
CERGE
Center for Economics Research and Graduate Education

Charles University

Essays on Implications of Rational
Inattention to Discrete Choices

Andrei Matveenko

Dissertation

Prague, July 2019





Andrei Matveenko

Essays on Implications of Rational
Inattention to Discrete Choices

Dissertation

Prague, July 2019





Dissertation Committee

Filip Matějka (CERGE-EI; chair)

Jakub Steiner (CERGE-EI)

Jan Zápal (CERGE-EI)

Referees

Hassan Afrouzi (Columbia University)

Joonhwi Joo (University of Texas at Dallas)

i



ii



Table of Contents

Abstract v

Abstrakt vii

Acknowledgments ix

Introduction 1

1 Logit, CES, and Rational Inattention 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Choice of the good . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 The link between rational inattention and the CES utility function 9

1.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 The case of a priori homogeneous options . . . . . . . . . . . . . . 10
1.3.2 Simple example regarding a priori heterogeneous options . . . . . 12
1.3.3 The effect of change in belief or in price on elasticity and elasticity

of substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.A Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.B Derivation of weighting coefficients in the example . . . . . . . . . . . . . 18
1.C Price elasticity of expected demand . . . . . . . . . . . . . . . . . . . . . 18
1.D Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 The Status Quo and Belief Polarization of Inattentive Agents 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Description of the setup . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Agent’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Description of belief evolution . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Updating in the opposite direction from the realized value and be-

liefs polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



2.3.5 Monotonicity of ∆(s∗) . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Over-optimism and polarization: intuition and implications . . . . . . . . 35
2.5 Comparative statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.A Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.B Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.C Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Attentional Role of Quota Implementation 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Standard RI problem . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Quotas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Subsidies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Binary example with risky and safe options . . . . . . . . . . . . . . . . . 60
3.5 Optimal action of the social planner . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Externalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Influence of priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.4 Imperfect social planner . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.A

Details of the solution for the model with non-binding quotas . . . . . . . 73
3.B

Details of the solution for the binary example with risky and safe options 74
3.C

Binary example with two risky options . . . . . . . . . . . . . . . . . . . 75
3.D

Details of the solution for the binary example: subsidies . . . . . . . . . . 78
3.E

Tradeoff situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 83

iv



Abstract

In the first chapter we study fundamental links between two popular approaches to con-
sumer choice: the multinomial logit model of individual discrete choice and the CES
utility function, which describes a multiple choice of a representative consumer. We base
our analysis on the rational inattention (RI) model and show that the demand system of
RI agents, each of whom chooses a single option, coincides with the demand system of a
fictitious representative agent with a CES utility function. Thus, the diversified choice
of the representative agent may be explained by the heterogeneity in signals received by
the RI agents. We obtain a new interpretation for the elasticity of substitution and the
weighting coefficients of the CES utility function. Specifically, we provide a correspon-
dence between parameters of the CES utility function, prior knowledge and marginal cost
of information.

In the second paper we investigate the role of a value of a known policy with certain
payoff on agents’ information acquisition and belief polarization. We model agents to be
rationally inattentive: some information about the new policy can be acquired before a
choice is made, but doing so is costly. We show that even small changes in the agents’
perception of the status quo can lead to polarization of opinions. Such behavior is caused
by agents not learning about the states separately, but by endogenously pooling them
into groups and acquiring only the information necessary to understand which group the
realized state is from. As a consequence, the agents might update their expected belief
about the value of the new policy wrongly, away from the true payoff.

In the third chapter we introduce a new role of quotas: the attentional role. We
study the effect of quota implementation on the attention allocation strategy of a RI
agent. First, we find that a RI agent who is forced to fulfill a quota always acquires
information about existing options, unlike an unrestricted RI agent who can decide not
to acquire any information. Second, we show that the same behavior could be achieved
by subsidizing certain alternatives. Finally, we analyze optimal quotas from the social
planner’s point of view under two scenarios: when the social planner takes into account
production externalities and when he eliminates the influence of priors on the agent’s
choice.
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Abstrakt

První kapitola dizertace se zabývá propojením dvou populárních přístupů k teorii spotřebi-
telského výběru: Modelu Multinomického Logitu diskrétního výběru a CES užitkové
funkce, která slouží k modelování výběru reprezentativního spotřebitele. Analýzou mod-
elu racionální nepozornosti ukážeme, že systém poptávek racionálně nepozorných
spotřebitelů, z nichž každý vybírá jednu možnost, splývá se systémem fiktivního reprezen-
tativního spotřebitele s CES užitkovou funkcí. Výběr různých možností tak může být
vysvětlen jako důsledek heterogeneity v signálech obdržených racionálně nepozornými
spotřebiteli. Nabízí se tak nová interpretace elasticity substituce a vážicích koeficientů
CES užitkové funkce. Konkrétně předkládáme vztah mezi parametry CES užitkové
funkce, předchozími znalostmi (prior), a mezními náklady na informaci.

V druhé kapitole dizertace se zaměříme na dopady nového opatření s neznámými
dopady na zisk informací a polarizaci přesvědčení aktérů. Modelujeme aktéry pomocí
racionální nepozornosti: některé informace ohledně nového opatřeni je možné získat před
rozhodnutím, ale zisk informací je nákladný. Ukážeme, že i malé změny ve vnímání ak-
térů opatření, které je status-quo, mohou vést k polarizaci přesvědčení. Takové chování je
způsobeno aktéry, kteří informace nezískávají o jednotlivých stavech světa, ale vytváří en-
dogenní balíčky stavů světa a následně získávají pouze informace, které umožňují rozliǎit
mezi těmito balíčky. V důsledku aktéři mohou získat informace, které vedou k chybám v
přesvědčení o dopadech opatření.

V třetí kapitole předkládáme nové dopady kvót skrze alokaci pozornosti. Zaměříme se
na dopady implementace kvót na výběr strategie alokace pozornosti v modelu s racionálně
nepozornými aktéry. Nejprve ukážeme, že racionálně nepozorní aktéři, kteří jsou nuceni
splnit kvótu, vždy, na rozdíl od kvótou neomezených racionálně nepozorných aktérů,
získávají informace o dostupných možnostech. Poté ukážeme, že totožné chování je možné
docílit dotováním určitých možností. Závěrem předkládáme analýzu optimálních kvót z
pohledu společenského plánování v dvou případech: když společenské plánování zahrnuje
externality z výroby a když společenské plánování dokáže odstranit dopad předchozích
znalostí (prioru) na volby aktérů.
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Introduction

People’s attention is a scarce resource. The theory of Rational Inattention, which was

introduced in the seminal works of Sims (1998, 2003) studies the optimal allocation of

attention. The key components of the model are that people choose what information to

attend to and that the choice of information structure is unrestricted. Such an assumption

seems appropriate for the modern world: with all the recent technological developments

people are overwhelmed with information and are also free to choose from many infor-

mation sources. In this dissertation I study several implications of Rational Inattention

to discrete choices.

In the first paper, “Logit, CES, and Rational Inattention”, we explore the connection

between the CES demand system of a representative consumer and the discrete choice of

an individual consumer who is rationally inattentive. More specifically, we show that the

CES-type behavior can be generated by aggregating the choices of the decision makers

who are rationally inattentive. In particular, if we consider a population of consumers

who (i) are endowed with a budget y, (ii) must select which of N goods to spend their

endowment on, each of which gives utility ln q if consumed in quantity q, and (iii) is

rationally inattentive to prices with costs based on Shannon mutual information, then

the resulting expected demand, conditional on realized prices, is the same as that of a

consumer maximizing CES preferences. Hence, the parameters of the CES utility function

can be related to the primitives of the Rational Inattention problem.

In the second paper, “The Status Quo and Belief Polarization of Inattentive Agents”

(joint work with Vladimír Novák), we explore the role of the status quo on the attention

1



allocation strategy and demonstrate the possibility of opinion polarization for rationally

inattentive agents. We study the evolution of belief of a rationally inattentive agent who

is choosing between two options, risky (new policy) and safe (status quo), and character-

ize situations in which the belief would be updated, on average, in the wrong direction.

We find that the key determinant of the direction of belief updating is the perception of

the status quo. The position of the status quo determines the information acquisition

strategy. In our interpretation, the agent splits states of the world into categories and

learns, to some extent, about these categories, not distinct states. This type of learning

might lead to updating of belief in the wrong direction. The division into categories is

determined exactly by the perception of the status quo. If the two agents have different

perceptions of the status quo, they might diverge in their opinions after information acqui-

sition. Interestingly, the difference in their opinions can become greater if the information

becomes cheaper to acquire.

The last paper of this dissertation, “Attentional Role of Quota Implementation” (joint

work with Sergei Mikhalishchev), is devoted to studying the optimal behavior of a RI

agent who is forced to fulfill quotas when making a choice from a discrete menu. In this

situation, the agent always (for any non-trivial quota and any non-trivial prior belief)

acquires information. We show that a social planner using quotas could force an agent to

make a better choice (for the economy) and reduce the attentional discrimination, which

can take place because of costly attention. At the same time, it is important to note that

quotas restrict the agent, and the effect of quota implementation could be negative.

2



Chapter 1

Logit, CES, and Rational Inattention

1.1 Introduction

People choose different products for various reasons, and, perhaps, the two most impor-

tant are variation in preferences and in information. Correspondingly, there are models

of individual choice based either on heterogeneous idiosyncratic preferences or on varia-

tion in information received by agents. Both types of models have become workhorses in

microeconomics, decision making and related topics. However, for the analysis of behav-

ior of a set of consumers, rather than a single consumer, an “as if” model of a fictitious

representative consumer with aggregate utility function is commonly used, often having

the shape of a constant elasticity of substitution (CES). The existing microfoundation of

the CES utility function is based exclusively on preference heterogeneity, and thus any

change in its parameters is interpreted as a change in the idiosyncratic preferences of

underlying agents, while possible informational reasons are ignored.

In this paper we broaden the approach to the microfoundation of the CES utility

function and show that this functional form might be obtained by aggregation of choices of

rationally inattentive (RI) consumers who make a discrete choice with costly information

acquisition. Our approach explains the origins of both the weighting coefficients (which

have previously been interpreted as a consumer’s preferences for separate goods) and of

the elasticity of substitution of the CES utility function.

The new microfoundation is important since it has different features on the individual

level and different comparative statics and testable implications. The parameters (elas-
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ticity of substitution, weighting coefficients) are endogenous and thus the “as if” CES

changes if the environment does. It allows the expansion of understanding of the concept

of a representative agent and opens a way to study the role of the informational environ-

ment (for shaping CES utility) in many models of macroeconomics, international trade

and economic geography that are based on the CES utility function of the representative

agent.Anderson, De Palma, and Thisse (1988)

The multinomial logit model and the CES utility function are among the most popu-

lar tools for dealing with consumer choice problems. Despite the fact that these models

use quite different assumptions (discrete individual choice and multiple choice of a rep-

resentative consumer, correspondingly), there is a deep and illuminating link between

them.

The existing literature that relates the CES utility function to the multinomial logit

model of discrete choice is based on a random utility model (Anderson, De Palma, and

Thisse (1987, 1988)). Hence, the elasticity of substitution of the aggregate utility is

determined by an exogenous parameter of a specific (extreme value Gumbel) cumula-

tive distribution function of taste dispersion. Since this parameter reflects idiosyncratic

differences in preferences, it is difficult to forecast its changes under economic shocks.

This paper, in contrast, uses rational inattention (RI) (Sims (1998, 2003)) as a micro-

foundation, and reveals the link between the parameters of the RI model, the multinomial

logit model, and the elasticity of substitution and weighting coefficients of the CES utility

function. Anderson, De Palma, and Thisse (1987),

We model a situation in which a consumer is facing a discrete choice problem: she

possesses some income and spends it to purchase only one kind of several divisible goods.

We assume that, despite the goods having certain prices, the consumer is not able to

observe the prices perfectly. Limitations in consumers’ attention to prices are confirmed

empirically (e.g. Zeithaml (1988), Rosa-Díaz (2004)).

The assumption of uncertain prices is not crucial for our analysis. Instead we could

assume that the consumer does not observe purchasable quantities perfectly. The uncer-

tainty appears either because of prices or quantities, and we stick to uncertainty of prices

for the sake of definiteness.

The RI consumer observes signals about the prices, but the structure of the signals

(any joint distribution of signal and state) is itself chosen by the consumer. As is usually

assumed in RI models, the information is costly, and the cost of information is pro-

portional to entropy-based reduction in uncertainty between the prior and the posterior

4



distributions.

We explore the demand structure of RI consumers with logarithmic utility and the

marginal cost of information λ. We show that this demand structure is the same as the

one generated by the CES utility function that belongs to an aggregate representative

consumer who possesses perfect information, for which the elasticity of substitution is

σ = 1/λ + 1. That is, the higher the cost of information, the smaller the response of

market demand to changes in prices. We show that the weighting coefficients of the CES

utility function are defined by the prior knowledge of the RI consumers and the marginal

cost of information.

Our model leads to new implications. Firstly, in our model the weighting coefficients

of the resulting aggregate CES utility function are endogenous. That means that if the

environment changes,1 then the parameters of the information acquisition and decision

problem of the RI agent change; thus the representative CES utility changes and the mag-

nitude of consumers reactions would be different from that implied by the CES function

with exogenous coefficients. A further implication of our model concerns the reaction of

demand to change in the marginal cost of information, λ. We show that the weighting

coefficients of the CES utility depend on it; that is, the marginal cost of information

enters the model deeper than the parameter of taste heterogeneity, µ, in the model of

Anderson, De Palma, and Thisse (1987, 1988). We can even see that information can

become so expensive that some goods are never chosen (the weighting coefficient becomes

0).

Our paper is related to several strands of literature. The microfoundation of the utility

function of the representative consumer is still an open question (see Kirman (1992), Sheu

(2014), Tito (2016)). It is especially important to microfound the CES shape because the

CES function is used in many models of macroeconomics, international trade, economic

geography and industrial organization (see, e.g., Atkin, Faber, and Gonzalez-Navarro

(2018), Mrázová and Neary (2014), Sheu (2014)). It is notable that one of the reasons for

the critique of the welfare analysis based on models with CES utility (see Kirman (1992),

Tito (2016)) is that the relation between the fictitious representative consumer and real

consumers is not clear and the welfare of the representative consumer seems not to be

informative.

The relation between the logit model of discrete choice and the CES utility function

of a representative consumer was first explored by Anderson, De Palma, and Thisse
1For example, because of the introduction of a new trade barrier on a foreign good.
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(1987,1988). They use a random utility model as a foundation for logit and show that

the demand system derived from a nested logit model is also generated by the CES utility

function. In particular, they show that the elasticity of substitution σ of the CES utility

function is determined by a positive constant (Gumbel distribution parameter), which

serves as a scale parameter of the random term in the definition of stochastic utility.

More general results on the connection between multinomial logit and demand systems

are presented, in the same vein, by Thisse and Ushchev (2016) and by Tito (2016).

The model of RI, first introduced by Sims (1998, 2003), was applied to consumer

behavior by Caplin and Dean (2015), Joo (2019), Martin (2017), Matějka and McKay

(2012), Matějka (2015) and Tutino (2013). Matějka and McKay (2015) proposed a foun-

dation for the multinomial logit model based on RI, and we use their model in this paper.

The structure of the rest of the paper is as follows. In Section 1.2 we describe the

RI model of consumer choice and derive from it the CES utility function of a representa-

tive consumer. In Section 1.3 we consider the cases of homogeneous and heterogeneous

price distributions and study price elasticity and elasticity of substitution. Section 1.4

concludes.

1.2 The model

There are N types of goods that are perfect substitutes for the individual consumer. The

consumer is endowed with budget y, which she spends entirely on one type of good2. The

consumer would like to purchase the cheapest type of good to have as large a quantity

of it as possible; however, at the moment of choice of the good she does not observe

prices perfectly3. For example, there are various packages which have various prices, as

well as some discounts or taxes which are not so obvious at first sight. The true payoffs

related to the chosen good are revealed only after the choice is made. One can think of

the following interpretation of the model: different goods are sold by different vendors,

who are located in different places. The consumer learns the price when she arrives at

the location of the vendor and it is too late to change the vendor.

2We could also assume that there are N types of goods that are perfect substitutes and one more
good with a known price p = 1 (a numeraire good). The consumer has an opportunity to spend part of
her budget on the numeraire good. Following Anderson, De Palma, and Thisse (1988), we could assume
that the utility of consumption good i and good 0 is vi = ln qi +α ln q0. The resulting utility function of
the representative consumer would have a shape of CES utility function multiplied by qα0 . This function
is similar to the utility function that was considered in the original Dixit and Stiglitz (1977) paper.

