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Abstract

In the first chapter, we examine the impact of temperature on manufacturing production 

in  India and the underlying mechanisms.  Using plant-level  manufacturing data  and satellite-

based temperature estimates from 1998-2007, we find that the relationship between temperature 

and output exhibits an inverted U-shape, with especially large losses occurring at extreme cold 

and hot  temperatures.  Such nonlinearity  provides  valuable  insight  into  the  potential  welfare 

consequences of climate change. Back-of-the-envelope calculations suggest that a 1°C shift in 

the annual distribution of daily temperature would lead to net losses in manufacturing output of 

1.3% or  USD 0.6 billion,  equivalent  to  a  0.5% reduction in  India’s  GDP 2007 through the 

manufacturing sector alone. The estimated temperature-output relationship is driven by the joint 

effects  of  temperature  on  total  factor  productivity  and  capital.  This  finding  has  important 

implications for adaptation. The manufacturing sector can adapt to changing climate by reducing 

the sensitivity of labor productivity to temperature and by making investments in machinery. 

Labor-related  adjustments  can  also  contribute  to  adaptation  by  offsetting  direct  productivity 

losses or facilitating labor reallocation. Guided by these strategies, India’s manufacturing can 

achieve  climate  change  policy  goals  without  compromising  its  growth  and  development 

perspectives.

In  the  second  chapter,  I  reexamine  empirical  evidence  on  the  effectiveness  of 

environmental regulations in India from a study by Greenstone and Hanna (GH, 2014).  GH 

report that the city-level air pollution control policies in India were effective in improving air 

quality  but  had  a  modest  and  statistically  insignificant  effect  on  infant  mortality.  These 

somewhat counterintuitive findings are likely to stem from the limited availability of ground-

based air pollution data used in GH and the absence of critical meteorological confounders. I 

leverage recent advances in satellite technology and GH’s methodology to test the sensitivity of 

their  findings  to  revised  air  pollution  outcomes,  an  extended  number  of  observations,  and 

meteorological controls. Despite striking differences between the two datasets, reexamination 

using satellite-based data broadly confirms the conclusions drawn from GH’s data. The effects of 

the  policies  are,  however,  substantially  weaker.  The  study  urges  further  research  on  the 
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effectiveness of environmental regulations in developing countries and the use of satellite-based 

estimates in the examination of this important question.

In  the  third  chapter,  I  estimate  the  impact  of  the  sharp  reduction  in  particulate  air 

pollution driven by the Global Financial Crisis of 2008 on district-level infant mortality in India. 

Utilizing plausibly exogenous geographic variation in the crisis-induced changes in air quality 

and  novel  data  from  household  surveys  and  satellite-based  sources,  I  find  that  the  infant 

mortality rate fell by 24% more in the most affected districts, implying 1338 fewer infant deaths 

than would have occurred in the absence of the crisis. Analysis of the mechanisms indicates that 

air pollution reductions affected infant mortality mainly through respiratory diseases and two 

biological  mechanisms:  in-utero  and  post-birth  exposure.  Heterogeneity  analysis  further 

emphasizes the role of parental education in alleviating the adverse consequences of infants’ 

exposure  to  air  pollution  and  justifies  the  need  for  interventions  targeting  low-income 

households. Calculations suggest that the estimated decline in infant mortality translates into a 

three-year after crisis total of USD 312.5 million. The resulting health benefits could be used as a 

benchmark for  assessing the effectiveness of the policies designed to improve air  quality in 

India. 
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Abstrakt

V první  kapitole  zkoumáme dopad teploty  na  výrobní  produkci  v  Indii  a  související 

mechanismy.  Využitím výrobních dat na úrovni závodu a satelitních odhadů teplot z let 1998-

2007 jsme zjistili, že vztah mezi teplotou a výrobou vykazuje tvar obráceného U, přičemž zvláště 

velké ztráty nastávají při extrémně nízkých a vysokých teplotách. Taková nelinearita poskytuje 

cenný pohled na potenciální důsledky změny klimatu na blahobyt. Výpočty naznačují, že posun 

o 1 °C v roční distribuci denní teploty by vedl k čistým ztrátám ve výrobě ve výši 1,3 % nebo 0,6 

miliardy  USD,  což  odpovídá  0,5%  snížení  HDP  Indie  v  roce  2007  pouze  prostřednictvím 

výrobním  sektoru.  Odhadovaný  vztah  mezi  teplotou  a  výrobou  je  řízen  společnými  účinky 

teploty  na  celkovou  produktivitu  faktorů  a  kapitál.  Toto  zjištění  má  důležité  důsledky  pro 

adaptaci. Výrobní sektor se může přizpůsobit měnícímu klimatu snížením citlivosti produktivity 

práce na teplotu a investicemi do strojního zařízení. Úpravy související s pracovních sil mohou 

také přispět k přizpůsobení tím, že vyrovnají přímé ztráty produktivity nebo usnadní přerozdělení 

pracovních sil. Na základě těchto strategií může Indická výroba dosáhnout cílů politiky v oblasti 

změny klimatu, aniž by ohrozila její růst a perspektivy rozvoje.

Ve  druhé  kapitole  znovu  zkoumám empirické  důkazy  o  účinnosti  environmentálních 

předpisů v Indii ze studie Greenstone a Hanna (GH, 2014). GH uvádí, že politiky omezování 

znečištění ovzduší na úrovni města v Indii byly účinné při zlepšování kvality ovzduší, ale měly 

mírný a statisticky nevýznamný dopad na  kojeneckou úmrtnost. Tato poněkud kontraintuitivní 

zjištění pravděpodobně pramení z omezené dostupnosti údajů o znečištění ovzduší z pozemních 

zdrojů používaných v GH a z absence kritických meteorologických kontrolních proměnných. 

Využívám nedávné pokroky v satelitní technologii a metodologii GH k testování citlivosti jejich 

zjištění  na  revidovaná  měření  znečištění  ovzduší,  rozšířený  počet  pozorování  a  zahrnutí 

meteorologických kontrolních proměnných. Navzdory výrazným rozdílům mezi těmito dvěma 

datovými  soubory,  opětovné  přezkoumání  pomocí  satelitních  dat  široce  potvrzuje  závěry 

vyvozené z dat GH. Účinky politik jsou však podstatně slabší. Studie nabádá k dalšímu výzkumu 

účinnosti ekologických předpisů v rozvojových zemích a využití satelitních dat při zkoumání této 

důležité otázky.
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Ve  třetí  kapitole  odhaduji  dopad  prudkého  snížení  znečištění  ovzduší  způsobeného 

globální finanční krizí v roce 2008 na kojeneckou úmrtnost na úrovni okresu v Indii.  Využitím 

věrohodně exogenních geografických variací ve změnách kvality ovzduší způsobených krizí a 

nových údajů z průzkumů domácností a satelitních zdrojů jsem zjistil, že kojenecká úmrtnost 

klesla o 24 % více v nejvíce postižených okresech, což znamená o 1338 méně úmrtí kojenců než 

by nastaly, kdyby stalo bez krize. Analýza mechanismů ukazuje, že snížení znečištění ovzduší 

ovlivnilo  kojeneckou  úmrtnost  především  prostřednictvím  respiračních  onemocnění  a  dvou 

biologických  mechanismů:  vystavení  znečištěnému  ovzduší  zatímco  v  děloze  a  po  porodu. 

Analýza heterogenity dále zdůrazňuje roli výchovy rodičů při zmírňování nepříznivých důsledků 

vystavení  kojenců  znečištěnému  ovzduší  a  odůvodňuje  potřebu  intervencí  zaměřených  na 

domácnosti s nízkými příjmy. Výpočty naznačují, že odhadovaný pokles kojenecké úmrtnosti se 

promítne do celkové výše 312,5 milionu USD za tři roky po krizi. Výsledné zdravotní přínosy by 

mohly být použity jako měřítko pro hodnocení účinnosti politik určených ke zlepšení kvality 

ovzduší v Indii.
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Introduction

This  thesis  consists  of  three  chapters  that  examine  the  effects  of  climate  change, 

environmental externalities, and regulations on health, wellbeing, and economic development in 

India.  Specifically,  I  create  unique  datasets  by  combining  large  administrative  datasets  with 

satellite-derived estimates and spatial information to study the impact of temperature on output, 

productivity  and  factor  inputs  of  manufacturing  plants,  reexamine  the  effectiveness  of 

environmental regulations, and quantify the effects of air pollution on infant mortality. My studies 

include a policy-relevant component so that my research outcomes could inform policymakers 

aimed at finding cost-efficient solutions for the most pressing global challenges.

In the first  chapter,  Tong Liu and I  study the impact of temperature on manufacturing 

production in India and the underlying mechanisms. This is critical for designing effective climate 

change adaptation strategies, especially for developing countries with a sizable population exposed 

to extreme temperatures and limited capacity for adaptation. 

Exploiting plausibly exogenous variation in a plant’s exposure to temperature, we arrived 

at two main findings. First, the relationship between temperature and manufacturing output is non-

linear  and  exhibits  an  inverted  U-shape.  The  output  losses  are  especially  large  at  extreme 

temperatures.  Detected  nonlinearity  provides  valuable  insight  into  the  potential  welfare 

consequences of climate change. There is a possibility that, due to replacing cold days with hot, the 

reduced negative impact of climate change due to fewer cold days can offset, at least partially, the 

increased negative impact  due to more hot days.  However,  this is not  the case for India.  Our 

calculations suggest that a 1°C rise in temperature would lead to net losses in manufacturing output 

of 1.3% or USD 0.6 billion, equivalent to a 0.5% reduction in India’s 2007 GDP through the  

manufacturing sector alone.

Second,  the  estimated  temperature-output  relationship  is  driven  by  the  joint  effects  of 

temperature on total factor productivity (TFP) and capital. Heterogeneity analyses further reveal 

that temperature affects TFP through its impact on labor productivity and that machinery is the 

most suitable for the adaptation category of capital. We also find suggestive evidence of labor 
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reallocation  between  seasonal  manufacturing  industries  and  between  economic  sectors.  These 

findings have important implications for adaptation. The manufacturing sector in India can adapt to 

changing climate by reducing the sensitivity of labor productivity to temperature and by investing 

in capital, prioritizing investments in machinery. Labor-related adjustments can also contribute to 

adaptation by either offsetting direct productivity losses or facilitating reallocation.

In  the  second  chapter,  I  reexamine  empirical  evidence  on  the  effectiveness  of 

environmental regulations in India from a study by Greenstone and Hanna (GH, 2014). GH report 

that air pollution control policies in India were effective in improving air quality but had a modest 

and statistically insignificant effect on infant mortality. A likely explanation for GH’s findings 

might stem from the scarcity of reliable air pollution measures and the effects of unaccounted 

confounding factors.  I  show that  GH’s  dataset,  which  was  constructed  using  readings  from a 

spatially sparse network of public air pollution monitors, suffers from high interannual variability 

in sample size, inaccurate measures of air pollution, and the absence of critical meteorological 

confounders. Ignoring these limitations could potentially lead to misleading conclusions about the 

effectiveness of air pollution mitigation efforts. Coupled with the prominence of GH’s study, this 

conclusion motivates a reexamination of GH’s findings using alternative data sources. 

Using satellite-based estimates  for  air  quality  and meteorological  conditions,  I  test  the 

sensitivity  of  GH’s  findings  to  revised  air  pollution  outcomes,  an  extended  number  of 

observations, and meteorological controls. Three findings emerge. First,  air pollution outcomes 

constructed using GH’s and satellite-based data demonstrate opposite trends. While concentrations 

of  air  pollutants  were falling  in  GH, concentrations  of  the revised  air  pollution  outcomes are 

continuously increasing. Second, GH’s findings are highly sensitive to the revised air pollution 

outcomes and the extended number of observations. There is little empirical support in satellite-

derived data for the effectiveness of the air pollution control policy found in GH to be strongly 

associated  with  air  quality  improvements.  Third,  meteorological  controls  matter.  Additionally 

controlling for meteorological confounders revealed similar effects of policies on air pollution to 

those reported in GH. Likewise, the estimated impact on infant mortality confirms that regulation-

induced improvements in air quality do not necessarily result in improved health. However, the 

qualitative patterns estimated using GH’s and satellite-derived data differ substantially. Further, 

the effects of policies estimated using satellite-derived data are not robust across various data-

sample combinations and specifications. Based on the complementary empirical evidence, it seems 
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reasonable to broadly confirm GH’s findings and interpret air pollution control policies in India as 

effective, although with substantially weaker effects on air pollution. 

In the third chapter, I examine the effects of ambient air pollution on infant mortality in 

India to address a broader policy question of whether and to what extent improvements in air 

quality in developing countries lead to improvements in health outcomes and associated health 

benefits. I  take advantage of the economic slowdown in India caused by the Global Financial 

Crisis of 2008 and exploit the episode of synchronous decline in industrial production, reduction in 

air pollution, and improvement in infant mortality. Economic slowdown affected Indian districts 

differentially,  based  on  their  pre-crisis  industrial  structure  and  industry-specific  pollution 

intensities. Evidence suggests that Indian districts with larger shares of the manufacturing, mining, 

construction, or energy sectors experienced a more substantial decline in air pollution than districts 

without these pollution-intensive sectors. 

Utilizing  plausibly  exogenous  geographic  variation  in  the  crisis-induced  changes  in  air 

quality and data from household surveys and satellite-based sources, I find that the crisis-induced 

reductions in PM2.5 pollution led to a statistically significant decline in district-level infant mortality 

rates. Regression coefficients indicate that the infant mortality rate in the treated districts fell by 

about 24% more than in the control districts between pre- and post-crisis periods. The estimates are 

robust to a variety of specifications and falsification tests. Studying transmission channels through 

which reductions in air pollution affect infants’ health, I examine the impact of the changes in PM2.5 

concentrations on the mortality of infants at different ages and from various diseases. My findings 

suggest that the PM2.5 reductions affected infant mortality mainly through respiratory diseases and 

two biological mechanisms: in-utero and post-birth PM2.5 exposure. Heterogeneity analysis further 

emphasizes  the  role  of  parental  education  in  alleviating  the  adverse  consequences  of  infants’ 

exposure to air pollution and justifies the need for interventions targeting low-income households. 

Finally, I use the quantified relationship to measure health benefits and monetary gains from the 

crisis-induced episode of PM2.5 pollution reduction. My calculations suggest that 1338 infant lives 

were saved, implying a contribution of 11% to the overall decline in infant mortality during the post-

crisis period and leading to monetary benefits of USD 312.5 million. The resulting health benefits 

could be used as a benchmark for assessing the effectiveness of policies designed to improve air 

quality in India. 
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1 Temperature  and  Manufacturing  Production  in  India: 

Plant-Level  Evidence  for  Adaptation  Strategies  (co-

authored with Tong Liu) 

1.1 Introduction

Climate  change  is  projected  to  increase  the  average  annual  temperature  and  alter  the 

number of  days with extreme temperatures  worldwide (Climate Impact  Lab, 2019; U.S.  EPA, 

n.d.b),  thus  affecting  nature  and  humans  in  many  aspects,  including  health,  productivity,  and 

behavior.1 There is also growing evidence that the average annual temperature can significantly 

affect economic activity. Several macro-level studies document the negative and nonlinear impact 

of temperature on aggregate economic output, with the temperature effects varying widely across 

geographical regions and extending to both agricultural and non-agricultural sectors (Hsiang, 2010; 

Dell, Jones, and Olken, 2012; Burke, Hsian, and Miguel, 2015; Carleton and Hsiang, 2016; Berg, 

Curtis,  and Mark,  2021).   Thus,  understanding the  impact  of  the climate-induced temperature 

changes on economic activity and the underlying mechanisms is critical for the design of effective 

climate change adaptation strategies,  but relevant evidence remains scarce (Burke et al.,  2015; 

Heal and Park, 2015; Zhang et al., 2018; Chen and Yang, 2019; Somanathan et al., 2021).

This study examines the effects of temperature on manufacturing production in India, one 

of the largest developing countries with a sizable population exposed to extreme temperatures and 

limited capacity to adapt to a changing climate (Somanathan et al., 2021). We combine detailed 

plant-level data from the formal manufacturing sector for 1998-2007 with high-resolution satellite-

based estimates for meteorological conditions and air pollution and aggregate them to the district-

year  level.  Exploiting  plausibly  exogenous variation  in  a  plant’s  exposure  to  temperature,  we 

document a significant  inverted-U relationship  between temperature and manufacturing output, 

with  especially  large  output  losses  at  extreme  high  and  low  temperatures.  Specifically,  an 

1 For evidence on heat-related diseases and mortality, see Curriero et al. (2002), Sachs and Malaney (2002), Deschênes 
and Moretti (2009), Gasparrini et al. (2015); for evidence on productivity, see Graff Zivin and Neidell (2014), Zhang 
et al. (2018), Adhvaryu et al. (2020), Somanathan et al. (2021); for evidence on behaviors, see Field (1992), Miguel, 
Satyanath, and Sergenti (2004), Jacob, Lefgren, and Moretti (2007).
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additional extremely hot day with a temperature above 33°C decreases output by 0.12% or USD 

3,749  relative  to  a  day  in  the  optimal  temperature  interval.  The  comparable  estimate  for  an 

additional extremely cold day with a temperature below 8°C is a decrease of 0.27% and USD 

8,435, respectively. The output loss is most prominent during India’s hottest pre-monsoon season, 

with a 1°C increase in the seasonal average temperature reducing manufacturing output by 2.2%, 

which is consistent with most literature.

To pin down the mechanisms, we decompose the estimated temperature-output relationship 

into the temperature effects on the components of the production function: total factor productivity 

(TFP), labor and capital factor inputs. We find that the temperature impact is mainly driven by the 

joint effects of temperature on TFP and capital, contributing roughly 30% and 70%, respectively. 

The response of TFP to temperature closely follows the response of output, while the response of 

capital  mirrors  the  response  of  output  only  to  higher  temperatures.  Relative  to  the  optimal 

temperature  interval,  an  additional  day  above  33°C decreases  TFP and capital  by  0.04% and 

0.08%, respectively. Heterogeneity analyses further reveal that TFP losses are associated with a 

reduction in labor productivity rather than capital productivity, consistent with workers’ exposure 

to thermal stress suggested in the literature (Hsiang, 2010; Somanathan et al., 2021). We also find 

suggestive evidence that temperature changes induce seasonal fluctuations in employment, both 

between  seasonal  manufacturing  industries  and  between  economic  sectors.   For  capital,  our 

analyses show that machinery is most suitable for the climate change adaptation category of fixed 

assets.  Additionally,  the  lagged  temperatures  significantly  impact  the  current-year  machinery 

stock, implying that the previous-year extreme temperatures lead to faster destruction, carrying 

over the necessity of increasing machinery stock into the current year. 

This study makes several contributions. First, it is among the first to document nonlinearity 

in  the  temperature-output  relationship  with  the  adverse  effects  of  both  extreme high and low 

temperatures.  This  finding  complements  the  existing  economic  literature,  which  has  to  date 

focused mainly on the negative impact of heat (e.g., Somanathan et al.  2021). It also provides 

valuable insight  into the potential  welfare consequences of climate change. Generally,  climate 

change is expected to shift the daily temperature distribution to the right, replacing cold days with 

hot. Thus, it may be possible that the reduced negative impact due to fewer cold days will offset, at 

least partially, the increased negative impact due to more hot days. However, back-of-the-envelope 

calculations suggest that a 1°C shift in the annual distribution of daily temperature would lead to 

5



net losses in manufacturing output of 1.3% or USD 0.6 billion, equivalent to a 0.5% reduction in  

India’s 2007 GDP through the manufacturing sector alone.  

Second, this study provides novel insights into the mechanisms behind the temperature 

effects on manufacturing output and its determinants. Despite the growing macro-level evidence of 

the negative impact of temperature on aggregate economic output, much less is known about the 

country-specific  micro-level  mechanisms  behind  the  temperature-output  relationship  and  their 

potential role in climate adaptation. As the manufacturing sector accounts for a larger share of 

national  GDP  in  many  countries,  we  establish  and  quantify  the  role  of  the  sector  in  the 

transmission of the negative temperature shocks to India’s economy, complementing a recent study 

by Somanathan et al. (2021). Our study is also among the first to quantify the relative importance 

of TFP, labor, and capital in the temperature-output relationship and to highlight the possibilities 

for climate change adaptation strategies at the level of the manufacturing sector. 

Third, we provide useful insights into climate change policies in India and other countries 

exposed to extreme temperatures with limited capacity for adaptation, mitigation, and resilience. 

As  the  TFP  response  to  temperature  follows  the  output  response  closely,  productivity-related 

adjustment can be a universal adaptation strategy, with a focus on reducing the responsiveness of 

labor productivity to high temperatures.  Other labor-related adjustments can include reallocation 

between seasonal manufacturing industries or between economic sectors. In addition, at extreme 

high temperatures, India’s manufacturing sector should prioritize capital-related adjustments, such 

as investments in machinery, when possible because of the larger contribution of the temperature-

capital  effects  to  the  overall  temperature-driven output  losses.  In  all  cases,  the  manufacturing 

sector should consider the seasonal responses of the specific adjustments and the timing of the 

expected effects to ensure effectiveness. 

Lastly, the optimal temperature interval uncovered in our study, from 18°C to 23°C, can 

also play an important  role  in  designing optimal  adaptation strategies  (Hallegatte,  2009;  Dell, 

Jones, and Olken, 2014; Chen and Yang, 2019). The identified optimal interval is consistent with 

the  interval  reported  in  similar  studies  that  examine  the  temperature-output  relationship  for 

designing climate change adaptation policies in developing countries (Chen and Yang, 2019), but 

it is higher than the interval documented in studies focusing on developed countries (Deryugina 

and Hsiang, 2014). This finding may imply that developed and developing countries have different 
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optimal  temperature  zones,  likely  due  to  adaptation  to  baseline  temperatures.  Thus,  the 

transferability of the estimated temperature effects from developed to developing countries may be 

unjustified  for  designing  climate  change  adaptation  policies.  Comparing  our  findings  with 

evidence from other large emitters such as China (Zhang et al. 2018; Chen and Yang, 2019) would 

provide a better ground for developing climate change mitigation and adaptation strategies with 

potentially global impact.

The rest of this chapter is organized as follows. Section 2 introduces the manufacturing 

sector in India and the related literature. Section 3 presents a simple framework and explains our  

empirical strategy. Section 4 describes the data sources and provides summary statistics. Section 5 

reports  our  results.  Section  6  discusses  the  implications  for  the  plant-level  climate  change 

adaptation strategies and concludes. 

1.2 Background

1.2.1 Climate and Manufacturing in India

India  provides  an  appealing  setting  to  study  climate  impacts  and  policies  for  several 

reasons. First, the country is projected to experience substantial climate change-induced changes in 

the current weather patterns by the end of the century,  especially in temperature.  The average 

annual temperature will increase by 4°C, from about 24°C to 28°C (Climate Impact Lab, 2019),  

which is much higher than the 0.6°C rise in the previous century (Rajeevan and Nayak, 2017). In a  

similar vein, the number of extremely hot days is expected to increase substantially. On average, 

India will likely experience eight times more days per year with a temperature higher than 35°C 

(Climate Impact Lab, 2019). India has also witnessed more extremely cold days in recent years. 

The incidence of cold wave days increased by 506% between 2010 and 2018, peaking with a 

record of 276 days in 2017, the highest since 1980 (Pandey, 2019; Sengupta, 2020). The number of 

such days is expected to increase, especially in Northern India, where 50% of such days occur 

(Ratnam et al.,  2016; Mahapatra et al., 2018). While people in India may have adapted to the  

relatively hot days because they are already used to higher temperatures,  cold days can cause 

significant  losses.  Changing  temperature  patterns  may  place  substantial  pressure  on  India’s 
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economy, including increasing damage experienced by the manufacturing sector, particularly if the 

adoption of industrial air-conditioning systems remains very limited (Somanathan et al., 2021). 

Such  temperature  effects  have  not  been  thoroughly  examined  by  policies  or  the  literature, 

specifically for cold temperatures (Sengupta, 2020).

Second,  despite  its  vulnerability  to  climate change,  India  is  one  of  the world’s  largest 

emitters of greenhouse gases. India’s emissions grew at an annual average rate of 5-6% between 

1990 and 2019, leading to an increase in its share of total global emissions from 2% to 7%, almost 

equivalent  to  that  of  all  of  Europe  (Cail  and  Criqui,  2021;  Convery  and  Sterner,  2021). 

Importantly, the manufacturing  sector is the largest consumer of India’s commercial energy and 

the leading source of emissions after the energy sector, contributing a quarter of overall emissions 

(Cail and Criqui, 2021; Choragudi, 2021). This suggests a potentially central role of the sector in 

mitigation and adaptation to rising temperature under climate change.

Nevertheless,  the role  of the sector in India’s climate policy remains underrepresented. 

Policies  have  been  focused  on  sectors  with  direct  and  immediate  effects,  such  as  electricity 

generation,  coal,  transport,  electric  vehicles,  and  appliances.  By  contrast,  policies  for  most 

manufacturing industries have been considered challenging, accompanied by uncertain agendas 

and time specificity  of goals (Biswas et  al.,  2019;  Choragudi,  2021;  Chakravarty,  2021).  One 

reason is the lack of knowledge about the sector’s potential for mitigation and adaptation, which 

stems  from  its  complexity  and  the  inherent  industry-specific  heterogeneity  in  responses  to 

temperature fluctuations.  Exploiting the empirical relevance of adjustments in productivity and 

factor  inputs  in  mitigating  temperature-driven  output  losses  would  allow India  to  achieve  its 

climate change policy goals without compromising growth and development perspectives. 

Lastly,  the rich history of  India’s industrial  data  collection combined with advances in 

satellite  technology provides  a  rare  opportunity to  overcome critical  data  limitations  in  a  key 

developing country by exploiting the best available micro-level panel data.

1.2.2 Related Literature

An  extensive  literature  has  documented  a  nonlinear  negative  relationship  between 

temperature and aggregate economic outcomes, such as national or regional output, in different 
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parts of the world using macro-level data (e.g., Hsiang, 2010; Dell et al., 2012; Burke et al., 2015). 

On average, a 1°C increase in average annual temperature decreases national output by 1-3%. The 

studies also attempt to uncover the potential mechanism by documenting the association of higher 

temperatures with a reduction in both agricultural and non-agricultural output. As the associations 

are highly heterogeneous across countries and it is difficult to separate various factors such as 

diverse climates, institutions and incomes, more disaggregated analyses of the mechanisms are 

called for.

Another growing literature investigates the temperature-output mechanisms using micro-

level  data  and  focusing  on  human  capital  and  agricultural  production.  Because  of  the  direct 

dependence of the agricultural sector on atmospheric conditions, many papers examine the effects 

of temperature on agricultural  output  (Mendelsohn, Dinar,  and Sanghi,  2001; Schlenker et  al., 

2005, 2006; Schlenker and Roberts, 2009). These studies generally show that high temperatures 

are  associated  with severe  damage to  specific  crop yields.  A large body of  health  economics 

studies demonstrates that the increase in the number of heat-related diseases and mortality rates 

could be another link between lower economic output and temperature (Curriero et al., 2002; Sachs 

and Malaney, 2002; Deschênes and Moretti, 2009; Gasparrini et al., 2015). Other papers suggest 

that crime and social unrest occur more frequently during the hot years and indirectly cause the 

decline in economic output (Field, 1992; Miguel, Satyanath, and Sergenti, 2004; Jacob, Lefgren, 

and Moretti, 2007). However, neither of these channels can fully explain the negative temperature 

effects on aggregate economic output.

Although  the  industrial  sector  accounts  for  a  larger  share  of  national  GDP  than  the 

agricultural sector2, only a few studies examine the impact of temperature on the industrial sector 

and underlying mechanisms. Zhang et al. (2018) and Chen and Yang (2019) estimate the impact of 

temperature  on  the  output  of  manufacturing  firms  in  China  and  detect  an  inverted  U-shaped 

relationship, while Somanathan et al. (2021) find a negative relationship between hot days and 

manufacturing output of Indian factories. Zhang et al. (2018) is the first paper that disentangles the 

effect of temperature on output by assessing temperature-driven effects separately on TFP and 

factor inputs of manufacturing firms. The paper concludes that the TFP channel is the primary 

driver  behind  the  temperature-output  relationship.  With  regard  to  TFP,  the  literature  focuses 
2 For example, the shares of agriculture in the GDP of the U.S., China, and India are 1%, 10% and 16%, respectively,  
while the industrial sector contributes 12%, 32% and 30% of each country’s GDP (U.S. BEA, 2013; NBS, 2014;  
MOSPI, 2019). 
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mainly on the temperature effects on labor productivity (Adhvaryu et al., 2020; Somanathan et al.,  

2021). The effects on capital productivity remain understudied despite evidence from engineering 

studies that temperature could also affect capital productivity (Zhang et al., 2018). Concerning the 

factor inputs, Graff Zivin and Neidell (2014) and Somanathan et al. (2021) show that heat stress  

can  reduce  labor  supply  in  the  U.S.  and  India.  Capital  can  also  be  negatively  affected  by 

temperature,  especially  temperature  extremes,  exposure  to  which  can  lead,  for  example,  to 

machinery wearing and tearing at a faster rate. However, the temperature effects on capital are not 

well documented. 

Our study is most closely related to Zhang et al. (2018) and Chen and Yang (2019). We 

build on these studies when we design our empirical strategy.3 Our estimates of the temperature 

effects  on  output  and  productivity  of  manufacturing  plants  partially  overlap  with  those  from 

Somanathan et  al.  (2021).  While  Somanathan et  al.  (2021) use  the same plant-level  data,  our 

studies  differ  in  a  number  of  key  aspects.  First,  whereas  we  comprehensively  analyze  the 

temperature effects on output, TFP and factor inputs, Somanathan et al. (2021) specifically focus 

on productivity and labor supply. Second, we examine temperature effects along the whole range 

of  the  temperature  distribution,  while  Somanathan  et  al.  (2021)  focus  on  the  effects  of  high 

temperatures. Third, our weather data are from satellite-based reanalysis data with high resolution, 

which  can  reduce  the  measurement  errors  in  the  station-based  interpolated  data  used  in 

Somanathan et al. (2021). We also measure our key variables differently: value-added output vs. 

total output, average temperature vs. maximum temperature, fixed assets vs. value of equipment 

and machinery, respectively in our study and in Somanathan et al. (2021). Our studies are also 

based  on different  sample  periods.  Finally,  we use  different specifications  of  the  transformed 

Cobb-Douglas production function, in which we strictly follow the approach from Zhang et al. 

(2018). Our specifications allow us to focus specifically on the effects of extreme temperatures and 

isolate the mechanisms underlying the temperature-output relationship in a manner comparable 

with the evidence of Zhang et al. (2018) on China. Our specifications also differ by the number of 

bins, selection of the optimal temperature interval, sets of control variables and their functional 

forms, and sets of fixed effects. Despite these differences, the estimated magnitudes of the effects 

on output induced by the high temperatures within comparable temperature intervals are similar in 

3 Chen and Yang (2019) apply the same combination of  approaches to examine whether  the temperature affects  
industrial output but does not attempt to disentangle the temperature-driven impact between the components of a  
production function. In contrast, Zhang et al. (2018) take over this examination using just a binned-variable approach.
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our studies.4 However,  Somanathan et al.  (2021) conclude that the temperature-induced output 

losses are driven by the decline in labor productivity rather than by temperature effects on factor 

inputs. Given that we document similar output responses, the discrepancy between our results and 

Somanathan et  al.  (2021) may be due to the difference in the specifications of the production 

function used in the analysis of the mechanisms. 

1.3 Empirical Strategy

Our purpose is to examine the effects of temperature on the output of manufacturing plants  

and to  understand the  mechanism underlying the  temperature-output  relationship.  This  section 

exploits a simple framework to demonstrate the channels through which temperature can affect 

output. We then explain our empirical strategy guided by this framework.

We consider a standard Cobb-Douglas production function as a natural starting point to lay 

out our empirical strategy: 

Q=(A LL)
(σ L)(AK K )

(σK ) (1)

where Q ,L ,K  are manufacturing output, labor, and capital, respectively; A L , AK  are labor 

and capital productivity;  σ L , σK are output elasticities for labor and capital. Rewriting Eq. (1) in 

log-linearized form brings us to Eq. (2):

lnQ=lnTFP+σ L ln L+σ K ln K (2)

where lnTFP=σ L ln AL+σ K ln AK is the log total factor productivity (TFP) defined as the 

weighted average of labor and capital productivity with the elasticities of each input as weights. 

Eq. (2) demonstrates that the impact of temperature on output can be decomposed into the 

temperature-induced  effects  on  TFP  and  factor  inputs:  labor  and  capital.  Establishing  and 

4 For example, the coefficient estimate of -0.0012 for the bin with temperatures above 33°C in our study is comparable  
with the coefficient estimates -0.0016 and -0.019 for the temperatures within (30°C, 35°C) and (35°C, 45°C) intervals  
in Somanathan et al. (2021).
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quantifying  these  channels  has  considerable  importance  for  policymaking.  If  the  estimated 

temperature-TFP  relationship  is  close  to  the  estimated  temperature-output  relationship  in 

magnitude and shape, the temperature-output impact is primarily driven by the temperature effect 

on TFP.  In such a  case,  adjustments in  factor  inputs play a  minor  role  in  offsetting negative 

temperature effects on manufacturing output, and policies should focus on lowering the sensitivity 

of  productivity  to  temperature.  In  the  opposite  case,  if  the  estimated  temperature-inputs 

relationship closely follows the estimated temperature-output relationship, factor reallocation may 

play an important role in offsetting negative temperature impact on manufacturing output, and 

policies  should  focus  on  reducing the  costs  of  factor  adjustment.  Overall,  Eq.  (2)  shows that 

reducing the sensitivity of productivity to temperature and lowering the cost of factor adjustments 

are two important margins for the adaptation of the manufacturing sector to the warming climate. 

To estimate the temperature-driven effects on manufacturing output and each component of 

the production function in Eq. (2), we employ the following regression:

Y idt=∑
m

α0
mTempdt

m
+β 0W dt+δ0PM dt+γΨ t

j
+ψ i+εidt (3)

where  i indexes micro-level manufacturing unit (a plant or factory),  d  indexes district,  t  

indexes  year,  and  j indexes  industries.  Y idt is  the  outcome  that  takes  the  form  of 

lnQidt , lnTFPidt , ln Lidt , ln K idt.  A micro-level manufacturing output (Qidt) is measured by value-

added  output.  Total  factor  productivity  (TFPidt)  is  estimated  using  the  Olley-Pakes  (1996) 

approach.5  Labor (Lidt) is measured by total employment, and capital (K idt) is measured by fixed 

capital stock. 

Because previous studies have documented the nonlinear relationship between temperature and 

various  economic  outcomes,  we  model  temperature,  Tempdt
m ,  using  a  standard  non-parametric 

binned approach (Deschênes and Greenstone, 2011; Deryugina and Hsiang, 2014; Burgess et al., 

2017;  Zhang et  al.,  2018;  Chen and Yang,  2019;  Somanathan et  al.,  2021;  Colmer,  2021).  It  

5 The  Olley-Pakes  (1996)  estimator  addresses  simultaneity  bias  by  using  investment  to  proxy  for  unobserved 
productivity shocks, and addresses selection bias by using firms’ survival probabilities. This estimator is one of the 
most widely used in the literature. The method is implemented using the Stata command by Yasar, Raciborski, and Poi  
(2008).  
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transforms the annual distribution of daily temperatures into a set of temperature bins and allows 

flexible estimation of nonlinear temperature effects across daily temperature values. The binned-

variable  approach preserves  the daily variation in  temperature and also allows to estimate the 

effects of daily temperatures on annual outcomes (Hsiang, 2010; Burgess et al., 2017; Zhang et al.,  

2018).6

 Tempdt
m  denotes the number of days in year t  with daily average temperatures in district d  that fall 

into the mth temperature bin, m =1,2,…,7. We divide daily average temperatures, measured in °C, 

into seven bins, each of which is 5°C wide. For example, Tempdt
1  is the number of days in district d  

during  year  t  with  daily  temperature  below  8°C.  Then,  Tempdt
7  is  the  number  of  days  with 

temperature above 33°C.  To avoid collinearity,  the temperature bin (18°C,  23°C) is  set  as an 

omitted, reference category. We select this bin to correspond to the optimal temperature interval7, 

the one outside of which the temperature becomes harmful for output. The coefficient of interest, a 

semi-elasticity α0
m, can be interpreted as the marginal effect on output of an extra day in the mth 

temperature bin relative to a day in the (18°C, 23°C) bin.

The binned-variable approach makes three assumptions about the estimation of the daily 

temperature effects on the outcomes (Burgess et al., 2017; Colmer, 2021). First, the effects are 

determined by the daily average temperature alone since the approach does not count for the intra-

day  temperature  variations.  Second,  the  effects  of  the  daily  average  temperature  are  constant 

within specific temperature bins. Third,  the sequence of days with relatively higher and lower 

temperatures is irrelevant for the length of exposure of the annual outcomes to hot and cold days 

since the approach uses the total number of days in each bin in each year as a regressor.

