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Abstract

Chapter 1 studies strategy-proofness in a congested market with asymmetric informa-
tion and interdependences in players preferences. The market consists of players and
depletable locations. Knowing about the asymmetries of information and interdepen-
dences in preferences, the players choose one of two locations. In case of congestion, the
rejected players are costlessly allocated to the other location. We show that, under cor-
related preferences, asymmetric information causes strategy-proofness to fail. We further
provide a characterization of strategy-proofness of the allocation mechanism. Finally,
we provide several sufficient conditions for strategy-proofness including independence of
preferences.

Chapter 2 studies information acquisition incentives and welfare in a congested market
with independent preferences. The players first learn about their preferences over two lo-
cations, after which they choose a location. In case of congestion, the rejected players are
costlessly allocated to the other location. First, we show that for independent preferences,
the allocation game with information acquisition tends to exhibit complementarities in in-
formation acquisition. This results in equilibrium multiplicity. Second, we show that due
to prevailing positive externalities the equilibrium, in which more agents learn, welfare-
dominates the non-learning equilibrium. Finally, we show that abolishing uncertainty
about allocation chances leads to a welfare improvement for the players. The results can
be applied, for instance, to matching markets. In particular, the second welfare result
can be applied to a school choice setting, in which randomization is often used to break
ties. We argue that the welfare of students would be improved if tie-breaking occurred
before information acquisition - a change which is technically possible to implement.

Chapter 3 studies a monopolistic platform’s decision on how to allocate sellers to
consumers in a two-sided market for depletable goods. We find that the platform recom-
mends low quality sellers and thus facilitates sales of lower quality products in order to
increase the size of the market. This is achieved by a mechanism in which the platform
commits to a rule through which it diverts some demand from high quality products to
low quality products in times of low demand in order to satisfy the participation con-
straint of low quality sellers and ensure they earn non-negative profits, and thereby enable
them to stay on the market. The rule consequently increases the number of sellers on the
market in times of high demand and the platform can extract additional profits through
transaction fees.

In Czech:

Kapitola 1 se zaméruje na strategy-proof mechanismy na trzich s asymetrickymi in-
formacemi a interdependentnimi preferencemi hrac¢i. Modelovany trh se sklada z hraca
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a vycerpatelnych lokaci. Hraci si zvoli jednu ze dvou lokaci. Lokace vSak ma pouze
omezenou kapacitu. V piipadé, Ze se lokace preplni, jsou odmitnuti hrac¢i presunuti
na zbylou lokaci s volnou kapacitou. Tento ¢lanek ukazuje, Ze v piipadé korelovanych
preferenci prestavaji byt mechanismy strategy-proof. Charakterizace strategy-proofness
aloka¢nich mechanismii je predlozena. Na zavér, je predlozeno nékolik postacujicich pod-
minek na strategy-proofness, véetné nezavislosti preferenci.

Kapitola 2 se zamétuje na incentivy uceni a blahobyt na trzich s vycerpatelnymi
statky. Abychom se vyhnuli absenci strategy-proofness predpoklddame, Ze preference
hracu jsou statisticky nezavislé. Hraci si po zjisténi informaci o dvou dostupnych lokacich
jednu z nich vyberou. V ptipadé, Ze se lokace preplni, jsou odmitnuti hrac¢i presunuti
na zbylou lokaci s volnou kapacitou. Nejprve ukdzeme, ze v takové hie vykazuji ucici
strategie hracu strategickou komplementaritu. To m4 za nasledek nejednoznacnost feseni
v podobé Nashovych rovnovih. UkéZeme, 7Ze pozitivni externality maji za nésledek, ze
v rovnovahznych stavech, v kterych se u¢i vice hracu, dosahuji hrac¢i vyssiho blahobytu.
Na zavér ukazeme, 7Ze snizeni nejistoty v Sancich na pfijeti hrace lokaci, ma za nasledek
zvyseni blahobytu hrac¢a. Vysledek je mozné pfimo aplikovat na problém s volbou skoly, v
kterém se casto vyuziva loterie za uc¢elem alokace studentu se stejnou prioritou. Tvrdime,
7e studentim by se dafilo 1épe, kdyby se tyto loterie realizovaly v dostate¢ném piedstihu
pred prihlagsovanim studenti na Skoly.

Kapitola 3 se zamétuje na chovani monopolistickych platforem a jejich rozhodovani
jak k sobé alokovat kupujici a prodejce na trzich s vycerpatelnymi statky. Ukazeme, ze
platformy maji incentiv parovat kupujici k prodejcim s nizkou kvalitou za tcelem aby
tito prodejci na platformé zustali aktivni. Platforma tak v disledku uméle zvétsuje trh
na kterém piisobi. Trh tak miize pojmout vice kupujicich v obdobi zvySené poptavky.
Platforma v dusledku realizuje dodatecné zisky v téchto obdobich.
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Introduction

The unifying theme of this dissertation is allocation mechanisms in markets which ex-
perience congestion. Allocation mechanisms are relevant in many economic contexts, in
which the desired market outcome cannot be achieved through price mechanisms. Some-
times it is not feasible to implement prices efficiently, while in other times they are not
even desirable. While examples of the former are ubiquitous, examples of the latter in-
clude markets for education and organ donation. In practice, even in the presence of
prices, and perhaps in current pandemic times more than ever, we still sometimes face
congestion or shortages. While shortages are mostly associated with undersupplies of de-
manded commodities, congestion is often associated with heterogeneous and indivisible
goods. However, in current times, when we observe queues in front of supermarkets and
shortages of protective masks, other sanitary products, and even certain food items, we
are reminded more than ever that shortages are not only a problem of the past which can

be ignored in the expectation that it can be solved solely via a price mechanism.

The idea behind the allocation mechanism described in chapters one and two is that
it is uncertain whether a person will be allocated what he chose, as allocations depend
on how many people make the same choice. The literature on market design provides
many different allocation mechanisms which fit this description, such as the celebrated
deferred acceptance mechanism (Gale and Shapley 1962). Nevertheless, the easiest way
to motivate this setting is with a first-come-first-served allocation rule. The mechanism
can then be applied to a person deciding which retail outlet to go to to acquire a certain
good. Much like with limited places in schools, which are often allocated through a
deferred acceptance mechanism, the success of the action depends on how many people
choose the same retail outlet, in which the supply of the particular good is limited. More

specifically, we assume that each person prefers one of two locations (schools or retail
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outlets)!. However, each location has a limited capacity to provide the good. If the
person is not able to obtain the good in his chosen location, he still can obtain it in
another location, although he prefers it from his chosen location or his chosen location
sells it for a lower price.

Chapter one takes a deferred acceptance mechanism in a model in which players
have uncertain preferences over the locations. Previous literature has shown that this
mechanism is strategy-proof in a setting with perfect information and in a setting where
information is independent across players. Strategy-proofness simply means that players
choose the location they prefer in the case of perfect information, and the location they
prefer in expectation in the case of uncertain preferences. In this chapter we allow the
information to be interdependent across players and show under what conditions strategy-
proofness is achieved. Finally, we provide a counter-example which shows that strategy-
proofness fails for correlated preferences.

In contrast with chapter one, in which the players are endowed with information, in
chapter two the players acquire information at a cost. We assume no failure of strategy-
proofness by using a sufficient condition for strategy-proofness from chapter one. This
allows us to study information acquisition incentives and welfare in congested markets.
We first show that the mechanism exhibits complementarity in information acquisition
- the more players learn, the higher the learning incentives are. This contrasts with
previous literature, which suggests that in such a mechanism the result should be the
opposite. Further, this causes the setting to exhibit multiple equilibria, one in which no
one is learning, because the incentives to learn are not high enough, and another one in
which most of the population is learning. We then move to the welfare results, which
show that learning imposes a positive externality on other players, and consequently
the non-learning equilibrium exhibits underlearning. Finally, we show that abolishing
the allocation uncertainty in the mechanism is associated with a welfare improvement.
This is driven by the fact that learning becomes more efficient as players have more
information about the payoffs from learning. This can be implemented in practice, for
example, by reserving the good in advance at the location for the player. We provide
such an implementation rule for the case of the school choice setting.

Chapter three deviates from this setting and instead studies an allocation problem
of a monopolistic platform. We motivate this setting with websites including Airbnb

and booking.com, which have large market shares for short term rental of apartments.
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However, such platforms often also have power over the information they provide to
consumers, hence they can heavily influence demand for the goods. While the sellers are
free to decide whether to sell through the platform or not, the platform can influence their
decision by promoting their product. The main result of the paper is that the platform
shifts demand towards low quality sellers to induce them to stay on the platform in order
to satisfy realizations of higher demand. The high quality sellers, who lose from this,
stay on the platform regardless, as their expected profits remain positive. This gives the
platform additional profits, because the platform’s profit is proportional to the size of the
market. However, this profit is offset by the loss of profit stemming from the fact that
higher quality products sell at higher prices. Chapter three analyzes this trade-off and

shows a solution to the platform’s problem.






Chapter 1

Strategy-Proofness in Congested Markets with Asym-

metric Information and Interdependendent Preferences'

1.1 Introduction

Chances of allocation with a location (a job, a place in a school, a depletable good) often
depend on how many other agents choose the same thing and who they are. In economic
literature, allocation and matching models are built to determine the outcomes in these
markets.

The most famous examples of matching markets are marriage markets, the college
admission problem, the house allocation problem, school choice, and labor markets. While
some of these markets are run in a decentralized way, with either side of the market
approaching the other and forming matches, other markets, such as markets for school
places, dorm rooms in colleges, and some labor markets are often run centrally through
an allocation algorithm.

Whether the markets are run centrally or whether a decentralized mechanism deter-
mines the allocation, a strategy-proof mechanism is often desirable. Strategy-proofness
means that the players who participate on the market can simply choose what they most
prefer instead of forming strategies based on the expected choices of others.

However, most matching and allocation literature assumes complete information for
the agents, an assumption which is convenient but hardly realistic. We build a finite

player model with two locations to analyze the strategy-proofness property in a setting

! This project has received funding from Charles University, GAUK project No: 570218 and the Euro-
pean Research Council, under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 678081)



with information asymmetries and interdependences in preferences. We provide several
sufficient conditions for strategy-proofness of the allocation mechanism and a charac-
terization of strategy-proofness in terms of the location choice rules together with player
preferences. Finally, we provide a counter-example with common values which establishes

a failure of strategy-proofness in this setting.

1.2 Literature Review

This paper contributes to literature on matching initiated by Gale and Shapley (1962)
who discovered the deferred acceptance (DA) mechanism, known for its properties of
strategy-proofness and stability. It is well known that the strategy-proofness of the DA
mechanism has limits in matching models (Dubins and Freedman 1981). It is also well
known that strategy-proofness cannot be satisfied for both sides of the market (Roth 1990)
for stable mechanisms. However, there are theoretical models suggesting that strategy-
proofness on both sides is not necessary for large markets (Kojima and Pathak 2009).
Moreover, there is a large number of applications in which it is reasonable to assume that
one side of the market ? behaves non-strategically, such as in Abdulkadiroglu and Sénmez
2003, and Roth 1984.

Roth (1990) also establishes strategy-proofness for a DA mechanism under uncer-
tainty about preferences, assuming independence. However, to our knowledge, there is
limited literature on the topic of matching or allocation with asymmetric information
or interdependences in preferences. One exception is Kloosterman and Troyan (2018),
who analyze a school choice model with a DA mechanism under asymmetric information,
and discuss the curse of acceptance which results from asymmetric information. Unlike
Kloosterman and Troyan (2018), we analyze a model with a general class of mechanisms
and possible indifferences in preferences. Second, Liu et al. (2014) build a matching model
with asymmetric information, but focus on the stability of allocations. Finally, Che and
Koh (2016) build a college admission model with preference uncertainties and focus on
strategic behavior of colleges.

Several papers build a matching model with information acquisition (which can result
in asymmetric information), but independent preferences. Bade (2010) does so for a house
allocation problem. Chen and He (2015) do so for a school choice problem. Immorlica

et al. (2018) build a search-like model for school choice.

2In this paper we refer to this "passive" side as locations.



Section 1.3 gives the setup of the model. Section 1.4 provides a definition of strategy-
proofness with sufficiency and characterization theorems. Section 1.5 delivers the counter-

example of the failure of strategy-proofness. Section 1.6 concludes.

