π) = c
∫
H2

∆τπdP . To see this note

that

V (τπ) =0

⇐⇒ v P(H2)− c

(∫
H2

τπdP + S0 P(H0) + T P(H1)

)
=0

⇐⇒ v P(H2)− c

(∫
H2

τ2dP +

∫
H2

∆τπdP + S0 P(H0) + T P(H1)

)
=0

⇐⇒ v P(H2)− c

(∫
H2

τ2dP + S0 P(H0) + T P(H1)

)
=c

∫
H2

∆τπdP

⇐⇒ V (τ̃π) =c

∫
H2

∆τπdP.

Given this, (2.55) yields

λ(0) = c

∫
H2

∆τπdP. (2.56)

From (2.54) and (2.56),

λ(0) > µ(0) > 0. (2.57)

Next consider the right bound, ∆S = T − S0. First, consider LHS:

µ(T − S0) = c
(∫

h:{τ2≤T}∆τπdP − θ ·
∫
h:{τ2≤T}∩{τπ−τ2≥ε}∆τπdP

)
≥ 0. (2.58)
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Second, consider RHS:

λ(T − S0) =v P(τ2 ≤ T )− c

(∫
h:{τ2≤T}

τ2dP + T P(τ1 > T ) + T P(τ1 ≤ T < τ2)

)
=v P(τ2 ≤ T )− c

(∫
h:{τ2≤T}

τ2dP + T P(τ2 > T )

)
=v P(τ2 ≤ T )− E [τ2 ∧ T ] = V (τ2 ∧ T ) .

Further, as κ > κ̃, it holds that V (τ2 ∧ T ) < 0. Thus, λ(T − S0) < 0 and

λ(T − S0) < 0 ≤ µ(T − S0). (2.59)

Given (2.57) and (2.59), by the intermediate value theorem, there exists such τ̂π that

(2.49) holds. Finally, as
V (τπ) = P(HA)v − cE[τπ],

V (τ̂π) = P(ĤA)v − cE[τ̂π],

V (τπ) = V (τ̂π) by construction, and P(ĤA) > P(HA) by ∆S > 0, and thus it follows that

E[τ̂π] > E[τπ]. Thus, W (τ̂π) > W (τπ) and τ̂π gives the agent a payoff higher than τπ.

Thus, if a pure information policy σ is optimal then P
(
HA

2

)
= 0, i.e., stopping in state 2

happens immediately. Finally, it can be shown that this necessary condition carries over

to a mixed information policy σµ, and thus

F2(t|t1, t2) = 1,∀t ∈ [t2, T ].

Proof of Proposition 2.2. Given Lemma 2.7, the space of candidate optimal information

policies under κ ∈ (κ̃ (T, λ) , κFI (T, λ)] simplifies to information policies such that stop-

ping in state 2 happens at τ2, and also stopping in state 0 happens with positive prob-

ability. Thus, to characterize the information policy under κ ∈ (κ̃ (T, λ) , κFI (T, λ)], I

need to characterize the assignment of the probability mass of stopping in state 0 that is

optimal for the agent given the principal’s individual rationality constraints, i.e., choice

of F0(t).

At t = 0, the agent chooses a distribution F0 on [0, T ], observable to both the agent

and the principal. ρ stands for the random date at which the stopping occurs if the state

is 0 by that date. ρ is drawn at t = 0 according to F0, which is independent from the
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state process xt, and the draw privately observed by the agent.

I proceed to solving the agent’s problem:

max
F0

{EF0 [cE [τ ]]}

s.t. EF0 [Vt(τ)|t < τ ] ≥ 0,∀t ≥ 0,
(2.60)

where τ is given by (2.61).

I proceed in two steps: first, I formulate and solve the relaxed version of (2.60) with

individual rationality constraint only for t = 0; second, I demonstrate that the solution

to the relaxed problem satisfies the full system of constraints in (2.60).

The individual rationality constraint in the relaxed problem is given by

P (xτ = 2) v − E [τ ] c ≥ 0.

I proceed with a useful lemma.

Lemma 2.9. Given an information policy represented by

τ =

ρ, if xρ = 0

τ2 ∧ T, otherwise,
(2.61)

where ρ ∈ [0, T ], it holds that

P (xτ = 2) = P (xT = 2)− P (xρ = 0)P (xT = 2|xρ = 0)

and

E [τ ] = E [τ2 ∧ T ]− P (xρ = 0)E [τ2 ∧ T − ρ|xρ = 0] .

Proof. P (xτ = 2) stands for the mass of events such that the principal gets v. Given

(2.61), the principal gets v either if the second stage is completed not later than ρ or if

the first stage is completed not later than ρ and the second stage is completed not later

than T . Thus,

P (xτ = 2) = P
(
{xρ = 1} ∩ {τ2 ≤ T}

)
+ P

(
xρ = 2

)
.

Further,

P
(
{xρ = 1} ∩ {τ2 ≤ T}

)
= P (xρ = 1)P (τ2 ≤ T |xρ = 1) .
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Thus,

P (xτ = 2) = P
(
xρ = 1

)
P
(
τ2 ≤ T |xρ = 1

)
+ P

(
xρ = 2

)
. (2.62)

Further, from the full probability formula,

P (xρ = 1)P (τ2 ≤ T |xρ = 1) =

P (xT = 2)

− P (xρ = 0)P (τ2 ≤ T |xρ = 0)

− P (xρ = 2)P (τ2 ≤ T |xρ = 2) .

Plugging this into (2.62) yields

P (xτ = 2) = P (xT = 2)− P (xρ = 0)P (τ2 ≤ T |xρ = 0) .

I proceed with proving the second result of Lemma 2.9. Given (2.61), it holds that

E [τ ] = P (xρ = 0)E [τ |xρ = 0] + P (xρ > 0)E [τ |xρ > 0]

= P (xρ = 0) ρ+ P (xρ > 0)E [τ2 ∧ T |xρ > 0] .
(2.63)

Further, from the full probability formula,

P (xρ > 0)E [τ2 ∧ T |xρ > 0] =E [τ2 ∧ T ]

− P (xρ = 0)E [τ2 ∧ T |xρ = 0] .

Plugging this into (2.63) yields

E [τ ] = E [τ2 ∧ T ]− P (xρ = 0)E [τ2 ∧ T − ρ|xρ = 0] .

Using Lemma 2.9, the agent’s relaxed problem can be written out as:

min
F0

{EF0 [P (xρ = 0)E [τ2 ∧ T − ρ|xρ = 0]]}

s.t. EF0 [P (xρ = 0) (cE [τ2 ∧ T − ρ|xρ = 0]− v P (τ2 ≤ T |xρ = 0))] ≥ −V (τ2) .
(2.64)
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The Lagrangian function for the problem is

L =EF0 [P (xρ = 0)E [τ2 ∧ T − ρ|xρ = 0]]

− µ (EF0 [P (xρ = 0) (cE [τ2 ∧ T − ρ|xρ = 0]− v P (τ2 ≤ T |xρ = 0))] + V (τ2)) ,

where P (xρ = 0) = e−λρ,

E [τ2 ∧ T − ρ|xρ = 0]

=P (τ2 ≤ T |xρ = 0)

∫ T

ρ

z · λ
2 (z − ρ) e−λ(z−ρ)

P (τ2 ≤ T |xρ = 0)
dz + P (τ2 > T |xρ = 0)T − ρ

=
2

λ
− 2

λ
e−λ(T−ρ) − e−λ(T−ρ) (T − ρ)

(2.65)

and

P (τ2 ≤ T |xρ = 0) = 1− e−λ(T−ρ) − λ (T − ρ) e−λ(T−ρ). (2.66)

I obtain the F.O.C., which needs to hold for each value of ρ that has a positive

probability in F0:

e−λT
(
c
(
2e−λ(T−ρ) − 1

)
(µ− 1)− µλv

(
e−λ(T−ρ) − 1

))
= 0. (2.67)

The derivative of the left-hand side of (2.67) w.r.t. ρ is given by e−λρλ (2c+ µ (λv − 2c)).

As κFI (T, λ) < 1
2
, the derivative is positive. Thus, there exists at most one ρ that satisfies

the FOC (2.67). Thus, the optimal F0 is degenerate. I denote it with SA
0 , the interim

deadline.

I proceed with characterizing the optimal SA
0 :

min
S∈[0,T ]

{P (xS = 0)E [τ2 ∧ T − S|xS = 0]}

s.t. P (xS = 0) (cE [τ2 ∧ T − S|xS = 0]− v P (τ2 ≤ T |xρ = 0)) ≥ −V (τ2) .

(2.68)

The system of F.O.C. is given by
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e−λT c
(
2e−λ(T−S) − 1

)
(µ− 1)

− e−λTµλv
(
e−λ(T−S) − 1

)
≥ 0 if S = 0

= 0 if S ∈ (0, T )

≤ 0 if S = T

c

λ
e−λT

(
2
(
e−λ(T−S) − 1

)
− λ (T − S)

)
− ve−λT

((
e−λ(T−S) − 1

)
− λ (T − S)

)
+ V (τ2) ≥ 0

= 0 if µ > 0.

Assume µ = 0. In this case, the first F.O.C. wrt S yields −ce−λT
(
2e−λ(T−S) − 1

)
. The

expression is negative for all S ∈ (0, T ). Thus, µ > 0, and optimal S solves the binding

constraint. Thus, I proceed with inspecting the corresponding equation given by

c

λ
e−λT

(
2
(
e−λ(T−S) − 1

)
− λ (T − S)

)
− ve−λT

((
e−λ(T−S) − 1

)
− λ (T − S)

)
=− V (τ2) ,

(2.69)

where V (τ2) is given by (2.31).

