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Abstract

This dissertation consists of three chapters dealing with the topic of heterogeneity in
macroeconomics and macroeconomic models.

Chapter 1 contributes to the literature on computational approaches to solving DSGE
models with heterogeneous agents. One possible approach, a hybrid method described in
Reiter (2009) combines a nonlinear solution with respect to individual state variables and a
linearized solution with respect to aggregate shocks. Since linearization has typically been
used in representative agent models, a natural question is how well it works in a setting
with heterogeneity and whether a higher order approximation is not needed. I compare
solutions obtained with linearization and second order perturbation for a benchmark
stochastic growth model with idiosyncratic labor income shocks. In terms of accuracy,
I find that second order solution does not differ much when aggregate volatility is low
(e.g. in case of a typical calibration for productivity shocks in developed economies), but
becomes more precise when volatility is higher. Another potential issue is that linearization
implies certainty equivalence, which makes it unsuitable for analyzing certain issues. I
illustrate potential economic applications of the 2nd order solution by showing how it can
be used to easily compute welfare costs of uncertainty conditional on an agent’s individual
state or to capture effects of time-varying volatility in aggregate shocks.

Chapter 2 studies risk premia in an incomplete-markets economy with households
facing idiosyncratic consumption risk. If the dispersion of idiosyncratic risk varies over
the business cycle and households have a preference for early resolution of uncertainty,
asset prices will be affected not only by movements in current and expected future
aggregate consumption (as in models with a representative agent), but also by news
about current and future changes in cross-sectional distribution of individual consumption.
I investigate whether this additional effect can help to explain high risk premia in a
production economy, where the aggregate consumption process is endogenous and thus
can potentially be affected by the presence of idiosyncratic risk. Analyzing a neoclassical
growth model combined with Epstein-Zin preferences and a tractable form of household
heterogeneity, I find that countercyclical idiosyncratic risk increases the risk premium, but
also effectively lowers willingness of households for intertemporal substitution and thus
changes the dynamics of aggregate consumption. Nevertheless, with the added flexibility
of Epstein-Zin preferences, it is possible to both increase risk premia and to maintain the
same dynamics of quantities if we allow for higher intertemporal elasticity of substitution
at the individual level.
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Chapter 3 investigates effects of heightened uncertainty on firms and their owners. An
uncertainty shock that increases dispersion in firm-specific productivity will typically lead
to a drop in economic activity as firms delay investments due to the higher value of waiting.
Given that in the real world, firm ownership is far from perfectly diversified, it is also
likely that larger volatility affects firm owners as well. Motivated by empirical evidence
showing that more financially developed countries respond less strongly to uncertainty
shocks, I use a dynamic model with heterogeneity across both firms and risk-averse firm
owners to look at how a degree of diversification affects the response of the economy to
such a shock. If a substantial part of an entrepreneur’s income comes from a single firm
which they control, an increase in uncertainty will cause a further drop in investment and
consumption and a greater increase in savings due to entrepreneur’s precautionary motive
and risk aversion. As a result, the impact of an uncertainty shock is more amplified in
economies with lower degrees of diversification.
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Abstrakt

Dizertace obsahuje tři kapitoly zabývající se heterogeneitou v makroekonomii a makroeko-
nomických modelech.

Kapitola 1 přispívá k literatuře o výpočetních přístupech k řešení DSGE modelů s
heterogenními agenty. Jeden z možných přístupů, hybridní metoda popsaná v práci Reitera
(2009), kombinuje nelineární řešení vzhledem k individuálním stavovým proměnným a
linearizované řešení vzhledem k agregátnímu šoku. Jelikož linearizace se typicky používá
v modelech s reprezentativním agentem, vyvstává otázka, jak dobře funguje v modelech s
heterogenitou a jestli není potřeba použít aproximace vyššího řádu. V kapitole porovnávám
linearizaci s perturbací druhého řádu pro základní stochastický model ekonomického
růstu s idiosynkratickými šoky v příjmech z práce. Co se týče přesnosti, zjišťuji, že
řešení druhého řádu se moc neodlišuje od lineárního, pokud je agregátní volatilita nízká
(jako například v kalibraci typické pro rozvinuté země), ale umožňuje dosáhnout větší
přesnosti při vyšších úrovních volatility. Dalším potenciálním problémem linearizace je
vlastnost jistotní ekvivalence, kvůli které je linearizace nevhodná pro analyzování určitých
otázek. Ilustruji potenciální ekonomické aplikace řešení druhého řádu ukázkou, jak se dá
využít k jednoduchému výpočtu nákladů blahobytu z důvodů nejistoty v závislosti na
individuálních stavových proměnných agenta, nebo k zachycení efektů v čase se měníci
volatility agregátních šoků.