To isolate the role of temperature, we include a rich set of control variables. W dt is a vector 

of the district-level weather controls, including precipitation, humidity, atmospheric pressure, and 

wind speed. We use annual averages of weather controls, except for precipitation constructed as 

annual sums. As air pollution is correlated with weather (Zhang et al., 2018; Li et al., 2019; He at  

al., 2019) and affects productivity (Graff Zivin and Neidell, 2012; Lichter, Pestel, and Sommer, 

6 It is an important advantage of the binned-variable approach because our plant-level data are available annually. 
7 Following Chen and Yang (2019), we iteratively estimate Eq. (3) with the log of value added as the outcome, setting  
each temperature bin in turn as a reference category. Non-positive coefficients on other temperature bins when the  
particular bin is omitted identify the reference category and the critical temperature threshold. Temperature bin (18°C,  
23°C) is the only temperature interval that satisfies this condition. 
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2017), we also control for the annual average air pollution at  the district  level.  PMdt refers to 

particulate matter less than 2.5 micrometers in diameter (PM2.5),  which is  often considered a 

general air pollution indicator (Greenstone and Hanna, 2014). Weather and pollution are modeled 

quadratically to account for the potential nonlinear relationship. 

We further incorporate plant fixed effects  ψ i to control for any unobserved plant-specific 

time-invariant characteristics. We also use year-by-two-digit-industry fixed effects  Ψ t
j to control 

for any unobserved factors common to all plants in a given year but different across industries, 

such as industry-specific policy, technological, and input-output price changes. Standard errors are 

clustered at both plant and district-year levels to allow for serial  correlation within plants and 

spatial correlation across plants within a particular district and year.

The  binned-variable  approach  does  not  examine  the  dynamics  of  the  temperature  effects  and 

potential adjustments of production below the year level. The effects and adjustments may vary by 

season. For example, labor may relocate from hot to cooler seasons to reduce the temperature 

effects on production. India is very diverse geographically and climatically, with a designation of 

four  seasons (Dey et  al.,  2020;  Bali,  Dey,  and Ganguly,  2021).  The winter  season lasts  from 

December through February, the summer or pre-monsoon season includes March, April, and May, 

the monsoon season begins in June and ends in September, and the post-monsoon season lasts 

from October through November. Exploring the seasonal variations could offer additional insights 

into  the  mechanisms  and  adaptation  policy,  while  still  allowing  to  detect  the  presence  of 

nonlinearity.  As  such,  we  complement  the  binned-variable  approach  with  a  seasonal-variable 

approach following Chen and Yang (2019): 

Y idt=α0Tempdt
s
+β0W dt

s
+δ0 PM dt+ γΨ t

j
+ψi+εidt

(4)

We construct seasonal temperature variable Tempdt
s  with superscript s indicating seasons as 

the  temperature  averages  for  each  season:  Tempdt
Winter,  Tempdt

Pre−monsoon,  Tempdt
Monsoon,  and 

Tempdt
Post−monsoon. We also incorporate seasonal averages of humidity, atmospheric pressure, wind 

speed, and a seasonal sums of precipitation. These weather controls are denoted by W dt
s  in Eq. (4). 

Outcomes  Y idt,  pollution  control  PMdt,  plant  fixed  effects  ψ i,  year-by-two-digit-industry  fixed 
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effects  Ψ t
j, and error terms  εidt are defined and modeled the same way as in Eq. (3). Given the 

semi-log  form of  Eq.  (4),  the  coefficients  of  interest  α0 can  be  interpreted  as  the  percentage 

changes in the outcomes caused by an increase in average temperature in a particular season by 1 

°C.

Finally, we modify Eq. (3) and Eq. (4) to examine whether the fluctuations in temperature 

in prior years affect current-year manufacturing output. To date, there is considerable disagreement 

among economists about the lagged temperature effects. For example, Dell et al. (2012) and Chen 

and Yang (2019) show that the current year’s output can be substantially affected by temperature 

changes in prior years, while Hsiang (2010), Deryugina and Hsiang (2014) and Zhang et al. (2018) 

find limited effects of lagged temperatures. To further explore this relationship in the context of 

India, we estimate Eq. (3) and Eq. (4) with current and lagged values of temperature modeled as 

bins and seasons. 

Our empirical strategy assumes conditional exogeneity. The location of plants in districts 

across India is exogenous to the temperatures in the districts where they are located. We provide 

supportive evidence for this assumption in the data section. The temperature effects on output and 

its  determinants are  identified using plausibly exogenous variations  in  the plants’  exposure  to 

temperature purged of potential correlation with air pollution and other weather variables. This 

approach is  consistent  with  those used  in  previous  studies  (Deschênes  and Greenstone,  2011; 

Deryugina and Hsiang, 2014; Zhang et al., 2018; Chen and Yang, 2019).  

1.4 Data

Our  dataset  combines  a  plant-level  panel  of  detailed  production  data  from the  formal 

manufacturing sector in India over 1998-2007 with high-resolution satellite-based estimates for 

meteorological  conditions  and air  pollution,  aggregated  to  the  district-year  level.  This  section 

describes data sources, cleaning procedures, and reports summary statistics.  
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1.4.1 Manufacturing Data

We collect  detailed  micro-level  production  data  from the  Annual  Survey of  Industries 

(ASI) conducted by the National Statistical Organisation of India.8 The ASI covers a representative 

sample of the industrial establishments (called a factory in the case of manufacturing industries) 

registered under the Factories Act of 1948.9 Specifically, a factory must register if it employs more 

than  10  workers  and  uses  electricity,  or  it  employs  more  than  20  workers  and  does  not  use 

electricity. This means that the ASI surveys only the organized (formal) industrial sector, which, 

however, produces over 80% of India’s manufacturing output (Ghani et al., 2012).10 

We obtain ASI data for the period covering 1998 through 2007.11 We restrict our study 

period to the years 1998-2007 since 2008/09 was the last survey year with available district codes, 

which  are  essential  for  merging production,  weather,  and pollution datasets.12 In  addition,  the 

Global Financial Crisis of 2008 severely hit India’s economy and could potentially disrupt the 

temperature-output relationship during the post-crisis years (Chatterjee and Subramanian, 2020). 

Our study period is also the same as those in the related studies on China, allowing for same-period 

comparison.

We process raw data using the following procedure. First, we create a plant-level panel 

dataset that allows us to track the same plant over the years. The ASI data are available in two 

versions: cross-sectional and panel. Cross-sectional ASI data do not provide plant identifiers but 

determine a particular plant's location at the district level. In contrast, the panel version includes 

plant identifiers but does not provide district codes. Following Martin et al. (2017), we merge two 

8 National  Statistical  Organisation  (NSO)  is  a  Statistics  Wing  of  the  Ministry  of  Statistics  and  Programme 
Implementation (MOSPI, n.d.). NSO consists of the Central Statistical Organisation (CSO) and the National Sample  
Survey Organisation (NSSO), responsible for ASI compiling. The NSSO’s Field Operation Division is responsible for  
data  collection,  while  CSO’s  Industrial  Statistics  Wing  conducts  data  processing  and  analysis.  As  a  primary  
investigator,  CSO develops  ASI  design.  The ASI  is  a  principal  source  of  industrial  statistics  in  India,  which  is 
comparable to manufacturing surveys in the U.S., China, and other countries.
9 We use the terms “plant” and “factory” interchangeably throughout the study.
10 In contrast, the unorganized industrial sector accounts for a dominant share of plants and employment (Ghani et al.,  
2012). 
11 The ASI reports data based on the accounting year, which runs from April 1 to March 31. We refer to the initial year  
of the accounting period as our year of observations; for example, the year we call 1998 corresponds to the 1998/99 
accounting year. 

12 This change in data dissemination procedure was made to hide the identity of a specific plant in accordance with the  
Collection of Statistics Act, which prohibits disclosure of information related to individual plants.
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ASI versions using year-to-year opening and closing stock values of several merging variables.13 

Unique identifiers obtained using this matching algorithm enable us to link plants over time at the 

district level. High year-to-year rates of matches (around 99%) indicate that the ASI data quality is  

consistent over time.

Second, we clean our dataset of misclassified observations following standard practices 

established in prior studies that used ASI data (Allcott et al., 2016; Ghani et al., 2016; Martin et al.,  

2017). Specifically, we drop closed and non-responsive plants, plants with missing identifiers, and 

plants-duplicates. We then drop observations with missing or negative values of our key variables 

– value-added output, total employment, and fixed capital stock.14 We also drop observations that 

violate  basic  accounting  principles.  To  deal  with  outliers,  we  restrict  our  sample  to  those 

observations for which our key variables have values within their 0.5 to 99.5 annual percentile 

range. Additionally, we drop observations if value-added output is larger than the 99th percentile. 

Finally, we exclude plants with employment of less than 5 because the data on these small units are 

noisy, or they have unreliable accounting (Sivadasan, 2009). However, we retain plants that have 

less than 10 employees. Nataraj (2011) argues that even though such plants are not required to 

register, they can temporally reduce employment or register in advance, expecting growth in the 

future. Overall, we removed approximately 40% of the initial ASI sample. Most of the deleted 

observations were attributed to closed plants or had missing values of our key variables.  

Third, we reclassify National Industrial Classification (NIC) codes to make them consistent 

over time. The classification, which has been in operation since 1998, underwent revision in 2004. 

We convert post-2004 codes to the NIC-1998 scheme using concordances provided by MOSPI, 

Census  of  India,  and  other  publicly  available  sources.  Additionally,  based  on  this  new 

classification,  we  restrict  our  analysis  to  plants  classified  as  manufacturing  and  drop  4,243 

observations reporting non-manufacturing NIC codes. 

Finally,  we deflate  monetary  values  of  the  resulting  variables  to  constant  2007 Indian 

rupees (INR) following Martin et al. (2017) and convert them to 2007 international U.S. dollars 

13 These variables include stock of raw materials, fuels, and stores; stock of semi-finished goods; stock of finished  
goods; inventory;  loans; and fixed capital. 
14 Value-added output is computed as the difference between total output and intermediate inputs. Employment is  
measured by the total number of employees. Fixed capital stock is measured by the total value of fixed assets, which is  
the depreciated value of land, buildings, plant and machinery, transport equipment, computer equipment, and other 
fixed assets owned by plants on the closing day of the accounting year.
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(USD) at purchasing power parity (PPP) following Ghani et al. (2016). Revenue (gross sales), total 

output,  and  value-added  output  are  deflated  using  commodity-level  wholesale  price  indexes. 

Wages and material  inputs are deflated using the relevant consumer price index. Capital stock 

values are deflated using the wholesale price index for machinery and equipment. Finally, we use 

WDI PPP conversion factor to convert monetary values in 2007 INR to monetary values in 2007 

USD. In 2007, the PPP conversion factor was 11.763 INR per international USD. 

1.4.2 Measuring Plant-Level TFP

To estimate the plant-level TFP, we apply an approach originally suggested by Olley and 

Pakes (1996). To illustrate this approach, we rewrite the log-linearized production function in Eq. 

(2) for plant i in district d  and year t :

lnQidt=σ L ln Lidt+σ K ln K idt+μidt (5)

where log output (lnQidt), log employment (lnLidt), and log fixed capital stock (lnK idt) are 

constructed using the ASI dataset. TFP is represented by a residual μidt  (Syverson, 2011). Then, the 

estimated log TFP (μ̂idt) is the difference between observed output and output predicted by the 

OLS-estimated production function (Yasar et al., 2008):

μ̂idt=lnQidt−σ̂ L ln Lidt+ σ̂K lnK idt (6)

where  σ̂ L , σ̂K are estimated output elasticities of labor and capital.  However,  such OLS 

estimates may be biased because of simultaneity and sample selection. Simultaneity bias becomes 

an  issue  when  a  firm  observes  productivity  and  endogenously  chooses  inputs.  In  this  case, 

correlations between  Lidt ,  K idt and  μidt  give rise to bias. The problem of sample selection arises 

when lower productivity firms exit, while firms with higher productivity remain in the sample. 

Olley and Pakes (1996) propose an estimator that addresses simultaneity bias by using 

investment to proxy for unobserved productivity shocks and addresses selection bias by using 
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firms’ survival probabilities. This estimator is one of the most widely used in the literature (Zhang 

et al., 2018). To implement the Olley-Pakes approach, we use a Stata command introduced by 

Yasar et al. (2008). 

1.4.3 Weather Data

Our identification strategy requires a rich set of daily weather data with good geographic 

coverage and a  minimum number of  missing observations.  As the in-situ monitor  readings of 

temperature and other weather variables that satisfy these conditions are not readily available in 

India (Burgess et  al.,  2017), we take advantage of publicly accessible reanalysis data products 

obtained from NASA’s MERRA-2.15,16 MERRA-2 data are the result of atmospheric reanalysis that 

combines satellite-based measurements,  ground-based monitor readings, and other data sources 

with sophisticated chemical-transport and climate modeling to create global gridded estimates for 

various atmospheric and aerosol variables with global coverage starting from 1980. MERRA-2 

temperature and precipitation data have been successfully validated against the observation-based 

Indian Meteorological Department data, indicating that MERRA-2 products are reliable substitutes 

to the observed weather indicators (Ghodichore et al., 2018; Gupta et al., 2020). 

We  retrieve  MERRA-2  estimates  for  surface  temperature,  precipitation,  humidity, 

atmospheric pressure, U (east-west) and V (north-south) wind components at 0.5° x 0.625° spatial 

resolution (50 x 62 km at the equator). We then use wind components to calculate wind speed as 

suggested by NASA's MERRA-2 technical note (Ostrenga, 2019). Our analysis uses daily averages 

of temperature, annual sum values of precipitation calculated from daily average estimates, and 

annual mean values of other weather variables constructed by averaging daily average values. As 

averaging of wind speed requires a special approach, we strictly follow the steps described in 

NASA’s MERRA-2 technical note (NASA, n.d).  

15 Gelaro et al. (2017, p. 5419) define reanalysis as “the process whereby an unchanging data assimilation system is  
used to provide a consistent reprocessing of meteorological observations, typically spanning an extended segment of  
the historical data record. The process relies on an underlying forecast model to combine disparate observations in a 
physically consistent manner, enabling the production of gridded datasets for a broad range of variables, including  
ones that are sparsely or not directly observed”. 
16 NASA’s MERRA-2 stands for NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 
2. For more detailed information about MERRA-2, see Gelaro et al. (2017). 
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1.4.4 Air Pollution Data

To construct our air  pollution control variable,  we leverage recent advances in satellite 

technology. Specifically, satellite-based Aerosol Optical Depth (AOD) retrievals make it possible 

to estimate surface PM2.5 concentrations at granular spatial resolution and with comprehensive 

geographical and temporal coverage. AOD measures the amount of sunlight absorbed, reflected, 

and scattered by the particles suspended in the air. AOD-based estimates are shown to be a good 

proxy for PM2.5 pollution over India (Dey et al., 2012). 

We  obtain  satellite-based  estimates  of  PM2.5  concentrations  from  the  Atmospheric 

Composition Analysis Group (ACAG) at Dalhousie University, which provides global coverage 

starting from 1998. This source of air pollution data has been increasingly popular among social 

scientists (Fowlie, Rubin, and Walker, 2019). The data represent global gridded datasets of annual 

mean values at 0.01° x 0.01° spatial resolution (1 x 1 km at the equator) estimated by combining 

AOD retrievals from multiple satellite sources (MODIS, MISR, SeaWIFS) with simulations in a 

chemical transport model, subsequently calibrated against ground-based monitor readings using 

geographically weighted regressions (Hammer et al., 2020). 

1.4.5 Matching Plant and Weather Data

As the  final  step,  we  merge  the  plant-level  ASI  data  with  the  grid-level  weather  and 

pollution data by year and district, assigning weather and pollution information in a district to all 

plants operating in that district.17 Indian districts are periodically reorganized, usually by splitting 

districts over time. Between 1998 and 2007, the number of the ASI districts increased from 503 to 

58918, leading to inconsistency in plant and district identifiers that we obtained by matching cross-

sectional and panel ASI datasets. To account for the districts’ changing boundaries and to preserve 

consistency in plant and district identifiers over time, we construct a concordance table allowing us 

to match every district in each year to its parent district in 1998. We then use this concordance 

table to construct a GIS map of consistent district boundaries that we further use to match gridded 

17 A district in India is an administrative unit within a state roughly equivalent to a U.S. county and is the smallest  
geographical unit available for our analysis.
18 These numbers exclude districts from Arunachal Pradesh, Lakshadweep, Mizoram, and Sikkim. The ASI does not 
report information on the plants in these states. 
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data to the district level. By construction, we obtain a map of 503 consistent districts over the 

sample period as defined by their 1998 boundaries. 

Using  the  concordance  table,  the  aggregation  of  the  ASI  data  to  the  level  of  the 

administrative districts as of 1998 is straightforward. To create district-level weather and pollution 

datasets from the grid, we overlap each gridded weather and pollution dataset with our map of 

consistent districts and calculate the average across all grid points within each district. We then 

merge the resulting datasets by year and district.  

1.4.6 Summary Statistics

Table 1 reports summary statistics for our merged dataset. We have an unbalanced panel of 

113,305 unique plants for 1998-2007, with 263,717 plant-by-year observations across 473 districts 

and 26 two-digit  industries.  Fig.  1  disentangles  the  last  two columns  of  Table  1  by  showing 

percentage distributions of observations (left panel) and the number of plants (right panel) for each 

of 26 two-digit  industries in the sample. Manufacture of foods, non-metallic minerals, textiles, 

machinery  and  equipment,  and  chemicals  are  the  five  largest  industries  in  the  sample.  They 

together account for 50% of all observations and the number of plants. The joint contribution of 

these industries to total output constitutes roughly 50%. 

Panel A of Table 1 provides summary statistics on key plant characteristics. The average 

plant-level value-added output for our study period is USD 3.124 million. The average plant in our 

dataset operates with a log TFP equal to 2.23, employs 133 workers, and accumulates fixed capital  

stock of USD 5.653 million. Summary statistics suggest a large degree of dispersion in our key 

variables across plants.  
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Table 1 - Summary statistics

Notes: The table provides summary statistics of plant-level characteristics, weather, and pollution data. Plant data are 
from India’s Annual Survey of Industries. Weather data are from NASA’s MERRA-2. PM2.5 air pollution data are  
from the Atmospheric Composition Analysis Group at Dalhousie University. Output is measured by value added. TFP 
is obtained using the Olley-Pakes approach. Labor is measured by the total number of employees. Capital is measured  
by the total value of fixed assets. All monetary values are in 2007 U.S. dollars. Temperature variables are calculated as  
the annual or seasonal mean values from daily average estimates. Humidity, wind speed, atmospheric pressure are  
computed by analogy as the annual mean values. Precipitation is calculated as the annual sum from daily average 
estimates. PM2.5 concentrations are in annual mean values.

Summary statistics on district-level weather conditions and air pollution are reported in 

Panel B of Table 1. Each plant in the district is exposed to an average temperature of 25.9ºC  

throughout our study period. The differences in average temperature across seasons are relatively 

small,  consistent  with  India’s  tropical  climate.  Fig.  2  displays  the  annual  daily  temperature 

distribution averaged across  districts  for  the years  1998-2007.  The height  of  the bars  and the 

numbers along the top of the bars correspond to the average number of days in a year with a daily  

average temperature that falls into one of seven 5°C-wide temperature bins. Blue bars represent the 

observed average daily temperature distribution for the years in our sample. 
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A. Observations (%) B. Number of plants (%)

Notes: The figure shows percentage distributions of observations (left panel) and the number of plants (right panel) for 
each of 26 two-digit industries in the sample. The industries appear in the same order as they are presented in the  
National Industrial Classification (NIC-1998). We have an unbalanced panel of 113,305 unique plants and 263,717 
plant-by-year observations. 

Fig. 1. Industry-specific distributions of observations and the number of plants

Climate change is expected to modify the daily temperature distribution by shifting it to the 

right, replacing cold days with hot. This is demonstrated by the orange-bar distribution. It specifies 

how the 1998-2007 daily temperature distribution would change if the annual average temperature 

were to increase by 1°C.  We construct the simulated 1998-2007 daily temperature distribution 

shifted to the right by assuming that  each day in  each year during our  study period becomes 

warmer by 1°C. Under this assumption, the number of days with daily average temperatures that 

fall into temperature bins up to (23°C, 28°C) would decline on average by 6 days or 15%, with the 
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largest decline of 26% in (13°C, 18°C) temperature bin. By contrast, the number of days with daily 

average temperatures that fall into the two highest temperature bins would increase by 20 and 10 

days or 26% and 33%, respectively.

Notes: The figure shows the annual daily temperature distributions for the years 1998-2007 (blue bars) and 1998-2007 
shifted to the right by 1°C (orange bars). The orange-bar distribution simulates the impact of climate change assuming  
that the annual average temperature would increase by 1°C. The height of the bars and the numbers along the top of  
the bars correspond to the average number of days in a year with a daily average temperature that falls into one of 
seven 5°C-wide temperature bins.

Fig. 2. Daily temperature distributions: 1998-2007 and 1998-2007 shifted by 1°C

Fig.  3  displays  spatial  distributions  of  the  annual  temperature  and  value-added  output 

aggregated at the district level and averaged over years 1998-2007. The figure indicates notable 

spatial heterogeneity and suggests a negative correlation between temperature and value-added 

output.  However,  the  average  temperature  and  aggregate  value-added  output  mask  important 

characteristics of the plants and temperature, which can shed some light on whether the conditional 

exogeneity assumption of our empirical strategy holds.  Fig.  A1-A2 in the Appendix show the 

spatial  distribution  of  the  number  of  days  with  daily  average  temperature  across  temperature 

intervals as we use in Eq. (3) and spatial distribution of seasonal temperatures as we use in Eq. (4),  

while Fig. A3 displays the spatial  distribution of value-added shares of two-digit  industries as 
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shown in Fig. 1. Based on comparison of spatial distributions of temperature in Fig. A1-A2 and 

value-added output in Fig. 3 and A3, we do not find any patterns suggesting that the locations of 

the plants in our sample could be endogenous to the temperatures in the districts where they are 

located. This suggestive evidence supports the conditional exogeneity assumption of our empirical 

strategy.

A. Annual temperature B. Value-added output

Notes: The figure shows geographical distribution of the district-level temperature (left panel) and value-added output  
of manufacturing plants (right panel) averaged across the years in our study period. Colors close to red depict higher  
levels of temperature and value-added output. The figure suggests a negative correlation between temperature and 
value-added output.

Fig. 3. Spatial distributions of temperatures and manufacturing output (1998-2007)
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1.5 Results

This section begins by examining the relationship between temperature and manufacturing 

output,  TFP,  labor  and  capital  inputs  using  the  temperature-bin  approach,  Eq.  (3).  We  then 

disentangle the impact  of  temperature with heterogeneity analyses  at  a more granular  level  of 

disaggregation. We further proceed by exploiting seasonal temperatures to examine within-year 

variations. 

1.5.1 Baseline

Contemporaneous Temperature Effects

Table 2 shows the impact of daily temperatures on manufacturing output, TFP, labor and 

capital. The coefficients on weather and air pollution controls are shown in Appendix Table A1. 

Column (1) shows significant adverse effects of extreme high and low temperatures. Relative to 

the day in the optimal temperature interval,  an additional  day with a temperature above 33°C 

decreases annual output by 0.12%, while an additional day with a temperature below 8°C lowers 

annual output by 0.27%. Notably, the marginal impact of extreme cold days is larger than that of 

extreme hot days, although the former is estimated less precisely, likely due to fewer observations. 

These findings can potentially indicate better adaptation to relatively high temperatures in India. 

The result echoes a recent study by Nath (2020), which, based on a nationally representative firm-

level panel from 17 countries, suggests that firms operating in hotter regions can be better adapted 

to higher temperatures. It can also be the case that in the hotter countries, an extra day with a  

temperature at a cooler range can be more harmful than an extra day with a temperature at a hotter 

range because it is more sudden and unexpected (Nath, 2020).19 

19 In Nath (2020), cold temperature extreme corresponds to temperatures below 5°C, while hot temperature extreme –  
to temperatures above 30°C, which are very close to the temperature ranges of the extreme temperature bins used in 
our study. 
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Table 2 - Estimated effects of temperature on output and its determinants

Notes: The table shows coefficient estimates obtained using the binned temperature approach. It documents regression  
results from estimating Eq. (3)  with log values of manufacturing output,  TFP, capital,  and labor as the outcome 
variables. Output is measured by value added, labor - by the total number of employees, and capital - by the total value 
of fixed assets. TFP is obtained using the Olley-Pakes approach. The estimation results are presented separately for  
specifications with and without  lagged temperature variables,  odd and even  columns for  each  outcome variable, 
respectively.  The temperature bin (18°C, 23°C) is set  as an omitted, reference category to avoid collinearity.  All 
regressions control for linear and quadratic forms of precipitation, humidity, atmospheric pressure, wind speed, fine 
particulate air pollution and include plant fixed effects and year-by-two-digit-industry fixed effects. These estimated 
temperature effects can be interpreted as the marginal effects of an extra day in the mth temperature bin relative to a 
day in the (18°C, 23°C) bin. We only report the coefficients on temperature bins and suppress the coefficients on other  
weather and air pollution controls. Estimated coefficients on these variables are shown in Table A1 in the Appendix. 
Standard errors in parentheses are clustered at the plant and district-year levels.
* p < 0.10, ** p < 0.05, *** p < 0.01. 

The  temperature  impacts  are  also  economically  meaningful.  The  average  value-added 

output  of  a  sample  plant  was  USD 3.124 million  in  2007 dollars.  Holding all  else  equal,  an 

additional day with a temperature above 33°C would decrease output by USD 3,749, while an 

additional day with a temperature below 8°C would decrease output by USD 8,435 for the average 

plant. At the aggregate level, the average total output of the sample plants during 1998-2007 was 
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USD 457 billion  in  2007 dollars.  Thus,  if  all  plants  in  our  sample  are  jointly  exposed to  an 

additional day with temperatures above 33°C or below 8°C, total output would decrease by USD 

0.5 billion or USD 1.2 billion, respectively.  

Fig. 4 plots the estimates in Table 2 with 95% confidence intervals. The horizontal axes 

denote  temperature  bins  in  degrees  Celsius,  while  the  vertical  axes  show  the  log  values  of 

outcomes. Panel A in Fig. 4 shows that the temperature-output relationship is nonlinear, with an 

inverted-U  shape  centered  around  the  (18°C,  23°C)  reference  interval.  Manufacturing  output 

increases with temperature below the reference interval and then declines as temperature further 

increases above (18°C, 23°C). 

Detected nonlinearity in the temperature-output relationship provides valuable insight into 

the potential welfare consequences of climate change. There is a possibility that, due to replacing 

cold days with hot, the reduced negative impact of climate change due to fewer cold days can 

offset, at least partially, the increased negative impact due to more hot days. To further check this 

possibility, we compute the net temperature impact on the manufacturing output that would occur 

if  the annual  average temperature were to increase by 1°C.  We multiply the difference in the 

number of days in each bin between the observed and +1°C simulated annual daily temperature 

distributions (Fig. 2) by the relevant estimated coefficients from column (1) of Table 2 and sum the 

effects  of  all  bins.  Our  calculations  suggest  that  a  1°C warming would  lead  to  net  losses  in 

manufacturing output of 1.3% or USD 0.6 billion, equivalent to a 0.5% reduction in India’s 2007 

GDP through the manufacturing sector alone.

To shed light on the mechanisms underlying the estimated temperature-output relationship, 

Table 2 and Fig.  4  further explore the effects  of  temperature on TFP, labor,  and capital.  The 

temperature impact on output seems driven by the joint effects of temperature on TFP and capital. 

The temperature-TFP relationship in Panel B mirrors the temperature-output relationship in Panel 

A with smaller magnitudes of impacts. Low temperatures seem only to affect output through TFP, 

while hot temperatures likely affect output through TFP and capital.  An additional day with a 

temperature above 33°C decreases TFP and capital by 0.04% and 0.08%, relative to a day in the 

(18°C,  23°C)  reference  interval.  The  temperature-TFP  effects  and  temperature-capital  effects 

decompose temperature-driven output losses, contributing roughly 30% and 70%. Interestingly, 
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this finding contrasts with the one from China, where the temperature effects on TFP completely 

explain the temperature-output relationship (Zhang et al., 2018).

C. Temperature - Log Output D. Temperature - Log TFP

E. Temperature - Log Capital F. Temperature - Log Labor

Notes: The figure visualizes the estimated temperature-driven effects on log values of manufacturing output (panel A),  
TFP (panel B), capital (panel C), and labor (panel D). The horizontal axes denote temperature bins in degrees Celsius,  
while the vertical axes show the log values of outcome variables. Each panel plots the point estimates of temperature  
bins  (green  line)  and  associated  95%  confidence  intervals  (grey  dashed  lines)  for  the  coefficients  obtained  by 
estimating Eq. (3) with no lags and reported in the odd columns of Table 2. The regressions control for linear and 
quadratic forms of precipitation, humidity, atmospheric pressure, wind speed, fine particulate air pollution and include  
plant fixed effects and year-by-two-digit-industry fixed effects. The temperature bin (18°C, 23°C) is set as an omitted,  
reference category. Standard errors are clustered at the plant and district-year levels.

Fig. 4. Estimated temperature effects on output, TFP, labor and capital factor inputs.
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By  contrast,  the  temperature-labor  relationship  appears  irrelevant  for  the  temperature-

driven output losses. The response of labor is flat for the temperatures above the reference interval 

and has small and statistically insignificant estimates for most temperature bins but one. Panel D 

documents an increase in labor input for the temperatures within (13°C, 18°C) interval. Given the 

negative TFP response to an extra day with a temperature within the same temperature interval, 

this result may suggest that the plants may increase labor supply to offset the productivity losses.

These estimated effects are broadly robust to various specifications. They do not change 

substantially  with  the  inclusion  and  exclusion  of  different  sets  of  fixed  effects,  measures  of 

temperature, number of temperature bins, and plant-level samples.20 Important evidence in favor of 

robustness is shown in Appendix Fig. A4. It visualizes the estimated temperature-driven effects on 

the plant-level electricity expenditures (panel A) and electricity consumption (panel B), expressed 

in  1000  USD  and  kWh,  respectively.  The  figures  show  that  temperature  has  no  statistically 

significant effects on electricity expenditures and consumption, suggesting that adaptation actions 

have not been undertaken to reduce the negative impact on output. Our estimates are unlikely 

biased by the temperature-induced increases in electricity expenditures and consumption to power 

air  conditioning  systems  or  cooling  equipment  for  machinery.  Another  evidence  includes  the 

placebo test that examines the impact of future temperatures on current economic outcomes. We 

estimate Eq. (3) expanded by adding temperature bins constructed using annual distributions of 

daily temperatures led by one and two years. Table A2 in the Appendix presents the results of this 

exercise. When controlling for future temperatures, the response of manufacturing output, TFP, 

and factor inputs to contemporaneous temperature is similar to our baseline model in Table 2. The 

coefficients on several temperature bins led by one year are significant, but there does not appear 

to be a systematic pattern.21 Furthermore, those coefficients turn insignificant in the specification 

with  the  temperature  led  by  two  years,  while  the  response  of  our  economic  outcomes  to 

contemporaneous temperature remain little changed. This illustrative evidence further confirms the 

robustness of our baseline findings.

20 The results of these robustness checks are available upon request.
21 The significance of the coefficients on several temperature bins led by one year and not two years may be 
related to the expectation effect.
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Lagged Temperature Effects

Table 2 also presents the estimates for the effects of the lagged temperature on the current-

year economic outcomes. We consider a specification that expands our baseline model in Eq. (3) 

by adding temperature bins constructed using annual distributions of daily temperatures lagged by 

one year. We report  coefficients obtained from the estimation of this specification in the even 

columns of Table 2. For comparison with Fig. 4, Appendix Fig. A5 displays the effects of jointly 

estimated current and lagged temperatures on output, TFP, and factor inputs (even columns of 

Table 2). 

We find that the response of manufacturing output to contemporaneous temperature is little 

changed, with the only exception for the negative effect of the temperatures below 8°C, which 

turned insignificant. Relative to a day with an average temperature within the reference interval, 

the effects on output of one additional previous-year day with the temperature in other temperature 

bins are small and statistically insignificant, with the exception of the bin (28°C, 33°C). However, 

the coefficient estimate on this bin is small, marginally statistically significant, and does not alter 

the estimate of the contemporaneous temperature effect of this bin. Furthermore, the shape of the 

contemporaneous temperature-output relationship in panels A of Appendix Fig. A5 is similar to 

that depicted in our baseline panel A of Fig. 4. Similar to the impact on output, the effects of  

lagged temperature on TFP, capital and labor are small and statistically insignificant in most of the 

temperature  bins.  Taken  together,  these  findings  support  the  hypothesis  that  only  the 

contemporaneous  temperature  during  the  production  process  drives  the  output  losses.  This 

conclusion is in line with Hsiang (2010), Deryugina and Hsiang (2014), and Zhang et al. (2018), 

but contrasts with Dell et al. (2012) and Chen and Yang (2019). 

1.5.2 Heterogeneity

In this section, we explore the heterogeneity in the temperature effects to further examine 

the mechanisms and adaptation strategies. 
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Labor vs Capital Productivity

Our  previous  analysis  demonstrates  nonlinear  adverse  effects  of  contemporaneous 

temperature on both output and TFP. Hsiang (2010) argues that such responses are consistent with 

the  decline  in  labor  productivity  due  to  workers’  exposure  to  thermal  stress.  This  argument 

requires additional evidence, however, given that the TFP is the weighted average of labor and 

capital  productivity  (lnTFP=σ L ln AL+σ K ln AK)  and  that  temperature  can  also  affect  capital 

productivity (Zhang et al., 2018). 

We further explore this issue by examining the differential TFP responses across labor- and 

capital-intensive manufacturing plants. If the economic responses of TFP to temperature propagate 

primarily  through labor  productivity  (AL),  temperature  changes  should  have  a  larger  negative 

impact on the TFP of labor-intensive plants, which typically have larger output elasticity of labor (

σ L), while the TFP of capital-intensive plants would be relatively unaffected. 

We  estimate  contemporaneous  and  lagged  specifications  of  Eq.  (3)  with  TFP  as  the 

outcome variable separately for labor- and capital-intensive plants. Plants are classified as labor- or 

capital-intensive based on labor intensity, which we measure by the plant-level ratio of wage bill  

over output, both averaged across sample years. We define a plant as labor-intensive if its labor 

intensity is above the median of all plants in the sample.22 We report the coefficients obtained from 

estimation of  the contemporaneous specification in  Table 3,  while  Table A4 in the Appendix 

displays the effects of jointly estimated current and lagged temperatures. 

22 Appendix Table A3 displays detailed descriptive statistics separately for labor-intensive and capital-intensive  
plants, while Fig. A6 shows the spatial distribution of value added-output shares for both types of plants. The table 
and  figure  provide  valuable  insight  into  the  differences and  similarities  between labor-intensive  and  capital-
intensive plants, which are equally represented in our sample, for 50% of observations (see Table 3). As expected,  
the plants differ substantially in the statistics on key plant characteristics. Labor-intensive plants, on average, have 
substantially lower value-added output, employ fewer workers, accumulate less fixed capital stock, and are less  
productive. However, the plants are almost identical in the statistics on weather conditions and air pollution in the  
districts where the plants are located. This again suggests that concern about the endogenous location of plants can 
be relaxed.
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Table 3 – Temperature effects on TFP across labor-intensive and capital-intensive plants

Notes: The table shows coefficient estimates of the temperature effects on log TFP across labor-intensive and capital-
intensive plants obtained using contemporaneous specification of Eq. (3). TFP is measured using the Olley-Pakes 
(1996) approach. Plant-level labor intensity is measure by the plant-level ratio of wage bill over output, both averaged  
across sample years. The plant is defined as labor-intensive if its labor intensity is above the median of all plants in the 
sample. Column (1) shows estimates for the full sample as they are reported in our baseline temperature effects on TFP 
in column (3)  of  Table 2.  Columns (2) and (3) present estimates for  labor-intensive and capital-intensive plants,  
respectively. All regressions control for linear and quadratic forms of precipitation, humidity, atmospheric pressure, 
wind speed, fine particulate air pollution and include plant fixed effects and year-by-two-digit-industry fixed effects.  
The  temperature  bin  (18°C,  23°C)  is  set  as  an  omitted,  reference  category  to  avoid  collinearity.  The  estimated 
temperature effects can be interpreted as the marginal effects of an extra day in the mth temperature bin relative to a 
day in the (18°C, 23°C) bin. We suppress the coefficients on weather and air pollution controls. Standard errors in 
parentheses are clustered at the plant and district-year levels.
* p < 0.10, ** p < 0.05, *** p < 0.01. 

We  find  persuasive  evidence  that  productivity  losses  are  generally  associated  with 

temperature-induced reductions in labor productivity rather than capital productivity. Columns (2)-

(3) show that high temperatures have statistically significant negative effects on the TFP of labor-

intensive plants and exert no impact on the TFP of capital-intensive plants. Notably, we do not find 

statistically  significant  responses of  TFP across both labor-  and capital-intensive plants  to  the 

range of temperatures below 8°C. Additionally, Appendix Table A4 provides evidence that the 

lagged temperatures  have no  effects  on  the  contemporaneous TFP of  both plant  types.  These 

findings are consistent with the evidence from Somanathan et al. (2021), who show that the output  

of manufacturing workers in India declines on hot days due to the temperature-induced reductions 
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in  the  output  elasticity  of  labor.  Overall,  our  results  support  the  hypothesis  that  the workers’ 

exposure  to  thermal  stress  is  the  primary  channel  through  which  temperature  affects  the 

productivity of manufacturing plants. 