The solution to (2.69) is given by

S =
1

λ

[
γ +W

(
−γe−γ

)]
, (2.70)

where γ = eλT 1−2κ
1−κ

and W(.) denotes the Lambert W function.

Denote the 0 and −1 branches of the Lambert W function by W0(.) and W−1(.).

κ ∈
(
0, 1

2

)
, thus, γ > 0. (2.70) depends on γ and for each γ ̸= 1 corresponds to two

points as the Lambert W function has two branches. The values of (2.70) as a function

of γ are presented in Figure 2.7. They are given by

S =


(
1
λ
[γ +W−1 (−γe−γ)] , 0

)
, if γ < 1(

0, 1
λ
[γ +W0 (−γe−γ)]

)
, if γ > 1

0, if γ = 1.

γ is decreasing in κ, and γ|κ=κFI = 1. As κ ≤ κFI , which corresponds to γ ≥ 1, the
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Figure 2.7: Roots of equation (2.69) as a function of the parameter γ:
root corresponding to branch 0 of the Lambert W function - thick;

root corresponding to branch −1 of the Lambert W function - dashed.

solution to (2.69) is given by

SA = 0, SB = 1
λ
[γ +W0 (−γe−γ)] .

As the objective of (2.68) is decreasing in S and SB > SA, the solution to (2.68) is given

by

SA
0 =

1

λ

[
γ +W0

(
−γe−γ

)]
, γ = eλT

1− 2κ

1− κ
. (2.71)

Finally, I can describe the solution to (2.64): τ is the stopping time such that stopping

occurs either at the moment of completion of the second stage of the project or at SA
0 ,

conditional on the absence of the completion of the first stage of the project, i.e.

τ =

SA
0 , if xSA

0
= 0

τ2 ∧ T, otherwise,
(2.72)

where SA
0 is given by (2.71).

I proceed with the second part of the proof: I demonstrate that (2.72) satisfies the full

system of constraints in (2.60), and thus solves (2.60). To do this, I need to demonstrate

that Vt (τ) ≥ 0, for all t ∈ [0, τ). If the recommendation mechanism τ is given by (2.72),

then, for t < SA
0 the absence of stopping at some t reveals that xt ̸= 2. Thus,

q1 (t) =
p1 (t)

p1 (t) + p0 (t)
=

λt

1 + λt
, ∀t < SA

0 .
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Hence, q̇1 (t) > 0, for all t < SA
0 . Further, for t ≥ SA

0 , the absence of stopping reveals

that xt = 1. Thus, q1 (t) = 1, for all t ≥ SA
0 .

I proceed with a useful lemma.

Lemma 2.10. It holds that

V̇t (τ) = λq1 (t)Vt (τ) + vλ (κ− q1 (t)) .

Proof. The continuation value of the principal at time t and given the information policy

represented by τ is given by

Vt (τ) = (vλq1 (t)− c)∆t + (1− λq1 (t)∆t)Vt+∆t (τ)

= vλ (q1 (t)− κ)∆t + (1− λq1 (t)∆t)Vt+∆t (τ) .

Differentiating both sides w.r.t. ∆t and considering lim∆t→0 (.) yields

0 = vλ (q1 (t)− κ)− λq1 (t)Vt (τ) + V̇t (τ) ,

which, after rearranging becomes

V̇t (τ) = λq1 (t)Vt (τ) + vλ (κ− q1 (t)) . (2.73)

Writing out Vt (τ) based on Lemma 2.10 yields

V̇t (τ) = λq1 (t)Vt (τ) + vλ (κ− q1 (t)) . (2.74)

q1 (0) = 0 and q̇1 (t) > 0, for all t < SA
0 . I define t̃ as the solution of λt

1+λt
= κ. q1 (t) < κ,

for all t ∈
[
0, t̃ ∧ SA

0

]
.

I argue that V (τ) ≥ 0 ⇒ Vt (τ) ≥ 0, for all t ∈
(
0, t̃ ∧ SA

0

)
. Assume that this is not

true, then ∃t̂ such that t̂ := inf
{
t ∈
(
0, t̃ ∧ SA

0

)
: Vt(τ) < 0

}
. As Vt(τ) is continuous in t,

it follows that Vt̂(τ) = 0, and by the mean value theorem there must be t ∈
(
0, t̂
)

such

that V̇t (τ) ≤ 0. But this is in contradiction with the fact that Vt(τ) ≥ 0 and 2.74.

Consider now t ∈ [t̃ ∧ SA
0 , τ). The continuation value can be written as

Vt (τ) = E
[∫ τ

t
vλ (q1 (z)− κ) dz | t < τ

]
. (2.75)
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As κ < 1
2

and q1 (t) = 1, for all t ∈ [SA
0 , τ), it holds that q1 (t) ≥ κ, ∀t ∈ [t̃∧SA

0 , τ). Thus,

it can be seen from (2.75) that Vt (τ) ≥ 0, ∀t ∈ [t̃ ∧ SA
0 , τ).

Proof of Proposition 2.3. I assume it is not the case that α = 1 and β = 0 as, otherwise,

agent is indifferent and discloses no information. I start with proving existence of κ̃ and

then proceed to proving that when the project is promising, an information policy, in

which stopping never occurs in state 0, is optimal. Proving existence of κ̃ follows the

steps of the proof of Lemma 2.4. The principal’s expected payoff is given by

V (τ) = αP (xτ = 2) v E
[
e−rτ |τ2 ≤ τ

]
− E

[∫ τ

0

e−rsds

]
c.

κ̃ solves V (τ2) = 0, or, equivalently

αP (xτ2∧T = 2) v E
[
e−r·τ2∧T |τ2 ≤ T

]
= E

[∫ τ2∧T

0

e−rsds

]
c, (2.76)

where P (xτ2∧T = 2) = p2 (T ). Solving (2.76) for κ yields

κ̃ (T, λ, r, α) =
1

λα

P (xτ2∧T = 2)E
[
e−r·τ2∧T |τ2 ≤ T

]
E
[∫ τ2∧T

0
e−rsds

] .

Finally, V (τ) decreases in κ. Thus, if κ < κ̃ (T, λ, r, α), then a stopping time τ = τ2 ∧ T

satisfies the principal’s individual rationality constraint.

Consider now the agent’s expected payoff W (τ) given by

W (τ) = (1− α) P (xτ = 2) v E
[
e−rτ |τ2 ≤ τ

]
+ E

[∫ τ

0

e−rsds

]
βc.

Consider the case κ ≤ κ̃ (T, λ, r, α). Consider a stopping time τ given by (2.61),

i.e., such that stopping happens either immediately at the moment of the second stage

completion, or in state 0 at a possibly random interim deadline. Further, consider an

alternative stopping time τ̂ = τ2 ∧ T . Given the two stopping times, P (xτ̂ = 2) >

P (xτ = 2). Further, E
[
e−rτ̂ |τ2 ≤ τ̂

]
= E [e−rτ |τ2 ≤ τ ] and E

[∫ τ̂

0
e−rsds

]
> E

[∫ τ

0
e−rsds

]
.

As W (τ̂) > W (τ) and κ < κ̃ (T, λ, r, α), the agent prefers to implement the stopping

time τ̂ rather than τ .

Consider now the case κ > κ̃ (T, λ, r, α). The application of the arguments from the

proof of Lemma 2.7 establishes the result.
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2.C The case of no project completion deadline

Importantly, the presence of a hard project deadline T serves as one of the necessary and

sufficient conditions for the agent to commit to an interim reporting deadline. Without

a hard deadline T , the principal’s incentives under full information are different. Recall

from Lemma 2.3 the principal’s incentive to continue investing decreases in the length

of absence of the first stage completion. In the case T → ∞, the continuation value

V FI
t|1 is constant and given by v (1− κ). As a result, the principal’s incentive to continue

investing given the absence of stage completion does not change over time. Thus, if the

principal opts in, he never chooses to stop investing before the completion of the second

stage occurs. As a result, setting an interim deadline stops serving as an agent’s tool to

incentivize the principal’s investment. The agent’s information policy in the case of no

project deadline is given in Lemma 2.11.

Lemma 2.11. Assume that T → ∞. In that case, if κ < 1
2
, then the agent uses the

information policy presented in Proposition 2.1.

Proof of Lemma 2.11. Under full information and the absence of an exogenous deadline,

the principal assigns value vx to each state x ∈ {0, 1, 2}. Clearly, v2 = v as the principal

stops immediately and gets v. In state 1, at each t the principal gets v∆t with probability

λ∆t, v1 with probability 1− λ∆t and pays c∆t. As the principal’s problem is stationary,

the principal’s continuation value v1 does not change with t. Assume that κ < 1, as

otherwise c ≥ λv and the principal chooses not to invest in state 1. As the principal’s

continuation value in state 1 does not change over time,

0 = λ · (v2 − v1)− c,

and so

v1 = v − c

λ
= v(1− κ).

Thus, the principal wants to invest in state 0 if c ≤ λv1, i.e., κ ≤ 1
2
.

Finally, as the information regarding τ1 is not decision-relevant for the principal, for

κ < 1
2
, the agent chooses the information policy that discloses only the completion of the
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second stage of the project and optimally postpones the disclosure to make the principal’s

individual rationality constraint bind.

124



Chapter 3

Form of Preference Misalignment
Linked to State-Pooling Structure in Bayesian
Persuasion

Co-authored with Rastislav Rehak (University of Cologne).