Kapitola 2 zkoumá rizikovou prémii v ekonomice s nekompletními trhy a domácnostmi
čelícími idiosynkratickému riziku ve spotřebě. Pokud je rozptyl idiosynkratického rizika
proměnlivý v průběhu hospodářského cyklu a domácnosti preferují dřívější rozřešení
nejistoty, pak ceny finančních aktiv budou ovlivněny nejen zprávami o současné a očeká-
vané budoucí spotřebě (jako je tomu v modelech s reprezentativní domácností), ale také
zprávami o současných a budoucích změnách distribuce individuální spotřeby napříč
domácnostmi. V článku zkoumám, jestli tento dodatečný efekt může pomoci vysvětlit
vysokou rizikovou prémii v produkční ekonomice, ve které je proces pro agregátní spotřebu
endogenní a potenciálně může být ovlivněn přítomností idiosynkratického rizika. Analýzou
neoklasického růstového modelu kombinovaného s Epstein-Zin preferencemi a jednoduše
řešitelnou formou heterogenity domácností jsem zjistil, že proticyklické idiosynkratické
riziko zvyšuje rizikovou prémii, ale zároveň snižuje efektivní ochotu domácností k in-
tertemporální substituci, čímž se změní dynamika agregátní spotřeby. Pokud umožníme
vyšší elasticitu intertemporální substituce na individuální úrovni, pak je díky flexibilitě
Epstein-Zin preferencí možné zvýšit rizikovou prémii beze změny dynamiky agregátních
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veličin.
Kapitola 3 zkoumá efekt zvýšené nejistoty na podniky a jejich vlastníky. Šok zvyšující

nejistotu prostřednictvím zvětšeného rozptylu produktivity mezi podniky vede typicky
k poklesu ekonomické aktivity, kdy firmy odsouvají investice z důvodu vyšší hodnoty
vyčkávání. Vzhledem k tomu že ve skutečnosti není vlastnictví podniků perfektně diverzi-
fikováno, dá se očekat, že zvýšená volatilita bude mít přímý dopad taky na vlastníky firem.
Motivován empirickými odhady, které ukazují že více finančně rozvinuté země reagují
méně citlivě na šoky zvyšující nejistotu, za pomoci dynamického modelu s heterogenitou na
úrovni firem a také rizikovo-averzních podnikatelů zkoumám do jaké míry ovlivňuje úroveň
diverzifikace odezvu ekonomiky na zvýšenou nejistotu. Pokud značná část podnikatelova
příjmu pochází z jeho vlastní firmy, větší nejistota způsobí dodatečný pokles investic a
spotřeby a větší nárůst úspor kvůli averzi k riziku a preventivnímu spoření podnikatelů.
Ve výsledku ekonomiky s menší diverzifikací reagují na šoky zvyšující nejistou intenzivněji.
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Introduction

Macroeconomic theory often proceeds by constructing and studying models, i.e. simplified
artificial economies which ignore many real world features. One commonly used simplifi-
cation is to assume that many different agents in the economy can be captured by a single
“representative agent” standing in for the “average” household or firm. Of course, the
main feature of any model is precisely that it abstracts away from details that bear little
relevance to the question under consideration, and the representative agent approach has
been fruitfully used to study many issues over the decades. Nevertheless, for many topics
heterogeneity actually plays a key role. A model with a representative agent can hardly
offer much insight into the determinants of inequality or about the distributional impacts
of different policies, but even for some of the more traditional topics, a large degree of
movement and uncertainty at the individual level can affect how the economy behaves in
the aggregate. The obvious disadvantage of using models with heterogeneity is that they
are, in general, more complicated and less tractable. Still, with advances in methodology,
computing power and the availability of large microeconomic datasets, macroeconomists
have become increasingly interested in using models that explicitly account for differences
between individuals in the economy.