3Alternatively, we could assume uncertain quantities instead of prices.
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Following Anderson, De Palma, and Thisse (1987), we assume that the utility of

consumption of good i by the individual is

vi = ln qi, i = 1, ..., N,

where qi is the quantity. If the individual chooses good i to purchase, then, obviously,

the consumed quantity is

q∗i =
y

pi
, (1.1)

where pi is the price, and the indirect utility is

V (y, pi) = ln

(
y

pi

)
. (1.2)

We assume that the consumer exhausts her budget entirely. For example, that can be

achieved in the following way. The buyer hands over her budget to the seller, e.g., $10,

and gets in return the amount of the good that the budget is sufficient for.

1.2.1 Choice of the good

Following Matějka and McKay (2015), the agent is rationally inattentive and chooses from

N products characterized by utility values considered by the agent as a random vector

v = (v1, ..., vN) with distribution G(v) ∈ ∆(RN), where ∆(RN) is the set of all probability

distributions on RN . More precisely, the price vector p = (p1, ..., pn) is random, which

makes vi = V (y, pi), (i = 1, ..., N) random variables. The belief about v, i.e. G(v), is

given exogenously by the agent’s prior knowledge of prices.

The agent is able in principle to obtain precise information about the realization of

the random price vector p = (p1, ..., pN) (and, correspondingly, about the realization of

the random vector of utilities v = (v1, ..., vN)). However, for the agent the information

about the realization is costly. She constructs her information-action strategy in advance

by solving a problem of maximization of the expected utility less the information cost.

The information-action strategy includes the choice of information (signal) about the

realization and the choice of action (selected product) conditional on the signal. The

second choice is standard: the agent simply chooses the option providing the highest

expected value. The first choice is the hallmark of rational inattention.

It is assumed that, to reduce the uncertainty, the agent has to pay a cost λκ, where

7



λ > 0 is the marginal cost of information, and κ > 0 is the amount of information

processed. The latter is the expected entropy4 reduction between the agent’s prior and

posterior beliefs about v.

According to Lemma 1 from Matějka and McKay (2015) the state-contingent choice

behavior of the RI consumer can be found as the solution to a simpler maximization prob-

lem that does not make reference to signals or posterior beliefs. That is, each information-

action strategy may be characterized by a vector function (P1(v), ..., PN(v)), where Pi(v)

is a conditional probability that product i will be chosen under the realization v. The

probabilities reflect the agent’s choice under incomplete information, when she receives a

noisy signal but does not know the realization of v precisely.

Formally, the consumer’s problem is described in the following way.

Consumer’s Problem. The consumer’s problem is to find an information processing

strategy maximizing expected utility less the information cost:

max
(P1(v),P2(v),...,PN (v))

{
N∑
i=1

∫
v

viPi(v)G(dv)− λκ(P,G)}, (1.3)

where

κ(P,G) = −
N∑
i=1

P 0
i lnP 0

i +

∫
v

(
N∑
i=1

Pi(v) lnPi(v)

)
G(dv),

Pi(v) is the conditional on the realized vector v probability of choosing good i, and P 0
i is

the unconditional probability that the product of type i will be chosen,

P 0
i =

∫
v

Pi(v)G(dv), i = 1, ..., N.

Probabilities P 0
i are obtained as a solution of the problem (1.3); they reflect prior

knowledge G(v) and do not depend on the realization of p. However, they may depend

on the marginal cost of information λ.

It is shown by Matějka and McKay (2015) that the solution, Pi(v), follows the modified

logit formula:

Pi(v) =
P 0
i e

vi
λ∑N

j=1 P
0
j e

vj
λ

, i = 1, ..., N. (1.4)

By plugging (1.2) into (1.4) we obtain for the probability of choosing product i as a

4The entropy of a continuous random variable X with probability density function f(x) with respect
to a probability measure m is H(X) = −

∫
f(x) log f(x)m(dx).
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function of price vector and prior beliefs:

Pi (v(p)) =
P 0
i p
− 1
λ

i∑N
j=1 P

0
j p
− 1
λ

j

, i = 1, ..., N. (1.5)

The conditional expected demand for good i is Di = Pi(v(p))q∗i . Equations (1.1) and

(1.5) imply the following.

Lemma 1. The conditional expected demand for good i, Di = Pi(v(p))q∗i , is

Di =
P 0
i p
− 1
λ
−1

i∑N
j=1 P

0
j p
− 1
λ

j

y, i = 1, ..., N. (1.6)

Thus, the market share of the good i is

Mi =
piDi

y
= P 0

i

(pi
P

)− 1
λ
,

where P is a price index,

P =

(
N∑
j=1

P 0
j p
− 1
λ

j

)−λ
.

1.2.2 The link between rational inattention and the CES utility

function

In the following proposition we show that the demand of the aggregate of RI agents is

the same as if there was a fictitious representative consumer maximizing the CES utility

function under full information.

Proposition 1 (The CES demand structure of rationally inattentive agents). The de-

mand structure (1.6) representing the rational inattention model of discrete choice with

logarithmic preferences is generated by the CES utility function

U =

(
N∑
j=1

βjq
ρ
j

) 1
ρ

,

which is maximized by the representative consumer subject to the budget constraint

N∑
j=1

pjqj ≤ y,
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where the elasticity of substitution is

σ =
1

1− ρ
=

1

λ
+ 1, (1.7)

and the “weighting” coefficients are

βi = γ
(
P 0
i

)1−ρ
= γ

(
P 0
i

) λ
1+λ , i = 1, ..., N, (1.8)

where γ is any positive coefficient.

Proof: see the Appendix.

Thus, the goods seem as if they are not perfect substitutes for the representative

consumer, despite being perfect substitutes for each of the underlying RI consumers.

From (1.7) we see that the elasticity of substitution σ is higher than 1 and depends

negatively on the marginal cost of information λ. If the cost of information λ increases,

then the behavior of the representative (aggregate) consumer is the same as if the elasticity

of substitution went down. The reason is that the individual consumer inspects prices

less, and consequently she is more likely to make errors and thus react less to changes in

prices.

The weighting coefficients βi depend positively on the corresponding unconditional

probabilities P 0
i .

Corollary 1. The indirect utility function of the representative consumer is

V(y, p1, ..., pN) = γ
1
ρ
y

P
,

where P is the price index,

P =

(
N∑
j=1

P 0
j p

ρ
ρ−1

j

) ρ−1
ρ

=

(
N∑
j=1

P 0
j p

1−σ
j

) 1
1−σ

=

(
N∑
j=1

P 0
j p
− 1
λ

j

)−λ
.

1.3 Implications

1.3.1 The case of a priori homogeneous options

The important case is when all the options enter the prior G symmetrically, i.e. the

individual does not distinguish between them before she starts processing information.
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Such options are referred as a priori homogeneous.

In this case unconditional probabilities are P 0
1 = ... = P 0

N = 1/N and conditional

probabilities of choice of the goods,

Pi(v) =
e
vi
λ∑N

j=1 e
vi
λ

, i = 1, ..., N,

do not depend on prior belief. This is the multinomial logit formula. Correspondingly,

Pi(v(p)) =
p
− 1
λ

i∑N
j=1 p

− 1
λ

j

, i = 1, ..., N

and expected demands are

Di =
p
− 1
λ
−1

i∑N
j=1 p

− 1
λ

j

y, i = 1, ..., N.

In the case of a priori homogeneity, as in the general case, the choice of the CES

function is not determined in a unique way, but up to a constant multiplier. Natural

candidates for such a CES function are two “standard” functions:

U =

(
N∑
i=1

qρi

) 1
ρ

(1.9)

and

Ũ =

(
N∑
i=1

1

N
qρi

) 1
ρ

. (1.10)

Function (1.9) corresponds to γ = N1−ρ in the formula (1.8), and function (1.10)

corresponds to γ = N−ρ. These two functions can explain the same consumer choices

based on the same market data; however, they possess different properties. In particular,

function (1.10) at the limit as λ → ∞ converges to the Cobb-Douglas function. The

function (1.9), in its turn, goes to infinity as λ→∞, which is somewhat intractable.

Moreover, it is easy to show that function (1.10) is decreasing in the marginal cost of

information, while function (1.9) is increasing. That is, for the representative consumer

with utility function (1.10) an increase of the cost of information is “bad news”, while for

the consumer with function (1.9) it is “good news”. This is an example of how implications

do change from a singular agent level (where lower cost of information clearly leads to
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higher welfare) to an aggregate representative agent level. This affirms that one should

be careful when using aggregate models in policy analysis.

1.3.2 Simple example regarding a priori heterogeneous options

For the case of homogeneous options the main implications of RI foundation of the CES

utility function are rather similar to the implications of the Random Utility foundation.

In this section we show in a simple example how, in the case of asymmetric distribution

of prices the CES utility function (namely, its weighting coefficients) of a representative

agent changes with respect to a change in parameters of the RI model – marginal cost of

information and prior knowledge. One implication of such a change is the possibility of a

zero weighting coefficient for some good – the information becomes too costly to acquire

or the good is a priori too expensive – the consumer does not consider it and never buys.

Let us assume that a RI consumer chooses one of two goods. The first good is sold at

a fixed price. The second good, in turn, is sometimes sold with a discount and sometimes

has a higher price. How will such pricing affect the demand of the representative agent?

How does the demand change in response to a change of the environment?

More precisely, there are two goods and two states of the world. Different goods

are optimal in different states, but it is costly to identify the realization of the state

of the world. The first good always has price 1. The second good costs 0.5 in the

first state and 1.5 in the second state. The agent possesses prior knowledge on the

probability distribution of the state of the world: g1 and g2 = 1 − g1 are probabilities

of state 1 and state 2, correspondingly. As part of her information strategy the agent

obtains unconditional probabilities of choosing good 1 and good 2, P 0
1 , P

0
2 = 1 − P 0

1 ,

correspondingly. These probabilities depend on her prior knowledge and marginal cost of

information. As formula (1.8) demonstrates, these unconditional probabilities together

with the parameter of information cost determine the weighting coefficients of the CES

function of the representative agent. The exact formulas and the way they are obtained

can be found in the Appendix.

In Figure 1.1 we can see how exactly coefficients β1 and β2 change with respect to

the information cost parameter λ under the fixed prior g1 = g2 = 0.5. In Figure 1.2 the

marginal cost of information is fixed (λ = 0.5) and we vary the prior (g1, g2).

In Figure 1.1 the states of the world are equiprobable: g1 = g2 = 0.5. The marginal

cost of information changes from 0 to 1; the blue (solid) line depicts the weighting coef-
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ficient for good 1, the red (dashed) line – for good 2.

Figure 1.1: Coefficients β1 (blue solid line) and β2 (red dashed line) dependent on λ
when g1 = g2 = 0.5

Figure 1.2: Coefficients β1 (blue solid line) and β2 (red dashed line) dependent on g1.

The standard point of view on the CES utility function is that its weighting coef-

ficients reflect consumer’s preferences (Eaton and Kortum ). We can see in Figure 1.1

that for all values of λ the weighting coefficient for the first good is lower than for the

second one. It might look as if for the consumers the second good is intrinsically more

preferable (recalling the common view on the weights in the CES utility function of the

representative consumer). But this is not the case – the higher weighting coefficient is

explained by the information. Indeed, when we look at Figure 1.2, we see that for a fixed

value of λ the weighting coefficients vary with the prior knowledge of the consumer ( the

probability of the first state of the world g1). Idiosyncratic tastes do not change but the

prior does change.

This example demonstrates that the approach offered in the present paper not only

provides an alternative foundation for the CES utility but also helps to understand the na-

ture of the weighting coefficients of the CES function. We have shown that the weighting

coefficients change with respect to prior knowledge and marginal cost of information.
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1.3.3 The effect of change in belief or in price on elasticity and

elasticity of substitution

There are two sources of demand change in our model: 1) change in price and 2) change

in belief (change in price distribution). The first effect does not change the demand struc-

ture, while the second one changes the utility function of the representative consumer.

Correspondingly, the price elasticity and the elasticity of substitution of the expected

demand in our model differ from those for the representative agent with the CES utility

function.

The price elasticity with respect to change in price realization is (all derivations are

in the Appendix)
dDi

dpi

pi
Di

= (−1

λ
− 1) +

1

λ
· P 0

i p
− 1
λ

i∑N
j=1 P

0
j p
− 1
λ

j

.

The price elasticity with respect to change in price distribution is

dDi

dpi
· pi
Di

=
dP 0

i

dpi

pi
P 0
i

−
∑N

j=1

dP 0
j

dpi
p
− 1
λ

j pi∑N
j=1 P

0
j p
− 1
λ

j

.

Changes in beliefs lead to the new demand structure (different CES function), which

corresponds to different price elasticities for the demand of RI agents in comparison with

the usual price elasticities for the CES utility function. This fact, for the example with

two goods, is expressed in the following proposition.

Proposition 2 (Distinction between price elasticity of rationally inattentive agents and

price elasticity for the CES utility function). Let N = 2 and initially (before the change

in price distribution) the feasible unconditional probability P 0
1 is unique, and the change

in price distribution is such that in all states of the world price p1 increases and price p2
decreases ; the probabilities of the states of the world themselves do not change. Then the

price elasticity of expected demand is lower in comparison with the price elasticity for the

CES utility function.

Proof. See the Appendix 1.D.

The demand structure of RI agents, generally speaking, does not have a constant

elasticity of substitution property. The elasticity of substitution is
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εji =
d
(
Dj
Di

)
d
(
pi
pj

) · pi
pj
Dj
Di

.

The elasticity of substitution of the representative agent, if RI agents are unaware of

changes in price distribution (the prior does not change), is 1
λ

+ 1.

However, when the agents are rationally inattentive, the unconditional probabilities

might change with the elasticity of substitution

Eji =
d
(
P 0
j

P 0
i

)
d
(
pi
pj

) · pi
pj

P 0
j

P 0
i

.

That is, elasticity of substitution of the expected demand of RI agents is

εji = Eji +
1

λ
+ 1.

1.4 Conclusion

It is often assumed that changes in the aggregate consumer’s demand are due to changes

in idiosyncratic preferences of individual consumers5. We propose an alternative story:

the demand shifts for particular goods might sometimes be better explained by a change

in information about goods when the consumers are rationally inattentive.

According to our model, the demand structure changes due to shifts in information

costs and the structure of prior knowledge of consumers, not in the idiosyncratic pref-

erences. In many markets there was a reduction in the costs of information (due to the

appearance of websites with information on products, such as google.com/shopping, spe-

cial search engines to compare the prices of airline tickets, hotels, restaurants, etc.). All

this directly affects the information costs and consumer’s prior beliefs. The information

coming from different countries or regions and making their products salient might also

change a consumer’s priors. Accordingly, we can anticipate changes in the structure of

the CES utility function and the aggregate consumer behavior. Thus, our model extends

the understanding of why changes in demand, which are usually interpreted as a change

in preferences, often occur after certain events (shocks) in the economy, such as crises,

5Of course, this is not the only explanation for shifts in the demand that has been considered in
the economic literature. Papers on consumer search are a good example. A distinctive feature of our
approach is that the consumer’s information acquisition is unconstrained.
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opening of new markets, and changes in the advertising policy of certain firms.

We show that the demand system generated by the CES utility function is equivalent

to a model of rational inattention to discrete choice. That is, we endogenize (microfound)

the CES utility function with the RI model. We show that the elasticity of substitution

and “weighting” coefficients of the CES function are determined by the parameters of the

RI model, namely marginal cost of information and prior beliefs. Such a link helps us to

connect the intensively developing RI theory with neoclassical economic models.

The results of this paper may help to find estimates for the cost of information. In the

literature there are estimations of elasticities of substitution for the CES function (e.g.

Bergstrand, Egger, and Larch (2013), Coloma (2009), Redding and Weinstein (2016)).

Based on such estimations and using formula (1.7), which connects elasticity of substi-

tution, σ, and marginal cost of information, λ, it is now possible to obtain the estimates

for the parameter of cost of information.
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1.A Proof of Proposition 1

Proof. Indeed, for the problem

max

(
N∑
j=1

βjq
ρ
j

) 1
ρ

s.t.
N∑
j=1

pjqj = y, (1.11)

the F.O.C. is
β1q

ρ−1
1

p1
= ... =

βNq
ρ−1
N

pN
. (1.12)

From (1.11) and (1.12) it follows that

qi =
β

1
1−ρ
i p

1
ρ−1

i∑N
j=1 β

1
1−ρ
j p

ρ
ρ−1

j

y. (1.13)

By comparing (1.6) and (1.13) we see that the elasticity of substitution between goods

in the CES utility function is

σ =
1

1− ρ
=

1

λ
+ 1.

Correspondingly,

ρ =
1

λ+ 1
.