3.1 Introduction

Bayesian persuasion, pioneered by Kamenica and Gentzkow (2011), studies strategic dis-

closure of information when the sender controls the information environment (called sig-

nal) and the receiver controls the choice of action to be taken. As a review by Kamenica

(2019) suggests, this literature has provided many extensions of the original model of

Kamenica and Gentzkow (2011) with interesting qualitative insights. However, full char-

acterization of the optimal signal is generally difficult even in the original model. There

has been little progress on this front, and it has been limited to a small number of special

cases.1

We contribute to this literature by studying a special case of the original model that

has received little attention – a Bayesian persuasion model in which both the sender and

the receiver have state-dependent preferred actions. We characterize a qualitative property

of the optimal signal called state-pooling structure, which describes pools of states that

cannot be discerned from one another by the optimal signal. Specifically, we ask how the

1We return to this point in the discussion of related literature in Section 3.2.
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structure of state-dependent preference misalignment affects the state-pooling structure

of the optimal signal.

To illustrate the main point of this paper, we present an example of a politician

(receiver, he) and his advisor (sender, she). They both wish to implement some level of

government spending a ∈ R that is adapted to the current economic situation captured

by GDP per capita y, which takes one of three possible values: 1, 2, or 3. However, they

each have a different vision of optimal spending as a function of GDP per capita. The

advisor’s payoff is uA (a, y) = − (a− ωA(y))
2 and the politician’s payoff is uP (a, y) =

− (a− ωP (y))2, where ωA(y) and ωP (y) represent the preferred spending of the advisor

and the politician in state y, respectively. The advisor designs an investigation (a signal)

that can inform the politician about the realization of GDP per capita. She does that

strategically to influence the spending choice of the politician. We are interested in how

the structure of this signal depends on the form of misalignment between the advisor’s

and politician’s preferences captured by ωA and ωP , respectively.

Figure 3.1: The preferred level of spending of the advisor (ωA, in blue) and of the
politician (ωP , in red) as a function of state of the world (y). The difference between

levels of spending matters for the structure of the optimal signal:
left plot: the advisor fully reveals state 1 and pools states 2 and 3 together;

right plot: the advisor pools states 1 and 2 together and states 2 and 3 together.

Figure 3.1 illustrates how the form of disagreement between the advisor’s and politi-

cian’s preferred spending influences the structure of the optimal signal.2 In the case

presented in the left plot, the advisor’s optimal signal fully reveals whether the state of

the economy is low or not, i.e., one of the two outcomes of her investigation fully reveals

2The structures of the optimal signals for the two cases considered in Figure 3.1 are derived using
results from Section 3.6.
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the low state and the other leaves the politician uncertain about the high and middle

states – we say they are pooled together. Intuitively, both the advisor and the politi-

cian want the highest spending in the low state, so their goals are aligned in this state

and the advisor wants to reveal it perfectly. However, they disagree about whether the

spending should be higher in the middle or high state, so the advisor wants to attenuate

this disagreement by pooling these two states together. In the case presented in the right

plot, the advisor’s optimal signal reveals whether the economy is above or below average,

i.e., one of the two outcomes of her investigation pools the low and middle states, while

the other pools the middle and high states. Intuitively, the advisor and the politician

disagree about whether the spending should be higher in the low or middle state, so

the advisor wants to attenuate this disagreement by pooling these two states together.

However, they both agree that the spending should be higher in the middle state than

in the high state, but the politician prefers a greater spending difference between these

two states than the advisor. Therefore, the advisor wants to moderate the politician’s

actions by pooling these two states together.

In Section 3.3, we describe our model. We use the Bayesian persuasion framework

of Kamenica and Gentzkow (2011) with one-dimensional finite state space – the sender’s

preferred action. Both the sender and the receiver have quadratic loss functions with bliss

points depending on the state of the world. The structure of misalignment is captured by

function ρ mapping the state of the world (the sender’s preferred action) to the receiver’s

preferred action. The case of linear ρ with slope 1 corresponds to the benchmark of

perfect alignment.3 We do not impose any requirements on this function and we analyze

the role of its shape for the qualitative structure of the optimal signal in terms of state

pooling.

In Section 3.4, we present general results on the pooling structure of the optimal

signal. The patterns of pooling are driven by the sender’s trade-off between (i) the

informativeness of the signal, which leads to better adaptation of the action to the state

of the world in states of alignment, and (ii) the revelation of the realized mismatch of the

sender’s and receiver’s preferred actions, which drives the action of the receiver away from

the sender’s preferred action. First, we show that the sender generically benefits from

revealing some information. The only cases in which non-disclosure is optimal are when

ρ is linear with a slope sufficiently different from 1. Second, we demonstrate that the

3A state-independent intercept does not affect the choice of the signal because it is a “sunk cost” for
the sender.
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optimal signal does not induce an interior belief (except in cases of non-disclosure). As a

result, the optimal signal has a useful property. Each signal realization leads to a posterior

belief supported on a set of states. Further, while these sets of states corresponding to

different signal realizations may overlap, one set cannot be a subset of another. This

allows us to characterize optimal signal through its state-pooling structure.

In Section 3.5, we propose a simple graph procedure to characterize the optimal

structure of state pooling for a given ρ. This procedure consists of an analysis of ρ on

pairs of states and a test of pooling of more than two states. The crucial element of

this procedure is the slope of ρ between pairs of states, which plays the role of an index

of misalignment – if it is too high (disagreement about magnitude) or lower than zero

(disagreement about order), then it indicates space for pooling; otherwise, it indicates

space for separation.

In Section 3.6, we provide a full characterization of the state-pooling structure in the

case of three states of the world. The state-pooling structure is completely pinned down

by the shape of ρ except for the case in which ρ has a slope sufficiently different from 1

for each of the three pairs of states. In that case, the choice of a particular state-pooling

structure depends both on the shape of ρ and the prior.

3.2 Related literature

First, we relate our work to the Bayesian persuasion literature. The most relevant results

from the seminal paper by Kamenica and Gentzkow (2011) are (i) conditions for full

disclosure or non-disclosure in the general form and (ii) comparative statics of more

aligned preferences. Regarding point (i), we go beyond these two “corner” cases for the

optimal signal, similarly as in the recent studies of Arieli et al. (2020) and Kolotilin and

Wolitzky (2020). We discuss the connection of our work to Kolotilin and Wolitzky (2020)

in more detail later in this section. Regarding point (ii), we perform a different exercise

with preference misalignment: we fix the preferences and analyze how the structure of

preference misalignment is related to the structure of state pooling of the optimal signal.

The methodological progress in Bayesian persuasion on the front of providing a gen-

eral characterization of the structure of the optimal signal has been scarce. First, with

two or three states of the world, concavification provides an insightful graphical method of

solving the sender’s problem (Kamenica and Gentzkow, 2011). Second, when the sender’s

utility depends only on the expected state, the “Rothschild-Stiglitz approach” (Gentzkow
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and Kamenica, 2016) and linear programming methods (Kolotilin, 2018; Dworczak and

Martini, 2019) have been used to solve these problems. However, we are interested in

situations with the sender’s state-dependent preferred action and the role of the structure

of preference misalignment, where these methods do not deliver immediate answers. We

propose a new concavification-based approach of characterizing the state-pooling struc-

ture of the optimal signal.

The closest paper to ours is Kolotilin and Wolitzky (2020). However, we differ along

several directions, and our paper can be viewed as complementary to theirs. First, their

sender prefers higher actions independently of the state, but experiences state-dependent

loss from mismatching the preferred action. In contrast, our sender has state-dependent

preferred actions, but her loss from mismatching the preferred action is state-independent.

Second, their receiver prefers higher actions in higher states; we do not impose this

assumption. Third, they provide sufficient (and “almost necessary”) conditions for special

patterns of “assortative” disclosure. However, they do not provide a procedure for finding

the pooling structure of the optimal signal explicitly, and they avoid characterization of

more complicated patterns. In contrast, we work in a more specialized quadratic setting

and do not restrict ourselves to characterization of specific (pairwise) pooling structures.

Instead, we propose a general procedure for finding the pooling structure. Finally, the

mechanisms driving the results in the two papers are different: in Kolotilin and Wolitzky

(2020), the information does not have value for the sender alone, so state pooling emerges

from pure persuasion concerns, while state pooling in our model is driven by the interplay

of the sender’s incentives to disclose the state and to hide misalignment.

Two other related papers in Bayesian persuasion literature are Alonso and Câmara

(2016) and Galperti (2019). Similar to our paper, both rely on the concavification tech-

nique to obtain insights regarding the optimal signal. Alonso and Câmara (2016) consider

the standard Bayesian persuasion model, but assume that the sender and the receiver

have heterogeneous prior beliefs. While the sender in Alonso and Câmara (2016) uses

the variation of the difference between the sender’s and receiver’s prior beliefs across the

states of the world to design the optimal disclosure, our sender uses the variation in the

misalignment of the sender’s and receiver’s bliss points across the states of the world.4

Galperti (2019) considers the standard Bayesian persuasion model in which the sender

4They demonstrate that, under some mild conditions on the sender’s and receiver’s preferences, the
sender generically chooses at least partial disclosure over non-disclosure. Similarly, in our model, the
non-disclosure conditions are stringent.
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and the receiver have a special type of heterogeneous prior beliefs: the receiver attaches

zero probability to some states that are perceived with positive probability by the sender.

While we restrict attention to a sender with state-dependent bliss actions and study the

general patterns of state pooling, Galperti (2019) makes weaker assumptions about pref-

erences and focuses on patterns of pooling of the states that have a priori zero probability

for the receiver.