The first chapter in this dissertation deals with the hard methodological issue of how
to solve dynamic stochastic equilibrium models that contain a population of agents facing
uninsurable shocks and thus differing in their individual outcomes. Agents usually need
to forecast future variables such as prices in order to behave optimally, but the future
state of the economy will, in general, depend both on present decisions of agents and
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on their current cross-sectional distribution. For example, two economies with the same
average level of capital may evolve differently depending on how the capital is distributed
across households. As a result, the distribution becomes a state variable in the model,
and thus needs to be approximated with some finite-dimensional representation in order
to solve the model numerically. The chapter looks more closely at one particular approach
previously proposed in the literature that allows for a relatively rich representation of the
distribution (such as a histogram with hundreds of points) by using linearization around
the steady state to deal with aggregate shocks. I investigate potential benefits of replacing
linearization with second-order approximation, both in terms of solution accuracy and
economic applications for which linearization would be too restrictive.

The remaining two chapters study effects of time-varying volatility faced by individual
agents in two different contexts. The second chapter considers the risk premium on financial
assets in a situation when households face cyclical dispersion in individual consumption
due to uninsurable risks, and also have Epstein-Zin preferences for early resolution of
uncertainty. According to standard theory, the risk premium of an asset depends on
how it covaries with marginal utility, typically related to consumption growth. With
preferences for early resolution of uncertainty, changes in expected future consumption
further away also become another priced risk factor (so-called long run risk), and with
cyclical dispersion in individual consumption, so does the current level of dispersion.
When the two features are combined, an additional interaction term representing news
about future levels of dispersion will become relevant as well, and can potentially help
to explain high risk premia observed in real markets. I investigate this mechanism in a
model where aggregate consumption is determined endogenously through production and
capital accumulation, while heterogeneity in individual consumption is incorporated on
top of it in a tractable manner. Accounting for production turns out to matter because
the presence of cyclical individual risk will affect incentives for intertemporal substitution
at the aggregate level, which in turn leads, all else being equal, to different dynamics of
aggregate quantities.

The last chapter shifts attention to heterogeneity on the firm side of the economy.
Empirically, we observe large differences in productivity between firms. When firms face
idiosyncratic productivity shocks, they will typically accumulate capital in good times
and disinvest in bad times. On the other hand, if they face an overall increase in the
volatility of shocks and when investment is irreversible, firms across the board will respond
by delaying investment due to the value of waiting becoming higher in more uncertain
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times. An uncertainty shock, in the sense described, will cause a afall in overall investment
and can lead to a drop in economic activity and and, poitentially, recession. If the firms
had many owners, each of whom holds a diversified portfolio of many firms, the story
ends here. However, in the real world, firm owners are not perfectly diversified and a
risk-averse entrepreneur who receives a substantial part of their income from a single firm
will be directly affected by higher volatility of the firm’s profits. Due to risk aversion and
the precauionary saving motive, this in turn would represent an additional incentive to
decrease both consumption and investment while increasing savings. Therefore, in this
chapter I consider how a lack of diversification in firm ownership can make an economy’s
response to an uncertainty shock stronger and more persistent, both empirically and by
using a dynamic model with heterogeneity that affects both firms and their owners.

3
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Chapter 1
Solving a heterogeneus-agent DSGE model

with 2nd-order perturbation
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1.1 Introduction

Modern macroeconomic theory is to a large extent based on dynamic, stochastic, gen-
eral equilibrium models with explicit microfoundations. This work has often relied on
simplifying the model by working with a single representative agent, which makes the
analysis tractable. In recent years, however, macroeconomists have increasingly focused
their attention on models with heterogeneous agents, not only to check the robustness of
previous results, but also to study questions which are simply unsuitable for a representa-
tive agent framework, such as the distribution of income. Heathcote, Storesletten, and
Violante (2009) and Guvenen (2011) provide a recent review of this research, which shows
that heterogeneity can affect both the level and the dynamics of aggregate variables, and
is relevant for evaluating welfare effects that may differ across different agents. More
generally, it allows us to study not only the determination and dynamics of aggregates,
but also cross-sectional distributions of variables, which may have direct consequences for
both economic theory and policy.