Each coefficient βi of the CES function is defined by the corresponding unconditional

probability and the marginal cost of information in the following way:

βi = γ
(
P 0
i

)1−ρ
= γ

(
P 0
i

) λ
1+λ , i = 1, ..., N,

where γ is a positive coefficient.
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1.B Derivation of weighting coefficients in the example

We find the unconditional probabilities P 0
i , i = 1, 2 using the Corollary 2 from (Matějka,

McKay, 2015). They should satisfy the equality:

2∑
i=1

e
vi
λ∑2

j=1 P
0
j e

vj
λ

gi = 1.

After computing the unconditional probabilities, we plug them into equation (1.8) and

obtain the weighting coefficients of the corresponding CES function.

In our particular example under γ = 1:

β1 =
(
P 0
1

) λ
1+λ =

g12 1
λ +

(
2
3

) 1
λ − g1

(
2
3

) 1
λ − 1

−1 +
(
2
3

) 1
λ −

(
4
3

) 1
λ + 2

1
λ

 λ
1+λ

,

and

β2 =
(
P 0
2

) λ
1+λ =

1−
g12

1
λ +

(
2
3

) 1
λ − g1

(
2
3

) 1
λ − 1

−1 +
(
2
3

) 1
λ −

(
4
3

) 1
λ + 2

1
λ

 λ
1+λ

.

1.C Price elasticity of expected demand

The price elasticity of demand is

dDi

dpi

pi
Di

=
(− 1

λ
− 1)p

− 1
λ
−2

i

∑N
j=1 P

0
j p
− 1
λ

j − p−
1
λ
−1

i P 0
i (− 1

λ
p
− 1
λ
−1

i )

(
∑N

j=1 P
0
j p
− 1
λ

j )2
·
pi
∑N

j=1 P
0
j p
− 1
λ

j

p
− 1
λ
−1

i

= (−1

λ
− 1) +

1

λ
· P 0

i p
− 1
λ

i∑N
j=1 P

0
j p
− 1
λ

j

.

If the agent knows that the distribution of prices changed (unconditional probabilities

P 0
i can change), then the elasticity of expected demand in the states in which pi changes

is:

dDi

dpi
· pi
Di

= (

(
dP 0

i

dpi
p
− 1
λ
−1

i + P 0
i (−1

λ
− 1)p

− 1
λ
−2

i

)
· (

N∑
j=1

P 0
j p
− 1
λ

j )−
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−

(
N∑
j=1

dP 0
j

dpi
p
− 1
λ

j − 1

λ
P 0
i p
− 1
λ
−1

i

)
P 0
i p
− 1
λ
−1

i ) ·

(
N∑
j=1

P 0
j p
− 1
λ

j

)−2
·
pi

(∑N
j=1 P

0
j p
− 1
λ

j

)
P 0
i p
− 1
λ
−1

i

=

= (−1

λ
− 1) +

1

λ
· P 0

i p
− 1
λ

i∑N
j=1 P

0
j p
− 1
λ

j

+
dP 0

i

dpi

pi
P 0
i

−
∑N

j=1

dP 0
j

dpi
p
− 1
λ

j pi∑N
j=1 P

0
j p
− 1
λ

j

.

The term ∑N
j=1

dP 0
j

dpi
p
− 1
λ

j pi∑N
j=1 P

0
j p
− 1
λ

j

is a weighted sum of elasticities
N∑
j=1

δj
dP 0

j

dpi

pi
P 0
j

,

where 0 < δj < 1,
∑N

j=1 δj = 1 and

δj =
P 0
j p
− 1
λ

j∑N
k=1 P

0
k p
− 1
λ

k

= Pi(v).

1.D Proof of Proposition 2

Using Proposition 3 from (Matějka, McKay 2015):

dP 0
1

dp1

p1
P 0
1

< 0

and
dP 0

2

dp1

p1
P 0
2

> 0.

Using the formula for price elasticity for RI and comparing it with the formula for CES,

the difference between the price elasticities of expected demand of RI consumer and

CES-generated demand is

(1− δ1)
dP1

dp1

p1
P 0
1

− δ2
dP 0

2

dp1

p1
P 0
2

< 0.
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Chapter 2
The Status Quo and Belief Polarization of

Inattentive Agents

Co-authored with Vladimír Novák (CERGE-EI).

2.1 Introduction

In recent years people have tended to disagree more and extreme opinions are becom-

ing more prevalent in the public discourse. Voters in many countries have experienced

elections that can almost be interpreted as a referendum between so called mainstream

and populist candidates. Examples include the series of 2016-2017 democratic votes in

Europe: the Brexit referendum, presidential elections between Macron and Le Pen in

France, parliamentary elections in the Netherlands with Geert Wilders as an expected

front runner and many others since. The recent increase in partisanship is well docu-

mented through the measurement of congressional speeches by Gentzkow, Shapiro, and

Taddy (2016). Importantly, people also seem to be moving farther away from each other

in their beliefs regarding the issues which require almost a purely scientific approach of

benefits and costs assessments. Many researchers have connected this rise of populism

first with the aftermath of the financial crisis, and later with the immigration crisis and

the backlash against globalization.1 What all these situations have in common is that

they created winners and losers. Therefore, individuals perceive the favorability of im-

plemented policies differently. This is also documented by studies suggesting not only
1 See, for instance, Rodrik (2018), Pastor and Veronesi (2018), Inglehart and Norris (2016).
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that U.S. citizens disagree on the issues, but they disagree on what the issues actually

are.2 This raises several theoretical questions. Can such polarization be explained by

endogenous information acquisition? What is the role of an unprecedented increase in

information availability? Is it a result of rational behavior or is it necessary for individu-

als to have biased reasoning? How should we take into account the fact that people hold

on to their opinions of the established policies?

We present a discrete choice problem where the agent can choose between a safe

known option (status quo) and a risky option (new policy) with an unknown payoff. Be-

fore choosing, she has an opportunity to receive information about the realized state, but

doing so is costly. In order to account for endogenous information acquisition, without

imposing any exogenously given biases, we model the decision maker to be rationally

inattentive, e.g., Sims (1998, 2003). Our theoretical model reveals that inattentiveness

can lead to belief polarization.

A key role in our analyses belongs to the status quo and we model it as a safe option

with a known payoff. The value of the status quo influences what information the agent

acquires. We show that it leads to a state pooling effect. In particular, the agent is not

trying to find information about which particular state of the world is going to occur and

what the exact payoff from the risky option will be, i.e. a new policy; but she pools the

states into two categories. One category consists of the states perceived a priori as more

favorable than the status quo, and other states form the second group. We assume that

there exist at least three states of the world, otherwise the state pooling effect would not

occur. Because of the limited attention constraint and costly information acquisition, the

decision maker decides to learn which category of states contains the realized state. As

a consequence the agent might be confused about which particular state from a category

has occured and updates her belief about the particular state incorrectly.

Specifically, if we take the position of an observer who knows which state of the world

is happening we will see the following behavior: in the extreme states the agent updates

her belief about the expected value of the new policy in the direction of the realized value

of the risky policy. However, in the moderate states the decision maker can update her

2Pew Research Center: 2018 Midterm Voters: Issues and Political Values, available online:
http://www.people-press.org/2018/10/04/2018-midterm-voters-issues-and-political-values/
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belief about the expected value of the new policy away from the realized payoff of the

new policy. As we show in section 2.3.4 this effect is determined by the relative position

of prior expected value of the new policy and the status quo. Belief polarization conse-

quently arises for the categories of agents with a different prior belief and/or perception

about the status quo.

The importance of this result lies in highlighting that two agents with the same prior

belief can become polarized if they perceive the favorability of the already implemented

policy differently enough. The omission of the status quo in the empirical studies that

focus on polarization might lead to biased results or at least leaves one of the important

polarization channels uninvestigated.

One of the consequences of the updating in the opposite direction from the realized

value of the new policy that we describe above is that the agents who are pessimistic about

the new policy become over-pessimistic, and the optimistic ones become over-optimistic.

Moreover, in our setting, even the agents who choose the same option after information

acquisition can become more distant in their beliefs. The prior expected payoff from the

new policy and status quo can work similarly in our model and changes in both of them

might cause polarization. However, valuation of the status quo is crucial for creation of

state categories. This emphasizes the importance of understanding how the citizens value

the current situation for polarization mitigation in comparison with just communicating

the more probable outcomes of the proposed policies.

Our model also gives clear predictions of when the agents update toward the true value

and when heterogeneous agents would converge in their opinions. Particularly, a conser-

vative approach, in the sense that the agent expects a very similar outcome from the new

policy as from the currently implemented policy, ensures the agents’ truthful learning

independently of their partisanship. We further show how the difference between the

prior and posterior expected values from the new policy depends on the realized state

of the world. We also characterize the set of states in which the agents update in the

opposite direction from the realized value. The elements of this set are only the moderate

states and never the extreme states. As a result, agents tend to become more polarized in

neither excellent nor disastrous times, but when everything seems just fine. This finding

explains why disagreement in society is rising even though most of the developed western
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economies are in a decent condition.

We also investigate the impact of the cost of information on polarization. As ex-

pected, more expensive information enlarges the areas of the prior beliefs for which the

agent chooses not to acquire any information. Similarly, agents update more and, thus,

would disagree more when the information is cheaper. Importantly, the updating away

from the realized value occurs for every positive parameter of the marginal cost of infor-

mation, only the magnitude of such updating changes.

The rest of the paper is organized as follows. The next section describes related litera-

ture, in Section 2.2 we present the general model for n states and two actions and present

our main theoretical results. Section 2.3 illustrates the results for the example with three

states and thus provides crucial insights. In Section 2.4 we focus on understanding what

the implications of a different cost of information are on agent disagreement.

2.2 Related literature

This paper provides a general framework for studying belief polarization with endogenous

information acquisition. A theoretical framework builds upon the results from recent lit-

erature on rational inattention, which was introduced by Sims (1998, 2003) and further

developed and implemented in macroeconomics, e.g., Maćkowiak and Wiederholt (2009,

2015), Woodford (2009), Afrouzi and Yang (2019), finance, e.g., Van Niewerburgh and

Veldkamp (2010) and other fields.3 A survey of this literature is provided in Matějka,

Maćkowiak, and Wiederholt (2018). RI theory relies on the central premise that infor-

mation is plentiful, but attention is a scarce resource. Thus it allows the agent to choose

an optimal signal, which she wants to obtain given the information constraint. The main

finding of the present paper is demonstrated using the discrete choice model with ratio-

nally inattentive agents (Matějka and McKay 2015), which uses a Shannon cost function.

We contribute to the literature on belief polarization. The classicar result is that the

beliefs of unconstrained and rational Bayesian agents converge over time and that they

will almost surely assign probability 1 to a true state (Savage (1954), Blackwell and Du-
3See also Caplin and Dean (2015), Caplin, Dean, and Leahy (2019).
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bins (1962)). Relaxing the rationality assumption started the stream of literature which

focuses on finding the conditions when persistent disagreement may occur. The common

method for obtaining such results is to assume that the agent is facing a misspecified

model (Berk 1966) or that the agents have some form of biased perception or learning.

A survey of this literature is provided by Gerber and Green (1999). Dixit and Weibull

(2007) present a model in which political polarization is driven by the bimodality of pref-

erences. In this paper, we diverge from any exogenous behavioral biases by considering

a rationally inattentive decision maker who can select the optimal signal given her in-

formation capacity constraint and updates her belief in the Bayesian fashion; thus any

documented biases are endogenously created.

The question of how an agent’s inattentiveness leads to persistent disagreement and

how it can explain confirmation bias has been the focus of several studies. Su (2015)

demonstrates that a belief divergence may occur if an agent’s learning is rationally inat-

tentive. However, this is only for a setting with utility that has a quadratic loss form in

which the agent can only choose the variance in the Gaussian signal model as a true value

plus noise, and also with an ad hoc assumption of the attention cost being proportional

to the so called observation window. The most prominent attempt to study persistent

disagreement for inattentive agents was presented by Nimark and Sundaresan (2019)4,

which is the paper with the setting closest to ours. Their main objective is to investigate

the persistence of belief polarization of inattentive agents in a two actions, two states

setting. They also discuss in greater detail different implications of the two different ap-

proaches for the measurement of information costs. In this paper we emphasize a different

channel that influences information acquisition and thus belief polarization that is the

effect of the status quo. We believe that this is an important aspect of decision-making

which deserves greater attention. Moreover, we study a setting with n states and two

actions, which after the endogenously obtained state pooling effect might collapse to a

two states, two action setting. This provides a clear connection with the majority of

papers studying belief polarization.

More generally, we contribute to the literature of reference-dependent preferences.

Kőszegi and Rabin (2006, 2007) build a model of reference point formation and study

shifts in risk attitudes, but they cannot account for the fixed reference points. In our
4An earlier version of the paper is known as Sundaresan and Turban (2014).
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model we keep the status quo as exogenously given and fixed for the agent. This makes

us closer to the approach of Bordalo, Gennaioli, and Shleifer (2012), who present a the-

ory where the agent is drawn to salient payoffs and thus provides a context dependent

representation of lotteries. An endogenously arising state pooling effect connects us to

the categorical thinking literature, represented mainly by Mullainathan (2002). In this

area of research it is assumed that people make inferences using coarse categories. As a

consequence people do not update continuously, but change categories only when they

see enough data to suggest that a different category better fits the data. Our approach

provides a theory of endogenous categories creation. However, the main difference is that

our agent does not make their inference through categories, but acquires only the infor-

mation necessary for a resolution between categories. Nonetheless, the common ground

for both theories is that due to the possibility that different states can collapse to the

same category, the decision maker cannot sufficiently distinguish between types of states.

We provide a general framework that can be further used in applications answer-

ing specific questions connected with polarization of political partizanship, see, e.g.,

Gentzkow, Shapiro, and Taddy (2016), Gentzkow (2016), Boxell, Gentzkow, and Shapiro

(2017), polarization on cultural views (Krasa and Polborn 2014) and linkages with in-

equality and conflict (Esteban and Ray 2011). The behavior presented in this paper may,

for the reader, resemble the effects described in papers about overconfidence (Ortoleva

and Snowberg 2015), limited memory (Wilson 2014) and several others. In this paper

we solve the static problem, but thanks to the state pooling effect the multiple states

are collapsed into two categories, which gives us the possibility to gain intuition about

the behavior in dynamics from papers focusing on a two state, two action case in the

dynamic setting. For instance, Che and Mierendorff (2017) study optimal sequential de-

cision making with limited attention in a two states, two action environment.

Our paper also makes several predictions relevant to the empirical literature on in-

formation preferences. For instance, Charness, Oprea, and Yuksel (2018) study whether

people choose optimal or biased information sources. Their results suggest that a con-

firmatory seeking rule is the most common one, but they assume only a two states, two

actions setup. Important insights for our predictions arise from Ambuehl and Li (2018),

who show that people disproportionally value information that yields certainty. Our

model may provide a rational explanation for such a valuation. In future research it
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might also be interesting to explore, using referendum survey data, whether voters use

similar voting cues and information sources as predicted by our model.

2.3 The model

In this section we describe the general agent’s decision problem, introduce a methodology

for beliefs evolution assessment, and present the main theoretical results.

2.3.1 Description of the setup

A single agent faces a discrete choice problem between two options. The first option,

which we refer to as a new policy, provides a payoff vs ∈ R that depends on an unobserv-

able state of the world s ∈ S = {1, . . . , n}, where n ∈ N. The states are labeled in such

a way that v1 < v2 < ... < vn. The second option yields a known fixed payoff R ∈ R,
vk ≤ R ≤ vk+1 for some k ∈ {1, 2, ..., n− 1}. The agent is risk-neutral. We assume that

v1 < R < vn in order to exclude trivial cases5. One can imagine a situation where the

agent has to choose between a currently implemented policy with a known payoff, i.e.

preservation of the status quo6, or selects a new policy that might possibly lead to several

different outcomes.

The decision maker is uncertain which state of the world s is going to be realized

and we denote her prior beliefs as a vector of probabilities g = [g1 g2 ... gn]T , such

that
∑n

s=1 gs = 1 and gs ≥ 0, ∀s ∈ S. We model the agent to be rationally inattentive

in the fashion of Sims (2003, 2006). The agent wishes to select the option with the

highest payoff. Prior to making the decision, the agent has the possibility to acquire

some information about the actual value of the new policy, which is modeled as receiving

a signal x ∈ R. The distribution of the signals, f(x, s) ∈ P (R × S), where P (R × S) is

the set of all probability distributions on R × S, is subject to the agent’s choice. The

joint distribution of signals and states which can be chosen by the agent is restricted to

be consistent with the agent’s prior belief, that is, the unconditional expectation of her

5If R ≤ v1, the safe option is weakly dominated by the risky option, and if R ≥ vn, the risky option
is weakly dominated by the safe option. In both of these cases the agent does not have incentives to
acquire information on realization of the state of the world.