Second, the results of our study are connected to the literature on persuasion games,

in which the sender chooses how to disclose her private verifiable information regarding

the state of the world. Milgrom (1981) and Milgrom and Roberts (1986) analyze the

conventional model of a persuasion game and establish the result on “unraveling” of the

sender’s private information leading to full disclosure. Dye (1985) and Shin (1994) study

state pooling in a similar game but with (second-order) uncertainty of the receiver about

whether the sender actually has some private information or not. Seidmann and Winter

(1997) analyze a persuasion game in which the sender has state-dependent preferred

actions, and they demonstrate that the “unraveling” result still holds. The combination

of these two features – second-order uncertainty and state-dependent preferred actions

– has been studied in a small number of recent papers. The closest paper to ours is

Hummel et al. (2018), in which unraveling does not occur due to the presence of the

receiver’s second-order uncertainty. In the Bayesian persuasion model that we study, the

sender’s disclosure mechanism serves a similar role to the one in Hummel et al. (2018):

the sender moderates the receiver’s actions via pooling of the states for which the sender’s

bliss-point line is sufficiently flat relative to that of the receiver.

Finally, Miura (2018) studies how pooling equilibria can be characterized based on

a procedure that uses a masquerade graph introduced in Hagenbach et al. (2014). In

his procedure, a pool of states is formed by the types of the sender who are mutually

interested in masquerading, i.e., being perceived by the receiver as some other type in the

pool. In spirit, this resembles the procedure for discovery of the state-pooling structure

we introduce: a masquerade edge between two nodes (types) in Miura’s graph procedure

plays a similar role as an edge between two nodes (states) in our graph procedure – it

captures a motive for manipulative non-disclosure.
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3.3 Model

We consider the standard Bayesian persuasion framework: a sender (S, she) designs and

commits to an information structure (a Blackwell experiment) about an unknown state

of the world ω ∈ Ω to influence the action a ∈ A of a receiver (R, he). The state space

is finite, Ω ⊂ R, |Ω| = n, and the action space is continuous, A = R. The sender and the

receiver have a common prior p0 ∈ ∆(Ω). They have the following preferences:

uS = −(a− ω)2,

uR = −(a− ρ(ω))2,

where ρ : Ω → R is arbitrary. Hence, state ω represents the preferred action of the sender

and ρ(ω) the preferred action of the receiver.5

As is standard, the sender can be seen equivalently as choosing a Bayes-plausible

distribution over posteriors, which we refer to as signal : π ∈ ∆(∆(Ω)) such that

∑
p∈supp(π)

π(p)p(ω) = p0(ω) ∀ω ∈ Ω.6 (3.1)

The timing is as follows: the sender chooses a signal π, a posterior belief p is drawn

according to π, and the receiver takes an action a given the belief p. The solution concept

is subgame perfect equilibrium. Going backwards, the receiver’s optimal action given a

posterior belief p is a(p) = Ep [ρ(ω)]. Hence, the game reduces to the following problem

of the sender:

max
π∈∆(∆(Ω))

−Eπ

[
Ep

[
(Ep [ρ(ω)]− ω)2

]]
s.t.

∑
p∈supp(π)

π(p)p = p0, (3.2)

where Eπ [·] is the expectation over posteriors with respect to π and Ep [·] is the expecta-

tion over states with respect to p.

5This model can be seen as a reduced form of a model in which the state of the world is two-
dimensional, y = (ωS , ωR), and the sender can design the experiment only about the dimension that is
relevant for her, ωS . The receiver then forms expectations about his relevant dimension, ωR, using a
common prior p0 ∈ ∆(Ω2), so ρ(ωS) = Ep0 [ωR|ωS ]. This formulation maps better to the example with
a politician and his advisor presented in the Introduction.

6Kamenica and Gentzkow (2011) show that there exists an optimal π such that |supp(π)| ≤
min{|Ω|, |A|}. Hence, we restrict our search for the optimal signal only to signals satisfying |supp(π)| ≤ n.
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3.4 General results about the optimal signal

In this section, we present general results about the optimal signal, and combine them

in the next section to construct the procedure that allows us to discover which states are

“pooled” together in the optimal signal.

To better understand how the sender chooses the signal, we start by inspecting the

trade-off she faces. We can rewrite the objective function from her problem (3.2) as

varπ (Ep [ω])− Eπ

[
(Ep [ω − ρ(ω)])2

]
. (3.3)

The first term captures the benefit of a more informative (in the sense of Blackwell) π

– ideally, she would like to reveal all states perfectly.7 The second term captures the

“cost” of revealed misalignment – ideally, she would like to “pool” some states to hide the

largest misalignment. Hence, the sender prefers to reveal the most information so that

the action is well adapted to the state. However, since she does not control the action

directly, she wants to exploit the form of misalignment captured by ρ to manipulate the

action of the receiver.

We can notice that the intercept of ρ does not play a role for the optimal signal.

Formally, consider any function ρ and take ρ′ = b+ ρ for some arbitrary constant b ∈ R.

The sender’s objective function

varπ (Ep [ω])− Eπ

[
(Ep [ω − ρ′(ω)])2

]
(3.4)

can be rewritten in the form

varπ (Ep [ω])− Eπ

[
(Ep [ω − ρ(ω)])2

]
− 2bEp0 [ω − ρ(ω)] + b2. (3.5)

The last two terms in (3.5) do not depend on π, so the optimal signals under ρ and ρ′

coincide. Hence, a state-independent bias b (no matter how large) does not affect the

optimal signal.8 Intuitively, the state-independent bias acts as a sunk cost for the sender.

She cannot hide it by any manipulation of the signal because it is perfectly known ex

ante.
7To illustrate this point, imagine an interior prior p0, a signal π1 with only interior beliefs, and a

signal π2 similar to π1, but with more extreme beliefs: p2k = p1k + ε(p1k − p0) ∀k, for some small enough
ε > 0. Then, varπ2 (Ep [ω]) = (1 + ε)2varπ1 (Ep [ω]) > varπ1 (Ep [ω]).

8We can contrast this feature with cheap talk (Crawford and Sobel, 1982b) in which the value of b
matters for the informativeness of the equilibrium communication.
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It follows from the irrelevance of the intercept of ρ that what matters for the optimal

signal is the overall shape of ρ, not agreement in particular states. In particular, perfect

agreement between the sender and the receiver about the preferred action in a state of

the world does not suffice for disclosure of that state. For example, consider two states

ω1 < ω2, ρ (ω1) = ω1, ρ (ω2) = 2ω1 − ω2. Even though the sender and the receiver

perfectly agree about the preferred action in ω1, they substantially disagree in ω2. It will

be evident from the results in this section that full disclosure of the “perfect-agreement

state” ω1 is not optimal. Intuitively, due to the Bayesian consistency constraint, full

disclosure of ω1 would limit the opportunity to moderate the substantial disagreement in

ω2.9

3.4.1 Characterization of non-disclosure

In this subsection, we characterize the situation in which the sender does not benefit from

revealing any information to the receiver.

Proposition 3.1. The sender never (i.e., for any prior) benefits from providing any

information if and only if ρ is linear with the slope from (−∞, 0] ∪ [2,+∞).

Proof. The proof is in Appendix 3.A. It identifies the conditions for concavity of the

expected utility of the sender as a function of the induced posterior by the principal-

minor test of the Hessian matrix of this function.

Surprisingly, it is relatively easy to introduce some information revelation in our set-

ting: it is sufficient to have a nonlinearity in ρ. The intuition for this generic taste for

information revelation is that information has high value for the sender who wants to

match the state of the world. The cases of optimal non-disclosure identified in Proposi-

tion 3.1 are intuitive too: (i) misalignment in order, i.e., when the sender and the receiver

disagree about the order of the bliss actions (slope of ρ negative) or (ii) misalignment in

magnitude, i.e., when they agree about the order, but the receiver overreacts relative to

the sender (slope of ρ greater than two).

The non-disclosure characterized in Proposition 3.1 is never uniquely optimal for

n ≥ 3. To resolve such cases of indifference, we make the following assumption.

Assumption 3.1. Under indifference, the sender chooses not to disclose the states.

9In fact, Proposition 3.1 will imply that it is optimal not to disclose anything in this example.
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This assumption can be justified by the sender’s interest in saving effort on communi-

cation when it is not needed. Technically, it greatly simplifies the analysis. Substantively,

it leads us to identify the least informative signal in the indifference set of the sender.

In Appendix 3.B, we analyze the structure of our problem that gives rise to the cases of

indifference, and discuss the role of Assumption 3.1 as opposed to other selection criteria.

3.4.2 Full disclosure

In the next proposition, we provide a sufficient condition for full disclosure of the state

of the world.

Proposition 3.2. If ρ is linear with a slope in [0, 2], full revelation of the state is always

optimal (i.e., for any prior).

Proof. The proof is in Appendix 3.A. It mostly follows from the proof of Proposition

3.1.

For general n, Proposition 3.2 provides only a sufficient condition for full disclosure,

but for n = 2 we can provide a full characterization. This special case is a cornerstone of

our analysis of the case with general n.

Lemma 3.1. For n = 2, the sender strictly prefers full revelation if and only if the slope

of ρ is in (0, 2). The sender is indifferent between any feasible signals if and only if the

slope of ρ is either zero or two. The sender strictly prefers no revelation if and only if

the slope of ρ is in (−∞, 0) ∪ (2,∞).

Proof. The proof is in Appendix 3.A.

3.4.3 “Extremization” – non-existence of an interior posterior

After analyzing the conditions for extreme signals (non-disclosure and full disclosure),

we look at more structured signals. The following proposition provides the key result

enabling that analysis.

Proposition 3.3 (Extremization). Suppose non-disclosure is not optimal. Then, it is

never optimal to induce an interior posterior.

Proof. The proof is in Appendix 3.A. It is constructed by contradiction with the optimal-

ity of the signal, based on an improvement by splitting one of its posteriors. We call this
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result “extremization” because it leads us from the interior of the simplex to its extreme

(boundary) subsimplexes.

We can apply Proposition 3.3 iteratively to eliminate the areas of posteriors that will

not appear in the optimal signal. This sharpens the idea about the structure of the

optimal signal, which is our main interest, and simplifies the search for it. We use this

idea in the next section.