1.3 Model Setup

There are n € N players and 2 locations. Each player can be allocated to a single location,
while location j € {1,2} can be allocated up to capacity ¢’ € N players. The combined
capacities are assumed to be large enough to accommodate all players, ¢! +¢*> > n. An
allocation is thus a pair (u!, p2), with 17/ € M = {0,1}", where i/ = 1 whenever the ith
player is allocated to the jth location.

Each player i € {1,...,n} simultaneously chooses a location a; € A = {1,2}. We
denote the aggregate action a = (ay,...,a,) € A™. Given a, each location chooses for each
player ¢ an action from A; = {"Accept", "Reject"}. Each location j has a stochastic
choice rule D7 : A" — A(A7}) which allows location j to Accept or Reject players
stochastically, conditional on the aggregate action a. The stochastic choice rule implies
that location j accepts player i with probability D?(a). The choice rule is assumed to
satisfy the following two properties. First, the location cannot accept players who did
not choose it: Vi, j,a : a; # j = D(a) =0.

Second, the choice rule is non-wasteful if Vi, j, a:
o {i:a;=j}| <dai=j = Di(a)=1.
o {i:ai=j}>¢ 2 €supp(D’(a)) = [{i:2 = Accept}| = ¢,

that is, if fewer than ¢’ players choose a location, all are accepted, and if more than ¢’
players choose a location, exactly ¢’ of them are accepted.

In case a player ¢ is accepted by location j he is allocated there and not to the other
location j' # j, that is, the final allocation p is such that ,ug =1 and ,ugl = 0. In case a
player is not accepted by location j he is automatically allocated to location j' # j, that
is, the final allocation g is such that x/ = 0 and ,ug/ = 1. Consequently the set of choice
rules {D!, D?} together with the aggregate action a determine the allocation p.

When choosing his action, each player knows the number of other players n, the
available actions A, the capacities ¢!, ¢> and the choice rules D!, D2,

Each player chooses his action to maximize his expected utility. Allocating player ¢ at

location j gives player 7 utility «/ and consequently for a fixed action profile a = (a;, a_;
J8 i
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player i receives expected utility

-/

Ul(.]> a—i> = Dzj(]> a—i>ug + (1 - Di(.% a—i>>ug

from choosing action j. A player ¢ has a utility vector §; = (u},u?). All players have a
prior belief F' with support in R** over the profile of types 6 = (6y,...,6,). The case
of independent preferences is of particular interest: F' = [[! F;, where F; is a marginal
distribution over ;. However, prior F' allows for interdependences. Additionally, the set
of all players is partitioned into sets I (Informed) and U (Uninformed). The players i € [
receive a private signal o; = 6;, revealing to player ¢ the realization of his type. The
players ¢+ € U receive an uninformative signal o; = &. Finally, we denote Fa posterior
belief over 6, that player ¢ holds after the signals are received, and Fi the corresponding
marginal distribution over own 6#;. We assume that players know the sets I and U, but
they do not have knowledge of the content of the other players’ signals. The allocation
mechanism H is thus summarized by (n, A, ¢*,¢*, D', D* F,I,U).

Players i € I have a strategy s; : R? — A, which consists of actions after receiving
signal o; and players ¢ € U simply choose an action s; : A. Fixing the sets [ and U, one
can write with a slight abuse of notation a_; = s_;(f).> Given posterior beliefs Fi, the
optimal action of player i: a} then maximizes player ¢’s expected utility:

a;

*

A Bayesian Equilibrium is a strategy profile s* = (s3,...,s") such that all players

r n

choose according to (1.1) given H.

1.4 Strategy-Proofness

The purpose of this section is to show the conditions under which the allocation mecha-
nism H is strategy-proof. The property of strategy-proofness is desired from allocation
mechanisms in many applications. There is a vast literature concerning the strategy-
proofness of allocation mechanisms in settings with complete information, however, to
the best of our knowledge, there is no generalization of the definition to a setting with

asymmetric information. We define the strategy-proofness of mechanism H in the allo-

3The first abuse of the notation is that for i € U, s; does not depend on 6. Second, for i € I we
should write a_; = s_;(6—;). We drop the subscripts on 6 to ease notation



cation game with asymmetric information as follows:

Definition 1. A mechanism H is strategy-proof if:
Y1 & {1, e ,n}70i,s_i,j 7£ j/ : Eﬁl[ug] > Eﬁl[ugl] E a;.* — j7

The definition requires the players to have dominant strategies for all possible posterior
beliefs Fi, which are implied by the prior F' and the signal realizations o;. In the case of
an informative signal, the realization of 6; is revealed to player ¢ and, consequently, for
an informative signal o; the beliefs ' are degenerate. The expectation over player ¢’s
utility £ [ul] > B [u ] is then simply the realized utility ) > u .

Furthermore, the setting with complete information is a special case of a setting with
prior and private signals. This is achieved by choosing the prior F' to be a degenerate prior.
In such a case, we refer to strategy-proofness under certainty. This property is well
established in the literature (Roth 1990). However, strategy-proofness is easily achieved
also for the case when all players are perfectly informed about their own preferences, but
remain uninformed about the preferences of others. In such a case, we refer to strategy-
proofness under certainty about a player’s own preferences. Such preferences are

achieved in our model by choosing U = @ so that all players are Informed. The following

proposition formalizes the notion.

Proposition 1. Mechanism H is strategy-proof under certainty about a player’s

own preferences, for the special case of U = @.

Proof. U = @ implies that Vi : 0; = 0; = (u},u?). Fix player 7, s_; and a profile of types

17

0, where 6; is such that u! > u2 and consequently F'; is such that u! > u2 with probability
1. Assuming the converse inequality u] < u? follows an analogical argument. According

to (1.1), i chooses location 1 if:

E[DI(1,5-(0)Jul + Epa[1 — DI(1,54(0))]u?
> Ei[D7(2,5-i(0)))u; + Ei[L — D7 (2, 5-:(0))]u;.

7

Which together with u} > u? implies that location 1 is chosen if:

Eni[D}(1,5-(0)) + D7 (2,5_:())] > 1.

This inequality holds due to the following argument. First, observe that D?(a;, s_s(#)) > 0

9



is a probability. Second, observe that at least one of the probabilities is equal to 1. This
is due to the assumption ¢' + ¢*> > n.

We prove the remaining part by contradiction: Fix any a_; and suppose that both
D}(1,a_;) <1 and D?(2,a_;) < 1. Then, by non-wastefulness, both |{i : a; = 1}| > ¢!
and |{i : a; = 2}| > ¢*. Consequently, [{i : a; = 1}| + |{i : a; = 2}| = n > ¢* + ¢*> which

yields a contradiction. O

The proof of proposition 1 in fact shows that a player ¢ has a dominant strategy if
he is informed, ¢ € I. If all players are informed then strategy-proofness is achieved
and proposition 1 arises. The following proposition gives the sufficient condition for

strategy-proofness of mechanism H.

Proposition 2. Mechanism H s strategy-proof for the case of independent preferences.
[[F=F

Proof. Fix i. First notice that for i € I, o; = 0;, V0, : Fi(&l) € {0,1} and consequently
the result is established by the proof of proposition 1. For i € U, F'=F, fix s_; and let

Erlu}] > Er[u?] without loss of generality. According to (1.1), a; = 1 is chosen if:

Ep[DX(1,s_(8))u} + (1 — D} (1, 5_4(0)))ec]
> BplD3(2,s-(0)) + (1 D32, 5-(0))ul]. (1.2)

7

Since 6; are independent, s_;(6) is independent of #; and consequently one can decompose

the expectation:

Ep[D; (1, s-(0))|Er[u;] + Er[L — Di(1, 5-4(0))] Er[u]]
> Ep[D;(2,5-4(0)Er[ui] + B[l — D} (2, 5-i(0))| Er[u;]-

This inequality holds following the same argument as in the proof of proposition 1,

except that now we can use the assumption Er[u}] > Ep[u?], instead of u} > u?. O

We will return to an example of a failure of strategy-proofness under the assumption
of interdependent preferences in the next section. The next two results provide more

conditions for achieving strategy-proofness.

10



Proposition 3. (Sufficient condition) Mechanism H satisfies strategy-proofness if:

Vie{l,...,n},s_i,j # 7§ : Eplul] > EF[ug/] :

!

Covp[D](j,5-4(0)) + D] (f', s-4(0)), u] —u]] = 0. (1.3)

%

Proof. First notice that for any i € I, o; = 6;, and thus V6; : FZ(@) € {0,1} and the
result is established by the proof of proposition 1.
Fori € U, F' = F, fix s_; and let Ep [u}] > Ep[u?] without loss of generality. In the

7

case of interdependent preferences, (1.1) can be written as:

Ep[D;(1,5-:(0))| Erlui] + Covp[D; (1, 5-:(0)), u;]
JEp[uf] + Covp[l — Di (1, 5-(0)), u]
|Er[uf] + Covp[ D} (2, 5-i(0)), u;)
+ Ep[l - D} (2,5-:(9))| Erlu;]
+ Covp[l — DX(2,5_:(0)),ul]. (1.4)

) g

+ EF[l — Dll(l, s_l-(Q

which is, following the argument in the proof of proposition 2, satisfied if:

Covp[D}(1,5_4(0)),u;] + Covp[l — D}(1,5_4(0)), u?]
> Covp|D7(2,5_4(0)),u;] + Covp[l — D}(2,5_;(0)),u}].

which, after some manipulation yields the result. O

One obvious case when the sufficient condition of proposition 3 is satisfied is when
q', ¢* are large enough to guarantee that the mechanism H is never congested. In such
a case, for both j,Ya: D!(a) = 1. The covariance term in proposition 3 is then trivially
equal to 0. Indeed, with no congestion effect, there is no need to take other players’ be-
havior into account. Proposition 3 is particularly practical due to the following corollary,

which can be applied in the case of no asymmetric information I = &:

Corollary 1. Player i chooses his most preferred alternative if the action of other players

18 constant across 6.

Proof. Let s_;(A) be constant across 6, then for j € {1,2} : D/(j,s_s(f)) is constant

11



across 6 and consequently:

/7

Covp[D](j,5-4(0)) + DI (7', 5-4(0)),u] —u]] =0,

which together with proposition 3 yields the result. O

Corollary 1 is particularly important because the action of other players is constant
whenever the other players are known to be Uninformed. In a follow-up paper, we apply
corollary 1 extensively to a game with learning. The next result provides an if and only

if condition for strategy-proofness.

Proposition 4. (Characterization) Mechanism H is strategy-proof if and only if:
Vie{l,...,n},s_i,j #j : Ep[ul] > Ep[ug/] :

Ep[(D](j,5-:(0)) + DI (j, 5-4(0))) (u! —ul )] > Ep[u] —u]]. (1.5)

Proof. For any 1 € I, o; = 0;, V0, : Fi(&l) € {0,1} and the result is established by the

proof of proposition 1.

For i € U, = F, fix s_; and let Ep[u}] > Ep[u?] without loss of generality. Then,

7

inequality (1.4) follows from (1.1), written equivalently as:
Covr[D](j,54(0)) + D} (7', 5-4(0)), w] = u]]
> Eplu] —ul (1 = Ep[D](j.5-4(0)) + D! (7', s-4(0))]).

or equivalently as

Ep[(D](j,5-4(0)) + DI (i, 5-4(0))) (u] — )]
— Ep[D](j,5-4(0)) + DI (i, 5-4(0))| Erlul — u!]
> Bplul —ul'J(1 = Ep[D!(j,5-:(0)) + DI (', s4(6)))),
which yields the result. O
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1.5 Failure of Strategy-Proofness Under Common Val-

ues

The previous section gave a set of results demonstrating under what conditions strategy-
proofness is satisfied. This section provides a counter-example in which strategy-proofness
fails. For the purpose of illustration we focus on the case of common values, where all

players are of the same type.

Example 1. Interdependencies in preferences can cause a failure of the strategy-proofness

of mechanism H in a setting with asymmetric information.