6The status quo option can be perceived just as an imposed reference point, thus we denote it as R.
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posterior belief should be equal to her prior belief,
∫
x
f(dx, s) = gs ∀s ∈ S. However,

this information is costly and we assume the cost to be proportional to the expected

reduction in entropy7. For detailed treatment of this measure, see, for example, Cover

and Thomas (2012). Upon receiving a signal, the agent chooses an action, and her choice

rule is modelled as σ(x) : x → {1, 2}. Given the updated belief, the agent chooses the

action with the highest expected payoff. The timing of the decision problem is depicted

in figure 2.1.

Agent has
prior beliefs,
i.e. {gs}ns=1

Agent chooses
information
structure

State is realized Agent updates
beliefs

Agent chooses
the action

Stage 1: Information choice Stage 2: Action choiceExogenous event

Figure 2.1: Timing of the events in the problem. The decision problem consists of two
stages: the information strategy selection stage and the standard choice under uncertainty
stage.

2.3.2 Agent’s problem

The agent’s problem is to find an information strategy maximizing the expected utility

less the information cost. According to Lemma 1 from Matějka and McKay (2015) the

state-contingent choice behavior of the rationally inattentive consumer can be found as

the solution to a simpler maximization problem that does not make reference to signals or

posterior beliefs. The information strategy is characterized by the collection of conditional

probabilities of choosing option i in state of the world s : P = {P(i|s)
∣∣ i = 1, 2; s ∈ S},

where i ∈ {new policy, status quo} = {1, 2} denotes the option and s is the state. The

agent solves:

max
P={P(i|s)|i=1,2;s=1,...,n}

{
n∑
s=1

(vsP(i = 1|s) +RP(i = 2|s)) gs − λκ

}
, (2.1)

subject to
7The entropy H(Z) of a discrete random variable Z with support Z and probability mass function

P(z) = Pr{Z = z}, z ∈ Z is defined by H(Z) = −
∑
z∈Z p(z) log p(z).
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∀i : P(i|s) ≥ 0 ∀s ∈ S , (2.2)
2∑
i=1

P(i|s) = 1 ∀s ∈ S , (2.3)

and

κ = −
2∑
i=1

P(i) logP(i)︸ ︷︷ ︸
prior uncertainty

−

(
−

n∑
s=1

(
2∑
i=1

P(i|s) logP(i|s)

)
gs

)
︸ ︷︷ ︸

posterior uncertainty

. (2.4)

where κ denotes the expected reduction in entropy, λ ≥ 0 is the unit cost of informa-

tion and thus λκ reflects the cost of generating signals with different precision. P(i) is

the unconditional probability that the option i will be chosen and is defined as

P(i) =
n∑
s=1

P(i|s)gs, i = 1, 2.

Matějka and McKay (2015) study a general case of the static problem described above,

and show that the agent’s choice of action is in line with the modified multinomial logit

formula.8 This result translates into our setting in the following way:

Lemma 2. Conditional on the realized state of the world s∗, the probability of choosing

a new policy, i.e. option 1 for λ > 0 is

P(i = 1|s∗) =
P(i = 1)e

vs∗
λ

P(i = 1)e
vs∗
λ + (1− P(i = 1))e

R
λ

, (2.5)

the probability of choosing the status quo is

P(i = 2|s∗) =
(1− P(i = 1))e

R
λ

P(i = 1)e
vs∗
λ + (1− P(i = 1))e

R
λ

, (2.6)

where P(i = 1) is the unconditional probability of choosing a new policy.

8For the dynamic version of this result see (Steiner, Stewart, and Matějka (2017)).
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When λ = 0, the agent chooses from two available options: the new policy or the status

quo, the option with the highest value with probability one.

Proof. Lemma 2 is a direct consequence of the Theorem 1 from Matějka and McKay

(2015).

Lemma 2 tells us that the optimal information-processing strategy of the decision

maker leads her to choose in line with a biased logit model. Specifically, the agent’s

prior knowledge and information strategy are reflected by the unconditional probability

of choosing the new policy. The appearance of this probability and the marginal cost of

information λ in the choice rule uncovers two forces that can shift the choice probabilities.

However, it is important to state that choice probabilities are not fully biased because

they still depend on the true payoffs of both options.

An important feature of the solution to the agent’s problem is that for the given vector

of payoffs of the new policy (v1, ..., vn), the value of status quo R and the marginal cost

of information λ there exist prior beliefs of the agent for which she decides not to acquire

any information. In this case we say that the agent is in a non-learning area. Once the

agent is in a non-learning area, she makes her decion only based on her prior beliefs.

That is, when the agent is in a non-learning area, if Ev =
∑n

s=1 vsgs > R, then the agent

chooses the new policy with certainty and P(i = 1) = 1, if Ev < R, then the agent

chooses the status quo with certainty and P(i = 1) = 0, or if Ev = R, then the agent is

indifferent between the two policies and the agent can have any P(i = 1) ∈ [0, 1]. Let us

assume, without loss of generality, that in the latter case the agent would decide to keep

the status quo, that is, P(i = 1) = 0. Given this assumption, the unconditional choice

probabilities of the agent who is in a non-learning area, are either 0 or 1. If the agent’s

prior is such that she decides to acquire at least some information, we say that the agent

is in a learning area. For such prior beliefs the unconditional choice probabilities lie in

the open interval (0, 1).

2.3.3 Description of belief evolution

The uncertainty in this model is about the realized state of the world and thus about the

actual payoff of the new policy. Without the information acquisition stage of the problem

the agent would choose the option based on the comparison of the status quo payoff R

with the agent’s prior expected payoff from the new policy being

30



Ev =
n∑
s=1

vsgs.

In order to judge how this expected payoff from the new policy changes after the

signal is received and the option is chosen, we take the position of an external observer.

The observer knows that a realized state of the world is s∗ and is interested in the agent’s

posterior belief about the payoff of the new policy vs given the realized state s∗. Note

that the agent’s posterior belief is given by the signal she receives and thus the observer

not only wants to know what the expected posterior belief is for a given signal, but is

interested in the expected posterior belief about the new policy on average across all

possible signals the agent may choose. Since there is a one to one mapping between the

selected information structure and consequently chosen action, the posterior expected

belief of interest is

Ei[E(vs|i)|s∗] =
2∑
i=1

(
n∑
s=1

vsP(s|i)

)
P(i|s∗),

where option i ∈ {1, 2} = {new policy, status quo}. For the rationally inattentive agent

it can be further formalized as:

Proposition 3. The expected posterior value of the new policy given the state s∗ for

the rationally inattentive decision maker with a marginal cost of information λ and for

i ∈ {new policy, status quo} = {1, 2} is

Ei[E(v|i)|s∗] =
n∑
s=1

vsgs
P(i = 1|s∗)e vsλ + (1− P(i = 1|s∗))eRλ
P(i = 1)e

vs
λ + (1− P(i = 1))e

R
λ

. (2.7)

Proof. The proof is presented in Appendix 2.A.

The main indicator for the expected belief evolution that we consider can be defined

as ∆(s∗)Ei[E(v|i)|s∗] − Ev. In particular, we are interested in the sign of ∆(s∗), which

informs us whether the posterior expected belief is moving from Ev towards v1 or vn or

stays equal to Ev.
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Proposition 4. If the agent is in a learning area, the sign of the change in the mean of

beliefs in state s∗ ∆(s∗) is the same as the sign of (vs∗ −R).

Proof. The proof is presented in Appendix 2.B

Proposition 4 significantly simplifies the considerations of the beliefs evolution. At

the same time, it also demonstrates the important link between the value of the status

quo R and updating process. Namely, it demonstrates that the sign of ∆(s∗) is affected

only by the the relative location of R and vs∗ , no matter what Ev is.

We can note the following corollary, which specifies conditions for which there is no

change in the mean of beliefs.

Corollary 2. ∆(s∗) = 0 holds if at least one of the following conditions is satisfied:

(a) vs∗ = R

(b) the agent is not acquiring any information, i.e. ∃ i : P(i) = 1.

2.3.4 Updating in the opposite direction from the realized value

and beliefs polarization

This section describes the impact of the value of the status quo on the opinion polarization

of inattentive agents. For the rest of this section we assume that the agent is in the

learning area, i.e. 0 < P(i = 1) < 1 and we denote the set of states S ′ = S \ {1, n} as

the set of the intermediate states.

Definition 1. The agent is updating in the opposite direction from the realized value vs∗

in the state s∗ ∈ S ′, if the condition (Ev − vs∗) ·∆(s∗) > 0 is satisfied.

In the following theorem we provide conditions for the presence of the states in which

the agent is updating in the opposite direction from the realized value of the risky option.

Theorem 1. If there exists a state s∗ ∈ S ′ for which (vs∗ − R)(Ev − vs∗) > 0, then, in

this state of the world, the agent is updating in the opposite direction from the realized

value vs∗.

Proof. The theorem immediately follows from Proposition 4.
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Dichotomy of the set of the states of the world and intuition for the result.

Due to costly information acquisition the rationally inattentive decision maker chooses

only the necessary information in order to disentangle whether to select the status quo

or the new policy. This leads to the state pooling effect, when the agent divides the

states into two categories. Namely, as Proposition 4 states, for all the states s in which

vs > R the expected posterior belief about the value of the risky option is higher than

the prior belief, which unites or pools all such states into one category. Similarly, all

the states s for which vs < R are pooled into another category. For all the states from

one category the direction of updating of the expected belief about the value of the risky

option is the same. It is important to notice that the agent’s expected posterior beliefs

are not the same for the states from one category. We discuss the magnitude of updating

for different realized states s∗ ∈ S in subsection 2.3.5.

The state pooling effect induces updating in the opposite direction from the realized

value, when for the realized state s∗ holds that Ev < vs∗ < R or R < vs∗ < Ev. The

updating in the opposite direction from the realized value can cause agents with different

perception of the status quo and/or with different prior beliefs to become polarized.

Let us consider a situation with two agents j = 1, 2 who have (i) different preferences

about the status quo policy Rj and, (ii), different prior beliefs about the value of the new

policy Ejv. The expected posterior belief of the agent j about the value of the new policy,

conditional on the realized state s∗, is denoted by Eji [E(v|i)|s∗]. The difference between

the expected posterior beliefs of the agent j in the state s∗ and the prior beliefs of the

agent j is denoted by ∆j(s
∗), ∆j(s

∗) = Eji [E(v|i)|s∗]− Ejv.

Definition 2. We say that two agents j = 1, 2 that are characterized by the pair (Rj,Ejv)

become polarized in the state s∗ when the following two conditions are satisfied

1. |E1
i [E(v|i)|s∗]− E2

i [E(v|i)|s∗]| > |E1v − E2v|

2. ∆1(s
∗) ·∆2(s

∗) < 0

The first condition secures that the expected posterior beliefs in the state s∗ of two

agents are further apart, whereas the second ensures that they update in opposite direc-

tions in the state s∗. In the following theorem we provide conditions for the presence of

the states of the world in which the agents become polarized.

Theorem 2. Let us assume that there are two agents j = 1, 2 that are characterized by

the pair (Rj,Ejv). If in state of the world s∗ ∈ S ′ the conditions (E1v−E2v)(vs∗−R1) > 0
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and (E1v−E2v)(vs∗ −R2) < 0 hold, then the two agents become polarized in this state of

the world.

Proof. Without loss of generality, let us assume that E1v > E2v. For the condition (E1v−
E2v)(vs∗ − R1) > 0 to be satisfied, it is necessary that vs∗ > R1. Proposition 4 states

that in this case ∆1(s
∗) > 0. Using similar reasoning, the expected posterior belief is

lower than the prior belief for agent 2. That is, they update in different directions and

the expected posterior beliefs are farther away from each other than the priors are. Both

conditions from the definition are satisfied and the agents, indeed, become polarized in

state s∗.

2.3.5 Monotonicity of ∆(s∗)

So far we have shown that updating in the opposite direction from the realized value can

occur and it might lead to belief polarization of agents. A natural question arises: How

is the difference between the prior and the posterior expected payoff from the new policy

∆(s∗) influenced by the realized true state s∗? The answer to this question is provided

by the following proposition.

Proposition 5. Change in mean of beliefs ∆(s∗) is an increasing function of s∗.

Proof. The proof is presented in Appendix 2.C.

This finding, together with the fact that ∆(s∗ = 1) < 0 and ∆(s∗ = n) > 0, implies

that ∆(s∗) reaches its minimum in state 1, its maximum in state n and ∆(s∗) = 0 may

occur in between. We remind the reader, at this point, that we have defined state k such

that vk ≤ R < vk+1. Note that inside the learning area ∆(s∗) = 0 when vs∗ = R. Thus,

either vk = R and ∆(s∗ = k) = 0, or such a state does not exist, but state k is the

highest state where ∆(s) is negative. Using definition 1, we know that in states for which

the condition (Ev − vs∗) ·∆ > 0 is satisfied, the agent updates in the opposite direction

from the realized value of the risky option. Let us assume that the agent’s prior expected

value of the new policy is Ev > R. Then one can see that the agent is updating correctly

for all states where ∆(s) is negative. However, updating in the opposite direction from

the realized value occurs for all states that have payoffs smaller than Ev and at the same

time higher than R (see figure 2.2).

If we assume that Ev < R then updating in the opposite direction from the realized

value would happen in all states s∗ for which it holds that R > v∗s > Ev. When we
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v1 v2 v3 · · · vk−1 vk R

∆(s∗) = 0

Ev vn−1 vn

States with updating away from vs∗

Figure 2.2: Set of states where the agent updates in the opposite direction from the
realized value

denote by W the set of states where the agent updates in the opposite direction from the

realized value we can write that

W =

{s | R < vs < Ev}, if Ev > R,

{s | Ev < vs < R}, otherwise.

It is worth noticing that the set of states where the agent updates in the opposite di-

rection from the realized value are those where payoffs are neither very good nor very bad.

That has significant implications for predictions when the inattentive decision makers be-

come polarized. We can also see that the number of states in the set W is determined

by the status quo payoff R and by the prior expected value of the new policy. Before

we study what influences the magnitude of ∆(s∗), we first study the example with three

states in the following section.

2.4 Over-optimism and polarization: intuition and im-

plications

In order to understand in detail the previously stated results and their implications, we

focus now on the case with three states. We assume that a rationally inattentive agent is

choosing between the new policy that takes values v1 < v2 < v3 in the states of the world

s = 1, 2, 3, correspondingly; and keeping the status quo that has a payoff v1 < R < v3,

independently of the realized state of the world. The decision maker has a prior expec-

tation of the value of the new policy Ev = v1g1 + v2g2 + v3g3.

In Proposition 4 we have shown that for fixed state s∗, the sign of Ei[E(v|i)|s∗]− Ev
is determined by the sign of (vs∗−R). When we consider the true realization of the state
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to be s∗ = 1 (the worst payoff of the new policy), the agent on average shifts her belief

about the value of the new policy down (∆ < 0 because v1 − R < 0), for any Ev and

R that are inside the interval (v1, v3). There is no surprise here: the value of the new

policy is the lowest possible v1 and the agent on average shifts her expectation of this

option’s payoff down, towards the true value. Similarly, when s∗ = 3, implementing the

new policy would lead towards the highest possible value v3 and the agent correctly shifts

the expected posterior belief closer to v3 (because ∆ > 0).

State 1 ∆ < 0

v1 R v2 v3

State 3 ∆ > 0

v1 R v2 v3

Figure 2.3: Updating when extreme states are realized. The true state is highlighted
by the red circle.

Updating in the opposite direction from the realized value and state pooling

effect

A more interesting situation occurs when intermediate states are realized. In this exam-

ple, it is only the case when s∗ = 2. First, without loss of generality, we assume that

prior beliefs of the city residence are such that Ev < v2 and we fix them. We consider

different valuations of the status quo R. For R ≤ Ev and Ev < R < v2 holds that ∆ > 0,

the agent updates her average posterior belief about the payoff of the new policy towards

the true realized payoff v2. However, when R > v2 then ∆ < 0 meaning that the agent

updates her expected belief to the left, i.e. away from the true payoff of the new policy.9

All these three cases are depicted in figure 2.4. In all three scenarios, the decision maker

is rather pessimistic about the new policy, i.e. Ev < v2. In the first two cases, when

R < v2, the agent on average understands that the impact of the new policy is beneficial.

The reason is that she knows that keeping the status quo would lead to a relatively bad

outcome and thus when the realized value of the risky option is relatively high, she cor-

rectly increases her expected belief about the probabilities that the new policy can lead

to better outcomes (v2 and v3).

