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Abstract

In the first chapter, I analyze how investor asymmetric risk attitude can rationalize
the variance term structure in the aggregate stock market. Contrary to leading asset
pricing theories, recent empirical evidence indicates that it was costless to hedge long-
term volatility in aggregate stock market returns over the last two decades, whereas
investors paid large premia for insurance against the unexpected realized variance. I offer
a generalized disappointment aversion explanation that can also account for the variance
and skew risk premiums in equity returns and the implied volatility skew of index options.
The proposed model also captures other features of the data including the low risk-free
rate, the high equity premium, and excess stock market volatility.

In the second chapter, we examine how parameter learning amplifies the impact of
macroeconomic shocks on equity prices and quantities in a standard production economy
where a representative agent has Epstein-Zin preferences. An investor observes technology
shocks that follow a regime-switching process, but does not know the underlying model
parameters governing the short-term and long-run perspectives of economic growth. We
show that rational parameter learning endogenously generates long-run productivity and
consumption risks that help explain a wide array of dynamic pricing phenomena. The
asset pricing implications of subjective long-run risks crucially depend on the introduction
of a procyclical dividend process consistent with the data.

In the third chapter, we demonstrate that incorporating time-varying productivity
volatility and priced parameter uncertainty in a production economy can explain in-
dex option prices, equity returns, the risk-free rate, and macroeconomic quantities. A
Bayesian investor learns about the true parameters governing mean, persistence, and
volatility of productivity growth. Rational parameter learning amplifies the conditional
risk premium and volatility especially at the onset of recessions. We estimate the model
based on post-war U.S. data and find that it can capture the implied volatility surface
and the variance premium. Intuitively, the agent pays a large premium for index options
because they hedge future belief revisions.
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Abstrakt

Současné empirické důkazy navzdory předním teoriím o oceňování aktiv naznačují,
že finanční trhy kompenzují krátkodobé riziko volatility akcií. Rovnovážný model s
rizikovými preferencemi se zobecněnou averzí vůči riziku a výjimečnými událostmi vytváří
časovou strukturu variability cen swapů a akciových výnosů konzistentní s daty. Kalibrace
navíc vysvětluje variabilitu a zešikmení prémie za riziko u akciových výnosů a zešikmení
implikované volatility opcí na akciové indexy. Souběžně zachycuje nejdůležitější momenty
základních faktorů, akciových výnosů a bezrizikové úrokové míry. Klíčem k intuitivnímu
pochopení je skutečnost, že výsledky pramení z endogenní variability pravděpodobnosti
výjimečných událostí vedoucích ke zklamání v růstu spotřeby.

Zkoumáme, jakým způsobem učení parametrů posiluje dopad makroekonomic-kých
šoků na ceny akcií a jiné veličiny ve standardní produkční ekonomice, kde má reprezenta-
tivní agent Epstein-Zin preference. Investor pozoruje technologické šoky, jejichž dynamika
je dána procesem s proměnlivým režimem, ale nezná skryté parametry modelu, které řídí
krátkodobé a dlouhodobé vyhlídky ekonomického růstu. Ukazujeme, že racionální učení
parametrů endogenné generuje dlouhodobé riziko v ekonomickém růstu a ve spotřebě,
což pomáhá vysvětlit širokou škálu feno-ménů dynamického oceňování aktiv. Implikace
dlouhodobých subjektivních rizik pro oceňování aktiv zásadně závisí na zavedení pro-
cyklického procesu dividend, který je konzistentní s daty.

Ukazujeme, že zahrnutí v čase proměnlivé volatility produktivity a oceňování s parame-
trem nejistoty v produkční ekonomice může vysvětlit ceny opcí na akciové indexy, ak-
ciové výnosy, bezrizikový výnos a makroekonomické veličiny. Bayesiánský investor se učí
o skutečných parametrech určujících průměr, persistenci a volatilitu růstu produktivity.
Racionální parametr učení zvyšuje podmíněné prémie za riziko a volatilitu, obzvláště pak
na počátku recese. Provádíme odhad modelu založeného na poválečných datech z USA a
zjištujeme, že je schopen zachytit plochu implikovaných volatilit a prémii za rozptyl. In-
tuitivně lze chápat výsledky tak, že agent platí vysoké prémie za opce na akciové indexy,
protože hedgují budoucí revize názorů.
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Introduction

All models are wrong, but some are useful.

George E. P. Box

My dissertation consists of three essays investigating how investor learning and macroe-

conomic uncertainty affect asset prices and the real economy in general equilibrium set-

tings. The models studied in this dissertation deviate from the traditional frameworks

in various ways, but they all examine different aspects of the same question: How does

incomplete agent information affect the decision-making of agents, and what are the

resulting implications for financial markets?

The first chapter analyzes how investor asymmetric attitude towards risk can explain

the term structure of variance risk in the aggregate stock market. Recent empirical

evidence indicates that it was costless to hedge long-term volatility over the last two

decades, whereas investors paid large premia for insurance against the unexpected realized

variance (Dew-Becker et al. 2017). Yet leading asset pricing models fail to explain this

stylized fact by overpricing news to future volatility (Du 2011; Drechsler and Yaron 2011;

Wachter 2013). This chapter provides an explanation of the variance term structure.

I account for the empirical term structure of variance swap prices and returns in

a consumption-based exchange economy with generalized disappointment aversion risk

preferences of Routledge and Zin (2010) and rare events in the spirit of Rietz (1988)

and Barro (2006). I model consumption growth via a hidden Markov chain with two

regimes: an "expansion" state and a rare "depression" state. The negative news to

consumption growth implies that the probability of being in the expansion state partially

1



falls, and so does the equity price. The combination of more pessimistic beliefs and

low consumption growth raises the agent’s marginal utility. Crucially, GDA preferences

penalize disappointing belief revisions that correspond to continuation utilities below a

scaled certainty equivalent. I show that this asymmetric risk attitude towards downside

consumption shocks generates a sizeable crash risk in the short term and mean reversion

in variance swap prices in the long term. This helps explain the observed term structure of

Sharpe ratios on variance claims, which is steep and negative for maturities shorter than

three months and becomes flat and slightly positive from the three-month to 12-month

horizons.

The second chapter examines how rational learning about parameters governing the

short-term and long-run perspectives of economic growth amplifies the impact of macroe-

conomic shocks on equity prices and quantities in a standard production economy. The

common assumption of prior learning models is that economic agents learn about un-

known parameters over time but treat their current beliefs as true parameter values when

computing asset prices (Weitzman 2007; Cogley and Sargent 2008; Pastor and Veronesi

2009). In a joint work with Dr Roman Kozhan, we depart from the extant literature

by exploring the implications of priced parameter uncertainty, which incorporates future

revisions of parameter beliefs into the decision-making process. The results indicate that

rational learning about unknown parameters together with recursive preferences give rise

to subjective long-lasting macroeconomic risks. These risks are priced under investor

preference for early resolution of uncertainty and hence they help reproduce salient fea-

tures of equity returns and comovements of macroeconomic variables. Time variation

in beliefs leads to fluctuations in the equity risk premium and generates long-term pre-

dictability of excess returns consistent with the data. The asset pricing implications of

subjective long-run risks crucially depend on the introduction of a procyclical dividend

process in a production economy. We provide an extension of the standard model with

investment frictions to account for this feature.

The third chapter is concerned with the analysis of learning about time-varying

macroeconomic volatility and its effects on index option prices. A large strand of the

literature emphasizes the importance of fluctuating macroeconomic uncertainty (see, for

example, Justiniano and Primiceri (2008), Bloom (2009), Fernandez-Villaverde et al.

(2011), Born and Pfeifer (2014), Christiano, Motto, and Rostagno (2014), Gilchrist, Sim,

and Zakrajsek (2014), Liu and Miao (2014) and more recent studies by Leduc and Liu

(2016), Basu and Bundick (2017), Bloom et al. (2018)). This chapter contributes to

2



the existing literature by investigating the links between derivative prices and investor

rational learning about volatility risk. It proposes a simple extension of the production

economy of the second chapter of my dissertation to learning about regime-switching

volatility to illustrate how rationally accounting for structural uncertainty can explain

large premiums embedded in index option prices.

In the model, the investor faces uncertainty about the persistence of business cycles,

mean growth of the economy, and time-varying productivity volatility. The key mech-

anism of the framework is as follows. First, in the presence of parameter uncertainty,

learning generates time-variation in posterior estimates of unknown parameters creating

an additional channel by which shocks to productivity growth introduce extra fluctua-

tions in the investor’s marginal utility. Second, rational pricing of beliefs amplifies the

impact of parameter uncertainty on the stochastic discount factor, conditional moments

of returns, and asset prices. The agent is concerned about future revisions, especially

those in response to negative news to technology growth, and hence he is willing to pay

a large premium for insurance against pessimistic updates. The deep out-of-the-money

put options on the aggregate stock market index provide such insurance and hence bear

high parameter uncertainty premiums. We show that this mechanism generates a steep

implied volatility skew, which closely replicates the shape observed in the data. Further-

more, the conditional volatility of equity return variance is amplified, thus, raising the

investor’s concerns about the high realized variance in stock returns. In order to hedge his

concerns, the agent is willing to pay large prices for variance swaps, which would provide

a high payoff in states of high return volatility. In contrast, anticipated utility pricing,

which ignores parameter uncertainty in decision-making, and full knowledge cannot re-

produce the size of risk premiums. Quantitatively speaking, the models with anticipated

utility or full information generate an average variance premium close to zero and flat

implied volatility curves approximately equal to the annualized stock market volatility.

3
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Chapter 1

Generalized Disappointment Aversion and the
Variance Term Structure

Mykola Babiak1

Abstract

Contrary to leading asset pricing theories, recent empirical evidence indicates that

financial markets compensate short-term equity volatility risk. An equilibrium model with

generalized disappointment aversion risk preferences and rare events reconciles the term

structure of variance swap prices and returns, consistent with the data. In addition, a

calibration explains the variance and skew risk premiums in equity returns and the implied

volatility skew of index options while capturing salient moments of fundamentals, equity

returns, and the risk-free rate. The key intuition for the results stems from endogenous

variation in the probability of disappointing events in consumption growth.

1I am especially indebted to Roman Kozhan for constructive suggestions that greatly improved the
paper. I appreciate helpful comments from Daniele Bianchi, Jaroslav Borovicka, Byeongju Jeong, Michael
Johannes, Keneth L. Judd, Marek Kapicka, Michal Kejak, Michal Pakoš, David Schreindorfer, Veronika
Selezneva, Ctirad Slavik, Sergey Slobodyan, Stijn Van Nieuwerburgh, Ansgar Walther, conference par-
ticipants at the 2016 EEA-ESEM Meeting, the 2016 Meeting of the Society for Computational Eco-
nomics, the 2016 Zurich Initiative for Computational Economics, the 2016 Annual Conference of the
Swiss Society for Financial Market Research, the 2018 RES Annual Conference, the 2018 RES Sympo-
sium of Junior Researchers, the 2018 Spanish Economic Association Meeting, and seminar participants at
Columbia Business School, Warwick Business School, Lancaster University Management School, Collegio
Carlo Alberto, Durham University Business School, the University of Gothenburg, and the University
of Groningen. The financial support from the Charles University Grant Agency (GAUK No. 151016)
and the Czech Science Foundation project No. P402/12/G097 (DYME Dynamic Models in Economics)
is gratefully acknowledged.
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1.1 Introduction

The consumption-based asset pricing literature has recently been revived by generalized

models of long-run risks (Bansal and Yaron 2004) and rare disasters (Rietz 1988; Barro

2006) to capture many characteristics of the equity and derivatives markets. Never-

theless, leading theories fail to explain the timing of volatility risk (Dew-Becker et al.

2017).1 The most successful asset pricing models commonly employ Epstein and Zin

(1989) preferences, which, coupled with non-standard shocks to fundamentals, can gen-

erate sizeable equity risk premiums. In standard calibrations, investors are assumed to

have a preference for early resolution of uncertainty and therefore they price long-term

equity volatility strongly. Contrary to these predictions of well-known structural models,

Dew-Becker et al. (2017) show that financial markets compensate short-term volatility

risk.2 The goal of this paper is to reconcile the observed variance term structure, while

capturing salient properties of the risk-free rate, equity and equity index option prices.

In this paper, I account for the empirical term structure of variance swap prices and

returns in a consumption-based exchange economy with generalized disappointment aver-

sion (GDA) risk preferences of Routledge and Zin (2010) and rare events in the spirit of

Rietz (1988) and Barro (2006). I model consumption growth via a hidden Markov chain

with two regimes: an "expansion" state and a rare "depression" state. The negative

news to consumption growth implies that the probability of being in the expansion state

partially falls, and so does the equity price. The combination of more pessimistic beliefs

and low consumption growth raises the agent’s marginal utility. Crucially, GDA pref-

erences penalize disappointing belief revisions that correspond to continuation utilities

below a scaled certainty equivalent. I show that this asymmetric risk attitude towards

downside consumption shocks generates a sizeable crash risk in the short term and mean

reversion in variance swap prices in the long term. This helps explain the observed term

structure of Sharpe ratios on variance claims, which is steep and negative for maturities

shorter than three months and becomes flat and slightly positive from the three-month
1Also see van Binsbergen, Brandt, and Koijen (2012) and van Binsbergen et al. (2013) who document

a downward sloping term structure of equity risk premia and equity return volatility, which is at odds
in leading asset pricing models.

2Analyzing the portfolios across 19 different markets, Dew-Becker, Giglio, and Kelly (2019) also
conclude that, over the last three decades, it was highly costly for investors to hedge realized volatility
but not forward-looking uncertainty. Not only was it costless to hedge news about future variance but
Berger, Dew-Becker, and Giglio (2019) provide new empirical evidence that shocks to future uncertainty
have no significant effect on the economy. Furthermore, Dew-Becker and Giglio (2019) construct a novel
measure of cross-sectional uncertainty and find that investors also do not view shocks to cross-sectional
uncertainty as bad.
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to 12-month horizons.

I show the importance of generalized disappointment aversion by comparing the model

with GDA preferences to calibrations with alternative preference specifications such as a

disappointment aversion utility function (Gul 1991) and Epstein-Zin preferences (Epstein

and Zin 1989). First, a disappointment-averse agent similarly puts more weight on dis-

appointing utility outcomes, defined as being below the certainty equivalent. Compared

to Routledge and Zin (2010)’s definition of disappointment, Gul (1991)’s preferences in-

crease the disappointment threshold, and hence overweight more outcomes. I show that

this generates an upward sloping term structure of variance swap prices and negative

Sharpe ratios on variance claims for all horizons, which is inconsistent with the empirical

evidence. The reason is that, with a too high threshold, disappointment aversion magni-

fies the effect of small consumption shocks on the pricing kernel, increasing an insurance

premium against low realized variance. Second, in a model with Epstein-Zin preferences,

the average forward variance prices also remain markedly increasing, thereby producing

negative average returns on variance claims. The intuition is that, under standard cal-

ibrations of Epstein-Zin preferences, expectations about long-term fluctuations in cash

flows are the underlying drivers of asset prices. This implies a high insurance premium

against shocks to future volatility.

Delving further into the origins of such results, I look at conditional dynamics of

the term structures over various business cycle conditions. I define normal times as

periods when the investor holds a median belief. Assuming the model initially stays in

normal times, I study the impact of one positive and three negative consumption growth

innovations. In the upside scenario (good times), consumption growth is a 1.0 standard

deviation above mean growth in an expansion. In the three downside scenarios (bad

times), consumption growth turns negative and is 1.5, 2.5 and 3.0 standard deviations,

respectively, below mean growth in an expansion.

Several results are noteworthy. First, at the one-month maturity, the average Sharpe

ratios in the GDA economy are pro-cyclical (less negative in good times and more negative

in bad times), consistent with the empirical evidence (Ait-Sahalia, Karaman, and Mancini

2019). The reason is that GDA preferences generate a beliefs-dependent pricing kernel

with higher marginal utility in bad times (and especially disappointing states) of the

economy, increasing an insurance premium against high realized variance associated with

low-utility states.3 Furthermore, at longer maturities, the GDA model predicts that the
3Routledge and Zin (2010) and Bonomo et al. (2011) provide a similar analysis of the stochastic

7



Sharpe ratios remain insignificantly different from zero when the economy is hit by small

shocks, whereas they become upward sloping and positive in response to large negative

news. Hence, it is large consumption drops in an expansion state that, coupled with

generalized disappointment aversion, lead to the inversion in variance swap prices and

positive returns on variance claims at longer horizons. The reason is that, in the GDA

model, small shocks are not priced, due to a low disappointment threshold. In contrast,

lower-tail shocks lead to disappointment and high realized variance. After extreme jumps

in realized variance, the economy is more likely to experience higher growth rates in an

expansion state and the investor expects lower volatility in later periods. Hence, future

volatility following those brief volatility spikes is priced less in the model.

Second, in the disappointment aversion model, the variance term structure is the same

across normal and good times, being negative and flat at all horizons, and it experiences

a similar parallel shift in the three bad scenarios. Intuitively, the positive news are

fairly uninformative as they only diminish the already low likelihood of consumption

depressions. A piece of even small bad news, however, has a disproportionately large

impact on marginal utility due to high disappointment aversion to downside shocks,

which leads to overpricing volatility risks at all horizons. Third, in the Epstein-Zin

model, the impact of different shocks on the variance term structure is determined by the

sign of consumption innovations and is proportional to their magnitude. However, for all

economic conditions, Epstein-Zin preferences price shocks to future expected volatility

strongly. Therefore, Sharpe ratios are on average negative, being larger in absolute terms

in bad times than in good and normal times.

The magnitude of average Sharpe ratios on one-month variance claims indicates a

large variance risk premium in the aggregate stock market.4 Using the data over the last

two decades, I further document the existence of a skew risk premium. I measure it as

a ratio between the physical and option-implied expectations of equity return skewness

over a monthly horizon. One can interpret this quantity as the return on a skew swap, a

contract paying the realized skewness of stock returns. In addition to these novel measures

of equity risk premiums, the literature has been long concerned with the puzzling implied

volatility skew. I examine whether the empirical evidence concerning the moment risk

premiums and option prices can be understood through the lens of different preference

discount factor of GDA preferences in the settings with different consumption processes. Also, the
beliefs-dependent effective risk aversion of my paper echoes the mechanism of Berrada, Detemple, and
Rindisbacher (2018) with learning and a beliefs-dependent utility function.

4Also, see Choi, Mueller, and Vedolin (2017) for the variance risk premium in fixed income markets.
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specifications.

I find that the model with GDA preferences can reasonably capture the size of both risk

premiums, whereas the Epstein-Zin framework generates about half of the average premi-

ums implied by the GDA model. The disappointment-averse specification performs even

worse, generating the smallest size and volatility of the variance premium and incorrectly

predicting a positive skew premium. Furthermore, I show that generalized disappoint-

ment aversion helps generate a steep volatility skew implied by one-month index options

and replicate the term structure of implied volatilities. In contrast, risk aversion alone

produces too low implied volatilities, and the disappointment aversion framework predicts

basically flat volatility curves that are approximately equal to the annualized stock mar-

ket volatility. Mechanically, disappointment and risk aversion stand between the physical

P and risk-neutral Q probability measures through the Radon-Nikodym derivative. The

risk aversion smoothly distorts the Q-density towards the left tail through the pricing

kernel, while disappointment aversion overweights the outcomes strictly below some ref-

erence point. Since GDA preferences enable control of the disappointment threshold,

they become instrumental in generating a fatter left tail of a Q-measure compared to

smooth preferences. In contrast, disappointment aversion preferences penalize too many

outcomes due to a high disappointment threshold, and hence cannot generate a negatively

skewed risk-neutral distribution of returns.

In a thorough comparative analysis, I show that my results are robust to different cal-

ibrations of key parameter values. Specifically, I demonstrate that one cannot match the

data in the model with Gul preferences by recalibrating a disappointment aversion param-

eter in the range [0.45, 0.75], or in the model with Epstein-Zin preferences by changing a

coefficient of relative risk aversion in the range [4.5, 7.5]. Following Pohl, Schmedders, and

Wilms (2018), I check that global projection methods provide highly accurate solutions

by generating very small numerical errors.

Related literature. This paper is related to at least three main strands of the lit-

erature. First, it contributes to the new and growing literature on the term structures

of equity and variance claims (van Binsbergen, Brandt, and Koijen 2012; van Binsbergen

et al. 2013; Dew-Becker et al. 2017). The researchers propose a different rationale for the

observed downward sloping term structure of equity risk premia and equity return volatil-

ity such as labour frictions (Favilukis and Lin 2015; Márfe 2017), financial leverage (Belo,

Collin-Dufresne, and R. 2015), disaster recoveries (Hasler and Márfe 2016), and learning
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(Croce, Lettau, and Ludvigson 2014; Ai et al. 2018; Hasler, Khapko, and Márfe 2019).5

I complement the findings of these papers by explaining the term structure of variance

swap prices and returns and emphasizing the crucial role of generalized disappointment

aversion in the pricing of variance risk.

Second, this study builds on the large literature exploring the asset pricing implica-

tions of the asymmetric preferences of Routledge and Zin (2010). Bonomo et al. (2011,

Bonomo et al. (2015) construct a long-run risk model with GDA preferences to explain

equity return moments and the risk-return trade-offs. Liu and Miao (2014) focus on

production-based implications of GDA preferences. Augustin and Tedongap (2016) shed

light on their role in explaining sovereign credit spreads. Dahlquist, Farago, and Tédon-

gap (2016) study the portfolio choice of an investor with GDA preferences. Farago and

Tédongap (2018) use generalized disappointment aversion to explain the cross-section of

expected returns, whereas Delikouras (2017) and Delikouras and Kostakis (2019) simi-

larly study cross-sectional implications of disappointment aversion. This paper is also

related to Schreindorfer (2018), who shows that US consumption and dividend growth

rates are more correlated in bad times than in good times. The author introduces this

feature into a model with GDA preferences to explain the equity premium and some

features of index options. None of the aforementioned papers considers investor learning,

which my paper treats as a central driver of asset prices, and none examines the variance

term structure. My paper is, to my knowledge, the first to reconcile the term structure

of variance swaps. Furthermore, it does so while jointly capturing salient properties of

equity returns, variance and skew risk premiums, and option prices. Finally, the extant

literature mainly studies GDA preferences in the setting with long-run risks, while my

paper focuses on the role of GDA preferences in a rare event model with learning.

Third, this paper is also related to leading asset pricing theories advocating that

habit formation, rare disasters, and long-run risks in consumption provide explanations

for equity returns and option prices. In the context of habits, Du (2011) shows that an

extension of the model with habit formation (Campbell and Cochrane 1999) to include

rare disasters can explain the observed implied volatility skew. Under the rare disas-

ters umbrella, the implied volatility surface can be explained with extensions to model

uncertainty about rare events (Liu, Pan, and Wang 2005), rare jumps in persistence (Ben-

zoni, Collin-Dufresne, and Goldstein 2011), or stochastic probability of disasters (Seo and

5See van Binsbergen and Koijen (2017) for a comprehensive overview of the literature on the term
structure of equity claims.
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Wachter 2018). The long-run risks literature further introduces jump risks (Eraker and

Shaliastovich 2008; Shaliastovich 2015) to rationalize option prices. The long-run risk

models with transient non-Gaussian shocks to fundamentals (Bollerslev, Tauchen, and

Zhou 2009; Drechsler and Yaron 2011) and multiple volatility risks (Zhou and Zhu 2014)

prove to be successful in explaining the variance premium. Drechsler (2013) constructs

the long-run risks framework with model uncertainty to explain both the variance pre-

mium and the implied volatility skew. The mechanism of my paper is distinct from the

existing literature, since it points out the importance of the investor’s generalized disap-

pointment aversion for asset prices. Also, unlike other models, the approach in this work

additionally explains the variance term structure and the skew risk premium.

The remainder of the paper is organized as follows. Section 1.2 reports the empirical

evidence. Section 1.3 describes the economy. Section 1.4 derives asset prices in the

model. Section 1.5 provides asset pricing results of the models with GDA, disappointment

aversion and Epstein-Zin preferences. Section 2.5 concludes. Sections A.1, A.2, and A.3

of Appendix present the data, solve the representative agent’s maximization problem,

and discuss the application and accuracy of numerical methods.

1.2 Variance and Skewness Risk

This section describes several methods to quantify risk premia embedded in the variance

and skewness of equity returns. First, following the discussion of Dew-Becker et al.

(2017), I describe salient features of the term structure of variance claims in the equity

index market and discuss the failure of leading asset pricing models to account for variance

forward prices and returns. Second, I define and measure the one-month variance and

skew risk premiums in aggregate stock returns. Third, I construct the volatility surface

by extrapolating historical volatilities implied by equity index options.

Recent empirical studies focus on the term structure of dividend and variance claims.

In particular, Dew-Becker et al. (2017) discover new prominent facts about the price of

variance risk, which are at odds in well-known asset pricing theories. Their analysis is

based on the pricing of volatility-linked assets, primarily variance swaps, and it yields

two main results. First, they show that, over the period from 1996 to 2014, news about

future volatility at horizons ranging from one quarter to 14 years is unpriced. Second,

risk exposure to unexpected realized variance is significantly priced in the data. This

leads to the conclusion that it was almost costless to hedge future variance over the last

11
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Figure 1.1: Average prices and annualized Sharpe ratios for forward variance claims. The
left and right panels plot annualized Sharpe ratios and average prices for forward variance claims for the
data and different models. The prices are reported in annualized volatility terms, 100×

√
12× Fnt . The

empirical lines correspond to the US data from 1996 to 2013.

two decades, whereas investors paid a substantial premium for protection against extreme

realized volatility.

Figure 1.1 is a reproduction of Figure 10 in Dew-Becker et al. (2017) and illustrates

their main results. The left graph of Figure 1.1 compares annualized Sharpe ratios for

forward variance claims in the data and in different models: a long-run risk model of

Drechsler and Yaron (2011) with Epstein-Zin preferences, a disaster risk model of Du

(2011) with habit formation, a time-varying disaster risk model of Wachter (2013) with

Epstein-Zin preferences, and a rare disaster model of Gabaix (2012) with time-varying

recovery rates. The right plot of Figure 1.1 compares empirical variance claim prices with

those predicted by theoretical frameworks. As shown in the figure, the empirical Sharpe

ratios are significantly negative for short maturities, especially for one-month variance

forwards, whereas they become slightly positive for horizons from three to 12 months. In

turn, the term structure of variance forwards is on average upward sloping in the data

and significantly flattens with the horizon. The figure also shows that the long-run risk

model and rare disaster frameworks with recursive preferences or habit formation fail

to capture these prominent facts. Most notably, the three models generate almost flat

Sharpe ratios on variance forwards, which are respectively far too small and too large

for short and long maturities when compared to the data. A model with disasters and

time-varying recovery rates does a better job of capturing the empirical patterns, though

it cannot fully explain the upward trend in Sharpe ratios for longer periods.

Closely related to the variance term structure is the risk premium in the second and

third moments of returns. A large strand of the literature has focused on the variance

premium, while the skew premium has received little attention, especially from the the-
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oretical research. This paper aims to explain both phenomena simultaneously. The

variance premium can be defined as the difference between expectations of stock market

return variance under the risk-neutral Q and actual physical P probability measures for

a given horizon.6 Formally, a τ -month variance premium at time t is

vpt = EQ
t

[
Return Variation(t, t+ τ)

]
− EP

t

[
Return Variation(t, t+ τ)

]
,

in which the total return variation is calculated over the period t to t+τ. The quantity vpt
corresponds to the expected profits of a variance swap, which pays the equity’s realized

variance over the term of the contract. Britten-Jones and Neuberger (2000) and Carr and

Wu (2009) show that this payoff can be replicated by a portfolio of European options.

Like the variance swap, Kozhan, Neuberger, and Schneider (2013) consider a skew swap

with a payoff equal to the equity’s realized skewness. Bakshi, Kapadia, and Madan (2003)

show that a skew contract can be replicated by a trading portfolio involving long OTM

calls and short OTM puts. I follow Kozhan, Neuberger, and Schneider (2013) and define

a τ -month skew risk premium at time t as

spt =
EP
t

[
Return Skewness(t, t+ τ)

]
EQ
t

[
Return Skewness(t, t+ τ)

] − 1,

in which the total return skewness is calculated from t to t+ τ. In this paper, I focus on

the one-month variance and skew risk premiums consistent with the literature. For the

empirical analysis of the variance premium, I use the VIX index, S&P 500 index futures,

and the S&P 500 index from the Chicago Board of Options Exchange (CBOE). The

options data used to construct the skew premium is from OptionMetrics. The data sets

employed in the analysis of the variance and skew measures cover the periods January

1990 to December 2016 and January 1996 to December 2016, respectively. I provide a

description of the empirical strategy in Appendix.

Table 1.1 shows summary statistics for variance and skew risk premiums. A positive

variance premium and a negative skew premium are consistent with the literature.7 Since

the prices of variance and skew swaps are on average greater than their corresponding

payoffs, the average profits from writing these contracts are interpreted as insurance

6Consistent with the definitions in Bollerslev, Tauchen, and Zhou (2009), Bollerslev, Gibson, and
Zhou (2011), and Drechsler and Yaron (2011).

7See Bakshi, Kapadia, and Madan (2003), Bollerslev, Tauchen, and Zhou (2009), and Kozhan, Neu-
berger, and Schneider (2013), among others.
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Table 1.1
Summary statistics: variance and skew risk premiums.

vpt spt

Mean 10.24 −42.12
Median 7.50 −68.11
SD 10.49 82.11
Max 83.70 447.37
Skewness 2.62 3.57
Kurtosis 14.15 16.26

This table reports monthly descriptive statistics for the conditional variance vpt and skew spt premiums. Mean,
Median, SD, Max, Skewness, and Kurtosis report the sample average, median, standard deviation, maximum,
skewness, and kurtosis, respectively. The empirical statistics of the variance and skew risk premiums are for the
US data from January 1990 to December 2016 and from January 1996 to December 2016, respectively.

premiums associated with higher moments of equity returns. Table 1.1 also shows that

both premiums have large volatility, positive skewness, and a kurtosis coefficient much

larger than three. The latter two characteristics indicate fat tails in the distributions of

quantities.

The risk-neutral expectations of the second and third moments of equity returns

are related to the level and the slope of the implied volatility surface, which remains a

challenge for equilibrium asset pricing models. I construct the empirical implied volatility

surface by performing a polynomial extrapolation of volatilities in the maturity time and

strike prices. I use the option data from OptionMetrics for January 1996 to December

2016. I present the empirical methodology in Appendix.

The left plot in Figure 1.2 shows the implied volatility curve for 1-month maturity

as a function of moneyness (a ratio of strike to spot price). The implied volatilities are

downward sloping in moneyness and decline from 28% to slightly above 20% for a range

of moneyness from 0.90 to 1.05. This shape is known in the literature as the implied

volatility skew. The right plot in Figure 1.2 provides the implied volatility curve for

ATM and 0.90 OTM put options as functions of maturity. The graph suggests that ATM

volatilities increase slightly in the horizon and are around 22% for for 1, 3, and 6 month

maturities, while OTM volatilities decline slightly in the horizon. Furthermore, the plot

confirms that OTM volatilities are strictly higher than ATM volatilities for all times to

expiration. Note that the implied volatilities are significantly above the annualized stock

market volatility. Hence, it is difficult to rationalize the level and slope of the implied

volatility curves given the historical stock market volatility.

14



0.9 0.95 1 1.05

16

20

24

28

Moneyness

A
nn
ua
lV
ol
.%

1-Month Implied Volatilities

���

���

1 3 6

16

20

24

28

Months to Expiration

A
nn
ua
lV
ol
.%

OTM/ATM Implied Volatilities

Figure 1.2: Implied volatilities. The left panel plots the empirical 1-month implied volatility curve
as a function of moneyness. The right panel plots the empirical implied volatility curves for ATM and
OTM options as functions of the time to maturity (in months). All curves are for the US data from
January 1996 to December 2016.

1.3 Model Setup

This section presents the economy. In particular, it provides details of the agent’s pref-

erences and cash-flow processes for consumption and dividends.

1.3.1 Generalized Disappointment Aversion Risk Preferences

The environment is an infinite-horizon, discrete-time exchange economy with a repre-

sentative agent receiving utility from a consumption stream. Following the recursive

utility framework of Epstein and Zin (1989), the agent’s utility Vt in period t is defined

recursively as

Vt =
[
(1− β)Cρ

t + βµρt

]1/ρ

, 0 < β < 1, ρ ≤ 1, (1.1)

in which Ct is agent’s consumption, β is the subjective discount factor, 1/(1 − ρ) is the

intertemporal elasticity of substitution (IES), and µt = µt(Vt+1) is the certainty equivalent

of random future utility Vt+1.