Proof. Letn =2and ¢! = ¢ = 1. Let 6 = (6,0), where 6 is equal to #*>2 with probability
p and #%! with probability 1 — p. When player i has type #7>7, he receives utility & > 0
from location j and 0 from location j’. Consequently, we drop subscript ¢ on u;. That is

for both i € {1,2}, the following table summarizes the prior F"

Table 1.1: Utilities and Prior
91>2 92>1

ul =ut | @ 0
w=u*| 0 i

F@) | p |1-p
Let p > 1/2, so that location 1 is, ex-ante, better:

E[u'] = pi > (1 — p)a = E[u?].

Let the choice rules D! (a) be according to the following table, which is common knowl-

edge:

Table 1.2: Choice Rules
D(ai,a—;) | D}((1,1)) | D}((2,2) | DI((1,2)) | DF((2,1))
1=1 1 0 1 1
1=2 0 1 1 1

First, observe that the last two columns of the table are a consequence of non-
wastefulness, that is, whenever the players choose different locations, they are both
allocated to their choice. Second, observe that we choose the choice rules in such a way

that in case of congestion, a = (1,1) or a = (2,2), player 1 is accepted by location 1 and
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player 2 is accepted by location 2. This asymmetry, together with the assumption that
location 1 is ex-ante better, plays a crucial role in the example. We will show that the
strategy-proofness property fails for the disadvantaged player 2, who is rejected by the
ex-ante better location 1 in case of a = (1, 1).

Suppose that the first player is informed, 1 € I. That is, player 1 learns the realization
of 0 and chooses aj according to the realization. Further suppose that the disadvantaged
player 2 is uninformed, 2 € U. Strategy-proofness requires player 2 to choose location
1, but we will show that this does not happen.

Proof of proposition 1 shows that, after receiving i, player 1 chooses the location
1 for o = 6'>2, which happens with probability p and location 2 for signal oy = 6*1,
which happens with probability 1 — p. Knowing this, the expected utility of player 2,
Us(ag, af(d)) is:

Table 1.3: Expected Utility of Player 2
Us(az, ai(6)) | p:ai(02) =1 | 1—p:aj(0*') =2
as =1 0 0

a2:2 0 U

The top-left cell is 0, because with probability p, both players have type 0”2 and both
players chose location 1, but location 1 is allocated to player 1, leaving player 2 with
location 2, which yields 0. The top-right cell is zero, because, while player 2 was allocated
to his chosen location 1, thanks to the fact that player 1 chose location 2, both players
share type 62>! and thus location 1 yields 0. The bottom left cell is 0, because, while
player 2 received his chosen location 2, location 2 yields 0, because both players share
type 0172, Finally, the bottom-right cell is @, because both players share type 62! and
both players chose location 2, but location 2 accepts player 2 and yields .

Table 1.3 shows that the disadvantaged player 2 cannot benefit from his choice of
location 1 when player 1 is informed. In fact, the only case in which he is allocated
to location 1 is exactly when location 1 is worse than location 2. Knowing this, the

disadvantaged player 2 chooses location 2 due to:
(1—p)u>0.

To summarize, for the informed advantaged player 1 and the uninformed disadvan-

taged player 2, player 2 chooses location 2 despite the fact that his posterior beliefs are
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such that E»[u'] > E2[u?], thus violating strategy-proofness. O

Example 1 illustrates that, in the case of interdependent preferences, strategy-
proofness is complicated by knowing what others know. To see the intuition behind
why strategy-proofness fails for interdependent preferences, suppose a player ¢ does
not know his ;. Perhaps player ¢ has a low chance of being allocated to location j in case
of congestion, but location j is ex-ante attractive. However, due to interdependence, 6;
is positively correlated with #_; and consequently location j is good for player ¢ when it
is good for the other players —:i. Furthermore, player ¢ might expect that other players
—1 are better informed about their types. Finally, knowing that other players know their
types, player ¢ knows he will find location j congested exactly when he would like to be
allocated there and when he has a low chance to be allocated there. Consequently, the
choice of location j is not a good choice, since the only way to be allocated there is when
the realized type of player i reveals that location 7 is bad. This prediction ultimately
leads player i to choose a different location and to violate strategy-proofness.

The fact that uninformed player ¢ learns that his type is such that location j is bad in
realization from being allocated to location j is an example of the winners curse, which

parallels the classic result from auctions with common values.

1.6 Conclusion

We have shown that strategy-proofness, an often-desired property of allocation mech-
anisms, fails in settings with asymmetric information and interdependent preferences.
Furthermore, we have provided several conditions imposed on the mechanism together
with preferences under which strategy-proofness is satisfied. The model can be applied
to a variety of settings. Perhaps the most attractive application is a setting with learn-
ing, which naturally brings asymmetric information into the mechanism. Alternatively, a
study of welfare effects and effects on uninformed (socially disadvantaged) players could

shed light on new shortcomings of currently applied mechanisms.
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Chapter 2

Information Acquisition Incentives and Welfare in Con-

gested Markets!

2.1 Introduction

In many contexts, economic agents commit to choices which are difficult or costly to
change - enrolling in a university or signing a work or lease contract. These types of
choices deplete the goods and limit others making the same choice. Before entering the
market, agents often first learn about what they would like to take away from it - a
process which can be costly and lengthy. Consequently, during the search process, one
does not know if he will be able to obtain the good he is currently learning about. A
high school student in his final years is learning about which program at what university
would be the best for him before he sends an application. A prospective tenant learns
about locations which are best for him due to his commute, security, or desired amenities
before he schedules a property viewing, etc. Often there is very limited time for learning
after a final offer from a university or a real estate agent is made.

This paper builds a model to discuss learning incentives and welfare in settings with
congestion. If the allocation mechanism is such that the player’s (economic agent) choice
of location (school, job, or a property) does not depend on other players’ choices, the
matching literature (Dubins and Freedman 1981) identifies the allocation mechanism as
strategy-proof. We use the result in Sedek (2020) that asymmetric information stemming

from learning has no influence on a player’s choice of a location under the assumption of

! This project has received funding from Charles University, GAUK project No: 570218 and the Euro-
pean Research Council, under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 678081)
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independent preferences. While the allocation mechanism is strategy-proof, and thus the
location choice is non-strategic, the same cannot be said about the choice of information.
This is because the choices of other players still influence the value of information.

We first discuss strategic effects in the allocation mechanism. We show that, despite
the location choice exhibiting strategic substitutability, which is driven by congestion,
the information acquisition tends to exhibit strategic complementarity. This surprising
property is due to learning which causes players to switch from their default action. When
players are uninformed, the widely chosen default action tends to deepen the congestion
problem and thus discourages learning. As players are learning, congestion is alleviated,
and information becomes more desirable. Thus, this model serves as an example of
strategic complementarity in information acquisition arising naturally from a game with
strategic substitutability in action. This stands in contrast to Hellwig and Veldkamp
(2009), who find that information acquisition tends to inherit the strategic properties of
the underlying game in a beauty contest setting.

Second, we discuss the implications of learning incentives on welfare. The complemen-
tarity in information acquisition translates into equilibrium multiplicity. We first show
that, for stable equilibria, the equilibria with more learning are welfare-dominant over
the other equilibria. We show that this is due to prevailing positive externalities from
learning.

Third, welfare results provide a comparative static exercise of the following form. All
equilibria in a game with ex-ante symmetric players are welfare-dominated by a unique
equilibrium in a related game, where the players are ex-ante asymmetric, but perfectly
informed about their allocation chances. We apply this result to a school choice setting.

In a school choice setting, students (players) often face uncertainties in admission
chances due to tie-breakers, which are lotteries evaluated after the applications are sub-
mitted. We argue that eliminating this uncertainty by informing students about their
tie-breakers before the students gather information would increase student welfare. This
comes at the cost of sacrificing an opportunity for a natural experiment, arising from the

lotteries as suggested by Abdulkadiroglu et al. (2017).

2.2 Literature Review

To our knowledge, there is limited literature on the topic of matching or allocation of indi-

visible goods with information acquisition. There are a few recent papers on school choice
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with information acquisition. Chen and He (2017) find that, under strategy-proof mech-
anisms with independent student preferences, students have no incentive to learn about
their cardinal preferences or the preferences of other students. Immorlica et al. (2018)
study a school choice continuum economy with information acquisition where students
have independent preferences and their priorities are strict. They find that information
deadlocks, a situation in which some students are waiting for other students to reveal
their preferences through the mechanism, can occur. We support this finding by showing
that our finite setting tends to exhibit strategic complementarities in information acqui-
sition. Bade (2010) studies the housing allocation problem with information acquisition
and shows that no allocation mechanism can achieve the first best welfare outcome.

Our model serves as an example of a setting with strategic substitutability, but com-
plementartity in information acquisition. Hellwig and Veldkamp (2009) build a beauty
contest model with information acquisition to show that, in a beauty contest setting, this
is not possible. Colombo, Femminis, and Pavan (2014) study the effects of information
acquisition on welfare in a general strategic complementarity /substitutability setting.

Finally, several papers have built matching models with interdependencies in prefer-
ences. Among these is Sedek (2020), who analyses the same setting as this paper, but
without learning and with interdependent preferences. Sedek (2020)? then dives into
results about strategy-proofness. Kloosterman and Troyan (2018) analyze school choice
with a Gale-Shapley mechanism under asymmetric information and discuss the curse of
acceptance which results from asymmetric information. Other related papers with inter-
dependent preferences include Che and Koh (2016), Che, Kim, and Kojima (2015), and
Chakraborty, Citanna, and Ostrovsky (2010).

Our final welfare result contributes to the school choice literature originated by Ab-
dulkadiroglu and Sénmez (2003). The main theoretical papers in this strand of literature
are: Abdulkadiroglu, Pathak, and Roth 2009; Balinski and Sonmez 1998; Haeringer and
Klijn 2009. There is a growing experimental and empirical literature on the same topic:
Calsamiglia, Haeringer, and Klijn 2010; Chen and Sonmez 2006; De Haan et al. 2015;
Calsamiglia and Giiell 2014; Calsamglia, Fu, and Giiell (2018).

In contrast to the main result of this paper, Chen (2018) argues that, under the widely
used Boston mechanism in school choice setting, uncertainty in priorities is associated
with higher expected utility ex-ante.

The rest of this paper is organized as follows. Section 2.3 formalizes the model. Section

2Included in this dissertation as chapter 1.
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2.4 provides results on strategy-proofness. Section 2.5 shows the results on strategic
effects in information acquisition and welfare results. Section 2.6 delivers the main result
of the paper. Section 2.7 discusses the application of the model in a school choice setting.

Section 2.8 concludes.

2.3 Model Setup

There are n € N players and 2 locations. Each player can be allocated to a single
location, while each location can be allocated to ¢ € N players up to capacity. The
combined capacities are assumed to be large enough to allocate all players, 2¢ > n. An
allocation is thus a pair (p', p2), with g/ € M = {0,1}", where i/ = 1 whenever the ith
player is allocated to the jth location.

The allocation game with information acquisition has two stages, first the information
acquisition stage, and then the location choice stage. In the information acquisition
stage, each player simultaneously chooses a binary action, whether to learn or not a; €
Ag = {"Learn","Not Learn"}. In the location choice stage, each player ¢ € {1,...,n}
simultaneously chooses a location a; € A = {1,2}. We denote the aggregate action in
the location choice stage a = (a4, ...,a,) € A". Given a, each location chooses for each
player ¢ an action from A; = {"Accept", "Reject"}. Each location j has a stochastic
choice rule D7 : A" — A(A7}) which allows location j to Accept or Reject players
stochastically, conditional on the aggregate action a. The stochastic choice rule implies
that location j accepts player i with probability D?(a). The choice rule is assumed to
satisfy the following two properties. First, the location cannot accept players who did
not choose it: Vi, j,a : a; # j = D(a) =0.

Second, the choice rule is non-wasteful if Vi, j, a:
o {i:ai=j}<d ai=j = Dia)=1.
o {i:ai=j}>¢ 2 €supp(D’(a)) = [{i: 2 = Accept}| = ¢,

that is, if fewer than ¢’ players choose a location, all are accepted, and if more than ¢’
players choose a location, exactly ¢’ of them are accepted.

In case a player ¢ is accepted by location j he is allocated there and not to the other
location j' # j, that is, the final allocation s is such that z/ = 1 and ,ugl = 0. In case a

player is rejected by location j he is automatically allocated to location j’ # j, that is,
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the final allocation p is such that z/ = 0 and ,ugl = 1. Consequently, the set of choice
rules {D!, D?} together with the aggregate action a determine the allocation p. The

allocation mechanism H can be then summarized as H = (n, A, ¢, ¢*, D', D?).