9Note that this is not possible with Bayesian updating and exogenous Gaussian signals.
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When R > v2 the agent shifts her expectation of the new policy down, closer to the

outcome v1, away from the true payoff v2, i.e. she updates in the opposite direction from

the realized value. One could expect that this result is just a consequence of confirmatory

learning. However, we would like to emphasize that in the problem described in this pa-

per, the wrong updating is a consequence of a different mechanism. Specifically, the agent

chooses between the new policy and preserving the status quo. Initially she expects the

new policy not to be very good and at the same time she perceives the status quo as quite

good. The decision maker would prefer to choose the status quo in the realizations of the

state s∗ = 1, 2. Hence, to some extent, she acquires information that would allow her to

disentangle whether state 3 is realized. She learns it (with some noise), and on average

she understands that the realization is indeed not s∗ = 3, but since, to some extent, she

does not care which one of the other two it is exactly, both her posterior probabilities

of states 1 and 2 rise. This is the state pooling effect mentioned in section 2.3.4, i.e.

the agent endogenously pools states into categories. In this example, one category is

composed from states 1 and 2; and the second category from state 3. Consequently, the

direction of updating of the expected belief about the value of the risky option depends

on the category to which the realized state belongs. This may result in the presense of

updating in the opposite direction from the realized value of the risky option.

∆ > 0

v1 R Ev v2 v3

∆ > 0

v1 REv v2 v3

∆ < 0

v1 REv v2 v3

Figure 2.4: Updating for the changing status quo when state s∗ = 2 is realized.

Symmetry, over-optimism and over-pessimism

Note that the whole effect works symmetrically, that is, in the previously discussed ex-

ample with s∗ = 2 and updating in the opposite direction from the realized value we can
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exchange the R and Ev. The analyses could also be done for the fixed R and changing

the prior expected value of the new policy Ev, but we emphasize the role of the status

quo, which is not usually considered in the papers studying polarization. Nevertheless,

consider two situations where s∗ = 2: the first with Ev < v2 < R and the second with

R < v2 < Ev. In the first situation the decision maker has a low prior expected value from

the new policy and then updates towards v1. In the second situation the prior expected

value is quite high and then it is updated upwards, towards v3. Stated differently, in the

first situation the agent is pessimistic about the new policy and consequently becomes

even more pessimistic. In the second case, the opposite is true. The agent is optimistic

and becomes over-optimistic about the outcome of the new policy. This provides new

insights for studies investigating whether people prefer positively or negatively skewed in-

formation, e.g., (Masatlioglu, Orhun, and Raymond 2019). In particular, how the change

in the environment can shape the preferences for the skewed information.

∆2 < 0 ∆1 > 0

v1 R1 Ev v2 R2
v3

Figure 2.5: Polarization of the two groups with different status quo, illustrated using
density functions when s∗ = 2.

Polarization

Suppose two types of agents that differ only in how they perceive the current situation

Ri, i = 1, 2. This is often the situation that different people do not necessarily need

to have different expectations about future policy, but they disagree about the favoura-

bility of the current policies. This is especially common for disputes connected with

globalization. It might be possible to explain that another policy would bring only a low

outcome, but those who currently benefit from the current situation and those who, for

instance, lost their jobs due to globalization would have a totally different opinion about

the payoff of the current set of policies. Let us assume that the first group (blue in figure

2.5) benefits highly from the current situation and the second group opposes the current

policies, i.e. R1 > v2 > R2. Based on the result formulated in Proposition 4, group 1
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would on average update their belief up (∆1 > 0) and group 2 would on average update

down (∆2 < 0). This situation is depicted in figure 2.5, showing the posterior expected

belief for group 1 (in blue) and group 2 (in red), with accompanying figurative probability

density functions. The prior expected belief is the same for both groups (in black). We

can observe that posterior expected beliefs for these two groups move further apart from

each other, which documents the polarization situation created only by the difference in

evaluation of the current policy.

Convergence

In order to draw the whole picture, our framework also has clear predictions for the

case when the beliefs of two agents converge and at the same time are closer to the true

value. Such a situation occurs when two agents have different prior expectations of the

new policy and they also perceive the status quo differently. Moreover, their Ev and R

are close to each other. We can label this situation as both agents being conservative,

in the sense that they expected the new policy not to differ greatly from the currently

implemented policy. This situation is depicted in figure 2.6.

∆1 > 0 ∆2 < 0

v1 R1 E1v v2 E2v R2
v3

Figure 2.6: Illustration of the situation when the agents’ beliefs converge

Non-learning areas

In all our results we assume that the agent is in the learning area. Here we try to shed

more light on the non-learning area. We know that the agent is not acquiring any in-

formation when P (i = 1) = 0 or P (i = 1) = 1. Because the decision maker can choose

only from two options, she would be in the non-learning area in the two following cases.

First, when her perception of the status quo is in close proximity either to the lowest

possible payoff v1 or to the highest possible outcome v3. Similarly, the second possibility

corresponds to the situation when her prior belief is close to v1 and v3 and the plot of

P (i = 1) for varying Ev as depicted in figure 2.7. This behavior is expectable. For

instance, when the agent a priori believes that the new policy is extremely good, while

acquiring the information is costly, she would choose not to obtain any information.
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Figure 2.7: P(i = 1) as function of Ev, λ = 1
4
, R = 3

8
.

2.5 Comparative statics

Section 2.4 investigated conditions when inattentive agents are becoming polarized, i.e.

in what direction they are updating. In this section we explore the magnitude of their up-

dating in more detail. How much does the expected posterior belief about the new policy

differ from the prior expected value? What is the role of the cost of information? Does

the model predict that the agents become more polarized in a situation with a higher

cost of information? Does the actual perception of the status quo have an influence on

the value of ∆(s∗) or does it have an influence only on whether the agent is updating

correctly or incorrectly? All these questions are immensely hard to answer analytically

for the general case. Therefore, we again take advantage of the example with the three

states and two actions. This problem is a simple benchmark that exhibits the basic fea-

tures of most solutions to the problem.

Problem of the decision maker

The decision maker chooses between two options i = {1, 2} = {new policy, status quo}
and can acquire information with marginal cost λ. The payoff of the new policy takes

the value vs with corresponding probability gs, where s = 1, 2, 3 . The status quo carries

the payoff R ∈ (0, 1) with certainty. In the following scenarios we use several different

values of R and λ. All the parameter values are summarized in table 2.1.
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v1 v2 v3 g1 g2 g3 R1 R2 λ1 λ2 λ3 λ4

0 1
2

1 g ∈ (0, 2
3
) 1

3
2
3
− g 3

8
5
8

1
8

1
4

3
8

1

Table 2.1: Parameters used in this section

Note that keeping g2 fixed, we can vary g only between (0, 2
3
). Also Ev can vary only

from 1
6
to 5

6
. To solve this problem it is necessary to find the unconditional probabilities

P(i = 1) and P(i = 0). First, for a given set of parameters, the unconditional probability

P(i = 1) as a function of Ev for different values of λ is shown in figure 2.8.

Figure 2.8: P(i = 1) as function of Ev for different λ, R1

For Ev close to 1
6
and 5

6
, the agent does not process any information and chooses with

certainty the status quo and the new policy, respectively. With increasing marginal cost

of information, the area in which she chooses with certainty grows. In the middle area,

the agent acquires information and the unconditional probability of selecting the new

policy is an increasing function of the prior expected value from the new policy. With

an increase marginal cost of information λ the small changes in Ev translate into bigger

changes in the P(i = 1).

In order to draw a full picture, see figure 2.9 that depicts Ei[E(v|i)|s∗] as a function of
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Figure 2.9: Ei[E(v|i)|s∗] as a function of Ev for different levels of R and λ. The solid
lines are the case with R1 and dashed with R2. Black corresponds to cases with λ1 and
red is used for λ2.

Ev for different levels of R and λ. Similarly to the previous figures, a different R changes

the direction of updating and also the convexity of the line. The role of the marginal

cost of information is clear from this figure. The cheaper the information λ2 < λ1,

the further away the prior expected values are from the posterior expected value of the

new policy. This is also manifested by the fact that the decision maker is learning even

for the prior beliefs, where she was not acquiring information for λ1. Therefore, in our

example, when the cost of information is smaller the polarization of agents is more severe.

Can agents diverge in their opinions but move beliefs in the same direction?

Until this point we have considered only the polarization when two agents are updating in

opposite directions. However, in the situation when both agents share the same valuation

of the status quo, but one group is very optimistic about the new policy (Ev is high) and

the second group is pessimistic about the new policy (Ev is small), they might diverge

in opinions, in the sense that their posterior expected values are further away from each

other than their prior expected values (see figure 2.10).

This result indicates behavior that resembles the behavior of confirmatory learning

agents. Those who a priori prefer the new policy would move their posterior further to

the right. But can this result occur?
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∆1 > 0 ∆2 > 0

v1 R E1v v2 E2v v3

Figure 2.10: Illustration of the situation when the agents who are a priori optimistic
about the new policy become more polarized

Figure 2.11: ∆(s∗ = 2) as a function of Ev for R1 and λ2. The red area depicts the
area of updating in the opposite direction from the realized value.

Figure 2.12: ∆(s∗ = 2) as a function of Ev for R2 and λ2. The red area depicts the
area of updating in the opposite direction from the realized value.

Figures 2.11 and 2.12 show the dependence of ∆(s∗ = 2) on Ev for two values of

R, correspondingly. The former figure corresponds to the situation when the agent is

updating to the right, towards v3, and the latter – to updating to the left, towards v1.

In both cases the red area indicates the area where the decision maker is updating away

from the true state v2. We can notice several interesting implications. First, two agents

updating in the same direction with the same perception of the status quo might diverge

in their opinions only when they are updating correctly. Particularly, their Ev in the

case for R1 has to be inside interval (1
6
, 3
8
). As a consequence, two agents that have the

same valuation of the status quo and the same marginal cost of information, but one is

optimistic and the second is pessimistic about the new policy, cannot diverge in their

opinions by updating in the same direction. However, if the two agents have different R

or λ this situation might happen.

A second interesting insight is that since the maximal value of ∆(s∗ = 2) is achieved

for prior beliefs, which are close to the payoff associated with true state 2, it suggests that

someone who is updating correctly can move her belief from something which is lower

than v2 to something which is higher than v2. Moreover, we observe that the more the
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agent is optimistic about the new policy the less he updates, but that is not surprising

in this example due to keeping the g2 fixed and
∑3

s=1 gs = 1.

2.6 Conclusion

People’s opinions about the proposed policies and pertinent issues often become polarized.

The literature provides several explanations of the phenomena: preference for information

which confirms existing beliefs, imperfect memory, interpretation of ambiguous evidence

as confirming existing beliefs, etc. In this paper we explore a new source of belief po-

larization, which arises as a consequence of the state-pooling effect if the information is

costly to acquire.

We study the evolution of the beliefs of a rationally inattentive agent who chooses

between two options, risky (new policy) and safe (status quo), and characterize situations

in which the beliefs would be updated on average in the opposite direction from the real-

ized value of the risky option. We find that the key determinant of the direction of belief

updating is the perception of the status quo. The position of the status quo determines

the information acquisition strategy. In our interpretation, the agent splits the states of

the world into categories and learns, to some extent, about these categories, not distinct

states. This type of learning might lead to the updating of beliefs in the opposite direc-

tion from the realized value. The division into categories is determined exactly by the

perception of the status quo. If the two agents have different perceptions of the status

quo, they might diverge in their opinions after information acquisition. Interestingly, the

difference in their opinions can become greater if the information becomes cheaper to

acquire.

Our paper sheds new light on the problem of opinion polarization in society that is

taking place currently. It provides a crisp explanation of why polarization can become

more severe when information is cheaper to obtain. Extensions of the model for mul-

tiple actions could possibly create several endogenous categories and thus provide more

insights into the connection with the models of categorical thinking. Another interesting

extension could be to add a voting layer on top of the model presented. We also encour-

age future research testing the implications of our model on actual referendum data.
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2.A Proof of Proposition 3

The agent’s posterior belief about the payoff of the new policy v given the fixed state s∗

for option i ∈ {status quo , new policy} = {1, 2} is

Ei[E(v|i)|s∗] = P(i = 1|s∗)E(v|i = 1) + P(i = 2|s∗)E(v|i = 2).

This, after substituting for the conditional probabilities P(i|s∗) ∀i according to lemma

2 and applying the Bayes rule can be rewritten as

Ei[E(v|i)|s∗] =
P(i = 1)e

vs∗
λ

P(i = 1)e
vs∗
λ + (1− P(i = 1))e

R
λ

·
n∑
s=1

vsgs
e
vs
λ

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

+

+
(1− P(i = 1))e

R
λ

P(i = 1)e
vs∗
λ + (1− P(i = 1))e

R
λ

·
n∑
s=1

vsgs
e
R
λ

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

.

Lemma 2 shows that

P(i = 1|s∗) =
P(i = 1)e

vs∗
λ

P(i = 1)e
vs∗
λ + (1− P(i = 1))e

R
λ

.

Thus,

Ei[E(v|i)|s∗] =
n∑
s=1

vsgs
P(i = 1|s∗)e vsλ + (1− P(i = 1|s∗))eRλ
P(i = 1)e

vs
λ + (1− P((i = 1))e

R
λ

.

2.B Proof of Proposition 4

First we prove the following lemma that we further use for proving Proposition 4.

Lemma 3. Relations P(i = 1|s∗) ≷ P (i = 1) for 0 < P(i = 1) < 1 are equivalent to

vs∗ ≷ R.

Proof. After substitution for the conditional probabilities, the conditions P(i = 1|s∗) ≷

P (i = 1) can be rewritten as
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P(i = 1)e
vs∗
λ

P(i = 1)e
vs∗
λ + (1− P(i = 1))e

R
λ

≷ P(i = 1),

these are equivalent to

(
P(i = 1)− P2(i = 1)

) (
e
vs∗
λ − e

R
λ

)
≷ 0.

For 0 < P(i = 1) < 1 the term in the first parenthesis is always positive. Therefore, the

left hand side of the inequality is positive when vs∗ > R and negative for vs∗ < R.

Now we can continue with the proof of Proposition 4.

Proof. In order to solve the agent’s problem given by equations 2.1 - 2.4 we need to find

P(i = 1) and P(i = 2) that is defined as P(i = 2) = 1 − P(i = 1). These probabilities

have to be internally consistent, i.e. P(i) =
∑n

s=1P(i|s)gs. After dividing both sides of

these conditions by P (i) we obtain the following conditions

1 =
n∑
s=1

e
vs
λ

P(i = 1)e
vs
λ + P(i = 2)e

R
λ

gs, if P(i = 1) > 0,

1 =
n∑
s=1

e
R
λ

P(i = 1)e
vs
λ + P(i = 2)e

R
λ

gs, if P(i = 2) > 0.

The difference of these two equations is

n∑
s=1

e
vs
λ − eRλ

P(i = 1)e
vs
λ + P(i = 2)e

R
λ

gs = 0.

For k for which holds that vk ≤ R ≤ vk+1 we can further write the above equation as

e
vk
λ − eRλ

P(i = 1)e
vk
λ + P(i = 2)e

R
λ

vkgk = −
∑
s 6=k

e
vs
λ − eRλ

P(i = 1)e
vs
λ + P(i = 2)e

R
λ

vkgs. (2.8)
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We will use the last equation for determining the sign of ∆(s∗) that can be written as

∆(s∗) =
n∑
s=1

vsgs
P(i = 1|s∗)e vsλ + (1− P(i = 1|s∗))eRλ
P(i = 1)e

vs
λ + (1− P(i = 1))e

R
λ

−
n∑
i=1

vsgs,

∆(s∗) =
n∑
s=1

vsgs
P(i = 1|s∗)e vsλ + (1− P(i = 1|s∗))eRλ
P(i = 1)e

vs
λ + (1− P(i = 1))e

R
λ

−
n∑
i=1

vsgs
P(i = 1)e

vs
λ + (1− P(i = 1))e

R
λ

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

,

∆(s∗) =
n∑
i=1

vsgs
(P(i = 1|s∗)− P(i = 1))(e

vs
λ − eRλ )

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

,

∆(s∗) = (P(i = 1|s∗)− P(i = 1)) ·
n∑
s=1

vsgs
e
vs
λ − eRλ

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

.

Substituting the equation (2.8) into the sum in the last equation we obtain

∆(s∗) = (P(i = 1|s∗)− P(i = 1))

[∑
s 6=k

(vs − vk)gs
e
vs
λ − eRλ

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

]
.

The expression in the square brackets is positive, because for the afore defined k the

sign of (vs − vk) and the sign of e
vs
λ − eRλ are the same. Hence ∆(s∗) has the same sign

as (P(i = 1|s∗)− P(i = 1)) that further, by lemma 3, has the same sign as (vs∗ −R).

2.C Proof of Proposition 5

Proof. We are interested in the monotonicity of ∆(s∗) when the true state of the world

s∗ is changing. In appendix 2.B we derive that

∆(s∗) = (P(i = 1|s∗)− P(i = 1))

[∑
s 6=k

(vs − vk)gs
e
vs
λ − eRλ

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

]
.