Capital Inputs

Table 2 and Fig. 4 show that capital is the only factor input in our setting that responds 

significantly to high temperatures, suggesting the capital channel can play a role in transmitting 

adverse temperature shocks to manufacturing output.  As capital  is a complex factor input that 

comprises assets with different sensitivity to temperature, we explore which component of capital 

drives the temperature-capital relationship. 

Since we use fixed capital stock as the measure of the plant-level capital, its components 

represent  the  depreciated  value  of  fixed  assets  owned  by  plants  on  the  closing  day  of  the 

accounting year. Such assets include land, buildings, plant and machinery, transport equipment, 

computer  equipment,  and  other  fixed  assets  such  as  hospitals,  schools,  etc.  Two  additional 

categories include capital work in progress and pollution control equipment, which first appeared 

as  a  separate  category in  the 2001 ASI.  We combine these  categories  with other  fixed assets 

because of the limited number of observations.

We estimate the temperature impact on each capital component using the contemporaneous 

and lagged specifications of Eq. (3). Results of the estimation are presented in Table 4. Appendix 

Table A5 displays the effects of jointly estimated current and lagged temperatures.

The estimates  in  Table  4  show several  important  margins  in  the  differential  effects  of 

temperature on capital components. There is a clear differentiation between fixed assets on those 

that respond only to lower temperatures, the bins below the reference bin, and those that respond 

only to higher temperatures, the bins above the reference bin. The only exceptions are plant and 

machinery and computer equipment, which respond to both lower and higher temperature ranges. 

Previously, we found statistically significant responses of capital only to the higher temperatures 

(columns  (5)-(6)  of  Table  2).  Importantly,  temperature-driven  effects  associated  with  lower 

temperatures are strongly manifested in transport equipment, computer equipment, and plant and 

machinery,  i.e.  the  fixed  assets  where  climate-related  adjustments  are  the  most  feasible.  The 
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analysis reveals that there are both negative and positive responses of fixed assets to the lower 

temperatures, with transport equipment responding positively to one additional day in a (18°C, 

23°C) bin relative to a day in the reference bin. In addition, we find that capital losses at lower  

temperatures are disproportionally large and are driven primarily by losses in plant and machinery 

and computer equipment, respectively 0.22% and 0.31% from an additional day in (8°C, 13°C) 

temperature bin relative to a day in the reference bin. For comparison, the largest negative impact 

among all estimated effects at higher temperatures is 0.1%, resulting from the exposure of other 

fixed  assets  to  one  additional  day  with  a  temperature  higher  than  33°C.  Effects  of  similar  

magnitudes are also revealed for buildings, and plant and machinery. These results are consistent 

with our previous findings suggesting that more substantial losses in manufacturing output occur at 

low rather than at high temperatures. 

Table 4 - Temperature effects on capital by components 

Notes: The  table  shows coefficient  estimates  of  the  temperature  effects  on  capital  by component  obtained  using 
contemporaneous specification of Eq. (3). Dependent variables are log values of the overall capital, land, buildings, 
plant  and  machinery,  transport  equipment,  computer  equipment,  and  other  fixed  assets.  Capital  components  are 
defined according to the ASI documentation and represent the depreciated value of fixed assets owned by plants on the 
closing day of the accounting year. Column (1) reports our baseline temperature effects on the overall capital from 
column (5) of Table 2. All regressions control for linear and quadratic forms of precipitation, humidity, atmospheric  
pressure, wind speed, fine particulate air pollution and include plant fixed effects and year-by-two-digit-industry fixed  
effects. The temperature bin (18°C, 23°C) is set as an omitted, reference category to avoid collinearity. The estimated 
temperature effects can be interpreted as the marginal effects of an extra day in the mth temperature bin relative to a 
day in the (18°C, 23°C) bin. We suppress the coefficients on weather and air pollution controls. Standard errors in 
parentheses are clustered at the plant and district-year levels.
* p < 0.10, ** p < 0.05, *** p < 0.01. 
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Furthermore, the estimates in Appendix Table A5 suggest that the significant effects of 

lower temperatures on plant and machinery, transport equipment, and computer equipment may 

persist over time for both higher and lower temperatures, columns (4)-(6). This is in stark contrast 

to  the  responses  of  land,  buildings,  and other  fixed  assets  to  temperature,  which  are  entirely 

contemporaneous, columns (2), (3), (7). Finally, estimates in columns (1) and (4) show that the 

responses of the plant and machinery to the extreme high temperatures are the most similar to the  

responses of overall capital to the same range of temperatures. 

Taken together with the fact that plant and machinery responds to both lower and higher 

temperatures, it makes this category of fixed assets potentially the most suitable for adjustments 

aimed at more effective adaptation to climate change. This is consistent with engineering studies 

(Zhang et al., 2018) but is documented for the first time in our study.

1.5.3 Seasonal Temperature

In this section, we explore the heterogeneity in the temperature effects to further examine 

the mechanisms and adaptation strategies. 

We  exploit  seasonal  average  temperatures  to  examine  temperature-driven  effects  on 

manufacturing  output  and  its  determinants  at  a  more  granular  below-year  level.  Table  5 

summarizes  the  results  and  reports  coefficients  on  seasonal  average  temperatures  estimated 

simultaneously by fitting Eq. (4) without temperature lag (odd columns) and jointly with a one-

year temperature lag (even columns). Estimated coefficients on weather and air pollution controls 

are presented in Appendix Table A6. 

The  central  finding  is  that  the  largest  output  losses  are  associated  with  temperature 

increases during the hottest pre-monsoon season. This season lasts from March to May and has an 

average  temperature  of  29.08°C.  The  coefficient  estimate  of  TempPre−monsoon is  negative  and 

statistically significant, indicating that a 1°C increase in this season’s average temperature can 

reduce contemporaneous manufacturing output by 2.2%. The effects on output of temperatures 

during  other  seasons  are  relatively  small  and  not  statistically  significant.  Furthermore,  the 

magnitudes of the seasonal responses correspond well with the seasonal average temperatures in 

Table 1. The season-to-season output effects increase steeply from the coldest winter season to the 
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hottest pre-monsoon season and then gradually decrease during the less hot monsoon and cooler 

post-monsoon  seasons.  Such  seasonal  dynamics  are  consistent  with  nonlinear  responses  of 

manufacturing  output  to  temperature,  with  the  most  substantial  reduction  in  output  occurring 

during the hottest season. 

Table 5 - Estimated effects of seasonal temperature on output and its determinants 

Notes: The table shows coefficient estimates obtained using seasonal temperature approach. It documents regression 
results from estimating Eq. (4)  with log values of manufacturing output,  TFP, capital,  and labor as the outcome 
variables. Output is measured by value added, labor - by the total number of employees, and capital - by the total value 
of fixed assets. TFP is obtained using the Olley-Pakes (1996) approach. The estimation results are presented separately 
for specifications with and without lagged temperature variables, odd and even columns for each outcome variable,  
respectively. All regressions control for linear and quadratic forms of precipitation, humidity, atmospheric pressure, 
wind speed, fine particulate air pollution and include plant fixed effects and year-by-two-digit-industry fixed effects.  
These  estimated temperature effects can be  interpreted as  the  percentage  changes in  the outcomes caused by an 
increase  in  average  temperature  in  a  particular  season  by  1  °C.  We  only  report  the  coefficients  on  seasonal  
temperatures and suppress the coefficients on other weather and air pollution controls. Estimated coefficients on these 
variables are shown in Table A6 in the Appendix. Standard errors in parentheses are clustered at the plant and district-
year levels.
 * p < 0.10, ** p < 0.05, *** p < 0.01.  

As a point of comparison with prior studies, the pattern and the magnitude of the estimated 

seasonal temperature effects on output are consistent with the evidence for a very similar setting.  
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Examining a sample of 28 Caribbean-basin countries, Hsiang (2010) finds that a 1°C increase in 

temperature during the hottest  season decreases output  in the non-agricultural  sector by 2.4%. 

Recent studies by Somanathan et al. (2021) and Colmer (2021) report output losses of a similar  

magnitude for India. 

Analysis of the mechanisms reveals that seasonal temperature effects on TFP and factor 

inputs are inherently different. Whereas productivity losses are most strongly associated with the 

hottest pre-monsoon season, economic responses of capital and labor are driven primarily by the 

increases in temperature during the two coldest seasons, winter and post-monsoon. 

The seasonal contribution of the temperature effects on TFP is structurally similar to that of 

output.  It  is  nonlinear  in  temperature  and  is  dominated  by  temperatures  experienced  by 

manufacturing plants during the hottest season. The effect on TFP of temperatures during that 

season is relatively large, negative, and statistically significant. The temperature-driven TFP losses 

increase by 0.78% with a 1°C increase in the average temperature during the pre-monsoon season, 

contributing about 35% to the overall output losses. Our findings and prior studies suggest that 

such productivity losses are most probably caused by the decline in labor productivity associated 

with the exposure of workers to thermal stress during the hottest season (Hsiang 2010; Adhvaryu, 

Kala, and Nyshadham, 2020; Somanathan et al., 2021). 

In contrast to output and TFP, the economic effects of seasonal temperatures on capital and 

labor are most strongly exhibited during the coldest winter and post-monsoon seasons. Combined, 

these seasons span five months from October to February and have comparable seasonal average 

temperatures of 21.01°C and 24.45°C for winter and post-monsoon seasons, respectively. Despite 

being the coldest seasons, temperature averages during these seasons are relatively high.23 

For capital, the coefficient estimates on both TempWinterand TempPost−monsoonare negative and 

statistically significant, suggesting that capital declines with temperature increases during winter 

and  post-monsoon  seasons.  Furthermore,  the  magnitudes  of  the  estimates  are  comparable, 

reflecting  a  small  difference  between  winter  and  post-monsoon  temperature  averages.  A  1°C 

increase in these seasons’ average temperature is associated with a 0.97-1.01% reduction in capital, 

23 For comparison,  TempWinter  in India is about 5°C higher/lower than the average spring/summer temperature in 

China, whereas TempPost−monsoon in India is less than 2°C lower than the average summer temperature in China (Chen 
and Yang, 2019). The seasonal temperature effects on capital and labor during the other seasons are not statistically  
significant. 
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with the larger reduction occurring during a hotter post-monsoon season. The negative response of 

capital to the temperature increases during the coldest seasons is likely due to the already high 

average  temperatures.  Our  finding  is  consistent  with  engineering  studies,  reporting  that  high 

temperatures can lower the ability of lubricants to reduce surface frictions between mechanical 

components  and increase  machines’  failure  rates  by  expanding the  volume of  input  materials 

(Collins, 1963; Mortier et al., 2010; Zhang et al., 2018). 

For  labor,  manufacturing  employment  responds  negatively  to  increases  in  winter 

temperatures and positively to increases in post-monsoon temperatures. A 1°C increase in average 

TempWinter reduces employment by 0.78%, while a 1°C increase in average TempPost−monsoon increases 

employment by 1.12%. This finding can potentially be explained by the temperature effects on the 

seasonal  fluctuations in  employment both across  seasonal  manufacturing industries  and across 

economic sectors.  

Agarwal and Varshney (1969) show that between-industry seasonal fluctuations exist in at 

least  14  Indian  manufacturing  industries.24 The  majority  of  the  seasonal  industries  release  a 

substantial  share  of  their  labor  force  during  the  monsoon  season  and  have  a  peak  or  larger 

employment during the post-monsoon because they can produce only during a specific period of 

the year.25 Industries that depend on seasonal demand have a slack period during both monsoon 

and post-monsoon seasons, releasing a large share of employed workers.26 Only a few seasonal 

industries employ more workers during the monsoon season.27 Thus, it seems unlikely that these 

industries  can  wholly  absorb  workers  released  by other  seasonal  industries  during  their  slack 

season, leading to the net loss in employment among seasonal manufacturing workers during the 

monsoon. 

24 These industries exhibit a seasonal character because their production is not possible in certain seasons, depends on 
the perishable or raw materials available only in certain seasons, or their products are subject to seasonal demand.
25 Such industries include production of sugar in mills, production of indigenous sugar, production of coffee, and  
cotton ginning and baling, which use perishable raw materials; production of jerda and other chewing tobacco, which 
depends on raw materials that are available only in certain seasons; production of salt and bricks and tiles, which can 
be produced only at a certain period of the year. 
26 Examples of such industries include the production of aerated or mineral water. Production of cigarette and cigarette 
tobacco also has a similar pattern of seasonal employment.
27 Such industries are limited to the processing and baling of jute and wool, and the production of cigars and cheroots.
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Increases  in  seasonal  temperatures  can  amplify  between-industry  seasonal  fluctuations, 

affecting the output and productivity of seasonal manufacturing industries because their production 

depends on the weather. For example, the higher post-monsoon temperatures can increase demand 

for labor and, in turn, the employment of workers in industries depending on seasonal demand. 

Moreover, such temperature-driven impact can be substantial as seasonal industries employ 15-

20% of the workers engaged in manufacturing (Agarwal and Varshney, 1969). 

The higher seasonal temperatures can also affect the seasonal reallocation of the labor force 

between economic sectors, first of all between manufacturing and agriculture. These sectors are 

not only subject to seasonal fluctuations in employment but also experience an opposite seasonal 

movement  of  labor  because  they  have  peak and slack periods  at  different  seasons.  Normally, 

employment in agriculture increases during monsoon and decreases during post-monsoon, while 

employment in manufacturing takes place in the opposite direction, with manufacturing industries 

hiring  more  workers  during  the  off-season  of  agriculture  (Agarwal  and  Varshney,  1969). 

Consistent with existing evidence, increases in post-monsoon temperatures can further modify this 

pattern of  seasonal  labor  movement.  Colmer (2021) shows that  temperature-driven changes in 

agriculture  productivity  in  India  force  workers  to  move  across  economic  sectors,  increasing 

employment in the formal manufacturing sector.28 

Overall,  the  estimated  effects  of  the  increases  in  TempMonsoon and  TempPost−monsoon are 

consistent  with  both  channels.  Although  insignificant,  the  large  and  negative  coefficient  on 

TempMonsoon may indicate a decline in employment, probably due to the release of labor by the 

seasonal  manufacturing  industries  or  perhaps  due  to  labor  reallocation  from manufacturing  to 

agriculture sectors during the monsoon season, which is favorable to agriculture (Chakraborty and 

Shukla, 2020). Then, the positive and statistically significant coefficient on  TempPost−monsoon may 

suggest  a  reverse  reallocation  of  workers  from  agriculture  to  manufacturing,  consistent  with 

Colmer (2021).  

The even columns in Table 5 show that the lagged seasonal temperatures have limited 

effects  on  the  contemporaneous  output  and  its  determinants,  except  for  capital.  Estimates  in 

column (6) suggest that fixed capital assets can wear and tear 0.68% faster if they are exposed to a  

1°C increase in temperature during the winter season in the previous year. Importantly, the effect 

28 Importantly, such labor reallocation occurs across sectors within a district, which represents a local labor market, 
rather than across districts.
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may propagate into the following years and reduce the current-year value of capital. Specifically, it 

causes the coefficient estimate on the current-year  TempWinter to increase by 24%, from 0.97% to 

1.2%. Neither of the other lagged seasonal temperatures have a significant effect on current capital. 

The  coefficients  on  the  lagged seasonal  temperatures  indicate  a  statistically  significant 

impact during the winter season for TFP and during the monsoon season for labor. However, the 

corresponding  contemporaneous  temperature  effects  remain  insignificant.  Notably,  the 

temperature-induced decline in employment during the monsoon season in the prior year seems 

consistent with seasonal employment fluctuations both across seasonal manufacturing industries 

and across economic sectors.

1.6 Discussion and Conclusion

This chapter examines the effects of temperature on the output of manufacturing plants in 

India and the mechanisms underlying the temperature-output relationship to support policymaking. 

Applying a uniform empirical framework to the nationally representative sample of plants 

from  the  formal  manufacturing  sector  for  1998-2007,  we  find  that  the  relationship  between 

temperature and manufacturing output is nonlinear. Using binned temperatures, we discover that 

the temperature-output relationship exhibits an inverted U-shape with a clearly defined optimum 

that  falls  into  the  (18°C,  23°C)  interval.  The  output  losses  are  especially  large  for  extreme 

temperature intervals.  Using seasonal  temperatures,  we confirm the  nonlinear  relationship  and 

show that the most substantial losses occur during the hottest pre-monsoon season. The estimated 

impact on the output of a 1°C increase in the average temperature during the pre-monsoon season 

is consistent with that found in most literature.  

Analysis of the mechanisms shows that the negative responses of manufacturing output to 

temperature  are  driven  primarily  by  the  adverse  effects  of  temperature  on  TFP  and  capital,  

contributing roughly 30% and 70%, respectively.  The response of  TFP to temperature closely 

follows the response of output, while the response of capital mirrors the response of output only to 

higher  temperatures.  Further  disentangling  these  primary  mechanisms  using  heterogeneity 

analysis,  we find  that  TFP losses  propagate  through the  adverse  temperature  effects  on  labor 

productivity and that the responses of machinery to extreme high temperatures are the most similar 
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to the responses of overall capital. We also find suggestive evidence of labor reallocation across 

seasonal manufacturing industries and across economic sectors. These results imply that in the 

context of India, reducing the sensitivity of productivity to temperature and lowering the cost of 

factor  adjustments  are  two important  margins  for  adaptation.  Finally,  we find  that  the lagged 

temperatures have a significant impact only on the current-year stock of capital.

Our  findings  have  several  implications  for  the  climate  change  adaptation  strategies  of 

manufacturing plants in India. First, productivity-related adjustments can be considered a universal 

adaptation channel since the shape of the TFP response to temperature closely follows the shape of 

the  output  response.  At  higher  temperatures,  however,  India’s  manufacturing  sector  should 

prioritize  capital-related  adjustments  when  possible  because  of  the  larger  contribution  of  the 

temperature-capital effects to the overall temperature-driven output losses.  

Second,  the  evidence  that  high  temperatures  negatively  affect  TFP  through  labor 

productivity suggests that India’s manufacturing sector could adapt to climate change by either 

focusing on reducing the sensitivity of labor productivity to high temperatures or by associated 

labor-related adjustments. The former strategy could focus on optimization of working hours or 

regular breaks to avoid the hottest parts of the day during the year, while the latter strategy could 

involve  the  reallocation  of  labor  between  labor-intensive  and  capital-intensive  industries  or 

optimization  in  the  number  of  employed  workers  (Day  et  al.,  2019).  When  developing  the 

productivity-related  adjustments,  it  is  important  to  consider  that  TFP is  most  sensitive  to  the 

temperatures  during  the  hottest  pre-monsoon  season  and  that  such  adjustments  could  have 

contemporaneous effects.  

Third, manufacturing plants can make capital-related compensatory investments to either 

offset direct productivity losses or adjust capital input. In the former case, strategies range from 

investments in air cooling systems to improvements in building design. In the latter case, strategies 

can include investments in new machinery that is better adapted to temperature extremes (Day et 

al., 2019). Although our estimates indicate that climate change adaptation policy should focus on 

prioritizing investments in machinery, given that the lagged temperatures in the prior year exert a 

large and significant impact on the current-year stock of machinery, such investments could have a 

delayed effect. 
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Other  categories  of  capital  that  respond  to  temperature  changes  significantly,  such  as 

buildings, transport and computer equipment, can also be considered for investment. In either case, 

manufacturing plants should also take into account the pattern of the seasonal responses of the 

specific category of capital to ensure effectiveness.  

Another reason manufacturing plants may want to prioritize adjustments in capital input 

instead of offsetting direct productivity losses is the limited and environmentally harmful impact of 

air cooling systems. On the one hand, there is potential for expansion because the adoption of 

industrial air-cooling systems in the manufacturing sector remains very limited (Somanathan et al.,  

2021).  On  the  other  hand,  a  number  of  labor-intensive  manufacturing  industries,  which  the 

decision-makers  should target  for lowering labor productivity  losses,  carry out their  economic 

activity outdoors. Further, the adoption of air-cooling systems may be prohibitively costly or of 

limited use because of insufficient energy infrastructure capacity, which may fail precisely when 

the air conditioning is needed most (Heal and Park, 2015). In addition, wider adoption of air-

cooling systems may trigger a vicious cycle as it could lead to an increase in electricity demand,  

which would need to be balanced by the increase in electricity supply coming at the expense of 

higher GHG emissions, reinforcing climate change in the long run. 

Finally, we also find suggestive evidence favoring labor-related adjustments apart  from 

those associated with offsetting labor productivity losses. Such adjustments can contribute to the 

mitigation  of  the  economic  consequences  of  temperature  shocks  by  absorbing  the  excessive 

temperature-driven supply of workers moving from one seasonal industry to another or moving out 

of agriculture to manufacturing. In both cases, the ability of the manufacturing sector to absorb the 

surplus workforce would play a crucial role. Given the potentially large scale of the required labor-

related adjustments, incentives from central and state-level governments may be needed. 

The implications of our findings would allow India to achieve climate change policy goals 

without compromising the country’s growth and development prospects. 
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1.7 Appendix

Fig. A1. Spatial distribution of the number of days with daily average temperatures across 

temperature bins (1998-2007) 

A. Temperature interval: <8°C B. Temperature interval: 8-13°C

C. Temperature interval: 13-18°C D. Temperature interval: 18-23°C
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Fig. A1. Spatial distribution of the number of days with daily average temperatures across 

temperature bins (1998-2007) (continued)

E. Temperature interval: 23-28°C F. Temperature interval: 28-33°C

G. Temperature interval: >33°C

Notes: The figure shows spatial distribution of the average number of days in a year with daily average temperature 
that falls into one of seven 5°C-wide temperature bins (intervals). The maps display district-level numbers averaged 
across the years in our study period. Colors close to red depict higher number of days with a specific temperature in a 
particular interval. The figure indicates notable spatial heterogeneity in temperature across districts and temperature  
intervals.
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Fig. A2. Spatial distribution of seasonal temperatures (1998-2007) 

A. Winter temperature B. Pre-monsoon temperature

C. Monsoon temperature D. Post-monsoon temperature

Notes: The figure shows spatial distribution of district-level seasonal temperatures: winter, pre-monsoon, monsoon,  
and  post-monsoon,  averaged  across  the  years  in  our  study  period.  Colors  close  to  red  depict  higher  levels  of  
temperature. The figure indicates notable spatial heterogeneity in temperature across districts and seasons.
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Fig. A3. Spatial distribution of industry-wise shares in value-added output (1998-2007)

A. Manufacture of foods

430 districts

B. Beverages

254 districts

C. Tobacco

227 districts

D. Textiles

297 districts

E. Apparel

121 districts

F. Leather

139 districts

G. Timber

264 districts

H. Paper

281 districts

I. Printing

204 districts

47



Fig. A3. Spatial distribution of industry-wise shares in value-added output (continued)

J. Coke, petroleum, nuclear fuel

200 districts

K. Chemicals

341 districts

L. Medicines

232 districts

M. Plastics

237 districts

N. Rubber

199 districts

O. Non-metallic minerals

412 districts

P. Basic metals

289 districts

Q. Fabricated metal products

285 districts

R. Machinery and equipment

263 districts
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Fig. A3. Spatial distribution of industry-wise shares in value-added output (continued)

S. Office machinery

57 districts

T. Electrical Machinery

226 districts

U. Communication equipment

107 districts

V. Measuring instruments

122 districts

W. Transport equipment

181 districts

X. Manufacturing n.e.c.

181 districts

Y. Furniture

171 districts

Z. Recycling

43 districts

Notes: The figure shows spatial distribution of the district-level value-added output of manufacturing plants across 
two-digit industries and averaged across the years in our study period. Colors close to red depict higher levels of value-
added output. The figure indicates notable spatial heterogeneity in value-added output across districts and industries.
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Fig. A4. Estimated responses of electricity expenditures and consumption to temperature  

A. Temperature - Electricity Expenditures (*1000 USD)

B. Temperature - Electricity Consumption (*1000 kWh)

Notes: The figures visualize the estimated temperature-driven effects on the plant-level electricity expenditures (panel  
A) and electricity consumption (panel B), expressed in 1000 USD and kWh, respectively. The horizontal axes denote 
temperature bins in degrees Celsius, while the vertical axes show the values of outcome variables. Each panel plots the 
point estimates of temperature bins (green line) and associated 95% confidence intervals (grey dashed lines) for the  
coefficients obtained by estimating Eq. (3) with no lags. The outcome variables data come from India’s Annual Survey 
of Industries. The estimates of daily average temperatures are retrieved from NASA’s MERRA-2. The regressions 
control for linear and quadratic forms of precipitation, humidity, atmospheric pressure, wind speed, fine particulate air 
pollution and include plant  fixed effects and year-by-two-digit-industry fixed effects.  The temperature bin (18°C, 
23°C) is set as an omitted, reference category. Standard errors are clustered at the plant and district-year levels. The  
figures  generally  show  that  temperature  has  no  statistically  significant  effects  on  electricity  expenditures  and  
consumption, suggesting that adaptation actions have not been undertaken to reduce the negative impact on output. 
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Fig. A5. Joint effects of current and lagged temperatures on output and its determinants 

A. Current Temperature - Log Output B. Lagged Temperature - Log Output

C. Current Temperature - Log TFP D. Lagged Temperature - Log TFP

E. Current Temperature - Log Capital F. Lagged Temperature - Log Capital
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Fig. A5. Joint effects of current and lagged temperatures on output and its determinants 

(continued)

G. Current Temperature - Log Labor H. Lagged Temperature - Log Labor

Notes: The  figure  provides  a  pairwise  comparison  between  the  effects  of  jointly  estimated  current  and  lagged 
temperatures on log values of manufacturing output (panels A and B), TFP (panels C and D), capital (panels E and F),  
and labor (panels G and H). The horizontal axes denote temperature bins in degrees Celsius, while the vertical axes 
show the log values of outcome variables. Each panel plots the point estimates of temperature bins (green line) and 
associated 95% confidence intervals (grey dashed lines) for the coefficients obtained by estimating Eq. (3) with lagged  
temperatures and reported in the even columns of Table 2. The regressions control for linear and quadratic forms of  
precipitation, humidity, atmospheric pressure, wind speed, fine particulate air pollution and include plant fixed effects  
and  year-by-two-digit-industry  fixed  effects.  The  temperature  bin  (18°C,  23°C)  is  set  as  an  omitted,  reference  
category. Standard errors are clustered at the plant and district-year levels.  
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Fig. A6. Spatial distribution of value added-output shares for labor-intensive and capital- intensive 

plants (1998-2007)

A. Labor-intensive plants B. Capital-intensive plants

Notes: The  figure  shows spatial  distribution  of  the  district-level  value-added  output  shares  separately  for  labor-
intensive and capital-intensive manufacturing plants. Plant is defined as labor-intensive if its labor intensity is above 
the median of all plants in the sample. We define a plant as capital-intensive if its labor intensity is below the median  
of all plants in the sample. Plant-level labor intensity is measured by the plant-level ratio of wage bill over output, both 
averaged across sample years.  The shares of value-added output are averaged across the years in our study period. 
Colors close to red depict higher levels of value-added output. The figure indicates notable spatial heterogeneity in  
value-added output across districts but similar patterns between both types of plants.
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Table A1 - Estimated coefficients on weather and air pollution controls: binned temperature 

Notes: The table shows coefficients on weather and air pollution controls estimated using the binned temperature 
approach (Eq. (3))  and omitted from Table 2.  These controls include linear  and quadratic forms of precipitation,  
humidity,  atmospheric  pressure,  wind  speed,  fine  particulate  air  pollution.  Outcome  variables  are  log  values  of 
manufacturing output, TFP, capital, and labor. Output is measured by value added, labor - by the total number of  
employees, and capital - by the total value of fixed assets. TFP is obtained using the Olley-Pakes (1996) approach. The 
results  are  presented  separately  for  specifications  with  and  without  lagged  temperature  variables,  odd  and  even 
columns, respectively. The temperature bin (18°C, 23°C) is set as an omitted, reference category to avoid collinearity.  
All regressions include plant fixed effects and year-by-two-digit-industry fixed effects. Standard errors in parentheses 
are clustered at the plant and district-year levels.
* p < 0.10, ** p < 0.05, *** p < 0.01.  
 
 
  

54



Table A2 - Effects of jointly estimated current and led temperatures on output and its determinants 

Notes: The table shows coefficient estimates of the jointly estimated current and led temperatures on log values of 
manufacturing output, TFP, capital, and labor. Output is measured by value added, labor - by the total number of  
employees, and capital - by the total value of fixed assets. TFP is obtained using the Olley-Pakes approach. The  
coefficients  are  from  the  specification  that  expands  our  baseline  model  in  Eq.  (3)  by  adding  temperature  bins  
constructed using annual distributions of daily temperatures led by one and two years. The estimation results are for  
specifications without and with led temperature variables. Columns (1), (4), (7), and (10) show coefficients for output,  
TFP, capital, and labor, respectively obtained from the estimation of our baseline specification and are the same as  
those in the odd columns of Table 2. Columns (2)-(3), (5)-(6), (8)-(9), and (11)-(12) report coefficients for output, 
TFP, capital, and labor, respectively estimated by including temperature variables led by one year (odd columns) and 
two  years  (even  columns).  All  regressions  control  for  linear  and  quadratic  forms  of  precipitation,  humidity,  
atmospheric pressure, wind speed, fine particulate air pollution and include plant fixed effects and year-by-two-digit-
industry fixed effects. The temperature bin (18°C, 23°C) is set as an omitted, reference category to avoid collinearity.  
The estimated temperature effects can be interpreted as the marginal effects of an extra day in the mth temperature bin 
relative to a day in the (18°C, 23°C) bin. We suppress the coefficients on weather and air pollution controls. Standard  
errors in parentheses are clustered at the plant and district-year levels.
* p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A3 – Summary statistics for labor-intensive and capital-intensive plants  

Notes: The table summarizes statistics of plant-level characteristics, weather, and pollution data separately for labor- 
and capital-intensive plants. Plant data are from the Annual Survey of Industries. Weather data are from NASA’s  
MERRA-2. PM2.5 air pollution data are from the Atmospheric Composition Analysis Group at Dalhousie University,  
Canada. Output is measured by value added. TFP is obtained using the Olley-Pakes approach. Labor is measured by  
the total number of employees. Capital is measured by the total value of fixed assets. All monetary values are in 2007  
U.S. dollars. Temperature variables are calculated as the annual or seasonal mean values from daily average estimates.  
Humidity, wind speed, atmospheric pressure are the annual mean values. Precipitation is calculated as the annual sum 
from daily average estimates. PM2.5 concentrations are in annual mean values.
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Table A4 - Effects of jointly estimated current and lagged temperatures on TFP across labor-

intensive and capital-intensive plants

Notes: The table shows coefficient estimates of the temperature effects on log TFP across labor-intensive and capital-
intensive  plants  obtained  using  lagged  specification  of  Eq.  (3).  TFP  is  measured  using  the  Olley-Pakes  (1996) 
approach. Plant-level labor intensity is measure by the plant-level ratio of wage bill over output both averaged across  
sample years. The plant is defined as labor-intensive if its labor intensity is above the median of all plants in the  
sample. Column (1) shows estimates for the full sample as they are reported in our baseline temperature effects on TFP 
in column (4)  of  Table 2.  Columns (2) and (3) present estimates for  labor-intensive and capital-intensive plants,  
respectively. All regressions control for linear and quadratic forms of precipitation, humidity, atmospheric pressure, 
wind speed, fine particulate air pollution and include plant fixed effects and year-by-two-digit-industry fixed effects.  
The  temperature  bin  (18°C,  23°C)  is  set  as  an  omitted,  reference  category  to  avoid  collinearity.  The  estimated 
temperature effects can be interpreted as the marginal effects of an extra day in the mth temperature bin relative to a 
day in the (18°C, 23°C) bin. We suppress the coefficients on weather and air pollution controls. Standard errors in 
parentheses are clustered at the plant and district-year levels.
* p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A5 - Effects of jointly estimated current and lagged temperatures on capital by components 

Notes: The table shows coefficient estimates of the temperature effects on capital by component obtained using lagged 
specification of Eq. (3). Dependent variables are log values of the overall capital, land, buildings, plant and machinery,  
transport equipment, computer equipment, and other fixed assets. Capital components are defined according to the ASI 
documentation  and  represent  the  depreciated  value  of  fixed  assets  owned  by  plants  on  the  closing  day  of  the  
accounting year. Column (1) reports our baseline temperature effects on the overall capital from column (5) of Table 2. 
All regressions control for linear and quadratic forms of precipitation, humidity, atmospheric pressure, wind speed, 
fine  particulate  air  pollution  and  include  plant  fixed  effects  and  year-by-two-digit-industry  fixed  effects.  The 
temperature bin (18°C, 23°C) is set as an omitted, reference category to avoid collinearity. The estimated temperature 
effects can be interpreted as the marginal effects of an extra day in the mth temperature bin relative to a day in the 
(18°C, 23°C) bin. We suppress the coefficients on weather and air pollution controls. Standard errors in parentheses 
are clustered at the plant and district-year levels.
* p < 0.10, ** p < 0.05, *** p < 0.01. 

58



Table A6 - Estimated coefficients on weather and air pollution controls: seasonal temperature 

Notes: The table shows coefficients on weather and air pollution controls estimated using the seasonal temperature 
approach (Eq. (4)) and omitted from Table 3. These controls include seasonal precipitation, humidity, atmospheric 
pressure, wind speed, and linear and quadratic forms of fine particulate air pollution. Outcome variables are log values  
of manufacturing output, TFP, capital, and labor. Output is measured by value added, labor - by the total number of 
employees, and capital - by the total value of fixed assets. TFP is obtained using the Olley-Pakes approach. The  
estimation results are presented separately for specifications with and without lagged temperature variables, odd and 
even columns for each outcome variable, respectively. All regressions include plant fixed effects and year-by-two-
digit-industry fixed effects. Standard errors in parentheses are clustered at the plant and district-year levels. 
* p < 0.10, ** p < 0.05, *** p < 0.01.  
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2 Environmental  Regulations,  Air  Pollution,  and  Infant 

Mortality in India: A Reexamination

Published as CERGE-EI Working Paper Series No. 703

2.1 Introduction

Substantial health and economic costs of air pollution have forced countries around the 

world to enact increasingly stringent environmental regulations (Botta and Koźluk, 2014). Whether 

such  regulations  have  been  effective  remains  an  important  policy  question,  particularly  in 

developing countries  that  suffer  from weak institutions,  severe  air  pollution,  and limited  data 

availability. 

An American Economic Review paper by Michael Greenstone and Rema Hanna (2014) – 

henceforth, GH – is an important piece of empirical evidence for this line of research. It examines 

the impact of air pollution control policies in India on two integral dimensions of effectiveness:  

policy-induced  changes  in  air  pollution  and  associated  changes  in  infant  mortality.29,30 

Interestingly,  GH  report  somewhat  counterintuitively  that  the  policies  have  been  effective  in 

improving  air  quality  but  have  had  a  modest  and  statistically  insignificant  effect  on  infant 

mortality.31 A likely explanation for GH’s findings might stem from the scarcity of reliable air 

pollution measures and the effects of unaccounted confounding factors. I show that GH’s dataset, 

which  was  constructed  using  readings  from a  spatially  sparse  network  of  public  air  pollution 

monitors, suffers from high interannual variability in sample size, relatively inaccurate measures of 

29 GH also assess the effects of water pollution regulations, but I focus exclusively on the part of GH’s paper that  
analyzes the effectiveness of air pollution regulations.
30 Matus et al. (2012) show that health costs account for 71.4% of total air pollution-induced welfare losses in China  
and that mortality captures around 86% of those losses. Others have shown that mortality impacts associated with air  
pollution are strongest for infants (Ebenstein et al.; 2015, Tanaka, 2015). Compared to adults, infants’ deaths lead to  
larger losses in life expectancy. 
31 GH’s findings contradict the conclusions of others in the literature. There is a substantial body of causal evidence  
that the regulation-induced improvements in air quality in developing countries lead to a decline in infant mortality. 
For example, see Foster, Gutierrez, and Kumar (2009), Ebenstein et al. (2015), Tanaka (2015), He, Fan, and Zhou 
(2016), Cesur, Tekin, and Ulker (2016).
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air pollution, and the absence of critical meteorological confounders. I argue that ignoring these 

limitations could potentially lead to misleading conclusions about the effectiveness of air pollution 

mitigation  efforts.   Coupled  with  the  prominence  of  GH’s  study,  this  conclusion  motivates  a 

reexamination of GH’s findings using alternative data sources.

This  chapter  reexamines  the  link between environmental  regulations,  air  pollution,  and 

infant mortality using new data that were unavailable to GH. I take advantage of satellite-based 

data to revise air pollution measures and to extract meteorological conditions that proved to be 

important confounders. Maintaining GH’s methodology, I test the sensitivity of their findings to 

the revised air pollution outcomes, extended number of observations, and meteorological controls. 

Thus,  comparing  results  using  satellite-based  to  ground-based  data  used  by  GH,  I  present 

complementing empirical evidence on the effectiveness of air pollution control policies in India. 