When choosing actions, each player knows the number of other players n, the number
of locations, the capacities g, the available actions A and Ay, the choice rules D', D?, the
dynamic structure of the game, and the allocation mechanism H. In the location stage
of the game, players do not know the actions chosen by other players in the information
acquisition stage.

Each player chooses his actions to maximize expected utility. Allocating player ¢ at
location j gives player i utility «/ and, consequently, for a fixed action profile a = (ai,a—;)
player i receives

Uiljra-i) = DI(j,azi)ul + (1= D] (j,a)u
from choosing location j. A type of player ¢ is summarized by his utility vector 6; =
(u},u?). The profile of types 0 = (64, ...,60,) is distributed according to F with support
in R?", We assume each player to have an identical marginal distribution F; over his type
6; and we assume 6; to be independent, that is F' = [[} F;. In case of Er[u;] we drop
the subscript ¢ as the expectation is the same for all players. In case the player chooses
a; = "Learn" in the information acquisition stage, he learns the realization of 6;, but has
to pay cost ¢ > 0. In case he chooses a; = "Not Learn" he is left only with the knowledge

of F', which is costless.

A player i chooses a pure strategy s; = (a4, a;,a:(0;)) € S which consists of the
learning decision «; € Ap, the action a; € A in the information set where he chose
"Not Learn" and an action a;(f) : R* — A for each information set which corresponds
to a realization of #; after he chose "Learn". When player i chooses his actions, he holds
beliefs ¢, = (F| F, ng) about the profile of player types in each information set. Initial
beliefs and beliefs after the action "Not Learn" are the prior F'. The beliefs after action
"Learn" ng € Af are, for each realization of ;, derived by Bayes rule from the realization

of #; and prior F.

Observe that, for a fixed strategy profile s = (sy,...,s,), the aggregate action a is
stochastic, as it depends on the realization of € through learning. We define o; and o to
satisfy a; = 0;(s4,0) and a = o(s,0) = ((01(51,601), - - -, (0n(sn,0r))), for a fixed strategy
profile s and a fixed realization of 6. The best response then solves the following three

problems.
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First, in the location choice stage, the player who chose a; = "Not Learn" chooses a;

to maximize his expected utility, given beliefs F

max Ep[Ui(a;,0-i(s—i,0-;))]. (2.1)

aq

We denote the corresponding value function V;:S" 15 R. Second, the player who

chose a; = "Learn" and learned to be type 6; chooses a by maximizing:
max EunUi(ai, 0—i(5-:,0-))] (2.2)

We denote the corresponding value function V; : S"~! x R? — R. Further, we denote
by a* € A the player’s optimal action in the location choice stage. In the information ac-
quisition stage, player i chooses "Learn" if and only if his expected value of information

exceeds the information cost:
VIi(s_) = Ep[Vi(s_i,0_))] — Vi(s_i) > c. (2.3)

A Perfect Bayesian Equilibrium is a profile of a strategies and beliefs ((s], ¢7), ..., (sk, ¢%)),

n

such that all players choose locations according to (2.1) and (2.2) and choose information

according to (2.3).

2.4 Strategy-Proofness

We begin by showing that the allocation mechanism H exhibits a convenient property of

strategy-proofness.
Definition 2. A mechanism H is strategy-proof if:
Vi€ {l,...,n},5.5,0,G € {F,Fo},j #J : Eclul] > Balu!] = a] = j,

If strategy-proofness is satisfied, every player has a weakly dominant strategy in
the location choice stage of the game. This is particularly due to the assumption of
independent preferences. We restate the next result from Sedek (2020), which can be

directly applied to our model:
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Proposition 5. Mechanism H is strategy-proof if players’ preferences under a prior

HFZ-:F.

The result greatly simplifies the problem and allows us to work conveniently with the

F are independent

value of information. For a discussion of a model without learning, but with interdepen-
dent preferences, see Sedek (2020).

Proposition 5 shows that the behavior of players in the location choice stage of the
game is determined by the prior F' and thus it remains to solve for the information
acquisition decisions. The following table summarizes the optimal actions of player ¢ in

the location choice stage, in case location 1 is ex-ante better, Ep(u') > Ep(u?).

Table 2.1: Actions in Location Choice Stage

ul >u? u?>ul

a’i el 7 7 el 7 7
| a; = "Learn" 1 2
o; = "Not Learn" 1 1

-/

where 0;{>u§ is an event in which the 7’th players type is such that uﬁ > uﬁl
Unfortunately, in the general case, information acquisition decisions depend on which
players are learning. This is because the value of choosing a location can depend on
whether a certain other player chooses the same location. To study information acquisi-
tion incentives, we impose a specific choice rule in the next section. We assume ex-ante
symmetry to show results for externalities and information acquisition incentives. We

return to the ex-ante asymmetric setup in section 2.6.

2.5 Ex-ante Symmetric Players

In this section, we assume that players are ex-ante symmetric. Our setup allows for
asymmetries only in the stochastic choice rules D?. Consequently, the assumption of ex-
ante symmetric players is equivalent to imposing an assumption on the stochastic choice

rules. Thus, we capture ex-ante symmetry by the following assumption.

Assumption 1. (ex-ante symmetry) Let @’ = [{t € N : a, = j}| denote® the number of

players who choose j in a, then the players are ex-ante symmetric in the allocation game

3Where N = {i € N,i < n} corresponds to the set of players.
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with information acquisition if:
D}(a) = D/(a) = min{ -, 1}.
a

The consequence of ex-ante symmetry is that, when player ¢ is deciding what to do,
who does what is irrelevant as long as the distribution of the actions in aggregate action

a remains the same.

2.5.1 Strategic Effects

As the payoffs do not now depend on who chooses the same location, table 2.1 allows us
to write payoffs in terms of the number of players who choose the same location.

Let U;(a;,a’ ;) = Ui(a;, a_;), where dj =|{t € N :a, =3} Ulay,a Z) is then the
expected utility player i receives by choosing location a;, when d_l- other players choose
location j. This notation will be convenient in discussion of strategic effects. We next

introduce a definition of strategic substitutability in location choice:

Definition 3. Mechanism H exhibits strategic substitutability in location choice
if: Vie {1,...,n},Vj # 4, u]>u al,<n—2:

Ui(j,aly) = Us(5' aly) > Us(g.aly +1) = Ua(f',al; + 1) (24)

that is, if the choice of a location (weakly) lowers the relative value of choosing that
location in comparison with the other location for all other players. This differs from
the usual definition of strategic subtitutability, which relates rather to the monotonicity
of the best response function in the actions of other players. However, as the location
choice stage has dominant strategies, the best response function is constant and thus
the usual definition does not make sense in this context. Nonetheless, one can see that
both sides of inequality 2.4 are a relative payoff of choosing j rather than j' and, thus, if
this relative payoff decreases with the number of players who choose j, player ¢ becomes
"less prone" to choose location j. In a setting without dominant strategies, this could
eventually lead to player ¢ switching from location j to j' and in this sense, the definition
captures the essence of strategic substitutability. We argue that the usual definition of
strategic substitutability captures a consequence of a decrease in the relative payoff and

thus, in a sense, it follows from this definition.
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Proposition 6. The ex-ante symmetric allocation game with information acquisition

exhibits strategic substitutability in location choice.

Proof. Fix i,j and j' # j. First, notice that D7(a) = min{q/a’,1} is weakly decreasing

in @’ and

i . q . q
D] — — 1 — A 1
min{-L, 1} = min{—— 1}

is weakly increasing in @’. Consequently, due to uf > ufl, Ui(7, a ;) is weakly decreasing
in @, and U,(j',a’,) is weakly increasing in @’ ,. Finally, inequality 2.4 can be written
as:

Ui, +1) = Ui(g,aly) < Ui(f',al, + 1) = Uil al),

the left hand side of which is non-positive, while the right hand side is non-negative due

to the monotonicites established above. O

The intuition behind proposition 6 is that, as many players choose the same location,
the chances of allocation to this location become (weakly) lower and the expected utility
of choosing this location is thus (weakly) lower as well — the congestion effect.

We next define an analogical concept for the information acquisition stage of the
game. To do this, recall that the players in the location choice stage of the game behave
according to their dominant strategies, that is, according to table 2.1. Let k= |{t € N :
a, = "Learn"}| be the number of players who choose to learn. ¢7(k,0) : Nx R" — Nis a
function that gives a’, the realized number of players that choose location j, given that k
players are learning. 7 (k,0) together with o = (a1, ..., a,) then completely determines
a’. In case we are interested only in a_; we use notation k_; as the number of other
players who are learning and 1’ ;,(k_;,0) analogically. It is now possible and convenient
to define the value of information as a function of the number of players learning. Let
VIi(k_;) = VI;(s_;), where @, = 1" (k_;, ).

Definition 4. Mechanism H exhibits strategic complementarity in information
acquisition if: Vi € {1,... , n},k_; <n—2:

VIi(k_i+1) > VIi(k_s). (2.5)

Definition 4 captures the idea that learning (weakly) increases the value of learning

for other players. Plugging the value-of-information definition into definition 4 reveals
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the analogy between definition 4 and definition 3. Much like in definition 3, the com-
plementarity in information acquisition simply means that the relative payoff of
choosing the action "Learn" rather than "Not Learn" is increasing with the number of
players learning. Unlike in definition 3, the information acquisition stage does not nec-
essarily exhibit dominant strategies and thus we refer to the counterpart of definition 4,

VIi(k_; +1) <VIi(k_;) as strategic substitutability in information acquisition.

In the next proposition, we derive the value of the information function. Characteri-
zation of strategic effects will follow. We denote with p the probability of u} > u?, which

is determined by Fj.

Proposition 7. Suppose that prior F is such that, Ep[u’] > Ep[u’], then the value of

information in the ex-ante symmetric allocation game with information acquisition s:

VI(s-) = (0 =) (Ee[D/ (. a)] + Er[D (o)

~1) (Beld 1l > ) = Eplullul > wl]), (26)

where Ep[ul|u] > uzl] 15 the conditional expected utility from being allocated to location

j given that for player i location y is better than location ~'

Proof. Fix i and s_;. Let F be such that Er[u!] > Er[u?] without loss of generality.?
Due to proposition 5, the actions in the location choice stage are determined by table 2.1
and thus the uninformed player chooses location 1 and the value of being uninformed for

player i is:
Vi(s—i) = EplD*(Lia_s) | Exlul] + Er[l — D'(L, )| Exle?]

The value of being informed is:

Vi(6:,5-:) = p(Ep[D"(1,a-)|Eplu}|u} > ul] + Ep[l — D'(1,a-)|Ep[u]|u} > uf))
+ (1= p)(Ep[D*(2,a_)]Ep[uf|uf > u;] + Ep[l — D*(2,a_3)] Erlu; |u; > u;]).

4Generality could be regained by assuming a particular behavior for the indifferent players.
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Combing both expression yields, after some manipulation, the value of information:

VI(s-0) = (1= ) (B [D*(2.a.0)] + BrlD'(1,0.,)

. 1) (Ep[u?|u? > ul] — Bplulu? > uﬂ). (2.7)

[l

Expression (2.6) has several natural properties. The first term in expression (2.6)
shows that the value of information is proportional to the probability of the ex ante
worse location being better in realization. This is because only in that state of the
world is the location choice changed. Moreover, the second term shows that the higher
the expected chances of being accepted by any location are (the lower the congestion),
the higher the value of information is. Finally, the third term shows that the value of
information is proportional to the expected difference between the options, conditional
on the ex-ante worse option being better in realization.

Unfortunately, the strategic effects in information acquisition are not as simple as
in the case of location choice. It turns out that the strategic complementarity in
information acquisition depends both on the parameters of the model and on how
many players are learning. Since learning naturally causes actions to be stochastic, we
state the following proposition in terms of a limit when the number of players n — oc.
This is a simplification, as it causes the fraction of players who choose each location to
converge by the law of large numbers. Naturally, the 2¢ > n cannot be satisfied unless ¢
increases with n. To be able to show the results in terms of the parameters of the model,
we denote ¢" the capacity for the n player model and @ = lim, ., ¢"/n the capacity
in terms of a population fraction. The expected chances of admission Fr[D?(a)] then
also converge, which allows us to present the next proposition. Finally let k = k/n, the

fraction of players who are learning.