3.5 State-pooling structure of the optimal signal

In this section, we go beyond the extreme cases of full disclosure and non-disclosure and

study how preference misalignment, captured by ρ, affects a qualitative property of the

optimal signal that we call state pooling. We define the state-pooling structure of a signal

and present an illustrative procedure for its discovery that builds on the general results

from Section 3.4.

3.5.1 Definitions

The stringent condition for non-disclosure from Proposition 3.1, combined with Propo-

sition 3.3, implies that the supports of posterior beliefs in the optimal signal possess a

notable property. They form a collection of sets of states. Moreover, while these sets can

overlap, one set cannot be a subset of another. This property enables us to characterize

a signal through its state-pooling structure, introduced in the following definition.

Definition 3.1. We say that states ωk1 , . . . , ωkm , for some k1, . . . , km ∈ {1, . . . , n}, are

pooled together (or form a pool of states) under signal π if the set M = {ωk1 , . . . , ωkm}
satisfies

∃p ∈ supp(π) : supp(p) = M & ∀p′ ∈ supp(π) s.t. p′ ̸= p : M ⊈ supp(p′), (3.6)

where supp(·) denotes support.10 The set of all pools of states that signal π induces is

called the state-pooling structure of signal π.

10In intuitive terms, ωk1
, . . . , ωkm

are pooled together under signal π if π reveals whether the event
{ωk1

, . . . , ωkm
} occurred.
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The state-pooling structure of a signal can be captured graphically by representing

each state of the world by a node and each pool by highlighting the corresponding set of

nodes; an example is presented in Figure 3.2.

ω1 ω2

ω3 ω4

Figure 3.2: Example of a graphical representation of the state-pooling structure when
n = 4 and the signal induces posteriors supported on {ω1} and {ω2, ω3, ω4}

In the next subsection, we propose a procedure that aims to find the state-pooling

structure of the optimal signal for a given form of preference misalignment captured by

ρ. This procedure can easily be represented graphically; its desired output is a graphical

representation of the state-pooling structure of the type depicted in Figure 3.2, i.e.,

nodes representing states and highlighted pools. However, the proposed procedure may

not identify the state-pooling structure of the optimal signal completely in some cases,

but may offer only candidates for optimal pools. Nevertheless, we can often identify

which of the candidate pools are certainly a part of the optimal state-pooling structure.

Hence, we introduce two types of highlighting in the procedure – dashed (highlighting

candidate pools) and full (highlighting pools certainly belonging to the optimal state-

pooling structure). Naturally, highlighting in full is superior to highlighting in dashed

because it expresses certainty.

An important working component of the graphical procedure is the edges between

pairs of nodes – they represent a pooling tendency of the corresponding states. We will

see that this pooling tendency is driven by the slope of ρ between pairs of corresponding

states; we denote the slope of ρ between states ωi and ωj by

sij =
ρ(ωj)− ρ(ωi)

ωj − ωi

. (3.7)

This object represents an index of misalignment between the receiver (the numerator)

and the sender (the denominator).11

A subroutine of our procedure relates to the well-known problem from computer

science called the clique problem. Thus, we borrow a few notions from graph theory.
11A similar object plays an important role for the pooling structure (of types) in Hummel et al. (2018).
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Definition 3.2. Let G = (V,E) be an undirected graph (with V denoting the set of

nodes and E denoting the set of edges). We call a subset of nodes C ⊆ V clique if the

subgraph of G induced by C is complete (i.e., the nodes in C are fully connected). A

clique C is called maximal if there does not exist another clique strictly above C (in the

sense of inclusion).

The version of the clique problem that we are interested in is finding all maximal

cliques in an undirected graph. Systematic inspection of all subsets of nodes or the

Bronâ€“Kerbosch algorithm can be used to solve this problem.

3.5.2 Procedure for discovery of the state-pooling structure of

the optimal signal

We present a procedure that inspects the form of misalignment function ρ and reflects its

implications for the state-pooling structure of the optimal signal on a graph. The output

are pools highlighted in full (which are certainly present in the state-pooling structure of

the optimal signal) and candidate pools highlighted in dashed (which may be present in

the state-pooling structure of the optimal signal). We present an example of the output

of this procedure at the end of this subsection and a step-by-step illustration of the

procedure leading to this output in Appendix 3.C.

Procedure for discovery of the state-pooling structure of the optimal signal:

Input: Set of states Ω (|Ω| = n) and preference-misalignment function ρ : Ω → R.

1. Create a fully connected graph on n nodes where node i corresponds to state ωi.

2. Eliminate all edges ij such that the slope of ρ on ωi < ωj, sij, is in (0, 2).

3. Highlight in full each isolated node (i.e., a node with no edges leading to any other

node) as a singleton pool.

4. Among the remaining (i.e., non-isolated) nodes, list all maximal cliques.

5. For each maximal clique C:

for k from |C| to 2:

for all subsets M ⊆ C such that |M | = k:

[leftmargin=2cm]If M was ever inspected before, do nothing and continue

iteration. If M is a subset of a highlighted set of nodes, do nothing and
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continue iteration. Otherwise, apply the non-disclosure test to the in-

spected pool M : Is ρ linear with slope in (−∞, 0] ∪ [2,∞) on the states

corresponding to the nodes in M?

••• – If yes, highlight pool M in dashed on output and continue iteration.

– If no, denote M as inspected and continue iteration.

6. If any node belongs only to one highlighted pool (in dashed), highlight the corre-

sponding pool in full (if not already highlighted in full).

An example of the output produced by this procedure appears in the right panel of

Figure 3.3; an example of function ρ leading to this output is depicted in the left panel.12

State 1 is isolated because the sender and the receiver agree on its position relative to

other states both in order and in magnitude, so there is no reason for the sender to

leverage this state for manipulation of beliefs. States 2, 3, and 4 are pooled together

(they pass the non-disclosure test) because the sender tries to moderate the action of the

receiver, who would overreact in these states (disagreement about magnitude). States 3

and 5 may be pooled together (disagreement about order) and 4 and 5 may also be pooled

together (disagreement about order), but states 3, 4, and 5 are not pooled together even

though they form a maximal clique (because they do not pass the non-disclosure test) –

the sender prefers to exploit some variation in this collection of nodes. Hence, the optimal

signal will induce posterior p1 = δ1 and posterior p2 supported on 2, 3, and 4. Moreover,

it will induce at least one of the posteriors p3 or p4 supported on 3 and 5 or 4 and 5,

respectively.

3.5.3 Discussion of the procedure

The idea underlying our proposed procedure is the iterative application of Proposition

3.1 and Proposition 3.3, which we call a top-down approach. Starting from the full

(n − 1)-dimensional simplex,13 we can check whether non-disclosure is optimal using

Proposition 3.1. If it is optimal, the sender chooses a completely uninformative signal.

If it is not, Proposition 3.3 suggests that the optimal signal will induce posteriors on the

boundary of the (n − 1)-dimensional simplex. Hence, we focus on each of the (n − 2)-

dimensional boundary simplexes and apply the same test. Specifically, by restricting the

12A step-by-step illustration of the procedure leading to this output appears in Appendix 3.C.
13We start from the (n− 1)-dimensional simplex because pn = 1− p1 − · · · − pn−1.
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Figure 3.3: Output of the graph procedure (right panel) for function ρ on the left
panel: 1 is isolated; 2, 3, and 4 are pooled together (they pass the non-disclosure test);
3 and 5 may be pooled together; 4 and 5 may be pooled together; 3, 4, and 5 are not

pooled together (they do not pass the non-disclosure test)

sender’s expected utility (as a function of the posterior) on a particular (n−2)-dimensional

simplex, we use Proposition 3.1 to check if non-disclosure is optimal there:

• If it is optimal, then the sender cannot benefit from splitting the pool of states

corresponding to the vertices of the inspected (n−2)-dimensional simplex. However,

the sender might not want to choose this pool of states at all, so this pool of states

constitutes only a candidate pool for the optimal signal.14

• If it is not optimal, then by Proposition 3.3 we eliminate all interior points from

the inspected (n − 2)-dimensional simplex and restrict our focus to its (n − 3)-

dimensional boundary simplexes; for each of them, we repeat the same steps.

Along the path from the full (n− 1)-dimensional simplex to lower-dimensional simplexes

due to elimination of “interior” posteriors outlined in the second bullet point, we move

closer to the trivial case of 1-dimensional simplexes where we apply Lemma 3.1.

Our procedure relies on this top-down approach in Step 5. However, compared to the

top-down approach, the procedure starts with a simplification of the problem by identi-

fying the only relevant subsets of nodes for this inspection – the maximal cliques (Steps

2 and 4). This step is justified by the fact that the necessary condition for optimality

of non-disclosure on a simplex is optimality of non-disclosure on its boundary simplexes,

which follows easily from Proposition 3.1. Hence, if we have a given collection of nodes
14Here, we also use Assumption 3.1. This simplifies the analysis because we do not need to keep track

of all equivalent splits.
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with some pair of nodes in it that is not pooled, this whole collection of nodes cannot

form a pool.

In Steps 3 and 6 of the procedure, we exploit Bayesian consistency (and the interior

prior). In particular, the structure of the graph obtained after Step 2 is informative

about the state-pooling structure by itself: any isolated node represents a state that is

fully disclosed. In Step 5, we can identify only candidates for optimal pools, but, in Step

6, Bayesian consistency can help us to determine which of them will be certainly a part

of the optimal pooling structure.