The certainty equivalent captures the generalized disappointment aversion (GDA) risk

attitude as defined by Routledge and Zin (2010). GDA preferences allocate more weight

on the "disappointing" events compared to the expected utility, similarly to disappoint-

ment aversion risk preferences of Gul (1991). For Gul’s disappointment aversion model,

however, an outcome is viewed as disappointing when it is below the certainty equiva-

lent, whereas for Routledge and Zin’s generalized disappointment aversion specification

a disappointing outcome is below a constant fraction of the implicit certainty equivalent.
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Formally, the certainty equivalent of GDA preferences is defined as

[µt(Vt+1)]α

α
= Et

[
V α
t+1

α

]
− θEt

[
I
(

Vt+1

µt(Vt+1)
6 δ

)(
[δµt(Vt+1)]α

α
−
V α
t+1

α

)]
(1.2)

or equivalently

µt(Vt+1) =

Et

V α
t+1 ·

1 + θI(Vt+1 6 δµt(Vt+1))

1 + θδαEt
[
I(Vt+1 6 δµt(Vt+1))

]
1/α

,

in which I(·) denotes the indicator function, 1− α > 0 is the relative risk aversion, δ ≤ 1

and θ ≥ 0 represent a disappointment threshold and a disappointment aversion parame-

ter, respectively. GDA preferences enable one control for a disappointment threshold by

changing δ. Routledge and Zin (2010) preferences defined by (1.1) and (1.2) nest two pref-

erence specifications. The expected utility of Epstein and Zin (1989) can be obtained by

setting θ = 0. Assuming θ 6= 0 and δ = 1, GDA preferences reduce to the disappointment

aversion utility of Gul (1991).

1.3.2 Endowments and Inference Problem

A popular paradigm in the asset pricing literature is the application of a regime-switching

framework for modeling aggregate consumption growth.8 I follow this tradition and

subject log consumption growth to hidden shifts in the growth rate:

∆ct+1 = µst+1 + σεt+1, εt+1 ∼ N(0, 1).

The consumption volatility σ is constant, whereas the mean growth rate µst+1 is driven

by a hidden two-state Markov chain st+1 with a state space S = {1, 2} and a transition

matrix

P =

(
π11 1− π11

1− π22 π22

)
,

8 Since Mehra and Prescott (1985) and Hamilton (1989), researchers have used these models to embed
business cycle fluctuations in the mean and volatility of consumption growth (Cecchetti, Lam, and Mark
1990; Veronesi 1999; Ju and Miao 2012; Johannes, Lochstoer, and Mou 2016; Collin-Dufresne, Johannes,
and Lochstoer 2016). By changing the number of states and parameters controlling the persistence and
conditional distribution of regimes, these models can also embed the "peso problem" in the mean (Rietz
1988; Barro 2006; Backus, Chernov, and Martin 2011; Gabaix 2012) or persistence (Gillman, Kejak, and
Pakos 2015) of consumption growth. Additionally, a particular calibration of a regime-switching model
can also generate long-run risks (Bonomo et al. 2011; Bonomo et al. 2015) or economic recoveries (Hasler
and Márfe 2016) in consumption and dividends.
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in which 0 < π11 < 1 and 0 < π22 < 1 are transition probabilities. I further assume

µ2 < µ1 to identify st+1 = 1 and st+1 = 2 as expansion and recession, respectively.

The reason for calibrating the model with two regimes is twofold. First, I want to

maintain parsimony for the sake of convenient interpretation of results. Second, I do not

introduce additional risks in consumption growth to isolate the impact of learning and

GDA preferences. Of course, a model with time-varying expected growth (Bansal and

Yaron 2004), more regimes (Bonomo et al. 2011; Bonomo et al. 2015), economic recoveries

(Hasler and Márfe 2016), or a multidimensional learning problem (Johannes, Lochstoer,

and Mou 2016) could enrich conditional dynamics and improve the performance of the

model. However, I show that the model with Bayesian learning about a latent state of

the economy and GDA preferences can successfully reproduce the variance term structure

along with a wide array of asset pricing phenomena observed in the equity and derivatives

markets.

I seek to price the equity as a levered consumption claim with monthly log dividend

growth defined as follows:

∆dt+1 = gd + λ∆ct+1 + σdet+1, et+1 ∼ N(0, 1), (1.3)

in which λ is a leverage ratio on expected consumption growth. I use gd to equalize long-

run dividend and consumption growth rates, and σd to match the empirical dividend

growth volatility. In addition, the chosen value of λ allows me to match the observed

correlation between annual consumption and dividend growth rates.

The investor knows the true parameters and distribution of shocks in the model but

does not observe the state st+1 of the economy. Consequently, he updates a posterior

belief about the hidden state st+1, conditional on the observable history of consumption

and dividend growth rates at time t :

Ft =
{

(∆cτ ,∆dτ ) : 0 ≤ τ ≤ t
}
.

The inference problem is to derive the evolution of πt = P(st+1 = 1|Ft) given the initial

belief π0 (the stationary prior). In this paper, I consider a Bayesian agent who updates

his belief through Bayes’ rule:

πt+1 =
π11f(∆ct+1|1)πt + (1− π22)f(∆ct+1|2)(1− πt)

f(∆ct+1|1)πt + f(∆ct+1|2)(1− πt)
, (1.4)
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in which

f(∆ct+1|i) =
1√
2πσ

e−
(∆ct+1−µi)

2

2σ2 , i = 1, 2.

1.4 Asset Prices

I now characterize equilibrium conditions, discuss the impact of generalized disappoint-

ment aversion on the stochastic discount factor, and outline a sketch of a numerical

solution. Then, I describe equilibrium asset prices in the economy.

1.4.1 Equilibrium and Pricing Kernel

Following Routledge and Zin (2010), I show (see Appendix A.2) that the gross return

Ri,t+1 on the i-th traded asset satisfies the condition

Et [Mt+1Ri,t+1] = 1, (1.5)

in which Mt+1 is the pricing kernel of the economy defined as

Mt+1 = β

(
Ct+1

Ct

)ρ−1

︸ ︷︷ ︸
MCRRA
t+1

·
(

Vt+1

µt(Vt+1)

)α−ρ
︸ ︷︷ ︸

MEZ
t+1

·

 1 + θI(Vt+1 6 δµt(Vt+1))

1 + θδαEt
[
I(Vt+1 6 δµt(Vt+1))

]


︸ ︷︷ ︸
MGDA
t+1

. (1.6)

There are different components in the pricing kernel. The first partMCRRA
t+1 is the stochas-

tic discount factor of the time-separable power utility. The second multiplier MEZ
t+1 is the

adjustment of Epstein-Zin preferences, which allow a separation between the coefficient

of risk aversion and elasticity of intertemporal substitution. The third component MGDA
t+1

represents the generalized disappointment aversion adjustment. When the agent’s utility

is below a predefined fraction of the certainty equivalent, more weight is attached to the

pricing kernel, magnifying the countercyclical dynamics of the pricing kernel. For a bet-

ter understanding of the key role of generalized disappointment aversion, I consider the

calibration of preference parameters where α = ρ. Hence, the pricing kernel simplifies to

Mt+1 = β

(
Ct+1

Ct

)ρ−1

·

 1 + θI(Vt+1 6 δµt(Vt+1))

1 + θδαEt
[
I(Vt+1 6 δµt(Vt+1))

]
 .
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1.4.2 Model Solution

Recently, Pohl, Schmedders, and Wilms (2018) show that the latest asset pricing mod-

els with long-run risks generate significant nonlinearities, which, coupled with the log-

linearization of equilibrium quantities, can generate economically significant numerical

errors. Hence, I solve the model numerically using global solution methods to accurately

capture the nonlinear nature of the model under consideration.

I first need to solve for the return on the wealth portfolio Rω
t+1 (the return on the

aggregate consumption claim) and then the equity return Re,t+1 (the return on the ag-

gregate dividend claim), which are implicitly defined by equation (1.5). Denoting the

investor’s wealth and equity price by Wt and P e
t , the returns on the wealth portfolio and

equity can be rewritten as

Rω
t+1 =

Wt+1

Wt − Ct
=

Wt+1

Ct+1

Wt

Ct
− 1
· e∆ct+1 ∧ Re

t+1 =
P e
t+1 +Dt+1

P e
t

=

P et+1

Dt+1
+ 1

P et
Dt

· e∆dt+1 .

I conjecture that the wealth-consumption ratio Wt

Ct
= G(πt) and the price-dividend ratio

P et
Dt

= H(πt) are functions of the state belief πt. I substitute Rω
t+1 and Re

t+1 into (1.5) and

apply the projection method (Judd 1992) to approximate G(πt) and H(πt) by a basis of

complete Chebyshev polynomials. The numerical solution and its accuracy in the asset

pricing models of this paper are discussed in details in Appendix A.3.

Having solved for wealth-consumption and price-dividend ratios, I can simulate asset

pricing moments associated with the risk-free rate, equity returns, and the price-dividend

ratio. Further, I can numerically calculate variance swap prices and returns, quantities

in the variance and skew risk premiums, and option prices.

1.4.3 Prices and Returns of Variance Swaps

Consider an n-month variance swap, a claim to realized variance over months t + 1 to

t + n. Given the discrete nature of the model, total variance of the return is equal to

the sum of conditional variances RVt+i in each subperiod. Following Dew-Becker et al.

(2017), the price of an n-month variance swap is

V Snt = EQt

[
n∑
i=1

RVt+i

]
.
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In turn, the price of a zero coupon forward claim on realized variance is

F n
t = EQt [RVt+n] .

Thus, F n
t is equal to the risk-neutral expectation of return variance during the n-th month

from the current period. F 0
t is naturally defined as the realized variance in the current

period. Next, I define the return on the n-month variance forward as a return on the

trading strategy in which investors buy the n-month forward at time t and sell it in the

next period as a forward claim with maturity n−1. The proceeds from selling the forward

are then used to purchase a new n-month variance at price F n
t+1. Formally, the excess

return of an n-period variance forward is

Rn
t+1 =

F n−1
t+1 − F n

t

F n
t

. (1.7)

1.4.4 Variance and Skew Risk Premiums

The focus of this paper is on the monthly variance and skew risk premiums associated

with equity returns. Since I calibrate the economy at the monthly frequency, the t-

time monthly variance premium vpt is defined as the difference between risk-neutral and

physical expectations of the total return variance between t and t + 1. As in Drechsler

and Yaron (2011), the variance premium equals

vpt = EQ
t (varQt+1(re,t+2))− EP

t (var
P
t+1(re,t+2)), (1.8)

in which varQt+1(re,t+2) and varPt+1(re,t+2) are (t+1)-period conditional variances of the log

return re,t+2 = ln(Re,t+2) under the risk-neutral Q and physical P probability measures,

respectively. The t-time monthly skew premium is defined as a return on a skew swap, a

contract paying the realized skew of the return between time t and t+ 1. As in Kozhan,

Neuberger, and Schneider (2013), the skew premium equals

skt =
EP
t (skew

P
t+1(re,t+2))

EQ
t (skewQ

t+1(re,t+2))
− 1,

in which skewQ
t+1(re,t+2) and skewP

t+1(re,t+2) are (t + 1)-period conditional skewness of

the log return re,t+2 = ln(Re,t+2) under the risk-neutral Q and physical P probability

measures, respectively.
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1.4.5 Option Prices and Implied Volatilities

I now describe how I compute model-based option prices and solve for their Black-Scholes

implied volatilities. Consider a European put option written on the price of the equity

that is traded in the economy. Note that the equity price should not include dividend

payments; that is, options are written on the ex-dividend stock price index. Using the

Euler condition (1.5), the relative price Ot(πt, τ,K) =
P ot (πt,τ,K)

P et (πt)
of the τ -period European

put option with the strike price K, expressed as a ratio to the initial price of the equity

P e
t , should satisfy

Ot(πt, τ,K) = Et

[
τ∏
k=1

Mt+k ·max

(
K −

P e
t+τ

P e
t

, 0

)]
. (1.9)

It is worth noting that a put price P o
t depends on the equity price P e

t , whereas the

normalized price Ot does not. One can express the ratio P et+τ
P et

in terms of dividend

growth rates and price-dividend ratios on the equity and hence the state belief πt provides

sufficient information for the calculation of the option prices. Specifically, I compute

model-based European put prices Ot = Ot(πt, τ,K) via Monte Carlo simulations. I

convert them into Black-Scholes implied volatilities with a properly annualized continuous

interest rate rt = rt (πt) and dividend yield qt = qt (πt) . Thus, given the time to maturity

τ, the strike price K, the risk-free rate rt, and dividend yield qt, the implied volatility

σt = σBS
t (πt, τ,K) solves the equation:

Ot = e−rtτ ·K ·N(−d2)− e−qtτ ·N(−d1), (1.10)

in which

d1,2 =
[
− ln (K) + τ

(
rt − qt ± σ2

t /2
)]
/
[
σt
√
τ
]
.

1.5 Calibration and Quantitative Results

In this section, I first calibrate the cash-flow processes for consumption and dividends

consistent with the historical US data from January 1930 to December 2016. To better

understand the role of generalized disappointment aversion in the consumption-based as-

set pricing economy of this paper, I consider three specifications of preference parameters:

a model with generalized disappointment aversion preferences (GDA), an economy with
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disappointment aversion preferences (DA), and a framework with Epstein-Zin preferences

(EZ). The comparison of GDA and DA isolates the contribution of disappointment aver-

sion, while the comparison of GDA and EZ illustrates the impact of the representative

agent’s preference for early resolution of uncertainty. Having solved the model numeri-

cally, I generate 10,000 simulations of each calibration and compare model-based statistics

of cash flows and asset prices with corresponding empirical counterparts. Consistent with

the historical data, the model-generated moments of returns and cash flows are based on

the simulations with depressions, while the model-based statistics of variance forwards,

higher-moment risk premiums, and option prices correspond to the simulations without

depressions. The key results are robust to the inclusion of rare events, which are excluded

to eliminate the impact of large consumption declines and to highlight the importance of

learning and generalized disappointment aversion.

1.5.1 Calibrated Parameters

The top panel in Table 2.1 provides the parameter values of cash-flow processes for

consumption and dividends. I begin with the parameters of a regime-switching process

for aggregate consumption growth. As in Bansal and Yaron (2004), I make the model’s

time-averaged consumption statistics consistent with observed annual log consumption

growth from 1930 to 2016. Following Collin-Dufresne, Johannes, and Lochstoer (2016), I

calibrate a parsimonious model of monthly consumption growth with the recession state

mimicking a consumption decline in the US during the Great Depression. Specifically,

I set π11 = 1151/1152 and π22 = 47/48. These numbers imply an average duration

of the high-growth state of about (1 − π11)−1 = 96 years and the depression state of

about (1− π22)−1 = 4 years. The unconditional probability of being in expansion π11 =

(1 − π22)/(2 − π11 − π22) results in π11 = 0.96 and hence the economy experiences one

four-year depression per century, consistent with the historical data. For the mean growth

rate, consumption tends to grow on average at the annual rates of about µ1×12 = 2.06%

and µ2×12 = −4.6% in the expansion and depression states, respectively. The annualized

consumption drop in the depression state is equal to an average annual decline in the real,

per capita log consumption growth during the Great Depression and it is less severe than

rare disasters, defined as a drop in annual consumption growth larger than ten percent

(Rietz 1988; Barro 2006). I calibrate σ to match the empirical volatility of consumption

growth.
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Table 1.2
Parameter values.

Parameter Description Value

π11 Transition probability from expansion to expansion 1151/1152
π22 Transition probability from recession to recession 47/48
µ1 × 12 Consumption growth in expansion 2.06
µ2 × 12 Consumption growth in recession −4.6
gd × 12 Mean adjustment of dividend growth −2.87

σ ×
√

12 Std. deviation of consumption growth shock 2.6

σd ×
√

12 Std. deviation of dividend growth shock 11.41
λ Leverage ratio 2.6

GDA DA EZ

β12 Discount factor 0.99 0.99 0.99
1− α Risk aversion 1/1.5 1/1.5 6.0
1/(1− ρ) EIS 1.5 1.5 1.5
θ Disappointment aversion 8.41 0.6 0
δ Disappointment threshold 0.930 1

This table reports parameter values in the cash-flow processes and the three models: GDA, DA, and EZ.

My strategy to calibrate a rare bad state to the US Great Depression experience is

identical to Collin-Dufresne, Johannes, and Lochstoer (2016), who study rational param-

eter learning in a model with rare events. In the context of the US history, Nakamura

et al. (2013) identify two disaster episodes (1914-1922 and 1929-1933) during the twenti-

eth century. Since the Great Depression is the only example of a consumption disaster in

the US for the period considered in my paper, I naturally calibrate the recession state to

this specific observation. Furthermore, Nakamura et al. (2013) note that rare disasters

tend to unfold over multiple years. Thus, instead of assuming extreme instantaneous

consumption disasters, I choose the milder depression state with an average duration cor-

responding to four years of the Great Depression, consistent with the empirical evidence.

I now turn to calibrating parameters in the dividend process. I regress the annual

dividends on the annual consumption covering the period 1930-2016 and find the leverage

ratio is around 2.5, a conservative number within an interval of plausible values from 1.5

to 4.5. The leverage ratio is an important parameter for two reasons. First, it controls the

volatility of dividends in normal times. Second, it determines the decline of dividends in

the depression state. Consequently, a larger leverage parameter would increase the payoff

of put options, conditional on the depression realization. To compare my results to prior

studies, particularly the disaster literature, I set the leverage ratio λ = 2.6, the value

used in Seo and Wachter (2018). I further follow the literature and set gd to equalize

the long-run dividend and consumption growth. The standard deviation of the dividend

process σd is used to generate large annual dividend volatility observed in the data.

23



The bottom panel in Table 2.1 summarizes the values of GDA, DA, and EZ specifi-

cations. I keep the subjective discount factor β12 = 0.99 and the EIS 1/(1 − ρ) = 1.5

the same for all preference specifications. For the GDA model, the coefficient of relative

risk aversion is 1 − α = 1/1.5. This eliminates one degree of freedom caused by extra

parameters in GDA preferences. I jointly choose the disappointment aversion parameter

θ = 8.41 and the disappointment threshold δ = 0.930 to generate the high equity pre-

mium. The degree of disappointment aversion is consistent with the empirical literature,

which reports a range of values from 3.29 to 8.41 (Delikouras 2017). Note that the vari-

ance term structure, the variance and skew premiums, and the implied volatility surface

are not directly targeted in the model calibration.

For the DA model, I shut down the generalized disappointment aversion channel by

setting δ = 1. This inevitably generates larger risk aversion in good times due to an

increased number of disappointing events, significantly distorting equity moments in the

DA model. Thus, I decrease the disappointment aversion parameter θ = 0.6 to match

the observed equity premium. The remaining parameters are fixed at the initial values.

For the EZ model, I turn off all (generalized) disappointment aversion by setting θ = 0.

The model operates only through the risk aversion channel in the recursive preferences of

Epstein and Zin (1989) with the coefficient of relative risk aversion of 1− α = 6. In this

case, the representative agent exhibits a preference for early resolution of uncertainty, a

popular workhorse in the asset pricing literature. Other parameters correspond to those

in the GDA specification.

1.5.2 Endowments and Equity Returns

Before discussing the asset pricing implications of GDA, DA, and EZ economies, I look

at the cash-flow dynamics predicted by a two-state regime-switching process. Panel A in

Table 1.3 compares the annualized consumption and dividends moments of the data with

those implied by the calibration in this paper. The model-based medians of the mean

and volatility of consumption and dividend growth come out close to their empirical

counterparts, although mean dividend growth is slightly higher in the simulations. The

autocorrelation of cash flows is also in line with the empirical estimates. The leverage

parameter captures the observed correlation between consumption and dividends. Over-

all, one can see that a cash-flow model of consumption and dividend growth matches the

key empirical statistics well.
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Table 1.3
Cash flows and stock market returns.

Data GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

Panel A: Cash flows

E(∆c) 1.83 0.91 1.85 2.40 0.91 1.85 2.40 0.91 1.85 2.40
σ(∆c) 2.22 1.90 2.28 3.19 1.90 2.28 3.19 1.90 2.28 3.19
ac1(∆c) 0.50 0.09 0.30 0.62 0.09 0.30 0.62 0.09 0.30 0.62
E(∆d) 1.44 −1.10 1.91 4.44 −1.10 1.91 4.44 −1.10 1.91 4.44
σ(∆d) 11.04 9.51 11.05 12.97 9.51 11.05 12.97 9.51 11.05 12.97
ac1(∆d) 0.19 0.09 0.27 0.46 0.09 0.27 0.46 0.09 0.27 0.46
corr(∆c,∆d) 0.55 0.38 0.55 0.71 0.38 0.55 0.71 0.38 0.55 0.71

Panel B: Returns

E(rf ) 0.81 −0.13 0.86 1.49 0.68 1.14 1.20 0.22 1.03 1.41
σ(rf ) 1.87 1.48 2.52 3.51 0.04 0.25 1.22 0.73 1.50 2.34
E(re − rf ) 5.22 3.67 6.10 8.35 3.43 6.04 8.47 3.50 5.89 8.19
σ(re − rf ) 19.77 15.58 19.22 23.11 13.03 16.02 20.34 14.64 18.69 23.49
E(pd) 3.11 2.96 3.03 3.05 2.90 2.97 2.98 2.95 3.04 3.06
σ(pd) 0.33 0.04 0.08 0.18 0.01 0.05 0.18 0.03 0.08 0.22

Panel A reports moments of consumption and dividend growth denoted by ∆c and ∆d. Panel B reports moments
of the log risk-free rate rf , the excess log equity returns re − rf , and the log price-dividend ratio pd. The entries
are annualized statistics. The empirical moments are for the US data from January 1930 to December 2016.
For each model, I simulate 10,000 economies at a monthly frequency with a sample size equal to its empirical
counterpart and report percentiles of sample statistics based on these artificial series. I use the common notations
for the sample mean E, standard deviation σ, autocorrelation ac1, and correlation corr.

Panel B in Table 1.3 reports the key annualized moments of the risk-free rate, equity

returns, and the price-dividend ratio for the three specifications. All three models do

a good job of accounting for the salient features of equity returns, as all predict the

low risk-free rate, the large equity premium and volatility of excess returns. Also, the

volatility of the risk-free rate and the level of the log price-dividend ratio correspond well

to the empirical estimates under all specifications. The main shortcoming of the three

models is too low volatility of the log price-dividend ratio.

1.5.3 The Price of Variance Risk

Figure 1.3 compares the empirical and model-based term structures of Sharpe ratios and

prices for forward variance claims. These graphs assess how well different preferences

can explain the patterns in the data. The left plot in Figure 1.3 shows that the GDA

model does a good job of matching the overall shape of annualized Sharpe ratios. In

particular, it generates a curve that is very steep for the one-month returns and then

has a small and positive slope for the longer horizons. The figure also shows that both

EZ and DA specifications fail to reconcile the concave and upward shape of the term

25



1 2 3 4 5 6 7 8 9 10 11 12

-1.6

-1.4

-1.2

-1.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Annualized Sharpe Ratios

����

���

��

��

0 1 2 3 4 5 6 7 8 9 10 11 12

13

15

17

19

21

23

25

27

29
Average Forward Variance Curves

Figure 1.3: Sharpe ratios and forward variance claim prices. The left and right panels plot
annualized Sharpe ratios and average prices for forward variance claims for the data and the three
models: GDA, DA, and EZ. The prices are reported in annualized volatility terms, 100 ×

√
12× Fnt .

The empirical lines correspond to the US data from 1996 to 2013. For each model, I simulate 10,000
economies at a monthly frequency with a sample size equal to its empirical counterpart and report
medians of sample statistics based on these artificial series.

structure. Consistent with the findings of Dew-Becker et al. (2017), the calibration with

Epstein-Zin preferences underprices volatility risk in the short term and overprices future

variance in the long term. The results for the DA model show that disappointment

aversion generates even higher Sharpe ratios for the longer maturities, while the one-

month forwards are underpriced compared to the data as well as to the GDA and EZ

models. The right panel in Figure 1.3 plots the average variance swap prices of different

maturities in the data and the three models. The empirical curve has an upward and

concave shape for the horizons from one to 12 months and it flattens significantly at the

longer end. In contrast to the empirical evidence, the DA and EZ specifications predict

strongly upward sloping term structures of variance forwards. Although the GDA model

generates slightly higher prices of variance swaps, it successfully captures the concave

shape and especially the flatness of the curve at longer maturities.

The interpretation of our results in the EZ economy is similar to the intuition pro-

vided by Dew-Becker et al. (2017). The risk-averse investor considers the states with

high expected future volatility as periods of low lifetime utility. With Epstein-Zin prefer-

ences, low utility increases the pricing kernel and, thus, the agent with a strong preference

for early resolution of uncertainty requires a large compensation for future consumption

volatility. The economic intuition for the results in the DA model is similar. In this case,

even though the coefficient of relative risk aversion is very low, the investor is still ex-

tremely averse to expected future volatility due to high disappointment aversion. Because

even small negative news about consumption growth leads to an investor’s disappoint-

ment and high volatility, he is willing to pay higher prices for forward variance swaps
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Table 1.4
Model tests using annualized Sharpe ratios for forward variance claims.

p-value

GDA DA EZ

Simulated 1mo/SR ≤ empirical SR 0.91 0.10 0.26
Simulated 3mo/SR ≥ empirical SR 0.37 < 0.01 0.03
Simulated 12mo/SR ≥ empirical SR 0.51 < 0.01 < 0.01

Joint test: 1mo/SR ≤ data ∧ 3mo/SR ≥ data ∧ 12mo/SR ≥ data 0.32 < 0.01 < 0.01

For each model, I simulate 10,000 economies at a monthly frequency with a sample size equal to the length of the
variance swap data. In each simulation, I calculate average annualized Sharpe ratios for forward variance claims
with one-, three-, and 12-month maturities. For each model, the first row shows the fractions of samples in which
the simulated Sharpe ratios are at least as small as the empirical one-month estimates. The second and third
rows present the fraction of samples in which the simulated Sharpe ratios are at least as large as the empirical
three-month and 12-month estimates, respectively. The entries of the bottom row are the fraction of samples in
which all three conditions are satisfied simultaneously.

with longer maturities, which hedge his concerns about future disappointing events.

The generalized disappointment-averse investor also has an asymmetric risk attitude

towards downside risk in consumption growth, but unlike the disappointment-averse

agent, he places more weight on outcomes that are sufficiently deep in the left tail of

the consumption distribution. Therefore, the generalized disappointment-averse agent

perceives unexpected realized volatility in the short-term more risky than uncertainty in

the distant future. This generates the term structure of forward variance prices that is

very steep for maturities less than three months but remains flat for longer horizons. One

can also generate higher volatility of the pricing kernel by controlling the disappointment

threshold. Consequently, a more volatile stochastic discount factor in the GDA model

leads to higher Sharpe ratios for the one-month forward variance swaps, relative to the

DA and EZ economies.

Table 1.4 augments the results in Figure 1.3 by reporting the p-values of annualized

Sharpe ratios with respect to their finite-sample distribution in all three specifications.

For each model, it shows the fraction of samples across 10,000 artificial simulations of

the corresponding economy that satisfy one of the four conditions. For the first three

conditions, simulated average Sharpe ratios for one-, three-, and 12-month horizons should

be respectively smaller, larger, and larger than the empirical estimates. One can interpret

these fractions as the p-values for a one-sided test of the model generating as negative or

as positive average Sharpe ratios for a particular maturity as in the data. For the last

condition, simulated statistics should jointly satisfy the first three requirements. This

number corresponds to the p-value for a test of the model matching the observed upward

sloping shape of the term structure.
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Figure 1.4: Sharpe ratios and forward variance claim prices versus consumption growth
shocks. The figure plots annualized Sharpe ratios (top panels) and average prices (bottom panels) for
forward variance claims for the three models: GDA, DA, and EZ. For each model, the respective panel
shows the term structures in good, normal, and bad times. The economy is initially in normal times,
corresponding to a median posterior belief. In good (bad) times denoted by "+1.0σ" ("-1.5σ", "-2.5σ",
and "-3.0σ"), consumption growth is a 1.0 (1.5, 2.5, and 3.0) standard deviation(s) above (below) an
average growth in an expansion state.

Table 1.4 shows that it is difficult to reject any of the three models based on the one-

month variance swap returns only. Specifically, one would expect to see as small average

one-month Sharpe ratios as observed empirically in 91%, 10%, and 26% of the time in

the GDA, DA, and EZ specifications, respectively. At longer maturities, however, one

can reject at the 5% level the null hypothesis that the DA or EZ frameworks generate the

variance swap data. The GDA model instead generates large p-values for all tests and

cannot be rejected. In particular, the models with disappointment aversion or Epstein-

Zin preferences would predict as positive Sharpe ratios at longer maturities as in the data

in fewer than 3% of simulations, while the likelihood of replicating the overall shape is

less than 0.1%. This is in stark contrast to the GDA model, which captures negative

Sharpe ratios at the short end and positive ones at the long end in 32% of the time.

As an additional exercise, Figure 1.4 provides impulse response analysis of the condi-

tional term structure of Sharpe ratios and average prices for forward variance claims. I

assume initially the economy is in normal times, when the investor holds a median belief.

I study conditional dynamics of the term structures in the next period when consumption

growth is a 1.0 standard deviation above and 1.5, 2.5, and 3.0 standard deviations below

an average growth in an expansion state (called good and bad times, respectively). The

top panels in Figure 1.4 show that the model-generated Sharpe ratios for the DA and
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EZ models are negative for all economic conditions and hence the two preference specifi-

cations cannot capture slightly positive average Sharpe ratios at longer maturities. The

economy with GDA preferences generates a procyclical and steep curve for short-term

claims, consistent with Ait-Sahalia, Karaman, and Mancini (2019) who study variance

swap prices in different economic conditions. The term structure in the GDA model is

insignificant for maturities longer than two months in good and normal times as well as

bad but not depression-like states, whereas it becomes steeper and positive in response

to large consumption declines. The latter feature of the GDA model enables to match

the data.

To better understand the differences in conditional Sharpe ratios predicted by different

preferences, the bottom panels in Figure 1.4 plot impulse responses of variance swap

prices. The average curve for the DA model remains upward sloping in good, normal, and

bad times. This result explains negative average returns on a variance swap contract. For

the EZ economy, the term structure of variance forwards switches from strongly increasing

in normal and good times to slightly increasing in bad (but not severe) times, and it even

becomes weakly downward sloping in very bad times. Nevertheless, this amplification of

short-term prices is too weak to generate on average positive returns on holding a variance

forward. In contrast, the generalized disappointment aversion channel in the GDA model

inverts the term structure in all bad scenarios considered, and the degree of inversion

is substantially stronger compared to the economy with Epstein-Zin preferences. This

suggests that GDA preferences provide a key amplification mechanism for the pricing of

short-term variance risk in bad times that enables to replicate the empirically observed

patters.

1.5.4 Variance and Skew Risk Premiums

Panel A in Table 1.5 collects moments of the variance premium and conditional variances

of the market return under the actual and risk-neutral probability measures in the data

and the three models. It shows that the GDA model is able to generate a large and volatile

variance premium. It is well-known that the variance premium distribution is fat-tailed as

characterized by the positive skewness and excess kurtosis. The GDA model qualitatively

respects the non-normality of the distribution, although the sample skewness and kurtosis

statistics are smaller relative to the data. Generalized disappointment aversion allows me

to successfully account for the first and second moments of the variance premium with
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empirically consistent conditional return variances under both probability measures. The

model predicts that the total return variance is more volatile under the risk-neutral

distribution relative to the physical distribution and that both volatilities are persistent,

as they are in the data.

Empirical literature further documents return predictability by the variance premium.

To study this predictive relation, I regress the one-, three-, and six-month cumulative

excess log returns, which are expressed in percentages, on the lagged monthly variance

premium. Consistent with the existing literature, the "Data" column of Panel B in Table

1.5 indicates a positive impact as measured by positive and slightly decreasing regression

coefficients. Also, there is an increasing predictive power as measured by increasing R2s

over longer horizons. The GDA model replicates these empirical findings by matching

the magnitude of coefficients and R2 statistics.

Table 1.5 shows that the model with disappointment aversion preferences produces a

mean and volatility of the variance premium that are more than five times smaller than

with the generalized utility function. Turning off the generalized disappointment aversion

channel also leads to a significant reduction in the volatility of return variance in the DA

model. As the variance premium decreases, its predictive power for the excess log returns

also suffers. This is manifested in the lower R2s and empirically inconsistent regression

coefficients. Next, I turn off any source of (generalized) disappointment aversion and

consider a representative agent with Epstein-Zin preferences. As shown in Table 1.5, the

EZ model leads to around a two-fold increase in the mean and volatility of the variance

premium relative to the DA model, but sample statistics are less than half of the numbers

in the GDA model. The table suggests that a smaller variance premium is due to the

reduced volatility in conditional variances. As shown in Panel B in Table 1.5, a smaller

variance premium results in the excessively-high regression coefficients and too small R2s

in the predictive regression of future equity returns on the variance premium.

The asset pricing implications of different preference specifications are further aug-

mented by Table 1.6. The GDA specification produces a sizeable skew premium, which

corresponds well to the historical value. The GDA model generates the positive skewness

and excess kurtosis in the conditional distribution of the skew premium. Table 1.6 also

demonstrates the first and second moments of the return skewness under risk-neutral

and physical distributions. The conditional mean of the return skewness under both

measures is significantly negative, although the model cannot fully capture the size ob-

served in the data. The main drawback of the GDA model is lower volatility of the skew
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Table 1.5
Variance premium and predictability.