Proposition 8. In the limit as n — oo, the strategic effects in information acquisition
of the ex-ante symmetric allocation game with information acquisition depend on model

parameters in the following way, for:
e 1 —p<Q: the game exhibits complementarity in information acquisition.
e 1—p>Q: exists a threshold 2’, such that for:
- k< 2’, the game exhibits complementarity in information acquisition.
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— k> 2’, the game exhibits substitutability in information acquisition

Proof. Since learning makes aggregate location choice a a random variable, it could be
the case that both Er[D'(a)] < 1 and Er[D?*(a)] < 1 for finite n. However, in the limit as
n — oo, the law of large numbers ensures that either Er[D'(a)] — 1 or Ep[D?*(a)] — 1
or both. This is because the fraction of players who choose location 1 converges to a
number which is either smaller than @ or greater than 1 — @. In the former case, the
majority of players choose the second location, which can only happen when a majority
of players learn. In the latter case, the majority of players choose the first location, which

can either be a consequence of low learning or large p.

Consequently, the expression (2.6) is always positive, because the last term is the
gain from being allocated to the ex-ante worse location in the state where it is better in
realization and thus is positive.

In case of 1 —p < @, we know that Er[D?(a)] — 1 since for D*(a) < 1, many players
have to learn about their preferences and choose location 2. However, even if every player
learns, the fraction of players who choose location 2 converges to (1 —p), which is strictly

less than its capacity (). In this case, the value of information becomes:
VIi(a) = (1 —p)Er[D*(a)][Er[v’|u® > u'] — Eplut|u® > u']].

Thus, to show complementarity in information acquisition, it remains to prove that

Er[D'(a)] is weakly increasing in k, the proof of which we leave to the appendix.

Finally, for 1 — p > Q let k be such that if k > k then D?*(a) < 1. Such a k exists,
because if every player learns, the law of large numbers ensures in the limit as n — oo,
the fraction of players who learn and choose location 2 converges to 1 —p > (). The value

of information depending on k is:

VI(a) = (1 —p)Dl(a)[EF[u2|u2 > Ul] — Ep[u1|u2 > ul]] ;? < Il% |
(1 —p)D*(a)|Er[u’lu® > u'] — Ep[u'|u® > u']] 1k >k

Both cases above are possible. The case k < k requires that Ep[D'(a)] is increasing in ,
proof of which appears in the appendix. For the case k > k of substitutability, it remains
to prove that Er[D?(a)] is weakly decreasing in k. The proof is analogical to Ex[D'(a)]

being increasing in k and thus is left out. O
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The strategic complementarity in information acquisition is driven by the following
mechanism. An uninformed player always approaches the ex-ante better location. An
informed player sometimes learns that the ex-ante worse location is in fact better for him.
Consequently, information makes a player less likely to choose the ex-ante better location.
As players are learning, the ex-ante better location becomes less congested and chances
of allocation to it grow. An uninformed choice for the ex-ante better location becomes
riskier as the chance matters less for the allocation. This in turn makes information more
valuable.

However, as the second part of proposition 8 shows, when a sufficient number of
players are learning, the situation can be reversed if learning often results in choosing of
the ex-ante worse location (1 —p > Q). In such a case, the ex-ante worse location can
become congested, which in turn decreases the value of information as more players are
learning.

While the result is in the limit for simplicity, we only need the limit to have distribution
of @’ converging above or below a certain threshold. The proof of proposition 8 suggests
that even if that does not happen, the term Er[D'(a) + D?*(a) — 1] should still remain
positive and the part which does not cancel with the constant should in principle follow
the same monotonicity as in the proof of proposition 8. However, due to the technical

difficulty of proving this, we leave it unproven.

2.5.2 Solution

We now describe the solution of the game in the limit as n — oco. Since the allocation
game with information acquisition for some values of parameters exhibits complemen-
tarity in information acquisition, the game exhibits multiple equilibria. The first row
of figure 2.1 shows the value of information for player i as a function of k. When k is
such that the value of information VI;(s_;) is lower than the constant cost ¢, player i
decides not to learn and consequently the aggregate learning k drops. When V I;(s_;) ex-
ceeds ¢, player i decides to learn and consequently k increases. This results in two stable
equilibria, equilibrium k& = 0, henceforth a "non-learning" equilibrium and a "learning"
equilibrium where 0 < k < 1. In addition to the stable equilibria, figure 2.1 shows an
unstable equilibrium, which will be omitted from further discussion due to its instabil-
ity. Let k* denote the fraction of players learning in the learning equilibrium and let

Ep[u'] > Ep[u?], then for ¢ > 1 —p: k* =1 and for ¢ < 1 —p : k* solves the indifference
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condition®:

¢ = (1—p)Ep[D*(¥(k*,0))](Ep[u’|u® > u'] — Eplu'u® > u']). (2.8)
W C W C
4! L4
= Equilibrium Learning = Equilibrium Learning

k k
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=
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Figure 2.1: Multiple equilibria

The second row of figure 2.1 shows the equilibrium fraction of players learning in
terms of information costs. Let Er[u'] > Ep[u?], then for low information costs ¢ <
¢ = (1 —-pL(Epu*lu®* > u'] — Eplu'lu® > u']), the only equilibrium is the learning
equilibrium. For high information costs ¢ > ¢ = (1—p)(Er[u?|u? > u'] - Er[u'|u? > u']),
the only equilibrium is the non-learning equilibrium. For information costs between (c, ¢)

the learning, the non-learning and the unstable equilibria emerge.

2.5.3 Externalities and Welfare

In case of multiple equilibria, the equilibria can be welfare ordered in such a way that
the stable equilibrium, where some players learn (learning equilibrium) exhibits higher

utilitarian welfare than the equilibrium where no players learn (non-learning equilibrium).

5In the limit, the condition holds with equality.

30



This is mostly due to the fact that positive externalities from learning seem to prevail.

We first define what we mean by positive externalities from learning.

Definition 5. Let k£ be the number of players who are learning. An additional player

imposes a positive externality by learning on player i if: Va;, 6

where 1) = (', 1?)°.

We say that externality on player ¢ is positive only if the impact on his expected
utility is positive for all of his possible actions. The next proposition shows that this is

the case as long as the ex-ante worse location is not congested.

Proposition 9. Let Ep[u/] > Ep[u/']. Let k be the number of players who are learning,

then the learning of an additional player imposes a positive externality on other players,
‘v’i,ai,e . EXT;(al, k’) Z 0 Zf
Ep[D” (" (k,0))] = 1.

Proof. Let Ep[u'] > Er[u®], Er[D?*(¢*(k,0))] = 1 without loss of generality. The exter-

nality imposed on a player ¢ can be written as:

EXTi(a; = j, k) = Ep[D? (4 (k +1,0))]| Ep[v]
+ Ep[l — D7 (k + 1,0))| Ep[u]
— Ep[D’ (¢ (k,0))| Ep[u] + Ep[l — D’ (¢ (k,0))] Ep[u’].

For a; = 1, the externality is:

EXTi(1,k) = (Ep[D*(¥'(k + 1,0))]
— Ep[D' (¢! (k,0))])(Er[u'] — Ep[u®]) > 0.

The inequality follows from Er[D' (¢! (k, 8))] being weakly increasing in k, which is proven

in the appendix. For a; = 2:

EXT(2, k) = (Ep[D*(*(k +1,0))] — Er[D*(¥* (k. 0))(Er[u] — Ep[u']) =0.

6Technically, either ' or ¢? carries sufficient information for U, and we define 1 to avoid any
confusion regarding what enters D'(a') and D?(a?) within U.
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The result does not hold when Er[D?(¢?(k,0))] < 1 and Ep[D'(¢'(k,0))] = 1, in this
case trivially: EXT;(1,k) =0, but

EXT;(2,k) = (Ep[D*(*(k + 1,0))] — Ep[D*(V*(k, 0))])(Er[u’] — Ep[u']) <0
since D?((k,0)) is decreasing in k. O

Since a; can take only values from {1,2}, the previous proposition shows that, in the
allocation game with information acquisition, a player who is not learning benefits from
other players learning. As the player who is learning chooses with probability p: a; and
with probability 1 —p : as, the next corollary shows that a player who is learning benefits

from other players learning in expectation.

Corollary 2. Let Ep[u!] > Er[u?'], k be the number of players who are learning, then a

player who is learning benefits from other players’ learning in expectation as long as:
Ep[D” (4 (k,0))] = 1.
Proof.

Consequently:
ErlEXT(ai k)] = pEXT(a1,k) + (1 — p)EXT;(as, k) > 0.
O

Corollary 2 suggests that, for some parameters of the model, welfare might not be
increasing in k. This is because the externality can be negative for high k&, when the
ex-ante worse location becomes congested. The next result shows that even when the
second location is influenced by congestion and welfare becomes decreasing in k, the
welfare of the resulting equilibrium dominates the non-learning equilibrium. We again
state the next result in the limit to make the fraction of players who choose each location

converge.

Proposition 10. Let s* be an equilibrium with a fraction of players who are learning

E* > 0. Let sV be an equilibrium such that Yo € sV : o, = "Not Learn". Then, as
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n — 0o, s* dominates s in terms of players’ utilitarian welfare:

nk* n "
W= B0 50) —d+ Y EelVi(sn)] 2 3 EelVi(s%)] = W
=1 >nk* —1

Proof. Let Epu'] > Ep[u?]. The case of 1—p < @, leads with n — oo to Ep[D?*(¢(k,0))] =
1, the ex-ante worse location having excess capacity and consequently, by proposition 9,
the setting exhibits positive externalities from learning. This in turn implies the result.

In the case of 1 —p > @), for n — oo only £* < 1 players learn in equilibrium s*, where
k* solves the indifference condition (2.8). In this equilibrium Er[D?(4?(k*,0))] < 1 and
Ep[D*(¢*(k*,0))] = 1. The expected welfare of this equilibrium is:

W' =nk*(1 - p)(Er[D*(¥*(k*,0))] Ep[u’|u® > u']
+ Ep[l — D*(*(k*,0)) Er[ut|u® > ul])
+nk*pEputlut > u?] — cnk* +n(1 — k*)Er[u'].

Using indifference condition (2.8), W simplifies to:
Wt =nEp[u']. (2.9)
The welfare of the non-learning equilibrium is:
WY = nQE[u') + n(1 — Q) Erlu?],

which is clearly inferior to (2.9) for all n. O

2.6 Main Result

The following proposition abandons the assumption of ex-ante symmetric players and
shows comparative statics with respect to stochastic choice rules D?. Since D? are com-
plicated objects, and comparative statics are thus a challenging task, we will build an
asymmetric choice rule with a clear interpretation and compare it to the ex-ante sym-
metric case.

Suppose that each location j has an (preference) ordering v/ over the players. That

is, location j prefers players with lower index in v7. Then suppose that 7 is a cutoff
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player such that:

vi(a)
Y 1, =j)<q
=1

Then our new stochastic choice rule D’ satisfies the following:

1 i <vj(a)

0 o.w.

Clearly, what we strive for by using this definition is to remove the stochasticity of the
stochastic choice rule. The advantage of D over the ex-ante symmetric case is that D
is deterministic as long as all players know the orderings v/. We assume this. The next
proposition shows that a move from the ex-ante symmetric case to D is associated with

a welfare improvement in the limit, as the number of players goes to infinity.

Proposition 11. As n — oo, a change from D}(a) = q/(a’) to Dg(a) weakly increases

the utilitarian welfare of players.

Proof. Let ¢ < ¢ < ¢, otherwise the result holds trivially. Let Erplu'] > Ep[u?]. We
denote k the number of players who learn in equilibrium with D;(a). We will decompose
the situation into four cases:

First, let p< @ and 1 — p < Q. Since 1 —p < Q, Vk : Ep[D?(¢*(k,0))] = 1. Player ¢
who is ranked in v! before player ) observes that upon choosing location 1, he is allocated
there with certainty Vk : Di <o(¥*(k,0)) = 1. Consequently, the value of information for
this player is (1 — p)(Ep[u?|u® > u'] — Ep[ut|u* > u']). Since ¢ < ¢, the value of
information results in a decision to learn. Since all such players are learning, in the limit
n — 00, (1—p) fraction of them chooses location 2. This is expected by other players, and
consequently players who are ranked in v' between @ and Q + (1 — p)Q know that their
chance of being accepted by location 1 in equilibrium must be Dg <i<Q+Q(1-g) (' (k,0)) =
1. Tterating this argument yields v = Q/p, which is the index in v! of the final player
who can be sure that he will be allocated to location 1 with certainty. Since p < @) all
players learn and consequently & = n. Proposition 10 then implies the welfare ordering.