Incorporating heterogeneity naturally raises issues related to solving these types of
models using numerical methods, especially when we want to include aggregate uncertainty
in the model as well. While in a representative agent model we can, for example, work with
a single variable representing aggregate capital, with heterogeneity the whole distribution
of capital holdings across agents becomes a relevant state variable, which increases the
dimension of the problem tremendously. Thus, research into efficient computational
methods for heterogeneous-agent DSGE models has been the subject of a steady stream
of attention by macroeconomists, starting with the seminal paper by Krusell and Smith
(1998) and continuing today.

In this paper, I contribute to this line of research by extending one particular method,
previously described by Reiter (2009a), and evaluate its performance. More specifically,
Reiter solves the stochastic growth model enriched by uninsurable idiosyncratic shocks (a
standard benchmark in this field) by combining two steps – first, solving for the steady
state without an aggregate shock by the projection method; and second, deriving the
dynamics of projection coefficients by linearization around this steady state with respect to
the aggregate shock. I will extend the second step to obtain a second-order approximation
and evaluate its accuracy. I find that accuracy gains in the benchmark model are not
large, which suggests that with low volatility of aggregate shocks, a first order solution can
work well (at least in models similar to the standard growth model). On the other hand,
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gains become noticeable in an alternative calibration with larger volatility, indicating that
in some situations linearization may not be sufficient.

Moreover, there are additional reasons for going beyond linearization, which has the
unfortunate side-effect of certainty equivalence. I illustrate two possible aplications. First,
evaluating welfare losses from aggregate uncertainty requires that the solution linking the
agent’s value function to state variables depends, in some way, on the size of aggregate
shocks, which is something that cannot be obtained by linearization. The second extension
consists of incorporating time-varying uncertainty into the model. Effects of so-called
“uncertainty shocks” on the business cycle have received some attention recently, but so
far mostly in the context of models with a representative household, which leave a limited
role e.g. for the precautionary savings motive in consumption. I will show how such
shocks can be easily accommodated in the second-order approximation using the approach
by Benigno, Benigno, and Nistico (2013), and that heterogeneity affects response to a
volatility shock significantly more than it affects response to a level shock.

The following section contains a more thorough literature review about computational
methods for heterogeneous-agent DSGE models. Section 1.3 briefly reviews the benchmark
economic model, and section 1.4 describes the solution method and motivation for its use
in the present setting. Section 1.5 discusses accuracy gains from the 2nd-order solution,
and section 1.6 illustrates the two applications.

1.2 Literature

Models incorporating heterogeneity are usually based on a standard incomplete markets
model (Bewley 1977; Huggett 1993; Aiyagari 1994), in which there is a continuum of
households maximizing lifetime utility from consumption, while being subject to borrowing
constraints and idiosyncratic income shocks. Agents can save only through a single asset,
such as capital, so markets are incomplete. Because of this incompleteness and the
borrowing constraint, individual shocks are not fully insurable, and thus different agents
will have different amounts of savings depending on the realizations of their idiosyncratic
shocks. In the basic version of the model without aggregate uncertainty, finding a solution
(i.e. individual policy function and stationary wealth distribution) is relatively simple,
since individual decisions depend on prices, which are constant over time.

On the other hand, models with both heterogeneity and aggregate uncertainty are
challenging to solve numerically – the distribution of relevant variables across agents itself
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becomes a state variable. Krusell and Smith (1998) analyze a stochastic growth model
with a continuum of agents who face uninsurable idiosyncratic labor endowment shocks
(the model is described in more detail later). In a rational expectations equilibrium, agents
need to forecast future prices, for which they need to forecast future aggregate capital,
which will depend on the whole distribution of capital across agents today (since decision
rules will differ across agents with different individual state). Theoretically, distribution
over a continuum of agents is an infinite-dimensional object, which of course cannot be
stored on a computer, and thus standard methods are not applicable.

Krusell and Smith solve this problem by assuming that agents keep track only of
the mean of the distribution (which can be interpreted as bounded rationality on their
part). Therefore, aggregate uncertainty will enter an individual’s problem through a
perceived law of motion for aggregate capital (of some parametric form). At the same
time, an agent’s resulting policy function will, when aggregated across all agents, imply an
“objective” law of motion for aggregate capital that can be obtained, e.g., by simulation.
Krusell and Smith then recompute the individual’s problem with a new law of motion
and iterate this process until both laws converge together.