Data GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

Panel A: Variance premium

E(vp) 10.27 8.13 12.32 17.14 1.34 2.11 3.39 3.15 4.92 7.23
σ(vp) 10.87 12.22 15.99 18.93 1.53 3.11 5.25 4.79 7.46 10.91
skew(vp) 2.33 0.91 1.49 2.25 0.49 2.76 4.17 −0.62 1.71 2.98
kurt(vp) 10.90 2.34 4.06 7.67 5.88 12.03 24.96 4.00 7.27 13.59
σ(varPt (re)) 29.32 17.34 25.44 32.68 5.02 14.25 36.48 13.00 25.50 40.47
ac1(varPt (re)) 0.79 0.70 0.81 0.88 0.61 0.79 0.92 0.66 0.82 0.91

σ(varQt (re)) 33.76 29.58 40.60 49.11 6.55 17.24 38.91 17.79 31.46 45.00

ac1(varQt (re)) 0.80 0.69 0.79 0.85 0.62 0.80 0.92 0.66 0.82 0.89

skew(varQt (re)) 3.53 0.86 1.47 2.21 2.40 3.73 5.75 1.47 2.30 3.34

kurt(varQt (re)) 21.47 2.30 4.13 7.78 8.46 19.47 45.54 3.87 8.24 16.18

Panel B: Predictability of excess returns

β(1m) 0.76 0.19 0.75 1.38 −1.43 1.81 5.56 −0.95 0.93 2.77
R2(1m) 2.70 0.15 2.39 6.99 0.02 1.09 4.19 0.01 1.31 6.01
β(3m) 0.83 0.18 0.63 1.09 −1.31 1.55 4.02 −0.73 0.87 2.11
R2(3m) 8.61 0.47 5.57 15.24 0.02 2.39 8.67 0.03 3.28 12.87
β(6m) 0.57 0.15 0.50 0.82 −1.05 1.24 3.06 −0.63 0.74 1.60
R2(6m) 7.55 0.68 7.78 20.79 0.08 3.32 13.14 0.04 4.67 16.95

Panel A reports moments of the conditional variance premium vp, market return variances varPt (re) and var
Q
t (re)

under the physical P and risk-neutral Q probability measures, respectively. The Panel A entries are monthly
statistics. Panel B reports results of the predictive regression of h-month future excess log equity returns con-

structed as rext+1→t+h =
h∑
i=1

(
re,t+i−rf,t−1+i

)
on the lagged variance premium vpt. Specifically, the slope estimates

β(h) and R2(h) are based on the linear projection:

100× rext+1→t+h = Intercept + β(h)× vpt + εt+h, h = 1, 3, 6.

The moments and regression outputs are for the data and the three models: GDA, DA, and EZ. The empirical
statistics are for the US data from January 1990 to December 2016. For each model I simulate 10,000 economies
at a monthly frequency with a sample size equal to its empirical counterpart and report percentiles of sample
statistics based on these artificial series. I use the common notations for the sample mean E, standard deviation
σ, autocorrelation ac1, skewness skew, and kurtosis kurt.

premium, realized and implied skew. Since conditional dynamics of the model are driven

by a single state, allowing the model to operate through multiple states (for example, via

time-varying expected growth and volatility, jumps in consumption, etc.) would make

the economy more flexible to jointly match all moments. In particular, it would be able to

generate more time-variation in the higher moments of returns through different channels.

Table 1.6 also shows that disappointment aversion alone cannot reproduce the sign

of the skew premium, which proves to be positive in the DA model. Furthermore, the

bottom part of Table 1.6 shows that the DA model predicts the smallest first and sec-

ond moments of return skewness across the three models. The last block in Table 1.6

displays the impact of relative risk aversion on the skew premium. The results for the
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Table 1.6
Skew premium.

Data GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

E(sp) −42.20 −39.11−34.58 −30.78 26.58 34.88 56.36 −22.79−19.34 −12.84
σ(sp) 81.81 11.23 26.42 46.52 24.44 29.53 377.79 3.03 21.31 91.65
skew(sp) 3.57 −4.32 3.28 8.56 −3.37 1.24 13.98 −11.70 3.23 13.69
kurt(sp) 16.26 1.93 43.48 112.04 3.10 4.65 215.60 2.04 80.40 219.37
ar1(sp) 0.04 −0.12 0.15 0.62 −0.01 0.61 0.70 −0.27 0.11 0.58

E(skewP
t (re)) −87.52 −42.55−39.99 −33.83 −20.49−15.82 −12.34 −38.00−33.98 −29.43

σ(skewP
t (re)) 173.59 8.99 11.79 22.21 7.68 11.41 15.56 12.03 13.61 23.97

E(skewQ
t (re)) −177.73 −70.44−64.13 −53.83 −17.39−13.22 −9.82 −47.60−42.42 −36.45

σ(skewQ
t (re)) 92.33 23.20 28.27 41.96 7.91 11.14 15.54 16.44 18.68 28.90

This table reports moments of the conditional skew premium sp,market return skewness skewP
t (re) and skew

Q
t (re)

under the physical P and risk-neutral Q probability measures, respectively. The entries are monthly statistics.
The moments are for the data and the three models: GDA, DA, and EZ. The empirical statistics are for the US
data from January 1996 to January 2016. For each model I simulate 10,000 economies at a monthly frequency
with a sample size equal to its empirical counterpart and report percentiles of sample statistics based on these
artificial series. I use the common notations for the sample mean E, standard deviation σ, skewness skew, and
kurtosis kurt.

EZ model show that the risk-neutral return density becomes more distorted towards the

left tail; however, the model can generate less than half of the average skew premium

observed in the data. Although the EZ framework predicts the correct size, it signifi-

cantly understates the magnitude. Overall, these results indicate the important role of

generalized disappointment aversion in generating a correct risk neutral distribution of

equity returns.

1.5.5 The Term Structure of Implied Volatilities

I further examine the asset pricing implications of all models for equity index options. The

top graph of Figure 1.5 compares the 1-month volatility curves for the data and the three

models. The implied volatilities are expressed as a function of moneyness ranging from

0.90 to 1.05. The plot shows that the empirical implied volatilities decline in moneyness,

a pattern also known in the literature as the implied volatility skew. The top panel of

Figure 1.5 shows that the DA implied volatilities for the 1-month maturity are flat and

approximately equal to the realized stock market volatility. One apparent candidate to

generate a steep volatility skew is high risk aversion. Although raising risk aversion in

Epstein-Zin preferences improves the model’s performance, this cannot fully account for

the level in implied volatilities. In contrast, the GDA framework can fit the option prices

much better. The bottom plots of Figure 1.5 additionally present the term structure of
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Figure 1.5: Implied volatilities. The top panel plots the 1-month implied volatility curve as a
function of moneyness for the data and the three models: GDA, DA, and EZ. The bottom panels plot
the empirical and model-based implied volatility curves for ATM (left) and OTM (right) options as
functions of the time to maturity (in months). The empirical statistics are for the US data from January
1996 to December 2016. The model-based curves are calculated for option prices using the annualized
model-implied interest rate rt(πt) and dividend-yield qt(πt) in each period. For each model, I simulate
10,000 economies at a monthly frequency with a sample size equal to its empirical counterpart and report
the medians fo sample statistics based on these artificial series.

implied volatilities for ATM and 0.90 OTM options. In the data, ATM volatilities slightly

increase over the horizon, while a downward trend can be observed for OTM volatilities.

The model-based results clearly indicate that neither DA nor EZ specification can match

the level of the empirical curves. In contrast, the model with generalized disappointment

aversion can explain overall patterns and magnitudes of the empirical implied volatilities

for one-, three-, and six-month maturities well.

1.6 Sensitivity Analysis

In this section, I conduct an extensive sensitivity analysis to examine the robustness of

the results to alternative calibrations of preference specifications. To address the concern

that some of my results are driven by a particular choice of parameters, I consider the

asset pricing implications of the three preference specifications for a large set of values of
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the key parameters.

1.6.1 The Variance Term Structure

Figure 1.6 depicts simulated Sharpe ratios and prices for variance forwards in various

calibrations of the framework with GDA preferences. It shows how the term structures

depend on the choices of preference parameters θ and δ. The shape of variance swap

prices flattens and the term structure of Sharpe ratios becomes upward sloping with the

higher disappointment threshold or disappointment aversion. The intuition for the result

obtained is as follows. In very bad times, volatility risk is amplified more in the short-term

than in the long-term in the GDA economy. As shown in Section 1.5.3, this generates

the downward and upward sloping patterns in prices and Sharpe ratios, respectively.

In normal and good times, variance swap prices are slightly increasing in the horizon;

however, only short-term volatility shocks earn a significant premium (as measured by

Sharpe ratios), generating relatively large and negative Sharpe ratios for one- and two-

month periods, but insignificant ratios for longer horizons. Since higher disappointment

risk reinforces the first effect, the models with the higher disappointment threshold and

disappointment aversion generate on average negative Sharpe ratios for one- and two-

month maturities but positive and upward sloping ones for maturities between three and

12 months.

Figure 1.7 examines the impact of disappointment aversion and risk aversion parame-

ters on variance swaps in the models with Gul and Epstein-Zin preferences, respectively.

In the DA specification, the slope of variance swap prices is increasing in θ. The reason for

this result is that the disappointment-averse investor strongly dislikes both low and high

variance. Hence, larger θ only increases already high insurance premia against shocks to

realized and future volatility. In the EZ economy, the slope of variance swap prices is

decreasing in 1 − γ. As shown in Figure 1.7, in order to generate a close-to-zero slope

at least after the ten-month maturity, the required risk aversion should be at least 7.

For this value, however, the model would generate a Sharpe ratio of less than -2.0 for

the one-month claim compared to -1.3 in the data. Furthermore, with this calibration

of relative risk aversion, the mean equity premium has a median value of 8% in the EZ

model, well above the empirical estimate of around 5%. Raising risk aversion even more

would only worsen the fit of the model with the variance term structure at the one-month

maturity and with the equity moments and higher-moment risk premiums (see Section
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Figure 1.6: Sensitivity of Sharpe ratios and forward variance claim prices: GDA. The
figure plots annualized Sharpe ratios (top) and average prices for forward variance claims (bottom) for
different model calibrations with generalised disappointment aversion preferences. GDA corresponds to
the original GDA model. In GDAθl and GDAθh , the disappointment aversion parameters are θl = 6.41
and θh = 10.41, respectively. In GDAδl and GDAδh , the disappointment threshold parameters are
δl = 0.920 and δh = 0.940, respectively. If not stated otherwise, the remaining parameters in all
specifications are set at the original values in the GDA model. For each model, I simulate 10,000
economies at a monthly frequency with a sample size equal to its empirical counterpart and report
medians of sample statistics based on these artificial series.

1.6.2 for more details). Hence, a high risk aversion in the EZ framework cannot explain

the shape of the variance term structure.

1.6.2 Equity Returns and Moment Risk Premiums

Figure 1.8 provides sensitivity results for the risk-free rate, the equity premium, the price-

dividend ratio and the moment risk premiums, for a broad range of parameter choices

in the three models. In this sensitivity exercise, I consider three preference specifications

and change a key parameter in each of them, while holding the remaining parameters

at the values in the original calibration. In the GDA model, I vary the disappointment

threshold between 0.915 and 0.945. In the DA model, I change the disappointment

aversion parameter between 0.45 and 0.75. In the EZ model, the results are provided for

the coefficient of relative risk aversion ranging from 4.5 to 7.5. The panels in Figure 1.8
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Figure 1.7: Sensitivity of Sharpe ratios and forward variance claim prices: DA and EZ.
The figure plots annualized Sharpe ratios (top) and average prices for forward variance claims (bottom)
for different model calibrations with disappointment aversion and Epstein-Zin preferences. DA and EZ
correspond to the original DA and EZ models. In DAθl and DAθh , the disappointment aversion param-
eters are θl = 0.5 and θh = 0.7, respectively. In EZ(1−α)l and EZ(1−α)h , the risk aversion parameters
are (1 − α)l = 5 and (1 − α)h = 7, respectively. If not stated otherwise, the remaining parameters in
all specifications are set at the original values in the DA and EZ models. For each model, I simulate
10,000 economies at a monthly frequency with a sample size equal to its empirical counterpart and report
medians of sample statistics based on these artificial series.

present the model-based average statistics implied by the GDA, DA, and EZ frameworks.

The asset pricing moments are expressed as a function of a varying parameter, which is

indicated on the corresponding axis.

Figure 1.8 shows that the risk-free rate decreases with the disappointment threshold,

disappointment aversion and relative risk aversion in the GDA, DA, and EZ models,

respectively. Further, the equity premium increases and equity prices decline in δ, θ,

and 1 − α. Intuitively, when the agent faces more disappointing outcomes or becomes

more averse to low consumption growth rates, he demands larger premiums in expected

returns for bearing the additional risk in consumption growth. The impact of δ and

1−α on the volatility of asset prices is similar across the GDA and EZ models: a higher

disappointment threshold or a higher risk aversion leads to a more volatile risk-free rate,

while the volatility of equity returns and the price-dividend ratio exhibits a hump-shaped
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Figure 1.8: Sensitivity of asset prices: GDA, DA, and EZ. The figure plots asset pricing moments
in the original GDA, DA, and EZ models, in which a single parameter is changed while others are fixed
at the original values. Specifically, I change the disappointment threshold, the disappointment aversion
parameter, and the coefficient of risk aversion in the original GDA, DA and EZ models, respectively, over
a range of values. For each recalibration, I simulate 10,000 economies at a monthly frequency with a
sample size equal to its empirical counterpart. The entries of the figure are medians of sample statistics
(annualized for the risk-free rate, the equity premium and the price-dividend ratio; monthly for the
variance and skew risk premiums) based on these artificial series. I use the common notations for the
sample mean E and standard deviation σ.

pattern with a maximum approximately in the middle of the parameter intervals consid-

ered. In the DA model, raising disappointment aversion slightly increases the volatility
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of the risk-free rate, equity returns, and prices. Overall, the magnitude of changes in the

risk-free rate, equity returns, and the price-dividend ratio are quite comparable across

the three models, especially when looking at the GDA and EZ frameworks. These find-

ings suggest that all three preference specifications can reasonably explain the first and

second moments of equity returns by adjusting a key preference parameter. In contrast,

the four bottom panels in Figure 1.8 indicate the crucial importance of generalized disap-

pointment aversion for generating significant risk premiums in higher moments of equity

returns.

Figure 1.8 shows that, in the DA setting, changing the disappointment aversion for a

wide range of values does not improve the model’s performance, as the variance and skew

risk premium moments are not very sensitive to changes in θ. Moreover, no value of the

disappointment aversion parameter can support the negative skew premium. Figure 1.8

also shows that Epstein-Zin preferences provide a better fit of the model with the data.

In particular, when the risk aversion increases from 4.5 to 6, the mean variance premium

increases from less than 2 to around 5, while the skew premium declines from around

-10% to -20%. However, the mean and volatility of the variance premium actually start

to decline at some point, and thus the higher risk aversion will move the model away from

the data. Finally, the comparative analysis with respect to the disappointment threshold

in the GDA model generates patterns in the variance and skew risk premiums similar

to those predicted by different risk aversion parameters in the EZ economy. However,

with generalized disappointment aversion, the magnitude and time-variation of variance

and skew risk premiums are significantly amplified. Overall, the sensitivity analysis in

Figure 1.8 confirms that the distribution of the stochastic discount factor, necessary to

reconcile the empirical asset pricing moments, is attributable to the agent’s generalized

disappointment aversion and cannot be supported by any parameter values in alternative

preferences.

1.6.3 Implied Volatilities

Figures 1.9 and 1.10 further provide comparative statics of the implied volatility curves

in the three preference specifications. Several observations are noteworthy. First, in all

economies, the implied volatility curve for one-month options is not very sensitive to a

further increase in effective risk aversion. In all cases, an incremental increase is less than

1% for any particular maturity and moneyness. Second, in the model with Epstein-Zin
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Figure 1.9: Sensitivity of implied volatilities: GDA. The figure plots the 1-month implied volatil-
ity curve (top) as a function of moneyness, implied volatility curves for ATM (middle) and OTM (bottom)
options as functions of the time to maturity (in months) for different model calibrations with generalised
disappointment aversion preferences. GDA corresponds to the original GDA model. In GDAθl and
GDAθh , the disappointment aversion parameters are θl = 6.41 and θh = 10.41, respectively. In GDAδl
and GDAδh , the disappointment threshold parameters are δl = 0.920 and δh = 0.940, respectively. If not
stated otherwise, the remaining parameters in all specifications are set at the original values in the GDA
model. For each model, I simulate 10,000 economies at a monthly frequency with a sample size equal to
its empirical counterpart and report medians of sample statistics based on these artificial series.

preferences, the slope of tre ATM and OTM volatilities stays the same for higher risk

aversion. In the DA economy, even though ATM volatilities for longer maturities seem to

increase more in response to raising disappointment aversion, the levels are significantly
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Figure 1.10: Sensitivity of implied volatilities: DA and EZ. The figure plots the 1-month implied
volatility curve (top) as a function of moneyness, implied volatility curves for ATM (middle) and OTM
(bottom) options as functions of the time to maturity (in months) for different model calibrations with
disappointment aversion and Epstein-Zin preferences. DA and EZ correspond to the original DA and
EZ models. In DAθl and DAθh , the disappointment aversion parameters are θl = 0.5 and θh = 0.7,
respectively. In EZ(1−α)l and EZ(1−α)h , the risk aversion parameters are (1− α)l = 5 and (1− α)h = 7,
respectively. If not stated otherwise, the remaining parameters in all specifications are set at the original
values in the DA and EZ models. For each model, I simulate 10,000 economies at a monthly frequency
with a sample size equal to its empirical counterpart report medians of sample statistics based on these
artificial series.

below the empirical curves. In the GDA economy, changes in θ and δ have a larger impact

on the term structure of ATM and OTM volatilities. Specifically, Figure 1.9 suggests that

a higher disappointment threshold increases prices of options with longer maturities,
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helping to explain a slightly upward sloping shape in ATM volatilities. Meanwhile, a

higher disappointment aversion parameter seems to increase prices of short-term OTM

options more than those with longer maturities, helping to explain a slightly downward

sloping pattern in OTM volatilities. Therefore, in the setting of my model, simultaneously

increasing θ and decreasing δ could allow one to keep the one-month implied volatilities

close to the empirical curves while even better matching the salient statistics of ATM

and OTM volatilities. Finally, a lower degree of effective risk aversion implies that the

implied volatility curves become flatter and shift down in all models, especially in the

economies with GDA and Epstein-Zin preferences.

1.7 Conclusion

This paper builds an equilibrium model with GDA preferences and rare events in con-

sumption growth. I show that the combination of the investor’s tail aversion and fluctuat-

ing economic uncertainty due to learning about a hidden depression state of the economy

can explain a wide variety of asset pricing phenomena. Most notably, the model ratio-

nalizes the variance term structure, a new stylized fact of the variance swap data. In

particular, the model predicts large and negative Sharpe ratios on one-month variance

claims and produces a slightly positive term structure for maturities longer than two

months, consistent with the empirical evidence. Furthermore, it accounts for the large

variance and skew risk premiums in equity returns, and generates a realistic volatility

surface implied by index options, while simultaneously matching the salient features of

equity returns and the risk-free rate. I show that the success of the model is attributable

to the generalized disappointment aversion channel by comparing the framework with

GDA preferences to the models with nested utility functions: disappointment aversion

and Epstein-Zin preferences. Although all three specifications can reasonably match mo-

ments of equity returns, only GDA preferences can explain the variance term structure,

moment risk premiums, and option prices. These results suggest the important role of

generalized disappointment aversion in asset pricing models, especially in the pricing of

variance risk.

There are several interesting avenues for future research. First, the asset pricing re-

sults of my paper emphasize the importance of GDA preferences and the specific levels of

the disappointment threshold and disappointment aversion. Although Delikouras (2017)

provides the empirical estimate of a disappointment aversion parameter in Gul (1991), a
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joint estimation of the parameters in Routledge and Zin (2010) has not been addressed

by the existing literature. Second, it seems to be a fruitful area to explore the implica-

tions of the richer model for the term structure of dividend strips and interest rates. For

instance, an extension of the presented framework to include post-depression recoveries

(Hasler and Márfe 2016) has the potential to provide a unified explanation of the term

structures of interest rates, equity and variance risk premia. Third, generalized disap-

pointment aversion is likely to have additional asset pricing implications for the size and

time-variation of risk premia when combined with a multi-dimensional learning problem

(Johannes, Lochstoer, and Mou 2016) or rational parameter learning (Collin-Dufresne,

Johannes, and Lochstoer 2016). Finally, it would be interesting to investigate the inter-

action between GDA preferences and other behavioural biases, for instance, alternative

learning rules (Brandt, Zeng, and Zhang 2004).
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Appendix A

A.1 Data

A.1.1 Consumption, Dividends, and Market Returns

I follow Bansal and Yaron (2004) and construct real per capita consumption growth series

(annual, due to the frequency restriction) for the longest sample available, 1930-2016. In

the literature, consumption is defined as a sum of personal consumption expenditures

on nondurable goods and services. I download the data from the US National Income

and Product Accounts (NIPA) as provided by the Bureau of Economic Analysis. I apply

the seasonally adjusted annual quantity indexes from Table 2.3.3. (Real Personal Con-

sumption Expenditures by Major Type of Product, Quantity Indexes, A:1929-2016) to

the corresponding series from Table 2.3.6. (Real Personal Consumption Expenditures by

Major Type of Product, Chained Dollars, A:1995-2016) to obtain real personal consump-

tion expenditures on nondurable goods and services for the sample period 1929-2016. I

further retrieve mid-month population data from NIPA Table 7.1. to convert real con-

sumption series to per capita terms.

I measure the total market return as the value-weighted return including dividends,

and the dividends as the sum of total dividends, on all stocks traded on the NYSE, AMEX,

and NASDAQ. The dividends and value-weighted market return data are monthly and

are retrieved from the Center for Research in Security Prices (CRSP). To construct the

monthly nominal dividend series, I use the CRSP value-weighted returns including and ex-

cluding dividends of CRSP common stock market indexes (NYSE/AMEX/NASDAQ/ARCA),
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denoted by RIt and REt, respectively. Following Hodrick (1992), I construct the price

series Pt by initializing P0 = 1 and iterating recursively Pt = (1 + RIt)Pt−1. Next, I

compute normalized nominal monthly dividends Dt = (RIt − REt)Pt. The proxy of the

risk-free return Rf,t+1 is the 1-month nominal Treasury bill. The nominal annualized

dividends are constructed by summing the corresponding monthly dividends within the

year. Finally, I retrieve the inflation index from CRSP to deflate all quantities to real

values.

A.1.2 The Variance Premium Data

For the variance risk premium, I closely follow Bollerslev, Tauchen, and Zhou (2009),

Bollerslev, Gibson, and Zhou (2011), Drechsler and Yaron (2011), and Drechsler (2013).

Under the no-arbitrage assumption, the risk-neutral conditional expectation of the return

variance is equal to the price of a variance swap, which is a forward contract on the realized

variance of the asset. Since the CBOE calculates the VIX index as a measure of the 30-

days ahead risk-neutral expectation of the variance of the S&P 500 index, I use the VIX

index as a proxy for the risk-neutral expectation of the market’s return variation. The

VIX is quoted in an annualized standard deviation. Hence, I first take it to a second

power to transform to variance units and then divide by 12 to obtain monthly frequency.

Thus, I obtain a new series defined as [VIX]2t = VIX2
t

12
. I further use the last available

observation of [VIX]2t in a particular month as a measure of the risk-neutral expectation

of return variance in that month.

For the objective expectation of return variance, a second component in the variance

premium, I calculate a one-step-ahead forecast from a simple regression similar to Drech-

sler and Yaron (2011) and Drechsler (2013). I first calculate the measure of the realized

variance by summing the squared daily log returns on the S&P 500 futures and S&P 500

index obtained from the CBOE. The constructed series are denoted by FUT2
t and IND2

t ,

respectively. Subsequently, I estimate the following regression:

FUT2
t+1 = β0 + β1 · IND2

t + β2 · [VIX]2t + εt+1. (A.1)

The actual expectation is measured as the one-period ahead forecast given by (A.1). I

refer to the resulting series as the realized variance and denote it by RVt. Theoretically, the

variance premium should be non-negative in each period. Thus, I truncate the difference

between the implied series of [VIX]2t and RVt from below by 0.
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For the empirical strategy above, I obtain the daily data series of the VIX index, S&P

500 index futures, and the S&P 500 index from the CBOE. The main restriction on the

length of the constructed monthly variance premium is the VIX index, reported by the

CBOE from January 1990. Using high-frequency data would provide a finer estimation

precision of the quantities in the variance premium, but my estimates remain largely

consistent with the numbers reported by the existing literature.

A.1.3 Option Data for the Skew Premium and Implied Volatility

Skew

The empirical strategy and key definitions of the skew risk premium are in line with

Bakshi, Kapadia, and Madan (2003) and Kozhan, Neuberger, and Schneider (2013).

For the empirical analysis of the skew risk premium and implied volatility surface, I

use European options written on the S&P 500 index and traded on the CBOE. The

option data set covers the period from January 1996 to December 2016 and is from

OptionMetrics. Option data elements include the type of options (call/put) along with

the contract’s variables (strike price, time to expiration, Greeks, Black-Scholes implied

volatilities, closing spot prices of the underlying) and trading statistics (volume, open

interest, closing bid and ask quotes), among other details. The empirical estimates of

the conditional skew risk premium are computed in line with Kozhan, Neuberger, and

Schneider (2013). The empirical strategy consists of calculating fixed and floating legs

for the skew swap, which correspond to the risk-neatral and physical expectations of the

return skewness. For a detailed description of the methodology, see Kozhan, Neuberger,

and Schneider (2013).

To construct the empirical implied volatility curves, I first compute the moneyness

for each observed option using the daily S&P 500 index on a particular trading day. I

filter out all data entries with non-standard settlements. I use the remaining observations

to construct the implied volatility surface for a range of moneyness and maturities. In

particular, I follow Christoffersen and Jacobs (2004) and perform polynomial extrapola-

tion of volatilities in the maturity time and strike prices. This strategy makes use of all

available options and not only those with a specific maturity time. The fitted values are

further used to construct the implied volatility curves.

45



A.2 Representative Agent’s Maximization Problem

A representative agent starts with an initial wealth denoted by W0. Each period t, the

agent consumes Ct consumption goods and invests in N assets traded on the competitive

market. Denote the fraction of the total t-period wealth Wt invested in the i-th asset

with gross real return Ri,t+1 by ωi,t. Then, the agent’s budget constraint in period t takes

the form:

Wt+1 = (Wt − Ct)Rω
t+1 (A.2)

N∑
i=1

ωi,t = 1 and Rω
t+1 =

N∑
i=1

ωi,tRi,t+1. (A.3)

The agent chooses {Ct, ω1,t, ..., ωN,t} in period t to maximize (1.1) subject to (A.2)-(A.3).

The Bellman equation becomes:

Jt = max
Ct,ω1,t,...,ωN,t

{
(1− β)Cρ

t + β [µt(Jt+1)]ρ)
}1/ρ

subject to (A.2) and (A.3). I guess optimal value function of the form Jt = φtWt. Using

this conjecture of Jt and the form of µt from (1.2), I rewrite the Bellman equation as:

φtWt = max
Ct,ω1,t,...,ωN,t

{
(1− β)Cρ

t + β
[
Et
[
(φt+1Wt+1)αK(φt+1Wt+1)

]ρ/α}1/ρ

,

K(x) =
1 + θI{x 6 δµt(x)}

1 + θδαEt
[
I{x 6 δµt(x)}

] .
Note that the function K defined above is homogeneous of degree zero.

The Return on the Aggregate Consumption Claim Asset. I further conjecture that

the consumption Ct is homogeneous of degree one in wealth at the optimum, that is

Ct = btWt. Then, I obtain the Bellman equation:

φρt =

{
(1− β)

(
Ct
Wt

)ρ
+ β

(
1− Ct

Wt

)ρ [
Et
[
(φt+1R

ω
t+1)αK(φt+1R

ω
t+1)
]ρ/α}

(A.4)

or equivalently

φρt = {(1− β)bρt + β (1− bt)ρ y∗t } (A.5)

y∗t =
[
Et
[
(φt+1R

ω
t+1)αK(φt+1R

ω
t+1)
]ρ/α

.

Taking the FOC of the right side of a simplified Bellman equation (A.4) with respect to
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Ct, I find:

(1− β)

(
Ct
Wt

)ρ−1

= β

(
1− Ct

Wt

)ρ−1

y∗t .

or using the notations:

(1− β)bρ−1
t = β(1− bt)ρ−1y∗t . (A.6)

Solving for y∗t from the last equation and substituting it into (A.5), I deduce:

φt = (1− β)
1
ρ b

ρ−1
ρ

t = (1− β)
1
ρ

(
Ct
Wt

) ρ−1
ρ

Shifting one period ahead the formula for φt and substituting φt+1 into (A.6), I obtain:

(1− β)Cρ−1
t = β(Wt − Ct)ρ−1

[
Et

[
(1− β)α/ρ

(
Ct+1

Wt+1

)α ρ−1
ρ (

Rω
t+1

)αK (φt+1R
ω
t+1

)]]ρ/α
.

Then, I rewrite the equation above as:

Cρ−1
t = βEt

( Ct+1

Wt+1

(Wt−Ct)

)α ρ−1
ρ (

Rω
t+1

)αK
( Ct+1

Wt+1

Wt−Ct

) ρ−1
ρ

Rω
t+1

ρ/α .
and derive the asset pricing restriction for the return on the total wealth Rω

t+1 :

Et



(
β

(
Ct+1

Ct

)ρ−1

Rω
t+1

)1/ρ

︸ ︷︷ ︸
zt+1



α

K


(
β

(
Ct+1

Ct

)ρ−1

Rω
t+1

)1/ρ

︸ ︷︷ ︸
zt+1




1/α

= 1.

Define Rc
t+1 the return on the consumption endowment. In equilibrium, Rc

t+1 = Rω
t+1

and, as in (Routledge and Zin 2010), using the definition of the certainty equivalent (1.2)

and the function K, the return Rc
t+1 should satisfy the equation:

µt(zt+1) = 1, zt+1 =

(
β

(
Ct+1

Ct

)ρ−1

Rc
t+1

)1/ρ

. (A.7)

Rewriting Rc
t+1 in the form:

Rc
t+1 =

Wt+1

Wt − Ct
=

Wt+1

Ct+1

Wt

Ct
− 1
· Ct+1

Ct
=

ξt+1

ξt − 1
· Ct+1

Ct
,
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the wealth-consumption ratio ξt = Wt

Ct
can be found from the equation:

Et

[
β
α
ρ

(
Ct+1

Ct

)α
·
(
ξt+1

ξt − 1

)α
ρ

· K(zt+1)

]
= 1.

The Return on the Aggregate Dividend Asset. Following Routledge and Zin (2010),

the portfolio problem for the obtained values φt+1 reads as follows:

max
ω1,t,...,ωN,t

µt(φt+1R
ω
t+1),

subject to the constraints
N∑
i=1

ωi,t = 1 and Rω
t+1 =

N∑
i=1

ωi,tRi,t+1. Taking the FOC with

respect to the weight ωi,t, I derive:

Et
[
φαt+1(Rω

t+1)α−1[1 + θI(φt+1R
ω
t+1 < δµt)]Ri,t+1

]
= 0.

Taking the difference between the i-th and j-th FOCs, I thus obtain:

Et
[
φαt+1(Rω

t+1)α−1[1 + θI(φt+1R
ω
t+1 < δµt)](Ri,t+1 −Rj,t+1)

]
= 0.

Multiplying the last equation by ωj,t and summing over j, I further obtain:

Et

φαt+1(Rω
t+1)α−1[1 + θI(φt+1R

ω
t+1 < δµt)]Ri,t+1

N∑
j=1

ωj,t︸ ︷︷ ︸
=1

 =

= Et

φαt+1(Rω
t+1)α−1[1 + θI(φt+1R

ω
t+1 < δµt)]

N∑
j=1

Rj,t+1ωj,t︸ ︷︷ ︸
=Rωt+1


or

Et
[
φαt+1(Rω

t+1)α−1[1 + θI(φt+1R
ω
t+1 < δµt)]Ri,t+1

]
=

= Et
[
φαt+1(Rω

t+1)α[1 + θI(φt+1R
ω
t+1 < δµt)]

]
. (A.8)

Following Epstein and Zin (1989), it is straightforward to show that φt+1 = zt+1

Rωt+1
holds in
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equilibrium. Using these equilibrium conditions and the definition of µt, I have:

Et
[
φαt+1(Rω

t+1)α[1 + θI(φt+1R
ω
t+1 < δµt)]

]
= Et

[
zαt+1[1 + θI(zt+1 < δµt)]

]
=

Et

1 + θδαI(zt+1 < δ µt(zt+1)︸ ︷︷ ︸
=1

)]

µt(zt+1)α︸ ︷︷ ︸
=1

= Et [1 + θδαI(zt+1 < δ]] . (A.9)

Combining (A.8)-(A.9) and using the equilibrium condition Rc
t+1 = Rω

t+1, I finally obtain

the asset pricing restriction for the gross return Ri,t+1 :

Et
[
zαt+1(Rc

t+1)−1(1 + θI(zt+1 < δ)Ri,t+1

1 + θδαEt [I(zt+1 < δ)]

]
= 1, (A.10)

Moreover, the pricing kernel Mt+1 is:

Mt+1 =
zαt+1(Rc

t+1)−1(1 + θI(zt+1 < δ))

1 + θδαE [I(zt+1 < δ)]
.