Second, for 1 —p < Q < p. The equilibrium under Df(a) is characterized by a

population fraction m?!, such that for all players i < nm! the probability of being allocated
1
i<nmi

to location 1, D (' (k,6)) converges with n — oo to 1 and for all i > nm! the
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probability converges to 0. In equilibrium, the value of information converges to

VL) - (1 — p)(Ep[u®|u® > u'] — Ep[ut|u® > u']) ;i <nm! 2.10)

0 11> nm

therefore all ¢ < nm! learn and all ¢ > nm! do not. Consequently the threshold

m! — Q/p. The average welfare of this equilibrium converges to:

B LpBelutul > )+ (L= pBelallu® > ul) + (1= D)Befe?) - P

which is larger than: Q/pEr[u'] + (1 — Q/p)Er[u?], whereas the learning equilibrium
from the model with uncertainty about locations preferences has average welfare:
Q Q

Erl’] = QBelu] + (1 - Q) Belu’) < S Eelul] + (1= ) Eelu’].

n—q

n

Third, for p < @ < 1 — p it can happen that the second location is congested if
enough players are learning. In that case, the equilibrium under certainty about location
preferences is characterized by a population fraction m?2, such that for all players ¢ < nm?
the probability of being accepted by location 2 converges to 1 and for all 7 > nm? the
probability converges to 0. In the equilibrium, the value of information is the same as
(2.10), except that now the threshold is mm?. 1In this case, the equilibrium threshold

converges to: m? — Q/(1 — p). The average welfare of this equilibrium converges to:

2

Wm
S T (Bl > 0]+ (1 p) Bl > o)

which is at least Ep[u'] > QEr[u'] + (1 — Q)Er[u?].
Finally, the case Q < p and ) < 1—p is impossible since @) > 1/2 > min{p,1—p}. O

The result suggests that reducing the uncertainty around the chances of allocation
increases the welfare of the players by causing more efficient investment into information
acquisition. While an increase in welfare due to reduced uncertainty may seem obvious,
it does not hold for interdependent preferences. We refer to the counterexample, which

shows a lack of strategy-proofness in Sedek (2020) and claim that this example also fails
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the previous welfare result.

2.7 School Choice Application

Allocation of places in schools in many cities is administered via a centralized Gale-
Shapley algorithm (Abdulkadiroglu, Pathak, and Roth 2009). When they apply, stu-
dents are given their priority scores for each school. The priority score is determined by
characteristics such as proximity to the school or having a sibling enrolled in the school.
Subsequently, students submit their preference lists to the city. Finally, the city runs the
Gale-Shapley algorithm, which is a special case of our mechanism H. Due to the nature
of priority scores, many students have the same priority score for a particular school.
Ties frequently arise, which are often broken using a lottery. Consequently, students
face admission uncertainty caused by the lotteries. By strategy-proofness, this should
not influence student behavior in applications, but it does influence student behavior in
information acquisition. We apply proposition 11 to argue that students would benefit if
the indifferences were broken before learning.

In terms of our model, we conduct a comparative statics exercise in the spirit of
proposition 11. With D’(a), all students are in the same indifference set for a school, and
thus they face a lottery each time they apply to an oversubscribed school. With Dj(a),
the priorities are strict and all students know their relative ranking for the school before
they apply. Consequently, in equilibrium, students know whether they will be accepted
to a particular school if they apply. This knowledge facilitates the information acquisition

decision for the students and consequently improves their welfare.

Conjecture 1. (of proposition 11) Under the assumption of independent preferences, stu-
dents enjoy higher welfare when priorities are strict, compared to a situation in which
all students have the same priority when participating in a Gale-Shapley school choice

mechanism.

We argue that the result would work in the same direction if only a subset of students
lack the information about their chances of admission.

Finally, we motivate conjecture 1 by showing how welfare improvement is attainable
in practice. We propose the following implementation by adjusting the timing of the
admission procedure. Suppose that priorities, as is often the case in practice, are natural

numbers. First, draw a tie-breaking lottery number U|[0, 1] for each student-school pair.
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Second, compute the final (strict) priority score for each student school pair as the sum
of their original priority score and the tie-breaker. Finally, inform the students about

their score for each school long before applications are sent.

Conjecture 2. (policy recommendation) Resolving the tie-breaking lotteries well in ad-
vance of application submissions may increase student welfare from participation in the

Gale-Shapley school choice mechanism.

2.8 Conclusion

We study information acquisition incentives and welfare in a model with independent
preferences and find that information acquisition exhibits strategic complementarity, even
though the setting exhibits strategic substitutability in its underlying allocation mech-
anism. Multiple equilibria naturally arise from strategic complementarities. Prevailing
positive externalities from information acquisition consequently lead to the learning equi-
librium welfare dominating the non-learning equilibrium. One way to escape the non-
learning equilibrium is to abolish uncertainties in allocation chances. The final welfare
result shows that such a change indeed increases players welfare. We apply the result to a
school choice setting and argue that large indifference sets in priorities harm students by
introducing uncertainty into their information acquisition decisions. The priorities can

be better designed to reflect this and consequently will improve student welfare.

2.A  Appendix - Remainder of Proof of Proposition 8

It remains to prove that: Ep[D'(a)] = Er[D'(¢'(k,0))] is increasing in k (and k) for
Er[u'l > Er[u?):

Proof. Clearly, for a fixed n, Ex[D'(¢'(k,0))] is increasing in k = k/n if and only if it is

increasing in k£ we will prove the latter, that is
Vk <n—1:Ep[D'(¢'(k +1,0))] = Er[D' (' (K, 0))].

Let Dl(a) = ¢/(a'). Recall that D'(a) = min{bl(a),l}. a' is a random variable
composed of player i, players who do not learn, and players who learn and, who find

themselves to be type 6v' >’ which happens with probability p. Due to independent
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preferences, a* = n — k + %, where ~* follows BIN(p, k). Since:

Er[min{D" (' (k,6)), 1}] = (”(z/ﬂ(k 0)) > 1)1
+ P(D' (0 (k,0)) < 1) E(D' (' (k,0))|D" (4 (k,0)) < 1),

which is weakly increasing in k£ when:

Both summands are positive when the probability P(bl(djl(k’, 0)) > 1) and the ex-
pectation E(D (1/1 (k, 0))|D (¥(k,0)) < 1) are both increasing in k.

The former is equal to P( > 1) = P(v* < ¢—n+k) and it is increasing when:

n— k—i—’y

P <qg—n+k+1)>PH" <qg—n+k)

PP <qg—n+k)+pPY=q-—n+k+1)+(1-pPH*<qg—n+k)
> P(y* <qg—n+k),

which simplifies to: pP(7* = ¢—n—+k+1) > 0 and thus P(D*' (¢ (k,6)) < 1) is increasing
in k.

The remaining step is to prove that Ep[b (P (k, ))|D (Pl(k,0)) < 1] is weakly
Lo
Ji

increasing in k. To prove it, we prove that Ep[D (1 (k,0))] is weakly increasing in k.

Ep[D (' (k +1,0))] = 3 s i e (k $ 1)py(1 )i

pz k+7(k>py(l - _p>§: — (qurl) +7(k)py(1 —p)7
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and consequently: Ep[D (1/1(k: +1,0))] > Eg[D (1/1(k: 6))] since:

i k i q k
(1 — ag)e7 > (1 — g)f 7.
;n k‘—l—l +7(7)g( 9) _Vzon—k’*‘V(V)g( 9)
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Chapter 3

Strategic Behavior of an Online Platform

Co-authored with Klara Svitakova (CERGE-EI)

3.1 Introduction

Platform intermediaries in two-sided markets are of increasing interest, as we have seen
a surge in their numbers in recent years. These platforms choose many different design
features, such as the rating system they use, the order and the way in which they display
search results, their search filtering options, and many other visual and design aspects
and platform features. It is becoming increasingly obvious that all of these features affect
the allocation outcomes and the choices of consumers. '

We focus on platforms such as booking.com and Airbnb, which have significant market
shares, and where the product sold through the platform is depletable, aggregate demand
for the product fluctuates, and the consumer buys one unit at a time. We show that in
such a setting the platform has incentives to allocate some low quality sellers to consumers
when there is a state of low demand, in order to attract sellers to the market and therefore
to benefit from larger market size when there is a state of high demand.

This paper studies the platform’s allocation decisions. In our model, the platform
commits to a stochastic allocation rule and a transaction fee which is constant across
sellers. The sellers subsequently set prices and decide whether or not they will partici-
pate on the market. After that, the demand is realized, the allocation is realized, and
consumers decide whether or not they will buy the allocated products. We assume the

platform charges the same transaction fee to all sellers, and therefore earns more revenue

'For example, Anderson 2012; Mellinas, Maria-Dolores, and Garcia 2015; Ert and Fleischer 2016;
Dinerstein et al. 2018, Martin and Norton 2009, and others.
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from transactions made by higher quality sellers who charge higher prices than lower
quality sellers. However, the platform also realizes higher profits if the volume of transac-
tions is higher, that is, if more sellers participate on the market. The platform therefore
chooses its allocation decision together with the transaction fee strategically, taking into
account its influence on the participation decisions of the sellers. While the platform can-
not influence the participation decisions of particular sellers by charging them different
transaction fees (it cannot price discriminate among firms), it can influence their decision
by manipulating the allocations. A low quality seller who faces a higher probability of
selling his product is more likely to stay on the market, generating additional profits.
On the contrary, a high quality seller who enjoys a positive profit can be allocated to a
consumer with lower probability and still stay on the market.

Even though we completely disable price discrimination by the platform, this is not
crucial for our results. In reality, it is likely that there will be some small degree of price
discrimination (for example, several pricing options), but as long as the price discrimi-
nation is not perfect and the platform does not charge a different fee to every individual
seller, our result and the mechanism that we describe in this paper remain relevant.

This paper is organized as follows: Section 3.2 summarizes the relevant literature,
Section 3.3 describes our model, Section 3.4 derives an alternative formulation of the
problem, Section 3.5 derives the optimal behavior of a profit-maximizing platform, and

Section 3.6 concludes.

3.2 Literature Review

This paper studies the behavior of a platform intermediary that enables trade between
consumers and sellers. It thus builds on the growing body of mostly theoretical literature
on two-sided platforms (e.g., Rochet and Tirole 2003; Rochet and Tirole 2006; Armstrong
2006, Weyl 2010). Most of the literature studies pricing strategies of platforms in a setting
in which the two sides of the market exert externalities upon each other, i.e. the benefit
of joining the platform for one side of the market is increasing in the size of the other side.
We diverge from both of these: we fix the consumer side and assume exogenous consumer
affiliation, and we also fix the pricing strategy of our platform to a simple transaction fee
imposed on the sellers, with no charges being levied on the customers, which is what we
often observe with online platforms in reality. Instead, we focus on a new decision of the

platform of how to allocate heterogeneous sellers to consumers when there is an excess
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of sellers. This direction is motivated by an abundance of empirical and experimental
research showing that online platforms make a number of design decisions that all have
a surprisingly significant influence on consumers’ choices.

We follow Hagiu and Jullien (2014) by adding a new platform design decision and thus
expand the study of platforms. Hagiu and Jullien focused on the ability and incentive
of a platform to divert consumers to unsolicited content such as advertisements in order
to increase profits. In Hagiu and Jullien (2014), the platform trades-off consumer traffic
(market size) for higher revenues derived from advertising exposure. Similarly, we incor-
porate findings from the empirical and experimental literature on online platforms and
model the fact that platforms have the ability to influence or even manipulate consumer
product choices by choosing the design and rules of the platform, especially the order
in which the platform lists search output. For example, Anderson (2012) finds that if
a hotel’s position on the list drops by one (e.g. being 3rd vs 2nd or 10th vs 9th), its
likelihood of being selected drops by 11.5%. In an experimental setting with relatively
short lists?, Ert and Fleischer (2016) and Murphy, Hofacker, and Mizerski (2006) confirm
that the top positions are most likely to be selected, and that likelihood decreases along
with the position. However, they also find that the likelihood of being selected increases
for the very last position on the list, which may be due to the shortness of their lists
where the last position is more visible. Both of these findings are consistent with the well
documented primacy and recency effects.