Since aggregate capital today is not a sufficient statistic for calculating the distribution
of aggregate capital tomorrow, strictly speaking this is not a true equilibrium, as the
perceived law of motion is misspecified. However, he authors show that in practice this
algorithm works very well (in that particular model) because of “approximate aggregation”
– the policy functions of most agents are almost linear in their asset holdings except for
very poor agents (who have little capital and thus do not influence aggregate dynamics),
so the mean is, in itself, (approximately) sufficient for forecasting its future value and thus
prices. Having agents take into account higher moments of the distribution and solving for
their laws of motion in a similar way doesn’t change the results (though, as Young (2005)
reports, the mean by itself is not a sufficient statistic for calculating higher moments or
other characteristics of the distribution).

Since Krusell and Smith, there has been further research on computational methods
to solve these types of models; see the survey by Algan et al. (2014), as well as a recent
comparison project in Journal of Economic Dynamics and Control (Den Haan 2010).
Other approaches using moments of cross-sectional distribution include Den Haan (1997)
and Algan, Allais, and Den Haan (2008), who parametrize the conditional expectation of
an individual agent instead of the law of motion for capital. Den Haan and Rendahl (2010)
avoid simulation altogether by explicitly integrating over individual decision rules (“explicit
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aggregation”). While previous algorithms could be considered “projection” methods (Judd
1998), as they are solving for coefficients of parametrized unknown functions that are “close”
to the real solution in the global sense, Preston and Roca (2007) find the solution using
second order perturbation around the steady state without either idiosyncratic or aggregate
shocks. Generally speaking, the idea of using only a few moments or characteristics of the
cross-sectional distribution is in fact shared by all methods described so far.

Reiter (2009a) proposes a method (described in more detail later) which combines
projection and perturbation. First, in the projection step, policy functions and distributions
are approximated by a finite (but typically large) number of coefficients, and we solve for
the steady state without aggregate uncertainty (but with idiosyncratic shocks). Then, we
make those coefficients themselves vary over time and solve for their dynamics (driven
by aggregate shocks) by linearization around their values in the steady state, computed
previously. Among the advantages of this method is the fact that it does not depend on
approximate aggregation, and also that it captures the dynamics of the whole distribution,
and thus of any statistic of interest as well. The solution is globally valid over different
individual states in the steady state, although due to the nature of the perturbation
algorithm, it is only locally valid for small fluctuations of aggregate shocks around their
mean (however, this is standard practice even in simpler, representative agent models).

Reiter uses linearization (also known as first-order perturbation)1. There are, however,
good reasons to be interested in higher-order approximations. First, they may lead to
a more precise solution. Second, and more importantly, linearization implies certainty
equivalence, i.e., matrices of the resulting linear state-space system do not depend on
the variance of random shocks. This is problematic for capturing precautionary savings,
welfare losses from uncertainty or risk premia, all of which should depend on variance
of shocks. Linearization is also insufficient for analyzing optimal policy problems (Kim
and Kim 2003). Therefore, to use a combination of projection and perturbation for these
purposes, one has to go beyond linearization, which motivates the extension proposed in
the current paper.

1In a later paper Reiter (2010), extends his method to a solution where policy function is quadratic
in the aggregate state. However, his approach is somewhat different and more involved than the one
considered here.
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1.3 Model

The model is close to Krusell and Smith (1998), with a couple of differences: idiosyncratic
shocks are iid over time and the aggregate shock is AR(1) instead of a two-state Markov
chain. The following subsections summarize the model in more detail.

1.3.1 Households

There are many households indexed by i, which solve the following problem:

max
{cit}∞t=0

Et
[ ∞∑
t=0

βtU(cit)
]

subject to the borrowing constraint

0 ≤ cit ≤ xit.

and
xit+1 = (1 + rt+1)(xit − cit) + wtl

i
t. (1.1)

Here, cit is consumption and xit is “cash-on-hand”, composed of value of capital kit
owned by the household, income from renting the capital and supplying an idiosyncratic
labor endowment lit:

xit = (1 + rt)kit + wtl
i
t,

Prices rt, wt are functions of aggregate state Θt (to be described later), which is taken as
given by the household.