Rewriting Ri,t+1 in the form:

Ri,t+1 =
Pi,t+1 +Di,t+1

Pi,t
=

Pi,t+1

Di,t+1
+ 1

Pi,t
Di,t

· Di,t+1

Di,t

=
λt+1 + 1

λt
· Di,t+1

Di,t

,

the price-dividend ratio of the i-th asset λt =
Pi,t
Di,t

can be found from the equation:

Et

[
β
α
ρ

(
Ct+1

Ct

)α−1
Di,t+1

Di,t

·
(
ξt+1

ξt − 1

)α
ρ
−1

· K(zt+1) · (λt+1 + 1)

]
= λt.

A.3 The Numerical Solution

Following the notation from the paper, aggregate consumption growth is

∆ct+1 = µst+1 + σεt+1, εt+1 ∼ N(0, 1).

The consumption volatility σ is constant, whereas the mean growth rate µst+1 is driven

by a two-state Markov-switching process st+1 with a state space:

S = {1 = expansion, 2 = recession},
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a transition matrix

P =

(
π11 1− π11

1− π22 π22

)

and transition probabilities πii ∈ (0, 1), i = 1, 2. Let

X (y1, y2, y3) =
1 + θI

{
βeρy1

(
y2

y3−1

)
6 δρ

}
1 + θδαEt

[
I
{
βeρy1

(
y2

y3−1

)
6 δρ

}] ,
then, the wealth-consumption ratio ξt = Wt

Ct
satisfies the equation:

Et

[
β
α
ρ eα∆ct+1 ·

(
ξt+1

ξt − 1

)α
ρ

· X
(

∆ct+1, ξt+1, ξt

)]
= 1, (A.1)

and the price-dividend ratio λt = Pt
Dt

of the asset with gross return Rt+1 (I skip the

subscript i for convenience) is given by:

Et

[
β
α
ρ e(α−1)∆ct+1+∆dt+1 ·

(
ξt+1

ξt − 1

)α
ρ
−1

· X
(

∆ct+1, ξt+1, ξt

)
· λt+1 + 1

λt

]
= 1. (A.2)

A.3.1 The Projection Method

Following Pohl, Schmedders, and Wilms (2018), I apply a projection method of Judd

(1992) to solve for the equilibrium pricing functions defined by (A.1) and (A.2). The

model solution consists of two steps. First, I find the wealth-consumption ratio from

the functional equation (A.1). Second, I use the wealth return from the first step and

substitute it into (A.2) to find the price-dividend ratio for the equity claim.

The Return on the Aggregate Consumption Claim Asset. I conjecture the wealth-

consumption ratio of the form ξt = G(πt), in which πt is the posterior belief defined

by (1.4). I seek to approximate the functional form of G(πt) by a basis of complete

Chebyshev polynomials Ψ = {Ψk(πt)}nk=0 of order n with coefficients ψ = {ψk}nk=0 :

G(πt) =
n∑
k=0

ψkΨk(πt) πt ∈ [1− p, q]. (A.3)
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I further define the function:

Γ(πt; j) = Et,j

[
β
α
ρ eα∆ct+1 ·

(
ξt+1

ξt − 1

)α
ρ

· X
(

∆ct+1, ξt+1, ξt

)]
=

= β
α
ρ

∫
eαy
(
G(B(y, πt))

G(πt)− 1

)α
ρ

· X
(
y,G(B(y, πt)), G(πt)

)
f(y, j)dy, (A.4)

B(y, πt) =
(1− q)f(y, 1)(1− πt) + pf(y, 2)πt

f(y, 1)(1− πt) + f(y, 2)πt
,

f(y, j) is the probability density function of a normal distribution N(µst , σ
2) conditional

on st = 1, 2. I further apply Gauss-Hermite quadrature to calculate expectations in (A.4).

Substituting G(πt) from (A.3) and Γ(πt; j) from (A.4) into (A.1), I obtain:

Rc(πt;ψ) = (1− πt)Γ(πt, 1) + πtΓ(πt, 2)− 1.

The objective is to choose the unknown coefficients ψ to make Rc(πt;ψ) close to zero

∀πt ∈ [1 − p, q]. I apply the orthogonal collocation method. Formally, I evaluate the

residual function in the collocation points {rk}n+1
k=1 given by the roots of the n + 1 order

Chebyshev polynomial and then solve the system of n+ 1 equations:

Rc(rk;ψ) = 0 k = 1, ..., n+ 1

for n+1 unknowns ψ = {ψk}nk=0. Let ξ̃t = G̃(πt) =
n∑
k=0

ψ̃kΨk(πt) denote an approximation

of the wealth-consumption ratio, which will be used in the second step.

The Return on the Aggregate Dividend Asset. I conjecture the price-dividend ratio of

the form λt = H(πt). Now, I seek to approximate the functional form of H(πt), which

solves the equation (A.2). I approximate H(πt) by a basis of complete Chebyshev poly-

nomials Υ = {Υk(πt)}nk=0 of order n with coefficients υ = {υk}nk=0 :

H(πt) =
n∑
k=0

υkΥk(πt) πt ∈ [1− p, q]. (A.5)

I define the function:

Λ(πt; j) = Et,j

β α
ρ e(α−1)∆ct+1+∆dt+1

(
ξ̃t+1

ξ̃t − 1

)α
ρ
−1

· X
(

∆ct+1, ξ̃t+1, ξ̃t

)
· λt+1 + 1

λt

 =
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= β
α
ρ

∫∫
e(α+λ−1)y+gd+z

(
G̃(B(y, πt))

G̃(πt)− 1

)α
ρ
−1

· X
(
y, G̃(B(y, πt), G̃(πt)

)
· (A.6)

·H(B(y, πt))

H(πt)− 1
f(y, j)g(z, j)dydz,

in which f(y, j) and g(z, j) are probability density functions of normal distributions

N(µst+1 , σ) and N(gd, σd), respectively, conditional on st+1 = 1, 2. Substituting H(πt)

from (A.5) and Λ(πt; j) from (A.6) into (A.2), I obtain:

Rd(πt; υ) = (1− πt)Λ(πt, 1) + πtΛ(πt, 2)− 1.

Again, I apply the orthogonal collocation method. Formally, I evaluate Rd(πt;ψ) in

the collocation points {sk}n+1
k=1 given by the roots of the n+1 order Chebyshev polynomial

and solve the system of n+ 1 equations

Rd(sk; υ) = 0 ∀k = 1, ..., n+ 1

for n+ 1 unknowns υ = {υk}nk=0.

A.3.2 Implementation in Matlab

This paper implements a one-dimensional projection method for solving the functional

equations. I approximate unknown functions using Chebyshev polynomials of the first

kind and compute them recursively as:

T0(z) = 1, T1(z) = z, Tk(z) = 2zTk(z)− Tk−1(z), k = 2, ..., n ∧ z ∈ [−1, 1].

I adjust the domain of Chebyshev polynomials to the state space of pricing ratios and

use modified polynomials in the approximation. Thus, the following equalities hold on

the interval [πmin, πmax] = [1− p, q] :

Ψk(πt) = Υk(πt) = Tk

(
2

[
πt − πmin

πmax − πmin

]
− 1

)
, k = 0, ..., n.

I present the results based on the collocation method. For this purpose, I evaluate residual

functions in a set of nodes corresponding to n + 1 zeros of the (n + 1)-order Chebyshev
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Table A.1
Accuracy of the projection method: Euler errors.

Model n = 200 n = 200 n = 400 n = 400
NGH = 100 NGH = 150 NGH = 100 NGH = 150

GDA 4.71e-07 4.18e-07 1.83e-07 1.47e-07

GDAδl 3.40e-07 2.83e-07 1.25e-07 1.16e-07

GDAδh 5.01e-07 4.40e-07 1.83e-07 1.75e-07

GDAθl 4.28e-07 4.12e-07 1.61e-07 1.53e-07

GDAθh 5.42e-07 4.76e-07 1.86e-07 1.84e-07

DA 1.28e-08 9.48e-09 3.97e-09 3.47e-09

DAθl 8.82e-09 7.95e-09 3.16e-09 2.21e-09

DAθh 1.30e-08 1.17e-08 4.63e-09 4.39e-09

EZ 7.59e-14 7.37e-14 9.15e-14 9.32e-14

EZ(1−α)l 5.57e-14 4.95e-14 6.85e-14 6.58e-14

EZ(1−α)h 9.94e-14 9.86e-14 1.34e-13 1.26e-13

The table reports the RMSE for different models. For each specification, it shows the results for two different
degrees of Chebyshev polynomials n and two different numbers of Gauss-Hermite quadrature points NGH . The
Euler errors are computed using the equation (A.7) with 10,000 points equally spaced on the interval [πmin, πmax].

polynomial, which are formally defined as:

zk = cos

(
2k + 1

2n+ 2
π

)
, k = 0, ..., n.

I adjust the nodes zk ∈ [−1, 1] to the domain of the state variable πt :

πk = πmin +
πmax − πmin

2
(1 + zk), k = 0, ..., n.

The numerical algorithm, which requires solving a system of nonlinear equations, is

efficiently programmed in Matlab. I experiment with different nonlinear solvers to achieve

better performance of the code. Initially, I use the simple solver "fsolve". Then I find the

solution of the system of nonlinear equations through minimizing a constant subject to

the system of nonlinear functions. I apply the nonlinear programming solver "fmincon"

with the SQP algorithm for this purpose. Similar to Pohl, Schmedders, and Wilms (2018),

I find that "fmincon" provides faster running of the code and a more accurate solution

compared to "fsolve". Thus, I present the results of all models considered in my paper

based on the "fmincon" approach.

Additional numerical details involve the choices of an order of Chebychev polynomi-

als used in the approximation of unknown functions (n), a number of Gauss-Hermite

quadrature points used in the numerical integration of expectations in the residual func-
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tions (NGH), and a number of draws used in Monte-Carlo simulations to compute model-

based European put prices (NMC). I report the results of all models in the main text

based on the numerical solution, in which n = 400, NGH = 150, and NMC = 2, 000, 000.

The next section performs sensitivity analysis of the asset pricing results to alternative

approximation and simulation choices.

A.3.3 Accuracy of the Numerical Methods

To better assess the numerical accuracy, I first calculate the root mean squared error

(RMSE) in the residual function for the wealth-consumption ratio. I evaluate Rc(πt;ψ)

on a dense grid of points {πi}NRMSE
i=1 that are equally spaced on the interval [πmin, πmax].

I choose NRMSE = 10, 000 of these points. The RMSE is calculated as:

RMSEc =

√√√√ 1

NRMSE

NRMSE∑
k=1

[
Rc(πk;ψ)

]2

, (A.7)

πk = πmin +
πmax − πmin

NRMSE − 1
(k − 1), k = 1, ..., NRMSE.

I consider four pairs of (n,NGH) : (200, 100), (200, 150), (400, 100), (400, 150). For each

pair, I solve different model calibrations of this paper and compute the RMSE.

Table A.1 reports the Euler errors implied by various approximation and integration

choices. Several observations are noteworthy. First, the numerical solution technique

is highly accurate, producing errors consistently below 6e-7 for all cases. Second, the

projection method generates smaller RMSE for the models with Epstein-Zin preferences

relative to the calibrations with disappointment aversion and generalized disappointment

aversion utility functions. This result is expected in the light of nonlinearities in the pric-

ing kernel implied by disappointing outcomes in consumption growth. Third, increasing

either the degree of Chebyshev polynomials or the number of quadrature points generally

leads to a better approximation precision.

Figure A.1 conducts further robustness checks. It compares the results of the two

solutions of the original GDA calibration. First, the "GDA" lines correspond to the

variance term structures as presented in the main text. Second, the "GDA2" curves

represent the results of the same calibration, which is solved with a twice larger order of

Chebyshev polynomials and where variance swap prices are calculated with a twice larger

number of Monte Carlo simulations. The panels in Figure A.1 show that the results across
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Figure A.1: Accuracy of the projection method: Sharpe ratios and forward variance claim
prices. The figure plots annualized Sharpe ratios and average prices for variance forwards for the original
GDA calibration, which is solved and simulated with different precisions. ”GDA” denotes the results of
the original solution. ”GDA2” shows the results of the original calibration, which is solved with a twice
larger order of Chebyshev polynomials and where variance swap prices are calculated with a twice larger
number of Monte Carlo simulations.

the two solutions are very similar, confirming the high-precision solution obtained by the

projection method.
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Chapter 2

Parameter Learning in Production Economies

Mykola Babiak1 and Roman Kozhan2

Abstract

We examine how parameter learning amplifies the impact of macroeconomic shocks

on equity prices and quantities in a standard production economy where a representative

agent has Epstein-Zin preferences. An investor observes technology shocks that follow a

regime-switching process, but does not know the underlying model parameters governing

the short-term and long-run perspectives of economic growth. We show that rational

parameter learning endogenously generates long-run productivity and consumption risks

that help explain a wide array of dynamic pricing phenomena. The asset pricing impli-

cations of subjective long-run risks crucially depend on the introduction of a procyclical

dividend process consistent with the data.

1We would like to thank Frederico Belo (SAFE discussant), Andrea Gamba, Alessandro Graniero (EFA
discussant), Michal Kejak, Ian Khrashchevskyi, Ctirad Slavik, Sergey Slobodyan and conference/seminar
participants at the 2019 EFA Meeting, the 2019 SAFE Asset Pricing Workshop, the 2018 Lancaster-
Warwick (LaWa) Workshop on Financial Econometrics and Asset Pricing, Warwick Business School,
CERGE-EI and Università Ca’ Foscari Venezia for their discussions and comments. The research support
with the supercomputing clusters from the Centre for Scientific Computing at the University of Warwick
is gratefully acknowledged.

2Warwick Business School, University of Warwick, Scarman Road, Coventry, CV4 7AL, UK.
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2.1 Introduction

Parameter learning has recently been proposed as an amplification mechanism for the

pricing of macroeconomic shocks used to explain standard asset pricing moments. In

the endowment economy, parameter uncertainty helps explain the observed equity pre-

mium, the high volatility of equity returns, the market price-dividend ratio and the eq-

uity Sharpe ratio (Collin-Dufresne, Johannes, and Lochstoer 2016; Johannes, Lochstoer,

and Mou 2016). In contrast to the consumption-based approach, a production dynamic

stochastic general equilibrium (DSGE) model endogenously generates consumption and

dividends and, as a result, it becomes more challenging to explain asset pricing puzzles

in a production-based setting while simultaneously matching the moments of macroeco-

nomic fundamentals. In this paper, we study how the macroeconomic risks arising from

parameter uncertainty improve the performance of a standard DSGE model in jointly

reproducing salient features of the macroeconomic quantities and equity returns.

Kaltenbrunner and Lochstoer (2010) and Croce (2014) have argued that the presence

of a small but persistent long-run risk component in the productivity growth process

can endogenously generate long-run risks in consumption growth that help boost up

moments of financial variables. However, these long-run risk components are difficult

to identify in the data.3 In contrast, we demonstrate that rational pricing of parameter

uncertainty is a source of these subjective long-run risks in productivity growth. This

suggests the importance of accounting for parameter uncertainty in the productivity

growth process. It is not clear, however, if macroeconomic risks associated with rational

learning about productivity growth amplify the moments of financial variables. If so, what

is the magnitude of the effect? In this paper, we document a considerable amplification

mechanism of rational parameter learning on asset prices.

We introduce parameter uncertainty in the technology growth process of an otherwise

standard production-based asset pricing model. We depart from the extant macro-finance

literature by presuming that the representative investor does not know the parameters

of the technology process and learns about true parameter values from the data. In each

period, he updates his beliefs in a Bayesian fashion upon observing newly arrived data.

Rational learning about unknown parameters together with recursive preferences gives

3Croce (2014) empirically demonstrates the existence of such a predictable component; however, the
results are not robust to estimation method and sample choice. Moreover, low values for goodness-of-fit
statistics lead to a conclusion that there is considerable uncertainty about the model specification for
productivity growth.
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rise to subjective long-lasting macroeconomic risks. Coupled with endogenous long-run

consumption risks due to consumption smoothing (Kaltenbrunner and Lochstoer 2010)

these risks are priced under the investor’s preference for early resolution of uncertainty.

The model generates higher equity Sharpe ratios, risk premia and volatility, as well as

lower interest rates and price-dividend ratios relative to the standard framework. Addi-

tionally, the model with rational belief updating reproduces the excess return predictabil-

ity pattern observed in the data. We further show that under certain calibrations of the

elasticity of intertemporal substitution and a capital adjustment cost, parameter learn-

ing significantly magnifies propagation of shocks and hence helps to match the second

moments and comovements of macroeconomic variables.

In our analysis, we restrict our attention to uncertainty about parameters governing

the magnitude and persistence of productivity growth over the various phases of the busi-

ness cycle. In particular, we examine the implications of learning about the transition

probabilities and mean growth rates in a two-state Markov-switching process for produc-

tivity growth, where volatility of productivity growth is homoskedastic and known.4 We

consider two approaches to dealing with parameter uncertainty in the equilibrium mod-

els: anticipated utility (AU) and priced parameter uncertainty (PPU). The AU approach

is common for most existing models, and assumes that economic agents learn about un-

known parameters over time, but treat their current beliefs as true and fixed parameter

values in the decision-making. For the PPU case, the representative investor calculates

his utility and prices in the current period, assuming that posterior beliefs can be changed

in the future. We quantify the impact of each type of parameter uncertainty pricing by

comparing the results of AU and PPU with the full information (FI) model.

We begin our investigation by illustrating the economic importance of parameter

uncertainty in the standard production economy with convex capital adjustment costs.

The increased uncertainty due to unknown parameters in the productivity growth process

creates a stronger precautionary saving motive, which leads to a lower risk-free rate. Fully

rational learning about unknown parameters generates endogenous long-run risks in the

economy, which in turn increase the mean and volatility of levered returns to the firm’s

payouts (Jermann 1998). In contrast, fluctuations in parameter beliefs are not priced in

4There is a large strand of the literature emphasizing the importance of time-varying macroeconomic
uncertainty (see, for example, Justiniano and Primiceri (2008, Bloom (2009, Fernandez-Villaverde et al.
(2011, Born and Pfeifer (2014, Christiano, Motto, and Rostagno (2014, Gilchrist, Sim, and Zakrajsek
(2014, Liu and Miao (2014) and more recent studies by Leduc and Liu (2016, Basu and Bundick (2017,
Bloom et al. (2018)). We leave the investigation of learning about volatility risks for future research.
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the AU case. Thus, the PPU approach leads to around a two-fold increase in the risk

premium (in addition to higher return volatility) on a levered firm’s dividends, relative

to the FI and AU cases. The combination of time-varying posterior beliefs and rational

parameter learning is crucial for generating long-term predictability of excess returns by

Tobin’s Q, investment-capital, price-dividend and consumption-wealth ratios, as found in

the empirical literature. The time-variation in beliefs leads to fluctuations in the equity

risk premium and hence generates more predictability in the models with parameter

uncertainty relative to the known parameter frameworks. Fully rational learning further

magnifies the impact of belief revisions on the conditional equity premium and therefore

there is more significant return predictability with PPU compared to AU. Specifically,

the model with PPU closely replicates the increasing patterns (in absolute terms) of the

regression coefficients and R2’s. In contrast, both the FI and AU models generate less

predictability power and cannot match the magnitude of slope coefficients.

In terms of the macroeconomic variables, the benchmark model with parameter learn-

ing has a small effect on the unconditional second moments and a large impact on co-

movements of consumption, investment and output. In the sensitivity analysis, we further

investigate how the impact of parameter learning on quantities changes for alternative

calibrations of the inter-temporal elasticity of substitution and a capital adjustment cost.

We find that a lower value of the inter-temporal elasticity of substitution, or a smaller

capital adjustment cost, magnifies the effect of rational parameter learning on comove-

ments between macroeconomic quantities. In particular, decreasing IES or adjustment

costs for capital leads to significantly lower correlations between consumption, investment

and output in the PPU model, while aggregate variables still remain highly correlated

in the FI and AU economies. Thus, our evidence indicates that fully rational parameter

learning generates additional macroeconomic risks, which interact with adjustment costs

and elasticity of inter-temporal substitution, allowing us to better match the macro dy-

namics. These findings complement the results of Tallarini (2000), Campanale, Castro,

and Clementi (2010) and Liu and Miao (2015), who find no effect of increasing agents’

sensitivity to risk on the macroeconomic variables.

There are however several issues that this version of the model with parameter learn-

ing does not resolve. Although parameter learning increases the equity premium, the

magnitudes are still too small compared to the historically observed statistics. The main

reason for this underperformance of the model is found in countercyclical dynamics of a

firm’s endogenous dividends in the production economy. Therefore, we further consider
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pricing a claim to exogenous market dividends that are directly calibrated to reconcile

dividend dynamics. In this way, we are able to verify that the low equity premium arises

not because of an insufficient amplification effect of parameter uncertainty, but due to

the inability of the production economy to generate procyclical dividends.

When pricing a claim to calibrated dividends, we find that the PPU model with a

century-long prior learning period and unbiased prior beliefs generates an average equity

premium, equity volatility, equity Sharpe ratio, risk-free rate, and a level and autocorrela-

tion of the price-dividend ratio close to the values observed in the data. Learning provides

a significant improvement in the performance of the production model relative to the FI

and AU cases, which cannot match these standard asset pricing moments. Furthermore,

learning generates long-lasting effects on asset prices as the size of the risk premium and

its volatility remain high even after 200 years of a prior learning period. To better un-

derstand the source of the model’s improvement, we look at the conditional dynamics of

the key asset prices and conditional moments. We find that parameter learning generates

a much stronger amplification mechanism in bad times than in good, generating coun-

tercyclical fluctuations in the conditional risk premium, volatility and Sharpe ratios that

are consistent with the data.

In sum, fully rational pricing of parameter uncertainty improves the fit of the standard

production economy to a large array of empirical regularities, though parameter learning

alone cannot fix a common problem of countercyclical firm dividends in the frictionless

economy. In order to maintain a desired feature of endogenous dividends, we consider an

extension of the benchmark model that would generate a more procyclical firms’ levered

payouts consistent with the data. In particular, the extension incorporates the idea of

costly reversibility (see, for example, Abel and Eberly (1994, Abel and Eberly (1996),

Hall (2001) and Zhang (2005) among others), which means that firms face higher costs

in cutting than in expanding capital stocks. Intuitively, the mechanism of investment

frictions works as follows. In bad times, it is more difficult for a representative firm to

reduce investment, due to higher costs that would lead to a smaller drop in investment

compared to the symmetric capital adjustment cost. Thus, net profits after deducting

investment appear less countercyclical. With the financial leverage, a firm’s dividends

are the sum of a firm’s profits and the net balance of the long-term debt. The latter is

proportional to capital and therefore declines in the recession. The overall sum of the

profits and net issuance of the long-term debt results in procyclical dividends.

We find that the unconditional statistics of the levered returns to endogenous firm
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dividends are now much closer to the data. In particular, the extended model accounts

for a large equity premium, around two thirds of equity volatility, and furthermore, it

matches well to the mean, volatility and autocorrelation of the price-dividend ratio. The

quadratic asymmetric adjustment cost function further lowers the correlations between

macroeconomic variables. The results of the benchmark calibration and the extended

model confirm our findings that for all relevant moments parameter learning provides a

substantial improvement relative to the FI and AU cases.

The main mechanism of this paper is closely related to the work of Collin-Dufresne,

Johannes, and Lochstoer (2016) who study a similar learning problem in the endowment

economy. Our analysis differs from theirs in the following ways. First, we extend their

methodology to a production economy setting and explore joint implications of parameter

uncertainty for macroeconomic quantities and asset prices. Second, relative to the en-

dowment model, one needs to generate procyclical dividends in the production economy

to obtain a significant amplification of equity moments by parameter learning. We docu-

ment this result by pricing a claim to exogenous calibrated dividends. We further confirm

this finding in the extension of the model with costly reversibility, which generates en-

dogenous procyclical firm’s payoffs. Third, rather than exploring the impact of learning

in a rare events model (Rietz 1988; Barro 2006), we instead estimate the production pa-

rameters by the expectation maximization algorithm from the postwar U.S. data. Even

though the estimated process for productivity growth does not reflect rare states that

are naturally difficult to be learned about due to their rareness, fully rational parameter

learning still matches well financial moments in our setting with more frequent states.

The main reason for this is that long-run consumption risks generated by consumption

smoothing (Kaltenbrunner and Lochstoer 2010) magnify the impact of endogenous long-

run productivity risks originating from belief revisions on asset prices; therefore, less is

needed in terms of the speed of parameter learning.

Our paper also speaks to macro-finance research in the production-based economies.

Cagetti et al. (2002) is one of the first examples of a business cycle model with parameter

learning. In their paper, Cagetti et al. (2002) consider a signal extraction problem about

the unobservable mean growth rate of technology shocks. However, they do not study the

implications of incomplete information for quantities and asset prices, a key focus of our

analysis. In a recent paper, Jahan-Parvar and Liu (2014) examine a production economy

with learning about a latent state in a productivity growth process following a two-

state hidden Markov chain. Their paper is an adaption of the endowment economy with
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ambiguity preferences (Ju and Miao 2012) to a production setting. The key differentiators

of our study from Jahan-Parvar and Liu (2014), as well as the extant literature on learning

in a business cycle model, is a multidimensional learning problem and rational pricing of

parameter beliefs.

Our paper is also related to the long-run risks models introduced by Bansal and Yaron

(2004). Kaltenbrunner and Lochstoer (2010) and Croce (2014) investigate the original

source and implications of long-run productivity and consumption risks. In relation to

these studies, we do not explicitly incorporate long-run dynamics in productivity growth

by adopting the model of Bansal and Yaron (2004). In our paper, the subjective long-

run macroeconomic risks appear as a result of Bayesian learning about true parameter

values. Our approach is complementary to the existing long-run risks literature and in

fact provides the empirical investigation of possible origins of long-run productivity risks.

The paper proceeds as follows. Section 2.2 presents the formal model, Section 2.3

investigates the quantitative implications of parameter learning for quantities and asset

prices. Section 2.4 performs sensitivity analysis. Section 2.5 concludes.

2.2 The Model

In this section, we present a production-based asset pricing model (Jermann 1998; Cam-

panale, Castro, and Clementi 2010; Croce 2014; Kaltenbrunner and Lochstoer 2010).

The model is a standard business cycle framework (Kydland and Prescott 1982; Long

and Plosser 1983) populated by a representative firm with Cobb-Douglas production

technology and capital adjustment costs, and a representative household with Epstein-

Zin preferences. The firm produces a single consumption-investment good using labor

and capital as inputs subject to productivity shocks. The household participates in the

production process by working for the firm and investing in capital. Additionally, the

representative investor trades firm shares and risk-free bonds to maximize lifetime util-

ity of a consumption stream subject to a sequential budget constraint. Ultimately, the

representative firm maximizes its value by choosing labor and investment demand. Our

objective is to investigate the impact of learning about parameters in the productivity

process on the moments of macroeconomic quantities and equity returns.
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2.2.1 The Representative Household

We assume that a representative household has the recursive utility of Epstein and Zin

(1989):

Ut =

{
(1− β)C

1−1/ψ
t + β

(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

} 1
1−1/ψ

(2.1)

where Ut denotes the household’s continuation utility, Ct denotes aggregate consumption,

Et denotes the expectation operator, β ∈ (0, 1) is the discount factor, ψ > 0 represents

the elasticity of inter-temporal elasticity of substitution (EIS), γ > 0 represents the

risk aversion parameter. For simplicity, we will assume that the household inelastically

supplies one unit of labor; thus, the household’s intra-period utility depends only on

consumption.

It is straightforward to derive the stochastic discount factor:

Mt+1 = β

(
Ct+1

Ct

)−1/ψ

 Ut+1(
Et

[
U1−γ
t+1

]) 1
1−γ


1/ψ−γ

(2.2)

The key feature is a separation of agent’s relative risk aversion from the elasticity of

inter-temporal substitution. If γ 6= 1
ψ
, the utility function is not time-additive, and the

stochastic discount factor has two components. The first term represents the kernel of

the power utility, while the second term is the adjustment of the Epstein-Zin utility. In

this paper, we set γ > 1
ψ

and, thus, the household prefers earlier resolution of uncer-

tainty. When the household’s continuation utility Ut+1 is below the certainty equivalent

of this continuation utility, the second ingredient in the pricing kernel increases, raising

a premium for long-run risks.

We also aim to investigate the impact of learning about unknown parameters gov-

erning the technology process. Although we do not introduce long-run productivity

risks directly by assuming a persistent component in productivity growth (Croce 2014;

Kaltenbrunner and Lochstoer 2010), Bayesian belief updating will generate subjective

long-run productivity risks. Since the representative household has a preference for early

resolution of uncertainty and is particularly averse to such long-run risks, parameter

learning will generate quantitatively significant macroeconomic risks, improving the per-

formance of the model in explaining salient features of the data.
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2.2.2 The Representative Firm

The representative firm produces the consumption good using a constant returns to scale

Cobb-Douglas production function:

Yt = Kα
t (AtNt)

1−α, (2.3)

where Yt is the output, Kt is the capital stock, Nt is labor hours, and At is an exogenous,

labor-enhancing technology level (which we also refer to as productivity). For simplicity,

we assume that the representative household supplies the fixed amount of labor hours,

which are exogenously set Nt = 1.

The firm’s capital accumulation equation incorporates capital adjustment costs and

is formally defined by:

Kt+1 = (1− δ)Kt + ϕ(It/Kt)Kt,

where δ ∈ (0, 1) is the capital depreciation rate, It = Yt − Ct denotes gross investment,

and ϕ(·) is the capital adjustment cost function given by:

ϕ(x) = a1 +
a2

1− 1/ξ
x1−1/ξ, (2.4)

where ξ is the elasticity of the investment rate to Tobin’s q.We follow Boldrin, Christiano,

and Fisher (2001) and choose the constants a1 and a2 such that there are no adjustment

costs in the non-stochastic steady state.5

2.2.3 Technology

We consider a parsimonious two-state Markov switching model for the productivity

growth rate ∆at = ln
(

At
At−1

)
:

∆at = µst + σεt,

where εt
iid∼ N(0, 1), st is a two state Markov chain with transition matrix:

Π =

[
π11 1− π11

1− π22 π22

]
,

5Specifically, a1 = 1
ξ−1 (1− δ − exp(µ̄)) , a2 = (exp(µ̄)− 1 + δ) , where µ̄ is the unconditional mean of

µst . We find steady state values of the remaining quantities from the conditions ϕ
(
I
K

)
= 1, ϕ

′ ( I
K

)
= 1.

In particular, the steady state investment-capital ratio is I
K = exp(µ̄)− 1 + δ.
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where πii ∈ (0, 1). We label st = 1 the "good" regime with high productivity growth and

st = 2 the "bad" regime with low productivity growth.

2.2.4 Equilibrium Asset Prices

In the competitive equilibrium of the economy, the representative household works for the

firm and trades its shares to maximize the lifetime utility over a consumption stream. The

representative firm chooses labor and capital inputs (through investment) to maximizes

the firm’s value, the present value of its future cash flows. The firm’s maximization

problem implies the following equilibrium conditions for gross return Rj,t+1 of the asset

j between period t and t+ 1 :

Et [Mt+1Rj,t+1] = 1. (2.5)

In particular, the equation above is satisfied by the investment return, RI,t+1, defined by:

RI,t+1 =
1

Qt

[
Qt+1

(
1− δ + ϕ

(
It+1

Kt+1

))
+
αYt+1 − It+1

Kt+1

]
, (2.6)

where Qt is Tobin’s marginal Q :

Qt =
1

ϕ′
(
It
Kt

) =
1

a2

(
It
Kt

)1/ξ

.

The return on investment can be interpreted as the return of an equity claim to the

unlevered firm’s payouts (Restoy and Rockinger 1994). As the firm behaves competitively,

the labor input is chosen at a level equal to its marginal product: wt = ∂Yt/∂Nt = (1−
α)A1−α

t Kα
t N

−α
t = (1−α)Yt/Nt. The unlevered firm value, FVt, is given by FVt = QtKt+1,

and the firm’s unlevered dividends, Dt, are defined by:

Dt = Yt − wtNt − It = αYt − It. (2.7)

Since the observed aggregate stock market dividends are not directly comparable

to the endogenous payouts defined above,6 we consider pricing levered equity claims.

We introduce financial leverage in the spirit of Jermann (1998) by presuming that in
6As noted by other studies, unlevered cash flows and investment returns are not directly observed in

reality. Additionally, the equity prices observed on the market are for leveraged corporations, in contrast
to unlevered dividend payments of production companies in the model.
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each period the firm issues long-term bonds for a fixed fraction of capital and pays the

outstanding debt from previous periods. Note that Modigliani and Miller conditions hold

in our model and, thus, introducing the financial leverage does not change the equilibrium

allocations. It only influences the dynamics of a firm’s payouts and the way we report the

returns on a claim to the firm’s dividends. In particular, the financial leverage increases

volatility of dividends and makes equity returns more risky.

Following Jermann (1998), we assume that the firm issues n period discount bonds

and pays back its outstanding debt of n period maturity in each period. The fraction ω

of the firm’s capital Kt at time t is invested in long-term bonds. Denoting the price of

the n period discount bonds at time t by Bt,n the dividends stream is given by:

Dl
t = Yt − wtNt − It + ωKt − ωKt−n/Bt−n,n, (2.8)

where the first part, Yt − wtNt − It, represents the operating cash flow of an unlevered

claim, whereas the second part, ωKt − ωKt−n/Bt−n,n, is the difference between proceeds

from newly issued bonds in period t at the price Bt,n and repayments of the bonds

purchased in period t− n at the price Bt−n,n. We assume that the Modigliani and Miller

Theorem holds in this setting. This implies that the financial policy above does not affect

a firm’s value and investment decision.