Based on a careful account of similarities and disparities in the results generated by two 

data  sources,  it  seems reasonable to  confirm GH’s findings  and interpret  air  pollution control 

policies in India as effective, although with substantially weaker effects on air pollution. Further 

research  exploring  the  prospects  for  using  satellite-based  data  will  be  particularly  valuable, 

especially for developing countries.  Such research will  be critical  in uncovering the effects  of 

environmental regulations and recommending sensible interventions to mitigate the environmental 

burden of air pollution and to protect population health.

2.2 Review of Greenstone and Hanna (2014)

Using a panel of 140 Indian cities for the years 1987-2007, GH assess the impact of the 

Supreme  Court  Action  Plans  (SCAP)  and  the  Mandated  Catalytic  Converters  (CAT)  on  air 

pollution and infant mortality. Both policies belong to the command-and-control instruments and 

were at the forefront of India’s environmental regulation since the 1970s. SCAP are a suite of 

policy actions aimed at reducing pollution in the cities identified by the Supreme Court of India as  

critically polluted. SCAP typically vary across cities and can take different forms depending on the 

type of targeted air pollutant.32 CAT requires new cars to be equipped with a catalytic converter – 

32 Action plans for vehicular pollution include an odd-even program for private cars, compulsory retirement of old 
vehicles,  or  restrictions  on  the  use  of  heavy  vehicles,  while  plans  that  regulate  industrial  pollution  include  the 
mandated  reallocation  of  heavily  polluting  industries,  installation  of  specific  abatement  technologies,  or  bans  on 
production processes.
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an exhaust emission control device aimed at reducing toxic gases and pollutants in the exhaust gas 

by converting them into less harmful pollutants using catalyzing reaction. There are two distinctive 

features of this regulation. First, its enforcement is stringent as vehicle registrations are tied to the 

installation  of  catalytic  converters.  Second,  its  impact  obviously  increases  over  time  with  the 

increase in the share of newer vehicles (Greenstone, Harish, Pande, and Sudarshan, 2017). 

SCAP  and  CAT policies  can  plausibly  affect  air  pollutants  analyzed  in  GH:  nitrogen 

dioxide (NO2), sulfur dioxide (SO2), and suspended particulate matter (SPM). NO2 and SO2 are 

gaseous  air  pollutants  composed  of  oxygen and  nitrogen or  sulfur,  respectively.  The  primary 

sources of NO2 emissions are vehicles, power plants, and off-road equipment. SO2 emissions are 

primarily from the combustion of sulfur-containing fossil fuels for thermal power generation and 

industrial facilities. NO2 and SO2 convert in the atmosphere to nitrates and sulfates, respectively, 

and contribute to the formation of particulate matter. Particulate air pollution is a complex mixture 

of solid and liquid particles of various chemicals and sizes. SPM consists of particles of less than  

100 micrometers (μm) in diameter and is a general indicator of air pollution. All three pollutants 

are widely considered to cause serious health and economic costs (U.S. EPA, 2022a).

GH’s empirical strategy combines event study and difference-in-differences designs in a 

two-step econometric approach. At the first step, the approach measures average annual levels of 

air  pollutants and infant mortality in the pre and post  policies’ adoption periods,  while  in the 

second step, it  tests for the policies’ impact. Equations (1) and (2) correspond to the first and 

second-step specifications. Together, these equations represent GH’s preferred specification that 

controls for city fixed effects, year fixed effects, preexisting differential trends in the outcomes, 

and  allows  for  a  mean  shift  and  trend  break  after  the  policies’  implementation.  Identifying 

variation comes from the variation in the timing of the policies’ enactment across cities.

Y ct=α+∑
τ

σ τ Dτ ,ct+β X ct+μt+γ c+ϵ сt (1)

where Y ct is an outcome variable measuring either concentrations of air pollutants or infant 

mortality rate in city c in year t.  Dτ ,ct  is a vector of indicator variables for each year before and 

after a policy is in force.  τ is normalized so that it is equal to zero in the year the policy was 
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enacted; it ranges from −17 (for 17 years before a policy’s adoption in a city) to 12 (for 12 years  

after its adoption). For the nonadopting cities, τs are equal to zero. Xctis a set of additional control 

variables (consumption per capita and literacy rates).  μ t – year fixed effects to control for year-

specific common shocks for all  cities;  γc –  time-invariant  city fixed effects  to  control  for  the 

permanent unobserved determinants of the outcome variable across cities. Equation (1) is weighted 

by the district-urban population in air pollution estimations and by the number of births in infant 

mortality  estimations.  The  coefficients  of  interest  σ τ measure  the  levels  of  average  annual 

outcomes in the pre- and postadoption periods.  The estimated coefficients  σ̂ τ are  then fit  into 

equation (2) that corresponds to the equation (2C) in GH.

σ̂ τ=π 0+π11(Policy)τ+π2 τ+π 3(1(Policy)τ ∙ τ )+ϵ τ (2)

where 1(Policy )τ is a dummy variable that takes on the value 1 to indicate that the policy is  

in force; τ is a linear time trend to control for the differential preexisting trends in adopting cities.  

1(Policy )τ ∙ τ  allows for the policies’ effects to evolve over time; ϵ τ – heteroskedasticity-consistent 

standard errors. GH weight equation (2) by the inverse of the standard errors for the relevant σ τ to 

account for differences in precision in the  σ τ’s estimation. The specification tests  for a policy 

impact after adjustment for the trend in outcome variable (π2), and allows for both a mean shift (π1

) and trend break (π3). From this equation, GH also report the policies’ effects five years after 

implementation, π1+5 π 3. They then complement a two-step approach by its numerically identical 

one-step version.33

33 The specification below represents a one-step version of the two-step approach. GH include both policies into the  
one-step approach and limit the policies’ dummies to the observed event years to preserve the comparability with the 
two-stage approach, specifically 20 city years for CAT and 15 city years for SCAP. 

Y ct=α+θ11 (SCAP Range )τ+θ21 (SCAP )τ∗( SCAPRange )τ+θ31 (SCAP Range )τ∗τ
+θ41 (SCAP )τ∗τ∗(SCAPRange )τ+θ51 ( τLeft )τ+θ61 (τRight )τ+ρ11 (CAT Range )ϕ

+ρ21 (CAT )ϕ∗(CAT Range )ϕ+ρ31 (CAT Range )ϕ∗ϕ+ρ41 (CAT )ϕ∗ϕ∗(CAT Range )ϕ
+ρ51 (ϕLeft )ϕ+ρ61 (ϕRight )ϕ+β X ct+μt+ γc+ϵ сt

1 (SCAPRange )τ  is a dummy variable for – 7 ≤ τ ≤ 3 and 1 (CAT Range )ϕ is a dummy variable for – 7 ≤ ϕ≤ 9; 

1 (SCAP )τ  and 1 (CAT )ϕ are the policy dummies that indicate whether SCAP or CAT  policies are in force and that 

take on the value 1 for the adopting cities with τ≥ 0 and/or ϕ≥ 0; 1 (τLeft )τ  and 1 ( τRight )τ  are dummies indicating 
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GH’s  central  result  is  that  the  Mandated  Catalytic  Converters  policy  was  strongly 

associated with air pollution reduction. Specifically, five years after the policy was in force, SPM 

and SO2 concentrations declined by 48.6 μg/m3 and 13.5 μg/m3, or 19% and 69% of the 1987–

1990 nationwide mean concentrations. The impact of the CAT policy on NO2 was a statistically 

insignificant decline by 4.4 μg/m3 or 19% of the 1987–1990 nationwide mean concentrations. In 

contrast, the Supreme Court Action Plans resulted in a marginally statistically significant decline in 

NO2 concentrations without any evidence of an impact on SPM and SO2. GH then proceed with 

the CAT policy, i.e. the one that was found to be the most strongly related to improvements in air  

quality, to show that the policy resulted in a modest and statistically insignificant decline in infant 

mortality.

2.3 Data

I  reexamine the effectiveness of air  pollution control  policies combining GH’s original 

datasets with new and improved data. GH undertook an extensive data-collecting exercise and 

made resulting datasets and Stata do-files publicly available.34 I use GH’s data on environmental 

regulations, infant mortality, and sociodemographic characteristics without modification. Instead, I 

revise data on air pollution outcomes and add key meteorological confounders absent in GH’s 

paper.

2.3.1 GH’s Data Limitations

Air Pollution Data

GH’s air pollution data came from India’s Central Pollution Control Board (CPCB), which 

operates a national network of ground-based monitoring stations. GH obtained monthly city-by-

that  τ <  –7  or  τ >  3,  respectively;  by  analogy,  1 (ϕLeft )ϕ and  1 (ϕRight )ϕ indicate  that  ϕ<¿–7  or  ϕ>¿9, 

respectively;  1 (SCAP Range )τ∗τ  and  1 (CAT Range )ϕ∗ϕ are  a  linear  time  trend  variables  interacted  with  a 

policy range dummies;  1 (SCAP )τ∗τ∗(SCAP Range )τ and  1 (CAT )ϕ∗ϕ∗(CAT Range )ϕ+ρ5 are policy*time-

trend*policy-range  interaction  terms;  ϵ сt  –  standard  errors  clustered  at  the  city-level  (Bertrand,  Duflo,  and 
Mullainathan, 2004). 
34 I downloaded GH’s data and Stata code from the AER website.
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state monitor readings for NO2, SO2, and SPM concentrations from a spatially sparse network of 

572 monitors in 140 cities.35 To calculate the annual average concentrations for each city, GH took 

a simple average of the monthly average concentrations for the monitors within the city. 

GH’s final air pollution dataset has two major issues. First, the sample size is substantially 

restricted and highly variable. Column 1 of Table 1 tabulates the number of cities in GH’s sample 

with at least one monitor reading in a particular year. Thus, the city counts in this column represent 

the maximum possible number of the cities available for the analysis in a given year. This number 

varies substantially because CPCB’s monitor readings are not available for all years for most of the 

cities. Only 20 of 140 cities were covered by the monitoring network in 1987, while 115 cities 

were monitored by 2007. Another concern is that some of the monitors were not operating for a 

whole sample of cities, were not functioning appropriately, or were moved and reclassified over 

the years. These reasons may explain the substantial variability in GH’s sample size over time. As 

column 1 indicates, the number of cities was steadily increasing until 1993 when it reached 65. 

Then,  the sample size declined sharply to  42 cities in  1995,  rapidly increased to  73 in  1997, 

dropped again to 54 in 2001, and continued growing until it peaked in 2007 with 115 cities. The 

variability appears high, although GH do not discuss this issue in detail. GH further restricted the 

sample of cities based on the availability of air pollution data. Policy-adopting cities were included 

in  the  analysis  if  they  had  at  least  one  observation  three  or  more  years  before  the  policy’s  

implementation and at  least  one observation four or more years after.  Non-adopting cities and 

adopting  cites  without  post-policy  pollution  data  were  included  if  they  had  at  least  two  air  

pollution readings. 

35 For comparison, the U.S. network of ground-based monitors that measure ambient PM concentrations consists of 
around 1200 monitors. This network covers 63% of the U.S. population in less than 20% of U.S. counties and is still  
considered spatially sparse by researchers (Sullivan and Krupnick, 2018; Fowlie, Rubin, and Walker, 2019).
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Table 1 – Number of cities and prevalence of air pollution control policies

Notes: The table corresponds to GH’s Table 1. SCAP and CAT stand for the Supreme Court Action Plans and the  
Mandated Catalytic Converters. Column 1 shows the number of the cities that have at least one air pollution reading in  
the particular year. Those numbers represent maximums out of 140 cities (column 2) used in GH. Columns 3 and 4 
show the number of cities where the specified policy was implemented.

Second, measures of the city-level concentrations might be relatively inaccurate. Several 

problems can emerge when using a sparse network of monitors to infer air pollution levels. First,  

there can be significant discrepancies between the monitor’s readings and surface concentrations 

because of air pollution’s physical properties. The fundamental issue is that air pollution can both 

vary sharply over short distances with higher concentrations downwind of the source of emission 

and  travel  long  distances  from its  source  being  dispersed  by  wind  or  washed  away  by  rain. 

Therefore, the further a particular location is from a monitor, the less accurate is the measure of 

concentration inferred from this monitor for this location (Sullivan, 2016; Sullivan and Krupnick, 

2018).  Second,  evidence  shows  that  local  officials  can  manipulate  ground-based  pollution 

readings, particularly in developing countries (Andrews, 2008; Chen, Jin, Kumar, and Shi, 2012; 
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Ghanem and Zhang, 2014). Such manipulations can take the form of strategically placing monitors 

in less polluted parts of the cities, relocating monitors from locations downwind of polluters to 

locations upwind, or even spraying water over monitors to decrease local pollution concentrations 

(Fan and Grainger, 2019). Third, the aggregation method used in GH can also cast doubt on the 

accuracy of  measurements.  A monitor  measures concentration from a single point  in space to 

represent a concentration over a city, in which neighborhoods can have a varying landscape, wind 

pattern, population density, and emission sources. However, in 2007, 18% of sample cities did not 

have a SPM monitor, 21% had one monitor, 31% had two monitors, and 16% had three. Thus, an 

aggregation  by  a  simple  averaging  can  be  highly  misleading.  Ideally,  the  computation  of  air 

pollution  levels  that  relies  on  data  obtained  from  ground-based  monitors  should  include  the 

interpolation of monitor-level data into the surface.36 The outcomes of this procedure, i.e. average 

concentrations at every grid point, can then be temporally and spatially aggregated by averaging 

concentrations at all grid points that fall within the cities’ administrative boundaries. Following 

these steps, one can accurately measure the city-level pollution concentrations over time.

Meteorological Data

Additionally, GH’s dataset does not include meteorological conditions. Not controlling for 

these  conditions  can  potentially  confound GH’s  findings  because  of  the  significant  impact  of 

meteorological  conditions  on  air  pollution  and  infant  mortality.  Apart  from  anthropogenic 

emissions, meteorological forces are the primary factors that shape air pollution trends over cities 

around the world.37 They play a critical role in dispersion, transformation, transport, removal of air 

pollutants in the atmosphere and can exacerbate or mitigate their concentrations (Zhong et al.,  

2018; Li et al., 2019; He at al., 2019; Zhou et al., 2020). Rain can wash air pollutants away and 

high wind speeds disperse them, lowering concentrations.  Low wind speeds coupled with low 

winter temperatures and thermal inversions tend to worsen air quality, increasing concentrations. 

In turn, these processes also affect infant mortality, indirectly through the impact on air pollution 

or  directly  (Goyal,  2002).  Many  studies  find  statistically  significant  effects  of  extreme  air 

36 This can be usually achieved using spatial interpolation methods such as inverse distance weighting or Kriging.
37 For example, variation in meteorological conditions explains more than 70% of daily variations in five air pollutants  
in major Chinese cities during the 2014-2015 period (He et al., 2017) and up to 50% of daily PM2.5 variation in the  
U.S. during the 1998-2008 period (Tai, Mickley, and Jacob, 2010).
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temperature,  rainfall,  and humidity  on infant  mortality  in  developed and developing countries 

(Deschênes and Greenstone, 2011; Kudamatsu, Persson, and Strömberg, 2012; Gasparrini et al.,  

2015; Barreca, 2016; Heutel, Miller, and Molitor, 2017; Burgess et al., 2017; Geruso and Spears,  

2018).  Thus,  ignoring  considerable  fluctuations  in  meteorological  conditions  can  lead  to 

misleading conclusions about the effectiveness of air pollution mitigation efforts. In line with this 

argument,  Sullivan  (2016)  formally  shows that  economic  studies  underestimate  the  effects  of 

changes in air pollution exposure, including those induced by exogenous shock, because of the bias 

that arises when researchers do not account for meteorological confounders, specifically for wind 

speed. It has been shown that at the time of writing GH, publicly available in-situ monitor readings 

of meteorological conditions in India were highly sparse and erratic (Burgess et al., 2017). That 

likely explains the absence of these data in GH’s dataset,  despite  an extensive data collection 

exercise.

Nevertheless, high variability in the interannual sample size, relatively accurate measures 

of air pollution concentrations, and the absence of important meteorological confounders motivate 

a reexamination of GH’s findings using alternative data sources.

2.3.2 New and Revised Data

Revised Air Pollution Outcomes

To address the issues with GH’s air pollution data, I leverage recent advances in satellite 

technology. I construct air pollution outcomes, i.e. annual city-level averages of fine particulate 

matter (PM2.5) and sulfur dioxide (SO2), from the satellite-based Aerosol Optical Depth (AOD) 

retrievals.38 AOD measures the amount of sunlight absorbed, reflected, and scattered by particles 

suspended in the air. Satellite observations of AOD make it possible to estimate surface PM2.5 and 

SO2  concentrations  at  granular  spatial  resolution  and  with  comprehensive  geographical  and 

temporal coverage. AOD-based estimates are a good proxy of air pollution over India (Dey et al.,  

2012).

38 Data on NO2 concentrations are not readily available for the temporal and geographic scope required for GH’s 
reexamination.
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I replace GH’s SPM with the satellite-based estimates for PM2.5, a fraction of SPM with a 

much smaller diameter:  less than 2.5 μm compared to less than 100 μm. Size is an important 

indicator  of  the  particles’  penetrating  ability  that  highlights  the  most  probable  site  of  the 

respiratory  tract  where  they  can  be  trapped  being  inhaled.  Smaller  PM2.5  particles  penetrate 

deeper into the lungs, pass through them, and get into the bloodstream, thus causing more severe 

adverse health effects than GH’s SPM (Schwartz, Dockery, & Neas, 1996; U.S. EPA, 2004; WHO, 

2006a). Substantial scientific evidence across disciplines shows that PM2.5 exposure can result in 

various health impacts, including respiratory, cardiovascular, and nervous system effects, cancer, 

and mortality (for more details, see U.S. EPA, 2022b). SMP and PM2.5 are originated from the 

same  primary  sources,  which  can  be  anthropogenic  or  natural.  The  former  sources  include 

manufacturing processes, vehicular exhaust, power generation, household heating, cooking, and 

fuel combustion, while the latter adds sea salt, dust, volcanic and fire ash. Secondary sources, like 

sulfates and nitrates formed in the atmosphere through chemical reactions, also contribute to the 

formation  of  secondary  SPM  and  PM2.5.  More  toxic  components  of  particulate  matter  are 

generally contained in the fine fraction (Larssen & Hagen, 1997), which makes PM2.5 a more 

sophisticated air pollution exposure indicator. An increasing number of social scientists focus on 

PM2.5 to study the effectiveness of environmental regulations, health effects, and the economic 

impacts of pollution exposure (Voorheis, 2016; Chen, Oliva, & Zhang, 2017; Fu, Viard, & Zhang, 

2017; Sullivan & Krupnick, 2018; Fowlie, Rubin, & Walker, 2019). PM2.5 data were unavailable 

to GH as PM2.5 monitoring in India started only in 2009 after the second revision of the national 

air quality standards.

I  obtained  satellite-based  estimates  for  PM2.5  and  SO2  concentrations  from  NASA’s 

Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2; GMAO, 

2015).39 MERRA-2  data  result  from  atmospheric  reanalysis  that  combines  satellite-based 

measurements  of  AOD,  ground-based  monitor  readings,  and  other  sources  with  sophisticated 

chemical-transport  and  climate  modeling  to  create  gridded  estimates  for  surface  air  pollution 

variables. MERRA-2 reanalysis data are widely used in various studies due to their high quality, 

granular spatial and temporal resolutions, and diverse atmospheric variables (Chen et al., 2017; Fu 

et al., 2017; He et al., 2019). MERRA-2 is the only alternative that provides estimates for PM2.5 

and SO2 concentrations for GH’s sample years, 1987-2007. For comparison, another source of air 

39 M2TMNXAER product, version 5.12.4.
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pollution data popular among social scientists, van Donkelaar et al. (2019), provides estimates for 

PM2.5 concentrations starting only from 1998. Therefore, MERRA-2 is my preferred source of 

data for air pollution outcomes. 

MERRA-2  provides  global  gridded  data  of  monthly  means  at  0.5º  x  0.625º  spatial 

resolution (approximately 56km x 69km at the equator).  Estimates for SO2 concentrations are 

readily available, while PM2.5 concentrations need to be calculated using estimates for PM2.5 

components: dust (DUST2.5), sea salt (SS2.5), black carbon (BC), organic carbon (OC) and sulfate 

particulate (SO4).40 I follow the literature from atmospheric science, Buchard et al. (2016), and 

apply equation (3) to calculate PM2.5 concentrations at every grid point. 

PM 2.5=DUST2.5+SS2.5+BC+1.4∗OC+1.375∗SO4 (3)

Fig. 1 maps the resulting spatial distribution of MERRA-2 PM2.5 and SO2 pollution in 

India. Panels A and B show long-run average PM2.5 and SO2 concentrations in μg/m3 for 1987-

2007. The figure depicts higher levels of air pollution with the shades of red color. For PM2.5, 

broad areas in North-West India, Gangetic Plains, and northern regions of Central India are well 

above national and WHO air quality guidelines, which are annual averages of 40 μg/m3 and 10 

μg/m3, respectively. Even though there are observable SO2 hot spots, most of India is in rough 

compliance with the national standard, which is 50 μg/m3.

To map MERRA-2 air pollution concentrations to the city level, I construct urban extent 

polygons that correspond to the cities’ administrative boundaries using 2011 ML InfoMap’s digital 

maps.41 The definition of what to consider a city is a major challenge as GH do not provide any 

information about this. I rely on the operational definition of an urban area (town) adopted by the 

Office of the Registrar General and Census Commissioner of India as, I believe, GH also did by 

default.42 They retrieved data from the official administrative sources, and I assume that Indian 

40 Sources of SO4 (sulfate), BC and OC (carbonaceous) are emissions from power plants, vehicle exhaust, and biomass 
burning. DUST2.5 comes from local arid sources or transported from abroad by dust storms. SS2.5 penetrates the land  
from the seas and oceans.
41 State-wise  ML  InfoMap  village  (and  town)  boundary  polygons  represent  a  digital  map  that  provides  socio-
demographic and economic census data in GIS file format. I downloaded ML InfoMap’s shapefiles from the Princeton 
University Digital Maps and Geospatial Data Library during my research visit.
42 The Office of the Registrar General and Census Commissioner of India is the central authority in charge of the  
population (Census) and vital statistics. The Census statistics for urban areas (towns) comprises two types of towns,  
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government agencies, including CPCB, define administrative units uniformly. The list of the cities 

was obtained from GH’s Stata do-files and Vital Statistics of India, while the cities’ geometry from 

the maps in the India District Census Handbooks 2011.43 

A. Average PM2.5, 1987-2007 B. Average SO2, 1987-2007

Notes: The figure maps spatial distributions of PM2.5 and SO2 concentrations constructed using MERRA-2 reanalysis 
products.  Panels  A  and  B  show  long-run  average  PM2.5  and  SO2  concentrations  in  μg/m3  for  1987-2007, 
respectively. Shades of red color depict higher concentrations of the specific air pollutants.

Fig. 1. Spatial distribution of air pollution concentrations in India, 1987-2007

ML InfoMap’s digital maps depict cities’ administrative boundaries as of 2011, a year that 

is outside of GH’s study period of 1987-2007. Whenever possible, I adjust the resulting polygons 

so that they correspond to the cities’ administrative boundaries as they were at the time of the 

2001Census. Most of the District Census Handbooks contain Table 3 that provides a list of new 

towns,  denotified,  declassified,  and  merged  during  the  decade  of  2001-2011.  Exploiting  this 

namely Statutory towns and Census towns. Statutory towns are all places with a municipality, corporation, cantonment 
board or notified town area committee. Census towns are defined as a place satisfying three criteria simultaneously: (i)  
a  minimum population  of   5000;  (ii)  at  least  75% of  the  male  working  population  engaged  in  non-agricultural 
activities; (iii) a density of population of at least 400 persons per km2 (Census of India 2011). 
43 Princeton University also granted access to the annual  issues of the Vital  Statistics of India. India  District  Census  
Handbooks depicting district-wise village and town administrative boundaries as of 2011 were downloaded from the 
website of the Census of India.
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information,  I  retrieve  ML  InfoMap’s  administrative  boundaries  polygons  net  of  2001-2011 

changes. In rare cases in which the ML InfoMap’s digital maps do not contain cities’ boundaries, I 

geo-reference and digitize them using maps from the District Census Handbooks. For some of the 

larger cities, their administrative boundaries consist of several ML InfoMap polygons, which I 

merge to obtain a single polygon for each city. 

Overall, I selected the final sample of 140 polygons from about 619,000 across 28 Indian 

states.  Appendix  Fig.  A1  through  A5  highlight  the  construction  of  the  resulting  cities’ 

administrative boundaries. Finally, I average monthly MERRA-2 PM2.5 and SO2 concentrations 

to annual levels and then take an average of annual average concentrations at all MERRA-2 grid 

points that fall within the cities’ administrative boundaries. The final dataset represents city-by-

year annual PM2.5 and SO2 average concentrations for the years 1987-2007. 

Fig. 2 shows the exact geometry and location of the constructed urban extent polygons and 

examples of cities with already assigned concentrations of PM2.5 and SO2 air pollution.

Concerns About Revised Air Pollution Outcomes

Resulting estimates of the city-level average concentrations of air pollution are not immune 

to plausible concerns. The first two pertain to MERRA-2 data and the approach I use to construct 

the cities’ administrative boundaries, while the last one is common to all satellite-based estimates. 

MERRA-2 PM2.5 data lack nitrate particulate matter, an important PM2.5 component and 

precursor, primarily emitted by vehicle exhaust and industrial activities (Buchard et al., 2016; He 

et  al.,  2019).  Thus,  resulting  from  the  equation  (3),  estimates  of  PM2.5  concentrations  can 

underestimate ground-based PM2.5 measurements. As a sensitivity test, I construct estimates for 

PM2.5 concentrations for the years 1998-2007 using van Donkelaar et al. (2019) and compare 

them with MERRA-2 PM2.5 concentrations. Previous studies point on a good match between van 

Donkelaar’s PM2.5 estimates and ground-based PM2.5 observations (van Donkelaar et al., 2013; 

He et al., 2019). Therefore, a high correlation coefficient between MERRA-2 and van Donkelaar’s  

PM2.5 estimates  (91%) provides  evidence for  high consistency between them and relaxes  the 

MERRA-specific concern. 
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A. City-level administrative boundaries

B. Average PM2.5, a closer look C. Average SO2, a closer look

Notes: The figure denotes all cities from the full sample with the resulting administrative boundaries. Panel A depicts  
the cities preserving their exact geometry and location across India. Panels B and C show examples of the cities with  
already assigned levels of PM2.5 and SO2 pollution in μg/m3 for randomly selected year 2004. Shades of red color 
depict higher concentrations of the specific air pollutants. The cluster of four cities at the center represents the capital  
city of Delhi (National Capital Territory), Ghaziabad and Noida (Uttar Pradesh), and Faridabad (Haryana). Despite the 
spatial proximity of these cities, the approach that I use to construct their exact urban extent polygons allows me to 
assign air pollution to each of  these cities and to analyze them as separate administrative units.  PM2.5 and SO2 
pollution  measures  are  constructed  using  the  MERRA-2  reanalysis  product  and  represent  annual  average 
concentrations at the city’s level.

Fig. 2. Cities’ administrative boundaries with assigned air pollution levels
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The approach I use to construct the cities’ administrative boundaries might also be subject 

to concern. As I use ML InfoMap’s digital maps with administrative boundaries as they were at a 

single  year,  the  resulting  urban  extent  polygons  do  not  trace  the  cities’  spatial  expansion  at 

different points in time. However, Seto et al. (2011) show that Indian cities were expanding at an  

average annual rate of 4.84% between 1970 and 2000. This evidence raises the possibility that the 

approach I adopt in this study can potentially lead to measurement error. Generally, too narrowly 

or too broadly defined boundaries of urban footprints may affect an assignment of air pollution. 

Nevertheless, I believe that this is not a major concern, and my approach is preferable to other  

available alternatives. I pursued the goal of constructing urban extent polygons separately for each 

city in GH’s sample and preserving consistency with GH’s default definition of a city. However, 

the most commonly used alternative approach for the delineation of urban areas, night-time lights 

satellite imagery, fell short in achieving this goal. Appendix Fig. A6 provides an illustration. The 

figure compares urban extent polygons defined by the cities’  administrative boundaries in this 

study with  those  defined by the  combination  of  the  night-time  lights  and buffered  settlement 

centroids in the Global Rural-Urban Mapping Project (GRUMP).44 

Two apparent observations arise.  First,  urban areas retrieved from the night-time lights 

dataset do not correspond to their Census counterparts, making it impossible to obtain a single 

polygon for each city. For example, the cluster of four cities at the center of the figure includes the 

capital city of Delhi, Ghaziabad, Noida, and Faridabad. Despite spatial proximity, the approach I 

use allows me to analyze these cities as separate administrative units. In contrast, GRUMP’s output 

is a single polygon, a multi-city agglomeration that extends beyond the administrative boundaries 

of these four cities and additionally includes the city of Meerut 70 kilometers away from Delhi to 

the North-East.45 

Second, even if  both approaches result  in a single polygon for each city,  the polygons 

retrieved  from  the  night-time  lights  are  larger  than  the  polygons  represented  by  the  cities’ 

administrative  boundaries.  This  observation  suggests  that  GRUMP  polygons  overestimate  the 

extent of the cities. The GRUMP relies on the 1994/1995 stable city night-time lights dataset, 

meaning that the resulting output exhibits boundaries of urban areas as of 1995. However, given 

44 More information about the GRUMP can be found at https://sedac.ciesin.columbia.edu/data/collection/grump-v1/ 
about-us. 
45 This is because the approach based on the night-time lights satellite imagery delineates urban areas by considering 
spatially contiguous lighted pixels surrounding a city’s coordinates, with luminosity above a pre-defined threshold.
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the evidence above of Seto et al. (2011), it is highly unlikely that the ML InfoMap polygons of the 

adjusted cities’ administrative boundaries as of 2001 were smaller than the corresponding GRUMP 

polygons as  of  1995.  Thus,  I  believe  that  the  approach used  in  this  study performs well  and 

matches the goal better.  

Finally, a limitation common to all satellite-based estimates is that such estimates are just a 

reflection of the actual air pollution concentrations and are prone to prediction and forecast errors. 

Fowlie et al. (2019) highlight the importance of accounting for these errors. In this study, however, 

it is difficult to perform such a check because of the limited availability of reliable ground-based 

air pollution measurements for India. In general, a comprehensive analysis of this issue is yet to be 

discussed in the literature and is beyond the scope of this study.

New Meteorological Data

To control  for  the  effects  of  the  meteorological  conditions  on  air  pollution  and infant 

mortality, I collect data on air temperature, precipitation, and wind speed.46 Specifically, I obtain 

raw data on these covariates from various MERRA-2 reanalysis products and process them the 

same  way  as  air  pollution  data  to  construct  variables  at  the  city-by-year  level.47 MERRA-2 

temperature and precipitation data have been successfully validated against the observation-based 

Indian Meteorological Department data, indicating that MERRA-2 products are reliable substitutes 

to the observed weather indicators (Ghodichore et al., 2018; Gupta et al., 2020).

I control flexibly for meteorological confounders by including f (W ct) into equation (1) and 

a  one-step  version  of  GH’s  two-step  approach.  W ct is  a  set  of  meteorological  covariates  that 

includes a count of the number of days each year in which the average daily temperature falls into 

10 temperature bins, precipitation calculated as the annual sum from daily observations and its 

quadratic, and a count of the number of days each year in which the average daily wind speed falls 

into 12 wind speed bins. 

46 Most of the relevant studies in economic literature control at least for air temperature and precipitation. However, 
Sullivan  (2016)  and  Zhang,  Zhang,  and  Chen  (2017)  demonstrate  the  importance  of  additional  meteorological 
covariates, especially humidity and wind speed. 
47 M2I1NXLFO product for air temperature and wind speed; M2T1NXLND product for precipitation
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In particular, to estimate the effects of daily temperatures on annual outcomes, I follow a 

widely-used method that  transforms an annual  distribution of  daily  temperatures  into a  set  of  

temperature bins  (Deschênes  and Greenstone,  2011;  Deryugina  and Hsiang,  2014;  Cheng and 

Yang, 2017; Zhang et al., 2018). This approach allows flexible estimation of nonlinear temperature 

effects across daily temperature values. In practice, a vector of temperature bins,  Tempct
m, denotes 

the number of days in  year  t  with daily  average temperatures in  city  c that  fall  into the  mth 

temperature  bin,  m =  1,2,…,10.  Following  Burgess  et  al.  (2017),  I  divide  daily  average 

temperatures, measured in °C, into ten bins, each of which is 3 °C wide. For example, Tempct
1  is the 

number of days in city  c during year  t  with daily temperature below 12 °C. Then,  Tempct
10 is the 

number of days with temperature above 35 °C. To avoid collinearity, the temperature bin (21°C, 

23 °C) is set as an omitted, reference category. 

A vector of wind speed bins,  Wind ct
m, is constructed similarly, but bins are defined as a 

Beaufort  wind scale.  I  distributed daily  average  wind speeds,  measured in  knots,  between 12 

categories that characterize wind force from calm to hurricane. 

2.3.3 Comparison of Trends

Fig. 3 compares trends in air pollution outcomes constructed using CPCB data exploited by 

GH and the data obtained from MERRA-2 products. Panels A and B plot the city-level average 

concentrations of particulate matter and SO2 for the years 1987-2007. Left-hand graphs in both 

panels show SPM and SO2 trends in GH’s data for the restricted sample of cities used in GH. 48 

Right-hand graphs show trends in MERRA-2 PM2.5 and SO2 for the full sample of 140 cities,  

while the middle graphs plot  the trends for the same pollutants across GH’s sample of cities. 

Compared  to  GH’s  data,  revised  air  pollution  outcomes  yield  substantially  more  city-by-year 

observations: 2,940 against 1,370 and 1,344 for GH’s particulate matter and SO2, respectively. I 

refer  to  these  observations  as  the  GH  sample  and  the  full  sample.  Table  2  provides  the 

corresponding sample statistics for both ground-based and satellite-based data. The table reports 

the  city-level  averages,  the  number  of  observations,  the  tenth  and  ninetieth  percentiles  of  air 

48 These graphs correspond to the first two graphs in panel A of GH’s Fig. 4.
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pollution outcomes, meteorological variables, and infant mortality rate, broken down by the whole 

of GH’s study period, early (1987-1990), and later (2004-2007) periods of the sample. 

The striking finding that immediately emerges from Figure 3 is the opposite air pollution 

trends in GH’s data relative to MERRA-2 data. While SPM and SO2 levels were falling in GH, 

concentrations  of  the  revised  air  pollution  outcomes  are  continuously  increasing.  As  Table  2 

indicates,  concentrations  of  GH’s SPM fall  steadily  from 252.13 μg/m3 during  1987-1990 to 

209.42 μg/m3 during 2004-2007, or a 17% reduction. SO2 concentrations are quite stable until the 

late 1990s but then decline sharply from the 1987-1990 levels, overall, by 37% during 2004-2007, 

from 19.36 to 12.19 μg/m3. In contrast, the concentrations of MERRA-2 PM2.5 increase by 68% 

in 2004-2007 compared to 1987-1990, from 22.63 to  37.92 μg/m3 for  GH’s sample of  cities. 

Similarly, MERRA-2 SO2 concentrations increase by 24%, from 6.36 to 7.89 μg/m3. The increase 

in the revised air pollution outcomes is even more pronounced for the full sample of cities, 75% 

and 85% for PM2.5 and SO2, respectively. 

Appendix Fig. A7 provides additional evidence on the opposite trends. It compares kernel 

density  estimates  of  GH’s  and  revised  air  pollutant  distributions  across  Indian  cities  for  two 

periods, 1987-1990 and 2004-2007. While GH’s entire SPM and SO2 distributions shifted to the 

left, the opposite shift is apparent for the pollutants derived using MERRA-2 reanalysis data. The 

shift to the right is particularly substantial for MERRA-2 PM2.5. As Table 2 reports, the tenth and 

the ninetieth percentiles of GH’s SMP and SO2 concentrations demonstrate a decline between two 

periods: about 10% in the tenth percentiles for both pollutants, 5% in the ninetieth percentile for 

SPM and 40% in the ninetieth percentile for SO2. In contrast,  the distributions of MERRA-2 

PM2.5  and  SO2  concentrations  worsened  substantially,  with  striking  increases  in  the  tenth 

percentiles by about 50% and in the ninetieth percentiles by 100% for the full sample.
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A. Particulate air pollution

B. Sulfur dioxide pollution

Notes: The figure plots annual city-level average concentrations of particulate air pollution (Panel A) and SO 2 (Panel 
B). Left-hand graphs show SPM and SO2 trends in GH’s data for their restricted sample of cities. Right-hand graphs in 
Fig. 3 show trends in PM2.5 and SO2 estimates for the full sample of 140 cities, while the middle graphs plot the  
trends for the same pollutants across GH’s sample of cities. GH’s air pollution data were drawn from the CPCB  
ground-based  monitoring  network,  while  the  revised  air  pollution  data  -  from  the  MERRA-2  satellite-derived 
estimates.