Labor endowment is random and has discrete distribution:

lit = eηit , ηit ∈ {η1, . . . , ηNη}, Prob(ηit = ηr) = qr,

and the shock is iid across time and across households. I use standard CRRA utility:

U(c) = c1−γ − 1
1− γ , (1.2)

With iid shocks, the relevant state variables for household are xit and Θt, which determines
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prices. The value function satisfies the Bellman equation

V (x,Θ) = max
c∈[0,x]

(U(c) + βE [V (x′, Θ′)|x,Θ]) , (1.3)

subject to evolution of x given by (1.1) and law-of-motion for aggregate state (to be
described later).

Let the optimal policy be denoted c(x,Θ), which will typically be nondifferentiable at
the point where the liquidity constraint starts to hold. For the purposes of a numerical
solution, the maximization problem can alternatively be characterized in terms of the
expectation function that satisfies:

E(xt, Θt) = βEt
[
(1 + rt+1) · c−γt+1

]
. (1.4)

Given E , the optimal consumption is given by

c(x,Θ) = min
{

(E(x,Θ))−
1
γ , x

}
, (1.5)

which simply sets the consumption to the value implied by the Euler equation (given
future expectation), or to the maximum possible value if the liquidity constraint binds,
i.e. to x.

1.3.2 Firms

There is a representative firm producing output from an aggregate supply of capital and
labor, subject to stochastic productivity:

Yt = AeztKα
t L

1−α
t ,

where the stochastic component of TFP follows an AR(1) process:

zt+1 = ρzt + σεεt+1, εt ∼ N (0, 1). (1.6)

First-order conditions determine return on capital (net of depreciation) and wage:

rt = αAeztKα−1
t L1−α

t − δ

wt = (1− α)AeztKα
t L
−α
t .

(1.7)
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1.3.3 Market clearing

Aggregate labor is given simply by averaging over individual endowments, and is constant
over time:

Lt = L̄ =
Nη∑
r=1

exp(ηr)qr. (1.8)

Aggregate capital is given by averaging over cross-sectional distribution of individual
capital holdings (which is non-degenerate, due to idiosyncratic shocks). More precisely,
let kit ∈ R+ describe assets held by the household at the beginning of period t before
receiving capital and labor income, which is equal to what they have left of their wealth
after consuming in the last period:

kit = xit−1 − cit−1.

Let B+ denote Borel sets over R+. Then define λt : B+ → [0, 1] a measure which describes
the distribution of assets, i.e. for B ∈ B+ we have λt(B) a proportion of households for
which kit ∈ B. Aggregate capital available for production at period t is then simply the
first moment of the distribution:

Kt =
∫
k dλt(k). (1.9)

1.3.4 Equilibrium

The recursive competitive equilibrium can be defined by state variables consisting of the
productivity and cross-sectional distribution of capital (because the whole distribution is
relevant for forecasting next-period aggregate capital and prices), so Θ = (z, λ). Then,
informally, the equilibrium includes:

• expectation function E(x,Θ), consumption function c(x,Θ) and value function
V (x,Θ),

• pricing functions r(Θ) and w(Θ),

• and law of motion for the distribution λ′ = Γ (Θ),2

such that the following holds:
2We assume that a suitable law of large numbers holds, so that the cross-sectional distribution evolves

“deterministically”.
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• for any x ≥ 0, the expectation function gives the actual conditional expectation in
(1.4) with equlibrium consumption and prices, the consumption function is consistent
with (1.5) and the value function satisfies the Bellman equation (1.3),

• pricing functions satisfy firm FOCs (1.7), where aggregate capital and labor are
functions of Θ as defined in (1.8) and (1.9),

• and the law of motion Γ is consistent with the process for productivity (1.6) and
evolution of the cross-sectional distribution implied by individual policy function,
law-of-motion for x in (1.1) and distribution of the labor endowment shock in (1.2).

1.4 Solution

This section describes the hybrid solution method based on Reiter (2009a) and its second-
order solution.

1.4.1 Approximate model

In order to solve the model numerically, we must replace functions and cross-sectional
distribution with finite-dimensional approximations:

• The cross-sectional distribution at time t is approximated by a vector pt ∈ RM ,
which describes a distribution over a discrete grid of capital levels {κ1, . . . , κM}, so
that pi,t is the proportion of agents with their beginning-of-period capital at t equal
to κi. Essentially, we are approximating a continuous distribution using a histogram.
Thus, the agregate state in the approximate model will consist of pt and zt.