Note that we have not mentioned the prior in our identification of the optimal

pooling structure. This prior-independence of our procedure relies on a feature of the

quadratic setting: constant convexity/concavity structure in all points. However, even

in the quadratic setting, the pooling structure of the optimal signal itself is not always

prior-independent. This feature imposes a limit on how far we can go with our simple

prior-independent procedure in identifying the full pooling structure of the optimal sig-

nal. In some cases, we also need to incorporate the prior into our analysis at the end of

the procedure (see Section 3.6 for examples).

3.6 Characterization of the state-pooling structure for

n = 3

In this section, we use the above procedure to characterize the state-pooling structure of

the optimal signal in the simplest interesting case of three states (the case of two states is

trivial and is fully characterized in Lemma 3.1). We describe the state-pooling structure

for all possible cases of the form of ρ, which we capture through s12, s23, and s13. For

clarity of exposition, we divide the cases into five classes (i)-(v) based on the features of

the resulting state-pooling structure and the role of the prior. Class (i) corresponds to

full disclosure, class (ii) corresponds to signals that fully disclose one of the states, classes

(iii) and (iv) correspond to signals that reveal some information without fully revealing

any of the states, and class (v) corresponds to non-disclosure. Within a given class, we

use letters to distinguish between particular state-pooling structures.

Proposition 3.4. Assume that there are three states of the world, Ω = {ω1, ω2, ω3}.
Depending on the form of ρ, as pinned down by s12, s23, and s13, the state-pooling structure

of the optimal signal is as follows:
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s12 s23 s13 state-pooling structure
i ∈ (0, 2) ∈ (0, 2) ∈ (0, 2) {{ω1} , {ω2} , {ω3}}
ii.a ∈ (0, 2) /∈ (0, 2) ∈ (0, 2) {{ω1} , {ω2, ω3}}
ii.b /∈ (0, 2) ∈ (0, 2) ∈ (0, 2) {{ω3} , {ω1, ω2}}
iii.a /∈ (0, 2) ∈ (0, 2) /∈ (0, 2) {{ω1, ω2} , {ω1, ω3}}
iii.b ∈ (0, 2) /∈ (0, 2) /∈ (0, 2) {{ω2, ω3} , {ω1, ω3}}
iii.c /∈ (0, 2) /∈ (0, 2) ∈ (0, 2) {{ω1, ω2} , {ω2, ω3}}

iv15 /∈ (0, 2) /∈ (0, 2) /∈ (0, 2)
depending on s12, s23, s13, and prior,
either (iii.a), (iii.b), or (iii.c) pooling

v s12 = s23 = s13 = s /∈ (0, 2) {{ω1, ω2, ω3}}

Proof. The proof is in Appendix 3.A.

The observed state-pooling structures emerge from the interaction of the two main

forces that drive the sender’s choice. On the one hand, the sender wants to disclose the

states so that the induced receiver’s actions vary sufficiently with the state of the world.

On the other hand, she wants to pool the states together to dampen that variation if

there is a severe misalignment in either order or magnitude in some pairs of states. The

slope of ρ for states ωi and ωj, sij (i, j ∈ {1, 2, 3}, i ̸= j), serves as an index that can

capture the misalignment in either order or magnitude in that pair of states.

In case (i), there is no severe preference misalignment in either pair of states, so

the sender fully discloses each state. In case (ii.a), s23 captures a severe preference

misalignment in the pair of states ω2, ω3, so the sender pools these states together to

conceal the misalignment but reveals state ω1 to maximize the informativeness of the

signal. In case (iii.a), s12 and s13 capture a severe preference misalignment in two pairs of

states, so the sender pools the respective pairs together but still reveals some information:

{{ω1, ω2} , {ω1, ω3}}. In case (iv), there is a misalignment in each of the three pairs of

states and the optimal state-pooling structure is sensitive to the prior and to the relation

between the slopes of ρ.

A notable feature of the state-pooling structure of the optimal signal under n = 3

is that the sender never chooses to fully disclose the middle state of the world ω2 and

pool ω1 and ω3 together. For that to be the case, it would need to hold s13 /∈ (0, 2),

15s12 = s23 = s13 = s /∈ (0, 2) corresponds to non-disclosure, so we exclude this combination from case
(iv) and denote it as a separate case (v). See Appendix 3.A for details on the choice from (iii.a), (iii.b),
and (iii.c).
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s12 ∈ (0, 2), and s23 ∈ (0, 2), which cannot happen.16 The intuition is that full disclosure

of ω2 and pooling of ω1 and ω3 is not in line with the sender’s preference for maximizing

the variance of the induced posterior beliefs. A potentially better way to leverage state ω2

is to form two pools {ω2, ω1} and {ω2, ω3} because it can induce relatively more variation

in the receiver’s actions.

3.7 Conclusion

We consider a Bayesian persuasion model in which both the sender and the receiver have

state-dependent preferred actions. We specialize to a quadratic-utility setting to simplify

the otherwise nontrivial problem of characterizing the optimal signal. In this framework,

we make the trade-off that drives the sender’s choice of the signal transparent: on the

one hand, the sender wants to reveal information to adapt the action to the state of the

world; on the other hand, she wants to hide information to conceal the misalignment

between her and the receiver.

We focus on characterization of the state-pooling structure of the optimal signal. In

particular, we link the form of misalignment between the sender and the receiver in their

preferred (state-dependent) actions to the state-pooling structure of the sender’s optimal

signal. To achieve this goal, we propose an illustrative graphical procedure for finding

the sets of states that are pooled together in the supports of posteriors of the optimal

signal.

Our model naturally suits the analysis of influence in political economy. The sender’s

and receiver’s (state-dependent) single-peaked preferences over the continuous action

space are consistent with ideology-based preferences over a continuous set of policy alter-

natives. That set could represent potential allocations of a resource such as the amount

of budget spending on a public good. Thus, our framework can capture an arbitrary form

of ideological disagreement between a lobbyist and a policymaker regarding the preferred

state-dependent policy and yield predictions about the structure of the lobbyist’s chosen

information disclosure.

Our analysis motivates a number of directions for further research. First, further

investigation and economic interpretation of particular state-pooling patterns that emerge

when there are more than three states of the world might be of interest. Second, more

16Note that s13 = ρ(ω3)−ρ(ω1)
ω3−ω1

= 1
(ω3−ω2)+(ω2−ω1)

(s23 (ω3 − ω2) + s12 (ω2 − ω1)) and (0, 2) is a convex
set.
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progress could be made on analyzing state-pooling patterns that may emerge under loss

functions of a more general form.
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3.A Technical details and proofs

3.A.1 The structure of the sender’s problem

We are interested in the solution of the sender’s problem

max
π∈∆(∆(Ω))

−Eπ

[
Ep

[
(Ep [ρ(ω)]− ω)2

]]
s.t.

∑
p∈supp(π)

π(p)p = p0. (3.8)

We can rewrite the objective function as

−Eπ

[
Ep [ρ(ω)]

2 − 2Ep [ρ(ω)] Ep [ω] + Ep

[
ω2
]]
. (3.9)

Using the Bayesian consistency condition
∑

p π(p)p = p0, we can see that the last term

becomes

−Ep0

[
ω2
]
. (3.10)

Therefore, the solution to the problem above is the same as the solution to the problem

max
π∈∆(∆(Ω))

Eπ [Ep [ρ(ω)] (2Ep [ω]− Ep [ρ(ω)])] s.t.
∑

p∈supp(π)

π(p)p = p0. (3.11)

A general approach to solving this problem is concavification of the function

g(p) = Ep [ρ(ω)] (2Ep [ω]− Ep [ρ(ω)]). (3.12)

We use the parametrization g(p) = g(p1, p2, . . . , pn−1), where pn = 1 − p1 − · · · − pn−1.

We collect the free variables in the vector

p̄ = (p1, . . . , pn−1)
′.

We also denote

ρ̄ = (ρ(ω1)− ρ(ωn), . . . , ρ(ωn−1)− ρ(ωn))
′,

ω̄ = (ω1 − ωn, . . . , ωn−1 − ωn)
′.
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With this notation, we can write

g(p̄) = p̄′ [2ρ̄ω̄′ − ρ̄ρ̄′]︸ ︷︷ ︸
G

p̄+ [2ωnρ̄
′ − ρnρ̄

′ + 2ρnω̄
′ − ρnρ̄

′]p̄+ 2ρnωn − ρ2n. (3.13)

Hence, the curvature of g is driven by matrix G because the Hessian matrix is

H = G+G′.17 (3.15)

The ij element (i, j ∈ {1, . . . , n− 1}) of H is

Hij =
∂2g(p)

∂pi∂pj
= 2{[ρ(ωi)− ρ(ωn)](ωj − ωn)− [ρ(ωi)− ρ(ωn)][ρ(ωj)− ρ(ωn)]

+[ρ(ωj)− ρ(ωn)](ωi − ωn)}. (3.16)

This special structure of the problem implies that general submatrices of order 3

(for n ≥ 4) of the Hessian matrix H have zero determinants.18 Hence, by the Laplace

expansion of determinants, all submatrices of order k ≥ 3 have zero determinants. We can

deduce from this observation, using the fact that the determinant rank of a matrix is equal

to the column/row rank of the matrix,19 that H has at most two non-zero eigenvalues.

Therefore, there are at least n − 3 orthogonal directions (in space Rn−1 ∋ p̄) that span

the space along which g is linear, and at most two orthogonal directions that span the

space (orthogonal to the space spanned by the linear directions) on which g has a less

trivial shape.

3.A.2 Proofs

Proof of Proposition 3.1. The sender does not benefit from providing any information

if and only if g is concave.20 g is concave if and only if its Hessian matrix is negative

17We can also rewrite g as a linear-quadratic form

g(p̄) =
1

2
p̄′Hp̄+ [2ωnρ̄

′ − ρnρ̄
′ + 2ρnω̄

′ − ρnρ̄
′]p̄+ 2ρnωn − ρ2n. (3.15)

18Proof is available upon request. It is basically just tedious algebra.
19The determinant rank of H is the size k of the largest k× k submatrix with a non-zero determinant.