The price of the n-period bonds is defined recursively by:

Bt,n = Et [Mt+1Bt+1,n−1] , (2.9)

with the boundary condition Bt,0 = 1 for any t.We denote the price of the (levered) equity

claim by P l
t , and the (levered) equity return by Rl

t+1 = (P l
t+1 + Dl

t+1)/P l
t . By (2.5) and

(2.8), the equity price satisfies P l
t = Et(Mt+1(Dl

t+1 +P l
t+1)) and can be readily computed

by the formula P l
t = FVt −DVt, where FVt represents a firm’s value, DVt denotes debt

value of all outstanding bonds from period t− n+ 1 to period t. Specifically:

DVt =
n∑
j=1

Bt,jωKt−n+j

Bt−n+j,n

.
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2.3 Results

We start with calibrating a benchmark model and analyzing the implications of parameter

uncertainty in the productivity growth process for macroeconomic quantities and asset

returns. We focus our attention on the stylized facts observed in the U.S. post-World

War II data. Specifically, we compare the model-generated statistics with the historical

data for 1952:Q1-2016:Q4. Macroeconomic data on consumption, investment, capital,

and output are taken from the U.S. National Income and Product Accounts (NIPA)

as provided by the Bureau of Economic Analysis (BEA). The asset returns data and

dividends are from the Center for Research in Security Prices (CRSP). The model is

calibrated at a quarterly frequency.

Since the model does not admit an analytical solution, we solve for equilibrium al-

locations numerically through value function iteration. We extend the Collin-Dufresne,

Johannes, and Lochstoer (2016) solution methodology to the production-based setting.

The detailed description of the numerical methods is presented in the Appendix. Hav-

ing solved the model, we generate 1,000 simulations of the economy with the sample

length of 260 periods and report statistics of asset returns and macroeconomic quantities

corresponding to their empirical counterparts.

2.3.1 Parameter Values

Panel A in Table 2.1 reports the parameter values of an investor’s preferences, production

and capital adjustment cost functions. We choose these parameter values similarly to the

existing real-business cycle models. In particular, the constant capital share in a Cobb-

Douglas production function (α) is 0.36, and the quarterly depreciation rate (δ) is 0.02.

We set the capital adjustment cost parameter (ξ) equal to 4, which yields volatility of

investment growth and consumption growth relatively close to the data. We further

choose the constants (a1, a2) in the capital adjustment cost function such that there are

no adjustment costs in the non-stochastic steady state.

The preference parameters are also consistent with the macroeconomic literature. The

coefficient of relative risk aversion (γ) is equal to 10, the upper bound of an interval con-

sidered plausible by Mehra and Prescott (1985). The subjective discount factor (β) is set

to 0.9945. This value allows the benchmark calibration to generate the low unconditional

risk-free rate. There is no consensus in the literature about the value of the elasticity

of inter-temporal substitution. We follow the disaster risk literature (Gourio 2012) and
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Table 2.1
Benchmark Calibration

Parameter Description Value

Panel A: Preferences, Production and Capital Adjustment Costs Functions, and Financial Leverage

β Discount factor 0.9945
γ Risk aversion 10
ψ EIS 2
α Capital share 0.36
δ Depreciation rate 0.02
ξ Adjustment costs parameter 4
a1 Normalization −0.0075
a2 Normalization 0.3877

Panel B: Markov-switching Model of Productivity Growth

π11 Transition probability from expansion to expansion 0.947
π22 Transition probability from recession to recession 0.662
µ1 Productivity growth in expansion 0.54
µ2 Productivity growth in recession −1.53
σ Productivity volatility 1.36

This table reports the parameter values in the benchmark calibration. Panel A presents preferences
parameters, values in the production and adjustment costs functions. Panel B shows the maximum
likelihood estimates of parameters in a two-state Markov-switching model for productivity growth.
We obtain these estimates by applying the expectation maximization algorithm (Hamilton 1990) to
quarterly total factor productivity growth rates from 1952:Q1 to 2016:Q4.

long-run risks models (Bansal and Yaron 2004; Ai, Croce, and Li 2013; Bansal et al. 2014)

by setting EIS (ψ) to 2.

Following the methodology of Stock and Watson (1999), we use the macroeconomic

data to construct the cumulative Solow residuals. We further scale these residuals by

the labor share (1 − α) in order to interpret them as labor-augmenting technology. We

estimate a two-state Markov switching process of quarterly productivity growth rates by

applying the expectation maximization algorithm developed by Hamilton (1990). Panel

B in Table 2.1 reports the maximum likelihood estimates for the transition probabilities

(πii), productivity growth rates (µi) as well as the constant volatility (σ). Productivity is

estimated to grow at the quarterly rate of about 0.54 percent in expansions and about -

1.53 percent in recessions. The productivity volatility comes out around 1.36 percent. The

transition probability to the expansion (recession) conditional on being in the expansion

(recession) is estimated around 0.947 (0.662). These numbers imply the average duration

of the high-growth expansion state of about 18.87 quarters and the average duration of

the low-growth recession of about 2.96 quarters. Our maximum likelihood estimates are

broadly consistent with the values reported by Hamilton (1989) and Cagetti et al. (2002).

Once we solve the model according to the calibration above, we introduce financial
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leverage by assuming the representative firm issues long-term bonds with a maturity of

fifteen years. Because the Modigliani-Miller theorem holds, this only changes the levered

returns and dividends but does not influence the equilibrium allocation of the economy.

With financial leverage, equity value depends on the market value of the firm and the

total debt oustanding bonds. All valuations endogenously depend on the equilibrium

investment decision. For each model, we calibrate (ω) in order to match the average

debt-to-equity ratio of around 1:1. Therefore, the leverage parameter across different

models is in the interval [1%, 1.1%].

2.3.2 Parameter Uncertainty

In this paper, we consider five parameters in the productivity growth process. We employ

conjugate priors for each unknown parameter in order to obtain conjugate posteriors via

Bayesian updating. If all parameters are assumed to be unknown for the agent, we obtain

a 10-dimensional vector of state variables including the current regime of the Markov

chain, capital stock, time and hyperparameters of prior distributions. In addition to

the curse of dimensionality, the numerical solution methodology in the production-based

setting requires the solution of the agent’s maximization problem for every combination of

state variables in each period. This makes the model solution especially slow. To mitigate

complexity in the model solution, we investigate the impact of uncertainty about the

transition probabilities and mean growth rates, whereas a volatility parameter is assumed

to be known.7 Furthermore, our analysis assumes homoskedastic volatility of productivity

growth, though a large strand of the macroeconomic literature documents the importance

of time-varying uncertainty on macroeconomic variables and asset returns. We leave the

important investigation of the implications of learning about volatility risk and regime

switches in volatility of productivity growth for future research.

Having decided which parameters are unknown for the agent in the production econ-

omy, we consider the two approaches to dealing with parameter uncertainty: priced

parameter uncertainty and anticipated utility. PPU implies the economic agents learn

about unknown parameters from the data and rationally take into account the changing

beliefs while making their decisions. AU assumes the decision-makers learn about un-

7We motivate our choice of unknown parameters by the results in the consumption-based asset pricing
model. Specifically, Collin-Dufresne, Johannes, and Lochstoer (2016) conclude that uncertainty about
variance has a negligible effect on asset prices. Meanwhile, learning about transition probabilities has
long-lasting asset pricing implications. Mean growth rates are harder to learn than volatilities, though
the implications are less pronounced compared to learning about unknown transition probabilities.

70



known parameters over time but in each period of time they treat their current beliefs

as "true" values. Thus, AU agents ignore the possibility that parameters might actually

change in the future. Since the posterior beliefs are martingales, Bayesian learning gener-

ates subjective long-run risks in the economy, which would be priced under rational beliefs

pricing, unlike the AU case. To evaluate the impact of these additional macroeconomic

risks, we consider different specifications of the production economy for the comparison

analysis. We start by solving three frameworks: our preferred benchmark with full infor-

mation about parameters in the productivity growth process and an identical calibration

with unknown parameters incorporating either PPU or AU. This comparison allows us to

isolate the impact of rational pricing of parameter uncertainty. Furthermore, we study the

role of an investor’s prior knowledge by injecting training samples with different lengths

into the model. By experimenting with the prior samples, we can evaluate how persistent

the impact of rational beliefs updating is.

In sum, we use standard, conjugate priors distributions for the unknown parameters:

beta and normal distributions for the transition probabilities and mean growth rates,

respectively. We choose the hyperparameters of the distributions such that initial beliefs

are centered at the true values of uncertain parameters estimated from the postwar sam-

ple. Furthermore, we solve the models with parameter uncertainty based on the prior

training samples of 100, 150 or 200 years of initial learning. Thus, although calibrating

initial beliefs based on the historical data may be a realistic feature and will certainly

improve the model’s performance due to pessimism induced by the Great Depression and

both World Wars, our results do not require pessimistic prior specifications and are based

on the information contained in the postwar data. For each specification, we numerically

solve the production economy using the methodology outlined in the Appendix.

2.3.3 Pricing a Claim to Firm’s Levered Dividends

In this section, we quantitatively analyze the impact of uncertainty about the transition

probabilities (π11, π22) and mean growth rates (µ1, µ2) in the production economy of

this paper.8 The macroeconomic variables of our interest are consumption, investment

and output. The financial variables include short-term (one quarter) and long-term (15

8The Appendix provides extensive details of the numerical solution methodology in different settings.
The model-generated statistics with uncertainty about the transition probabilities are similar to the
results presented in the main text with both unknown probabilities and mean growth rates. For brevity,
these results are not reported but are available upon request.
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years) risk-less bonds and equity claim on the firm’s leveraged dividends. First, we

assess the implications of parameter uncertainty in the production economy by comparing

model-implied unconditional moments of quantities and asset returns to their sample

counterparts. Second, we study the impulse responses of quantities to a regime switch in

the productivity growth. Finally, we check the ability of the economy to reproduce the

long-horizon predictability of excess equity returns.

Unconditional Moments

Panel A in Table 2.2 presents business cycle moments of macroeconomic variables from

simulations of models as well as the U.S. post WWII statistics. The data column shows

that output is more volatile than consumption but less volatile than investment. Also,

there is a significant correlation between the three series, especially between investment

and output growth. Comparing the empirical moments with the model-generated statis-

tics, all three models with PPU, AU and fixed parameters explain the empirical moments

reasonably well. Relative to the case of known parameters and AU, rational pricing of be-

liefs with 100 years of prior learning slightly increases investment growth volatility, lowers

consumption growth volatility and brings the correlations between the macro quantities

closer to the data. However, parameter learning has quantitatively marginal effects on

the macro dynamics.

In contrast, Panel B in Table 2.2 shows that priced parameter uncertainty improves

more significantly the performance of the real business cycle model in terms of financial

moments. The last two columns in Table 2.2 show that the production economy with

known parameters, or with unknown parameters but AU pricing (for the AU case, we

report the results only with a prior period of 100 years), generates a too high average

risk-free rate and price-dividend ratio as well as a too low mean and volatility of excess

equity returns compared to the data. Columns 3 to 6 shows that rationally taking into

account parameter uncertainty in the productivity growth process leads to a lower risk-

free rate and price-dividend ratio. The risk premium is almost two times higher with

parameter learning, equity volatility and the price of risk also increase in this case.

Although the financial moments are amplified in the model with priced parameter

uncertainty, they are still too small compared to the data. The reason for a very small

equity premium and equity volatility in the production economy is the countercyclical

dynamics of dividends growth as documented by Kaltenbrunner and Lochstoer (2010)
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Table 2.2
Sample Moments

Data PPU AU FI

100 yrs 150 yrs 200 yrs ∞ yrs

Panel A: Macroeconomic Quantities

σ(∆c) 1.26 1.30 1.32 1.32 1.33 1.31 1.33
σ(∆i) 4.51 3.51 3.46 3.45 3.47 3.47 3.44
σ(∆y) 2.41 1.97 1.96 1.96 1.96 1.94 1.94
ar1(∆c) 0.32 0.14 0.16 0.17 0.19 0.19 0.18
ρ(∆i,∆y) 0.72 0.97 0.98 0.99 0.99 0.99 0.99
ρ(∆c,∆y) 0.52 0.96 0.97 0.98 0.99 0.98 0.98
ρ(∆c,∆i) 0.36 0.90 0.92 0.94 0.96 0.95 0.95

Panel B: Financial Variables

E(Rf )− 1 1.44 1.64 1.78 1.87 2.01 2.13 2.14
σ(Rf ) 1.07 0.41 0.38 0.37 0.34 0.31 0.31
σ(M)/E(M) 0.29 0.27 0.25 0.23 0.19 0.19

E(∆dl) 2.06 0.65 0.77 0.84 0.95 1.07 1.08
σ(∆dl) 10.38 13.35 13.74 14.20 15.77 17.09 16.19
ar1(∆dl) 0.25 −0.01 −0.01 −0.01 −0.01 −0.01 −0.02
ρ(∆c,∆dl) 0.44 −0.53 −0.58 −0.61 −0.63 −0.62 −0.60

E(Rl −Rf ) 5.51 2.92 2.60 2.25 1.84 1.56 1.52
σ(Rl −Rf ) 16.55 5.41 5.25 4.83 4.49 4.41 4.38

E(pl − dl) 3.19 3.38 3.45 3.55 3.65 3.67 3.67
σ(pl − dl) 0.33 0.31 0.31 0.32 0.35 0.36 0.36
ar1(pl − dl) 0.97 0.95 0.95 0.95 0.95 0.95 0.95

This table reports the average moments from 1,000 simulations of 260 quarters of the data
from the production economy considered in this paper, where the transition probabilities
and mean growth rates are assumed to be unknown. The historical data moments are
reported in the data column and correspond to the U.S. data from 1952:Q1 to 2016:Q4.
The PPU column refers to the production economy with rational pricing of parameter
uncertainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities and mean
growth rates. The FI column presents the results of the full information case where the
parameters are known. E(x) and σ(x) denote the average sample mean and standard
deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample autocorrela-
tion of x and correlation between x and y, respectively. All statistics are expressed in
annualized terms, except for market price of risk given in percent, whereas correlations
and autocorrelations are expressed in quarterly terms.

among others. This is in contrast to the observed procyclical dividends in the data.

Panel B in Table 2.2 indicates that a firm’s payouts are strongly negatively correlated with

consumption growth in all models, while we document that the corresponding correlation

between consumption and dividend growth is about 0.44 in the data. A number of

studies (Uhlig 2007; Belo, Lin, and Bazdresch 2014; Favilukis and Lin 2016) introduce

wage rigidity in the standard production model in order to generate more volatile and

procyclical dividends. This extension of the model can further improve our results and
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possibly magnify the effect of parameter learning. However, we leave the investigation of

the interplay between sticky wages and parameter uncertainty for future research. In this

paper, we will directly calibrate the firm’s dividends process to the empirical counterpart.

Impulse Response Functions

Figure 2.1 illustrates the response of the economy with unknown transition probabilities

to a typical recession lasting for 1 quarter, 3 quarters and 2 years. The economy is

assumed to grow at the mean growth µ1 and µ2 in each state. Before the economy

enters the recession, the representative investor holds unbiased beliefs about the uncertain

parameters (the transition probabilities π11 and π22) assuming a 100-year prior period.

We feed these simulated paths of beliefs and productivity growth series into the model

and calculate the equilibrium quantities as described in Appendix B.3.

The top panels in Figure 2.1 show the mean beliefs about the transition probabilities.

Upon the onset of the recession, the mean belief about staying in the good regime falls

sharply and stays at the same level during the recession. Once the economy returns back

to the high growth state, the investor gradually updates his beliefs about π11 upward. In

contrast, learning about π22 happens only in the recession. The random durations of 1

quarter, 3 quarters and 2 years correspond to the realization of a short economic decline,

an average recession and a long downturn, respectively. When the agent experiences an

average duration of the recession, his belief about π22 increases but then returns back to

the initial value. The mean belief about π22 remains permanently lower (higher) relative

to the initial belief in the case of the recession that is shorter (longer) than the average

downturn.

The middle panels of Figure 2.1 present the impulse responses of macroeconomic

quantities and equity prices. Given that productivity growth declines and the investor’s

probability beliefs about π11 drop, the capital stock declines upon the bad news in the

economy and consequently leads to a reduction in investment and consumption. As

productivity stays low and probability beliefs become more pessimistic, macroeconomic

variables continue to fall and start to recover only after the economy exits the recession.

The stock prices fall in response to switching to the low productivity growth regime. Also,

the realized equity returns are smaller in the recession due to low productivity growth and

bounce back to the original rate in the expansion. Since consumption dynamics predicts

the high marginal utility when productivity growth is low, equity returns are positively
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Figure 2.1: Beliefs, Impulse Responses and Recession Realizations. The figure shows the
dynamics of investor’s beliefs and the impulse responses of macroeconomic and financial variables to
a typical recession in the model with unknown transition probabilities. Initially, the economy stays
in the expansion for a long period, and the investor holds unbiased mean beliefs about the transition
probabilities (π11 and π22) based on a 100-year prior period. The panels show three simulated paths
with the duration of the recession state equal to 1 quarter, 3 quarters and 2 years.

exposed to the regime switching in mean productivity growth. Overall, the model predicts

the dynamics of consumption, investment, equity prices and equity returns consistent with

the data.

Turning to endogenous firm’s payouts, the dividends increase following the recession
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realization, in contrast to a procyclical movement observed in the data. The unlevered

dividends, which are not reported in Figure 2.1, are approximately equal to profits minus

investment. Since profits in the model are smooth relative to investment and investment

is procyclical, the endogenous unlevered firm’s dividends are strongly countercyclical and

would initially increase on impact and then grow at the original rate. Similarly, the

levered firm’s dividends reported in Figure 2.1 increase upon entering the recession but

start to decline when the economy returns to the growth state. The reason is that a

sharp decline in the mean beliefs about π11 has a negative and long-lasting impact on the

capital stock. Since the agent invests a constant proportion of the firm’s capital in the

long-term bonds, the current profits from trading the long-term bonds remain negative

until capital recovers to the initial level.

Return Predictability

A large strand of the empirical literature documents that excess returns at an aggregate

level can be predicted by variables like the investment-capital ratio (Cochrane 1991;

Bansal and Yaron 2004), Tobin’s Q (Pontiff and Schall 1998; Lewellen 2004), the dividend-

price ratio (Campbell and Shiller 1988; Fama and French 1989) and the consumption-

wealth ratio (Lettau and Ludvigson 2001). In this section, we compare the long-term

predictability patterns generated by the production economy with parameter uncertainty

(both the PPU and AU cases) and fixed parameters to the predictability observed in the

post-war data. The conclusion of the extensive empirical literature is that high dividend

yields, high book-to-market and consumption-wealth ratios predict high future excess

returns, whereas high investment rates forecast low future excess returns. Furthermore,

the predictive regressions suggest that the slope coefficients (in absolute terms) and R2’s

are relatively large and tend to increase over the forecast horizon. These regularities pose

a significant challenge for the standard real business cycle model.

Tobin’s Q, the investment-capital and consumption-wealth ratios are endogenously

specified in our production economy. Furthermore, we follow Epstein and Zin (1989) and

calculate the wealth-consumption ratio as:

Wt

Ct
=

1

1− β

(
Ut
Ct

)1−1/ψ

,

where the equilibrium allocations of the agent’s utility and consumption are endogenously

determined. Using these model-generated quantities, we run the abovementioned predic-
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tive regressions and report results in Table 2.3. We find that all three models can generate

monotonicity in the slope coefficients and R2’s over the forecast horizon. Furthermore,

the model with priced parameter uncertainty produces dramatically larger (in absolute

terms) slopes and R2’s relative to the AU approach and especially to the model with

known parameters.

2.3.4 Pricing a Claim to Calibrated Dividends

In the previous section, we studied the implications of parameter uncertainty for the dy-

namics of macroeconomic quantities and equity returns. We introduced financial leverage

in the spirit of Jermann (1998) in order to make the equity return more risky. The main

drawback of financial leverage considered in the previous section is that the leveraged

firm’s dividends still remained significantly procyclical in the model and, thus, the equity

premium and its volatility were too small compared to the data. Furthermore, following

the discussion of Kaltenbrunner and Lochstoer (2010), one can argue that the aggregate

stock market dividends are only a small part of the payouts of the productive sector and,

thus, cannot be directly interpreted as the firm’s dividends in our model. Therefore, we

follow a consumption-based asset pricing literature by directly calibrating an exogenous

dividend process to replicate the stock market dividends.

Following Bansal and Yaron (2004), we price a levered consumption claim with a

leverage factor λ. We formally define quarterly log dividend growth as follows:

∆dMt = gd + λ∆ct + σdε
d
t , (2.10)

where εdt
iid∼ N(0, 1), gd and σd are the dividend growth rate and volatility, respectively. We

calibrate the parameters gd, σd, and λ to make model implied statistics of dividend growth

consistent with the historical data. Panel B in Table 2.1 reports the parameter values in

an exogenous dividend stream. We set the mean adjustment (gd) and the idiosyncratic

dividend volatility (σd) to match the observed annual mean growth (2.06 percent) and

volatility (10.38 percent) of dividends for the considered period. The leverage parameter

(λ) is equal to 3.5, a midpoint of the range from 2.5 to 4.5 used in other studies.

Let RM
t+1 denote the return on a claim delivering stochastic dividends given by (2.10).

Then:

RM
t+1 =

PM
t+1 +DM

t+1

PM
t

=
PM
t+1/D

M
t+1 + 1

PM
t /DM

t

·
DM
t+1

DM
t

.
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Table 2.3
Return Predictability

Data PPU AU FI

h Slope R2 Slope R2 Slope R2 Slope R2

Panel A: Investment-capital ratio (i− k)

1Y −0.394 0.071 −0.504 0.037 −0.108 0.043 −0.090 0.035
2Y −0.603 0.123 −0.910 0.071 −0.198 0.079 −0.165 0.065
3Y −1.293 0.245 −1.287 0.106 −0.280 0.114 −0.236 0.095
4Y −1.831 0.333 −1.639 0.138 −0.362 0.150 −0.307 0.126
5Y −2.453 0.372 −1.970 0.163 −0.439 0.182 −0.376 0.155

Panel B: Tobin’s Q

1Y −0.335 0.078 −0.493 0.052 −0.434 0.042 −0.362 0.035
2Y −1.573 0.133 −0.875 0.096 −0.792 0.079 −0.661 0.065
3Y −1.952 0.165 −1.228 0.137 −1.123 0.114 −0.945 0.095
4Y −2.443 0.192 −1.578 0.179 −1.452 0.150 −1.232 0.126
5Y −2.815 0.231 −1.907 0.214 −1.758 0.181 −1.507 0.155

Panel C: Dividend-price ratio (dl − pl)

1Y 0.083 0.041 0.024 0.030 0.013 0.018 0.011 0.016
2Y 0.122 0.055 0.040 0.051 0.023 0.033 0.018 0.029
3Y 0.175 0.074 0.055 0.070 0.030 0.045 0.024 0.040
4Y 0.212 0.093 0.069 0.089 0.037 0.055 0.029 0.050
5Y 0.227 0.105 0.080 0.103 0.042 0.063 0.034 0.058

Panel D: Consumption-wealth ratio (c− w)

1Y 3.173 0.086 2.050 0.085 1.788 0.071 2.110 0.039
2Y 5.944 0.182 3.429 0.138 3.195 0.124 3.717 0.067
3Y 7.845 0.274 4.620 0.184 4.412 0.171 5.159 0.093
4Y 9.352 0.297 5.821 0.229 5.627 0.217 6.659 0.122
5Y 11.134 0.327 6.933 0.269 6.747 0.259 8.110 0.148

This table reports univariate regressions of cumulative excess log equity returns on
several valuation and macroeconomic variables over various forecasting horizons
(h years; 1 to 5). We use investment-capital ratio, Tobin’s Q, dividend-price
and consumption-wealth ratios as the right-hand side variable (xt) in the linear
projection:

rext+1→t+h = Intercept + β(h)× xt + εt+h,

where rext+1→t+h are h-year future excess log equity returns. The empirical statistics
are for the U.S. data from 1952:Q1 to 2016:Q4. The PPU column refers to the
production economy with rational pricing of parameter uncertainty, whereas the
AU column refers to the production economy with AU pricing. In both cases,
parameter uncertainty includes unknown transition probabilities and mean growth
rates. The FI column presents the results of the full information case where the
parameters are known. For each model, we simulate 1,000 economies at a quarterly
frequency with a sample size equal to the empirical counterpart. We obtain the
slope coefficients and R2’s for each simulation and report average sample statistics
over all 1,000 artificial series.

Substituting this expression into the equilibrium condition (2.5), the price-dividend ratio
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of a claim on the aggregate stock market dividends satisfies the equation:

PM
t

DM
t

= Et

[
Mt+1

(
1 +

PM
t+1

DM
t+1

)
DM
t+1

DM
t

]
. (2.11)

Unconditional Moments

Now we take a closer look at the equity claim paying stochastic dividends as a leverage

on consumption similarly to Bansal and Yaron (2004). The numerical methods used to

solve for the equilibrium price-dividend ratio are presented in the Appendix. Table 2.4

shows the model-implied statistics of dividend growth, excess equity returns, the Sharpe

ratio and the price-dividend ratio.

The calibrated dividends closely replicate the empirical first and second moments as

well as a positive correlation between dividends and consumption observed in the data.

Our conservative choice of a leverage parameter produces a slightly lower correlation

between dividend and consumption growth rates, but it is crucial that the correlation

remains positive in all models. Turning to equity moments, parameter uncertainty with

AU pricing produces similar results to the production model with known parameters.

Relative to the FI and AU cases, a priced parameter uncertainty approach significantly

improves the fit of the model with the data. The model with parameter uncertainty and

a prior sample of learning of 100 years match the sample equity premium, its volatility,

the equity Sharpe ratio and the level of the price-dividend ratio well. Furthermore, the

volatility of the price-dividend ratio comes out two to three times its value with fixed

parameters, though it still remains lower than in the data. In the data, the log price-

dividend ratio is highly persistent and the model with parameter learning reconciles this

feature. Furthermore, looking at the results based on different training samples, one can

see that Bayesian learning and rational pricing of an investor’s subjective beliefs generates

permanent shocks in the production economy.

It is important to stress that the implications of parameter learning in the production-

based setting are based on a productivity growth process that is estimated over the post-

war data. Even though the parameter estimates in our model reflect the business cycle

fluctuations rather than rare and bad macroeconomic events, learning about the true

productivity growth process has significant quantitative effects. This is mainly due to

the fact that the impact of endogenous long-run risks originating from belief revisions is

magnified by long-run risks in consumption growth through consumption smoothing, as
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Table 2.4
Calibrated Stock Market Dividend Claim

Data PPU AU FI

100 yrs 150 yrs 200 yrs ∞ yrs

E(∆dM ) 2.06 1.89 1.80 1.75 1.68 1.60 1.60
σ(∆dM ) 10.38 11.48 11.51 11.52 11.54 11.54 11.56
ar1(∆dM ) 0.25 0.01 0.01 0.01 0.01 0.01 0.01
ρ(∆c,∆dM ) 0.44 0.32 0.32 0.32 0.32 0.32 0.32

E(RM −Rf ) 5.51 5.92 5.18 4.64 3.75 2.88 2.80
σ(RM −Rf ) 16.55 15.90 15.43 15.18 14.78 14.81 14.42
SR(RM −Rf ) 0.33 0.33 0.27 0.24 0.20 0.15 0.15

E(pM − dM ) 3.19 3.15 3.28 3.37 3.54 3.76 3.78
σ(pM − dM ) 0.33 0.07 0.05 0.04 0.03 0.05 0.02
ar1(pM − dM ) 0.97 0.90 0.87 0.84 0.79 0.90 0.76

This table reports the average moments from 1,000 simulations of 260 quarters of the data
from the production economy considered in this paper, where the transition probabilities
and mean growth rates are assumed to be unknown. As in Bansal and Yaron (2004),
equity is a claim to an exogenous dividend stream. The historical data moments are
reported in the data column and correspond to the U.S. data from 1952:Q1 to 2016:Q4.
The PPU column refers to the production economy with rational pricing of parameter
uncertainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities and mean
growth rates. The FI column presents the results of the full information case where the
parameters are known. E(x) and σ(x) denote the average sample mean and standard
deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample autocorre-
lation of x and correlation between x and y, respectively. All statistics are expressed
in annualized terms, except for correlations and autocorrelations expressed in quarterly
terms.

documented by Kaltenbrunner and Lochstoer (2010). In the consumption-based setting,

in order to match the financial moments one needs to add either learning about rare events

observed in the pre-war data (Collin-Dufresne, Johannes, and Lochstoer 2016) or a more

complex learning process (Johannes, Lochstoer, and Mou 2016). Furthermore, given con-

founding effects9 documented by Johannes, Lochstoer, and Mou (2016), we expect that

learning additionally about volatility risks and especially introducing a multidimensional

learning problem with model, state and parameter uncertainty are expected to slow down

the speed of learning and, thus, will improve our results. Finally, adding a more rare state

into the productivity growth is expected to amplify the impact of parameter uncertainty,

following the results of Collin-Dufresne, Johannes, and Lochstoer (2016). We view the

investigation of these Bayesian approaches as an interesting avenue for future research.

9Confounding effectively means that uncertainty about one variable makes learning about another
variable more difficult.
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Conditional Dynamics

Figure 2.2 plots the responses of several key variables to a bad state realization, that lasts

for 1 quarter, 3 quarters and 2 years. The sharp decline in beliefs about the probability

of staying in the good state leads to a reduction in the interest rate, a decline in the

price-dividend ratio as well as an increase in the risk premium and equity volatility. As

long as the economy stays in the low productivity growth regime, the agent learns about

the persistence of the bad state by revising his beliefs upward. During this period, the

interest rates are low, the price-dividend ratio keeps declining, while the equity Sharpe

ratio, the conditional equity premium and volatility remain elevated. Although both

AU and PPU pricing predict similar paths of financial variables in response to a negative

long-run risk shock to the expected productivity growth, the magnitude of their responses

is substantially different.

For the anticipated utility case, one can observe very moderate responses in the re-

turns, prices and conditional moments upon the onset of the bad state. Before the

regime switch, both the conditional equity premium and the conditional Sharpe ratio

are too low relative to the data and then they approximately double in response to the

negative shock. Meanwhile, the conditional equity volatility increases only marginally in

this case. In contrast, rationally priced parameter uncertainty predicts around 6-fold and

3-fold increases in the conditional risk premium and the equity Sharpe ratio, respectively.

The equity volatility turns out to be highly countercyclical as it increases by a factor of

about 2.5. The interest rate drops more in bad times with parameter uncertainty, while

the realized equity returns are more volatile. The price-dividend ratio experiences about

the same percentage decline upon the realization of the low productivity growth state

in both cases. However, the level of the price-dividend ratio is substantially higher with

AU, while parameter learning generates reasonable levels of the price-dividend ratio.

2.3.5 Adding Costly Reversibility

In the previous section we demonstrated that parameter learning and rational pricing are

able to reproduce salient features of the macroeconomic quantities and equity returns,

as long as the dividends exhibit a positive correlation with business cycle. However, it

is important to maintain the endogeneity of the dividend process within the model. To

fix this issue, we present an extension of the model where we include investment frictions

in the form of costly reversibility. This will endogenously generate more procyclical
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Figure 2.2: Conditional Prices and Moments. This figure shows the conditional risk-free rate,
the price-dividend and equity Sharpe ratios, as well as the conditional equity premium and its volatility.
The simulated variables are impulse response functions to the realization of a bad state of 1 quarter,
3 quarters and 2 years in the production economy, considered in this paper for the case of a 100-year
prior. The economy is assumed to stay in the high productivity growth steady-state for a long period,
and the representative agent holds unbiased initial mean beliefs. We report the conditional dynamics of
the variables for the AU and PPU cases. For the sake of a convenient exposition, the former one includes
only the responses to a 1-quarter bad state realization. The Appendix describes the numerical approach
used.

dividends consistent with the data.

Formally, we model costly reversibility by adopting the asymmetric capital adjustment

cost function, which takes a quadratic form:

ϕ(xt) = xt −
θt
2
· (xt − x0)2 ,

where

θt = θ+ · I(xt ≥ x0) + θ− · I(xt < x0)
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and I(·) denotes the indicator operator that equals 1 if the condition is satisfied and 0

otherwise. We choose the constant x0 such that there are no adjustment costs in the non-

stochastic steady state, which implies x0 = exp(µ̄)−1+δ. The remaining two parameters

θ+ and θ− satisfy the condition 0 < θ+ < θ− to capture the idea of costly reversibility:

the representative firm faces higher capital adjustment costs for the investment decisions

leading to the capital stock being below a non-stochastic steady state value. In the

quantitative exercise here, we calibrate the parameters θ+ and θ− consistent with the

literature. The empirical estimates of θ+ vary from 2 to 8. We choose a middle point

of this range and set θ+ = 5 as in Zhang (2005). We further follow Zhang (2005) by

assuming the degree of asymmetry equal θ−/θ+ = 10 that would imply θ− = 50.