Let us consider two states of the world s∗1 and s∗2, such that s∗1 > s∗2. Demonstrating

that ∆(s∗1)−∆(s∗2) ≥ 0 would prove the monotonicity of ∆(s∗).
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∆(s∗1)−∆(s∗2) =

[∑
s 6=k

(vs − vk)gs
e
vs
λ − eRλ

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

]
·

· (P(i = 1|s∗1)− P(i = 1)− P(i = 1|s∗2) + P(i = 1)) =

=

[∑
s 6=k

(vs − vk)gs
e
vs
λ − eRλ

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

]
·

· (P(i = 1|s∗1)− P(i = 1|s∗2)) =

=

[∑
s6=k

(vs − vk)gs
e
vs
λ − eRλ

P(i = 1)e
vs
λ + (1− P(i = 1))e

R
λ

]
·

·

 P(i = 1)e
vs∗1
λ

P(i = 1)e
vs∗1
λ + (1− P(i = 1))e

R
λ

− P(i = 1)e
vs∗2
λ

P(i = 1)e
vs∗2
λ + (1− P(i = 1))e

R
λ


The term in the square brackets is positive, so the sign of ∆(s∗1)−∆(s∗2) is determined

by the sign of the term in the round brackets.

Let us show that

P(i = 1)e
vs∗1
λ

P(i = 1)e
vs∗1
λ + (1− P(i = 1))e

R
λ

− P(i = 1)e
vs∗2
λ

P(i = 1)e
vs∗2
λ + (1− P(i = 1))e

R
λ

> 0.

The last inequality is equivalent to

P(i = 1)e
vs∗1
λ

(
P(i = 1)e

vs∗2
λ + (1− P(i = 1))e

R
λ

)
−

− P(i = 1)e
vs∗2
λ

(
P(i = 1)e

vs∗1
λ + (1− P(i = 1))e

R
λ

)
> 0,

(1− P(i = 1)) e
vs∗1
λ e

R
λ − (1− P(i = 1)) e

vs∗2
λ e

R
λ > 0,

which, in turn, is equivalent to

e
vs∗1
λ > e

vs∗2
λ .

The last inequality holds, so ∆(s∗) is an increasing function.

Maćkowiak and Wiederholt (2009)Maćkowiak and Wiederholt (2015)Kőszegi and Ra-

bin (2006), Kőszegi and Rabin (2007) Sims (2006)
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Chapter 3

Attentional Role of Quota Implementation

Co-authored with Sergei Mikhalishchev (CERGE-EI).

3.1 Introduction

Labor market quotas have become a heavily-used governmental policy instrument in

recent years. For example, in 2006 all publicly listed companies in Norway were required

to increase female representation on their boards of directors to 40 percent. Following

Norway’s lead, the European Union and other countries worldwide have passed similar

reforms (Bertrand et al. 2019). While there is a large body of literature that studies

the effect of quota implementation on market outcomes, there is a lack of research that

focuses on individual decision-making when an agent is forced to fulfill a quota. This

paper introduces a new role of quotas: the attentional role. Although we primarily focus

on the effect of quotas in the labor market, the results of our analysis could be applied to

studying individual behavior in other areas, e.g. a quota on the number of orders a taxi

driver could reject when searching for a client using peer-to-peer ride sharing applications

(such as Uber, Lyft, or Yandex).

In this paper we explore the effect of quota implementation on the behavior of a

rationally inattentive (RI) agent facing a discrete choice. We follow the setup introduced

by Matějka and McKay (2015), in which the agent’s choice in the unconstrained problem

is characterized by the set of conditional and unconditional choice probabilities. Such

an agent has prior beliefs about the values of the available options. The values of the
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options are modeled as an unknown draw from the known distribution. The agent has

an opportunity to receive additional information about the realization of the draw in the

manner that is optimal given the costs, which we model using the rational inattention

framework introduced by Sims (1998, 2003). (Sims 1998), (Sims 2003)

The attention allocation strategy of the RI agent will change if her choice would

be constrained by the quotas, which we model as a constraint on unconditional choice

probabilities. We analyze the behavior of the RI agent when quotas restrict her choice

and compare it with an unrestricted case. We also compare it with the situation in

which a social planner subsidizes the agent’s choice of a certain alternative. Specifically,

we explore the change in the attention strategy and, consequently, changes in choice

probabilities, the average quality of chosen options, and social welfare.

We find that the choice probabilities of the agent in the constrained problem have

the form of a generalized multinomial logit model as in Matějka and McKay (2015) with

an additional state independent bias. In a choice among N options with values vi for

i ∈ {1, ..., N}, our modified logit formula implies that the probability of choosing option

i is:

Pi(v) =
qie

(vi−ϕi)/λ∑N
j=1 qje

(vj−ϕj)/λ
,

where λ is the marginal cost of information, the qi terms are quotas, and ϕi is a state

independent bias. The interpretation of this bias is as follows: it is the subsidy that

the social planner should add to options if he wants to induce the choice of a certain

alternative with some probability.

These adjustments to the logit model lead to several changes in the agent’s behavior.

First, if the choice problem is non-trivial, the RI agent who is forced to fulfill a quota

always acquires information about existing options. This feature is absent in the un-

constrained problem, in which there are prior beliefs of the agent for which she decides

not to acquire any additional information. Second, the overall amount of the acquired

information depends on the level of the quota and could be less than in the unconstrained

RI problem.

We further investigate what the optimal quota is. We assume that the utilities of the

agent and the social planner are partially misaligned. We consider two distinct goals of

the social planner. In the first case the social planner maximizes the expected value of

the chosen option, e.g. when he does not take into account information costs. In the

second case the social planner wants to achieve fairness, i.e., he wants to eliminate the
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influence of priors on the agent’s choice.

In the first case, for some priors the social planner prefers not to impose a quota and

the agent still does not acquire any information. In general, the social planner benefits

by forcing the agent to fulfill quotas and, consequently, increases the overall quality of

the choice.

In the second case the agent’s choice would be based on the relative benefits from

the choice of the alternative as in the standard logit model. At the same time, when the

social planner’s goal is to eliminate the influence of the agent’s priors, he significantly

restricts her behavior, and this leads to a decrease in the overall quality of the choice.

We also study the case in which the assumption of the social planner’s perfect knowledge

is relaxed. We show that in some cases such a social planner should not intervene in the

agent’s decision.

Our work brings new arguments to the ongoing discussion regarding the benefits and

costs of different kinds of affirmative action. Thus, when we discuss the effects of quota

implementation, we need to take into account the nature of the agent’s behavior and define

the main purposes of such a policy intervention. In addition, future empirical work could

build upon our results to study the effect of quotas and subsidies on individual behavior.

In the next section we review the related literature. Section 3.3 states the formal

model of the agent’s behavior with quotas and subsidies. Section 3.4 demonstrates the

implications of the model using a specific example. Section 3.5 discusses the optimal level

of quotas. Finally, Section 3.6 concludes.

3.2 Literature

Our work contributes to the research on affirmative action and labor market discrimina-

tion. Affirmative action is “...any measure, beyond simple termination of a discriminatory

practice, adopted to correct or compensate for past or present discrimination or to pre-

vent discrimination from recurring in the future.” (US Commission on Civil Rights, 1977

p.2). One of the most hotly debated types of affirmative action is quota implementation.

Coate and Loury (1993), in their famous paper, analyze a model of job assignment and

show that introduction of quotas may lead to equilibria with persistent discrimination,

due to feedback effects between expected job assignments and incentives to invest in

human capital. Moro and Norman (2003) study the same problem in the general equilib-

rium setting and confirm the possibility that quotas could hurt the intended beneficiaries.
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These articles examine how affirmative action influences the behavior of the target group

and then its interaction with the behavior of the firm. In contrast, our study aims to

investigate the individual decision-making process under quotas and its consequences for

policy design.

At the same time, a number of empirical studies find an overall positive effect of quota

implementation (for example, Ibanez and Riener (2018), Niederle, Segal, and Vesterlund

(2013)). Besley et al. (2017), using Swedish data on the performance of politicians, show

that a gender quota on the ballot increased the competence of male politicians. Bertrand

et al. (2019) document that a law mandating 40% representation of each gender on the

board of public limited liability companies in Norway resulted in an overall improvement

of labor quality and a decrease in the gender gap in earnings within boards. Our paper

proposes a mechanism that could partially explain this evidence; namely, our model

demonstrates that implementation of quotas may lead to an increase in labor productivity.

A review of early studies on affirmative action can be found in Fang and Moro (2010).

Our study fits into the rational inattention literature, which originated in studies by

Sims (1998, 2003). As a benchmark, we use the modified multinomial logit model of

Matějka and McKay (2015), in which agents choose among discrete alternatives without

precise information about their values, but with an opportunity to study the options

for some cost. We solve this model with an additional constraint on the unconditional

probabilities of the choice of a certain alternative. Lindbeck and Weibull (2017) analyze

investment decisions with delegation to a RI agent. They find that optimal contracts for

an agent include a high reward for good investments and punishment for bad investments.

We analyze a similar principal-agent problem, but with a different mechanism; we assume

that a principal could influence an agent’s behavior by defining the level of quotas on

unconditional choice probabilities.

Bartoš et al. (2016), in a field experiment, show that HR managers and landlords

allocate their attention to job and rental applicants in line with rational inattention

theory. For example, a non-European name or recent unemployment induces the HR

manager to read a job application and a CV in less detail, consequently affecting the

probability of the applicant being invited for a job interview. The results of our study

could predict the attention allocation of decision-makers, such as HR managers, in the

event of quota implementation, i.e. whether they would blindly choose the quoted option

or whether quota implementation would lead to higher information acquisition about

the target group. Thus, the results of this study could provide a starting point for the
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empirical investigation of the effect of quota implementation on attention allocation.

Our study also relates to the discussion about whether directly administering the ac-

tivity is better than fixing transfer prices and relying on utility maximization to achieve

the same results in a decentralized fashion (Weitzman 1974). We contribute to the dis-

cussion on this issue by comparing the agent with quotas in the decision-making process

and the agent with the choice subsidized by a social planner.

3.3 The Model

In this section we first describe the standard RI problem and its implications as a bench-

mark model. Then we solve the problem with quotas and discuss its properties. Finally,

we analyze the RI problem with subsidies.

We consider a model of discrete choice with costly information acquisition as in

Matějka and McKay (2015). The agent faces the menu of N options and wants to select

the option with the highest value. The state of the world is a vector v ∈ RN , where vi is

the value of option i ∈ {1, ..., N}. Thus, the values of options differ from state to state.

The agent has imperfect information about the state of the world, and so is unsure of the

payoff from the choice. The agent’s prior knowledge is described by a joint distribution

G(v). She can refine her knowledge by processing information about the options. This

information processing is costly. The conditional probability of option i being selected

when the realized values are v is Pi(v).

3.3.1 Standard RI problem

The standard RI agent’s problem is formalized as follows.

Standard (unconstrained) RI problem. The agent’s problem is to find a vector func-

tion of conditional choice probabilities PU = {PUi (v)}Ni=1 (the superscript “U” stands for

“unrestricted”) that maximizes expected payoff less the information cost:

max
{PUi (v)}Ni=1

{
N∑
i=1

∫
v

viPUi (v)G(dv)− λκ(PU , G)

}

subject to

∀i ∈ {1, ..., N} : PUi (v) ≥ 0 ∀v ∈ RN , (3.1)
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N∑
i=1

PUi (v) = 1 ∀v ∈ RN , (3.2)

where unconditional choice probabilities are

P0,U
i =

∫
v

PUi (v)G(dv), i ∈ {1, ..., N}.

The cost of information is λκ(PU , G), where λ > 0 is a given unit cost of information

and κ is the amount of information that the agent processes, which is measured by the

expected reduction in the entropy (Shannon (1948), Cover and Thomas (2012)):

κ(PU , G) = −
N∑
i=1

P0,U
i logP0

i +
N∑
i=1

∫
v

PUi (v) logPUi (v)G(dv). (3.3)

This shape of information costs is common in the literature on rational inattention.

Its usage has been justified both axiomatically and through links to optimal coding in

information theory (see Sims (2003) and Matějka and McKay (2015) for discussions).

It is shown by Matějka and McKay (2015) that at the optimum the conditional prob-

abilities of choosing option i, i ∈ 1, ...., N follow the generalized logit form.

Theorem 3 (Matějka and McKay (2015)). Conditional on the realized vector of utilities

of options v, the choice probabilities satisfy:

PUi (v) =
P0,U
i evi/λ∑N

j=1P
0,U
j evj/λ

almost surely.

If λ = 0, then the agent selects the action(s) with the highest payoff with probability one.

P0,U
i is the marginal probability of selecting action i before the agent starts processing

any information. The vector of these probabilities reflects the fact that some options

might look a priori better than others. P0,U
i depends on the prior knowledge of the

probabilities G(v) and cost of information λ.

The important property of the solution is that there may exist such priors for which

the agent decides not to acquire any information and makes her decision purely based on

her prior knowledge. In this situation the agent just picks an option with the highest a

priori expected value.
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3.3.2 Quotas

We consider a departure from the standard RI problem. In the situation which we are

considering, the agent is not free to choose options as often as she wants. Instead, some

authority limits her choice in that the share of the chosen options from a particular

category i should equal qi ∈ (0, 1). We focus on the case with binding quotas for all

alternatives, since when quotas are not binding for any i this condition is redundant and

the solution to the maximization problem is the same as in the standard RI. In appendix

3.A we show that results are similar in situation when quotas are binding for one or more

alternatives, but not for all of them.

RI problem with quotas. The agent’s problem is to find a vector function of conditional

choice probabilities P = {Pi(v)}Ni=1 that maximizes expected payoff less the information

cost:

max
{Pi(v)}Ni=1

{
N∑
i=1

∫
v

viPi(v)G(dv)− λκ(P , G)

}
(3.4)

subject to

∀i ∈ {1, ..., N} : Pi(v) ≥ 0 ∀v ∈ RN , (3.5)

N∑
i=1

Pi(v) = 1 ∀v ∈ RN (3.6)

and

∀i ∈ {1, ..., N} : P0
i =

∫
v

Pi(v)G(dv) = qi, qi > 0, (3.7)

where q = (q1, ..., qN)T is the vector of quotas and

N∑
i=1

qi = 1.

The cost of information λκ(P , G) is defined according to

κ(P , G) = −
N∑
i=1

P0
i logP0

i +
N∑
i=1

∫
v

Pi(v) logPi(v)G(dv). (3.8)

When λ > 0, then the Lagrangian of the agent’s problem is the following:

N∑
i=1

∫
v

viPi(v)G(dv)− λ

(
−

N∑
i=1

P0
i logP0

i +
N∑
i=1

∫
v

Pi(v) logPi(v)G(dv)

)
+
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+

∫
v

ξi(vPi(v)G(dv))−
∫
v

µ(v)(
N∑
i=1

Pi(v)− 1)G(dv)−
N∑
i=1

ϕi(

∫
v

Pi(v)G(dv)− qi),

where µ(v), ξi(v) and ϕ are Lagrange multipliers. The first order condition with respect

to Pi(v) is

vi + ξi(v)− µ(v) + λ(logP0
i − logPi(v))− ϕi = 0. (3.9)

Let us note that for all i ∈ {1, ..., N},v ∈ RN Pi(v) > 0 almost surely. That makes

ξi(v) = 0, i ∈ {1, ..., N}, v ∈ RN almost surely. To see this, suppose to the contrary

that Pi(v) = 0 on a set of positive measure with respect to G. Then − logPi(v) goes to

infinity; in order to compensate that in the equation (3.9), one of the Lagrange multipliers

should be infinite, which is impossible, because they are finite scalars.

What is left of the first order condition can be rearranged to:

Pi(v) = P0
i e

(vi−µ(v)−ϕi)/λ. (3.10)

Plugging (3.10) into (3.2), we obtain:

eµ(v)/λ =
N∑
i=1

P0
i e

(vi−ϕi)/λ,

which we again use in (3.10) and find:

Pi(v) =
P0
i e

(vi−ϕi)/λ∑N
j=1P0

j e
(vj−ϕj)/λ

.

Finally, using (3.7) we obtain:

Pi(v) =
qie

(vi−ϕi)/λ∑N
j=1 qje

(vj−ϕj)/λ
. (3.11)

If we denote

αi = λ log qi,

then (3.11) can be written as

Pi(v) =
e(vi+αi−ϕi)/λ∑N
j=1 e

(vj+αj−ϕj)/λ
.
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This result is formalized in the following proposition:

Proposition 6. Choice probabilities that are the solution of the RI agent problem with

quotas are of generalized logit form: logit choice probabilities with additive state-independent

bias.

Proposition 6 states that the solutions to the standard RI problem and the RI problem

with quotas have a similar form. However, there is a crucial difference in the information

acquisition strategies of a RI agent with and without quotas. We express it in the following

proposition:

Proposition 7. If (i) the agent’s prior is nontrivial, that is, she does not believe that

some state of the world happens with certainty, and (ii) the quota does not dictate the

agent to take some option with certainty, and (iii) the marginal cost of information λ is

finite, and (iv) the matrix function A(v) with elements aij = vi − vj is state-dependent,

then the following holds: the RI agent with quotas always acquires information.