The column/row rank of H is the dimension of the space spanned by the columns/rows of H. It is
straightforward to show that these ranks are equal.

20The “if” part follows directly from the definition of concavity. The “only if” part would also follow
directly from the definition of concavity if the sender did not benefit from providing any information for
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semidefinite, which can be checked with the test on its principal minors.

Suppose n ≥ 3 (the case n = 2 is covered separately in Lemma 3.1). Let ∆k be a

principal minor of order k of the Hessian matrix of g. Since ∆k = 0 for k ≥ 3 (see the

discussion above), a necessary and sufficient condition for g to be concave is ∆1 ≤ 0 and

∆2 ≥ 0 for all ∆1,∆2.

Let ∆i
1 be the first-order principal minor obtained from row (column) i:

∆i
1 = 2 (ρ (ωi)− ρ (ωn)) (2 (ωi − ωn)− (ρ (ωi)− ρ (ωn))) . (3.17)

Let ∆ij
2 be the second-order principal minor obtained from rows (columns) i and j:

∆ij
2 = −4[(ρ(ωi)− ρ(ωj))(ωj − ωn)− (ρ(ωj)− ρ(ωn))(ωi − ωj)]

2. (3.18)

We can see that ∆ij
2 ≤ 0. Hence, g is concave or convex only if ∆2 = 0 for all ∆2. This

condition yields a system of (n−1)(n−2)
2

equations

∆ij
2 = 0, i, j ∈ {1, ..., n− 1}, i ̸= j. (3.19)

Under the natural assumption that ω1 < · · · < ωn (which is without loss of generality),

we obtain from ∆ij
2 = 0

ρ (ωj)− ρ (ωi)

ωj − ωi

=
ρ (ωn)− ρ (ωj)

ωn − ωj

(3.20)

or, equivalently,
ρ (ωj)− ρ (ωi)

ωj − ωi

=
ρ (ωn)− ρ (ωi)

ωn − ωi

. (3.21)

Therefore, the system of equations (3.19) gives rise to (n−1)(n−2)
2

slope equality conditions.

From (3.20) and (3.21), we have

j = n− 1, i = n− 2 :
ρ (ωn)− ρ (ωn−1)

ωn − ωn−1

=
ρ (ωn−1)− ρ (ωn−2)

ωn−1 − ωn−2

=
ρ (ωn)− ρ (ωn−2)

ωn − ωn−2

,

j = n− 2, i = n− 3 :
ρ (ωn)− ρ (ωn−2)

ωn − ωn−2

=
ρ (ωn−2)− ρ (ωn−3)

ωn−2 − ωn−3

=
ρ (ωn)− ρ (ωn−3)

ωn − ωn−3

,

...

every prior. But if the sender does not benefit from providing any information only in one prior, because
g is a linear-quadratic form, this property extends to all priors.
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j = 2, i = 1 :
ρ (ωn)− ρ (ω2)

ωn − ω2

=
ρ (ω2)− ρ (ω1)

ω2 − ω1

=
ρ (ωn)− ρ (ω1)

ωn − ω1

.

Hence, system (3.19) is equivalent to a linearity of ρ:

s :=
ρ (ω2)− ρ (ω1)

ω2 − ω1

=
ρ (ω3)− ρ (ω2)

ω3 − ω2

= · · · = ρ (ωn)− ρ (ωn−1)

ωn − ωn−1

. (3.22)

Finally, given that ∆2 = 0 for all ∆2 holds, one can establish whether g is concave or

convex based on the sign of ∆1. Inspecting the sign of (3.17) yields:

∆i
1 ≥ 0 ⇐⇒ (ρ (ωn)− ρ (ωi) ≥ 0) ∧ ρ (ωn)− ρ (ωi)

ωn − ωi

≤ 2 ⇐⇒ 0 ≤ s ≤ 2. (3.23)

The complement identifies the concavity slopes (including the borderline slopes s ∈
{0, 2}).

Proof of Proposition 3.2. This proposition is basically proven in the proof of Proposition

3.1, using the fact that g is convex if and only if ∆1 ≥ 0 and ∆2 ≥ 0 for all ∆1, ∆2. The

only difference is that the convexity of g is only sufficient for optimality of full disclosure,

but is not necessary (we can provide an example of optimal full disclosure with non-convex

g).

Proof of Lemma 3.1. For n = 2, g is a quadratic function, so its second derivative com-

pletely characterizes its curvature, which completely characterizes the type of optimal

signals. In particular, let ω1 < ω2. Then,

∂2g(p1)

∂p21
= 2 (ρ (ω1)− ρ (ω2)) (2 (ω1 − ω2)− (ρ (ω1)− ρ (ω2))) , (3.24)

which is strictly positive if and only if the slope of ρ is in (0, 2) (strict convexity and full

disclosure), strictly negative if and only if the slope of ρ is in (−∞, 0) ∪ (2,∞) (strict

concavity and non-disclosure), and zero if and only if the slope of ρ is either zero or two

(linearity and indifference).

Proof of Proposition 3.3. Non-disclosure is optimal if and only if g is concave. Hence, if

non-disclosure is not optimal, g is not concave. Therefore, g has to have a direction along

which it is strictly convex.21

21This is independent of the position because g is a linear-quadratic form.
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Suppose (toward contradiction) that it is optimal to induce an interior posterior, i.e.,

there exists a posterior p in the support of the optimal signal π such that p(ω) > 0 ∀ω.

Then, we can split p along a strictly convex direction to q1 and q2, i.e., there exists some

λ ∈ (0, 1) such that p = λq1+(1−λ)q2. Then, π′ formed from π by replacing p by q1 with

probability λπ(p) and q2 with probability (1− λ)π(p) is Bayes-plausible and it induces a

strict improvement for the sender because, from strict convexity of g along the direction

determined by q1 and q2,

Eπ′ [g(p)]− Eπ [g(p)] = π(p)(λg(q1) + (1− λ)g(q2)− g(p)) > 0. (3.25)

This is a contradiction with optimality of π.

Proof of Proposition 3.4. We derive the state-pooling structure for the form of ρ for each

case presented in the table of Proposition 3.4 using the graph procedure presented in

Section 3.5.2.

Case (i). Since s12, s23, s13 ∈ (0, 2), Step 2 of the procedure eliminates all edges, so

each node is highlighted in full in Step 3. Thus immediately after Step 3, the procedure

yields the state-pooling structure of the optimal signal {{ω1} , {ω2} , {ω3}}.

Case (ii.a). Since s12, s13 ∈ (0, 2) and s23 /∈ (0, 2), after Step 2 of the procedure, node

1 is isolated (thus, it is highlighted in full in Step 3) and there is an edge left between

nodes 2 and 3. Since the pool {2, 3} is a maximal clique (Step 4) and ρ is obviously linear

with slope from (−∞, 0] ∪ [2,∞) on states ω2 and ω3, this pool is highlighted in dashed

in Step 5. Finally, it is highlighted in full in Step 6 because nodes 2 and 3 belong only to

this pool. Therefore, the state-pooling structure of the optimal signal is {{ω1} , {ω2, ω3}}.

Case (ii.b). Analogous to case (ii.a).

Case (iii.a). Since s12, s13 /∈ (0, 2) and s23 ∈ (0, 2), after Step 2 of the procedure,

there are two edges left: one between nodes 1 and 2 and one between nodes 1 and 3.

Since both pools {1, 2} and {1, 3} are maximal cliques (Step 4) and ρ is obviously linear

with slope from (−∞, 0]∪ [2,∞) on states ω1, ω2 and ω1, ω3, respectively, these pools are

highlighted in dashed in Step 5. Finally, they are highlighted in full in Step 6 because

node 2 belongs only to pool {1, 2} and node 3 belongs only to pool {1, 3}. Therefore, the

state-pooling structure of the optimal signal is {{ω1, ω2} , {ω1, ω3}}.

Case (iii.b). Analogous to case (iii.a).

Case (iii.c). Analogous to case (iii.a).
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Case (iv). We assume that s12 = s23 = s13 = s /∈ (0, 2) does not hold (this case

is covered by case (v)). Thus, the graph procedure yields the candidate pools {ω1, ω2},
{ω2, ω3}, and {ω1, ω3} (corresponding to the pools of nodes highlighted in dashed in the

graph). To determine the optimal state-pooling structure given the set of candidate pools

is non-trivial.

Denote the n-th directional derivative of a function f : R2 → R along a direction

(a, b) by Dn
(a,b)f . Denote p1 := Pr (ω1) and p2 := Pr (ω2). From the proof of Proposition

3.1, the nonlinearity in ρ implies that there exists a direction (a, b) along which g (p1, p2)

(defined in (3.12)) is strictly convex. The set of all such directions is pinned down by the

condition

D2
(a,b)g (p) > 0, (3.26)

which rewrites as (assuming s13 ̸= 0 and s23 ̸= 0; see below for the discussion of these

cases)

a2 (ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] +

b2 (ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] +

abρ(ω2)−ρ(ω3)
ρ(ω1)−ρ(ω3)

(ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] +

abρ(ω1)−ρ(ω3)
ρ(ω2)−ρ(ω3)

(ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] > 0.