Table 2.5 shows the results of the model with the asymmetric adjustment cost cali-

brated above and other parameters fixed at the values in Table 2.1. As shown in Panel A

of Table 2.5, the model generates volatility of macroeconomic quantities relatively close

to the data, though consumption is slightly more volatile and investment is smoother

compared to the case with a convex adjustment cost function. Also, the quadratic ad-

justment cost better matches the comovements between macroeconomic variables than

the convex adjustment cost.

Panel B summarizes the model-generated statistics of financial variables. Our calibra-

tion with investment reversibility predicts dividend dynamics quite similar to the data.

Most importantly, the correlation between consumption and dividends becomes slightly

positive, which in turn has a large impact on equity returns. In particular, the uncon-

ditional risk premium compares quite well with the sample estimate. Even though the

excess volatility puzzle remains unresolved, the rationally priced parameter uncertainty

magnifies the unconditional second moment of excess equity returns compared to the

full information case and, in turn, explains around two thirds of the equity volatility in

the data. Further, the mean, volatility and autocorrelation of the log price-dividend ratio

compare surprisingly well to the observed point estimates. The introduction of additional

channels such as, for example, a combination of wage rigidity and a constant elasticity of

substitution (CES) production function (Favilukis and Lin 2016) or learning about time-

varying volatility risks can further improve the model performance; however, we leave a

rigorous investigation of a more complex model for future research.
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Table 2.5
Sample Moments: The Extended Model with Costly Reversibility

Data PPU AU FI

100 yrs 150 yrs 200 yrs ∞ yrs

Panel A: Macroeconomic Quantities

σ(∆c) 1.26 1.59 1.60 1.61 1.62 1.61 1.65
σ(∆i) 4.51 3.31 3.29 3.27 3.25 3.30 3.23
σ(∆y) 2.41 1.97 1.97 1.97 1.97 1.97 1.97
ar1(∆c) 0.32 0.18 0.18 0.18 0.18 0.18 0.18
ρ(∆i,∆y) 0.72 0.90 0.90 0.90 0.90 0.89 0.88
ρ(∆c,∆y) 0.52 0.85 0.85 0.85 0.85 0.85 0.85
ρ(∆c,∆i) 0.36 0.55 0.55 0.55 0.55 0.52 0.49

Panel B: Financial Variables

E(Rf )− 1 1.44 1.64 1.77 1.85 1.98 2.02 2.03
σ(Rf ) 1.07 0.59 0.55 0.53 0.49 0.44 0.44
σ(M)/E(M) 0.28 0.26 0.25 0.21 0.19 0.19

E(∆dl) 2.06 0.77 0.88 0.95 1.05 1.14 1.13
σ(∆dl) 10.38 9.98 10.77 11.34 12.55 15.12 14.40
ar1(∆dl) 0.25 −0.06 −0.06 −0.06 −0.06 −0.06 −0.06
ρ(∆c,∆dl) 0.44 0.01 0.01 0.02 0.03 0.03 0.07

E(Rl −Rf ) 5.51 5.71 5.14 4.53 3.59 3.50 3.29
σ(Rl −Rf ) 16.55 11.04 10.73 9.88 8.56 9.80 8.93

E(pl − dl) 3.19 2.89 2.97 3.06 3.23 3.29 3.32
σ(pl − dl) 0.33 0.26 0.26 0.26 0.26 0.30 0.29
ar1(pl − dl) 0.97 0.92 0.92 0.92 0.92 0.92 0.92

This table reports the average moments from 1,000 simulations of 260 quarters of the data
from the production economy considered in this paper, where the transition probabilities
and mean growth rates are assumed to be unknown. The historical data moments are
reported in the data column and correspond to the U.S. data from 1952:Q1 to 2016:Q4.
The PPU column refers to the production economy with rational pricing of parameter
uncertainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities and mean
growth rates. The FI column presents the results of the full information case where the
parameters are known. E(x) and σ(x) denote the average sample mean and standard
deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample autocorrela-
tion of x and correlation between x and y, respectively. All statistics are expressed in
annualized terms, except for market price of risk given in percent, whereas correlations
and autocorrelations are expressed in quarterly terms.

2.4 Sensitivity Analysis

We examine the sensitivity of our results to the choice of the two parameters (ψ, ξ),

which determine how the agent is willing to substitute consumption intertemporally and

how the capital stock can be adjusted over time. These channels are the two natural

candidates to influence the propagation of and the interplay between the productivity

shocks and subjective long-run risks due to Bayesian learning in our model. Table 2.6
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presents a two-part sensitivity analysis by decreasing the EIS and considering different

capital adjustment cost parameters, while keeping other values as in the benchmark

calibration. For convenience, we report the results of the simulations for the setting with

PPU and AU pricing based on a 100-year prior period.

The elasticity of intertemporal substitution is an important parameter for matching

the moments of macroeconomic variables as shown in Panel A of Table 2.6. For both

PPU and AU, a lower EIS reduces the volatility of investment growth and makes con-

sumption growth more volatile relative to the benchmark calibration. This is due to the

fact that the investor is less willing to substitute consumption intertemporally. The AU

columns of Panel A also suggest that the EIS does not affect the correlations between

macroeconomic quantities. Interestingly, the PPU case predicts significantly different mo-

ments of macroeconomic variables for the smaller EIS. Indeed, consumption, investment

and output become less correlated mainly due to larger short-run risks in consumption

growth.

The bottom panel of Table 2.6 shows the impact of the EIS on financial moments. As

expected, the risk-free rate is inversely related to the EIS parameter. The prices of equity

on the endogenous levered firm’s payouts are not markedly affected by the EIS. Turning to

the equity claim on aggregate market dividends, there are large differences in the average

equity premium and equity volatility. In this case, more volatile consumption growth

predicts riskier dividends, which are modeled as a leverage on consumption. Therefore,

the equity as a leveraged consumption claim implies the lower price-dividend ratios, the

higher equity premium and equity volatility for a smaller value of the EIS. Notably, this

impact on the financial moment is magnified in the PPU case.

As an additional exercise, we change the degree of capital adjustment costs in the

production economy. The lower values of ξ introduce higher costs for capital adjustment.

Decreasing the value of ξ to 2.5 leads to more volatile consumption growth and smoother

investment growth. This additionally generates more volatile Tobin’s Q and increases the

mean and volatility of the investment return in the model. In general, the higher capital

adjustment costs generate stronger short-run risks in the model and reduce the impact of

the long-run risks generated by Bayesian learning and rational belief pricing. Since the

latter shocks are the dominant drivers of high and volatile equity returns in the model, a

claim to aggregate dividends becomes less risky as reflected in the higher price-dividend

ratio, lower equity premium and equity volatility. In the light of this observation, a lower

capital adjustment cost helps jointly match salient moments of macroeconomic quantities
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Table 2.6
Sensitivity Analysis

ψ = 1.2 ψ = 1.5 ξ = 2.5 ξ = 5.5

PPU AU PPU AU PPU AU PPU AU

Panel A: Macroeconomic Quantities

σ(∆c) 1.54 1.51 1.44 1.43 1.46 1.49 1.21 1.22
σ(∆i) 2.99 3.00 3.20 3.18 3.13 3.12 3.74 3.68
σ(∆y) 1.95 1.94 1.96 1.94 1.96 1.96 1.95 1.93
ρ(∆i,∆y) 0.91 0.98 0.96 0.99 0.99 0.98 0.97 0.99
ρ(∆c,∆y) 0.93 0.98 0.96 0.99 0.99 0.98 0.92 0.98
ρ(∆c,∆i) 0.69 0.92 0.83 0.97 0.97 0.92 0.79 0.96

Panel B: Financial Variables

E(Rf )− 1 1.96 2.52 1.84 2.34 1.64 2.10 1.64 2.17
σ(Rf ) 0.43 0.37 0.42 0.35 0.48 0.37 0.36 0.28
E(Rl −Rf ) 2.86 1.59 2.89 1.67 3.69 2.23 2.55 1.50
σ(Rl −Rf ) 5.23 4.72 5.35 4.72 6.98 6.12 4.64 4.04

E(RM −Rf ) 9.90 3.55 8.03 3.31 5.60 3.06 6.56 2.82
σ(RM −Rf ) 21.41 15.98 18.50 15.41 15.39 14.98 16.57 14.75
SR(RM −Rf ) 0.40 0.19 0.36 0.17 0.30 0.16 0.35 0.15

E(pM − dM ) 2.64 3.45 2.84 3.56 3.22 3.71 3.10 3.78
σ(pM − dM ) 0.14 0.05 0.11 0.05 0.06 0.05 0.08 0.05
ar1(pM − dM ) 0.90 0.84 0.90 0.86 0.90 0.90 0.90 0.90

This table reports the average moments from 1,000 simulations of 260 quarters of
the data from the production economy considered in this paper, where the transi-
tion probabilities and mean growth rates are assumed to be unknown. The PPU
column refers to the production economy with rational pricing of parameter uncer-
tainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities
and mean growth rates. E(x) and σ(x) denote the average sample mean and stan-
dard deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample
autocorrelation of x and correlation between x and y, respectively. All statistics
are expressed in annualized terms, except for correlations and autocorrelations
expressed in quarterly terms.

and financial returns. In particular, increasing the value of ξ to 5.5 moves the model-

implied volatilities of consumption and investment closer to the data. Most importantly,

parameter uncertainty generates stronger propagation of productivity shocks in this case

by lowering the correlations between macroeconomic variables. In addition, stronger long-

run risks originating from rational belief pricing further lead to a substantial increase in

risk premia compared to the AU case, as evidenced in the last two columns of Table 2.6.

To assess the impact of asymmetric adjustment costs, we conduct sensitivity analysis

to alternative parameter choices of θ+ and θ−. Table 2.7 shows that the model with

symmetric quadratic adjustment costs θ+ = θ− = 5 displays a small equity premium and

levered equity volatility originating from a wrong business cycle movement of dividends.

86



Table 2.7
Sensitivity Analysis: The Extended Model with Costly Reversibility

θ+ = 5 θ+ = 4 θ+ = 4 θ+ = 4
θ− = 5 θ− = 40 θ− = 50 θ− = 60

PPU AU PPU AU PPU AU PPU AU

Panel A: Macroeconomic Quantities

σ(∆c) 1.14 1.12 1.51 1.54 1.58 1.60 1.63 1.64
σ(∆i) 3.98 3.91 3.42 3.41 3.36 3.34 3.27 3.22
σ(∆y) 1.93 1.92 1.97 1.97 1.97 1.96 1.97 1.96
ρ(∆i,∆y) 0.91 0.99 0.93 0.92 0.91 0.89 0.90 0.89
ρ(∆c,∆y) 0.78 0.96 0.86 0.84 0.83 0.83 0.84 0.84
ρ(∆c,∆i) 0.45 0.91 0.62 0.57 0.53 0.50 0.53 0.52

Panel B: Financial Variables

E(Rf )− 1 1.62 2.23 1.66 2.03 1.65 2.00 1.62 2.00
σ(Rf ) 0.28 0.24 0.55 0.43 0.59 0.45 0.59 0.45

E(∆dl) 0.58 1.24 0.72 1.13 0.76 1.14 0.77 1.12
σ(∆dl) 24.45 27.45 11.29 16.72 10.39 15.65 9.86 15.11
ar1(∆dl) −0.06 −0.03 −0.04 −0.05 −0.06 −0.06 −0.06 −0.05
ρ(∆c,∆dl) −0.11 −0.61 −0.10 −0.05 0.01 0.05 0.06 0.08

E(Rl −Rf ) 2.03 1.15 4.88 3.00 5.68 3.53 6.49 3.82
σ(Rl −Rf ) 3.65 3.21 9.32 8.09 11.02 9.93 13.25 10.90

This table reports the average moments from 1,000 simulations of 260 quarters of
the data from the production economy considered in this paper, where the transi-
tion probabilities and mean growth rates are assumed to be unknown. The PPU
column refers to the production economy with rational pricing of parameter uncer-
tainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities
and mean growth rates. E(x) and σ(x) denote the average sample mean and stan-
dard deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample
autocorrelation of x and correlation between x and y, respectively. All statistics
are expressed in annualized terms, except for correlations and autocorrelations
expressed in quarterly terms.

This result mimics our findings in the benchmark model with convex adjustment costs.

Introducing costly reversibility improves the asset pricing implications of the model. We

quantify this improvement by varying the degree of asymmetry. In particular, we fix

θ+ = 4 and consider three cases for θ−/θ+ : 10, 12.5 and 15. Table 2.7 reports that a

higer degree of asymmetry increases the average mean and volatility of levered equity

returns. This comes as a result of a more procyclical firm’s dividends consistent with

our main result: the importance of parameter learning in the production economy is

conditional on the introduction of procyclical dividends in the economy.
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2.5 Conclusion

In this paper, we show that introducing rational parameter learning into an otherwise

standard real business cycle model improves its ability to match asset return data. The

model with priced parameter uncertainty has a small effect on the second moments of

macroeconomic variables and more significant impact on the comovements between quan-

tities. Parameter learning generates a substantial amplification of the risk premium on

a levered firm’s payouts and reproduces the long-horizon predictability of excess returns

by macroeconomic and valuation variables. Furthermore, we show that rational belief

pricing considered in this paper has the largest impact on equity returns when intro-

ducing and pricing a procyclical dividend growth process. In this case, the production

economy can closely replicate the first and second moments of risk-free rates and excess

equity returns, the equity Sharpe ratio and the level of the price-dividend ratio, while

generating smooth consumption and volatile investment. Finally, we show that introduc-

ing investment friction in the form of costly reversibility helps endogenously generate a

pro-cyclical dividend process and, at the same time, to maintain all the desired pricing

effects that come from multidimensional learning and rational pricing.

Future research may consider extending our mechanism to a richer model with sticky

prices and financial frictions. In particular, modeling wage rigidity in the spirit of Fav-

ilukis and Lin (2016) can help endogenously generate procyclical dividend growth in the

model. The interaction between sticky prices and learning effects may have additional

interesting implications for the labor market. Motivated by a large strand of the litera-

ture on time-varying macroeconomic uncertainty, it is interesting and straightforward to

extend our methodology to learning about volatility risks. This might have additional

asset pricing implications, especially for volatility sensitive assets, as well as interesting

effects for the real economy.
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Appendix B

B.1 Numerical Algorithm: Anticipated Utility

In the AU case, the representative household learns about the unknown parameters by

updating his beliefs upon the realization of new data, but ignores parameter uncertainty

when making decisions. Thus, although the beliefs vary over time, the household centers

the "true" parameters at the current posterior means and keeps these subjective estimates

constant while solving for the continuation utility (and a levered equity claim) in each

period.

In this paper, we focus on two learning about parameters economies with unknown

transition probabilities, and unknown transition probabilities and mean growth rates.1

The numerical solution for both models under AU pricing simplifies to solving for the

equilibrium pricing ratios when all parameters are actually known by the household. We

find the solution of these simplest economies on a dense grid for unknown parameters (that

is, unknown transition probabilities in the former model; unknown transition probabilities

and mean growth rates in the latter model). Then the household uses these equilibrium

pricing functions for the decision making and asset pricing based on the current beliefs.

1The methodology for the AU case (as well as the priced parameter uncertainty case in Appendix
C.3) can be further extended for learning about the volatility of productivity growth. However, we leave
this investigation for the future research.
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B.1.1 All Known Parameters

Productivity growth is given by:

∆at = µst + σεt,

where εt
iid∼ N(0, 1), st is a two state Markov chain with transition matrix:

Π =

[
π11 1− π11

1− π22 π22

]
,

where πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks εt.

Here, we give details on how the continuation utility (and a levered equity claim) is

computed for the economy with all parameters known. We define the following stationary

variables: {
C̃t, Ĩt, Ỹt, K̃t, Ũt

}
=

{
Ct
At
,
It
At
,
Yt
At
,
Kt

At
,
Ut
At

}
The household’s problem is:

Ũt = max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β

(
Et

[
Ũ1−γ
t+1 ·

(
At+1

At

)1−γ
]) 1− 1

ψ
1−γ


1

1−ψ

(B.1)

subject to the constraints:

C̃t + Ĩt = K̃α
t N̄

1−α (B.2)

e∆at+1K̃t+1 = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t (B.3)

∆at = µst + σεt, εt ∼ N(0, 1) (B.4)

C̃t ≥ 0, K̃t+1 ≥ 0 (B.5)

where the subscript t indicates the time, Et(·) denotes the expectation conditional on the

information available at time t. Because the parameters are assumed known, st and K̃t

are the only state variables in the economy. Ultimately, the recursive equation (C.1) can

be rewritten as:

Ũt(st, K̃t) (B.6)
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= max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β

(
Et

[
Ũt+1

(
st+1, K̃t+1

)1−γ
· e(1−γ)∆at+1

]) 1− 1
ψ

1−γ


1

1−ψ

To solve the recursion (C.6), we use the the value function iteration algorithm. In par-

ticular, the numerical algorithm proceeds as follows:

1. We find the de-trended steady state capital K̃ss, assuming the productivity growth

equals the steady state level predicted by a Markov-switching model. The state

space for capital normalized by technology is set at [0.2K̃ss, 2.2K̃ss]. We further use

nk = 100 points on a grid for capital in the numerical computation. A denser grid

does not lead to significantly different results.

2. For any level of capital K̃t at time t, we construct a grid for Ĩt with uniformly

distributed points between 0 and K̃α
t N̄

1−α. Specifically, we use ni = 400 points.

3. For the expectation, we use the Gauss-Hermite quadrature with ngh = 8 points.

Using the quadrature weights and nodes, we can calculate the expression on the

right hand side.

4. We solve the optimization problem in the Bellman equation (C.6) subject to (C.2)-

(C.5) and update a new value function Ũt = Ũt(st, K̃t) given an old one Ũt+1 =

Ũt+1(st+1, K̃t+1).

5. We iterate Steps 2-4 by updating the continuation utility on each iteration until a

suitable convergence is achieved. Specifically, the stopping rule is that the distance

between the new value function and the old value function satisfies |Ũt+1−Ũt|/|Ũt| <
10−12.

B.2 Numerical Algorithm: Priced Parameter Uncer-

tainty

The numerical solution for the case of priced parameter uncertainty consists of two main

steps2. First, we solve for the equilibrium pricing ratios when true parameters are actu-
2(Johnson 2007) uses this solution methodology in a case with parameter learning and power utility.

Johannes, Lochstoer, and Mou (2016) and Collin-Dufresne, Johannes, and Lochstoer (2016) extend this
approach to the case of Epstein-Zin utility in the endowment economy. We further extend the numerical
solution to the case of Epstein-Zin utility in the production economy.
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ally known by the household (by assumption, these are learned at T =∞). We find the

solution of this simplest limiting economy on a dense grid of state variables. Second, we

use the known parameters boundary economies as terminal values in the backward recur-

sion to obtain the equilibrium function at time t. For the first step, Appendix C.2 outlines

details of the numerical algorithm for all known parameters. Therefore, we present the so-

lution methodology employed at the second step for two models with unknown transition

probabilities, and unknown transition probabilities and mean growth rates.

B.2.1 Unknown Transition Probabilities

Productivity growth is given by:

∆at = µst + σεt,

where εt
iid∼ N(0, 1), st is a two state Markov chain with a transition matrix:

Π =

[
π11 1− π11

1− π22 π22

]
,

where πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks εt.

In the case of unknown transition probabilities, the representative household knows

true values of the parameters within each state (µ1, µ2, σ) and observes states (st) but

does not know the transition probabilities (π11, π22). At time t = 0, the household holds

priors about uncertain probabilities in the transition matrix and updates beliefs each

period upon realization of new series and regimes. We assume a Beta distributed prior

and, thus, posterior beliefs are also Beta distributed.

The Beta distribution has the probability density function of the form:

p(π|a, b) =
πa−1(1− π)b−1

B(a, b)
,

where B(a, b) is the Beta function (a normalization constant), a and b are two positive

shape parameters. We are particularly interested in the expected value of the Beta

distribution defined by:

E[π|a, b] =
a

a+ b
.

Furthermore, we use two pairs of hyperparameters parameters (a1, b1) and (a2, b2) for
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unknown transition probabilities in the states π11 and π22, respectively. At time t, the

household uses Bayes’ rule and the fact that states are observable to update hyperpa-

rameters for each state i as follows:

ai,t = ai,0 + #(state i has been followed by state i), (B.7)

bi,t = bi,0 + #(state i has been followed by state j), (B.8)

given the initial prior beliefs ai,0 and bi,0.

Once we find the limiting boundary economies on the first step, we perform a backward

recursion using the following state variables:

τ1,t = a1,t − a1,0 + b1,t − b1,0 (B.9)

λ1,t = Et[π11] =
a1,t

a1,t + b1,t

(B.10)

τ2,t = a2,t − a2,0 + b2,t − b2,0 (B.11)

λ2,t = Et[π22] =
a2,t

a2,t + b2,t

(B.12)

Note that Xt = {τ1,t, λ1,t, τ2,t, λ2,t} are sufficient statistics for the agent’s priors. Also,

we can update Xt+1 using the equations (C.7)-(C.12), the next period regime, and suffi-

cient statistics:

Xt+1 = f(st+1, st, Xt).

For notational purposes, it might be useful to denote Xs
t ≡ {τ1,t, λ1,t, τ2,t, λ2,t} and X∆a

t ≡
{K̃t}, where the superscripts s and ∆a indicate that variables in the vectors Xs

t and X∆a
t

are a function only of the observed state realization st and a function of (also) the realized

productivity growth, respectively. Thus, Xt =
[
Xs
t , X

∆a
t

]
. Using these notations, we can

rewrite

Ũt+1(st+1, Xt+1) = Ũt+1(st+1, st, X
s
t ,∆at+1, X

∆a
t )

to better indicate the dependence of state variables on specific shocks. Ultimately, the

recursive equation (C.1) can be rewritten as:

Ũt(st, Xt) (B.13)

= max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β
(
Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]) 1− 1
ψ

1−γ


1

1−ψ

,
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where the expectation on the right hand side is equivalent to:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]
= Et

[
Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

] ∣∣∣st, Xt

]
=

2∑
st+1=1

P(st+1|st, Xs
t ) ...

× Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
=

2∑
st+1=1

Et(πst+1,st|st, Xs
t ) ...

× Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
, (B.14)

where the first and second equalities follow from the independency of the regime changes

and the Gaussian shocks to productivity growth (st+1 and εt+1). Let the conditional

density of πst+1,st be g(πst+1,st|st, Xs
t ), then the third equality follows from:

P(st+1|st, Xs
t ) =

∫ 1

0

πst+1,stg(πst+1,st |st, Xt)dπst+1,st = Et(πst+1,st |st, Xt)

Furthermore, using the definition of our state variables, this last conditional expectation

equals λst,t or 1− λst,t.

Note that before choosing the optimal consumption and investment in (B.13), we

need to solve numerically first the inner expectation, which is equivalently represented

by (B.14). Hopefully, we have an analytical expression for the conditional expectation

of transition probabilities in (B.14), which is either λst,t or 1 − λst,t. For the second

conditional expectation in (B.14), we do not have a closed form since the continuation

utility depends on the realized productivity growth through K̃t+1. Therefore, we use

quadrature-type numerical methods to evaluate this expectation as follows:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
≈

J∑
j=1

ωε(j)
[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆a(j), X∆a

t

)
· e(1−γ)∆a(j)

∣∣∣st+1, st, Xt

]
, (B.15)

where ωε(j) is the quadrature weight corresponding to the quadrature node nε(j) used

for the integration of a standard normal shock εt+1 in productivity growth. The observed
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realized productivity growth, ∆a(j), and a state variable, X∆a
t+1(j) = K̃t+1(j), are updated

as follows:

∆a(j) = µst+1 + σ · nε(j) (B.16)

e∆a(j)K̃t+1(j) = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t, (B.17)

where

Ĩt = K̃α
t N̄

1−α − C̃t. (B.18)

Finally, the numerical backward recursion can be performed by using (B.13)-(B.18).

The boundary conditions are defined by the limiting economies τ1,∞ and τ2,∞, where the

transition probabilities π11 and π22 are known.

Solving for a Dividend Claim

We also solve for the price-dividend ratio of the equity claim written on aggregate divi-

dends, which are defined as a leverage to aggregate consumption. Let exogenous aggregate

dividends be given by:

∆dt+1 = gd + λ∆ct+1 + σdεd,t+1,

where gd =
(

1 − λ
)(
E(P(s∞ = 1|π11, π22))µ1 + E(P(s∞ = 2|π11, π22))µ2

)
and P(s∞ =

i|π11, π22) is the ergodic probability of being in state i conditional on the transition prob-

abilities π11 and π22. Note that the long run mean of dividends growth, gd, is changing

under the household’s filtration, though the true long run growth is constant. The sub-

jective beliefs about the true parameter values induce fluctuations in gd, which can be

expressed as gd = gd(st+1, st, Xt).

The equilibrium condition for the price-dividend ratio is standard in the Epstein-Zin

economy and is given by:

PDt = Et

β(C̃t+1

C̃t

)− 1
ψ (

At+1

At

)− 1
ψ

 Ũt+1 ·
(
At+1

At

)
Rt

(
Ũt+1 ·

(
At+1

At

))


1
ψ
−γ (

Dt+1

Dt

)
(PDt+1 + 1)


(B.19)

Similarly to the solution for the value function, we rewrite all variables in the recursion

(C.23) as a function of the state variables and further use quadrature-type numerical
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methods to evaluate expectations on the right hand side of (C.23). Additionally, we

update the long run dividends growth, gd(st+1, st, Xt), which is in fact random. Conse-

quently, the equilibrium recursion used to solve the model is then:

PDt(st, Xt, )

= Et

 βe(λ−
1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st, Xt



= Et

Et
 βe(λ−

1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st+1, st, Xt


∣∣∣∣∣st, Xt


=

2∑
st+1=1

P(st+1|st, Xs
t ) ...

× Et

 βe(λ−
1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st+1, st, Xt


=

2∑
st+1=1

Et(πst+1,st|st, Xs
t ) ...

× Et

 βe(λ−
1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st+1, st, Xt



Again, the conditional expectation of transition probabilities under the household’s filtra-

tion permits an analytical formula, while the inner expectation in the expression above

can be evaluated using the quadrature-type integration methods.

Limiting Economies - Boundary Values for General Case

The key assumption of the numerical solution is that the household eventually learns the

true values of all uncertain parameters in the productivity growth. Thus, the simplest

limiting economy is the one where all parameters are known, including both transition

probabilities π11 and π22. In this case, st and Kt are the only state variables in the

economy. We employ the numerical solution methodology outlined for AU pricing for this
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limiting economy. Specifically, we find the continuation utility (and the price-dividend

ratio of the equity claim) for a grid on π11 and π22.

B.2.2 Unknown Transition Probabilities and Unknown Mean Growth

Rates

Productivity growth is given by:

∆at = µst + σεt,

where εt
iid∼ N(0, 1), st is a two state Markov chain with the transition matrix:

Π =

[
π11 1− π11

1− π22 π22

]
,

where πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks εt.

As before, we assume that the representative household does not know the transition

probabilities (π11, π22). Additionally, the mean growth rates within each state (µ1, µ2)

are assumed to be unknown, while the realization of states (st) and productivity volatil-

ity (σt) remain observable. Due to the limitations of the numerical solution algorithm

under the prices parameter uncertainty case, we are unable to extend the economy to

unobservable regimes, while it is still possible to assume that the household does not

know a volatility parameter. Nevertheless, the extension to the case with all parameters

unknown, including volatility except for states, is quite straightforward, and we leave the

investigation of learning about volatility parameters for future research.

Regarding priors, we assume a conjugate prior for transition probabilities and mean

growth rates within each state i : the Beta distributed prior and the truncated normal

distributed prior, respectively. The updating equations for two pairs of hyperparameters

(a1, b1) and (a2, b2) remain as before. Additionally, we denote hyperparameters of the

truncated normal distributed prior for mean growth in state i by µi,t and σi,t, which are

updated by the Bayes’ rule as follows:

µi,t+1 = µi,t + 1st+1=i

σ2
i,t

σ2
i + σ2

i,t

(∆at+1 − µi,t) (B.20)

σ−2
i,t+1 = 1st+1=i · σ−2

i + σ−2
i,t , (B.21)

97



where 1 is an indicator function that equals 1 if the condition in subscript is true and 0

otherwise.

Note that since the variance hyperparameters σ2
1,t and σ2

2,t are a function of the time,

the following 6-dimensional vector Xt ≡ {τ1,t, λ1,t, τ2,t, λ2,t, µ1,t, µ2,t} is sufficient statistics

for the priors. Thus, we can define Xt+1 using the equations (C.7)-(C.12), (C.13)-(C.16),

the next period regime, and sufficient statistics at time t :

Xt+1 = f(st+1, st, Xt).

Following the notations of a previous section, we define Xs
t ≡ {τ1,t, λ1,t, τ2,t, λ2,t} and

X∆a
t ≡ {K̃t, µ1,t, µ2,t}, where the superscripts s and ∆a indicate that variables in the

vectors Xs
t and X∆a

t are a function only of the observed state realization st and a function

of (also) the realized productivity growth, respectively. Thus, Xt =
[
Xs
t , X

∆a
t

]
. Using

these notations, we can rewrite

Ũt+1(st+1, Xt+1) = Ũt+1(st+1, st, X
s
t ,∆at+1, X

∆a
t )

to better indicate the dependence of state variables on specific shocks. Ultimately, the

recursive equation (C.1) is of the same form:

Ũt(st, Xt) (B.22)

= max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β
(
Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]) 1− 1
ψ

1−γ


1

1−ψ

,

where the expectation on the right hand side is equivalent to:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]
=

2∑
st+1=1

Et(πst+1,st|st, Xs
t ) ...

× Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
. (B.23)

In this case, we compute the conditional expectation in (C.18) by integrating over

conditional distribution of mean growth rates as well as Gaussian distribution of the
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error term in productivity growth. In particular:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
≈

J∑
j=1

ωε(j)

[
K∑
k=1

ωµst+1
(k) · Ũ1−γ

t+1

(
st+1, st, X

s
t ,∆a(j, k), X∆a

t

)
· e(1−γ)∆a(j,k)

∣∣∣st+1, st, Xt

]
,

(B.24)

where ωε(j) is the quadrature weight corresponding to the quadrature node nε(j) used for

the integration of a standard normal shock εt+1 in productivity growth, and ωµst+1
(k) is

the quadrature weight corresponding to the quadrature node nµst+1
(k) used for the inte-

gration of a truncated standard normal variable µst+1 . The observed realized productivity

growth, ∆a(j, k), and a state variable, X∆a
t+1(j, k) = K̃t+1(j, k), are updated as follows:

∆a(j, k) = nµst+1
(k) + σ · nε(j) (B.25)

e∆a(j,k)K̃t+1(j, k) = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t, (B.26)

where

Ĩt = K̃α
t N̄

1−α − C̃t. (B.27)

Finally, the numerical backward recursion can be performed by using (C.17)-(C.22).

The boundary conditions are defined by the limiting economies τ1,∞ and τ2,∞, where the

transition probabilities π11 and π22, and mean growth rates µ1 and µ2, are known.

Solving for a Dividend Claim

We also solve for the price-dividend ratio of the equity claim written on aggregate divi-

dends, which are defined as a leverage to aggregate consumption. Let exogenous aggregate

dividends be given by:

∆dt+1 = gd + λ∆ct+1 + σdεd,t+1,

where gd =
(

1 − λ
)(
E(P(s∞ = 1|π11, π22))µ1 + E(P(s∞ = 2|π11, π22))µ2

)
and P(s∞ =

i|π11, π22) is the ergodic probability of being in state i conditional on the transition

probabilities π11 and π22.

Note that the long run mean of dividends growth, gd, is changing under the household’s
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filtration, though the true long run growth is constant. The subjective beliefs about

the true parameter values induce fluctuations in gd, which can be expressed as gd =

gd(st+1, st, Xt). The equilibrium condition for the price-dividend ratio and the equilibrium

recursion remain the same as in the "unknown transition probabilities" model. The only

difference between the two models lie in the way we calculate the conditional expectations.

With unknown transition probabilities and mean growth rates in the productivity growth

process, we employ quadrature-type integration methods analogous to solving for the

continuation utility in this economy.

Limiting Economies - Boundary Values for General Case

The key assumption of the numerical solution is that the household eventually learns the

true values of all uncertain parameters in the productivity growth. Thus, the simplest

limiting economy is the one where all parameters are known, including both transition

probabilities π11 and π22, mean growth rates µ1 and µ2. In this case, st and Kt are the

only state variables in the economy. We employ the numerical solution methodology

outlined for AU pricing for this limiting economy. Specifically, we find the continuation

utility (and the price-dividend ratio of the equity claim) for a grid on π11, π22, µ1 and µ2.

B.2.3 Existence of Equilibrium

Similarly to Collin-Dufresne, Johannes, and Lochstoer (2016) and Johannes, Lochstoer,

and Mou (2016), the existence of the equilibrium in our production-based economy re-

lies on the fact that the value function is concave and finite for all parameters known

economies. Therefore, we verify that these conditions are satisfied for all limiting bound-

ary economies.

B.3 Impulse Responses

In this section, we consider the numerical procedure used to obtain impulse responses of

key macroeconomic and financial variables to a regime switch in the mean growth rate

of productivity. In particular, we assume that the economy stays in the high growth

state for a long period and then moves to a low growth regime at time 0. We further

consider three possible scenarios where the economy remains in the bad regime for one
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quarter, three quarters, or two years before returning to the good state. The details of

the numerical algorithm look as follows.