Fig 3. Trends in air pollution, 1987-2007

The difference in trends between GH’s SPM and MERRA-2 PM2.5 cannot be explained by 

the  fact  that  SPM  and  PM2.5  are  not  directly  comparable  pollutants.  I  convert  GH’s  SPM 

concentrations into PM2.5 concentrations applying SPM/PM10 and PM10/PM2.5 ratios used in 

Nilekani (2014) and Greenstone et al. (2015).49 Column 2 of Table 2 demonstrates the summary 

statistics  for  GH’s  PM2.5  air  pollution.  The  results  are  qualitatively  similar  in  terms  of  the 

difference in trends between GH’s SPM/PM2.5 and MERRA-2 PM2.5. 

49 PM10 is a fraction of SPM; PM10 is particulate matter with a diameter less than 10 μm. PM10 = 0.5053SPM,  
PM2.5=0.438PM10
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Table 2 – Comparison of Summary Statistics

Notes:  This table provides summary statistics on air pollution, meteorological variables, and infant mortality. GH’s air pollution  
data are the annual city-level average SPM and SO2 concentrations constructed using CPCB ground-based monitoring network, and  
PM2.5 converted from SPM using SPM-PM10-PM2.5 ratios. New air pollution data are the revised PM2.5 and SO2 air pollution  
outcomes derived using MERRA-2 satellite-based estimates. GH’s sample corresponds to the number of cities used in GH. The  
number is restricted by the availability of the ground-based air pollution monitor readings. The full sample contains a panel of 140  
cities  used  in  the  GH  reexamination.  Columns  with  meteorological  variables  provide  summary  statistics  on  city-level  air  
temperature, precipitation, and wind speed constructed using various MERRA-2 products. Construction of GH and revised air  
pollution outcomes, as well as meteorological covariates, is described in detail in the text. Infant mortality data are taken from GH  
without modification. The sources of infant mortality data include the Vital Statistics of India from various years and some offices  
of the state registrar.

Several potential explanations for such a dramatic difference in the observed air pollution 

trends relate to the arguments summarizing issues with GH’s data and highlighting the advantages 

of  the  satellite-derived  estimates  relative  to  ground-based  measures.  Specifically,  the  limited 

availability of air pollution data and the problems with using a sparse ground-based monitoring 

network  can  explain  an  unusual  year-to-year  spike-and-drop  pattern  in  GH’s  SPM/PM2.5 

concentrations (left-hand graph in panel A of Fig. 3). MERRA-2 reanalysis products have been 

compiled  consistently  during  GH’s  study  period  and  potentially  provide  a  more  reliable  air 

pollution measure. Indeed, the trends in the revised air pollution outcomes correspond well with 

the similar  trends documented in other recent  studies  and perfectly reflect  numerous concerns 
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about increasingly deteriorating air quality in China and India over the past decades (Greenstone et 

al., 2015; Ebenstein et al., 2015; Chen et al., 2017). A similar trend in particulate air pollution is 

also indicated by PM2.5 estimates constructed for the period 1998-2007 using van Donkelaar et al. 

(2019). 

However,  sharp  increases  in  the  trend  of  MERRA-2  PM2.5  in  2000  and  2007  look 

suspicious. Appendix Fig. A8 shows the trends in the components of this pollutant that shed some 

light on the developments in PM2.5 air pollution. The left-hand graph of panel B shows that the 

first episode of the substantial increase in PM2.5 concentrations in 2000 can be explained by the 

spike in DUST2.5 that was likely caused by dust storms (Prasad and Singh, 2007). The second 

episode  in  2007  is  likely  attributable  to  the  mutually  magnifying  effects  of  the  simultaneous 

increase  in  concentrations  of  SO4,  Organic  and  Black  Carbons.  With  the  peak  in  PM2.5  air 

pollution in 2008, the worsening of air quality in 2007 could be associated with the accelerating 

economic growth during the pre-crisis wave of globalization accompanied by the increasing trends 

in industrialization, fast-growing population and deterioration of the natural environment (CPCB, 

2014). During other years, a continuously rising trend in MERRA-2 PM2.5 was predetermined by 

Black and Organic Carbons, the products of the anthropogenic emissions.

The comparisons in Fig. 3 and Table 2 indicate that the trends in particulate and SO2 air 

pollution outcomes constructed using GH and MERRA-2 data differ substantially. This conclusion 

suggests that the reexamination of the empirical evidence on the effectiveness of environmental 

policies  using  revised  air  pollution  outcomes,  extended  number  of  observations,  and 

meteorological controls may lead to different results than those estimated by GH. 

2.4 Effects of Revised Air Pollution Outcomes

In this section, I maintain GH’s methodology to test the sensitivity of their findings to the 

revised air pollution outcomes and the extended number of observations. Table 3 demonstrates the 

effects of these revisions by reporting the estimated impacts of the SCAP and CAT policies on 

PM2.5 and SO2 air pollution. For each policy-pollutant and data-sample combination, the table 

reports  estimates  from  fitting  equation  (2)  and  its  one-step  analog.  Exactly  following  GH’s 
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methodology ensures  that  the  differences  in  the  results  stem only  from the  differences  in  air 

pollution data. 

Columns  1-2  replicate  GH’s  results  using  their  data.  The  outcome  variables  in  these 

columns  are  the  city-level  annual  average  PM2.5  and  SO2 concentrations.  PM2.5  here  is  an 

indicator of particulate air pollution converted from GH’s SPM using SPM-PM10-PM2.5 ratios. I 

use GH’s PM2.5 for consistency as I focus on MERRA-2 PM2.5 in the following reexamination. 

Appendix Table A1 compares replication results  using GH’s SPM and PM2.5 as the outcome 

variables. The results are qualitatively similar in terms of the sign and statistical significance of the 

coefficients.  Relying  on  this  comparison,  I  use  GH’s  PM2.5  in  the  rest  of  the  analysis.  I 

successfully reproduce GH’s results, confirming that the CAT policy is strongly associated with 

the reduction in PM2.5 and SO2 concentrations five years after the policy implementation by 10.75 

μg/m3 and 13.45 μg/m3, or 19.3% and 69.5% of the 1987–1990 nationwide mean concentrations. 

The coefficients on policy dummy are not statistically significant and suggest a decline only in the  

case of SO2 pollution. However, panels C and D point to a negative and statistically significant 

break in PM2.5 and SO2 trends caused by the CAT policy. 

Columns 3-4 use the same sample of cities as in GH but replace original air  pollution 

outcomes by MERRA-2 PM2.5 and SO2. The effects of this substitution are quantitively captured 

by the column-wise differences between the coefficients in columns 1-2 and 3-4 (i.e., column 1 - 

column 3, column 2 - column 4). Revised air pollution outcomes yield remarkable changes in the  

estimated effects of the SCAP and CAT policies. In contrast to GH, the significance of the CAT 

policy’s effects on PM2.5 and SO2 five years after its implementation vanish. Not only that, but 

also the magnitude of the estimated effects is substantially smaller. Although not significant, the 

results in panels C and D, based on our estimation of equation (2), suggest a relative decline of 

2.48 μg /m3 and 0.22 μg/m3, or 11% and 3.5% of the 1987–1990 nationwide average PM2.5 and 

SO2 concentrations. For PM2.5, another notable change in the CAT policy’s effects includes the 

significance of the positive coefficients on a policy dummy in panel C.50 

50 One possible reason for the positive sign of the coefficients is that the binary variable that captures the effects of the  
CAT policy enactment might fail to account for some of the policy’s features. Specifically, for the fact that the impact 
of the CAT policy evolves in line with the higher proportion of newer vehicles subject to the mandatory installation of 
catalytic  converters  (Greenstone  et  al.,  2017).  Negative  coefficient  on  the  policy’s  effects  five  years  after  its 
implementation seems to support this hypothesis.
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Table 3 – Effectiveness of air quality policies: Effects of MERRA-2 air pollution data

Notes: The table tests the sensitivity of GH’s findings to the revised air pollution outcomes and the extended number 
of observations. It reports estimates from fitting the second-step equation (2), odd columns, and its one-step version,  
even columns, for the effects of SCAP and CAT policies on PM2.5 (panels A and C) and SO2 (panels B and D) levels. 
Columns 1-2 use GH’s original data to replicate their results. I substitute GH’s SPM by GH’s PM2.5 converted from 
GH’s SPM using SPM-PM10-PM2.5 ratios for comparability with the policies’ effects on MERRA-2 PM2.5. Columns 
3-4 exploit the same sample of cities as in GH and revised PM2.5 and SO2 air pollution outcomes to reexamine GH  
findings. Columns 5-6 reexamine GH results by taking full advantage of the revised outcome variables and fitting  
equation  (2)  and  its  one-step  version  to  all  available  city-by-year  observations.  Standard  errors  are  reported  in  
parentheses.  Liner  combination  of  the  coefficients  π1+5 π 3 is  an  estimate  of  the  policies’  effect  5  years  after 
implementation.  p-value of a hypothesis test  for the significance of this linear combination is reported below the 
estimates in square brackets.
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For SO2, the revised air pollution data indicate a higher magnitude of the policy dummy 

coefficient, which remains negative but, in contrast to GH, turns statistically significant in the one-

step specification. The coefficient in column 4, panel D, suggests that SO2 concentrations decrease 

by 0.88 μg/m3 or 13.8% of the 1987–1990 nationwide mean concentrations. Another change is 

that the coefficients on the break in SO2 trend turn positive, small, and statistically insignificant. 

The effects of the SCAP policies on PM2.5 are also substantially different from those found in GH. 

In contrast to GH, the effects of the SCAP policies five years after implementation enter positively, 

large,  and significantly.  Thus,  the SCAP policies do not appear to have helped reduce PM2.5 

concentrations but are rather associated with their increase.51 The policy dummy coefficients in 

panel  A  turn  negative  but  remain  statistically  insignificant.  Column  4,  panel  A,  based  on 

estimating the one-step version of equation (2), shows a positive and statistically significant break 

in PM2.5 trend. The general pattern of the SCAP policies’ effects on SO2 is similar to those in 

GH. However, their magnitudes are much smaller than those estimated using GH’s data.  

Finally,  columns  5-6  take  full  advantage  of  MERRA-2  air  pollution  data  and  report 

coefficients estimated from fitting GH’s specifications to the revised air pollution outcomes and 

the  extended  number  of  observations.  The  column-wise  differences  between  the  estimates  in 

columns 3-4 and 5-6 capture the effects of the full sample (i.e., column 3 - column 5, column 4 - 

column 6).  Of  all  the  changes  attributable  to  the  extended number  of  observations,  the  most 

prominent change occurs with the impact of the CAT policy on SO2. Alongside the negative and 

statistically significant coefficient on the policy dummy already observed in column 4, panel D, the 

results from the one-step specification in column 6, panel D, show that the policy is associated 

with a statistically significant decline in SO2 concentrations five years after its implementation. 

Although substantially larger than in columns 3-4, -0.75 μg/m3 against -0.28 μg/m3, the effect 

remains considerably smaller than that obtained by GH, 20% against 69.5% of the 1987–1990 

nationwide mean concentrations. The effects of the SCAP policies on SO2, panel B, also change 

51 It may well be that the coefficients on the SCAP policies’ effects five years after implementation capture some other 
changes.  Some blame lies with the energy generation by power plants, on which GH focus to a lesser degree than on  
vehicular pollution. Energy generation is the major contributor to air pollution in many developing countries and is  
certainly the driving force behind the rapid economic growth in China and India. At the city level, Goyal (2002) refers 
to  the  fossil  fuel  burning power plants  in  Delhi  as  the  primary source  of  SO2 and SPM air  pollution,  with the 
respective shares of 56.8% and 60.4%. For comparison, vehicular emissions contribute a modest 4.8% and 6.7% to  
SO2 and SPM air pollution in Delhi. Thus, any increase in the power plant emissions increases levels of particulate air  
pollution. This can happen directly through the SPM channel and indirectly because of the conversion of SO2 to  
sulfate particulates (SO4), a PM2.5 component. 
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considerably compared to those in columns 3-4. The coefficients on the break in SO2 trend enter 

with the opposite sign, while the policies’ effects five years after implementation become almost 

indistinguishable from zero and change the sign in the one-step specification. The SCAP and CAT 

policies’ effects on PM2.5 change moderately compared to those in columns 3-4.  The general 

pattern of these impacts in terms of the sign and significance of the coefficients does not change. 

Notably, the size of the column-wise coefficients based on the numerically identical equation (2) 

and its one-step version in columns 5 and 6 becomes more similar compared to the size of the 

coefficients in other columns, perhaps due to the increase in the sample size and less noise in 

MERRA-2 data. These reasons are also behind the decrease in standard errors.

2.5 Effects of Meteorological Controls

2.5.1 Air Pollution

This subsection explores the effects of meteorological conditions on the robustness of GH’s 

findings  by  estimating  a  two-step  approach  and  its  one-step  version  with  air  temperature, 

precipitation, and wind speed as control variables.52 Table 4 summarizes the regression results. For 

brevity, it reports only estimates from the regressions that are based on the most complete data-

sample combination, the same as in columns 5-6 of Table 3, and control for a complete set of the 

meteorological variables. Paralleling analysis in section 4, Appendix Table A2 shows the results 

for other data-sample combinations from Table 3. Appendix Tables A3-A5 document a detailed, 

data-sample combination-specific breakdown of the changes in the estimates after the sequential 

inclusion of air temperature, precipitation, and wind speed.

Columns in Table 4 report results from the regressions that incorporate all changes in the 

data, particularly revised air pollution outcomes, extended number of observations, and a full set of 

the  meteorological  controls.  Altogether,  these  changes  yield  the  most  striking  result  of 

reexamination.  Negative  coefficients  on  the  CAT  policy’s  effects  on  PM2.5  five  years  after 

implementation turn statistically significant (panel C). However, the magnitudes of the effects are 

smaller compared to the policy’s five-year effects on GH’s PM2.5 and correspond to a decline of 

52 I control for a set of meteorological covariates by including f (W ct) into Equation (1) of a two-step econometric 
approach. 
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2.28  μg/m3  to  2.53  μg/m3  against  10.75  μg/m3,  or  11.7% against  19.3% of  the  1987–1990 

nationwide mean concentrations. Further, the pattern of the estimates in column 6 of panel C, 

based on estimating the one-step version of equation (2), is the most similar to that in GH. 

Table 4 – Effectiveness of air quality policies: Effects of meteorological controls

Notes: The table tests the sensitivity of GH’s findings to additional controlling for meteorological confounders. It  
reports  regression results  from estimating the  second-step equation  (2)  of  a  two-step  econometric  approach,  odd  
columns, and its one-step version, even columns, for the effects of SCAP and CAT policies on PM2.5 (panels A and 
C)  and  SO2 (panels  B  and  D)  concentrations.  Both  specifications  include  a  full  set  of  meteorological  controls,  
specifically air temperature, precipitation, its quadratic, and wind speed. The table reports only estimates from the  
regressions that are based on the most complete data-sample combination, the same as in columns 5-6 of Table 3. 
Specifically, the columns use new air pollution outcome variables and fit equation (2) and its one-step version to full  
sample of cities. Standard errors are in parentheses. Liner combination of the coefficients π1+5 π 3 is an estimate of 
the policies’ effect five years after implementation.  p-value of a hypothesis test for the significance of this linear 
combination is reported below the estimates in square brackets.

Do meteorological controls matter? The column-wise differences between the estimates in 

columns 5-6 in Tables 3 and 4 (i.e., column 5 in Table 3 - column 5 in Table 4) isolate the impacts  

of  the meteorological  confounders  on the policies’  effects  net  of  the impacts  of  the extended 

number of observations (i.e., column 3 - column 5 in Table 3).53 Substantially larger impacts of the 

53 I illustrate this point on the example of the effects of the CAT policy on PM2.5 estimated using a two-step approach.  
The difference between the coefficients on policy dummy that captures the combined effect of the sample extension 
and inclusion of the meteorological controls is equal to 0.68 μg/m3 (2.26 - 1.58 or column 3 in Table 3 - column 5 in  
Table 4, panel C). The difference that captures the effect of the sample extension alone is equal to 0.11 μg/m3 (2.26 - 
2.15 or column 3 - column 5 in Table 3, panel C). Then, the effect of the inclusion of the meteorological controls is  
equal to 0.57 μg/m3 (0.68 - 0.11). This is exactly the difference between the policy dummy coefficients that captures 
the effect of meteorological covariates described above, i.e., column 5 in Table 3 - column 5 in Table 4, panel C, or  
2.15 - 1.58 = 0.57 μg/m3. 
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meteorological  confounders  compared to  the  impacts  of  the  extended number  of  observations 

indicate  that  the changes in  the CAT policy’s  effects  on PM2.5 are  driven by controlling for 

meteorological conditions. Wind speed makes a major contribution to improvements in air quality,  

while the size and significance of the policy’s effects are mostly unchanged after controlling for air 

temperature and precipitation (Appendix Table A5, panel C).

Likewise, meteorological conditions are important factors behind the changes in the SCAP 

policies’  effects  on  SO2.  Panel  B  of  Table  4  indicates  that  meteorological  controls  alter  the 

magnitude  and  significance  of  the  policies’  impacts.  The  policy  dummy  coefficient  from 

estimating the two-step approach doubled compared to that in Table 3 to statistically significant -

0.71 μg/m3 (19% of the 1987–1990 nationwide mean concentrations), while the five-year policies’ 

effects increase from -0.01 μg/m3 and 0.04 μg/m3 to -0.32 μg/m3 and -0.36 μg/m3 (10% of the 

1987–1990  nationwide  mean  concentrations)  and  remain  insignificant.  Although  substantially 

different  from those  in  columns 5-6 of  Table  3,  these effects  are  similar  to  those reported in 

columns 3-4 of Appendix Table 2. Panel B of Appendix Table A5 indicates that wind speed plays 

a major role in magnifying the effects of SCAP policies on SO2 and improving air quality. 

For  the  remaining  policy-pollutant  pairs,  the  impact  of  the  meteorological  controls  is 

weaker.  Although the magnitude of the CAT policy’s effects on SO2 increases (panel D), the 

general pattern of the estimates is comparable to those in columns 5-6 of Table 3. In this case, the  

effect of the inclusion of meteorological  covariates is  equivalent to the effect  of the extended 

number of observations. However, the significance of the CAT policy’s impact five years after 

implementation is attributed to the increase in the sample size as the policy’s impact first becomes  

significant  in  Table  3.  Appendix  Table  A5,  panel  D,  documents  that  all  three  meteorological 

covariates  are  beneficial  for  the  effects  of  the  CAT  policy  on  SO2.  Air  temperature  and 

precipitation alter mainly the magnitude of the policy’ effects five years after  implementation, 

while wind speed also changes the coefficients on the policy dummy. In the case of the SCAP 

policies’  effects  on  PM2.5  (panel  A),  the  effects  of  the  inclusion  of  meteorological  controls 

substantially reduces the positive and significant effects of the SCAP policies on PM2.5 five years 

after implementation. Appendix Table A5, panel A, suggests that all meteorological conditions are 

beneficial  for  the  five-year  policies’  effects.  In  contrast,  meteorological  controls  change  the 

coefficients on policy dummy minimally.  Air temperature and precipitation are harmful to the 
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policies’ effects, while wind speed is beneficial. However, meteorological controls do not change 

the significance of the policy dummy coefficients, which remain statistically insignificant. 

2.5.2 Infant Mortality

This subsection reexamines the effects of the CAT policy on infant mortality. Following 

GH, I apply a two-step econometric approach with infant mortality rate as the outcome variable. 

As air pollution concentrations do not enter this equation directly, I test the sensitivity of GH’s 

findings  solely  to  the  inclusion  of  the  meteorological  controls.  Table  5  reports  the  resulting 

estimates.

Table 5 – Effectiveness of air quality policies: Infant mortality

Notes: The table reports regression results from estimating the second-step equation (2) of a two-step econometric 
approach that tests for the effects of the CAT policy on infant mortality rate. Column 1 uses GH’s original data to  
replicate their results. Columns 2-4 reexamine GH’s findings by reporting a detailed breakdown of the changes in the 
estimates after the sequential inclusion of air temperature, precipitation and its quadratic, and wind speed. Standard  
errors are reported in parentheses. Liner combination of the coefficients π1+5 π 3 is an estimate of the policy’s effect 
five years after implementation. p-value of a hypothesis test for the significance of this linear combination is reported 
below the estimates in square brackets.
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I begin by successfully reproducing GH estimates of the CAT policy’s effects on infant 

mortality rate using GH’s original data. Column 1 of Table 5 indicates that the policy is associated 

with a modest and statistically insignificant decline in the infant mortality rate of 0.64 per 1000 

live  births  five  years  after  implementation.  This  result  corresponds to  that  reported by GH in 

column  3  of  Table  6.  However,  the  policy  dummy  coefficient  is  positive  and  statistically 

significant  at  the  5  percent  level.  GH  do  not  report  the  significance  of  this  coefficient.  The 

estimates  in  the  column  also  indicate  a  negative  and  statistically  significant  break  in  infant 

mortality trend.

In the second column, I report estimates after controlling for air temperature. The general 

pattern of  the  results  is  little  changed.  However,  the evidence  of  a  negative and insignificant 

policy’s effect five years after implementation is substantially weaker using this specification, with 

a  reduction  in  the  infant  mortality  rate  of  0.36  per  1,000  live  births.  In  the  third  column,  I 

additionally control for precipitation and its quadratic. Inclusion of these meteorological variables 

reduces the estimated impact of the CAT policy on infant mortality further to -0.29 per 1,000 live 

births,  which is  about  a  third  of  the size of  GH’s original  estimate.  Other  results  are  largely 

unchanged, including a positive and statistically significant policy dummy coefficient and negative 

and significant trend break. 

Finally, in the last column of Table 5, I add wind speed as a control variable. In contrast to 

the results in previous columns, the estimated effect of the policy five years after implementation 

turns positive but remains insignificant. CAT policy is associated with a statistically insignificant 

increase in the infant mortality rate of 0.59 per 1,000 live births five years after implementation. 

Controlling  for  wind  speed  reduces  the  size  of  the  trend  break  coefficient  and  eliminates  its 

significance. However, the sign and significance of the policy dummy coefficient are robust to the 

inclusion of meteorological controls, although its magnitude increases compared to those reported 

in previous columns.

2.6 Discussion

How should  the  evidence  in  Sections  4  and 5  be  interpreted  in  terms  of  the  policies’ 

effectiveness? To facilitate response to this question, Appendix Table A6 provides a summary of 
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the estimated CAT policy’s effects five years after its implementation expressed in % of the 1987–

1990  nationwide  mean  air  pollution  concentrations.  Shown  this  way,  the  magnitudes  of  the 

policy’s  effects  become  comparable  across  all  data-sample  combinations  and  improve  the 

understanding of  the reexamination:  testing the sensitivity of  GH’s findings to  the revised air  

pollution  outcomes,  extended  number  of  observations,  and  meteorological  controls.  The  CAT 

policy was found GH as the most strongly related to improvements in air quality.

The analysis in Section 4 indicates that GH’s findings are highly sensitive to the revised air 

pollution outcomes and the extended number of observations. The changes in the patterns of the 

policies’ effects include changes in the size, significance, sign of the estimates, and reinforce the 

conclusion made in Section 3 based on the observation of the opposite trends in air  pollution 

outcomes. 

GH’s findings do not generally hold after replacing original air pollution outcomes by those 

constructed using satellite-derived data. Environmental regulations found in GH to be strongly 

associated with air quality improvements do not appear to have helped reduce air pollution. The 

only exception pertains to the CAT policy’s effect on SO2. The statistically significant policy 

dummy coefficient from the one-step specification suggests a modest reduction in SO2 pollution. 

The policy’s effects five years after implementation, however, remain insignificant. Thus, adding 

revised data casts doubts on the effectiveness of air pollution control policies. 

Nevertheless, GH’s findings seem somewhat less fragile after extending the sample size to 

the full number of observations from the satellite-derived data. Alongside the coefficient on the 

policy  dummy,  the  estimate  from the  one-step  specification  indicates  that  the  CAT policy  is 

associated  with  a  statistically  significant  decline  in  SO2  concentrations  five  years  after 

implementation.  However,  the  effect  remains  substantially  smaller  than  that  obtained  by  GH. 

There is still little empirical support for the effectiveness of air pollution control policies for other 

policy-pollutant pairs. 

Estimates  from  the  richest  specifications  in  Section  5  that  additionally  incorporate  a 

complete  set  of  meteorological  controls  point  to  further  convergence  in  the  policies’  effects 

estimated using GH’s and satellite-based data. Similarly to GH, the CAT policy induces reductions 

in PM2.5 and SO2 concentrations five years after implementation. Although weaker than those 

found using GH’s data, the CAT policy’s effects five years after implementation estimated using 
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satellite-based data point to a decline of 11.7% against 19.3% of the 1987–1990 nationwide mean 

concentrations for PM2.5 and 25.7% against 69.5% for SO2. The fact that this study finds a similar 

pattern  of  the  CAT  policy’s  effects  using  alternative  data  is  particularly  remarkable  given 

substantive differences between data sources and differential trends in air pollution. Likewise, the 

estimated impact of the CAT policy on infant mortality confirms GH’s finding that regulation-

induced improvements in air quality need not improve infants’ health. 

A natural question that arises from these findings is whether GH’s and satellite-based data 

lead to the same results. Analysis of the disparities in the outcomes generated by two data sources 

provides a reasonable basis for answering this question. At least two of them deserve attention.

First, the qualitative patterns of the policies’ effects estimated using GH’s and satellite-

based  data  differ  considerably.  For  the  CAT  policy’s  effects  on  SO2,  GH’s  data  indicate 

insignificant  coefficients  on  policy dummy and negative  and significant  breaks  in  SO2 trend, 

whereas  satellite-based  data  point  to  the  opposite  effects.  Estimates  suggest  that  GH  might 

overlook the effectiveness of the SCAP policies. The policy dummy coefficient turns statistically 

significant after estimating the two-step approach using satellite-based data, indicating a reduction 

in SO2 pollution by 19% of the 1987–1990 nationwide mean concentrations. For the CAT policy’s 

effects on infant mortality, the estimates point to the opposite conclusion from that reached by GH. 

The policy is associated with a modest and insignificant increase in infant mortality five years after 

implementation.

Second,  the  policies’  effects  estimated  using satellite-based data  are  not  always robust 

across various data-sample combinations and across two-step and one-step specifications that are 

supposed to return numerically identical estimates. For the CAT policy’s effects on PM2.5, the 

coefficients that quantify the policy’s effects five years after implementation turn significant only 

in the richest combination but across both GH’s specifications. In contrast, for the CAT and SCAP 

policies’ effects on SO2, the coefficients on policy dummy and five-year effect become significant 

in several data-sample combinations but only in one of the GH’s specifications. For example, the 

CAT policy’s  effect  on  SO2 five  years  after  implementation  turns  significant  in  the  one-step 

specification, whereas the estimate from the two-step specification remains insignificant. Not only 

does the significance of the estimates vary dramatically but also their sign and size. The CAT 

policy’s effects on infant mortality are similarly sensitive to the inclusion of additional controls.  

90



After  controlling  for  wind  speed,  the  five-year  effect  reverses  the  sign  from  all  previous 

specifications using GH’s and satellite-derived data. 

Observed disparities do not provide strong empirical support for a complete similarity in 

the results based on the findings from two data sources. Therefore, reexamination using satellite-

based data can confirm the conclusions drawn from GH’s data, but with reservations. Equally, it 

seems unreasonable to interpret the results from satellite-derived data as sufficiently compelling. 

2.7 Conclusion

This  chapter  reexamines  empirical  evidence  on  the  effectiveness  of  environmental 

regulations in India from a recent study by Greenstone and Hanna (2014). GH demonstrate that air 

pollution control policies have been effective in improving air quality but arrive at the surprising 

conclusion that the policy-led reductions in air pollution need not improve infants’ health. These 

somewhat counterintuitive findings are likely due to the limited availability of air pollution data 

and the absence of critical meteorological confounders. This conclusion motivated a reexamination 

of GH’s findings using alternative data sources.

Using satellite-based estimates  for  air  quality  and meteorological  conditions,  I  test  the 

sensitivity  of  GH’s  findings  to  revised  air  pollution  outcomes,  an  extended  number  of 

observations, and meteorological controls. Three findings emerge. First,  air pollution outcomes 

constructed using GH’s and satellite-based data demonstrate opposite trends. While concentrations 

of  air  pollutants  were falling  in  GH, concentrations  of  the revised  air  pollution  outcomes are 

continuously increasing. Second, GH’s findings are highly sensitive to the revised air pollution 

outcomes and the extended number of observations. There is little empirical support in satellite-

derived data for the effectiveness of the air pollution control policy found in GH to be strongly 

associated  with  air  quality  improvements.  Third,  meteorological  controls  matter.  Additionally 

controlling for meteorological confounders revealed similar effects of policies on air pollution to 

those reported in GH. Likewise, the estimated impact on infant mortality confirms that regulation-

induced improvements in air quality do not necessarily result in improved health. However, the 

qualitative patterns estimated using GH’s and satellite-derived data differ substantially. Further, 

the effects of policies estimated using satellite-derived data are not robust across various data-
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sample combinations and specifications. Thus, based on the complementary empirical evidence 

from satellite-derived data, it seems reasonable to confirm GH’s findings and interpret air pollution 

control policies in India as effective, although with substantially weaker effects on air pollution.

The next important empirical step in this line of research will be to explore further the 

prospects for using satellite-based data in a meaningful examination of important issues related to 

the effectiveness of environmental regulations. Such research would be particularly valuable for 

developing countries  where  air  pollution  control  policies  are  especially  contentious,  and their 

effectiveness  is  hampered  by  weak  institutions  and  limited  data  availability.  Understanding 

whether and to what extent satellite-based estimates can be reliable complements to the observed 

indicators  will  be  critical  in  uncovering  the  effects  of  environmental  regulations  and 

recommending sensible interventions aimed at mitigating air pollution and protecting population 

health.
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2.8 Appendix

Fig. A1. Vital Statistics of India 1995, example page with city names
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Fig. A2. ML InfoMap digital maps with village and town borders as of 2011

A. All India, 619000 polygons

B. State of Madhya Pradesh 
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Fig. A3. Example of city extent polygon selection

A: District Census Handbook, Dewas city, 
Dewas district, Madhya Pradesh state

B: Dewas city, selected urban extent polygon, 
ML InfoMap 2011 digital maps

Fig. A4. Example of digitized city extent polygon 

A: District Census Handbook, Baddi city, 
Solan district, Himachal Pradesh state

B: Baddi city, selected urban extent polygon, 
digitized from the District Census Handbook
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Fig. A5. Selected city extent polygons

A. All selected cities, 140 polygons

B. Selected cities, a closer look
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Fig. A6. Comparison of the cities’ administrative boundaries with GRUMP urban extent polygons

Notes: The figure compares urban extent polygons defined by the cities’ administrative boundaries in this study with 
those defined by the combination of the night-time lights and buffered settlement centroids in the Global Rural-Urban 
Mapping  Project  (GRUMP).  More  information  about  the  GRUMP  can  be  found  at 
https://sedac.ciesin.columbia.edu/data/collection/grump-v1/about-us.
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Fig. A7. Comparison of kernel density graphs of air quality

A. Particulate air pollution: GH (left) vs. This study (right)

B. SO2 air pollution: GH (left) vs. This study (right)

Notes: The figure provides additional evidence on the opposite trends. It compares kernel density estimates of GH’s 
and revised air pollutant distributions across Indian cities for two periods, 1987-1990 and 2004-2007.
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Fig. A8. Trends in PM2.5 components, 1987-2007

A.  PM2.5 components 1

B.   PM2.5 components 2

Notes: The figure shows the trends in the components of PM2.5 that shed some light on the developments in the  
overall PM2.5 air pollution.
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Table A1 – GH replication: Comparison of outcome variables

Notes: The table replicates GH’s results exactly using their data. It  reports estimated coefficients from fitting the 
second-step equation (2), odd columns, and its one-step version, even columns, for the effects of SCAP (Panel A) and 
CC (Panel B) policies on particulate air pollution. The outcome variable in columns 1-2 is the original GH’s SMP,  
while the outcome variable in columns 3-4 is PM2.5 converted from GH’s SPM using SPM/PM10/PM2.5 ratios:  
PM10 = 0.5053SPM, PM2.5 =0.438PM10. PM10 is particulate matter with a diameter less than 10 μm. Both PM10 
and PM2.5 are the fractions of SPM. Columns 1-2 correspond to panels A, columns 1-2 and 7-8 of Table 3 in the main 
text. Standard errors are in parentheses. The liner combination of the coefficients  π1+5 π 3 is an estimate of the 
policies’  effects  5  years  after  implementation.  p-value  of  a  hypothesis  test  for  the  significance  of  this  linear 
combination is reported below the estimates in square brackets.
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Table A2 – Effectiveness of air quality policies: Effects of meteorological controls

Notes: The table tests the sensitivity of GH’s findings to additional controlling for meteorological confounders. The  
table reports regression results from estimating the second-step equation (2) of a two-step econometric approach, odd  
columns, and its one-step version, even columns, for the effects of SCAP and CAT policies on PM2.5 (panels A and 
C)  and  SO2 (panels  B  and  D)  concentrations.  Both  specifications  include  a  full  set  of  meteorological  controls,  
specifically air temperature, precipitation, its quadratic, and wind speed. The enumeration of columns corresponds to  
that of columns in Table 3. Columns 1-2 use GH’s data. I substitute GH’s SPM by GH’s PM2.5 for comparability with  
the policies’ effects on MERRA-2 PM2.5. GH’s PM2.5 is converted from GH’s SPM using SPM-PM10-PM2.5 ratios.  
Columns 3-4 exploit  the same number of  cities  as in  GH and modified PM2.5 and SO2 air  pollution outcomes.  
Columns 5-6 use new outcome variables and fit equation (2) and its one-step version to full sample of cities. Standard 
errors are in parentheses. Liner combination of the coefficients  π1+5 π 3 is an estimate of the policies’ effects five 
years after implementation.  p-value of a hypothesis test for the significance of this linear combination is reported 
below the estimates in square brackets.
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Table A3 – Detailed effects of meteorological controls, GH data/GH sample

Notes: The table further tests the sensitivity of GH’s findings to additional meteorological confounders. It uses original 
GH data like in Columns 1-2 of Table 3 to provide a detailed breakdown of the changes in the estimates after the  
sequential  inclusion  of  air  temperature,  precipitation,  and  wind  speed.  The  table  reports  regression  results  from 
estimating the second-step equation (2) of a two-step econometric approach, odd columns, and its one-step version, 
even columns, for the effects of SCAP and CAT policies on PM2.5 (panels A and C) and SO2 (panels B and D)  
concentrations. I  substitute GH’s SPM by GH’s PM2.5 for comparability with the policies’ effects on MERRA-2 
PM2.5. GH’s PM2.5 is converted from GH’s SPM using SPM-PM10-PM2.5 ratios. Standard errors are in parentheses.  
Liner combination of the coefficients π1+5 π 3 is an estimate of the policies’ effects five years after implementation.  
p-value of a hypothesis test for the significance of this linear combination is reported below the estimates in square  
brackets.
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Table A4 – Detailed effects of meteorological controls, New data/GH sample

Notes: The table further tests the sensitivity of GH’s findings to additional meteorological confounders. It exploits the  
same number of cities as in GH and MERRA-2 PM2.5 and SO2 air pollution outcomes, like in Columns 3-4 of Table  
3, to provide a detailed breakdown of the changes in the estimates after the sequential inclusion of air temperature,  
precipitation, and wind speed. The table reports regression results from estimating the second-step equation (2) of a 
two-step econometric approach, odd columns, and its one-step version, even columns, for the effects of SCAP and 
CAT  policies  on  PM2.5  (panels  A  and  C)  and  SO2  (panels  B  and  D)  concentrations.  Standard  errors  are  in 
parentheses. Liner combination of the coefficients  π1+5 π 3 is an estimate of the policies’ effects five years after 
implementation.  p-value of a hypothesis test  for the significance of this linear combination is reported below the 
estimates in square brackets.
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Table A5 – Detailed effects of meteorological controls, New data/Full sample

Notes: The table further tests the sensitivity of GH’s findings to additional meteorological confounders. It uses the full 
sample of cities and MERRA-2 PM2.5 and SO2 air pollution outcomes, like in Columns 5-6 of Table 3, to provide a 
detailed breakdown of the changes in the estimates after the sequential inclusion of air temperature, precipitation, and  
wind  speed.  The  table  reports  regression  results  from  estimating  the  second-step  equation  (2)  of  a  two-step  
econometric approach, odd columns, and its one-step version, even columns, for the effects of SCAP and CAT policies 
on PM2.5 (panels A and C) and SO2 (panels B and D) concentrations. Standard errors are in parentheses. Liner 
combination of the coefficients π1+5 π 3 is an estimate of the policies’ effects five years after implementation. p-value 
of a hypothesis test for the significance of this linear combination is reported below the estimates in square brackets.
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Table A6 – Magnitudes of the estimated CAT policy’s effects: A quantitative summary

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes: The table summarizes the estimated CAT policy’s effects five years after its implementation () expressed in % 
of the 1987–1990 nationwide mean concentrations of PM2.5 (panels A and C) and SO2 (panels B and D). Shown this  
way, the magnitudes of the policy’s effects become comparable across all data-sample combinations and improve the  
understanding of the reexamination: testing the sensitivity of GH’s findings to the revised air pollution outcomes,  
extended number  of  observations,  and meteorological  controls.  Estimates  are  obtained  by fitting the  second-step 
equation (2) of GH’s two-step econometric approach. The coefficients in columns 1-2 and 4 of Panels A and B mirror 
the respective coefficients from Table 3 and characterize the effects of the revised air pollution outcomes and the 
extended number of observations, respectively. Columns 3 and 5 quantify the differences in the CAT policy’s effects 
on PM2.5 and SO2 concentrations estimated using GH data/GH sample, New data/GH sample, and New data/Full  
sample. Column 3 shows the net effects of the revised air pollution data captured by the differences between the 
effects  in  columns 2 and 1 (column 2 - column 1).  Column 5 shows the net  effects  of  the extended number of  
observations captured by the differences between the effects in columns 4 and 2 (column 4 - column 2). Column 6 
shows the cumulative effect of the revised air pollution outcomes and the extended number of observations (column 4 
- column 1). Columns in Panels C and D show the effects of controlling for meteorological conditions. The estimates 
in the odd columns correspond to the respective coefficients from Tables 4 and A4-A6. The even columns show the  
differences in the CAT policy’s effects on PM2.5 and SO2 concentrations across data-sample combinations. Column 2  
shows the difference between the effects in column 1 in Panels C and D and column 1 in Panels A and B for GH  
data/GH sample. Similarly, columns 4 and 6 show the net effects of meteorological controls for the New data/GH 
sample (column 3 in Panels C and D - column 2 in Panels A and B) and New data/Full sample (column 5 in Panels C 
and D - column 4 in Panels A and B), respectively.