Proof. Let us assume the opposite. If the agent would not acquire information, then

Pi(v) = qi for all i ∈ 1, ..., N . Or

qie
vi−ϕi
λ∑N

j=1 qje
vj−ϕj
λ

= qi.

We use the assumption that qi 6= 0 and divide both parts of the equation above by qi.

e
vi−ϕi
λ∑N

j=1 qje
vj−ϕj
λ

= 1.

The same holds for all other options. That means that

vi − ϕi = vk − ϕk,

or

vi − vk = ϕi − ϕk.

The last equation cannot hold for all realizations of v. That is so since the LHS of the

above equation is state-dependent, while the RHS is state-independent, which contradicts

assumption (iv).(Card, Kluve, and Weber 2010), (Card, Kluve, and Weber 2017)
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Proposition 7 tells us that in the context of the labor market, an introduction of

quotas would not lead to a situation in which HR managers are hiring certain categories

of workers without information acquisition.

3.3.3 Subsidies

There exists a practice when a firm receives subsidies if it employs certain categories of

workers (for surveys see, e.g., Card, Kluve, and Weber (2010, 2017)). We are interested

in understanding how the agent’s attention strategy depends on the particular form of

affirmative action that was chosen by the government. We show that the agent’s behavior

in both situations (under quotas and with subsidies) is the same.

If the government introduces a certain level of subsidies, Si, the agent solves the

following problem:

RI problem with subsidies. The agent’s problem is to find a vector function of con-

ditional choice probabilities PS = {PSi (v)}Ni=1 (the superscript “S” stands for “subsidy”)

that maximizes expected payoff less the information cost:

max
{PSi (v)}Ni=1

{
N∑
i=1

∫
v

(vi + Si)P
S
i (v)G(dv)− λκ(PS, G)

}
,

subject to

∀i ∈ {1, ..., N} : PSi (v) ≥ 0 ∀v ∈ RN , (3.12)

N∑
i=1

PSi (v) = 1 ∀v ∈ RN , (3.13)

where Si is a subsidy for choosing option i. The cost of information λκ(PS, G) is defined

according to

κ(PS, G) = −
N∑
i=1

P0,S
i logP0

i +
N∑
i=1

∫
v

PSi (v) logPSi (v)G(dv). (3.14)

In this case the solution to the agent’s problem follows the standard modified gener-

alized multinomial logit formula, but with the changed value of the option i by Si:

PSi (v) =
P0,S
i e(vi+Si)/λ∑N

j=1P
0,S
j e(vj+Sj)/λ

(3.15)
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In order to compare the agent’s behavior under both policies we need to set up sub-

sidies on the level where quotas are fulfilled:∫
v

PSi (v)G(dv) = qi.

We refer to subsidy Si as optimal when unconditional probabilities of the agent’s choice

are equal to quotas, P0,S
i = qi. It is important to note that the vector of optimal subsidies

is not unique. We formalize it in the following Lemma:

Lemma 4. If S∗ is a vector of optimal subsidies, then any vector which is obtained by

adding any number to all components of S∗ is also a vector of optimal quotas.

Proof. Assume that the optimal vector of quotas is S = {S1, ..., SN}. Let’s add any α

to all subsidies and denote this vector of quotas S∗ = {S∗1 , ..., S∗N}. Then we can rewrite

equation (3.15) as follows:

PS∗

i (v) =
P0,S∗

i e(vi+S
∗
i )/λ∑N

j=1P
0,S∗

j e(vj+S
∗
j )/λ

=
P0,S∗

i e(vi+Si+α)/λ∑N
j=1P

0,S∗

j e(vj+Sj+α)/λ
=

eαP0,S∗

i e(vi+Si)/λ

eα
∑N

j=1P
0,S∗

j e(vj+Sj)/λ

Therefore we can reduce eα and since P0,S
i =

∫
v
PSi (v)G(dv) we obtain equation (3.15).

Equations (3.15) and (3.11) provide us with intuition about the nature of the additive

bias ϕi, i ∈ {1, ..., N} from the solution to the RI problem with quotas. This bias can be

interpreted as the subsidies from the government that are needed to be added to the values

of the options in order to make the RI agent choose them with required unconditional

probabilities. Therefore, the behavior of the RI agent with quotas and with optimal

subsidies is the same. This result is formalized in the following proposition1:

Proposition 8. The information acquisition strategy and conditional choice probabilities

of the RI agent when her choice is restricted by quotas are identical to the situation when

her choice is supported by optimal subsidies.

1In Appendix 3.D we solve a binary example with subsidies. We show that while the behavior of the
agent under quotas and subsidies is the same, the utility of the agent is different for two cases, which is
a reason why quotas could be more appropriate.
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3.4 Binary example with risky and safe options

In order to illustrate the logic of the model let us consider a simple example where the

agent chooses between risky and safe alternatives. The safe option always takes the value

v1 = R. The risky option can take values v2 = 0 with the probability b and v2 = 1 with

the probability 1 − b. These probabilities are the priors of the agent and she does not

know what the realization of the state of the world is. The agent has an opportunity to

acquire some costly information about the realization. If the realized value of the chosen

risky option is v2 = 0 we refer to such an alternative as bad; and if the realized value of

the chosen risky option is v2 = 1 we refer to it as good.

Let us add a small remark which shows that any RI decision problem with two alter-

natives can be formulated as a binary choice problem between risky and safe options. The

idea is that we do not change the behavior of the agent by substracting a constant from

the maximization problem. It means that we can shift the values of the options in such a

way that the maximization problem would be equivalent to the initial one, but one of the

options would be safe in the new decision problem. Indeed, if the initial maximization

problem is

max{
∫
v

2∑
j=1

(vjPj(v))G(dv)− λκ}.

Then we can extract a number from it and the optimal choice probabilities will not

change. Let us extract
∫
v

(∑N
j=1 vi

)
G(dv). Then the initial maximization problem is

equivalent to

max{
∫
v

2∑
j=1

((vj − vi)Pj(v))G(dv)− λκ}.

The last problem is a problem of choice between 2 alternatives, one of which has a

constant value, and thus can be perceived as a safe option. In the context of the labor

market this means that in order to study the consequences of quotas’ implementation, we

can consider the choice problem in which one option is safe (the productivity of workers

in one group is constant). This binary example can also serve as an illustration of the

financial market situation, when the agent chooses between a safe asset and a risky asset

while facing restriction from the regulator on the ratio of riskiness of her portfolio.

Let us get back to the example. The agent’s choice is restricted in that on average

the share q of chosen options should be risky and share 1− q of chosen options should be

safe. In terms of rational inattention the agent has restriction on unconditional choice
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probabilities. In Appendix 3.C we consider a case with two risky options and demonstrate

that the nature of the results is similar.

To solve the problem we must find conditional probabilities Pi(v). We show in Ap-

pendix 3.B that the solution is:

P1(0) =
−b− q + (b+ q − 1)e

1
λ +

√
(b+ q − (b+ q − 1)e

1
λ )2 + 4q(be

1
λ − b)

2(be
1
λ − b)

,

P1(1) =
q − bP1(0)

1− b
.

For a given set of parameters, Figure 3.1 shows reduction in entropy as a function

of b. In the standard RI problem, when b is close to 0 or 1 the agent decides not to

process information and selects one of the options with certainty. However, when the

agent is forced to fulfill quotas she always acquires information and, hence, there are

no non-learning areas. For example, when b is close to 1, she is forced to choose a risky

alternative with positive probability, and it is profitable to acquire information in order to

choose the good risky option rather than to make a random choice of a risky alternative.

At the same time, under quotas the agent could prefer to acquire less information

than in the standard RI problem (Figure 3.1). Accordingly, the effect of the quota

implementation on the amount of acquired information is ambiguous.

Figure 3.1: Reduction in entropy as a function of b and λ = 0.5, R = 0.5. The green
line is for the standard RI problem and the red lines are for the quoted RI problem: the
solid line is for q = 0.5, the dotted line for q = 0.75 and the dashed line for q = 0.25.

We now explore how the quota implementation affects the quality of the chosen op-

tions. In terms of the labor market this question can be restated in the following way:
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does quota implementation necessarily mean that the quality (or productivity) of the

hired workers will fall? The definition of the quality of the chosen risky option can be

found below. The quality of the safe option is always R.

Definition 3. The quality of the chosen risky option is (1−b)P1(1)

P0
1

. This is the ratio of the

probability of the chosen risky option being good to the probability of choosing any risky

option.

Figure 3.2 illustrates the quality of the chosen risky option. Accordingly, the quality

of the chosen risky option is higher (lower) when the quota on it is smaller (larger) than

the unconditional probability of choosing it in the standard RI problem.

Figure 3.2: Quality of the risky option conditional on being chosen as a function of b
and λ = 0.5, q = 0.5, R = 0.5. The green line is for the standard RI problem and the red
line is for the quoted RI problem.

So far we have considered only the quality of the chosen risky option. In the next

section we discuss how quotas can increase the overall quality of the choice and minimize

the statistical discrimination.

3.5 Optimal action of the social planner

In this section we discus what an optimal level of quotas is. So far we have solved

the agent’s problem for a given level of quota. The social planner may have exogenous

reasons why he wants to establish a certain level of quotas rather than the quality of

the alternatives. For example, quotas might be used in order to compensate for under-

representation of certain categories of workers that could be important and beneficial in
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the long run. For instance, there is a large literature that demonstrates how diversity

brings a boost to profitability (Hunt, Layton, and Prince 2014).

We analyze the optimal level of quotas for two different goals of the social planner.

The first possible approach the social planner could take to define an optimal quota is

to maximize a function that is similar to the agent’s utility, but which also accounts for

productivity externalities.

The second approach is to minimize a bias towards the options that are good a priori.

Such bias could lead to the situation when the agent does not choose the option with

a high realized value if the prior of it being good is low. In terms of the labor market

it would mean that it could be that two workers with the same productivity, but from

different social groups, would have different probabilities of being hired. Accordingly, the

social planner could be willing to minimize this effect.

In Appendix 3.E we discuss the case in which the social planner faces a tradeoff

between the two objectives.

In this section, we define the social planner’s problem for two cases and then discuss

the agent’s behavior under induced quotas using the binary example from Section 3.4.

3.5.1 Externalities

If we think of our model as a labor market model, then it is natural to assume that

production externalities take place. However, while the agent is making hiring decisions

she might not take these externalities into account. Thus, the maximization problem

of the agent and the social planner (organization, industry as a whole, or government)

might differ. In such a case it might be beneficial for the social planner to implement

quotas.

The social planner takes into account production externalities. That is, for the social

planner the values of the options are multiplied by a number α > 1.

max
q

{
α

N∑
i=1

∫
v

viPi(v, q)G(dv)− λκ(q,G)

}
,

where Pi(v, q) is a solution to the RI problem with quotas and qi =
∫
v
Pi(v, q)G(dv).

If we denote β = 1
α
, then, since α > 1 and 0 < β < 1, the maximization problem is

equivalent to

max
q

{
N∑
i=1

∫
v

viPi(v, q)G(dv)− βλκ(q,G)

}
.
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For simplicity of exposition we consider the case β → 0. In this case the maximization

problem is

max
q

{
N∑
i=1

∫
v

viPi(v, q)G(dv)

}
.

This is the case in which the social planner is interested in maximizing the expected

value of the chosen option and does not take into account the cost of information. We

refer to the solution of this problem as a Quality maximizing quota.

3.5.2 Influence of priors

Another possible goal of quota implementation is to decrease the influence of priors. The

social planner could be willing to minimize the influence of priors on the agent’s strategy

of acquiring information and final choice. In the standard RI model the unconditional

probabilities are defined before the agent starts processing any information (Matějka and

McKay 2015). Therefore, if the information is relatively expensive the agent could disre-

gard some alternatives without any information acquisition. As a result, the probability

of an alternative being chosen could be lower than its relative utility. An example of a

policy that also aims to reduce the influence of prior knowledge on the agent’s decision is

blind resume practices. We show how the social planner can accomplish the same results

by the means of quota implementation.

The solution to the standard RI maximization problem is PUi (v) =
P0,U
i evi/λ∑N

j=1 P
0,U
j evj/λ

,

where P0,U
i corresponds to the effect of priors. The social planner wants the agent to

choose options as if P0,U
i = P0,U = 1

N
∀i ∈ {1, ..., N}. Consequently, the agent makes her

choice according to the standard multinomial logit formula: PUi (v) = evi/λ∑N
j=1 e

vj/λ
.

In terms of our model, we could find a quota that makes conditional probabilities

independent from the prior bias by solving the following equality:

qie
(vi−ϕi)/λ∑2

j=1 qje
(vj−ϕj)/λ

/
qje

(vj−ϕj)/λ∑2
j=1 qje

(vj−ϕj)/λ
=

evi/λ∑2
j=1 e

vj/λ
/

evj/λ∑2
j=1 e

vj/λ
,

or, after rearranging,

elog qi−log qj+(vi−vj−ϕi+ϕj)/λ = e(vi−vj)/λ,

which is equal to

λ log
qi
qj
− ϕi + ϕj = 0.
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In the case when there are two options q2 = 1 − q. From the Section 3.3.3 we know

that there exist such subsidies that ϕi is equal to Si. Therefore, using Lemma 4 we could

set ϕ2 = 0 and find ϕ1 for any q. We end up with the following equation:

λ log
q

1− q
− ϕ1 = 0.

In Appendix 3.D we solve the binary example with subsidies. From there we can set

P0
1 = q and express S1 = ϕ1 as a function of q:

ϕ1 = λ log[
−eR/λ(e1/λ(1− b− q) + b− q) +

√
4e1/λ+2R/λ(1− q)q + e2R/λ(e1/λ(1− b− q) + b− q)2)

e1/λ2q
].

Then we plug it into the expression above and calculate the optimal quota q as a function

of b. We refer to the solution of this problem as a Fair quota.

3.5.3 Results

In this subsection we illustrate the consequences of optimal implementation of quotas by

solving the example from Section 3.4. We depict the optimal level of quotas dependent

on b for two cases: when the social planner maximizes the expected value of the chosen

alternatives and when he minimizes the effect of priors. We also depict the unrestricted

unconditional choice probabilities. Figure 3.3 illustrates the solution to the social plan-

ner’s problem as a function of b, and λ = 0.5, R = 0.5.When the social planner maximizes

the expected value of chosen alternatives, there are still non-learning areas, but they are

smaller than in the standard RI problem. The reason for the presence of the non-learning

areas is as follows. Let us consider the situation when b is small, that is the probability

of the risky option being good is high. When the non-trivial quota is implemented, the

agent will acquire some information in order to find out whether the risky option is good

or bad, but the improvement in the quality of chosen risky options would not compensate

for the loss that comes from an abundance of good risky options. Therefore, the social

planner prefers not to constrain the agent, or, in other words, he prefers to implement

the quota that would force the agent to always pick a risky option – the same action

that the agent would take without any constraints. Similar logic applies for the situation

when the probability of the good state is low.

Outside these non-learning areas the social planner could increase the overall quality

of the chosen options by setting a quota (Figure 3.4). Thus, in this example, it is optimal
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Figure 3.3: Optimal quota as a function of b and λ = 0.5, R = 0.5 The red lines are
for the quoted RI problem: the solid line is for the fair quota and the dashed line for the
quality maximizing quota. The green line shows the unconditional probability of choosing
a risky option for the standard RI problem.

to establish a quota that is higher (lower) than the unconditional probability in the

standard RI problem when the state is more likely to be bad (good).

When the social planner minimizes the influence of priors, it is optimal to establish

a quota that is higher (lower) than the unconditional probability in the standard RI

problem, as well as quotas in the former situation when the state is likely to be bad

(good). However, in this situation the social planner restricts the agent’s behavior more.

Thus, if we maximize the overall quality of the chosen alternatives we end up in a situation

where most of the good candidates are hired, while some bad alternatives were also chosen.

However, when we eliminate the effect of priors the agent is forced to select less good

alternatives than exist; hence, the overall quality of the chosen option is lower (Figure

3.4).

At the same time, if the social planner doesn’t take into account the agent’s informa-

tion costs the overall information acquisition is higher than in the standard RI problem,

but lower in comparison to the situation when he eliminates the effect of priors (Figure

3.6). Accordingly, in the latter situation the agent pays more attention and, hence, the

quality of the risky option is increased (decreased) more when the probability of the good

state is high (low) according to Proposition 4 (Figure 3.5).