First, we find the steady state of capital, K̃, in the high growth regime, st = 1,

assuming unbiased parameter beliefs, Xt, which are centered at the true values. Formally,

K̃ solves the equation:

K̃ = fk(s−1 = 1, X−1, K̃),

where fK(·) is the policy function for capital assuming the productivity growth is high

forever.

Second, suppose that the economy starts in the high growth steady state before time 0

and the investor holds unbiased parameter beliefs. Then unexpectedly the economy shifts

to to the bad state at time 0 and stays there for τ periods. Using the policy function,

capital is computed recursively as:

K̃−1 = K̃,

K̃0 = fk(s0 = 2, X0, K̃−1), ...

K̃τ = fk(sτ = 2, Xτ , K̃τ−1),

K̃τ+1 = fk(sτ+1 = 1, Xτ+1, K̃τ ), ...

K̃t = fk(st = 1, Xt, K̃t−1), ∀t,

where investor’s parameter beliefs are updated in each period.

Third, we use policy functions for investment and consumption to obtain equilibrium

values of Ĩt and C̃t. Finally, we calculate the remaining macroeconomic and financial

variables using the updated state variables.
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Chapter 3

Option Prices and Learning about
Productivity Dynamics

Mykola Babiak1 and Roman Kozhan2

Abstract

We demonstrate that incorporating time-varying productivity volatility and priced

parameter uncertainty in a production economy can explain index option prices, equity

returns, the risk-free rate, and macroeconomic quantities. A Bayesian investor learns

about the true parameters governing mean, persistence, and volatility of productivity

growth. Rational parameter learning amplifies the conditional risk premium and volatility

especially at the onset of recessions. We estimate the model based on post-war U.S. data

and find that it can capture the implied volatility surface and the variance premium.

Intuitively, the agent pays a large premium for index options because they hedge future

belief revisions.

1We would like to thank Andrea Gamba, Michal Kejak, Ian Khrashchevskyi, Ctirad Slavik, Sergey
Slobodyan and conference/seminar participants at the 2018 Lancaster-Warwick (LaWa) Workshop on
Financial Econometrics and Asset Pricing, Warwick Business School, CERGE-EI and Università Ca’
Foscari Venezia for their discussions and comments. We also appreciate the research support with
the supercomputing clusters from the Centre for Scientific Computing at the University of Warwick.
The financial support from the Charles University Grant Agency (GAUK No. 744218) is gratefully
acknowledged.

2Warwick Business School, University of Warwick, Scarman Road, Coventry, CV4 7AL, UK.
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3.1 Introduction

Economic uncertainty, broadly defined, is an important determinant of asset valuations

and business cycles. Recent work shows that rational pricing of uncertainty about the

true structure of the economy can help capture prominent features of equity returns and

macroeconomic fundamentals.3 Derivative prices, in turn, directly speak to investor per-

ceptions of macroeconomic uncertainty and, therefore, offer an attractive opportunity to

explore further links between asset prices and incomplete structural knowledge of agents.

In this paper, we show that incorporating rational parameter learning into an other-

wise standard real business cycle framework can explain two puzzling features of index

options: (i) a large variance risk premium, and (ii) a steep implied volatility surface.

Simultaneously, the model with priced parameter uncertainty is able to match the large

equity premium and excess return volatility, the low risk-free rate, and the level of the

price-dividend ratio. At the same time, it remains consistent with second moments of

consumption, investment and output, and comovements between the series, while cap-

turing the relation between risk-neutral variance and macroeconomic quantities. The

framework is the first, to our knowledge, to provide a pure learning-based explanation of

such a wide array of pricing phenomena without introducing long-run risks, tail events,

and non-standard assumptions about preferences or beliefs. The model instead reflects

information in post-World War II data and uses a modest risk aversion of seven.

In this paper, a representative investor has non-time-separable preferences and learns

about a true model structure for productivity growth, which follows a two-state Markov

switching process with regimes in drift and volatility. An inference problem entails learn-

ing about unknown transition probabilities, and the mean and volatility of productivity

growth in the two regimes, while the state of the economy is assumed to be observable. In

each period, the agent uses Bayes’ rule to update his beliefs about unknown parameters

upon observing new data. Furthermore, he rationally incorporates parameter uncertainty

in the decision-making process by acknowledging future changes in his beliefs when choos-

ing optimal investment and when pricing assets. In terms of equity prices, prior literature

documents the failure of the standard production model to explain equity returns due to a

countercyclical firm’s dividends, which make the equity work like a hedge.4 In this paper,
3Collin-Dufresne, Johannes, and Lochstoer (2016) develop the mechanism of priced parameter uncer-

tainty in the consumption-based model and explore the implications for equities, whereas Babiak and
Kozhan (2018) extend the methodology to the production economy.

4Favilukis and Lin (2016) employ wage rigidity in order to produce procyclical dividends endogenously,
while Babiak and Kozhan (2018) use a combination of asymmetric capital adjustment costs and a financial
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we abstract from introducing additional frictions in the economy that would complicate

the solution and we instead price exogenous stock market dividends. In doing so, we are

able to preserve the procyclical dynamics of dividends in the model consistent with the

behaviour of aggregate stock market dividends.

The key mechanism of the model is as follows. First, in the presence of parameter

uncertainty, learning generates time-variation in posterior estimates of unknown param-

eters creating an additional channel by which shocks to productivity growth introduce

extra fluctuations in an investor’s marginal utility. Second, rational pricing of subjective

beliefs amplifies the impact of parameter uncertainty on the stochastic discount factor,

conditional moments of returns, and asset prices. The agent is concerned about future

revisions, especially those in response to negative news to technology growth, and hence

he is willing to pay a large premium for insurance against pessimistic updates. The deep

out-of-the-money put options on the aggregate stock market index provide such insurance

and therefore bear high parameter uncertainty premiums. We show that this mechanism

generates a steep implied volatility skew, which closely replicates the shape observed in

the data. Furthermore, the conditional volatility of equity return variance is amplified,

thus raising the investor’s concerns about high realized variance in the future. In order

to hedge his concerns, the agent is willing to pay large prices for variance swaps, which

would provide a high payoff in states of high return volatility. This substantially increases

the mean and volatility statistics of the variance premium that become closer to empirical

estimates.

The model with priced parameter uncertainty also helps capture stylized facts of eq-

uity returns and macroeconomic quantities apart from index option prices. In particular,

the mechanism of this paper generates low interest rates, high equity premiums and eq-

uity Sharpe ratios, and excess volatility of equity returns. While matching these standard

asset pricing moments, the model generates low volatility of consumption and output,

and high volatility of investment in line with the data. Furthermore, we show that ratio-

nal parameter learning resolves the problem of perfectly correlated quantities in the real

business cycle models. In our model, macroeconomic risks associated with rational pric-

ing of parameter uncertainty substantially reduce correlations between macroeconomic

variables, consistent with the empirical estimates. Finally, the framework reasonably

reconciles the correlations between the squared VIX index and investment growth, con-

sumption growth, and equity returns at different leads and lags. We further show that the

leverage in the production economy with priced parameter uncertainty.
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model is consistent with the empirical lead-lag relations between the risk-neutral variance

and variance of aforementioned variables.

Related literature. This paper belongs to a new and growing literature on parameter

learning models in macroeconomics and finance as advocated by Hansen (2007), Weitz-

man (2007) and Cogley and Sargent (2008). The early studies in this vein focus on

learning about a latent state or a single parameter in endowment economies (see Pastor

and Veronesi (2009) for a survey of the early literature on learning in financial markets).

These studies use Bayesian updating as a driving process to explain salient moments

of equity returns. Their findings suggest that learning may in fact improve the model

performance with respect to some features of the data. However, several long-standing

puzzles, including the equity premium and excess return volatility, remain unresolved in

endowment economies.

One potential reason is the lack of persistent effects in a setting with learning about

a single variable. Cogley and Sargent (2008) find that injecting a pessimistic initial

prior into the model with learning about the mean duration of recessions can yield long-

lasting effects on asset prices and, in particular, generate the large equity premium.

Pakos (2013) and Gillman, Kejak, and Pakos (2015) document that Bayesian learning

about a protracted recession in the hidden three-state Markov process can generate a

large number of pricing phenomena in the equity and bond markets. Andrei, Carlin,

and Hasler (2017) construct an equilibrium model with a disagreement mechanism about

the length of business cycles to explain stock return volatility and equity risk premium.

Andrei, Hasler, and Jeanneret (2018) further emphasize the importance of learning about

persistence risk for reproducing observed dynamics of expected returns, return volatility,

and the price of risk, as well as excess return predictability patterns. The key features of

the literature above are learning about a built-in persistence in the economy and learning

about a single state variable. In contrast, we study the asset pricing implications of a

high-dimensional learning problem, which in turn gives rise to endogenous slow learning

due to confounding (Johannes, Lochstoer, and Mou 2016). Further, our paper generates

persistent macroeconomic risks via fully rational pricing of posterior parameter beliefs.

This paper is also related to several consumption-based models that specifically tar-

get index options with certain types of learning. In particular, learning about a persis-

tent component of consumption growth (Benzoni, Collin-Dufresne, and Goldstein 2011;

Shaliastovich 2015) or about model uncertainty with rare disasters (Liu, Pan, and Wang

2005) can explain the skew in index option implied volatilities. Further, Drechsler (2013)
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constructs the generalized long-run risks framework with ambiguity over the true model

governing endowments to simultaneously explain equity returns and option-related puz-

zles. Recently, Babiak (2019) shows that the combination of learning about a latent state

in consumption growth and an investor’s asymmetric preferences can reproduce both the

variance premium and the implied volatility surface observed in the data. While learning

in these models generates time-variation in asset prices, tail risks induced by disastrous

events or asymmetric preferences are the key ingredient generating the large variance

premium and the steep implied volatility curves. In contrast, our paper does not rely

on any of these channels. Our model is estimated based on post-war US data and hence

does not allow tail outcomes in productivity growth. Further, the representative investor

has standard Epstein-Zin preferences and does not exhibit tail risk attitude. Our frame-

work instead considers rational pricing of parameter uncertainty as a key amplification

mechanism of productivity shocks on risk premiums embedded in option prices.

In the production-based setting, the learning literature is rather scarce since it is

more challenging to explain asset prices with endogenous consumption and dividends.5

Recently, Jahan-Parvar and Liu (2014) adopt an endowment economy of Ju and Miao

(2012) with ambiguity preferences and learning to the real business cycle model. In their

framework, however, the equity prices are mainly driven by the investor’s ambiguity

aversion. To our knowledge, Liu and Zhang (2018) is the only study that targets the

variance premium and the implied volatility skew in the production economy similar to

our analysis. Liu and Zhang (2018) find that large risk premiums embedded in option

prices are the manifestation of an investor’s pessimism due to ambiguity aversion. In

contrast, our study employs Epstein-Zin preferences that would not generate the same

results in the model of Liu and Zhang (2018). Further, our paper considers rational

parameter learning as a key driver of option prices, which is again different from the

central ingredient considered by Liu and Zhang (2018). Finally, our framework can

capture the volatility term structure, whereas Liu and Zhang (2018) focus only on the

three-month implied volatility curve.

Methodologically, this article is related to Collin-Dufresne, Johannes, and Lochstoer

(2016), who develop the idea of priced parameter uncertainty in the consumption-based

models, and to Babiak and Kozhan (2018), who extend the methodology to the production-

5In fact, there are several learning papers with the production sector including Andrei, Mann,
and Moyen (2018), Kozlowski, Veldkamp, and Venkateswaran (2018a) and Kozlowski, Veldkamp, and
Venkateswaran (2018b), but their key mechanism and focus are different from those in our article.
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based setting. In terms of the asset pricing implications, both studies limit their attention

to equity returns and do not explore the role of parameter learning for the variance risk

premium and the implied volatility surface, the key focus of this paper. Unlike Collin-

Dufresne, Johannes, and Lochstoer’s (2016) model with learning about rare events in

consumption growth, our framework incorporates learning about parameters governing

business cycle fluctuations in productivity growth. Unlike Babiak and Kozhan’s (2018)

model with homoskedastic and known volatility of productivity growth, our analysis

additionally introduces learning about regime-switching volatility of technology growth.

We show that this extended specification with learning about volatility parameters helps

quantitatively capture a large variance risk premium and a steep implied volatility sur-

face. Turning off time-varying productivity volatility yields risk premiums in option prices

that are excessively low compared to the data.

The paper proceeds as follows. Section 3.2 presents the formal model. Section 3.3

investigates the quantitative implications of parameter learning for quantities and asset

prices. Section 3.4 performs a sensitivity analysis. Section 3.5 concludes. Sections C.1,

C.2, and C.3 of Appendix C outline the numerical solution methodology for the models

with known parameters, and parameter uncertainty under anticipated utility and fully

rational learning, respectively.

3.2 The Model

3.2.1 The Representative Household

We consider a standard production-based asset pricing framework with a representative

household that has the utility function of Epstein and Zin (1989) defined recursively as:

Ut =

{
(1− β)C

1−1/ψ
t + β

(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

} 1
1−1/ψ

, (3.1)

in which Ut denotes the household’s continuation utility, Ct denotes aggregate consump-

tion, Et denotes the expectation operator, β ∈ (0, 1) is the discount factor, ψ > 0

represents the elasticity of inter-temporal substitution (EIS), and γ > 0 represents the

risk aversion parameter. For simplicity, we will assume that the household inelastically

supplies one unit of labor, and thus the household’s intra-period utility depends only on

consumption.
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These recursive preferences allow the separation between the agent’s relative risk

aversion and the elasticity of inter-temporal substitution. In this paper, we consider a

representative household with a preference for early resolution of uncertainty by setting

γ > 1
ψ
. This calibration is crucial for our results since subjective long-run beliefs will be

priced in equilibrium. The stochastic discount factor is:

Mt+1 = β

(
Ct+1

Ct

)−1/ψ

 Ut+1(
Et

[
U1−γ
t+1

]) 1
1−γ


1/ψ−γ

. (3.2)

3.2.2 The Representative Firm

We assume a representative firm produces the consumption good using a constant returns

to scale Cobb-Douglas production function:

Yt = Kα
t (AtNt)

1−α, (3.3)

in which Yt is the output, Kt is the capital stock, Nt is labor hours, and At is an exoge-

nous, labor-enhancing technology level. For simplicity, we assume that the representative

household supplies a fixed amount of labor hours, which are exogenously set Nt = 1.

The firm chooses investment according to the resource constraint It = Yt − Ct and

faces capital adjustment costs while accumulating capital stock. Formally, the law of

motion for capital is defined by:

Kt+1 = (1− δ)Kt + ϕ(It/Kt)Kt,

in which δ ∈ (0, 1) is the capital depreciation rate, and ϕ(·) is the adjustment cost function

given by:

ϕ(x) = a1 +
a2

1− 1/ξ
x1−1/ξ, (3.4)

in which ξ is the elasticity of the investment rate to Tobin’s q. The lower value of ξ implies

higher capital adjustment costs, while the extreme case of ξ = ∞ means that capital

adjustment costs are zero. We follow Boldrin, Christiano, and Fisher (2001) and choose

the constants a1 and a2 such that there are no adjustment costs in the non-stochastic
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steady state.1

3.2.3 Technology

We assume a two-state Markov switching model for productivity growth,

∆at = µst + σst · εt,

in which ∆at is log-technology growth, εt
iid∼ N(0, 1), and st is a two state Markov chain

with transition matrix Π defined by:

Π =

[
π11 1− π11

1− π22 π22

]
, π11, π22 ∈ (0, 1).

The mean µst and volatility σst of productivity growth depend on the state variable st.

We label st = 1 the "good" regime with the high mean and low volatility of productivity

growth and st = 2 the "bad" regime with the low mean and high volatility.

3.2.4 Equilibrium Asset Prices

In the competitive equilibrium of the economy, the representative household works for the

firm and maximizes the lifetime utility over a consumption stream. The representative

firm chooses labor and capital inputs (through investment) to maximize the firm’s value,

the present value of its future cash flows. The firm’s maximization problem implies the

following equilibrium conditions for asset’s j gross return Rj,t+1 :

Et [Mt+1Rj,t+1] = 1. (3.5)

In particular, the equation above is satisfied by the investment return, RI,t+1, defined by:

RI,t+1 =
1

Qt

[
Qt+1

(
1− δ + ϕ

(
It+1

Kt+1

))
+
αYt+1 − It+1

Kt+1

]
, Qt =

1

ϕ′
(
It
Kt

) . (3.6)

1Specifically, a1 = 1
ξ−1 (1− δ − exp(µ̄)) , a2 = (exp(µ̄)− 1 + δ) , in which µ̄ is the unconditional

mean µst . We find state values of remaining quantities from the conditions ϕ
(
I
K

)
= 1, ϕ

′ ( I
K

)
= 1. In

particular, the steady state investment-capital ratio is I
K = exp(µ̄)− 1 + δ.
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Aggregate Dividends

The return on investment can be interpreted as the return of an equity claim to the

unlevered firm’s payouts (Restoy and Rockinger 1994):

Dt = Yt − wtNt − It = αYt − It. (3.7)

However, the aggregate stock market dividends observed in reality are not directly com-

parable to the endogenous firm’s payouts in the model mainly because the equity prices

in the data are for leveraged corporations, in contrast to unlevered payments of a pro-

duction firm considered in our setting. Further, the standard frictionless model generates

the countercyclical firm’s payouts and hence this would substantially decrease the equity

risk premium and equity volatility. The main aim of this paper is to explore the link

between rational parameter learning and risk premiums embedded in option prices. For

the sake of a convenient interpretation of our results, we do not consider extensions of

the model that would resolve the problem with endogenous dividends. We model aggre-

gate dividends as a leverage to aggregate consumption and price an equity claim to these

calibrated dividends. Specifically, log-dividend growth is defined as:

∆dt = gd + λ∆ct + σdε
d
t , (3.8)

in which εdt
iid∼ N(0, 1), λ is a leverage factor, and gd and σd are the dividend growth rate

and volatility, respectively. We choose gd and σd to match the first and second moments

of dividend growth in the data. Our choice of λ allows us to closely match the observed

correlation between dividends and consumption in the data.

Macroeconomic Quantities and Equity Returns

The model does not admit a closed-form solution for the equilibrium quantities and,

therefore, it is solved numerically through value function iteration. The Appendix con-

tains the details of the solution algorithm. Having solved the model numerically, we look

at the asset pricing implications of rational parameter learning in the production-based

setting. We start our quantitative investigation by looking at the standard moments of

macroeconomic quantities and equity returns. The model solution provides equilibrium

investment and consumption decisions as functions of state variables, in addition to the

price-dividend ratio of an equity claim to the calibrated aggregate dividends. Therefore,
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we can readily simulate equity returns as follows:

Rt+1 =
Pt+1 +Dt+1

Pt
=
Pt+1/Dt+1 + 1

Pt/Dt

· e∆dt+1 .

The Variance Risk Premium

The main contribution of our paper is to rationalize the salient features of index options,

while explaining the salient moments of fundamentals and equity prices in the production-

based setting. The first puzzling feature associated with option prices is the variance risk

premium defined as the difference between the risk-neutral and the physical expectations

of the aggregate stock market return variance for a given horizon. Following Bollerslev,

Tauchen, and Zhou (2009) and Carr and Wu (2009), we define the variance premium

between the periods t and t+ 1 as:

vpt = V IX2
t − V OL2

t ,

in which V IX2
t and V OL2

t denote expectations of return variance under the risk-neutral

Q and the physical P probability measures, respectively. The Radon-Nykodim density

ratio
dQ
dP

=
Mt+1

Et(Mt+1)

associated with the pricing kernel allows us to compute the risk-neutral expectations and

to evaluate vpt in each period t. Formally, variance measures are calculated as:

V IX2
t = EQ

t [vart+1(rt+2)] = Et
[
dQ
dP
· vart+1(rt+2)

]
,

V OL2
t = Et [vart+1(rt+2)] .

in which

vart+1(rt+2) = Et+1

[
r2
t+2

]
− [Et+1 [rt+2]]2 .

Since the model is calibrated at the quarterly frequency, the quantity vpt effectively mea-

sures the variance premium over a quarterly horizon. For convenience of the comparison

with empirical estimates in the existing literature, we report the descriptive statistics of

the variance premium at the monthly frequency.
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Implied Volatilities

We further compute the model-based prices of European put options P o
t and solve for

their Black-Scholes implied volatilities σimp
t . Consider a European put option written on

the ex-dividend price of the equity Pt. Denote the relative price of the τ -period European

put option as Ot(τ,K) =
P ot (τ,K)

Pt
, where the strike price K is expressed as a ratio to

the price of the equity. Substituting the return on the put option into the equilibrium

condition (3.5), the relative price should satisfy:

Ot(τ,K) = Et

[
τ∏
k=1

Mt+k ·max

(
K − Pt+τ

Pt
, 0

)]
. (3.9)

We express P et+τ
P et

in terms of the dividend growth rates and price-dividend ratios on the

equity and compute model-based European put prices Ot = Ot(τ,K) via Monte Carlo

simulations. We convert them into Black-Scholes implied volatilities with properly annu-

alized continuous interest rate rt and dividend yield qt. Thus, given the time to maturity

τ, the strike price K, the risk-free rate rt and dividend yield qt, the implied volatility

σimp
t = σimp

t (τ,K) solves the equation:

Ot = e−rtτ ·K ·N(−d2)− e−qtτ ·N(−d1), (3.10)

d1,2 =

ln
(

1
K

)
+ τ

(
rt − qt ±

(σimp
t )

2

2

)
σimp
t

√
τ

.

It is worth noting that the option prices are calculated conditional on other state variables

in the economy. For convenience, we do not write the extra arguments, which would

include the capital stock and the regime of the economy as well as the subjective investor’s

beliefs in the case of the model with unknown parameters.

3.3 Quantitative Analysis

We now calibrate the production economy to illustrate quantitatively the role of param-

eter uncertainty for explaining the salient features of macroeconomic quantities, equity

returns and option prices. We use the U.S. National Income and Product Accounts

(NIPA) tables to construct the historical U.S. time series of consumption, investment,

capital and output for the period 1947:Q1 to 2016:Q4. We further retrieve the data from
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the Center for Research in Security Prices (CRSP) to obtain aggregate equity market

dividends and asset returns for the corresponding time horizon. The data related to the

variance premium measures cover the period 1990:Q1 to 2016:Q4 and is obtained from

the Chicago Board of Options Exchange (CBOE). Finally, we calculate implied volatility

curves using the prices of European options written on the S&P 500 index and traded on

the CBOE as provided by OptionMetrics. The option data set spans the period 1996:Q1

to 2016:Q4. A detailed description of our data construction of U.S. time series is provided

in the Appendix. We then calibrate the economy at a quarterly frequency. Analytical

solutions of equilibrum conditions are not available either for the full information case or

for the incomplete information setting. Thus, we solve the model numerically for each

case using the methodology provided in the Appendix. Having found the numerical solu-

tion, we compare the historical moments with model-implied statistics of quantities and

asset prices based on the 1,000 simulations of the economy.

3.3.1 Calibration

Table 3.1 summarizes the choice of parameters in the production economy of this paper.

Consistent with the real business cycle literature, we set the capital share in a Cobb-

Douglas production function at α = 0.36 and the quarterly capital depreciation rate at

δ = 0.02. The constants a1 and a2 are chosen such that there are no adjustment costs

in the non-stochastic steady state. The value of the EIS is under a long-standing debate

in the literature. Following Bansal and Yaron (2004), Gourio (2012), Ai, Croce, and

Li (2013) and Bansal et al. (2014), we choose ψ = 2. Further, the subjective discount

factor is set at β = 0.995 to produce a low mean of the risk-free rate. The relative

risk aversion is equal to γ = 7. This is a conservative value within a range of plausible

values considered by Mehra and Prescott (1985). The costs for adjusting capital are set

to ξ = 7. These choices of risk aversion and capital adjustment costs jointly generate the

large equity premium and volatility of equity returns, smooth consumption and volatile

investment, while reasonably matching the correlations between consumption, investment

and output. Even though the salient features of the variance premium and the volatility

curves implied by option prices are not directly targeted during calibration, we show that

the model with fully rational parameter learning can reasonably replicate these hard-

to-match features of the data by generating a sizable variance premium and a realistic

implied volatility surface.
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Table 3.1
Benchmark Calibration

Parameter Description Value

Panel A: Preferences, Production and Capital Adjustment Costs Functions, and Financial Leverage

β Discount factor 0.995
γ Risk aversion 7
ψ EIS 2
α Capital share 0.36
δ Depreciation rate 0.02
ξ Adjustment costs parameter 7
a1 Normalization −0.0075
a2 Normalization 0.3877

Panel B: Markov-switching Model of Productivity Growth

π11 Transition probability from expansion to expansion 0.966
π22 Transition probability from recession to recession 0.712
µ1 Productivity growth in expansion 0.48
µ2 Productivity growth in recession −1.25
σ1 Productivity volatility in expansion 1.35
σ2 Productivity volatility in recession 2.36

Panel C: Dividends Growth Process

λ Leverage ratio 4.5
gd Mean adjustment of dividend growth −1.05
σd Std. deviation of dividend growth shock 6.2

This table reports the parameter values in the benchmark calibration. Panel A presents preferences
parameters, values in the production and adjustment costs functions. Panel B shows the maximum
likelihood estimates of parameters in a two-state Markov-switching model for productivity growth.
We obtain these estimates by applying the expectation maximization algorithm (Hamilton 1990) to
quarterly total factor productivity growth rates from 1947:Q1 to 2016:Q4.

Panel B in Table 3.1 also shows the maximum likelihood estimates for the transition

probabilities πii, productivity growth rates µi as well as the volatilities σi for each state

i = 1, 2 in a parsimonious two-state Markov switching model.2 The results indicate two

separate states of the economy: an expansion with high mean and low volatility, and a

recession with low mean and high volatility of productivity growth. The expansion is

persistent with the mean duration of around 7.5 years and, according to our estimates,

the recession is a brief economic slowdown with the mean duration of less than 1 year.

Productivity is estimated to grow at the quarterly rate of about 0.48% in expansions and

about -1.25% in recessions, while the volatility almost doubles when switching from a high

2Note that it is possible to estimate a model with a larger number of states or to assume independent
regime changes in mean and volatility of productivity growth. Even though a more complex specification
should better capture time-variation in mean and volatility of productivity growth, this would result in
an increased number of parameters, making the model solution very costly numerically due to the curse
of dimensionality. Since a simple two-state model of this paper can reasonably explain option prices, a
richer specification would certainly improve our predictions.
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growth state to a low growth regime. Our specification extends the models of Cagetti

et al. (2002) and Babiak and Kozhan (2018) by introducing regime switches in the mean

and volatility of productivity growth. Our estimates remain generally consistent with

those reported in Cagetti et al. (2002) and Babiak and Kozhan (2018).

In their production-based economy, Babiak and Kozhan (2018) find that the impact

of fully rational pricing of parameter uncertainty crucially depends on the introduction of

procyclical dividends. They further introduce investment frictions in the form of costly

reversibility that would generate the more procyclical endogenous firm’s payouts. In this

paper, we do not consider any extensions of the standard business cycle model and focus

on pricing a claim to exogenous calibrated dividends defined as a leverage to aggregate

consumption (Bansal and Yaron 2004). Relative to Babiak and Kozhan (2018), we study

a learning problem in a setting in which productivity volatility switches between the

states. Furthermore, we show that the lregime switches in productivity volatility are

critical for quantitatively explaining the large and volatile variance premium as well as

the slope of volatility curves implied by index option prices.

Panel C in Table 3.1 reports the parameter values of the calibrated dividend process.

We set a leverage factor at λ = 4.5. The annual consumption volatility in our simulations

turns out to be around 1.2% thus the systematic annual dividend volatility is around 5.4%.

Further, we fix the remaining two parameters at gd = −1.05 and σd = 6.2 to approx-

imately capture the observed mean and volatility of aggregate stock market dividends.

The choice of λ and σd also implies a positive sample correlation between consumption

and dividends, which ranges between 0.35 and 0.45 in the simulations of different models.

These sample correlations correspond well to the empirical point estimate of 0.45.

3.3.2 Unconditional Moments

We start our quantitative investigation by comparing the observed features of the data

with the model-based statistics in the two versions of the benchmark calibration. First,

we report the results for the case in which the agent knows true parameter values in

the productivity growth process. Second, we consider the framework with parameter

uncertainty in which the investor learns about πii and µi for each state i = 1, 2, while

σi’s are assumed to be known. As it is common in the Bayesian literature, we employ

conjugate beta and normal distributions for the transition probabilities and mean growth

rates. We further calibrate the hyper-parameters to embed the realistic prior informa-

116



tion of agents in the model. First, we consider various lengths of a prior learning period

incorporating the information based on 100, 150 and 200 years of prior learning. Since

we start our asset pricing exercise after World War II, training samples of 100 and 150

years effectively means that the representative investor started learning about the un-

known structure of the economy in the middle of the nineteenth century or at the end

of the eighteenth century, respectively. These dates approximately correspond to the

beginning of the historical U.S. consumption and GDP growth series in the Barro-Ursua

Macroeconomic Database. Second, we center the mean prior beliefs at the true MLE

parameter estimates obtained from the post-war data. Thus, our results are not driven

by the pessimistic experience of the Great Depression and the two World Wars, but are

rather the manifestation of rational parameter learning and the information contained in

the post-war data.

Quantities, Cash Flows and Equity Returns

Panel A in Table 3.2 shows that rational parameter learning improves the model’s fit

with the empirical moments of macroeconomic quantities compared to the full informa-

tion case. In particular, the model with known parameters predicts strongly correlated

consumption, investment and output, whereas priced parameter uncertainty significantly

reduces the correlation between quantities. In particular, the unknown parameter model

with a century long training sample and unbiased prior beliefs generates the correlation

between investment growth and output growth of about ρ(∆i,∆y) = 0.91, whereas the

correlations of consumption growth with output growth and investment growth come

out about ρ(∆c,∆y) = 0.77. and ρ(∆c,∆i) = 0.45. Thus, rational parameter learning

generates additional risks that help better capture the macro dynamics of the economy

compared to the complete information model and broadly to other existing frameworks

(Kaltenbrunner and Lochstoer 2010; Liu and Miao 2015). Notice that the impact of pa-

rameter learning on correlations descends very slowly over time. The quantities gradually

become more correlated as the length of a training period becomes longer. This result

is in line with the observed pattern of empirical macroeconomic series that appear to be

more correlated in the post-war period compared to a longer sample.

Panel A in Table 3.2 also shows that both models with parameter uncertainty and com-

plete investor knowledge can reasonably capture the volatility of macroeconomic quan-

tities, though parameter learning produces lower autocorrelation in consumption growth
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compared to the data. The latter feature echoes the empirical results of the growing lit-

erature on alternative measures of consumption. In particular, Savov (2011) documents

that a measure of consumption called "garbage" has several times lower autocorrelation

compared to the reported NIPA consumption. Recently, Kroencke (2017) suggest that

one possible explanation is the filtering process used to generate the series of NIPA con-

sumption. Our paper shows that rational parameter learning can endogenously account

for the low consumption autocorrelation in line with this new evidence. The bottom of

Panel A shows that the calibrated models for dividends match well the empirical statistics

of aggregate stock market dividends.

Panel B in Table 3.2 summarizes the average annualized financial moments observed in

the data and generated by various models. The "Data" column reports the low mean and

volatility of the risk-free rate, the large equity premium and excess return volatility, the

large equity Sharpe ratio and the low mean of the log price-dividend ratio. These stylized

features pose a challenge for standard asset pricing models. Indeed, the framework with

known parameters cannot match any of the salient moments. In contrast, rational pricing

of parameter uncertainty has a large impact on equity valuations. Parameter learning

produces more than a three-fold increase in the equity premium compared to the known-

parameter model. Rational belief revisions amplify the impact of macroeconomic shocks

that help generate substantial excess return volatility and increase the mean Sharpe

ratio. The table further shows that the increased economic uncertainty in the model

with unknown parameters lowers the interest rates and equity valuations, hence allowing

to better match the average risk-free rate and price-dividend ratio. Even though the

volatility of the log price-dividend ratio remains below the sample estimate, it is around

three times higher than in the complete information setting.