105



3 The  Impact  of  the  Crisis-Induced  Reduction  in  Air 

Pollution  on  Infant  Mortality  in  India:  A Policy 

Perspective

Published as CERGE-EI Working Paper Series No. 702

3.1 Introduction

Air pollution is a grave concern in the developing world, where it kills millions, leads to 

enormous costs, and constrains economic development (IHME, 2013a; Lim et al., 2013).54 Despite 

this,  many developing countries avoid committing themselves to the reduction of air  pollution 

because of the natural fear that the economic costs of pollution abatement may outweigh the health 

benefits (Tanaka, 2015). Thus, measuring the benefits resulting from improvements in air quality 

has  important  policy  implications.  Such  measures  would  allow  the  evaluation  of  potential 

regulations and ensure that their costs are justified. However, empirical studies estimating health 

benefits associated with reductions in air pollution in developing countries are still scarce (Arceo, 

Hanna, and Oliva, 2015; Tanaka, 2015; Heft-Neal et al., 2018).

This  chapter  addresses  this  literature  gap  by  quantifying  the  impact  of  air  pollution 

reductions  on  infant  mortality  in  India.55 Specifically,  it  takes  advantage  of  the  economic 

slowdown caused by the Global Financial Crisis of 2008 and exploits the episode of synchronous 

54 Of the 7 million annual deaths linked to air pollution, 5.9 million occurred in low and middle-income countries of  
South-East  Asia and the Western Pacific (WHO, 2014a).  Newborns and infants are particularly vulnerable to air  
pollution exposure. Around 6.3 million children under the age of five died in 2013, of which 70% and 41% were 
infants and newborns. About half of under-five deaths were concentrated in just five countries of Africa and South-
East Asia, including India with a share of 21% (WHO, 2011, 2014b). The prime cause of these deaths is respiratory  
diseases attributable to air  pollution (WHO, 2014c).  The costs of premature mortality caused by the exposure to  
particulate matter and ozone in 2013 translated into USD 5.11 trillion and USD 225 billions of global losses in total  
welfare and forgone labor income. Developing countries, mostly in Africa, East and South Asia, incurred the record  
high losses equivalent to up to 9% of the country’s GDP (WB, 2016). India’s annual GDP growth was 6.6% in 2013 
(WB, n.d.) implying that the pollution-related losses could have offset  the whole year of the country’s economic 
development. If no abatement policies are implemented, the number of premature deaths due to exposure to just such 
air pollutant as particulate matter (PM) will likely more than double, mostly because of an increasing number of deaths 
in China and India (OECD, 2012).
55 Infant mortality is defined as the death of children under one year old.
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decline in industrial production, reduction in air pollution, and improvement in infant mortality.56 

The  specific  questions  this  study  addresses  are  whether  the  crisis-induced  reductions  in  air 

pollution caused a decline in infant mortality,  and what the transmission channels are through 

which reductions in air pollution affect infants’ health. I also examine the benefits of the decline in 

infant mortality resulting from the improvement in air quality.

India provides a compelling setting for this study for several reasons. First, two decades of 

industrialization and rapid economic growth led to severe air pollution in India. Of the 20 most  

polluted cities in the world,  13 are located in India,  including the capital  city Delhi,  which is 

ranked as the most polluted (Greenstone et al., 2015; WHO, 2014d). India has the world’s highest 

proportion of deaths caused by respiratory diseases (WHO, 2014e). The Global Burden of Disease 

ranks air pollution as the second leading health risk factor in India (IHME, 2013b). Second, despite 

the severity of the Global Financial Crisis, India escaped a full-scale recession and suffered instead 

from the delayed second-order effects that led to a temporary economic downturn. According to 

the Index of Industrial Production (IIP), the output of the integrated industrial sector in India hit a 

record low of -7.20% in March 2009, from about 20% of its pre-crisis level (MOSPI, n.d.). Also,  

the  average  contraction  of  trade  was  around  20%  during  the  period  from  October  2008  to 

September  2009  (EAC,  2009;  Kumar  and  Alex,  2009).  Third,  the  contribution  of  the  global 

financial  turmoil to the reductions in air pollution in the U.S. and Europe is well  documented 

(Davis  et  al.,  2010;  Castellanos  and  Boersma,  2012;  Vrekoussis  et  al.,  2013),  but  it  is  still  

understudied in the case of India. Taken together, the substantial drop in IIP and the dominant 

share of the manufacturing and energy sectors in the index (78% and 8%, MOSPI, n.d.) imply that  

the economic slowdown affected areas in India differentially, based on the pre-crisis industrial  

structure and industry-specific pollution intensities. As I demonstrate below, this led to substantial 

reductions in air pollution in some areas, but not in others. Indian districts with larger shares of the 

manufacturing, mining, construction, or energy sectors experienced a more substantial decline in 

air  pollution than  districts  without  these  pollution-intensive sectors.  Altogether,  such a  setting 

allows me to study the relationship between air pollution reductions and infant mortality at greater 

pollution concentration levels and to do so using a credible quasi-experimental approach.

56 I  exploit  the  economic  slowdown  caused  by  the  Global  Financial  Crisis  of  2008  rather  than  environmental  
regulations as a natural experiment. This is because environmental regulations in developing countries, even if they are 
designed  similarly  to  those  in  the  developed  ones,  often  involve  implementation  problems  that  complicate  the  
estimation of the effect of interest (Arceo et al., 2015; Duflo, Greenstone, Pande, and Ryan, 2013, 2018).
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To implement the analysis, I combine state-of-the-art satellite-based estimates for annual 

concentrations of fine particulate matter (PM2.5)57 with survey-based household information on 

nearly 2 million births and 150 thousand deaths and their determinants for 284 districts across 9 

states  during  2007-2011.  I  use  a  quasi-experimental  difference-in-differences  approach  in  an 

attempt to isolate the role of the reductions in PM2.5 pollution from other confounding factors that  

affect infant mortality. This approach exploits both the timing of the crisis and its differential effect 

across districts, depending on their pre-crisis industrial specialization. However, using the crisis as 

a  source  of  treatment  variation exposes  this  approach to  two conceptual  challenges:  unknown 

timing of the crisis-induced effects on air pollution and sorting the districts into treated and control 

groups. I overcome these challenges by exploiting such methodological innovations as a time-

series econometric test for structural trend break and a spatial Hot Spot Analysis. Based on the 

results of these analyses, my preferred specification compares pre- vs. post- 2010 levels and trends 

in infant mortality rates between treated and control districts. The key identifying assumptions are 

that, conditional on district-specific trends, any pre- versus post-2010 changes in infant mortality 

rates caused by factors besides air pollution are the same for the treated and control districts, and 

that air pollution is the only factor differentially affecting the treated districts beginning in 2010. 

Answering the first question, I find that the crisis-induced reductions in PM2.5 pollution 

led  to  a  statistically  significant  decline  in  district-level  infant  mortality  rates.  Regression 

coefficients indicate that the infant mortality rate in the treated districts fell by about 24% more 

than in the control districts between pre- and post-crisis periods. The estimates are robust to a 

variety of specifications and falsification tests.  Addressing the second question,  I  examine the 

impact of the changes in PM2.5 concentrations on the mortality of infants at different ages and 

from various diseases. My findings suggest that the PM2.5 reductions affected infant mortality 

mainly through respiratory diseases and two biological mechanisms: in utero and post-birth PM2.5 

57 The United States Environmental Protection Agency [U.S. EPA] defines particulate matter (PM) as “a complex  
mixture  of  extremely small  particles  and liquid droplets  that  get  into the  air”  (U.S.  EPA.,  n.d.a).  Particulate  air  
pollution can be categorized in a number of ways, including size and sources of emissions.  Size is  an important 
indicator of the particles’ penetrating ability, which highlights the most probable region of the respiratory tract where 
inhaled particulates could be deposited. By this criterion,  particulate air  pollution can be broken down into total 
suspended particles  with an aerodynamic diameter  of  less  than 100 μm, coarse or  inhalable (less  than 10 μm in  
diameter),  fine  or  respirable  (smaller  than  2.5  μm)  and  ultra  fine  (less  than  0.1  μm).  Particulate  matter  can  be 
originated  from anthropogenic  (human-made)  or  natural  sources.  The  former  sources  include  industrial  activity, 
transport exhaust, power generation, household heating, cooking and fuel combustion, while the latter add sea salt,  
dust, volcanic and fire ash (van Donkelaar et al, 2010; van Donkelaar et al., 2016). 
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exposure. Heterogeneity analysis further emphasizes the role of parental education in alleviating 

the  adverse  consequences  of  infants’  exposure  to  air  pollution.  Finally,  I  use  the  quantified 

relationship to measure health benefits  and monetary gains  from the crisis-induced episode of 

PM2.5 pollution reduction. My calculations suggest that 1338 infant lives were saved, implying a 

contribution of 11% to the overall decline in infant mortality during the post-crisis period and 

leading to monetary benefits of USD 312.5 million. 

The research design used in this study allows me to overcome or substantially mitigate 

some of the frequent empirical challenges of the endogeneity of air pollution exposure. First, the 

temporary nature of the economic crisis in India allows me to address one of the major causes of 

endogeneity – residential sorting.58 In my research design, it is unlikely that households migrate in 

search of new employment or because of their preferences for better air quality in the short crisis 

time  frame.  The  limited  geographical  mobility  of  infants  and  pregnant  women  also  helps  to 

alleviate this threat to identification.59 Second, since the reduction in air pollution concentrations 

was caused simultaneously by global and nationwide phenomena, unobserved behavioral changes 

within the treatment group that could also affect health and invalidate research design are unlikely 

in  this  study’s  settings.  In  addition,  the  control  group  of  districts  accounts  for  any  common 

responses to the crisis. Finally, it is also critical to control for other changes accompanying the 

crisis, including changes in per capita income and meteorological confounders. I address these 

challenging issues in the study.

The study builds on economic and epidemiological literature that uses quasi-experimental 

designs to quantify the causal relationship between various health outcomes and reductions in air 

pollution. Prominent epidemiological studies by Pope (1989), Pope, Schwartz, and Ransom (1992), 

Ransom and Pope (1995), Parker, Mendola, and Woodruff (2008) exploit closure and reopening of 

a steel mill in the Utah Valley to show that improvements in air quality are associated with the 

decline in  respiratory morbidity,  mortality,  and preterm births.  Related studies from economic 

58 Residential  sorting is the optimizing behavior  of  individuals choosing residential  locations based on attributes, 
including air quality, that can lead to the non-random assignment of air pollution (Graff Zivin and Neidell, 2013;  
Currie et al., 2014).
59 Although statistics on mobility or migration of pregnant women do not exist, numerous indirect evidence can be  
found in the literature. For example, the 2001 Census reports that only 1.6% of all Indian households, both urban 
and rural, migrated in 2001. Similarly, Bošković et al. (2023), using data from the 2005 round of the India Human  
Development Survey, which is a nationally-representative survey of households, shows that only 1% of the sample 
households moved from elsewhere. Another evidence of typically low migration of households in India can be  
found in National Sample Survey Office (2010).
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literature by Lavaine and Neidell (2013), Currie et al. (2013), and Hanna and Oliva (2015) also  

estimate  the  health  effects  from  the  variations  induced  by  operational  distortions  of  specific 

polluters, oil refineries or toxic plants, in both developed and developing countries. However, these 

studies rarely exploit recession as a source of exogenous variation, with the remarkable exception 

represented by Chay and Greenstone (2003b), who link changes in infant mortality to the reduction 

in total suspended particles (TSP) across U.S. counties caused by the U.S. 1981-1982 recession.60 

They show that a 1% reduction in TSP resulted in a 0.35-0.45% decline in infant deaths at the  

county level. Other quasi-experimental studies focus on regulation-induced changes in air quality. 

This  strand of  literature  benefits  from the  contribution  by  Chay and  Greenstone  (2003a)  and 

Sanders,  Barreca,  and Neidell,  (2020) for the U.S. and Luechinger (2014) for Germany. Until 

recently, much of what we knew from the literature came from the developed countries. However, 

as  these  countries  are  generally  wealthier,  have  much lower  mortality  rates  and air  pollution 

concentrations, the transferability of estimates from developed to developing countries remained 

unvalidated in most cases. Currently, a growing literature provides causal evidence on the effects 

of environmental policies on infant mortality in developing countries:  Greenstone and  Hanna 

(2014) for India, Ebenstein et al. (2015) and Tanaka (2015) for China, and Cesur, Tekin, and Ulker 

(2016)  for  Turkey.  My  study  builds  on  the  successful  design  of  the  previous  studies  and 

contributes to overcoming the scarcity of studies that link infant mortality and reductions in air 

pollution in developing countries, using a different quasi-experimental setting. Additionally, the 

study estimates the health benefits of reducing air pollution, which could be used as a benchmark 

to assess potential policies designed to improve air quality.

3.2 Data

To  implement  the  analysis,  I  constructed  a  panel  of  district-by-year  data  on  infant 

mortality,  mortality-related controls,  fine particulate  matter,  and confounding factors for 2007-

2011. Raw data are from a variety of survey-based and satellite-based sources.

60 Sanders (2012) investigates the relationship between early-life exposure to air pollution and long-term outcomes  
(Currie et al. 2014). Similar to Chay and Greenstone (2003b), the author uses the U.S. 1981-1982 recession and the  
related decline in manufacturing employment as a source of variation to estimate the impact of the reduction in fetal  
TSP exposure on educational outcomes in Texas. Sanders (2012) finds that a one standard deviation decline in TSPs  
around the time of students’ birth increases high school test performance by 6% of standard deviation.
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3.2.1 Mortality Data

Data on infant births and deaths came from the Annual Health Survey (AHS) of India. The 

AHS is the first population-representative longitudinal demographic survey in India designed to 

collect health-related information at the district level, with the infant mortality rate taken as the 

decisive indicator for the sample size. The survey structure corresponds to the typical structure of 

demographic and health surveys (DHS) conducted in many low- and middle-income countries.

The AHS is a sub-national survey that covers 284 districts across 9 states from 2007 to 

2011 (Fig. 1).  These districts are a particularly relevant study area. They represent nearly 50% of 

the overall population and account for 60% of all births and 70% of all infant deaths in the country. 

The  AHS  was  conducted  during  2010-2013  in  three  consecutive  rounds  and  four  schedules, 

specifically House-listing, Household, Woman, and Mortality. Each round recorded health-related 

information at the individual and household levels for 12 months before the survey was taken. A 

representative sample of 20694 Primary Sample Units, selected based on a uni-stage (two-stage in 

cases  of  larger  rural  villages)  stratified  simple  random  sample  without  replacement,  covered 

around 20.6 million individuals and 4.3 million households (Census of India, n.d.). I downloaded 

the AHS data from the Health Management Information System, a digital initiative of the Ministry 

of Health and Family Welfare, Government of India (HMIS, n.d.).

Overall, my sample includes 1,883,456 individual births and 148,398 deaths. The outcome 

of interest for this study is the infant mortality rate (IMR), which is conventionally expressed as 

the number of infant deaths per 1000 live births. I derived information on the number of deaths 

within one year  of  life  from the Mortality  schedule and further aggregated the number at  the 

district-by-year level. As the numerator for infant mortality rate I used the total number of infant  

deaths due to all causes, within one day, within 28 days, between one and eleven months, and 

between eleven months and one year. I collected data on the total district-by-year number of live 

births for the denominator from the Woman schedule reporting the outcomes of pregnancies. I 

further disaggregated the total number of deaths using information on different symptoms of death 

pertaining to the deceased infants. I also use a perinatal or a stillbirth mortality rate as the outcome  

variable. This measure of mortality is computed as the number of stillbirths or fetal deaths per 

1000 total live births and stillbirths combined. The average annual infant mortality rate for all  

causes is 87.4 per 1000 live births.
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A. 9 AHS states B. 284 AHS districts

Notes: The figure demonstrates the 284 districts (as per Census 2001) across 9 states in India covered by the Annual  
Health  Survey.  These  districts  are  a  particularly  relevant  study  area.  They  represent  nearly  50%  of  the  overall  
population and account for 60% of all births and 70% of all infant deaths in the country.

Fig. 1. Annual Health Survey (AHS) study area

3.2.2 Mortality-Related Controls

The Mortality and Woman AHS schedules are the primary sources of the mortality-related 

controls. From the former schedule, I derived three groups of control variables: characteristics of 

the deceased infants, characteristics and habits of the infants’ Heads of the households (HH)61, and 

deceased infants’ household characteristics. These variables include a percentage of male infants, 

share of infant deaths in rural areas and average birth order; the share of the male HHs, percentage 

of the HHs affiliated with social groups, including scheduled castes and scheduled tribes, HHs’ 

educational qualification, religion and occupation, as well as the percentage of HHs smoking and 

drinking alcohol; the percentage of houses with filtered water, different sources of lightning, type 

of cooking fuel used, whether households cook inside the house and use open defecation as a toilet 

61 I  use  characteristics  and  habits  of  the  deceased  infants’  Heads  of  the  households  as  a  proxy  for  parental  
characteristics.

112



facility. The purpose of these controls is to capture the effects of either changes in indoor air 

pollution or potential sources of deadly infectious diseases, for example, malaria.

Some of the district-specific attributes and indicators of the utilization of medical services 

by mothers and infants were extracted from the Woman schedule. The controls from this survey 

are the average number of births and population, average age of mothers and percentage of those 

married. Indicators of the utilization of medical services by mothers and infants include percentage 

of mothers who did not receive any ante natal care during pregnancy, percentage of deliveries at 

the government medical facilities, share of newborns who did not receive any checkups after birth 

and percentage of babies who received any vaccination. These variables highlight the importance 

of the medical services in saving infant lives.

3.2.3 Pollution Data

Satellite-derived  data  for  the  construction  of  the  main  variable  of  interest,  the  annual 

district-level average PM2.5 concentrations,  were obtained from the Atmospheric Composition 

Analysis Group (ACAG) at Dalhousie University. The data represent global gridded datasets of 

annual bias-corrected average surface PM2.5 concentrations at 0.01º x 0.01º spatial resolution (1 x 

1 km at  the equator) estimated by combining Aerosol Optical Depth62 retrievals from multiple 

satellite  sources  (MODIS,  MISR,  SeaWIFS)  with  simulations  in  the  GEOS-Chem  chemical 

transport model, subsequently calibrated against ground-based monitor data using geographically 

weighted regressions (van Donkelaar et al., 2016; ACAG, 2016). AOD-based PM2.5 estimates are 

widely considered as a good proxy of air pollution over India (Dey et al., 2012). I downloaded 

ArcGIS-compatible files with dust and sea-salt removed estimates, which allowed me to focus on 

anthropogenic,  human-made particulate air  pollution.  PM2.5 concentrations were calculated by 

taking averages of annual mean concentrations at all grid points within districts’ administrative 

boundaries overlying the ACAG gridded PM2.5 data using the ArcGIS platform. I downloaded 

shapefiles with districts’ boundaries for such computations from the Global administrative areas 

62 Aerosol Optical Depth measures the amount of sunlight absorbed, reflected, and scattered by the particles suspended 
in the air. Satellite observations of AOD make it possible to estimate surface PM2.5 concentrations at granular spatial  
resolution and with comprehensive geographical and temporal coverage. 
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[GADM] (2015) spatial database.63 The average annual PM2.5 concentration in my sample during 

the study period is 54.4 μg/m3. 

3.2.4 Economic Data

Controlling for cross-districts differences in income changes during the crisis is important 

to mitigate potential confounding bias. However, official district-level data on income per capita 

do not exist. I thus constructed a proxy for this confounder using satellite-derived nighttime lights 

imagery. Evidence suggests that nighttime lights expressed  in  the form  of  a natural logarithm 

adequately explain GDP at the district-level for India (Chaturvedi, Ghosh, and Bhandari, 2011; 

Bhandari  and  Roychowdhury,  2011).64 I  obtained  nighttime  lights  satellite  images  from  the 

repository  at  the  National  Geophysical  Data  Center  (NGDC)  of  the  National  Oceanic  and 

Atmospheric Administration (NOAA). These images were captured by the Operational Linescan 

System sensor onboard the Defense Meteorological Satellite Program satellites. The values of the 

pixels  from the  stable  lights  data  show brightness  in  Digital  Numbers  and  are  cleaned  from 

ephemeral lights from fires, gas flares and other similar events (NGDC, n.d.). Using ArcGIS, I first 

sum all  lit  pixels within the GADM districts’  boundaries for each year as suggested by Lowe 

(2014).  Then,  relating  the  sums  obtained  to  the  district-level  population  and  taking  log-

transformation, I derived a measure of the natural logarithm of the district-level GDP per capita.

District-level population data were retrieved from the world’s gridded population count 

dataset for 2000, 2005, 2010 and 2015, obtained from the Center for International Earth Sciences 

Information Network (CIESIN) at Columbia University. The population count grids are consistent 

with national Censuses and population registers and contain estimates of the number of persons per 

grid cell  (CIESIN, 2016). To construct a district-by-year population,  I summed the number of 

persons  in  the  cells  within  the  overlaid  GADM  districts’  boundaries.  For  missing  years,  the 

population was imputed by linear interpolation. I also use the CIESIN’s population data to weight 

regressions and compute population-weighted dimensions of the variables.

63 I  adjusted  districts’  borders  in  the  GADM  shapefiles  so  that  they correspond  to  the  districts’  administrative 
boundaries as they were in 2001. As a reference, I used maps of the AHS districts downloaded from the Census of  
India website (Census of India, n.d.)
64 This early evidence is supported by several most recent papers (Singhal et al., 2020; Asher et al., 2021; Dasgupta,  
2022), showing that night lights are highly significant proxies for economic activity in India at very disaggregated 
geographical levels and can reliably capture even short-term impact of economic shocks.
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3.2.5 Weather Data

As  atmospheric  conditions  influence  both  air  pollution  and  health,  meteorological 

covariates  are  also  potential  confounders.  Addressing  this  concern,  I  control  for  temperature, 

precipitation, wind direction and speed. I use gridded datasets of average monthly temperature and 

precipitation from the Climatic Research Unit (CRU) at the University of East Anglia (Harris at 

al.,  2014;  CRU,  2017).  The raw monthly  means  gridded data  for  u-wind  (west-east),  v-wind 

(south-north) vectors and wind speed were obtained from the NOAA’s NCEP/NCAR Reanalysis 1 

(Kalnay et al.,1996). By analogy to air pollution, I processed raw data in the ArcGIS to construct 

annual average air temperature, precipitation, wind directions and speed at the district level.

3.2.6 Descriptive Statistics and Data Insights

Table 1 presents descriptive statistics for the districts from Fig. 1. The table shows that the 

reduction in district-level PM2.5 pollution during 2009-2011 is visibly larger than the changes in 

the majority of other variables during the same period.

Appendix Fig. A1 illustrates the evolution of the district-level annual mean concentration 

of PM2.5 in the study area for 1998-2015. Two observations deserve closer attention. First, air 

quality has been deteriorating continuously during the last two decades. The PM2.5 level increased 

from an average of 43 g/m3 in 1999 to more than 60 g/m3 in 2015, a change of almost 40%. 

The worsening of air quality during this period could obviously be associated with rapid economic 

growth  during  the  pre-crisis  wave  of  globalization,  accompanied  by  industrialization  and 

urbanization, as well as a fast-growing population and deterioration of the natural environment 

(CPCB,  2014).  Second,  the  figure  documents  two  episodes  of  abrupt  reduction  in  PM2.5 

concentrations,  2005-2006 and 2009-2012,  followed by the comparably  sharp  reversals  of  the 

trends. The timing of the first episode is somewhat unfortunate for this study as it is close in time 

to the period of interest. In the next section, I conduct a formal test to ensure that my findings are  

not related to this period.
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Table 1 – Descriptive statistics

Notes: The table presents descriptive statistics for the districts from Fig. 1. The table shows that the reduction in  
district-level PM2.5 pollution during 2009-2011 is visibly larger compared to the changes in the majority of other 
variables during the same period.
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Improvement in air quality during the 2009-2012 episode is the focus of my study. The 

PM2.5 curve does show a change in its trend around the alleged outbreak of the Global Financial  

Crisis. After reaching its record high maximum in 2008 at 58 g/m3, fine particulate air pollution 

fell by almost 9 g/m3, slightly above 15%, making improvement in air quality during this episode 

the largest for the entire 1998-2015 interval. This downward trend in PM2.5  pollution was offset  

by the steep reversal during 2013-2015, when average PM2.5 concentrations reached a record high 

of 60.25 g/m3, representing an increase of about 23%. This period coincides with the accelerating 

recovery of the Indian economy and its transit  from volatile to stable real GDP growth (IMF,  

2016). 

Appendix  Fig.  A2  compares  kernel  density  estimates  of  the  annual  mean  PM2.5 

distributions across the districts for 2008, 2012 and 2015, representing pre-crisis, crisis and post-

crisis year-end points. Panel A demonstrates that the entire distribution shifted substantially to the 

left in 2012 compared to 2008. In contrast, Panel B documents a shift of the distribution to the 

right again in 2015. Panel A of Appendix Table A1 provides summary statistics for these changes.  

It demonstrates that the 2009-2012 improvement episode was remarkable in several aspects. While 

the mean PM2.5 level declined by more than 15%, the tenth percentile of the distribution as well as 

observed  minimums  remained  unchanged.  However,  the  drop  in  the  ninetieth  percentile  was 

particularly noteworthy with a decrease of about 14 g/m3, more than 17%. The shift in observed 

maximums by almost 44  g/m3, representing 36%, is especially striking. During the post-crisis 

period, the sharp reversal of the improvement trend led to a substantial deterioration in air quality 

that was comparable to the pre-crisis period. 

Taken together, Appendix Fig. A3 and Panel A of Appendix Table A1 support the initial 

hypothesis  that  districts  with  high  pre-crisis  levels  of  air  pollution  likely  experienced  more 

substantial improvement in air quality than districts with initially low pollution concentrations. 

Appendix  Fig.  A3  provides  an  overview of  the  spatio-temporal  distributions  of  annual  mean 

PM2.5 concentrations across the study area for 2008, 2012 and 2015, which visually support this 

conclusion.  Panel  B  of  Appendix  Table  A1  relates  changes  in  PM2.5  concentrations  from 

Appendix Fig. A3 to population exposure, providing suggestive evidence that improvements in 

infant mortality could be more pronounced in districts with high pre-crisis levels of air pollution. 
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Fig. 2 illustrates the evolution of the district-level annual means of PM2.5 air pollution and 

the infant mortality rate during 2007-2011. The infant mortality rate followed a similar pattern to  

that of air pollution. The IMR increased to achieve its highest rate by 2009. Then, during the 

following two years, 2010-2011, the infant mortality rate decreased sharply from about 112 to 65 

deaths per 1000 live births, an unprecedented 42%, and supposedly continued this path till the end 

of the time frame of the crisis in 2012. Further, Table 1 indicates that while the number of infant 

deaths from all causes declined substantially after 2009, the number of births remained almost 

unchanged. This implies that the decline in the IMR was likely driven by the substantial reduction 

in  the  number  of  deaths  during  the  period,  which I  relate  to  the crisis-induced decline  in  air 

pollution. As analysis of different death categories suggests, the dynamics observed in the total 

number of deaths was caused mainly by the reduction in early neonatal and postneonatal mortality.

Notes: The  figure  shows  the  evolution  of  the  district-level  annual  means  of  PM2.5  air  pollution  and  the  infant 
mortality rate during 2007-2011. The infant mortality rate followed a similar pattern to that followed by air pollution. 
Both data series provide visual evidence of structural breaks marked by the dashed lines and reversals in upward trends 
started  after  2008 and  2009,  respectively  for  air  pollution  and mortality.  Although with a  time lag,  both breaks  
correspond well to the crisis’ time frame, cautiously suggesting the presence of a direct relationship within the crisis-
pollution-mortality nexus.

Fig. 2. Trends in mean PM2.5 concentrations and Infant mortality rates, study area, 2007-2011
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Both data series presented in Fig. 2 provide visual evidence of structural breaks, marked by 

the dashed lines, and reversals in upward trends, beginning after 2008 and 2009, respectively for 

air pollution and mortality. Albeit with a time lag, both breaks correspond well to the time frame of 

the crisis, cautiously suggesting the presence of a direct relationship within the crisis-pollution-

mortality nexus. 

3.3 Empirical Strategy

This  section  introduces  the  empirical  strategy  that  I  use  to  answer  the  first  research 

question. Specifically, in an attempt to isolate the causal relationship between the crisis-induced 

reductions  in  PM2.5  and  the  infant  mortality  rate,  I  use  a  quasi-experimental  difference-in-

differences (DID) technique.  

3.3.1 Standard Model

The standard DID model in a two-way fixed effect regression framework is as follows:

log ⁡(IMR)dt=α+δ1(Treated d ∙ Post t)+β1W dt+β2 X dt+μd+ γt+εdt (1)

where log ⁡(IMR)dt denotes a natural logarithm of the infant mortality rate65 in district d and 

year t. Treatedd is an indicator variable for whether district d belongs to the treatment group; Post t 

is an indicator variable for the years after a specific year τ0, indicating a post-crisis time period. I 

delve into the more precise definition of the latter two variables further below.  W dt is a set of 

district-level  meteorological  covariates;  Xdtis  a  set  of  observable  time-  and/or  district-varying 

controls for a set of covariates in the mortality-pollution nexus.  μd are district fixed effects that 

capture time-invariant heterogeneity between treated and control districts; γt are year fixed effects 

controlling for the year-specific common shocks for both types of districts;  εdt are idiosyncratic 
65 The  reason for  modeling  infant  mortality rate in a log-form is as follows. I  hypothesize  that  the crisis-induced  
changes in air pollution could have had proportional effects on infant mortality. Specifically, districts with initially  
higher mortality rates could experience a larger  decline in the level  of mortality,  due to changes in air  pollution 
concentrations, than the districts with an initially lower rate. Using proportional changes also facilitates between-
districts comparisons.
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error  term,  robust  and  clustered  at  the  district  level  to  account  for  serial  correlation  between 

districts over time (Bertrand, Duflo, and Mullainathan, 2004; Wooldridge, 2003). To account for 

differences in the size of the districts, equation (1) is weighted by the district-level population.

The  coefficient  of  interest,  δ1,  captures  the  difference  between  the  districts  from  the 

treatment and control groups in changes in log ⁡(IMR)dt before and after the crisis-induced decline 

in  PM2.5  pollution.  If  the  crisis-induced  reductions  in  air  pollution  contributed  to  a  more 

substantial decline in infant mortality in the districts from the treatment group than those from the 

control group,  δ̂1 will be negative. The interpretation of the coefficient would be that the crisis-

induced reductions in PM2.5 pollution are associated with a  100 ∙(eδ̂1−1) percent lower infant 

mortality  rate  in  the treated districts  than  in  the  control  districts  between pre-  and post-crisis 

periods.

Using the crisis as a natural experiment exposes this empirical strategy to two conceptual 

challenges: unknown timing of the crisis-induced effects  on air  pollution (variable  Post t),  and 

sorting of the districts into the treatment and control groups (variable Treatedd). 

3.3.2 Timing of the Crisis-Induced Effects

To address the first challenge, I associate the timing of the crisis-induced effects on air 

pollution with the break in the upward trend of PM2.5 concentrations that occurred in a particular 

year. Then, this year can be considered as the year of critical changes in air pollution caused by the 

crisis and can be used to divide the whole period of interest into pre- and post- crisis intervals. 

Even though Fig. 2 provides visual support that PM2.5 pollution does indeed show a trend break 

around  200866,  the  timing  of  the  effects  of  the  crisis  on  air  pollution  requires  more  credible 

justification. 

Therefore, I perform a time-series econometric test for a structural trend break, specifically 

supremum Wald  and  likelihood-ratio  (LR)  tests  designed  for  cases  when  the  breakpoints  are 

unknown (Andrews, 1993, 2003; Hansen, 1997). The idea is to determine a statistically significant 

trend  break  in  the  aggregated  average  PM2.5  pollution  time  series  and  check  whether  it 

corresponds to the initial point of the global financial crisis around 2008. Finding a statistically 

66 I assume that this year can be considered as the first year when the crisis could potentially affect air pollution.
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significant break in proximity to the alleged starting point of the crisis would suggest that the crisis 

might have had an impact on the level of particulate air pollution. Exploiting supremum tests for 

the purpose of finding structural breaks in time series was shown to be a reliable  in contexts 

similar to that of this study and was adopted by economists in a number of papers (Piehl et al.,  

2003; Jayachandran, Lleras-Muney, and Smith, 2010; Greenstone and Hanna, 2014).67

I test for the structural break in PM2.5 pollution time series in the year of the possible 

breakpoint, , using a model similar to Jayachandran et al. (2010):

∆PM t , t−1=α+δ0Dt (τ )+εt (2)

where  ∆PM t , t−1 is the first difference in the PM2.5 pollution time series68;  Dt(τ) is an 

indicator variable equal to zero for the years before  and equal to one for those after ; εt - robust 

standard errors. 

Formally,  sup Wald  and LR tests  are  applied  sequentially  to  test  for  constancy in  the 

coefficients from the regression of model (2) with   taking on each year within the interval of 

possible trend breaks, a test window, and calculate the W- and F-statistic associated with the null  

hypothesis of no trend break, δ0= 0, for each tested year. The test window is shorter than the whole 

time series. For the test not to be misleading, it should have enough data points before and after the 

test window to estimate regressions before and after the breakpoint (Andrews, 1993; Piehl et al., 

2003; Jayachandran et al., 2010; Greenstone and Hanna, 2014). I test for the single possible break 

in an eight-year test window, including a range of years in the 2004-2011 interval. Given quite a 

short time series, this is the maximal length of test window I could allow; it corresponds to a 

symmetric  trimming of  the pollution time series by 25%69.  The test  then selects  the maximal 

among  the  resulting  test  statistics  to  define  the  best  possible  breakpoint,  τ0,  and  returns  the 

67 Several  reasons make application of  this  technique in our research attractive.   Firstly,  both tests are robust  to  
heteroscedasticity  and  overcome limitations  inherent  in  the  traditional  Chow test  that  assumes  homoscedasticity. 
Secondly, as Piehl et al. (2003) summarize, the intuition of sup Wald and LR tests is appropriate in the program  
evaluation context, the purpose similar to our aims in that the effect of the crisis can be treated in a way similar to the 
effect of a policy intervention. Finally, formal testing improves earlier attempts undertaken by Chay and Greenstone 
(1999, 2003b), Sanders (2012), Tanaka (2015) to overcome the same difficulties in the similar settings.
68 The reason for using the first difference of the dependent variable is that by doing so I achieve stationarity of air  
pollution time series. To be valid, supremum tests require data to be stationary (Andrews, 1993; Piehl et al., 2003), a  
condition that my time series does not satisfy. Both Augmented Dickey-Fuller and Phillips-Perron tests fail to reject  
the null hypothesis of nonstationarity; however, they do reject the null in the case of the first-differenced series. 
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associated p-value to gauge the significance of the detected break. Since the test statistics do not 

converge to any known distribution, the reported p-values are calculated by the method introduced 

in Hansen (1997). Fig. 3 and Appendix Table A2 present the results of the tests for structural break 

on an unknown year.70

Notes: The  figure  presents  the  results  of  the  time-series  econometric  test  for  structural  trend  break,  specifically 
supremum Wald and likelihood-ratio (LR) tests designed for the cases when the breakpoints are unknown (Andrews,  
1993,  2003;  Hansen,  1997).  Both  supremum  tests  identify  structural  breaks  within  the  2009-2012  air  quality 
improvement episode, thus associating them with the respective reversal of the upward trend in PM2.5. 