(3.27)

Next, s13 /∈ (0, 2) ∧ s23 /∈ (0, 2) implies22

(ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] ≤ 0,

(ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] ≤ 0.
(3.28)

We can see from (3.27) and (3.28) that if (a, b) is a direction along which g is strictly

convex, both a and b have to be non-zero. Thus, we can normalize the direction (a, b) to

(a
b
, 1) and denote x := a

b
. Hence, the set of directions along which g is strictly convex is

characterized by

x2 (ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] +

(ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] +

xρ(ω2)−ρ(ω3)
ρ(ω1)−ρ(ω3)

(ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] +

xρ(ω1)−ρ(ω3)
ρ(ω2)−ρ(ω3)

(ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] > 0.

(3.29)

22At least one of these terms is non-zero due to the assumption that s12 = s23 = s13 = s /∈ (0, 2) does
not hold.
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Inspecting (3.29) given (3.28), one observes that the first two terms in (3.29) are non-

positive. Therefore, the sum of the last two terms must necessarily be strictly positive

for any direction along which g is strictly convex. Further, if the third term is strictly

negative, the fourth term is non-positive and vice versa. So, if either of the last two

terms is strictly negative, their sum is also strictly negative. Equivalently, if their sum

is non-negative, they both have to be non-negative. Moreover, if their sum is strictly

positive, they cannot both be zero. But if any one of the last two terms in (3.29) is

strictly positive, then by (3.28)

x
ρ(ω1)− ρ(ω3)

ρ(ω2)− ρ(ω3)
< 0. (3.30)

To summarize, if (x, 1) is a direction along which g is strictly convex, then

x > 0 if ρ(ω1)−ρ(ω3)
ρ(ω2)−ρ(ω3)

< 0 ( ⇐⇒ s13
s23

< 0),

x < 0 if ρ(ω1)−ρ(ω3)
ρ(ω2)−ρ(ω3)

> 0 ( ⇐⇒ s13
s23

> 0).
(3.31)

By similar arguments, if s13 = 0,23 the necessary condition for (x, 1) being the direction

along which g is strictly convex isx > 0 if s23 > 0,

x < 0 if s23 < 0
(3.32)

and if s23 = 0, the necessary condition for (x, 1) being the direction along which g is

strictly convex is x > 0 if s13 > 0,

x < 0 if s13 < 0.
(3.33)

Given some interior prior, the sender splits it along a direction along which g is strictly

convex and induces posteriors that lie on two edges of the simplex. We can distinguish

the following cases:

1. If s13
s23

< 0 or s13 = 0 ∧ s23 > 0 or s23 = 0 ∧ s13 > 0, then x > 0. Hence, the optimal

split is either of the form (q1, 0, 1− q1), (1− q2, q2, 0) (pooling case (iii.a)) or of the

form (q1, 1− q1, 0), (0, q2, 1− q2) (pooling case (iii.c)) depending on the prior.

23Notice that s13 and s23 cannot be simultaneously zero by assumption, because this would lead to
case (v).
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2. If s13
s23

> 0 or s13 = 0 ∧ s23 < 0 or s23 = 0 ∧ s13 < 0, then x < 0. In this case, we

need to distinguish further:

(a) If the optimal split goes along the direction (−1, 1), it is of the form (q1, 0, 1−
q1), (0, q2, 1− q2) (pooling case (iii.b)).

(b) If the optimal split goes along direction (x, 1) with x < −1, it is either of the

form (q1, 0, 1−q1), (0, q2, 1−q2) (pooling case (iii.b)) or of the form (q1, 1−q1, 0),

(0, q2, 1− q2) (pooling case (iii.c)) depending on the prior.

(c) If the optimal split goes along direction (x, 1) with x > −1, it is either of the

form (q1, 0, 1−q1), (0, q2, 1−q2) (pooling case (iii.b)) or of the form (q1, 0, 1−q1),

(q2, 1− q2, 0) (pooling case (iii.a)) depending on the prior.

Case (v). Proposition 3.1 applies and under Assumption 3.1 yields non-disclosure.

3.B Comment on Assumption 3.1

The structure of function g (see (3.12)) uncovered in Section 3.A.1 implies that for n ≥ 4,

there always exists a direction along which g is linear. Therefore, even when g is concave

and non-disclosure is optimal, it is never uniquely optimal for n ≥ 4. In particular, the

sender is indifferent between sticking to the prior and splitting it to some posteriors from

the space determined by the linear directions of g (and the prior), possibly all the way

to the boundaries of the original simplex. Moreover, if g is concave, it is also concave

on the boundary simplexes and we can repeat the same argument, proceeding downward

in dimensions. For n = 3, by Proposition 3.1, g is concave only if it is linear in one

direction. Hence, even for n = 3, non-disclosure is not uniquely optimal and the sender

is indifferent between choosing a non-informative signal (keeping the belief at the prior)

and splitting the prior into posteriors along the linear direction, all the way to the edges

of the simplex. Therefore, pairwise signals (i.e., signals leading to posteriors supported

on at most two states) are also always optimal.24

In the main text, we impose Assumption 3.1, which resolves indifference in favor of

non-disclosure of states. It is a natural assumption that can be justified by the sender not

wasting resources (time and energy) on communication when it is not needed (although

the cost of communication is not featured explicitly in our model). This selection criterion
24This result is reminiscent of the result of Kolotilin and Wolitzky (2020) that there is no loss of

generality from focusing on pairwise signals in their setup.
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simplifies the analysis. First, it enables us to avoid imposing some ad hoc assumptions

about the selection of specific partial disclosure patterns from the indifference set. Second,

a different natural assumption might be that the sender resolves her indifference in favor

of splitting. However, this assumption would require us to impose some additional ad

hoc assumptions about the selection of specific directions along which to split (for higher

n) in order to deliver concrete predictions. Moreover, such a resolution of indifference

would be very sensitive to the prior (even in terms of the predicted pooling structure), so

we would need to keep track of the specific directions of indifference, which would render

the analysis much more cumbersome.25

3.C Demonstration of the procedure for discovery of

the state-pooling structure of the optimal signal

We demonstrate the application of the procedure for discovery of the state-pooling struc-

ture of the optimal signal (presented in Section 3.5) to the example introduced in Figure

3.3 (for convenience, we reproduce it in Figure 3.4 in this section). This demonstration

is accompanied by Figure 3.5. Red color in Figure 3.5 represents highlighting as defined

in Section 3.5 – final pools in full and candidate pools in dashed. Green color denotes

cliques chosen for application of the non-disclosure test (Step 5 of the procedure).

The inputs to the procedure are the values of ω and ρ (ω) from Figure 3.4. From

formula (3.7), we obtain the values of all sij: s12 = 0.5, s13 = 1.5, s14 = 5.5
3

, s15 = 2.5
4

,

s23 = 2.5, s24 = 2.5, s25 = 2
3
, s34 = 2.5, s35 = −1

4
, s45 = −3.

In (a) in Figure 3.5, we start with a fully connected graph on five nodes (n = 5)

corresponding to states 1, 2, ..., 5.

In (b) in Figure 3.5, we observe the same graph after the application of Steps 2 and

3 of the procedure. We removed all edges ij such that sij ∈ (0, 2). As a result, node 1

became isolated, so we highlighted it in full. Hence, we can leave out node 1 from further

analysis and focus on nodes 2, 3, 4, and 5.

In (c) in Figure 3.5, we proceed to Steps 4 and 5 of the procedure. It is easily seen

that there are two maximal cliques: one formed by nodes 2, 3, and 4 and one formed by
25To illustrate the dependence on the prior, for n = 3 under linear ρ (which is sufficient for global

concavity or convexity), the direction of linearity is (−ω3−ω2

ω3−ω1
, 1)′. Since the first component is strictly

between 0 and -1, we can see that, while the non-disclosure is also optimal, the state-pooling struc-
ture (defined in Section 3.5) of the optimal informative signal can be either {{ω1, ω3}, {ω2, ω3}} or
{{ω1, ω3}, {ω1, ω2}}, depending on the prior.
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Figure 3.4: Preference misalignment function ρ considered for the demonstration of
the graph procedure

nodes 3, 4, and 5. First, we inspect the maximal clique formed by 2, 3, and 4 (highlighted

in green) and we apply the non-disclosure test. The non-disclosure condition holds, so

we highlight the maximal clique {2, 3, 4} in dashed (as illustrated in (d)). Hence, we do

not need to consider any more of its subsets in Step 5 and we can move our focus to the

other maximal clique.

In (d) in Figure 3.5, we inspect the maximal clique formed by nodes 3, 4, and 5

(highlighted in green). The non-disclosure condition does not hold, so we denote the

maximal clique {3, 4, 5} as inspected and proceed to consider its subsets of cardinality 2.

In (e) in Figure 3.5, we first consider the clique formed by nodes 4 and 5. As the

non-disclosure condition is satisfied, we highlight this clique in dashed. Proceeding with

the iteration, we test clique {3, 5}. Again, the non-disclosure condition is satisfied, so we

highlight it in dashed. Finally, clique {3, 4} is a subset of the highlighted set {2, 3, 4}, so

we do not test it.

In (f) in Figure 3.5, we proceed to Step 6 of the procedure: as node 2 belongs to

only one highlighted clique, {2, 3, 4}, we highlight that clique in full. The output of

the procedure is depicted in (f) in Figure 3.5: the singleton pool {1} and pool {2, 3, 4}
highlighted in full and pools {3, 5} and {4, 5} highlighted in dashed. Hence, the posteriors

induced by the optimal signal certainly include a posterior supported on states ω2 =

2, ω3 = 3, ω4 = 4 and the posterior δω1 . Moreover, the optimal signal will induce at least

one posterior supported on ω3 = 3, ω5 = 5 or ω4 = 4, ω5 = 5.
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Figure 3.5: Illustration of the execution of the procedure, applied to the input from
Figure 3.4; the output is in (f); red color represents highlighting as defined in

Section 3.5 – final pools in full and candidate pools in dashed; green color denotes
cliques chosen for application of the non-disclosure test
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