Another example of how platform design, and specifically the way products are dis-
played and ordered for consumers, affects outcomes is Dinerstein et al. (2018), who exploit
and analyze a design change that eBay implemented in 2011. The change consisted of
altering the algorithm that orders searches from a more relevance based and price inde-
pendent algorithm to a design which put more emphasis on price. Dinerstein et al. (2018)
show that the switch created more price competition and led to lower prices and fewer
purchases being made.

In addition to search output ordering, the platform makes many other design choices
such as the choice of the rating system. Mellinas, Maria-Dolores, and Garcia (2015) and
Mellinas, Maria-Dolores, and Garcia (2016) point out a previously unnoticed character-
istic, that the booking.com rating scale goes from 2.5 to 10 - it does not start at 0 or

1 as one might think, and it thus inflates scores. They study the rating system and

2Ert and Fleischer (2016) use a list of 10 hotels, and Murphy, Hofacker, and Mizerski (2006) perform
two experiments, one with 6 links and the other with 7 links in a list.
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its attributes and conclude that the system distorts the ratings so as to shift the hotels
with the lowest scores upwards towards medium scores. In turn, Anderson (2012) finds
that a 1% increase in a review score increases the occupancy of a listing by up to 0.54%.
The rating system thus represents another channel through which the platform can affect
allocations. Ert (2014) summarizes several other seemingly trivial design aspects of web-
sites which affect consumer choices in non-trivial ways. For example, Martin and Norton
(2009) show that organization of information in online settings can significantly influence
consumer choices. In a lab experiment, they show that grouping different attributes into
one category induces consumers to put less weight on them in their decision making, as
opposed to listing the same attributes in separate categories. Further using online exper-
iments, Mandel and Johnson (2002) show that priming by altering background pictures
and colours affects consumer choices, and Weinmann, Schneider, and vom Brocke (2016)
additionally review several principles of digital nudging.

Though the reality is, of course, more complex, we simplify the choice of the platform
in our model to choosing the probabilities with which the sellers of a particular quality
are matched with a consumer. The platform can thus choose whether to allocate a higher
or lower quality seller to a consumer. This principle is very similar to Dinerstein et al.
(2018) in which the platform chooses a visibility function, or the probability of a product
being considered by consumers.

We find that a platform may want to systematically divert consumers towards lower
quality products. The motivation for doing so is somewhat similar to that in Kremer,
Mansour, and Perry (2014), who show that a platform or a principal might want to give
some consumers inferior recommendations in order to induce them to explore new alter-
natives and reveal new information which can be useful for other consumers. Similarly,
in Hagiu and Jullien (2014), the platform diverts consumers to unsolicited content. The
logic is comparable to (Jullien 2011)’s divide and conquer strategy. In his paper, the
platform may want to subsidize one side of the market in order to attract it to join the
platform and increase the benefits of joining for the other side, from which the platform
then collects revenue. Though all of these papers are very different and model different
situations in different settings, they share the feature that the platform does something
seemingly counter-intuitive in order to maximize its profits. In our model, the platform
effectively subsidizes low quality sellers in a state of low demand by matching them with
consumers in order to induce sellers to join the platform and thus recoup revenue from a

larger market in a state of high demand.
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3.3 The Model

3.3.1 Setup

There are three types of agents in a two-sided market. Sellers, buyers and a monopolistic
platform which manages the market. The buyers and sellers meet through the platform
and cannot interact without it.

Each seller is selling a single unit of a good of quality ¢ € @ = [0, g, which summarizes
his type. There is a continuum of measure g of sellers uniformly distributed on interval
(). Each buyer can buy a single unit of the good from a seller. There are two possible
states of the world: the mass of buyers who come to the platform is D < g in state Low
which occurs with probability g, and it is g in state High which occurs with probability
1—g. In either state the platform allocates buyers to sellers. Consequently, in state High
all sellers can receive a buyer, but in state Low, there are fewer buyers than sellers and
some sellers cannot be allocated a buyer.

We assume that the platform cannot distinguish between buyers and the allocation

State

decision can thus be described by u : @ — {0,1}, where the seller ¢ receives a

buyer, whenever u(q) = 1. Consequently pf®9" is trivially pf%"(q) = 1 for all ¢ 3
and p°® = u (for simplicity of notation), is then chosen by the platform, subject to
a constraint | oM = D. We denote the set of allocation functions which satisfy this
constraint with M = {u: [, = D}.

The game has three stages. First, the platform sets a transaction fee ¢ € [0, 1] and a
stochastic allocation rule for the state Low, h € A(M) *, Ap = [0,1] x A(M). Second,
all sellers ¢ € () simultaneously decide whether to participate on the platform or not
and set prices p,, As = {” Participate”,” Not” } x R. Third, the buyers arrive and the
state of the world is realized - the mass of buyers is revealed. Every buyer meets a single
seller according to the realized allocation rule h 3, observes his allocated seller (¢, p,), and
decides whether he buys from him or not Agp = {"Buy”,” Not” }.

Each buyer has private information on his appreciation for quality 6, which is dis-

3This is a consequence of the fact that, in this state there are enough buyers to be matched with all
sellers, and every seller and every buyer wants to be matched.

4Choosing an allocation function p can be thought of as choosing a pure strategy, this is equivalent
to allowing for mixed strategies. A crucial assumption is that h(q) cannot be conditional on the sellers’
choice of price with h(q,p,). We return to this assumption later on.

5This is guaranteed, because the platform can anticipate sellers’ participation decisions and giving a
non-participating seller non-zero probability of meeting a buyer is wasteful.
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tributed (independently of other buyers) on [0, 1] according to a cumulative distribution
function F' with associated density f. The buyers’ utility function is v = 0q — p, if he
purchases good ¢ and 0 if he does not. A seller ¢’s expected profit is

7s(q; pgs P(q),t) = (1 = t)(1 — g + gh(q)) P(Sale of qlu(q) = 1)p,

if he Participates and ¢ : (Q — R if he does Not. We assume the opportunity cost of the

seller to be weakly increasing in quality 2¢ > 0. The platform’s expected profit is:
g aq

q
mp(h,t) = t/ (1 =g+ gh(q))P(Sale of q|u(q) = 1)pq11R(q,h,t)zodq
0

where T R(q,h(q),t) > 0 is an individual rationality constraint® of seller ¢, which will be

satisfied for sellers who Participate.

We assume a subgame perfect equilibrium and thus, by backwards induction, the

buyer 6 observes his allocated (¢, p,) and Buys iff:

o> L (3.1)
q

After observing (h,t), knowing the buyers’ strategy, the participating seller ¢ maxi-

mizes his expected profit:

max(1 — £)(1 — g+ gh(g))(1 — F(%»pq, (3.2)

Pq

We denote the solution for firm ¢’s problem p : Q — R,7. The seller ¢ Participates if

the maximum of (3.2) is larger than ¢(q) or equivalently if:

IR(q, h(q),t) = ms(q,p(q), h(q),t) — c(q) > 0.

Finally, the platform, knowing the sellers’ strategy, chooses h : @ — [0,1] and t € [0, 1]

to solve:

ot (1= g+ 901~ FOL)p(a) Limgaron d 33)

5To be defined properly after formulation of the sellers’ problem.
“The assumptions sufficient for the existence and uniqueness of this solution are presented in section
3.3.2
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st /Oq h(q)dq = D (3.4)
1

c(q)
IR(g,h(q):t) 2 0={q: h(q) > -
(9:1(g),) 2 0={q:hlg) = ((1 — F("2))(1 - t)p(q)

~(1-9)}

Equation (3.4) is a consequence of allocating measure D of buyers to sellers in realization.
We discuss how this constraint follows from the general problem in Appendix A. The
constraint is with equality, because it is strictly better to allocate all buyers. The solution

to the platform’s problem will be denoted as h*,t*.

3.3.2 Assumptions and Preliminary Analysis

This section introduces several assumptions and discusses some preliminary results. The
assumptions we make are: his not a function of p,, f is continuous, a technical assumption
F(z)+ xf(z) is strictly monotone in z and ¢(q) is concave. Given these assumptions, it
turns out that p(q) is weakly increasing in ¢ and the boundary of the individual rationality
set ho : @ x R — R, implicitly defined by I R(q, ho(q,t),t) = 0, is decreasing in g. These
consequences, while rather technical, are important for later results. This section provides

a discussion of the assumptions above.

h is not allowed to be a function of p,

We assume that b is a function of ¢, but not p,. Allowing for h(q,p,) allows the platform
to influence price p, through h(q,p,). Effectively, the platform could choose a p, and
then force the seller to set the price to this level by giving it a probability to sell only if
the seller chooses the same p,. Nevertheless, we argue that, in our model, the platform
has no incentive to do such a thing, as the seller-optimal price p(q) is also optimal for
the platform. This is driven by the fact that the seller finds himself in a monopolistic
position with the buyer after they are matched and thus, the price he chooses extracts all
possible surplus from the buyer and the platform cannot do any better. This would not
be the case, for example, if two sellers were competing after being allocated to a single
buyer. In this paper we focus on the pricing decision of the platform and thus we leave

out a discussion of including competition among sellers into the sellers’ pricing problem.
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f is continuous and F(z)+ zf(z) is strictly monotone in z

We need the assumption of continuous f for the existence of the solution to the sellers’

problem. The solution of seller ¢, p(q) is given by the first order condition:

(1= g+ gh(g)(1 - (1 — F(p(qq>> - p(j)f(p(qq))) 0

interior solution exists for a continuous f 8 and solves:

- F(p(qq)) B p(qq)f(p(qq)) _9

To guarantee uniqueness of the solution to the previous equation, we would further need

F(z) + zf(z) to be strictly monotone. This is guaranteed, for example, for uniform F.

p(q) is increasing and linear in ¢

Proposition 12. p(q) is increasing and linear in q, given f is continuous and F(x) +

xf(zx) is strictly monotone in x.

Proof. Let a be the solution of:
1—F(a) —af(a) =0,

then p(q) = aq, showing linearity.
We show that p(q) is increasing in g by contradiction: If p(¢q) is not increasing in g,

then because it is linear there is an ¢ < 0 s.t:
1—-F(a)—af(a)=0

but for a < 0, F(a) = f(a) = 0 as a consequence the first order condition cannot be
satisfied. !

Thanks to Proposition 12, p(q) can be written as p(q) = aq, where a > 0.

8Setting p, = 0 and p, = ¢ shows existence together with continuity of f.
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ho(gq,t) is decreasing in ¢ for concave costs

Finally, we show that the boundary of the individual rationality set, ho(q,t) (the lowest
h for which individual rationality is satisfied given ¢ and t), is decreasing in ¢ for concave

costs.
Lemma 1. If 828%(;) < 0, then 3h<()9(qq7t) <0

Proof. ho(q,t) is defined implicitly by:

(1 =1)(1 =g+ gho(q, 1))(1 — F(p—(qq) ))p(q) —c(q) =0
This yields after some manipulation:
1 c(q)
h,o s = — _ _
@05 ((1 — F(*2)(1 = Dp(a) )

Then, using Proposition 12, the derivative is:

% g1 =1 0¢ (1= F(ED)pa)  9(1 =)(1 = F(E2))ad4 g

Using the assumption azcggq) < 0 implies that average costs % are decreasing in ¢ which

yields the result. O

3.4 Analysis of the Platform’s Problem

The platform’s problem is a functional analysis problem with a discontinuous solution
and thus is difficult to tackle using formal tools. Throughout this section, we show that
the problem can alternatively be formulated in terms of multivariate real analysis, by

introducing the following result:

Theorem 1. Vi € (0,1],3¢1 < ¢2 < g3 € R s.t:

ho(q,t) @1 <q<gqo
h*(qg) =41 q = qs

0 0.W.
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where g = min{qo, gz}, with qo = hy *(0)°.