Fig. 3. W- and F-statistics from sup Wald and sup LR tests for trend break

Both  supremum  tests  identify  structural  breaks  within  the  2009-2012  air  quality 

improvement episode, thus associating them with the respective reversal of the upward trend in 

PM2.5. Sup Wald reports 2010 as a year of statistically significant break, while sup LR selects 

2009 as a break year, although insignificant71. Panel A of Appendix Table A2 shows that whenever 

2010 is included in the test window, the maximal W-statistics are concentrated at this year, and the 

null hypothesis can be rejected at the 1 percent level. When tested by the sup LR, the same applies 

to  2009  except  that  neither  of  the  F-statistics  is  significant.  As  another  specification  test,  in 

addition to different lengths of test window and trimming percentages, I test for possible trend 
69 For comparison, a common approach suggested by Andrews (1993) is to trim 15% from both ends. However, it is  
common to select a trimming percentage up to 49%.
70 I also perform a Chow-type test for structural trend break on a known year (Chow, 1960). Using the same model and  
data, I construct a heteroscedasticity robust Wald statistic to test the null hypothesis of no trend break for each year  
within the same test  window, separately.  Thus,  I  pretend I  know that  each year  from 2004 to 2011 might  be a 
breakpoint. The test works similarly to supremum tests except that it is not conducted sequentially and the limiting  
distribution of the test-statistic is known. Conducted together, both tests complement each other. 
71 It  is  worth noting that  the statistical  insignificance of  the latter  breakpoint  could potentially  be  caused by the 
relatively low statistical power of the test due to short pollution time series.

122



breaks in the parameters after estimation of the log form of the model (2). The results are robust to 

different ranges of possible break years, trimming, or log-level model specifications. Panel B of 

Appendix Table A2 shows that neither of the years within the 2005-2006 interval, or the years of  

the  largest  pre-crisis  drop in  PM2.5,  are  trend break years.  This  finding relaxes  my previous 

concern about the possible confounding role of these years in my results. Thus, I consider 2010 in 

further  analysis  as  the time of  the effects  of  the  crisis  and on air  pollution,  τ0,  and the  most 

important year when the crisis could affect air pollution in the sample districts.

3.3.3 Selection of the Treatment and Control Groups

Addressing  the  second  challenge,  I  designate  districts  with  large  improvements  in  air 

quality during the 2009-2012 improvement episode, those most impacted by the crisis, to the group 

of the treated districts, while districts with small or no changes, unaffected or least affected, are 

designated to the control group. I use several approaches that, nevertheless, lead to a very similar 

result.72 

Panel B of Fig. 4 demonstrates a geographical distribution of the district-wise changes in 

average PM2.5 during 2009-2012. For comparison, Panel A illustrates the spatial variation in the 

pre-crisis levels of PM2.5 pollution. The following observations are noteworthy. First,  the two 

maps  correlate  very  well  visually.  Thus,  the  levels  of  average  PM2.5  before  the  crisis  could 

potentially  be a  good predictor  for  the effects  of  the  crisis-induced reduction in  air  pollution. 

Second, in contrast to my expectations, some of the districts experienced worsening of air quality. 

Independent of the sign of the changes, these districts should be taken into account similarly to 

those with reductions in air pollution. Third, the variation in the magnitude of the crisis-induced 

changes in the PM2.5 levels varied substantially across districts with a reduction or increase in air 

pollution.  These changes are significantly larger in the former group and vary from zero to a 

substantial  45  g/m3 or  almost  10  g/m3 on average.  In  the  latter  group,  the  maximum and 

average values of the increase in the level of fine particulate pollution are slightly above 8 g/m3 

and  4  g/m3,  respectively.  Finally,  it  may  well  be  that  the  districts  are  spatially  clustered 

72 Chay and Greenstone (1999, 2003b) divided U.S. counties into three groups with large, medium and small changes. 
These groups include quartiles of the counties with the largest reduction (upper quartile, >75%), smallest reduction  
(lower quartiles, <25%) and all other counties (combined second and third quartiles, between 25% and 75%).
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depending on the magnitude of the changes. This is especially relevant to the districts with a larger 

reduction or increase in air pollution. 

Notes: Panel  A  illustrates  spatial  variation  in  the  pre-crisis  levels  of  PM2.5  pollution.  Panel  B  demonstrates  a 
geographical distribution of the district-wise changes in average PM2.5 during 2009-2012. Panels C and D provide  
visual representation of the Hot Spot Analysis results. Panel C shows spatial distribution of the HSA input values – 
crisis-induced  changes  in  mean  PM2.5  concentrations  during  2008-2012  normalized  by  the  pre-crisis  2008 
concentrations. Panel D shows the resulting HSA output with hot spot and cold spot districts depicted in red and blue.  
There is a striking correspondence between the hot spots and the districts that experienced statistically significant  
increase in air pollution, and the cold spots and the districts that experienced statistically significant reduction in air  
pollution. The remaining districts, depicted in beige, are the ones in which relative changes in particulate air pollution  
are not statistically significant, implying that they could likely happen by random chance or that these districts would 
experience such changes in the absence of the crisis. I consider districts belonging to the hot and cold spots as treated  
districts with worsened and improved air quality, respectively, while districts depicted in beige are control districts.

Fig. 4. Spatial relationship between pre-crisis PM2.5 and crisis-induced changes

In view of the latter observation, I experiment with a Getis-Ord Hot Spot Analysis (Getis 

and Ord, 1992; Ord and Getis, 1995),  applying this technique to PM2.5 pollution data to sort 
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districts into treatment and control groups. Appendix A1 provides more details about the Getis-Ord 

Hot  Spot  Analysis.  The  Getis-Ord  Hot  Spot  Analysis  (HSA)  is  in  essence  a  test  for  spatial 

dependence73, designed to assess the extent of clustering between units based on their attributes, 

and to draw inference about its statistical significance. 

Putting  HSA  in  context,  it  is  highly  probable  that  the  highly-polluted  districts  are 

surrounded by other similarly polluted districts. Moreover, air pollution in the latter could originate 

either from the districts’ own sources or transported from outside. Such a scenario is quite possible 

given  the  ability  of  air  pollution  to  travel  across  regions.  In  this  case,  even  districts  without 

pollution-intensive industries would likely demonstrate some degree of spatial  association with 

heavily-polluted neighbors. More importantly, such districts could also experience the effects of 

the  crisis  related  to  a  decrease  or  increase  in  pollution  levels  in  nearby districts.  In  contrast, 

districts without polluting sectors, or districts located farther from the neighbors that have such 

sectors, might not exhibit any spatial association based on pollution-related attributes, and might 

not experience any impact of the crisis on air  quality.  Apart  from the identification of spatial 

clusters  in  crisis-induced  changes  in  air  pollution,  the  HSA  also  provides  a  means  to  assess 

whether  such a  pattern  of  spatial  dependence  is  statistically  significant.  Applying HSA,  I  am 

interested in identifying spatial clusters of districts with unusually large and statistically significant 

changes in PM2.5 concentrations during the 2009-2012 improvement episode, relative to the pre-

crisis 2008 PM2.5 pollution levels. Therefore, HSA output allows me to assign districts within 

statistically significant clusters into the treatment group, while districts outside such clusters are 

assigned into the control group. 

Technically,  HSA  boils  down  to  the  testing  of  the  null  hypothesis  of  “no  spatial 

dependence”. The null implies that the assignment of the input attribute values to the particular 

districts does not depend on spatial location; the value of the attribute itself is all that matters. The 

alternative hypothesis focuses instead on the cases where districts with large and small attribute 

values are systematically surrounded by other districts with respectively large and small values. 

Rejection  of  the  null  hypothesis  would  imply  the  presence  of  statistically  significant  spatial 

clusters of similar attribute values (Anselin, 1992). Statistically significant spatial clusters of high 

73 In spatial statistics, the notion of spatial dependence, reflecting the tighter relationship between near rather than  
distant units, means that the similar values of some attribute or characteristic for one unit will likely also occur in 
neighboring units, leading to the formation of spatial clusters (Anselin, 1992). 
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values are referred to as hot spots, while cluster of low values are referred to as cold spots. I 

implement HSA using ArcGIS’s Getis-Ord Gi
* tool. 

Panels C and D of Fig. 4 provide visual representation of the HSA’s results. Panel C shows 

the  spatial  distribution  of  the  HSA  input  values  –  crisis-induced  changes  in  mean  PM2.5 

concentrations during 2008-2012 normalized by the pre-crisis 2008 concentrations. Panel D shows 

the resulting HSA output with hot- and cold-spot districts depicted in red and blue colors. There is 

a striking correspondence between the hot spots and the districts that experienced a statistically 

significant  increase  in  air  pollution,  and  also  between  the  cold  spots  and  the  districts  that 

experienced a statistically significant reduction in air pollution. The remaining districts, depicted in 

beige,  are  those  in  which  relative  changes  in  particulate  air  pollution  are  not  statistically 

significant,  implying that  changes  could likely occur  by random chance or  that  these districts 

would experience such changes in the absence of the crisis. For the rest of the chapter, I consider  

districts in hot and cold spots as treated districts with worsened and improved air quality, while  

those depicted in beige as control districts. 

Appendix Table A3 displays detailed descriptive statistics separately for treated and control 

districts before and after the crisis. Generally, before the crisis, both districts looked very similar 

across many key characteristics, including infant mortality rate, but they differ substantially by 

mean  PM2.5  pollution,  with  a  higher  concentration  of  the  pollutant  observed  in  the  treated 

districts.  This  observation  leaves  less  room  for  the  possibility  that  there  is  a  selection  or 

contamination of the control group. It  is  also consistent with the conclusion that the levels of 

average  PM2.5  before  the  crisis  can  predict  the  effects  of  the  crisis-induced  changes  in  air 

pollution. After the crisis, both groups of districts experienced a decline in infant mortality and air 

pollution level, with an especially pronounced decline in the group of the treated districts. This 

finding supports  the  hypothesis  that  the  crisis-induced reductions  in  PM2.5  pollution  led  to  a 

statistically significant decline in district-level infant mortality rates.

3.3.4 Identifying Assumptions

The  key  identification  assumption  for  equation  (1)  can  be  formulated  in  terms  of  the 

idiosyncratic error term, for t = 1, 2, …, T:
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E (εdt∣μd , γ t ,Treated d ∙ Post t ,W dt , X dt)=0 (3)

In the DID context, this assumption is known as a parallel or common trends assumption, 

implying that, irrespective of the levels, comparison groups should have equally-sloped trajectories 

in  the  pretreatment  outcomes of  interest.  Then,  the  unobserved average  trend in  the  outcome 

variable of the treatment group in the absence of treatment should be equal to the observed trend of 

the control group. Further, the treatment is assumed to be the only process that induces deviations 

from the common trends between the comparison groups74. This assumption implies that districts 

from the control group provide valid counterfactual changes in infant mortality for the districts 

from the treatment groups in the absence of crisis-induced changes in air pollution. 

One possible reason for violation of the assumption in equation (3) is the presence of time-

varying  unobservables  as  an  additional  source  of  heterogeneity,  causing  districts’  individual 

trajectories  in  infant  mortality  to  diverge  from the  parallel  trends.  As  the  baseline  model  in 

equation (1) controls only for time-constant unobservables, it would likely fail to produce unbiased 

estimates of the effect of interest. To overcome this concern, I extend the baseline specification to 

allow for heterogeneous trends by including district-specific slopes in equation (1): 

log ⁡(IMR)dt=α+δ1(Treated d ∙Post t)+β1W dt+β2 X dt+μd+ γ t+λd t+ξdt (4)

where λd t is a time-varying unobserved heterogeneity that allows the possibility for each 

district to have differential trends through the distinct values of  λd. Technically, the latter term 

represents time-invariant, either observed or unobserved, effects interacted with time to produce 

district-specific trajectories of outcomes.  t  is a continuous year variable centered on 2010 and 

normalized so that it equals zero in this year. 

Based on the results of the trend break and Hot Spot analyses, the DID model in equation 

(4) compares pre- versus post-2010 levels and trends in infant mortality rates between the treated 

74 This latter assumption is often referred to as a common shocks assumption (Dimick and Ryan, 2014; Kreif et al.,  
2015).
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and control districts. The key identifying assumption is that, conditional on district-specific trends, 

any pre- versus post-2010 changes in infant mortality rates caused by factors besides air pollution 

are  the  same  for  the  affected  and  control  districts,  and  that  air  pollution  is  the  only  factor 

differentially affecting the treated districts, beginning in 2010. 

Taking into account the fact that the impact of the crisis could accelerate and decelerate 

over time, I further extend equation (4) to the following specification:

log ⁡(IMR)dt=α+δ1(Treated d ∙ Post t)+δ2(Treated d ∙Post t ∙ t ) +

+β1W dt+β2 X dt+μd+γ t+λd t+ξdt

(5)

where Treatedd ∙ Postt ∙ t allows for the effects of the crisis to evolve over time. Equation (5) 

is a trend-break model allowing a change in the slope after 2010. The statistical question of interest 

is whether  δ̂1 and δ̂2 are jointly statistically significant after the trend-adjustment. The following 

concern should be taken into account while interpreting the estimation results. On the one hand, 

equation (5) introduces a dynamic structure that is consistent with the visual evidence from Fig. 2, 

showing that the decline in infant mortality in the treated districts does not look like a one-time 

drop. On the other hand, the short length of our panel data set, especially the number of the post-

crisis years, might mean that there could be limited statistical power to estimate a model with 

changes in slope. Therefore, the model in equation (4) might be more preferable.

I estimate models in equations (4) and (5) using an estimation method based on within 

transformation of data known as detrending. I prefer this approach because it is more efficient than 

others,  especially in  cases  with relatively short  and unbalanced panel datasets  similar to  mine 

(Brüderl and Ludwig, 2015). The idea of detrending is to subtract time-varying estimates of the 

individual-specific  trends  from  the  original  variables.  Applying  this  estimation  approach 

essentially boils down to the following four-step procedure. First, for each district I estimate the 

regression of the form log ⁡(IMR)dt=μd+λd t+ζ dt to obtain predicted values of the outcome variable 

log ⁡( ÎMR)dt= μ̂d+ λ̂d t .  Time-varying  predicted  values,  log ⁡( ÎMR)dt,  represent  expected  district-

specific trends. Second, I subtract values predicted in step (1) from the original values of outcome 

to  obtain  the  detrended  dependent  variables  log ⁡(~IMR)dt=log ⁡(IMR)dt−log ⁡( ÎMR)dt.  After  this 
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step, the only variation left in the dependent variable is the variation around the district-specific 

trend. Third, I apply steps (1) and (2) to detrend all explanatory variables  ~x jdt=x jdt− x̂ jdt for any 

variable x j. Detrending all variables of the model means that the estimation of the causal effect of  

interest is based solely on within around-trend variation. Finally, I run regressions on the detrended 

variables.

To further validate the DID identifying assumption of the model in equation (4), I formally 

address two violations common in the literature (Tanaka, 2015). First, the existence of a systematic 

difference in the pre-crisis trends in infant mortality rates. Second, the orthogonality of the impact 

of the crisis on other factors affecting the dependent variable in the post-crisis period. 

To address the first concern, I examine the pre-crisis trends graphically. Fig. 5 depicts the 

evolution of the average infant mortality rates across comparison groups, adjusted for the district-

specific linear trends and some basic characteristics of the deceased infants. The figure provides 

graphical evidence that trends in infant mortality rates are almost parallel in the pre-crisis period 

between control and treated districts with reduction in air pollution. However, adjustment for the 

district-specific trends fails to improve the presentation for the treated districts with an increase in 

air pollution. The parallel trends assumption is apparently violated in the case of these districts.  

Visual examination also provides evidence of the trend break for the treatment group right after the 

onset of the crisis.

To address the second concern,  I  follow Altonji,  Elder, and Taber (2005) and examine 

whether the impact of the crisis has any association with changes in observable characteristics. I  

first  successively  regress  my  empirical  model  with  every  observable  characteristic  as  the 

dependent  variable.  Then,  I  check  whether  the  coefficients  on  the  interaction  term,  δ̂1,  are 

statistically significant. Although this is not a formal test for exclusion restrictions, the absence of 

statistically significant association with observable characteristics would suggest that there should 

not be a correlation with unobservable variables either (Altonji et al., 2005). Appendix Table A4 

presents  results  for  both  types  of  treated  districts.  Although  some  of  the  point  estimates  are 

statistically significant, the vast majority show no evidence of the systematic difference in trends 

between districts  from the treated and control groups.  This is especially true for the group of 

districts with improvement in air quality, for which most of the coefficients are small or close to  

zero. It is noteworthy that, the impact of the crisis-induced reductions in PM2.5 pollution is not  
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associated  with  important  determinants  of  infant  mortality,  including mother’s  age,  household 

amenities  and  proxied  parental  characteristics.  Although  significant,  the  coefficients  on  the 

meteorological confounders are quite small. 

Notes: The figure depicts the evolution of the trends in infant mortality rates across comparison groups adjusted for the  
district-specific linear trends and some basic characteristics of the deceased infants. The dashed vertical line indicates 
the time of the effects of the crisis on air pollution started between years 2009-2010. The thin black line represents the  
difference in infant mortality rates between treatment and control groups of districts, allowing a rough comparison of 
the relative pre- and post-crisis trends. 

Fig. 5. Visual examination of the parallel trend assumption

Overall,  the  results  provide  suggestive  evidence  that  the  changes  in  PM2.5  pollution 

attributable to the global financial  crisis  is  orthogonal to other factors affecting the dependent 

variable in the post-crisis period. Therefore, the selected empirical strategy is unlikely to be biased 

due to changes in unobservable covariates. Additional falsification tests and robustness checks will 

further support this conclusion.

3.4 Results

I first present baseline estimates of the impact of the crisis-induced changes in PM2.5 on 

the infant mortality rate at the district level. I then perform sensitivity analysis to ensure that the 

proposed  empirical  strategy  provides  unbiased  estimates.  Finally,  I  perform  a  number  of 

falsification tests and robustness checks to support the validity of the main findings.
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3.4.1 Baseline Results

Table 2 presents baseline results of the regression analysis by reporting the key estimates 

resulting from fitting equations (4) and (5). The dependent variable is the infant mortality rate for 

all  causes  of  deaths.  For  both  types  of  treated  districts,  columns  (1)  report  the  estimate  of 

coefficient δ1 after the estimation of equation (4), which tests for the effects of the crisis-induced 

changes in PM2.5 on the infant mortality rate after adjustment for district fixed effects, year fixed 

effects  and  differential  trends.  The  second  columns  report  the  results  from  the  equation  (5) 

allowing for both level and slope changes during the post-crisis period. All regressions are run on 

the variables detrended as described in previous section.

The coefficients in both columns for the treated districts with reduction in PM2.5 pollution 

suggest  that  these  districts  experienced  a  statistically  significant  decline  in  all-cause  infant 

mortality  after  2010.  Moreover,  column  (2)  provides  evidence  of  a  negative  and  statistically 

significant  change  in  the  slope  of  the  infant  mortality  rate  after  2010.  Therefore,  regression 

analysis confirms the visual impression that reduction in air pollution that occurred during the 

post-crisis  period  was  strongly  associated  with  a  decline  in  infant  mortality.  In  contrast,  the 

regression coefficients for the treated districts with increase in PM2.5 pollution captured by the 

variable Treated   Post are positive, small and insignificant. Thus, there is little evidence of the 

impact of the crisis-induced increase in air pollution on infant mortality. However, similarly to the 

districts with a decline in air  pollution, the infant mortality rate in districts with worsened air 

quality demonstrates a negative and statistically significant change in slope after 2010. For both 

types of districts and across both specifications, the coefficients on Treated  Post are insensitive to 

the inclusion of the variable allowing change in the slope, Treated  Post  t. 

These findings are consistent with the evidence from Appendix Table A5, which reports 

estimates  from fitting  equations  similar  to  equations  (4)  and  (5)  testing  if  the  crisis-induced 

economic slowdown reduced PM2.5 pollution in the treatment districts relative to control districts. 

The table  shows that  the treated districts  with improved air  quality  experienced a  statistically 

significant decline in PM2.5 concentration of 11.89 mg/m3 relative to the control districts between 

the pre- and post-crisis, or of 9.05 mg/m3 if the change in the slope is also accounted for. The  

regression coefficients for the treated districts with the increase in PM2.5 pollution are positive, 

much  smaller,  and  significant.  In  contrast  to  districts  with  a  decline  in  air  pollution,  PM2.5 
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concentrations in these districts do not demonstrate a sign of a statistically significant change in 

slope  after  2010.  Thus,  there  is  little  evidence  of  the  trend-break impact  of  the  crisis  on  air 

pollution in these districts.  Overall,  regression analysis confirms the visual impression that  air 

pollution reduction occurred during the post-crisis period.

Table 2 – Effects of the changes in particulate air pollution on infant mortality

Notes: The  table  presents  baseline  results  of  the  regression  analysis  by  reporting  the  key  estimates  from fitting 
equations (4) and (5). The dependent variable is the infant mortality rate for all causes of deaths. For both types of  
treated districts, columns (1) report the estimate of coefficient δ1 after the estimation of equation (4), which tests for 
the effects of the crisis-induced changes in PM2.5 on the infant mortality rate after adjustment for district fixed effects,  
year fixed effects and differential trends. The second columns report the results from equation (5) allowing for both  
level and slope changes during the post-crisis period. All regressions are run on the variables detrended as described in 
section 3 of the study. Standard errors clustered at the district level are shown in parentheses.

I further use the resulting coefficients reported in Table 2 to assess the magnitude of the 

crisis-induced changes in PM2.5 pollution on infant mortality. For that purpose, I focus on treated 

districts  with improved air  quality,  which demonstrate a significant decline in infant mortality 

rates. The coefficient in column (1) indicates that the infant mortality rate in this group of treated 

districts fell by about 23% (100 ∙(eδ̂1−1)) more than in the group of control districts between the 

pre- and post-crisis period. The estimated decline is associated with 4.9 fewer infant deaths per 
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1000 live births.75 Coefficients in column (2) from the model that allows for changes in the level 

and slope show an even larger effect of about 28%. I computed the total effect from equation (5) as 

δ̂1+0.5 ∙ δ̂2, where the factor of 0.5 is equal to the average value of the continuous year variable t  

for two post 2010 years ((0+1)/2; t  is set to be equal to zero in 2010). A 28% decline translates into 

a total of 6.09 fewer infant deaths per 1000 live births. 

3.4.2 Sensitivity Analysis

Table 2 provides estimates of the baseline effect of interest without control variables. To 

address the concern that changes in the dependent variable may be explained by changes in the 

observable  time-varying  characteristics  that  potentially  correlated  with  the  impact  of  PM2.5 

pollution changes attributable to the effect of the crisis, I perform a sensitivity analysis. Appendix 

Table A6 reports results for both types of districts. Every pair of columns represents estimates 

from fitting equations (4) and (5).

First, I included confounders to the baseline specification, namely a natural logarithm of 

the district-level GDP per capita and meteorological covariates. In all specifications, the coefficient 

on GDP per capita is close to zero, not statistically significant and does not fluctuate much across 

specifications, apparently not affecting the point estimates on either Treated  Post and Treated  

Post   t. This relaxes the concern about the income channel through which the crisis could also 

have affected infant mortality.

Columns (3) and (4) control for the average district-level temperature, precipitation, wind 

directions and speed. Inclusion of these factors makes the estimates larger but preserves their sign 

and significance. The wind-related controls dominate with the larger and significant coefficients. 

The coefficient on the west-east wind is the most important in terms of the magnitude. In contrast 

to previous specifications,  the Treated   Post   t  coefficient drops to almost zero and becomes 

insignificant.  

75 My baseline results are quite similar to those reported in Tanaka (2015) who estimated the impact of the 1998 “Two 
Control Zones” environmental regulation on infant mortality in China, i.e. in similar pollution-mortality settings. The  
author found that a TZP status is associated with 3.3 fewer infant deaths per 1000 live births and a 20% reduction in  
infant mortality in the post-reform period.
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Columns  (5)  and  (6)  control  for  characteristics  of  the  deceased  infants.  None  of  the 

coefficients on these variables are statistically significant. The inclusion of these controls does not 

have any effect on the coefficients of interest. Columns (7) and (8) control for characteristics and 

habits  of  the  Heads  of  households.  The  coefficients  of  the  main  interest  remained  virtually 

unchanged. I also observe small, negative and statistically significant coefficients on the share of 

the Heads belonging to the Sikh and Buddhist religions, as well as the share of the Heads who are 

alcohol drinkers. The picture is very much the same with the next specification, columns (9) and 

(10), including the deceased infants’ household characteristics, although the coefficients of interest 

become slightly smaller. However, the resulting coefficients on these control variables are close to 

zero and insignificant.

Columns (11) and (12) report coefficients from the regressions controlling for the district-

specific indicators of the utilization of the medical services by mothers and infants.  The main 

effect remains robust and statistically significant. As in the previous specification, the coefficient 

on Treated  Post  t remains small and insignificant. This makes equation (4), with a combination 

of W dt and Xdt vectors as specified in column (11), my preferable specification. 

The coefficient in column (11) indicates that the infant mortality rate in the group of treated 

districts with improved air quality fell by about 24% more than in the group of the control districts 

between pre- and post-crisis periods. The estimated decline is associated with a total  of 5.226 

fewer infant deaths per 1000 live births. Combining changes in particulate air pollution with the 

estimated changes in infant mortality, I obtain an implied elasticity equal to 0.35.76 The elasticity is 

within the range of elasticities reported in economic studies of the effects of air pollution on infant 

mortality  in  developed  and  developing  countries.  Chay  and  Greenstone  (2003b)  calculated 

elasticities for the effects of TSP equal to 0.35-0.5 in the U.S., while Arceo et al. (2015) find  

elasticity of 0.415 for exposure to PM10 in Mexico. The marginal effects of SO2 found in Tanaka 

(2015) translates into an implied elasticity of 0.9 in China; Knittel, Miller, and Sanders (2016) 

provide evidence of a 1.827 elasticity for the impact of automobile air pollution on infant health in 

the U.S.; Currie and Schmieder (2009) report elasticity for chronic effects of toxic chemicals in a  

range of 1.82-6.49 in the U.S. On the lower end of the elasticities reported in economic studies are 

76 In the context of the study, implied elasticity is a ratio of percentage changes in the infant mortality rate to the same  
period percentage changes in air pollution.
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the estimates for the effects of SO2, in the range of 0.07-0.13 in Germany from Luechinger (2014), 

and of 0.04-0.09 for acute effects of CO in the U.S., from Currie and Neidell (2005). 

Finally, sensitivity analysis also supports the previous conclusion concerning the effects of 

the crisis-induced changes in PM2.5 pollution on the infant mortality rate in the group of districts 

with worsened air quality. The main coefficient of interest remained close to zero and insignificant 

despite differences in specifications. In contrast to the analysis of the treated group of districts with 

improved air quality, the slope coefficients from the regressions fitting equation (5) become close 

to zero and insignificant only after controlling for district characteristics and utilization of medical 

services. Coefficients on the west-east wind and its speed are large, comparable in magnitude, and 

highly statistically significant, but have different signs. Therefore, the sensitivity analysis fails to 

capture any sign of the effects that documented an increase in PM2.5 pollution attributable to the 

crisis could have on infant mortality in these districts, which is in line with the baseline results.

Experimentation with  different  specifications  in  this  section  provides  evidence that  the 

magnitude,  sign  and statistical  significance  of  the coefficient  of  interest  are  insensitive  to  the 

inclusion  of  the  control  variables.  This  supports  the  credibility  of  my  research  design  and 

estimates. Although there is always room for non-causal explanations between the variables of 

interest in non-experimental studies, the results of the sensitivity analysis do not directly contradict 

the  causal  nature  of  the  relationship  between  the  crisis-induced  changes  in  air  pollution  and 

district-level infant mortality. 

3.4.3 Falsification Tests and Robustness Checks

Conditional on the results of Altonji et al. (2005) test and sensitivity analysis, equation (4) 

is likely to produce valid estimates of the crisis-induced reduction in PM2.5 pollution on infant 

mortality in the Indian districts.  Nevertheless,  I  provide further support for this conclusion by 

conducting a number of falsification tests and robustness checks. 

For  the  first  falsification  test,  I  replace  the  dependent  variable  with  another  outcome 

variable  that  is  not  affected  by  the  crisis-induced  changes  in  air  pollution.  One  of  the  most  

plausible candidates is infant mortality due to external causes of deaths,  which include deaths 

caused by accidents  and homicides  that  are  not  associated  with  air  pollution.  However,  AHS 
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contains disaggregated information only on internal causes of deaths. Nevertheless, I could select 

an internal disease that is potentially not associated with particulate air pollution for the test. The 

most promising candidate for this role is diarrheal diseases. To the best of my knowledge, there is 

no evidence of obvious causal links between exposure to air pollution and infant mortality due to 

diarrhea/dysentery. Another reason to think that the choice of this disease for the falsification test 

is  appropriate  is  the  evidence  that  diarrheal  diseases  are  the  concurrent  cause  of  death  to 

respiratory infections and have a comparable share of infant fatalities in my study area (Bassani et 

al., 2010).  

Therefore,  I  use  the  infant  mortality  rate  due  to  diarrhea/dysentery  as  the  alternative 

dependent variable to evaluate the internal validity of the previous estimates. As Table 4 indicates, 

regressions return statistically insignificant coefficients. The result also provides evidence that the 

crisis-driven reduction in air pollution had no additional effect on infant mortality through other 

diseases. Therefore, my specifications are likely unbiased. 

As another falsification test, I re-estimate the model using observations only from the pre-

crisis period where the effects of the crisis-induced reduction in air pollution could not exist. For 

this purpose, I assign 2008 as a placebo trend break point and thus consider 2007 as the pre-crisis  

period, and 2008 as the post-crisis period. Specifically, the variable Post t became equal to 1 for the 

year 2008, not after the formally identified τ0. Thus, I use a classic two-periods model. The results 

are in Appendix Table A7. The table reports point estimates after fitting equation (4) with different  

combinations of  W dt and  Xdt vectors for the districts  from both treated groups with improved 

(Group 1)  and worsened (Group 2)  air  quality.  Since  estimated coefficients  using a  pre-crisis 

sample  and  placebo  trend  break  point  are  statistically  insignificant  and  close  to  zero,  my 

specifications can be considered as likely unbiased.

Further, I apply the model equation (4) to the alternative control group. For this purpose, I 

limit  this  group to  the  districts  selected,  based  on  the  common support  propensity  score  that 

restricts the sample to the districts that have similar observable characteristics to the districts from 

the treatment group of districts with improved air quality. I first computed the common support 

propensity score of being in the treatment group using available characteristics of the districts with 

significant crisis-induced air pollution reductions. Then, I constructed an alternative control group, 

including only those districts from the initially identified control group that are matched based on 
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the  propensity  score.  Finally,  I  re-estimated  the  model  with  this  alternative  control  group. 

Appendix Table A8 reports the results of this falsification test. Since the sign, magnitude and the 

order of statistical significance of the estimated coefficient on the main effect of interest are not 

substantially different from that in the main analysis, I again concluded that my model is likely 

unbiased.

Performing robustness checks, I address concern that there may still be unobserved factors 

affecting infant mortality due to the differential response of air pollution concentrations within the 

similar  geographic  regions.  To control  for  this  issue,  I  include  in  the  preferable  specification 

additional National Sample Survey (NSS) region*year fixed effects. NSS regions do not represent 

administrative  units  but  rather  collections  of  districts  grouped  based  on  similar  agro-climatic 

conditions. Thus, this specification identifies the effect of interest using variation in crisis-induced 

changes  in  PM2.5  pollution  within  the  NSS  regions  with  similar  characteristics.  Thus,  any 

potentially possible changes caused by any differences are purged at the level of NSS regions. This 

exercise does not affect either the sign or magnitude of the estimated effect. 

Further, I use a number of other specifications to re-estimate the most preferable model in 

the analysis. First, I use different weighting schemes to check how sensitive the model is to these 

changes. The results show that the point estimate of the main effect of interest did not change in 

response to not weighting at all, and reacted by a not substantial reduction in the magnitude on the 

weighting by the number of births. Second, I cluster standard errors at the state and NSS regions 

levels, as well as at the state*year and region*year levels. The estimated effect of interest remained 

robust to these alternative specifications. Third, I run a regression with one dependent variable 

expressed in level rather than in the log-form to see that the coefficient on Treated  Post had the 

same sign and significance level. Appendix Table A8 summarizes results.

Complementing the robustness checks above, the Appendix provides two additional tests. 

The first  is  based on the model in equation (4) and focuses on alternative options for sorting 

sample districts  into treatment and control groups.  Appendix Table A9 compares the resulting 

estimates. Each column of the table corresponds to one of the eight options, which are intuitively  

illustrated by the graphs in Fig. A4. The sign, magnitude and order of statistical significance of the  

estimated coefficients on Treated  Post remain similar between each other and to the coefficient 

estimated using my preferable specification. 
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The  second  additional  test  checks  whether  the  main  finding  would  remain  robust  to 

different  estimation  strategies,  namely  the  detrending  used  in  this  study,  conditioning  on  the 

explanatory variables and district-specific trends, and a method combining matching on pre-crisis 

explanatory  variables  and  trends  with  subsequent  difference-in-differences.  The  results  are 

presented  in  Appendix  Table  A10,  which  indicates  that  all  specifications  return  estimated 

coefficients of interest  that are not substantially different from each other, thus confirming the 

credibility of the main analysis.

Overall,  conditional  on  the  results  of  the  falsification  tests  and  robustness  checks,  I 

conclude  that  the  main  findings  of  the  study  justify  the  causal  impact  of  the  crisis-induced 

reduction in air pollution on the infant mortality rate in the sample of the selected Indian districts.

3.5 Mechanism

Addressing the second research question, I examine the impact of the changes in PM2.5 

concentrations  on  the  mortality  of  infants  at  different  ages  and from various  diseases.  I  then 

complement this analysis by exploring whether the crisis-induced decline in PM2.5 air pollution 

had a heterogeneous impact on infant mortality across several infant and the head of household 

characteristics. The analysis based on the specifications in columns (11) and (12) from Appendix 

Table A6 focuses solely on the treated group of the districts with improved air quality.

Table 3 presents the estimated effects of the reductions in PM2.5 pollution on the infant 

mortality rate within 1 day, 28 days,  between 28 days and 11 months,  within 11 months and 

between 11 and 12 months of life.77 The second category is also known as the neonatal infant 

mortality  rate,  which  in  turn  is  broken  down  into  early  and  late  neonatal  mortality  rates 

corresponding to the deaths occurring within 0-7 and 8-27 days from births, respectively. The third 

category  is  usually  referred  to  as  a  postneonatal  mortality  rate.  Separate  analysis  of  these 

categories is performed purposefully. The large and statistically significant estimate in the neonatal 

period  would  likely  suggest  that  particulate  air  pollution  affects  infant  mortality  through  the 

77 Ideally, I would also examine how the reductions in PM2.5 air pollution affected fetuses at different gestational  
terms.  However,  I  could  not  implement  this  analysis  because  of  the  mismatch  in  the  data.  It  is  possible  to 
determine gestational age at the time of crisis from the AHS data, but it  is impossible to match air pollution  
exposure for the months before birth. The reason is that the satellite-based PM2.5 data I used in the chapter is only  
available at the annual level.
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adverse effects on fetal development, via in utero exposure to PM2.5. Newborns whose mothers 

were exposed to high PM2.5 concentrations during pregnancy have a higher probability of dying in 

the neonatal than the postneonatal period. In contrast, a large and statistically significant effect in 

the  postneonatal  period  would  highlight  the  importance  of  post-birth  PM2.5  exposure  in  the 

biological  mechanism through which air  pollution affects  infants  directly.  However,  the exact 

biological channels are not yet well-studied (Chay and Greenstone, 2003b; Tanaka, 2015).

The  estimates  reveal  that  both  biological  mechanisms  are  important  in  explaining  the 

overall  effect  found above.  However,  the response of  infant  mortality  during the  postneonatal 

period  (column  (5))  is  substantially  larger  than  in  the  neonatal  period  (column  (4)).  The 

coefficients suggest that the neonatal IMR fell by 21% more in the districts with improved air 

quality, with a corresponding elasticity of 0.31, which is lower than the implied elasticity for infant 

mortality of 0.35.  In contrast,  postneonatal  mortality shows a decline of almost 32% with the 

implied elasticity of 0.45, which is significantly larger than the elasticity for both overall infant and 

neonatal mortality. I estimate that the contribution of the reduction in PM2.5 to the overall decline 

in neonatal mortality and postneonatal mortality is equal to 9% and 15%, respectively. Therefore, 

the effect of particulate air pollution on infant mortality is not larger in the neonatal period and is  

more  likely disproportionally  associated  with the  probability  of  dying during  the postneonatal 

period. 

Several aspects of the biological mechanism are worth noting. First, there is no effect on 

infant  deaths  within  one  day  of  birth.  Although  negative,  the  point  estimates  are  small  and 

statistically insignificant. Second, disaggregation of the overall neonatal mortality into early and 

late  neonatal  periods,  presented  in  columns  (2)-(3),  reveals  the  important  regularity  of  the 

biological  mechanism.  The  response  of  neonatal  mortality  to  the  reduction  in  particulate  air 

pollution is completely driven by the decline in infant mortality during the early neonatal period. 