It is important to notice that while the optimal quota here is state dependent, the

information acquisition and the quality of the chosen option are the same as in the

situation with a constant quota, discussed in Section 3.4. At the same time, the utility

of the agent in the former situation is going to be higher, as well as overall welfare: the
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Figure 3.4: Overall quality of chosen alternatives as a function of b and λ = 0.5, R = 0.5.
The green line is for the standard RI problem and the red lines are for the quoted RI
problem: the solid line is for the fair quota and the dashed line for the quality maximizing
quota.

Figure 3.5: Quality of risky option conditional on being chosen as a function of b and
λ = 0.5, R = 0.5. The green line is for the standard RI problem and the red lines are
for the quoted RI problem: the solid line is for the fair quota and the dashed line for the
quality maximizing quota.
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agent chooses more good options and fewer bad options.

Figure 3.7 shows that if a risky option is likely to be bad, the social planner, who does

not take into account the agent’s information costs, establishes a quota that is lower than

the probability of the risky option being good. If the risky option is likely to be good, the

social planner establishes a quota that is higher than the probability of the risky option

being good. The point at which the optimal quota schedule crosses the probability that

the risky option is good depends on the parameters. At the same time, if the social

planner’s goal is to eliminate the effect of priors, the opposite is true: the quota is higher

(lower) than the probability of the risky option being good if the risky option is likely to

be bad (good).

Figure 3.6: Reduction in entropy as a function of b and λ = 0.5, R = 0.5. The green
line is for the standard RI problem and the red lines are for the quoted RI problem: the
solid line is for the fair quota and the dashed line for the quality maximizing quota.

Figure 3.7: Optimal quota as a function of b and λ = 0.5, R = 0.4. The red lines are for
the quoted RI problem: the solid line is for the fair quota, the dashed line for the quality
maximizing quota). The blue line is the probability that the risky option is good.
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3.5.4 Imperfect social planner

We have shown in the previous section that the social planner can increase the overall

quality of choice by setting up some quota. The result was obtained under the assumption

that the social planner has all relevant information for setting up the quota. In this section

we demonstrate that if the social planner does not have perfect information about the

parameters of the model, then setting up the quotas might hurt the overall quality.

We use the example from Section 3.4, where the agent chooses from safe and risky

alternatives. However now we consider two situations: when the social planner does not

know the actual value of the safe option, or when he does not know the distribution of

good and bad risky options in the pool of the candidates.

Unknown R

Let us assume that the social planner does not knowR.He only knows that it is somewhere

between 0 and the minimal threshold for the agent not to acquire information, R. The

social planner knows b and λ; thus, he can compute R. The belief of the social planner

about the value of R is uniform on [0, R].

Let us find R. The optimal unconditional probability of choosing risky option, P0,U
1 ,

in the standard RI problem is

P0,U
1 ∈

{
0, 1,−

e
R
λ

(
−e 1

λ + e
R
λ − b+ be

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

) }
.

In order to find the threshold R we solve the following equation:

−
e
R
λ

(
−e 1

λ + e
R
λ − b+ be

1
λ

)
(
e

1
λ − e

R
λ

)(
−1 + e

R
λ

) = 1.

This can be rearranged to:

R = λ ln

(
e

1
λ

1− b+ be
1
λ

)
.

The expected overall quality of the chosen alternatives from the perspective of the
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social planner is

∫ R

0

(
b

(
(1− P1(0)) ·R

)
+ (1− b)

(
P1(1) +R(1− P1(1))

))
1

R
dR = U(b, q, R),

where P1(0) and P1(1) are solutions for the quoted RI problem from Section 3.4.

Figure 3.8 illustrates the overall quality of choice for different q and for the case when

there is no quotas. The expected quality of the chosen option is not higher for any quota

than in the case with no quotas.

Figure 3.8: Overall quality of chosen alternatives as a function of q and λ = 0.5,
b = 0.25. The green line is for the standard RI problem and the red line is for the quoted
RI problem.

Unknown b

Let us assume that the social planner does not know b. He only knows that it is somewhere

between 1 and the minimal threshold for the agent not to acquire information, b. The

belief of the social planner is uniform on [b, 1].

Following the same procedure as in the previous subsection we find that:

b =
e

1
λ − eRλ
e

1
λ − 1

The expected overall quality of the chosen options from the perspective of the social

planner is

∫ 1

b

(
g(1− P1(0, b))R + (1− b)

(
P1(1, b) +R(1− P1(1, b))

)) 1

1− b
db = V (b, q, R).
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Figure 3.9 illustrates the overall quality of choice for different q and for the case when

there is no quotas. The expected quality of the chosen option is not higher for any quota

than in the case with no quotas.

This means that when the social planner does not perfectly know the properties of the

choice set any quotas could reduce not just the utility of the agent but also the overall

quality of the choice.

Figure 3.9: Overall quality of chosen alternatives as a function of q and λ = 0.5,
R = 0.5. The green line is for the standard RI problem and the red line is for the quoted
RI problem.
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3.6 Conclusion

In this paper we study the optimal behavior of a RI agent who is forced to fulfill quotas

when making a choice from a discrete menu. In this situation, the agent always acquires

information. We show that a social planner using quotas could force an agent to make a

better choice and reduce the attentional discrimination, which can take place because of

costly attention. At the same time, it is important to note that quotas restrict the agent,

and the effect of quota implementation could be negative.

This study contributes to the discussion concerning how affirmative action can in-

fluence individual economic behavior. In addition, the results of the model provide a

testable prediction that could be exploited in future empirical work in order to test the

rational inattention theory.
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3.A

Details of the solution for the model with non-

binding quotas

Let assume that we have N alternatives and there is only one restriction on uncondi-

tional probabilities: P0
1 = q. Accordingly, this constraint implies that

∑N
j=2P0

j = 1 − q.
Therefore, when λ > 0, then the Lagrangian of the agent’s problem described in Section

3.3.2 is as follows:

N∑
i=1

∫
v

viPi(v)G(dv)− λ(−
N∑
i=1

P0
i logP0

i +
N∑
i=1

∫
v

Pi(v) logPi(v)G(dv))

−
∫
v

µ(v)(
N∑
i=1

Pi(v)−1)G(dv)−ϕ1(

∫
v

P1(v)G(dv)−q)−ϕ2(
N∑
j=2

∫
v

Pi(v)G(dv)−1+q),

where µ(v) and ϕx∈1,2 are Lagrange multipliers. The first order condition with respect

to P1(v) is:

v1 − µ(v) + λ(logP0
1 − logP1(v))− ϕ1 = 0,

and with respect to Pj(v) is:

vj − µ(v) + λ(logP0
j − logPj(v))− ϕ2 = 0.

Following the same procedure described in Section 3.3.2 this can be rearranged to:

P1(v) =
qe(v1−ϕ1)/λ∑N

j=2P0
j e

(vj−ϕ2)/λ + qe(v1−ϕ1)/λ
,

and

Pj(v) =
P0
j e

(vj−ϕ2)/λ∑N
j=2P0

j e
(vj−ϕ2)/λ + qe(v1−ϕ1)/λ

.

Therefore, the solution to the problem is going to be identical to that described in

Section 3.3.2. The only difference is that now, for all alternatives for which the quota is

not binding and for which P0
j > 0, the additive state-independent biases ϕ2 are the same.

This logic extends to any situation when not all quotas are binding.
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3.B

Details of the solution for the binary example with

risky and safe options

The agent’s problem is:

max
P=(P1(0),P1(1))

b(1− P1(0))R + (1− b)(P1(1) + (1− P1(1))R)− λκ(P , G)

subject to

P1(0),P1(1) ≥ 0,

bP1(0) + (1− b)P1(1) = q,

and where

κ(P , G) = −
2∑
i=1

qi log qi +
2∑
i=1

∫
v

Pi(v) logPi(v)G(dv).

The derivative with respect to P1(0) of the maximand is:

− bR + (1− b)(− b

1− b
+

b

1− b
R)− λ(b(logP1(0) + 1− log(1− P1(0))− 1)+

+ (1− b)(− b

1− b
)(logP1(1) + 1− log(1− P1(1))− 1)) = 0.

This is equal to:

−b− λb(logP1(0)− log(1− P1(0))− logP1(1) + log(1− P1(1))) = 0.

Plugging P1(1) = q−bP1(0)
1−b into this expression we obtain:

−b− λb(logP1(0)− log(1− P1(0))− log(
q − bP1(0)

1− b
) + log(1− q − bP1(0)

1− b
)) = 0.

Dividing each side by b and using the properties of the logarithms yields:

1 = λ log

(
(1− b)(1− P1(0))(q − bP1(0))

(1− b)P1(0)(1− b− q + bP1(0))

)
,

or:

P1(0)2(be
1
λ − b) + P1(0)(b+ q − (b+ q − 1)e

1
λ )− q = 0.
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There are two solutions to this equation:

P1(0) ∈ {
−b− q + (b+ q − 1)e

1
λ +

√
(b+ q − (g + q − 1)e

1
λ )2 + 4q(be

1
λ − b)

2(be
1
λ − b)

,

−b− q + (b+ q − 1)e
1
λ −

√
(b+ q − (b+ q − 1)e

1
λ )2 + 4q(be

1
λ − b)

2(be
1
λ − b)

}

The solution to the agent’s problem should be positive. Only the first root is positive.

This is so since the denominator 2(be
1
λ − b) is positive. For the root to be positive, the

nominator should be positive. The second root is negative since 4q(be
1
λ −b) is positive, so

the square root is bigger than the term in front of the square root. For a similar reason,

the first root is positive.

That is, the solution to the agent’s problem is

P1(0) =
−b− q + (b+ q − 1)e

1
λ +

√
(b+ q − (b+ q − 1)e

1
λ )2 + 4q(be

1
λ − b)

2(be
1
λ − b)

and

P1(1) =
q − bP1(0)

1− b
.

3.C

Binary example with two risky options

The agent chooses between two risky alternatives2. The first option can take the values

v1 = 0 and v2 = 1 with probabilities b and 1 − b, correspondingly and 0.5 < b < 1. The

second option can take the values v′1 = 0 and v′2 = 1 with probabilities b′ = 1− b′ = 0.5.

Because of the computational difficulties, here we analyze only the area where the first

option in expectation is weakly worse than the second option. The remainder is similar

to the setup in Section (3.4).

The agent maximizes the following utility:

max
P=(P1(0,0),P1(0,1),P1(1,0),P1(1,1))

b(1− b′)(1− P1(0, 1) + (1− b)b′P1(1, 0)+

2Consider the recruiter who chooses between two candidates from two different groups when she scans
candidates resumes. Her beliefs about the quality of candidates in these two groups could be different.
However, in both groups she could potentially find candidates of high and low quality.
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+ (1− b)(1− b′)(P1(1, 1) + (1− P1(1, 1)))− λκ(P , G)

subject to

P1(0, 0),P1(1, 0),P1(0, 1),P1(1, 1) ≥ 0,

bb′P1(0, 0) + b(1− b′)P1(0, 1) + (1− b)b′P1(1, 0) + (1− b)(1− b′)P1(1, 1) = q

and where

κ(P , G) = −
2∑
i=1

qi log qi +
2∑
i=1

∫
v

Pi(v) logPi(v)G(dv).

First, we derive P1(0, 0) and plug it back into the utility function:

P1(0, 0) = (q − b(1− b′)P1(0, 1)− (1− b)b′P1(1, 0)− (1− b)(1− b′)P1(1, 1))/bb′.

We take derivatives with respect to P1(0, 1), P1(1, 0), and P1(1, 1). We solve the

resulting system of equation numerically.

For the standard RI problem we use Corollary 2 from (Matějka and McKay 2015) in

order to find P0
1 :

bb′
e

0
λ

P0
1e

0
λ + (1− P0

1 )e
0
λ

+ b(1− b′) e
0
λ

P0
1e

0
λ + (1− P0

1 )e
1
λ

+

+ (1− b)b′ e
1
λ

P0
1e

1
λ + (1− P0

1 )e
0
λ

+ (1− b)(1− b′) e
1
λ

P0
1e

1
λ + (1− P0

1 )e
1
λ

= 1.

We solve this equation numerically and plug P0
1 into Pi(v) = qie

vi/λ∑N
j=1 qje

vj/λ
in order to

obtain conditional probabilities.

Figure 3.10 illustrates the quality of the first option ((1−b)P1(1,1)+P1(1,0)

2P0
1

) as a function

of b. Figure 3.11 illustrates the quality of the second option ( b(1−P1(0,1))+(1−b)(1−P1(1,1))

2P0
2

) as

a function of b. The results are similar to the case with safe and risky options: the quality

of the chosen option is higher (lower) when the quota on it is smaller (larger) than the

unconditional probability of choosing it in the standard RI problem. Accordingly, the

gap in the quality between two options is higher when the quota implementation restricts

the agent more.
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Figure 3.10: Quality of the first option conditional on being chosen as a function of b
and λ = 0.5, q = 0.5. The green line is for the standard RI problem and the red line is
for the quoted RI problem.

Figure 3.11: Quality of the second option conditional on being chosen as a function of
b and λ = 0.5, q = 0.5. The green line is for the standard RI problem and the red line is
for the quoted RI problem.
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3.D

Details of the solution for the binary example:

subsidies

The agent chooses between risky and safe options. The safe option always takes the value

v1 = R. The risky option can take the values v2 = 0 with the probability b and v2 = 1 with

the probability 1− b correspondingly. These probabilities are the priors of the agent and

she does not know what the realization of the state of the world is. The agent acquires

costly information about the realization. The social planner sets up a subsidy for the

risky option: the agent receives extra payment of S if she chooses the risky option.

The maximization problem of the agent in the case of subsidy S on the risky option

is as follows:

max
P=(P1(0),P1(1))

b(P1(0)S+(1−P1(0))R)+(1−b)(P1(1)(1+S)+(1−P1(1))R)−λκ(P , G)

subject to

P1(0),P1(1) ≥ 0,

and where

κ(P , G) = −
2∑
i=1

P0
i logP0

i +
2∑
i=1

∫
v

Pi(v) logPi(v)G(dv).

In this case the solution has the standard modified multinomial logit form but with

the value of risky option increased by S. Namely,

P1(0) =
P0

1e
S
λ

P0
1e

S
λ + P0

2e
R
λ

P1(1) =
P0

1e
1+S
λ

P0
1e

1+S
λ + P0

2e
R
λ

.

In order to compare the agent’s behavior under both policies we need to find a level

of subsidies for which the risky option would be chosen by the agent with the required

probability q:

(1− b)P1(1) + bP1(0) = q.

The unconditional probabilities in the case of the agent’s problem with subsidies are
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as follows:

P0
1 = max{0,min{1, −e

R/λ(−e(1+S)/λ + eR/λ − beS/λ + be(1+S)/λ)

(e(1+S)/λ − eR/λ)(−eS/λ + eR/λ)
}}

P0
2 = 1− P0

1 .

Figure 3.12 shows the optimal subsidy that is necessary in order to equalize the

unconditional probability of choosing the risky option to 0.5 as a function of b.

Figure 3.12: Optimal subsidy as a function of b and λ = 0.5, q = 0.5, R = 0.5.

We see that for small b the government sets a financial penalty on choosing the risky

option. That is because the risky option is likely to be good and the agent would like to

choose it more often than in half of the cases. In contrast, if b is high, the government

supports the choice of risky option by establishing a positive subsidy.

When the the social planner sets the optimal subsidy, the conditional probabilities of

choosing the risky option in good and bad states are the same in the cases with quotas

and subsidises. Effectively, it means that if the government wants the agent to choose the

risky option in some proportion, there is no difference in the agent’s choice if we compare

two ways of achieving the goal: through quotas or through subsidies.

At the same time, for high b the utility of the firm in the case of subsidies is higher than

in the case of quotas (Figure 3.13). Therefore, one could speculate that it is impossible

to extract all subsidies from the firm afterwards and hence it is more beneficial for firms

to lobby for subsidies rather than quotas. (U. S. Commission on Civil Rights 1977)
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Figure 3.13: Utility of the agent as a function of b and λ = 0.5, q = 0.5, R = 0.5.
The red line is for the quoted RI problem and the brown line is for the RI problem with
subsidies.

3.E

Tradeoff situation

We demonstrate the situation when the social planner faces a tradeoff between maximizing

the overall quality of the chosen alternatives and minimizing the influence of priors. We

model the latter by Kullback-Leibler divergence: a measure of how the chosen probability

distribution is different from a fair quota which is defined in subsection 3.5.2.

max
qi
{α

N∑
i=1

∫
v

viPi(v, q)G(dv)− (1− α)
N∑
i=1

qfi log
qfi
qi
},

where Pi(v, q) is a solution to the RI problem with quotas and qfi is fair quota.

Figure 3.14 illustrates the solution to the social planner’s problem as a function of b,

and λ = 0.5, R = 0.5.
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Figure 3.14: Optimal quota as a function of b and λ = 0.5, R = 0.5. The red solid line
is for α = 0 (fair quota), the red dashed line is for α = 1 (quality maximizing quota); the
blue line is for α = 0.5.
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