Variance Premium and Option Prices

The top of Panel C in Table 3.2 provides monthly statistics for the variance risk premium

in the data and various models. As shown in the "Data" column, there is indeed a large

and volatile variance premium in the data. The variance premium has a positive skewness

and an excess kurtosis that indicate a fat-tailed distribution of the quantity. The bottom

of Panel C in Table 3.2 further reports unconditional volatility of return variance under

the physical measure, V OL2, and summary statistics of return variance under the risk-

neutral measure as captured by the squared VIX index, V IX2. The empirical quantities
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Table 3.2
Sample Moments

Data PPU FI

100 yrs 150 yrs 200 yrs ∞ yrs

Panel A: Macroeconomic Quantities and Cash Flows

σ(∆c) 1.34 1.20 1.19 1.18 1.17 1.17
σ(∆i) 4.79 3.78 3.74 3.72 3.72 3.77
σ(∆y) 2.56 1.92 1.92 1.92 1.92 1.92

ar1(∆c) 0.29 0.01 0.05 0.08 0.14 0.18

ρ(∆i,∆y) 0.72 0.91 0.94 0.96 0.98 0.99
ρ(∆c,∆y) 0.45 0.77 0.84 0.89 0.95 0.97
ρ(∆c,∆i) 0.35 0.45 0.62 0.72 0.87 0.94

E(∆d) 1.95 1.40 1.24 1.16 1.03 0.90
σ(∆d) 10.58 11.37 11.34 11.33 11.31 11.32
ar1(∆d) 0.20 0.01 0.01 0.01 0.01 0.01
ρ(∆c,∆d) 0.45 0.45 0.42 0.40 0.37 0.36

Panel B: Returns

E(Rf )− 1 1.01 1.72 1.84 1.92 2.06 2.22
σ(Rf ) 1.09 0.35 0.33 0.31 0.29 0.27

E(R−Rf ) 6.34 6.87 5.51 4.70 3.32 2.04
σ(R−Rf ) 18.65 20.50 19.11 18.18 16.44 14.74
SR(R−Rf ) 0.31 0.30 0.26 0.22 0.18 0.13

E(p− d) 3.01 3.03 3.19 3.30 3.54 3.92
σ(p− d) 0.34 0.13 0.11 0.09 0.06 0.04
ar1(p− d) 0.95 0.82 0.81 0.80 0.78 0.79

Panel C: Variance Premium

E(V P ) 10.24 8.53 5.12 3.47 1.39 0.31
σ(V P ) 10.49 7.09 4.35 2.94 1.17 0.26
skew(V P ) 2.62 3.28 3.23 3.21 3.16 3.08
kurt(V P ) 14.15 16.55 16.30 16.06 15.59 14.67

σ(V OL2) 26.14 40.50 26.30 18.27 8.03 2.29
E(V IX2) 40.10 54.33 40.91 33.41 23.63 17.66
σ(V IX2) 34.34 47.55 30.39 20.87 8.97 2.48
skew(V IX2) 3.45 3.32 3.27 3.24 3.23 3.20
kurt(V IX2) 20.72 16.37 16.02 15.86 15.75 15.55

This table reports the average moments from 1,000 simulations of the production
economy considered in this paper. The historical data moments are reported in the
data column. The macroeconomic quantities, dividends, and return variables corre-
spond to the U.S. data from 1947:Q1 to 2016:Q4. The variance premium statistics
are based on the U.S. data from 1990:Q1 to 2016:Q4. The PPU column refers to
the production economy with rational pricing of parameter uncertainty that entails
unknown transition probabilities, mean growth rates and volatilities. The FI col-
umn presents the results of the full information case in which the parameters are
known. E(x) and σ(x) denote the average sample mean and standard deviations of
x, respectively. ar1(x) and ρ(x, y) denote the average sample autocorrelation of x
and correlation between x and y, respectively. All macro and return statistics are
expressed in annualized terms, except for correlations and autocorrelations expressed
in quarterly terms. The variance premium statistics are expressed in monthly terms.
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of V OL2 and V IX2 exhibit a large time-variation, with the latter one being more volatile

in the data. The squared VIX time series has been historically large, especially during

periods of high stock market volatility, which leads to the sizable mean, positive skewness

and excess kurtosis of the squared VIX. These salient moments of the data are difficult

to reproduce in the standard asset pricing models.

The last column in Panel C of Table 3.2 documents the failure of a rational expec-

tations economy to reconcile the empirical moments. Indeed, in that case, the average

variance premium and its volatility are almost zero. A poor performance of the model

with complete investor knowledge originates from the low volatility of return variance un-

der both probability measures. The table shows that time-variation in V OL2 and V IX2

is smaller than the empirical numbers by an order of magnitude. In contrast, the "PPU"

columns in Panel C of Table 3.2 show that priced parameter uncertainty increases the

relevant moments of the variance premium and return variance measures that become

comparable to the observed statistics. In particular, the model with fully rational param-

eter learning increases the first and second moments of the variance premium by almost a

factor of 30 relative to the known parameter case. Further, rational pricing of belief revi-

sions has a long-lasting impact on the variance premium, which remains significant even

after 200 years of prior learning. Quantitatively, the mean and volatility of the variance

premium in the economy with rational parameter learning is more than ten times larger

compared to the full information setting even after a 200-year prior period. The model

better captures the size and volatility of the variance premium since rational parameter

learning produces significantly different magnitudes for the return variance under the

physical and risk-neutral measures. The table shows that there is more than a 15-fold

increase in the unconditional volatility of the V OL2 and V IX2 time series compared to

the case of no parameter uncertainty. Overall, rationally accounting for parameter un-

certainty helps to reconcile the salient moments of the variance premium and conditional

return variances.

Figure 3.1 shows the implied volatility curves for the data and various models. The

three panels plot the implied volatilities as a function of moneyness defined as a ratio of

a spot price to a strike price for 3, 6, and 12-month maturities. The empirical curves are

obtained from the polynomial extrapolation of the historical implied volatilities as de-

scribed in the Appendix. The model-based results are the sample averages of the implied

volatilities predicted by the corresponding model and are calculated as outlined in Section

3.2.4. Several features in the empirical curves are noteworthy. First, the implied volatil-
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ities for out-of-the-money put options exhibit a pronounced downward slopping pattern

called the skew. Second, the implied volatilities for the 3-month maturity options slightly

increase at high moneyness, a feature called the smirk. Third, the implied volatilities for

all moneyness values and maturities appear to be higher than the annualized stock mar-

ket volatility. These level and slope patterns of the implied volatility surface constitute

a challenge for the equilibrium asset pricing models.

Turning to the model-implied results, the panels in Figure 3.1 show the failure of the

model with complete investor knowledge in replicating the empirical regularities. The

rational expectations framework generates an almost flat term structure of the implied

volatilities (a dotted black line). In the absence of parameter uncertainty, the three

volatility curves for 3, 6, and 12-month maturities are approximately equal to the equity

return volatility. Further, the plots in Figure 3.1 illustrate the success of the model

with rational parameter learning in capturing the main properties of the empirical data.

Several insights are noteworthy. First, priced parameter uncertainty inflates the level of

the implied volatility curves. The higher degree of parameter uncertainty as measured

by a shorter prior sample leads to an upward shift in the implied volatility surface.

Second, parameter learning helps to capture the steep skew at all three maturities and

to reproduce the smirk pattern in the 3-month implied volatilities consistent with the

empirical findings. Similarly to a level shift, the implied volatility curves become steeper

at both ends of the moneyness range in response to higher structural uncertainty about

the unknown parameters. Third, the impact of parameter learning on the level and the

overall shape of the implied volatility curves is persistent as one can see by comparing

the results of the models with a 100-year training sample (a solid red line with dots)

and a 200-year prior period (a dashed red line). In the latter case, the curves flatten

and shift downward but remain largely consistent with the empirical lines. Interestingly,

the influence of belief revisions with priced parameter uncertainty does not disappear

even after a very long period of learning as the infinite-horizon model (a dotted red line)

dominates the results of the full information framework.

3.3.3 Conditional Moments

To better understand the source of the model improvement, we examine the conditional

dynamics of excess equity returns and variance measures in the models with known pa-

rameters and parameter uncertainty. Due to the multidimensional nature of learning, we
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Table 3.3
Conditional Moments

PPU FI

100 yrs 150 yrs 200 yrs ∞ yrs

Panel A: Expansion

Et(Rt+1 −Rf,t+1) 6.58 4.92 4.03 2.77 1.64
σt(Rt+1 −Rf,t+1) 19.34 17.84 16.82 15.45 14.21
SRt(Rt+1 −Rf,t+1) 0.30 0.25 0.22 0.17 0.11

Et(V Pt+1) 8.10 4.44 2.68 0.95 0.21
σt(V Pt+1) 4.85 2.99 1.83 0.69 0.16
σt(V IX

2
t+1) 33.13 22.00 14.81 6.45 2.15

σt(V OL
2
t+1) 28.28 19.01 12.99 5.77 1.99

Panel B: Recession

Et(Rt+1 −Rf,t+1) 30.30 21.19 16.12 9.32 4.53
σt(Rt+1 −Rf,t+1) 46.45 37.54 32.01 23.37 17.58
SRt(Rt+1 −Rf,t+1) 0.58 0.50 0.45 0.37 0.25

Et(V Pt+1) 28.75 16.14 9.69 3.36 0.74
σt(V Pt+1) 13.85 8.02 4.82 1.66 0.38
σt(V IX

2
t+1) 89.79 56.20 37.54 15.24 4.89

σt(V OL
2
t+1) 75.94 48.19 32.72 13.58 4.52

This table reports the conditional asset-pricing moments in the benchmark
calibration with rational parameter learning (PPU) and full information (FI).
These conditional moments are dependent on the observable state of the econ-
omy, while other state variables (beliefs about unknown parameters) are cen-
tered at the true parameter values. Symbols are defined in Table 3.2.

do not focus on a particular trajectory of the productivity growth series that would lead

to belief revisions of all unknown parameters. For convenience, we illustrate the moment

statistics of selected quantities at the onset of each regime conditional on the unbiased

parameter beliefs.

Table 3.3 presents the conditional distributions of excess equity returns, equity Sharpe

ratios, the variance premium and return variances under both probability measures over

the various phases of the business cycle. Qualitatively, the two models with complete in-

vestor knowledge and rationally priced parameter uncertainty predict similar behaviour

of asset prices across the two state. Namely, the mean and volatility of the equity and

variance risk premiums in short recessions come out above the corresponding values dur-

ing expansions. The same observation is true for the equity Sharpe ratio and volatility of

return variances. Although these responses are in line with countercyclical dynamics of

risk premiums and volatility observed in the data, the two models predict significantly dif-

ferent magnitudes. Quantitatively, in expansions priced parameter uncertainty increases

the average equity and variance risk premiums as well as the volatility of the variance
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premium, the equity return variance and the squared VIX index by the factors of 4, 38,

and 30, 14, 15, respectively, compared to the full information case. Further, the annu-

alized Sharpe ratio of excess equity returns almost triples from 0.11 to 0.30, while the

return volatility increase from 14.21% to 19.34%. The amplification mechanism turns out

to be stronger during recessions. For instance, the first and second moments of the excess

equity returns in the parameter learning model are now around 6.5 and 2.5 times higher

than with known parameters, whereas the variance premium volatility and time-variation

of V OL2 and V IX2 are up by a factor of more than 36, 16, and 18, respectively.

Overall, the above analysis strongly suggests that fully rational pricing of parameter

uncertainty in the productivity growth process is an important amplification mechanism

of the conditional moments of asset prices, especially equity return variances under the

physical and risk-neutral probability measures. In the presence of priced parameter un-

certainty, the representative investor is strongly concerned about the high realized equity

variance and the aggregate stock market declines in response to pessimistic belief re-

visions during recessions. Consequently, he is willing to pay a high premium for the

variance swaps and European put options that would provide a high payoff in the states

of low productivity growth. Interestingly, although very parsimonious, the model with

a realistic learning problem and rational pricing of belief changes is able to capture a

large number of features in the data without relying on the peso-type events or exotic

preferences.

3.4 The Impact of Priced Parameter Uncertainty and

Volatility Risks

This section performs a two-part comparative statics exercise to examine the impact

of fully rational parameter learning and regime-switching volatility in the productivity

process. First, we study the role of priced parameter uncertainty by comparing the bench-

mark framework and the model with anticipated utility, a commonly assumed approach

for dealing with parameter uncertainty. Under anticipated utility pricing, the representa-

tive agent updates his beliefs about unknown parameters upon arrival of the new data, but

he treats his current beliefs as true parameter values in the decision-making process. The

numerical solution methodology for this case is presented in the Appendix. Second, we

shut down regime shifts in productivity growth volatility by setting the volatility param-
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Table 3.4
Sensitivity Analysis

Data PPU AU PPUσ AUσ

σ1 6= σ2 σ1 = σ2

Panel A: Macroeconomic Quantities

σ(∆c) 1.34 1.20 1.18 1.18 1.20
σ(∆i) 4.79 3.78 3.75 3.90 3.93
σ(∆y) 2.56 1.91 1.92 1.98 1.99

ar1(∆c) 0.29 0.01 0.18 0.11 0.24

ρ(∆i,∆y) 0.72 0.91 0.99 0.96 0.99
ρ(∆c,∆y) 0.45 0.77 0.97 0.89 0.98
ρ(∆c,∆i) 0.35 0.45 0.93 0.73 0.94

E(∆d) 1.95 1.40 0.90 0.57 0.24
σ(∆d) 10.58 11.37 11.34 11.32 11.37
ar1(∆d) 0.20 0.01 0.01 0.01 0.02
ρ(∆c,∆d) 0.45 0.45 0.36 0.39 0.35

Panel B: Returns

E(Rf )− 1 1.01 1.72 2.22 1.79 2.16
σ(Rf ) 1.09 0.35 0.27 0.29 0.26

E(R−Rf ) 6.34 6.87 2.04 3.89 1.78
σ(R−Rf ) 18.65 20.50 14.77 16.14 14.32
SR(R−Rf ) 0.31 0.30 0.13 0.22 0.12

E(p− d) 3.01 3.03 3.92 3.46 4.00
σ(p− d) 0.34 0.13 0.08 0.07 0.03
ar1(p− d) 0.95 0.82 0.90 0.86 0.76

Panel C: Variance Premium

E(V P ) 10.24 8.53 0.31 1.69 0.16
σ(V P ) 10.49 7.09 0.27 1.17 0.10
skew(V P ) 2.62 3.28 3.10 2.80 2.61
kurt(V P ) 14.15 16.55 15.03 11.43 10.03

σ(V OL2) 26.14 40.50 2.29 21.84 1.30
E(V IX2) 40.10 54.33 17.66 24.34 13.36
σ(V IX2) 34.34 47.55 2.48 25.38 1.93
skew(V IX2) 3.45 3.32 3.20 3.32 3.20
kurt(V IX2) 20.72 16.37 15.55 11.24 10.34

This table presents the results of the comparative statics exercise for
the benchmark production economy. The PPU and AU columns refer
to the benchmark calibration with regime-switching volatilities under
rational pricing of parameter uncertainty and an anticipated utility
case. The PPUσ and AUσ columns refer to the economy with no
regime shifts in the productivity growth volatility under the two ap-
proaches of dealing with parameter uncertainty. Symbols are defined
in Table 3.2.

eter to a constant steady-state value implied by the estimated Markov switching process.

We solve this model with homoskeadastic volatility for the two cases: priced parameter
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Table 3.5
Conditional Moments

PPU AU PPUσ AUσ

Moments σ1 6= σ2 σ1 = σ2

Panel A: Expansion

Et(Rt+1 −Rf,t+1) 6.58 1.64 3.41 1.67
σt(Rt+1 −Rf,t+1) 19.34 14.21 15.26 14.09
SRt(Rt+1 −Rf,t+1) 0.30 0.12 0.22 0.12

Et(V Pt+1) 8.10 0.21 1.28 0.09
σt(V Pt+1) 4.85 0.16 0.96 0.08
σt(V IX

2
t+1) 33.13 2.15 17.05 1.15

σt(V OL
2
t+1) 28.28 1.99 14.79 1.07

Panel B: Recession

Et(Rt+1 −Rf,t+1) 30.30 4.66 15.16 3.38
σt(Rt+1 −Rf,t+1) 46.45 17.83 34.60 16.64
SRt(Rt+1 −Rf,t+1) 0.58 0.25 0.50 0.20

Et(V Pt+1) 28.75 0.77 12.88 0.45
σt(V Pt+1) 13.85 0.40 6.08 0.23
σt(V IX

2
t+1) 89.79 5.27 43.74 3.19

σt(V OL
2
t+1) 75.94 4.86 37.66 2.97

This table reports the conditional asset-pricing moments in the bench-
mark calibration and the economy with no regime shifts in the productivity
growth volatility. For each model, the table presents the results with ra-
tional parameter learning and anticipated. These conditional moments are
dependent on the observable state of the economy, while other state vari-
ables (beliefs about unknown parameters) are centered at the true parameter
values. Symbols are defined in Table 3.2.

uncertainty and anticipated utility. The robustness exercise conducts the comparison

between different models to evaluate the contribution of alternative assumptions about

the productivity process and learning.

Table 3.4 presents the moments of quantities and asset prices. The "PPU" and "AU"

columns show that using anticipated utility pricing of parameter uncertainty greatly re-

duces the size and volatility of risk premiums in the benchmark specification. The average

excess equity returns are more than three times smaller compared to the benchmark model

with rational parameter learning, while the first and second moments of the variance pre-

mium are reduced by an order of magnitude and are almost equal to zero. Generally,

when looking at all results for macroeconomic quantities and asset prices, one can observe

that the anticipated utility model performs almost identical to the full information case.

The "PPUσ" and "AUσ" columns in Table 3.4 show the performance of the model with

no regime shifts in the productivity growth volatility under the two learning types. Sim-

ilarly to the benchmark results, anticipated utility generates the moments far from the
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data estimates, while rational parameter learning somehow improves the results. How-

ever, shutting down the regime switches in volatility of productivity growth significantly

reduces the amplification mechanism of fully rational parameter learning on asset prices.

Thus, although the risk premiums remain significant in this case, the magnitudes become

much lower compared to the data. For instance, the mean and volatility of the variance

premium are, respectively, six and eight times smaller than the empirical estimates.

Figure 3.2 further augments the sensitivity results by plotting the implied volatility

curves for the benchmark calibration with anticipated utility (a red line) and the constant

volatility framework with priced parameter uncertainty (a blue line). The plots show that

the model-generated implied volatility skew at the 3, 6, and 12-month maturities signif-

icantly flattens and becomes lower than in the data, though the latter model performs

slightly better.

Finally, Table 3.5 looks at the conditional moments of asset prices. It confirms that

introducing time-varying productivity volatility further reinforces the impact of fully

rational parameter learning on the risk premiums and volatility of return variances. The

presence of regime-dependent volatility raises the concerns of the representative investor

about the high volatility of innovations shocks to productivity growth in bad times. These

concerns are priced under investor rational parameter learning that become instrumental

in capturing the large and volatile variance premium as well as high prices of index

options.

3.5 Conclusion

This paper studies a production economy with regime switches in the conditional mean

and volatility of productivity growth. The representative investor faces uncertainty about

the true parameters of the productivity process and rationally learns about the unknown

parameters from the data. We estimate the model using the expectation maximization al-

gorithm on U.S. post-war productivity data and show that it can generate a large variance

risk premium and a realistic implied volatility surface, while simultaneously capturing the

salient properties of cash-flows, equity returns, the risk-free rate and macroeconomic vari-

ables. Further, we show that the volatility risk in productivity growth, combined with

priced parameter uncertainty, carries a quantitatively significant risk premium in the

prices of equity index options. Shutting down time-varying volatility risk in productiv-

ity growth reduces the impact of fully rational parameter learning on the model’s asset
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prices, especially the variance premium and the volatilities implied by index option prices.

This suggests the important role of rational investor learning and fluctuating economic

volatility in macro-finance models.
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Appendix C

C.1 Numerical Algorithm: All Known Parameters

This section reviews the numerical solution methodology for the model with full infor-

mation and parameter uncertainty. In this paper, we focus on an economy with learning

about unknown transition probabilities, mean growth rates, and volatility of productivity

growth.1 For the unknown parameter case, we further provide numerical solutions for

anticipated utility pricing and priced parameter uncertainty. Here, we give details on

how the continuation utility and the levered equity claim are computed for the economy

with all parameters known. This case simplifies solving a standard rational expectations

model in which the agent knows true parameters of the economy.

Productivity growth is given by:

∆at = µst + σst · εt,

in which εt
iid∼ N(0, 1), st is a two state Markov chain with transition matrix:

Π =

[
π11 1− π11

1− π22 π22

]
,

in which πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks

1It might be instructive to consider simpler models with learning about the transition probabilities
only or learning about the transition probabilities and mean growth rates. Please refer to Babiak and
Kozhan (2018) for details about the numerical solution methodology in these two cases.
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εt. We define the following stationary variables:

{
C̃t, Ĩt, Ỹt, K̃t, Ũt

}
=

{
Ct
At
,
It
At
,
Yt
At
,
Kt

At
,
Ut
At

}
The household’s problem is:

Ũt = max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β

(
Et

[
Ũ1−γ
t+1 ·

(
At+1

At

)1−γ
]) 1− 1

ψ
1−γ


1

1−ψ

(C.1)

subject to the constraints:

C̃t + Ĩt = K̃α
t N̄

1−α (C.2)

e∆at+1K̃t+1 = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t (C.3)

∆at = µst + σst · εt, εt ∼ N(0, 1) (C.4)

C̃t ≥ 0, K̃t+1 ≥ 0 (C.5)

in which the subscript t indicates the time, Et(·) denotes the expectation conditional on

the information available at time t. Because the parameters are assumed known, st and

K̃t are the only state variables in the economy. Ultimately, the recursive equation (C.1)

can be rewritten as:

Ũt(st, K̃t) (C.6)

= max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β

(
Et

[
Ũt+1

(
st+1, K̃t+1

)1−γ
· e(1−γ)∆at+1

]) 1− 1
ψ

1−γ


1

1−ψ

To solve the recursion (C.6), we use the the value function iteration algorithm. In par-

ticular, the numerical algorithm proceeds as follows:

1. We find the de-trended steady state capital K̃ss, assuming the productivity growth

equals the steady state level predicted by a Markov-switching model. The state

space for capital normalized by technology is set at [0.1K̃ss, 2.6K̃ss]. We further use

nk = 100 points on a grid for capital in the numerical computation. A denser grid

does not lead to significantly different results.
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2. For any level of capital K̃t at time t, we construct a grid for Ĩt with uniformly

distributed points between 0 and K̃α
t N̄

1−α. Specifically, we use ni = 200 points.

3. For the expectation, we use Gauss-Hermite quadrature with ngh = 8 points. Using

the quadrature weights and nodes, we can calculate the expression on the right

hand side.

4. We solve the optimization problem in the Bellman equation (C.6) subject to (C.2)-

(C.5) and update a new value function Ũt = Ũt(st, K̃t) given an old one Ũt+1 =

Ũt+1(st+1, K̃t+1).

5. We iterate Steps 2-4 by updating the continuation utility on each iteration until a

suitable convergence is achieved. Specifically, the stopping rule is that the distance

between the new value function and the old value function satisfies |Ũt+1−Ũt|/|Ũt| <
10−12.

C.2 Numerical Algorithm: Anticipated Utility

In the anticipated utility case, the representative household learns about unknown param-

eters but ignores parameter uncertainty when making decisions. The numerical solution

proceeds as follows. At each time t, the household holds his current beliefs and solves for

the continuation utility and the levered equity claim in the rational expectations model

in which the true parameter values in the productivity growth process are centered at

the time t posterior means. In the next period t + 1, the household updates his beliefs

upon observing new data and resolves the rational expectations economy in which the

true parameters are centered at the time t + 1 posterior means. In sum, the numerical

algorithm reduces to applying the methodology for the full information case with a set

of model parameters, which are equal to the mean beliefs at each point in time t.
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C.3 Numerical Algorithm: Priced Parameter Uncer-

tainty

The numerical solution for the case of priced parameter uncertainty consists of two main

steps.2 First, we solve for the equilibrium pricing ratios when true parameters are actually

known by the household (by assumption, these are learned at T = ∞). We find the

solution for this simplest limiting economy on a dense set of state variables by applying

the methods outlined in Appendix C.1. Second, we use the known parameters boundary

economy as a terminal value in the backward recursion to obtain the equilibrium model

solution at each time t.

C.3.1 Unknown Transition Probabilities, Unknown Mean Growth

Rates, and Unknown Volatilities

Here, we outline the details of the numerical solution for the model with the unknown

transition probabilities, mean growth rates and the volatility of productivity growth.

Solving for the Continuation Utility

Productivity growth is given by:

∆at = µst + σst · εt,

in which εt
iid∼ N(0, 1), st is a two state Markov chain with transition matrix:

Π =

[
π11 1− π11

1− π22 π22

]
,

in which πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks

εt.

The representative household does not know the true values of the transition proba-

bilities (π11, π22), the mean growth rates (µ1, µ2) and the volatilities (σ1, σ2), but observes

states (st) of the economy. At time t = 0, the household holds priors about unknown

2Johnson (2007) uses this solution methodology in a case with parameter learning and power utility.
Johannes, Lochstoer, and Mou (2016) and Collin-Dufresne, Johannes, and Lochstoer (2016) extend this
approach to the case of Epstein-Zin utility in the endowment economy. We further extend the numerical
solution to the case of Epstein-Zin utility in the production economy.
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parameters and updates beliefs each period upon realization of new series and regimes.

We assume a conjugate prior for all parameters: the Beta distributed prior and the trun-

cated normal-inverse-gamma prior for the transition probabilities, the mean growth rates

and volatilities, respectively.

The Beta distribution has the probability density function of the form:

p(π|a, b) =
πa−1(1− π)b−1

B(a, b)
,

in which B(a, b) is the Beta function (a normalization constant), a and b are two positive

shape parameters. We are particularly interested in the expected value of the Beta

distribution defined by:

E[π|a, b] =
a

a+ b
.

We use two pairs of hyper-parameters (a1, b1) and (a2, b2) for unknown transition proba-

bilities π11 and π22, respectively. At time t, the household uses Bayes’ rule and the fact

that states are observable to update hyper-parameters for each state i as follows:

ai,t = ai,0 + #(state i has been followed by state i), (C.7)

bi,t = bi,0 + #(state i has been followed by state j), (C.8)

given the initial prior beliefs ai,0 and bi,0. Once we find the limiting boundary economies

on the first step, we perform a backward recursion using the following state variables

τ1,t = a1,t − a1,0 + b1,t − b1,0 (C.9)

λ1,t = Et[π11] =
a1,t

a1,t + b1,t

(C.10)

τ2,t = a2,t − a2,0 + b2,t − b2,0 (C.11)

λ2,t = Et[π22] =
a2,t

a2,t + b2,t

(C.12)

Furthermore, we denote hyper-parameters of the truncated normal-inverse-gamma

distributed prior for the mean and variance of productivity growth in each state i by

(µi,t, Ai,t) and (bi,t, Bi,t). Formally, at time t the joint prior over the mean µi and variance

σ2
i conditional on the data ∆at and the states of the economy st is:

p(µi, σ
2
i |∆at, st) = p(µi|σ2

i ,∆a
t, st)p(σ2

i |∆at, st),
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in which

p(σi|∆at, st) = IG

(
bi,t
2
,
Bi,t

2

)
,

p(µi|σ2
i ,∆a

t, st) = N(µi,t, Ai,tσ
2
i ).

We update these hyper-parameters by the Bayes’ rule as follows:

µi,t+1 = µi,t + 1st+1=i
Ai,t
Ai + 1

(∆at+1 − µi,t) (C.13)

A−1
i,t+1 = A−1

i,t + 1st+1=i, (C.14)

bi,t+1 = bi,t + 1st+1=i, (C.15)

Bi,t+1 = Bi,t + 1st+1=i
(∆at+1 − µi,t)2

1 + Ai,t
(C.16)

in which i ∈ {1, 2}, 1 is an indicator function that equals 1 if the condition in subscript

is true and 0 otherwise.

Note that since the hyper-parameters Ai,t’s and bi,t’s are a function of the time spent

in each period, the following 8-dimensional vector

Xt ≡ {τ1,t, λ1,t, τ2,t, λ2,t, µ1,t, µ2,t, B1,t, B2,t}

is sufficient statistics for the priors. Thus, we can define Xt+1 using the equations (C.7)-

(C.12), (C.13)-(C.16), the next period regime, and sufficient statistics at time t :

Xt+1 = f(st+1, st, Xt).

We further define Xs
t ≡ {τ1,t, λ1,t, τ2,t, λ2,t} and X∆a

t ≡ {K̃t, µ1,t, µ2,t, B1,t, B2,t}, in which

the superscripts s and ∆a indicate that variables in the vectorsXs
t andX∆a

t are a function

only of the observed state realization st and a function of the realized productivity growth

as well. Thus, Xt =
[
Xs
t , X

∆a
t

]
. Using these notations, we can rewrite

Ũt+1(st+1, Xt+1) = Ũt+1(st+1, st, X
s
t ,∆at+1, X

∆a
t )

to better indicate the dependence of state variables on specific shocks. Ultimately, the
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recursive equation (C.1) is of the same form:

Ũt(st, Xt) (C.17)

= max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β
(
Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]) 1− 1
ψ

1−γ


1

1−ψ

,

in which the expectation on the right hand side is equivalent to:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]
=

2∑
st+1=1

Et(πst+1,st |st, Xs
t ) ...

× Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
. (C.18)

In this case, we compute the conditional expectation in (C.18) by integrating over

the conditional distribution of mean growth rates and volatilities as well as Gaussian

distribution of the error term in productivity growth. In particular:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
≈

J∑
j=1

ωε(j)

[
K∑
k=1

ωσ2
st+1

(k)
L∑
l=1

ωµst+1
(l) · Ũ1−γ

t+1

(
st+1, st, X

s
t ,∆a(j, k, l), X∆a

t

)
· e(1−γ)∆a(j,k,l)

∣∣∣st+1, st, Xt

]
,

(C.19)

in which ωε(j) is the quadrature weight corresponding to the quadrature node nε(j) used

for the integration of a standard normal shock εt+1 in productivity growth, ωσ2
st+1

(k) and

ωµst+1
(l) are the quadrature weights corresponding to the quadrature nodes nσ2

st+1
(k) and

nµst+1
(l) used for the integration of a truncated inverse gamma variable σ2

st+1
and a trun-

cated standard normal variable µst+1 , respectively. The observed realized productivity

growth, ∆a(j, k, l), and a state variable, K̃t+1(j, k, l), are updated as follows:

∆a(j, k, l) = nµst+1
(l) +

√
nσ2

st+1
(k) · nε(j) (C.20)

e∆a(j,k,l)K̃t+1(j, k, l) = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t, (C.21)
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in which

Ĩt = K̃α
t N̄

1−α − C̃t. (C.22)

Finally, the numerical backward recursion can be perform by using (C.17)-(C.22).

The boundary conditions are defined by the limiting economies τ1,∞ and τ2,∞, in which

the transition probabilities π11 and π22, mean growth rates µ1 and µ2, volatilities σ1 and

σ2, are known.

Solving for a Dividend Claim

We also solve for the price-dividend ratio of the equity claim written on aggregate divi-

dends, which are defined as a leverage to aggregate consumption. Let exogenous aggregate

dividends be given by:

∆dt+1 = gd + λ∆ct+1 + σdεd,t+1,

in which gd =
(

1− λ
)(
E(P(s∞ = 1|π11, π22))µ1 +E(P(s∞ = 2|π11, π22))µ2

)
and P(s∞ =

i|π11, π22) is the ergodic probability of being in state i conditional on the transition prob-

abilities π11 and π22. Note that the long run mean of dividends growth, gd, changes under

the household’s filtration, though the true long run growth is constant. The subjective

beliefs about the true parameter values induce fluctuations in gd, which can be expressed

as gd = gd(st+1, st, Xt).

The equilibrium condition for the price-dividend ratio is standard in the Epstein-Zin

economy and is given by:

PDt = Et

β(C̃t+1

C̃t

)− 1
ψ (

At+1

At

)− 1
ψ

 Ũt+1 ·
(
At+1

At

)
Rt

(
Ũt+1 ·

(
At+1

At

))


1
ψ
−γ (

Dt+1

Dt

)
(PDt+1 + 1)


(C.23)

Similarly to the solution for the value function, we rewrite all variables in the recursion

(C.23) as a function of the state variables and further use quadrature-type numerical

methods to evaluate expectations on the right hand side of (C.23). Additionally, we

update the long run dividends growth, gd(st+1, st, Xt), which is in fact random. Conse-

quently, the equilibrium recursion used to solve the model is then:
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PDt(st, Xt, )

= Et

 βe(λ−
1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st, Xt



= Et

Et
 βe(λ−

1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st+1, st, Xt


∣∣∣∣∣st, Xt


=

2∑
st+1=1

P(st+1|st, Xs
t ) ...

× Et

 βe(λ−
1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st+1, st, Xt


=

2∑
st+1=1

Et(πst+1,st|st, Xs
t ) ...

× Et

 βe(λ−
1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st+1, st, Xt



Again, the conditional expectation of transition probabilities under the household’s filtra-

tion permits an analytical formula, while the inner expectation in the expression above

can be evaluated using the quadrature-type integration methods.

Limiting Economies - Boundary Values for General Case

The key assumption of the numerical solution is that the household eventually learns

the true values of all uncertain parameters in productivity growth. Thus, the simplest

limiting economy is the one in which all parameters are known, including both transition

probabilities π11 and π22, mean growth rates µ1 and µ2, volatilities σ1 and σ2. In this case,

st and Kt are the only state variables in the economy. We employ the numerical solution

methodology outlined for all known parameters. Specifically, we find the continuation

utility and the price-dividend ratio of the equity claim for a set of parameter values
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π11, π22, µ1, µ2, σ1 and σ2.

C.3.2 Existence of Equilibrium

Similarly to Collin-Dufresne, Johannes, and Lochstoer (2016) and Johannes, Lochstoer,

and Mou (2016), the existence of the equilibrium in our production-based economy re-

lies on the fact that the value function is concave and finite for all parameters-known

economies. Therefore, we verify that these conditions are satisfied for all limiting bound-

ary economies.
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