Therefore, I cannot rule out the channel of in utero PM2.5 exposure. Third, point estimates on the 

deaths of infants aged between eleven and twelve months (column (7)) are large and negative, but 

insignificant, additionally highlighting the importance of the postneonatal mortality and post-birth 

PM2.5 exposure as the channel through which air pollution affects infant mortality. Finally, as 

presented in column (6), the estimated effects of the reduction in PM2.5  concentrations on infant 

deaths within eleven months are identical to those I found for the all-cause infant mortality and 

thus support my main findings. 
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Table 3 – Pathophysiological mechanism: Timing of infants’ deaths

Notes: The  table  shows the  results  from examination  of  the  channels  through which  air  pollution  affects  infant 
mortality. It presents the estimated effects of the reductions in PM2.5 pollution on the infant mortality rate within 1 
day, 28 days, between 28 days and 11 months, within 11 months and between 11 and 12 months of life. The second 
category is also known as the neonatal infant mortality rate, which in turn is broken down into early and late neonatal  
mortality rates corresponding to the deaths occurring within 0-7 and 8-27 days from birth, respectively. The third  
category is usually referred to as a postneonatal mortality rate. Separate analysis of these categories is performed 
purposefully. The large and statistically significant estimate in the neonatal period would likely suggest that particulate  
air pollution affects infant mortality through the adverse effects on fetal development, via in utero exposure to PM2.5. 
Newborns whose mothers where exposed to high PM2.5 concentrations during pregnancy have a higher probability of 
dying  in  the  neonatal  than  the  postneonatal  period.  In  contrast,  a  large  and  statistically  significant  effect  in  the 
postneonatal period would highlight the importance of post-birth PM2.5 exposure in the biological mechanism through 
which air pollution affects infants directly. The analysis is based on the specifications in columns (11) and (12) from 
Appendix Table A6 and focuses on the treated group of the districts with improved air quality. All regressions include  
district FE, year FE, district-specific trends; Controls: income per capita, meteorology characteristics of the deceased 
infants, head of household, household, medical services utilization, other. Heteroskedasticity-robust standard errors 
clustered at the district level are shown in parentheses

These findings are in contrast to conclusions made in Chay and Greenstone (1999, 2003b) 

and Tanaka (2015) about the disproportionate effect of air pollution on infant mortality during the 

neonatal period. For the U.S., Chay and Greenstone (2003b) attributed 80% of the effect of the  

reduction in TSPs on infant mortality to the decline in neonatal mortality, of which 60-70% is 
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driven by fewer infant deaths within one day of birth. For China, Tanaka (2015) found that 26% 

and 63% of the effect of the TCZ regulation on infant mortality occurred within one day of births 

and during the neonatal period. On the other hand, my estimates are in line with the statistics for  

the districts in the study area according to which the decline in the number of infant deaths during 

the post-crisis period was due to a decline in the early neonatal and postneonatal periods, with 

respective shares of 42% and 41%. 

I  then  examine  the  effect  of  the  crisis-induced  changes  in  PM2.5  pollution  on  infant 

mortality disaggregated by various diseases. Table 4 presents the results from the regressions with 

IMR due to fifteen causes of deaths as the dependent variable. Although the AHS does not provide  

exact codes for different symptoms, I used the tenth International Classification for Diseases (ICD-

10) to identify all of them except the category “Other” as internal causes of deaths. Internal causes 

of deaths are defined as health-related,  non-accidental  causes in contrast  to non-health related 

external causes such as accidence, injury, homicides, poisoning and other similar causes. Since the 

exact pathology of diseases caused by particulate air pollution is not well-known, some of the 

internal diseases could potentially be associated with air pollution. Particularly, chronic exposure 

of  infants  to  high  PM2.5   concentrations  is  expected  to  result  in  deaths  due  to  respiratory 

infections.  In  contrast,  there  could  well  be  internal  diseases  without  any  association  with 

particulate air pollution. 

Table 4 provides evidence of a large, negative and statistically significant impact of the 

crisis-induced reduction in PM2.5 pollution on mortality from respiratory infections (column (1)). 

The effect is associated with 24% fewer infant deaths in the districts with improved air quality,  

translated into implied elasticity of 0.34. The calculations suggest that the crisis-induced reduction 

in particulate air pollution is associated with 15% of the overall improvement in infant mortality 

due to respiratory infections. The magnitude of the estimated effect is comparable to the impact on 

the all-cause infant mortality. 
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Table 4 - Pathophysiological mechanism: Causes of deaths

Notes: The table shows the results from one of the falsification test and the results from examination of the channels  
through which air  pollution affects infant mortality.  For the falsification test,  I  replace the dependent variable in  
equation  (4)  with  another  outcome  variable  that  is  not  affected  by  the  crisis-induced  changes  in  air  pollution. 
Specifically, I use the infant mortality rate due to diarrhea/dysentery as the alternative dependent variable to evaluate  
the internal validity of the previous estimates. As expected, regressions return statistically insignificant coefficients.  
For examination of the channels, the table reports the effect of the crisis-induced changes in PM2.5 pollution on infant  
mortality disaggregated by various diseases. The results indicate that the effects of PM2.5 pollution on infant mortality 
are specific for respiratory infections and might be related to some of the infectious diseases. The analysis is based on  
the specifications in columns (11) and (12) from Appendix Table A6 and focuses on the treated group of the districts  
with improved air quality. Each column presents results from the regressions with IMR due to fifteen causes of deaths  
as the dependent variable. All regressions include district FE, year FE, district-specific trends; Controls: income per  
capita, meteorology characteristics of the deceased infants, head of household, household, medical services utilization,  
other. Heteroskedasticity-robust standard errors clustered at the district level are shown in parentheses

Additionally, this finding supports the conclusion about the dominance of the post-birth 

PM2.5 exposure channel and more frequent incidence of infants’ deaths during the postneonatal 
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period. In the case of the states from the study area, the prevalence of pneumonia or respiratory 

infections as the causes of children deaths directly attributable to air pollution is indeed much 

higher in the postneonatal period than in the neonatal period (Bassani et al., 2010). Moreover, my 

findings are consistent with evidence that respiratory diseases less probably cause infant death 

during the neonatal period since newborns spend the most of their time indoors, but are the major 

cause of death for infants in the postneonatal period (Woodruff, Grillo, and Schoendorf, 1997; 

Bobak  and  Leon,  1999;  Woodruff,  Parker,  and  Schoendorf,  2006).  Thus,  disproportional 

association  of  the  infants’  deaths  due  to  respiratory  infections  in  the  postneonatal  period  is 

justified.

It is notable that for the majority of other cases representing quite a broad range of diseases, 

the estimated effect of the crisis-induced reduction in particulate air pollution is small and not 

statistically significant. The exceptions are convulsions and two types of fever, with jaundice and 

convulsions.  Although large  and statistically  significant,  the coefficients  on these  diseases  are 

sensitive to the inclusion of additional variables, particularly the second variable of interest that 

allows changes in the slopes. While there are no obvious causal links between air pollution and 

infant mortality due to these diseases, Clay, Lewis, and Severnini (2015), using the 1918 influenza 

pandemic  in  the  U.S.  as  a  natural  experiment,  provide  rare  evidence  that  air  pollution  could 

adversely  affect  the  susceptibility  of  infants  to  infectious  disease.  This  is  consistent  with  my 

findings for fever. 

Next, I test the hypothesis that the crisis-induced decline in PM2.5 air pollution may have a 

heterogeneous impact on infant mortality across several subsamples based on infant and head of 

household characteristics. The infant characteristics include gender and location, while the head of 

household includes literacy. Table 5 reports the estimated effects for each of the subsamples. 

The coefficients in columns (1)-(2) and (3)-(4) show that the impact of the crisis-induced 

reduction in PM2.5 concentration on infant mortality is significant and similar in magnitude for  

boys and girls and infants living in rural and urban locations. However, the estimated effects are 

somewhat  larger  for  the  boys  living  in  rural  areas.  The  interpretation  of  the  results  can  be 

complicated78, but it is more likely the heterogeneity in the impact between boys and girls can be 

due to biological gender differences. Specifically, the literature suggests that male fetuses are more 

78 For a more detailed discussion, see Tanaka (2015).
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sensitive to pollution exposure than female fetuses (Tanaka, 2015; Sanders and Stoecker, 2015). 

Another  possible  interpretation reflects  gender  discrimination channel:  if  sons  are  preferred to 

daughters, they will likely be better protected from air pollution exposure. The impact of pollution 

would then be larger for daughters, which is not the case. Thus, this channel can be left out of  

consideration. The larger magnitude of the impact for the rural sample could be explained by the 

fact that rural households can be more sensitive to changes in air pollution and, generally, are more 

vulnerable  to  air  pollution.  It  can  be  the  case  because  rural  households  typically  have  lower 

socioeconomic status and fewer means to protect infants from exposure to higher air pollution. 

Table 5 – Heterogeneity in impact: Infant and head of household characteristics

Notes: The table shows the results of the heterogeneity analysis, which explores whether the crisis-induced decline in  
PM2.5 air pollution had a heterogeneous impact on infant mortality across several subsamples based on infant and  
head of household characteristics. The infant characteristics include gender and location, while the head of household  
includes literacy. The analysis is based on the specifications in columns (11) and (12) from Appendix Table A6 and 
focuses on the treated group of districts with improved air quality. Each column reports the estimated coefficients from 
a separate regression with IMR of a specific subsample as the dependent variable. Each pair of columns reports the 
estimated effects for each of the subsamples, which indicate the dimensions of heterogeneity: columns (1)-(2) – infant 
gender, columns (3)-(4) – infant locational status, and columns (5)-(6) – head of household literacy. The heterogeneity 
analysis emphasizes the role of parental education in alleviating the adverse consequences of infants’ exposure to air  
pollution and justifies the need for interventions targeting low-income households. All regressions include district FE,  
year FE, district-specific trends; Controls: income per capita, meteorology characteristics of deceased infants, head of  
household, household, medical services utilization, and other. Heteroskedasticity-robust standard errors clustered at the 
district level are shown in parentheses

In contrast, columns (5)-(6) indicate the impact of the crisis-induced reduction in PM2.5 

pollution on infant mortality is disproportionally smaller for infants from households with illiterate 

heads than for infants from households with literate heads. Generally, the impact of air pollution 
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reduction on infant mortality would be stronger for illiterate households, which being presumably 

lower-socioeconomic are more vulnerable to the effects of air pollution. However, the impact can 

also be smaller.  Children born in less educated households generally have lower initial  health 

endowments,  which  makes  them  susceptible  to  other  health  risks  besides  air  pollution. 

Alternatively, the impact of pollution reduction could be smaller for illiterate households because 

such households  could  be located in  highly polluted areas  and prefer  to  keep infants  indoors 

(Tanaka, 2015). 

Overall, my findings suggest that the crisis-induced reductions in PM2.5 pollution affect 

infant  mortality  through  two  biological  mechanisms,  particularly  the  adverse  impact  on  fetal 

development  and infants’  early-life  exposure.  However,  the  estimates  indicate  that  the  former 

mechanism is  not  the  primary  channel  as  infants’  deaths  are  more  likely to  occur  during the 

postneonatal period. Moreover, the results indicate that the effects of PM2.5 pollution on infant 

mortality are specific for respiratory infections and might be related to some of the infectious 

diseases.  Heterogeneity  analysis  emphasizes  the  role  of  parental  education  in  alleviating  the 

adverse consequences of infants’ exposure to air pollution and justifies the need for interventions 

targeting low-income households. The absence of differential impact of air pollution reduction on 

infants by gender reinforces the critical hypothesis that the decline in infant mortality was due to 

air pollution. Nevertheless, the results should be interpreted with caution since the model designed 

for all-cause infant mortality could not capture effectively all underlying factors affecting some of 

the diseases and heterogeneity, as an indicator of model fit suggests.

3.6 Policy Perspective: Health Benefits

Finally, I use the quantified relationship to measure health benefits from the crisis-induced 

episode  of  air  quality  improvement.  Moving the  analysis  to  a  policy  perspective,  this  section 

demonstrates  how  the  resulting  estimates  can  be  applied  to  measure  the  effectiveness  of  the 

potential policies designed to improve air quality. 

For this purpose, I first use estimated coefficients to assess the contribution of the crisis-

induced reduction  in  PM2.5  pollution  to  the  overall  improvement  in  infant  mortality.  Then I 

calculate  the  number  of  infant  lives  saved  by  the  improvement  in  air  quality.  Further,  using 
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available life-years and life-expectancy metrics, I convert the number of infant lives saved into the 

number of infant life years saved. Finally, I use available estimates of the value of a statistical life 

to monetize potential gains from the crisis-induced improvement in air quality.

The average decline in district-level infant mortality in the group with the reduction in 

PM2.5 concentrations fell by about 59 infant deaths per 1000 live births during the post-crisis 

period. In terms of marginal effects, my computations imply that a decline in PM2.5 by 1 g/m3 

results in about 1.09 fewer infant deaths per 1000 live births. Dividing the product of the implied 

marginal effects with respective average reduction in PM2.5 levels of 5.75 g/m3, I find that an 

11% overall  decline  in  the  infant  mortality  rate  during  the period  of  interest  occurred  due  to 

improvement in air quality. Interestingly, had all districts in the study area experienced the same 

reduction in air pollution as the treated districts, the contribution would be of the same magnitude. 

For  comparison,  Jayachandran  et  al.  (2010)  show  that  the  introduction  of  sulfa  drugs,  a 

groundbreaking  medical  innovation  in  1930s  in  the  U.S.,  resulted  in  a  17-32%  decline  in 

pneumonia mortality, 24-36% decline in maternal mortality, and 52-65% decline in scarlet fever 

mortality during 1937-1943. Among more recent economic studies, Luechinger (2014) finds that 

25-44%  of  the  infant  mortality  decrease  in  Germany  in  1985-2003  was  associated  with  the 

reduction  in  SO2  concentrations.  Therefore,  although  with  a  little  lower  magnitude,  the 

contribution of improvement in air quality to the overall decline in infant mortality rates in the 

sample of Indian districts during the period of interest is comparable.

Knowing that the average district-level decline in PM2.5 concentrations during the period 

of interest is 5.75 g/m3, and that the number of live births in the treated districts with reduction in 

PM2.5 pollution is 214,173 out of 759,425 for the whole sample in the post-crisis period, I apply  

implied marginal effects to calculate the number of saved infant lives. The calculation suggests 

that the crisis-induced reduction in air pollution resulted in 1338 infant lives saved in the treated 

districts. This number is lower but still comparable with that in Chay and Greenstone (2003b), 

where the authors claim 2500 fewer infants died during the U.S. economic recession in 1980-1982. 

Assuming that there could be an environmental regulation that would have the equivalent impact 

for all sample districts, the number of infant lives saved by such an improvement in air quality 

could reach 3589. 
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Having calculated the number of infant lives saved, I convert it into the number of infant 

life  years saved.  For that  purpose,  I  use official  life tables published on the web page of  the 

Ministry of Home Affairs’ Office of the Registrar General and Census Commissioner of India. A 

life table states the probabilities of survival and life expectancies of the hypothetical group or 

cohort at different ages (Census of India, 2016). Particularly, a Sample Registration System’s life 

table for the 2009-2013 period shows that the average life expectancy for individuals within one 

year of life is 67.5 years. Multiplying the number of infant lives saved by this life expectancy, I  

obtain a gain in life years saved of 90,319.1 for the treated districts and 242,282.02 for the whole  

sample of districts. 

Finally, however impressive the estimated benefits from the improvement in air quality are, 

they would be pointless without an opportunity to compare them with the costs of environmental 

regulation. Therefore, all gains need to be monetized. For that purpose, estimates of the value of a 

statistical life are usually used.79 As there is no standard concept for the value of a human life in 

economics, the authors typically use different measures varying from USD 1.7 million (USD 2000) 

in Ashenfelter and Greenstone (2004) to USD 6.7 million (USD 2000) in Viscusi and Aldy (2003) 

and the U.S. EPA (n.d.b) estimate of USD 7.4 million (USD 2006). I use the value of a statistical  

life estimated specifically for India by Madheswaran (2007), who finds it equals to 15 million INR 

or USD 233,619.

I monetize the estimated number of infants lives saved of 1338 for the treated districts and 

3589 for the whole sample during 2010-2011 to obtain monetary values of health benefits in the 

range of USD 313 million and USD 839 million, respectively. Knowing that the average number 

of  the  households  surveyed in the  treated districts  and in  the whole  sample is  1,081,727 and 

4,280,315, an annual average per-household monetized benefit from the estimated reduction in 

PM2.5 pollution is in the range of USD 289 for the treated districts, and USD 196 for the whole 

sample.  For  comparison,  Luechinger  (2014)  reports  that  annual  monetized  benefit  from  the 

environmental regulation aimed at the reduction of SO2 concentrations in West Germany in the 

year 1989/1990 varies from USD 50 to USD 343 per household.

79 In a statistical sense, the value of a statistical life is the cost of reducing the average number of deaths by one.  
Conducting a cost-benefit analysis of environmental policies in practice, the U.S. EPA, for example, estimates how  
much people are willing to pay for a marginal reduction in the risk of dying from the pollution-related adverse health  
conditions and refers to such estimates as the values of a statistical life (U.S. EPA, n.d.b).
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It is worth mentioning that the overall health benefits of the crisis-induced reduction in air 

pollution could be underestimated in  this  study.  My research design does  not  account  for  the 

effects  of the decline in the concentrations of other air  pollutants,  as well  as the crisis-driven 

impact  on  morbidity  or  labor  productivity  of  the  older  cohorts  of  the  Indian  population. 

Nevertheless, the resulting monetary values of health benefits can be used as a benchmark against 

which the costs of the current or potential policies aimed at improving air quality can be compared. 

Thus, my estimates could be of considerable interest for policymakers aimed at finding the optimal 

balance between the costs and benefits of air pollution regulation in the specific context of early-

life health in developing countries.

3.7  Conclusion

This study has attempted to isolate the causal relationship between the reductions in PM2.5 

pollution presumably caused by the Global Financial Crisis of 2008 and decline in infant mortality 

in India using a quasi-experimental difference-in-differences research design.

Combining  state-of-the-art  satellite-based  estimates  with  household  survey-based 

information for 284 districts across 9 states during 2007-2011, I find that the infant mortality rate 

fell by 24% more in the most affected districts, implying 1338 fewer infants deaths than would 

have occurred in  the absence of  the crisis.  The analysis  of the pathophysiological  mechanism 

indicates that the effect of interest is strongest in the postneonatal period, specific for respiratory 

infections and might be related to infectious diseases. The findings also highlight the importance of 

two  biological  mechanisms:  in  utero  and  post-birth  PM2.5  exposure.  Heterogeneity  analysis 

further  emphasizes  the  role  of  parental  education  in  alleviating  the  adverse  consequences  of 

infants’  exposure to air  pollution and justifies the need for interventions targeting low-income 

households. The estimates are within the range reported in other economic studies and appear to be 

robust to a variety of specifications and falsification tests, prompting the belief that the relationship 

between crisis-induced reduction  in  particulate  air  pollution  and decline  in  infant  mortality  is 

causal in nature.

Moving the analysis further into the policy perspective, I demonstrate how the resulting 

estimates of the health effects attributable to the crisis-induced reduction in PM2.5 pollution could 
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be applied to measure the effectiveness of the current and potential policies aimed at controlling air 

quality in India. For that purpose, I measured actual gains from improving air quality in the Indian 

districts during the crisis time-frame. The resulting gains comprise a number of infant lives saved, 

the corresponding increase in life expectancy at birth and monetary values of the improvements 

obtained. 

Back-of-the-envelope calculations  suggest  that  the estimated decline  in  infant  mortality 

translates into a three-year after crisis total of USD 312.5 million. The resulting health benefits 

attributable to the crisis-induced reduction in air pollution can be used as a benchmark to assess the 

effectiveness of potential policies designed to improve air quality in the selected Indian districts. 

Therefore, this study addresses more precisely the needs of policymakers aimed at finding 

the optimal balance between the costs and benefits of air pollution reduction in the specific context 

of developing countries.
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3.8 Appendix

Fig. A1. PM2.5 concentrations in study area, 1998-2015

Notes: The figure shows the evolution of the district-level annual mean PM2.5 levels in the study area for 1998-2015. 
Two observations emerge. First, air quality has been continuously deteriorating during the last two decades. Second, 
the figure documents two episodes of abrupt reduction in PM2.5 concentrations, 2005-2006 and 2009-2012, followed 
by comparably sharp reversals of the trends. Air quality improvement during the 2009-2012 episode is the focus of my 
study.

Fig. A2. Kernel density graphs of air quality

Notes: The figure compares kernel density estimates of the annual mean PM2.5 distributions across the districts in the 
study area for 2008, 2012 and 2015, representing pre-crisis, crisis and post-crisis cut-off points. Panel A demonstrates 
that the entire distribution shifted substantially to the left in 2012 compared to 2008. In contrast, Panel B documents  
the shift of the distribution to the right again in 2015.
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Fig. A3. Spatio-temporal distribution of district-level annual mean PM2.5

Notes: The figure depicts spatio-temporal distribution of district-level annual mean PM2.5 concentrations in the study  
area for 2008, 2012 and 2015, representing pre-crisis, crisis and post-crisis cut-off points. The districts are classified  
into six categories using air quality thresholds adopted by the WHO, EU and Indian environmental agencies (similar to 
Chowdhury & Dey, 2016). I define “Low”, “Moderate”, “High”, “Very High”, “Severe” and “Extreme” categories in a  
way that their upper limits correspond to one of the standards. The limits for the first two categories are set to meet the  
WHO interim targets 3 (IT-3) and 2 (I-2), equal to 15 and 25 g/m3 respectively. The latter threshold also corresponds 
to the European Environmental Agency target value for European countries. The upper limit of 35 g/m3 in the lower 
“High” category is the WHO IT-1, while the limit in the upper “High” category is equivalent to the Indian National  
Ambient Air Quality Standard of 40 g/m3, the least stringent of the standards. The limits of the remaining categories 
are designed to highlight extremely high levels of air pollution in India. The “Very High” category corresponds to the 
PM2.5 concentration equivalent to the double of the least demanding WHO IT-1, “Severe” pollution exceeds twice the 
Indian Standard and is nine times the WHO air quality guideline value of 10  g/m3, which is excluded from our 
classification.  The  last  “Extreme”  category  comprises  the  remaining  concentrations  of  fine  particulate  pollution  
exceeding 90 g/m3. More details about air quality standards and guidelines are in Panel B of Appendix Table A1, 
WHO (2006a), EEA (2014) and CPCB (2009). 
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Fig. A4. Location of the treated and control districts: Illustrations to columns of the Appendix 

Table A9

A. The location of the treated and control districts as in Column (1): Hot Spot Analysis (HSA)

B. The location of the treated and control districts as in Column (2): 2008-2012 simple changes in PM2.5 
concentrations as in Chay and Greenstone (2003b)

C. The location of the treated and control districts as in Column (3): as in Chay and Greenstone (2003b) but 
alternatively based on 2008-2012 % changes in PM2.5

Fig. A4 (continued). Location of the treated and control districts
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D. The location of the treated and control districts as in 
Column (4): HSA, balanced panel

E. The location of the treated and control districts as in 
Column (5): HSA, adjacent districts

F. The location of the treated and control districts as in 
Column (6): HSA, after drop of 10% of the most 

affected districts based on PM2.5 change

G. The location of the treated and control districts as in 
Column (7): HSA, after drop of 10% of the most 
affected districts based on % change in PM2.5

Panel H. The location of the treated and control districts as in Column (8): HSA, after drop of the adjacent 
districts

Notes: The figure illustrates a column-wise location of the treated and control districts for the Appendix Table A9.  
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Table A1 – Summary statistics of changes in PM2.5 and population

Notes: The table accompanies Appendix Fig. A3 by providing summary statistics corresponding to changes in PM2.5 
and population exposure to PM2.5 pollution across districts for 2008, 2012 and 2015, representing pre-crisis, crisis and 
post-crisis cut-off points. Panel A documents changes in PM2.5 concentrations, while Panel B relates these changes to  
population exposure. Categorization of districts due to PM2.5 concentrations corresponds to those explained in the  
notes to Appendix Fig. A3. Taken together, Fig. A3 and Panel A of this table support the hypothesis that districts with  
high pre-crisis levels of air pollution likely experienced a more significant improvement in air quality than districts  
with  initially  low pollution  concentrations.  Fig.  A3  and  Panel  B  of  this  table  provide  suggestive  evidence  that  
improvements in infant mortality could be more pronounced in districts with high pre-crisis levels of air pollution. 
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Table A2 – Structural trend break analysis

Notes: The table shows the results of the time-series econometric test for structural trend break, supremum Wald and 
likelihood-ratio (LR) tests, designed for cases when the breakpoints are unknown (Andrews, 1993, 2003; Hansen, 
1997). Both supremum tests identify structural breaks within the 2009-2012 air quality improvement episode, thus 
associating them with the respective reversal of the upward trend in PM2.5. Panel A shows that whenever the year  
2010 is included in the test window, the maximal W-statistics are concentrated at this year, and the null hypothesis of 
no trend break can be rejected at the 1 percent level. When tested by the sup LR, the same is relevant for the year 2009 
except that neither of the F-statistics is significant. Panel B uses analogous tests for structural trend break but designed  
for cases when it is pretended that the year of trend break is known. It shows that neither of the years within the 2005-
2006 interval, the years of the largest pre-crisis drop in PM2.5, are trend break years. This relaxes a concern about the  
possible confounding role of these years in the results. 
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Table A3 – Descriptive statistics for treated and control districts for pre- and post-crisis

Notes: The table presents descriptive statistics separately for treated and control districts before and after the crisis.  
There is less room for the possibility that there is a selection or contamination of the control group. The table also  
provides evidence in favor of the hypothesis that the crisis-induced reductions in PM2.5 pollution led to a statistically 
significant decline in district-level infant mortality rates.
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Table A4 – Results of the test suggested by Altonji, Elder, and Taber (2005)

Panel A. Districts with improved air quality

Notes: The table further validates the DID identifying assumption of the model in equation (4). The test suggested by 
Altonji,  Elder,  and Taber (2005) examines whether  the impact  of  the  crisis  has  any association with changes in  
observable characteristics. Although this is not a formal test for exclusion restrictions, the absence of a statistically 
significant  association  with  observable  characteristics  would  suggest  that  there  should  not  be  a  correlation  with 
unobservable  variables  either  (Altonji  et  al.,  2005).  I  first  successively  regress  my  empirical  model  with  every  

observable characteristic as a dependent variable. Then, I check whether the coefficients on the interaction term, δ̂1, 
are statistically significant.  Table A4 presents results  for  both types of treated districts in Panel A and Panel B, 
respectively. Heteroskedasticity-robust standard errors clustered at the district level are shown in parentheses.
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Table A4 – Results of the test suggested by Altonji, Elder, and Taber (2005) 

(continued).

Panel B. Districts with worsened air quality

Notes: The table further validates the DID identifying assumption of the model in equation (4). The test suggested by 
Altonji,  Elder,  and Taber (2005) examines whether  the impact  of  the  crisis  has  any association with changes in  
observable characteristics. Although this is not a formal test for exclusion restrictions, the absence of a statistically 
significant  association  with  observable  characteristics  would  suggest  that  there  should  not  be  a  correlation  with 
unobservable  variables  either  (Altonji  et  al.,  2005).  I  first  successively  regress  my  empirical  model  with  every  

observable characteristic as a dependent variable. Then, I check whether the coefficients on the interaction term, δ̂1, 
are statistically significant.  Table A4 presents results  for  both types of treated districts in Panel A and Panel B, 
respectively. Heteroskedasticity-robust standard errors clustered at the district level are shown in parentheses.
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Table A5 - Estimated effects of the crisis-induced economic slowdown on PM2.5 pollution

Notes: The  table  presents  the  results  of  the  regression analysis  by reporting the estimates  from fitting 
equations (A1) and (A2), which are similar to equations (4) and (5) in the chapter, but with PM2.5 concentrations (
PMdt) as a dependent variable and without additional control variables. 

PMdt=α+δ1(Treatedd ∙ Post t )+μd+γt+λd t+ε dt (A1)

PM dt=α+δ1(Treatedd ∙ Post t)+δ2(Treatedd ∙ Post t ∙t )+μd+ γt+λd t+εdt
(A2)

The description of the variables is the same as provided in the chapter. The equations (A1) and (A2) test in  
the DiD framework if the crisis-induced economic slowdown reduced PM2.5 air pollution in the treatment districts  
relative  to  control  districts  after  adjustment  for  district  fixed  effects,  year  fixed  effects  and  differential  trends.  
Equation (A2) additionally allows for both level and slope changes during the post-crisis period. For both types of 
treated districts, columns (1) report the estimate of the coefficient δ1 and columns (2) report the estimates δ1 and δ2 
after the estimation of equation (A1) and equation (A2), respectively. Standard errors clustered at the district level 
are shown in parentheses.

The coefficients in both columns for the treated districts with the reduction in PM2.5 pollution suggest that  
these districts experienced a statistically significant decline in PM2.5 concentration after 2010. Moreover, column (2) 
provides evidence of a  negative and statistically significant change in the slope of  PM2.5 pollution after  2010. 
Therefore, regression analysis confirms the visual impression that air pollution reduction occurred during the post-
crisis period. The regression coefficients for the treated districts with the increase in PM2.5 pollution captured by the  
variable Treated  Post are positive, much smaller, and significant. In contrast to the districts with a decline in air  
pollution, PM2.5 concentration in districts with worsened air quality does not demonstrate a sign of a statistically  
significant change in slope after 2010. Thus, there is little evidence of the trend-break impact of the crisis on air  
pollution in these districts. 

For the treated districts with improved air quality, the coefficient in column (1) implies PM2.5 in this group 
of treated districts decreased 11.89  g/m3 relative to the control districts between the pre- and post-crisis period. 
Coefficients in column (2) from the model that allows for changes in the level and slope show a somewhat smaller  

decrease of 9.05 g/m3 (δ̂1+0.5 ∙ δ̂2, where the factor of 0.5 is equal to the average value of the continuous year 

variable t  for two post 2010 years ((0+1)/2; t  is set to be equal to zero in 2010). 
Overall, regression analysis confirms the visual impression that air pollution reduction occurred during the  

post-crisis period.
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Table A6 – Sensitivity analysis

Notes: The  table  addresses concern that  changes in  the  dependent  variable  may be explained by changes in  the  
observable  time-varying  characteristics  that  potentially  correlated  with  the  impact  of  PM2.5  pollution  changes 
attributable to the effect of the crisis. For that purpose, I perform a sensitivity analysis. The table reports results for  
both types of districts. Every pair of columns represents estimates from fitting equations (4) and (5). All regressions 
include district FE, year FE, district-specific trends. Heteroskedasticity-robust standard errors clustered at the district  
level are shown in parentheses.
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Table A7 – Falsification tests: Pre-crisis data sample, placebo Post t= 2008

Notes: The table shows the results of another falsification test. I re-estimate the model using observations only from  
the pre-crisis period when the effects of the crisis-induced reduction in air pollution could not exist. I assign 2008 as a  
placebo trend break point and thus consider 2007 as the pre-crisis period, and 2008 as the post-crisis period. The table  
reports point estimates after fitting equation (4) with different combinations of W dt and Xdt  vectors for the districts 
from both treated groups with improved (Group 1) and worsened (Group 2) air quality. As expected, the regressions  
return statistically insignificant coefficients. Heteroskedasticity-robust standard errors clustered at the district level are 
shown in parentheses.
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Table A8 – Additional falsification and robustness checks

Notes: The table provides results of the additional falsification and robustness checks. See the text for explanations. 
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Table A9 - Alternative sorting of districts into treatment and control groups (T&C)

Notes: The table compares resulting estimates based on the model in equation (4) from the robustness checks that  
focus  on  alternative  options  for  sorting  districts  into  treatment  and  control  groups.  Each  column  of  the  table  
corresponds to one of the eight regressions,  which are intuitively illustrated by the graphs in Fig.  A4. The sign,  
magnitude and order of statistical significance of the coefficients on Treated  Post remain similar between each other 
and to the coefficient estimated using my preferable specification. T&C refers to the treated and control districts.  
Heteroskedasticity-robust standard errors clustered at the district level are shown in parentheses.
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Table A10 - Alternative estimation strategies

Notes: The table compares resulting estimates based on the model in equation (4) from another set of robustness 
checks that focus on alternative estimation strategies. The test checks whether the main finding would remain robust to  
different  estimation  strategies,  namely  detrending,  conditioning  on  the  explanatory  variables  and  district-specific 
trends, and the method combining matching on pre-crisis explanatory variables and trends with subsequent difference-
in-differences. Column (1) shows the coefficient on Treated  Post estimated using my preferable specification based 
on detrending. Column (2) shows the same coefficient estimated using my preferable specification but based on the 
conditioning on explanatory variables and district-specific  trends.  Columns (3) and (4) show the results from the  
regressions that combine matching on pre-crisis explanatory variables and district-specific trends with specifications in 
columns (2) and (1), respectively. Matching is performed as a 1-to-1, nearest-neighbor, without replacement and with  
common support. In other words, the results in columns (3) and (4) are the estimated coefficients on Treated  Post 
obtained  from the  regressions  like  in  columns  (2)  and  (1)  but  on  matched  sample.  The results  indicate  that  all  
specifications  return  estimated  coefficients  of  interest  that  are  not  substantially  different  from  each  other,  thus  
confirming the credibility of the main analysis. Heteroskedasticity-robust standard errors clustered at the district level  
are shown in parentheses.
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Appendix A1 – Details Getis-Ord Hot Spot Analysis

Getis-Ord  Hot  Spot  Analysis  (HSA)  is,  in  essence,  a  test  for  spatial  dependence 

(autocorrelation or association) and is designed to assess the extent of clustering between units 

based on their attributes and make inferences about its statistical significance. In spatial statistics, 

the notion of spatial dependence, reflecting the tighter relationship between near than distant units,  

means that the similar values of some attribute or characteristic for one unit will likely occur in 

neighboring units also, leading to the formation of spatial clusters (Anselin, 1992). 

HSA is designed to answer several types of research questions. Specifically, a researcher 

might  apply  HSA to  a  particular  characteristic  of  the  unit  of  analysis  to  identify  the  spatial 

concentration of its incidents or to locate units with high or low values of the particular attribute. 

Alternatively, a researcher may be interested in locating units with unexpectedly, compared to the 

purely random occurrence, high/low attribute values in relation to some other variable. The latter is 

of special interest to my study. Applying HSA, I am interested in identifying spatial clusters of  

districts  with unusually large and statistically significant  changes in the concentrations of fine 

particulate matter during the 2009-2012 improvement episode in relation to pre-crisis 2008 air 

pollution levels. I already established the fact that pollution in 2008 could be a predictor for the 

magnitude  of  changes  in  air  pollution,  implying  that  heavily  polluted  districts  in  2008 likely 

experienced more substantial and significant changes by 2012 than districts with initially low or 

moderate levels of air pollution. 

In turn, the type of question that I ask determines the construction of the districts’ attribute, 

an input variable analyzing which HSA assesses whether districts with high/low attribute values 

are spatially clustered or associated. Addressing my type of questions, it is not appropriate to run 

HSA on raw values of the attribute. Instead, I construct my input variable as a ratio by dividing the 

magnitude of the 2008-2012 changes in air pollution by the level of fine particulate pollution in 

2008. In this form, the HSA input attribute allows to obtain a correct answer to my question.

Technically, in the framework of the HSA, answering my question boils down to testing the 

null  hypothesis  of “no spatial  dependence.”  The null  implies  that  the assignment of  the input 

attribute values to the particular districts does not depend on spatial  location; the value of the 

attribute itself matters. The alternative hypothesis instead focuses on cases districts with large and 
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small attribute values are systematically surrounded by other districts with large and small values. 

Rejection  of  the  null  hypothesis  would  imply  the  presence  of  statistically  significant  spatial 

clusters of similar values (Anselin, 1992).  Statistically significant spatial clusters of high values 

are referred to as hot spots, while clusters of low values as cold spots.

The  researchers  have  offered  a  number  of  statistics  to  test  the  hypotheses  of  interest 

effectively. In ArcGIS software, the Hot Spot Analysis tool calculates the Getis-Ord Gi
* statistic 

presented in Getis and Ord (1992):

Gi
¿
=

∑
j=1

n

ω i , j x j−X∑
j=1

n

ωi , j

S√ [n∑
j=1

n

ωi , j
2

−(∑
j=1

n

ωi , j)
2]

n−1

(A3)

where x j is the attribute value for feature (district, in my case) j; ωi , j is the spatial weight 

between feature i and j; n is the total number of features;  Xand  S are respectively average and 

standard deviation of the attribute value. Spatial weight is an element of a binary spatial weights 

matrix that represents a theoretical understanding of spatial interdependence between the selected 

features. 

ArcGIS implements Hot Spot Analysis in several steps.  Gi
* statistic, a z-score in essence, is 

calculated  for  each  district  separately  and  measures  the  extent  to  which  this  spatial  unit  is 

surrounded by other neighboring districts with high or low values of the input attribute, i.e. spatial 

clustering.  Gi
*  statistic  defines  neighbors  for  each  district  as  those  that  fall  within  a  critical 

distance.  Measured by  Gi
*,  local spatial  clustering for a particular district  and its  neighbors is 

compared to the global measure of clustering of all districts in the data layer together. When the 

local measure is different from the expected one as suggested by its distribution under the null 

hypothesis  and  too  large  to  be  the  result  of  random  chance,  a  conclusion  about  statistical  

significance can be made. As the output, ArcGIS HSA tool returns z-scores and p-values for every 

district and creates a new output data layer.
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