We prove the result in Appendix B. The remainder of this section discusses the in-
tuition behind the shape of h*. Panels of Figure 3.1 depict how function h* looks for
different parameters of the model. While panel A shows the situation where g, = qo,
panel B shows the situation with ¢ = ¢3. In both cases, the sellers with ¢; < ¢ < ¢ are
allocated the exact probability ho(q) that makes them indifferent between Participating
and Not, because their expected profit is 0. On the other hand, the sellers to the right of
@2 enjoy positive expected profits. The shape of h* is driven by two opposing sources of
profit for the platform. First, the platform benefits from all transactions, but it benefits
more from higher ¢ which is associated with higher p(q). This effect results in an incen-
tive to set high h(q) for high ¢. Second, the platform benefits from an increase in the
mass of the participating sellers. By satisfying the individual rationality condition for an
additional seller and making that seller ” Participate”, the platform generates additional
profits in state High, in which there are plenty of buyers. This effect incentivizes the
platform to satisfy the individual rationality condition for as many sellers as possible.
Finally, observe that while the profit from the first source is realized only in the bad state
of the world, the profit from the second source is realized in both states of the world '°.
In an interior solution, the platform balances the two effects and equalizes the marginal

profits from both sources, giving rise to the shape of hA* in Figure 3.1.

The idea behind the proof is roughly that the problem can be thought of as optimally
allocating a mass of D between 0 and g such that the objective (3.3) is maximized. To the
right of the hg curve, the same mass allocated on higher ¢ yields higher returns. This is
due to the monotonicity of the objective function, which is driven by Proposition 12, p(q)
function being increasing in ¢ (Lemma 2 in Appendix B follows). Similar monotonicity
applies to mass changes on the left side of the ho curve holding the mass of participating
sellers constant (Corollary 3 in Appendix B follows). The mass shift which changes the
shape of the hg curve has additional gains (losses) when it causes additional sellers to
” Participate” (" Not Participate”) and consequently there is a trade-off between allocat-

ing the mass to satisfy the I R(q) constraint for additional sellers, the extensive margin,

9Technically go and hg should be functions of ¢, however, throughout this section we will keep ¢ fixed
to an arbitrary value in interval (0, 1] and thus for the sake of notation simplicity we will act as if ¢ is a
parameter of the model, rather than a variable.
1OWith probability weights hg and 1 for states Low and High respectively.

20



----- ho Solution e (| Solution

91 g2 "T--.__a3 q 92 =493

Panel A Panel B

Figure 3.1: Shape of h*.

and allocating it so as to gain additional profit from the sellers who are already present

on the market, the intensive margin.

3.5 Solving the Platform’s Problem

Theorem 1 allows us to write the platform’s maximization problem equivalently as:

max 7T(q17 q2, 43, t)
q1,92,93,t

q2
s.t: / ho(q,t)dg+q—qs = D (3.5)

q1

te€0,1]

where

oo anot) =ty [ (1- F(%q)»p(q)ho(q, )dg

q1




¢ = min{hy'(0), g3}

This is a real analysis problem and thus the first order conditions can be derived from
the related Lagrangean. The solution to the platform’s problem (g, ¢3, ¢5,t*) then solves

the following set of equations:

9 w(qI,qz,qé,t*)H*g/qg(l_F(@))p( Ohola.1) ;o A/q; Oola:t) 40— (3.7)

ot t . q ot P
- = 1091 g )+ (1-0) (1P D) )+l ) = 0
(3.8)
5o = 10901 = P s (g ) — Mol #) =0 (39)
5o = = FED) (i) + 2 =0 (3.10)
S=D- hola, t)dq — 3+ ¢ = 0 (3.11)

Proposition 13. Fither ¢5 = q5 or ¢ = qo(t").

Proof. Equation 3.9 implies either: ho(gs,t*) = 0 or t*gp(q5)(1 — F(p(q*;))) = ) For

a3
ho(qs,t*) = 0, g5 solves:
h'o(q;? t*> =0
and thus it solves the same equation as qo(t*).
For t*gp(g3)(1 — F(%)) = A: 3.10 implies ¢ = q;. O

Proposition 13 confirms the existence of two possible shapes of h* as depicted in Figure

3.1. The case ¢ = qo corresponds to panel a, while the case ¢5 = ¢} corresponds to panel
b.

Proposition 14. The trade-off between the extensive and intensive margins is captured

by the following equation:

gho(q1,t")p(qr) + (1 — g)p(qr) = gho(qi, t*)p(a3) (3.12)

52



Proof. combining equation 3.8 and 3.10 yields:

rg(1 - F(p(qq;)))(—p(qi)ho(qi)) g F(pg§f>>><—p<q;>>
g1 — F(p<q§>>>(_p(q;>>ho(q;> 0

The use of Proposition 12 yields:

t*g(1=F(a))(=p(di))ho(qi))+t* (1=g) (1—F(a)) (—p(qi)) —t*9(1—F(a))(—p(g3)) ho(q7) = O
which after some manipulation yields the result. O

Proposition 14 confirms the previously described intuition behind Figure 3.1. For a
small € > 0, the left hand side of equation 3.12 can be interpreted as the marginal benefit
of allocating a rectangle of ho(qy)e next to point ¢. In such a case, the platform benefits
by extracting with probability g an additional profit of ho(q¢f)p(¢;) and with probability
1 — g profit of p(q}). The right hand side is then analogically the marginal benefit of
allocating a rectangle eho(q7) to the point ¢5. In this case, the additional profit is with
probability g, ho(q7)p(¢5) and with probability 1 — ¢ it is 0, because in state High the
firms around ¢3 ” Participate” with or without the additional mass.

We do not focus on t in this paper, but for completeness, the platform of course
faces another trade-off when choosing the transaction fee. Since an increase in t shifts
ho to the right, decreasing the set of sellers who decide to jParticipate), the platform
can charge a lower transaction fee, attract more sellers, and generate a larger market,
or it can charge higher fees, which discourage more sellers from participating and thus

decrease the market size. The optimal ¢ balances the two effects.

3.6 Conclusion

We show that online platforms have incentives to manipulate the demand that their
sellers face by manipulating consumer choices. Specifically, in our model, the platform’s
recommendation strategy is nonlinear in the firm quality and redistributes some demand
from high quality to low quality sellers. While the direction of the effect suggests that the
demand manipulation is detrimental to welfare, this is not certain as the manipulation

also enlarges the market. A full welfare analysis of this effect would be an interesting
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topic for further research. Other possible directions to explore include allowing more
complicated pricing strategies of the platform, or studying competition among several

platforms.
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3.A Appendix - Constraint Derivation

Derivation of:

/Oq h(q)dq = D. (3.13)

This section shows how constraint 3.13 follows from a mixed strategy h supported
by two pure strategies h; € M,i € 1,2. Generalization to finite pure strategies is then
straightforward.

I, qe@;

h; =
0; o.w.
Let h = vhy + (1 — v)hy, where v € [0, 1], then:

(

L; g€ NG

b Vi g€ Q1\Q2
l—v; g€ @2\
0; 0.W.

/ hdg = / hdq + / hdq + / hdq

Q Q1\Q2 Q2\Q1 Q1NQ2

= / vhidg + / (1 —v)haodq + / (vhy + (1 — v)hse)dg
@1\Q2 Q2\Q1 Q1NQ2

= 1// hldq—l—(l—l/)/ hgdq—l—v/ hldq—l—(l—l/)/ hadq
Q1\Q2 Q2\Q1 Q1NQ2 Q1NQ2

:1// hldq—l—(l—l/)/ hodgq=vD + (1 —v)D =D
Q1 Q2

3.B Appendix - Proof of Theorem 1

We first prove several lemmas; the proof of the theorem combines the lemmas at the end

of the appendix.

Lemma 2. Suppose h* is a part of the solution to the platform’s problem with t* € (0, 1]
then if 3o, a0 = [12h*(q)dg = s —on = 0?1 h*(q)dg =G — aq
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Proof. Suppose not, fix any t* € (0, 1] and suppose 351, B2 s.t. ag < 1 < 2 and 30 > 0
st [21—ho(g)dg > 6 and [} h(q)dq = B> — B — 0. Such § exists iff. ho(a) < 1.
For ho(az) < 1, take:

ho a1 <qg<q

h’/(q) = 1 ﬁl <qg< ﬁg
h o.w.
where § solves: fjl 1—ho(q)dqg =0

then foq h*(q)dq = foq Rh'(q)dq and we will show that A’ yields higher profit, which is a
contradiction to the optimality of h*. h' yields higher profit if:

[ =g+ gr@ - @ - FEDy)p0)dq

1 q

B2
< [Ca=g+ @) - 1@ - D))
B1 q

This inequality holds because (1 — F(22))p(q) is increasing in ¢. One can take:

[ =g+ gt @ - wam - FEDpa

1 q

< [[a=g+gtr@ - 1@ - FED) @

] q

B2
< [Ma =g+ g - @ - ey
B1 1

B2
< (1— g+ gtk (a) — @)1 - FCDyp(g)dg (3.14)
B1 q

The middle inequality then integrates to:

p(B1)
b1

p(q)
q

(1=g+90)(1 - F(==))p(q) < (1 —g+g0)(1 = F(==))p(5)

which holds, because ¢ < as < ;. O

Let g3 = inf{a; : fjl h(q)dg =q— an}

Lemma 3. (Monotonicity under ho) For all ay < By < s < qo, where qo = hy*(0), let

HTn case of ho(az) > 0, one can take h'(q) = 0 for a; < ¢ < ¢ and the rest of the proof is the same.
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oy be such that:

/aaz ho(q)dq = /,:2 ho(q)dg = 6

1

then:

ag B2
[ =g+ ahatana - FEL oy < /5 (1= g+ gho(a) (1 = FCL o)y

—

Proof. The trick is the same as in the previous proof. Realizing that (1 — F(%))p(q) is

increasing in ¢,

=g+ ahotan - FEL oy

B2
< [Ta-g+gmta — PPy 08,)dg
B

The middle inequality then simplifies to:

Do) < (1= g+ ge)(1 = FCL ()

p(q)
q

(1 =g+ ge)(1 - F(
Which is true due to the fact that (1 — F(22))p(q) is increasing in g. O

q

Lemma 3 says that the platform always prefers to assign mass towards higher ¢, when

choosing among sellers for whom the individual rationality constraint is just satisfied.

Lemma 4. If Ja1, s < g3 s.t: f:‘f h(q)dq > foiz ho(q)dq > 0 then h is not a solution for
the platform’s problem.

Proof. Let § = f:‘f h(q) — ho(q)dq. For simplicity, we prove the case in which ¢z — 0 >
Jo > i, the other cases are analogical, requiring special treatment to define A'. In this
case:

1 g>q¢—9
h = ho a1 <qg<ay

h o.w.
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yields higher profit. O

It follows from Lemma 4 that it is wasteful to allocate anything strictly between 1

and ho(q) mass to any seller.

Corollary 3. (Of Lemma 3 and 4) Suppose h* is a part of the solution of the platform’s
problem with t* € (0,1] then if Jay, s : f:‘f h(q)dq = fa2 ho(q)dg = qu q)dq =
fq2 ho(q)dq, where g2 = min{qo, ¢z }-

Corollary 3 together with Lemma 5 describes the shape of the solution to the left of
point go. Let g1 = inf{ay : h( Ydg = [ ho(q)dq}

Lemma 5. If dag, a0 < ¢q s.t: 0 < foiz h(q)dg < fa2 ho(q)dq then h is not a solution for
the platform’s problem.

Proof. Let § = f:‘f h(q)dg. Let B be such that f = ¢. For simplicity, we prove the
case in which oy < 3, the other case is analoglcal, requiring special treatment to define

h'. In this case:

0 a1 < g <
W=qh(a) B<a<a
h 0.w
yields higher profit. O

Finally, we are ready to prove Theorem 1:

Proof. By Lemma 5, for ¢ < ¢1 : h*(¢) = 0 almost everywhere. By Corollary 3 for
q € [q1,q2] : h*(q) = ho(q) almost everywhere. By Lemma 2 for all ¢ > ¢3 : h*(q) =1
almost everywhere. Finally by Lemma 4 for all ¢ € [go, ¢3] : h(q) = 0 almost everywhere.

This concludes the proof. O
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