• Within a single period, I approximate expectation and value functions, conditional
on current aggregate state, by a linear combination of univariate basis functions
(such as polynomials or splines) {ϕci(x)}Nci=1 and {ϕvi (x)}Nvi=1 defined over an individual
state variable (on some interval [x, x])3. The combination will be parametrized by a

3I use c as superscript for approximation of the expectation fuction, as it ultimately determines
consumption. The main reason to approximate the expectation instead of the consumption function
directly is that the former should be smoother.
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finite vectors of coefficients ac ∈ RNc , av ∈ RNv :

log (E(x; ac)) =
Nc∑
i=1

aciϕ
c
i(x),

Ṽ (x; av) =
NV∑
i=1

aviϕ
v
i (x).

(1.10)

Given the parameterized expectation function (approximated in log, so that it
remains positive), consumption c̃(x; ac) can be computed directly from (1.5).

Of course, the true functions depend on both individual and aggregate state, which
changes over time, so we will capture the latter dependence by making approximation
coefficients themselves functions of the aggregate state:

ac = gc(p, z),

av = gv(p, z).

Thus, the relevant variables in the approximate model are: act = gc(pt, zt) and
avt = gv(pt, zt), which describe the shape of individual policy and value functions, given
the aggregate state at time t (and thus can be understood as “control” variables); pt,
which captures the cross-sectional distribution of wealth; and exogenous productivity zt.
Our goal is to solve for functions gc, gv and the law of motion for the distribution hp, so
that a recursive equilibrium of the approximate model can be summarized as:

act = gc(pt, zt),

avt = gv(pt, zt),

pt+1 = hp(pt, zt),

zt+1 = ρzt + σεεt+1.

(1.11)

1.4.2 Model equations

Our ultimate goal is to solve for functions gc, gv, hp using perturbation methods, which
deliver Taylor approximations to these functions around the steady state without aggregate
uncertainty. For that, we need to describe equations that characterize the equilibrium –
we have Nc +NV +M + 1 variables, so we need as many equations.

Auxiliary functions: Aggregate capital, rental rate and wage rate can be expressed
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as functions of the aggregate state:

K(p, z) =
M∑
i=1

piκi,

r(p, z) = αAezK(p, z)α−1L̄1−α − δ,

w(p, z) = (1− α)AezK(p, z)αL̄−α.

Euler equation block: Going back to the defintion of the expectation function (1.4),
replace it with its approximated version and ct+1 with c̃(xt+1, act+1), with c̃ defined as
above. Expanding the expectation with respect to the idiosyncratic shock into a sum,
substituting for the law of motion of x and requiring the resulting equation to hold exactly
at a set of collocation points xt ∈ {x1, . . . , xNc}, we obtain a system of Nc equations
linking the shape of the consumption function at time t and t+ 1:

∀x ∈ {x1, . . . , xNc} : E(x, act ) = β · Et

{1 + r(pt+1, zt+1)
}
·

·
Nη∑
r=1

{
qi · c̃

([
1 + r(pt+1, zt+1)

]
·
[
x− c̃(x, act )

]
+ w(pt+1, zt+1) · eηr , act+1

)−γ} (1.12)

Bellman equation block: Proceeding in the same way as with the Euler equation,
we obtain a system of Nv equations linking the shape of the value function at the two
time periods:

∀x ∈ {x1, . . . , xNv} : Ṽ (x, avt ) = c̃(x, act )1−γ − 1
1− γ +

+ β · Et

Nη∑
r=1

qi · Ṽ
([

1 + r(pt+1, zt+1)
]
·
[
x− c̃(x, act )

]
+ w(pt+1, zt+1) · eηr , avt+1

) (1.13)

Distribution updating block: Given the current state and consumption function,
the distribution of capital at the beginning of the next period is non-stochastic and can
be expressed as

pt+1 = T
(
pt, zt, act

)
pt, (1.14)

where T is M ×M matrix (depending on state and policy in period t) with elements Tij
being a conditional probability that a household with capital κj ends up with capital κi
in the next period. Elements of T can be computed by the following algorithm (Young
2010): of all households with some capital level κj, those with the same realization of
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individual shock (say, ηr, for some r) will have the same level of wealth, choose the same
consumption and end up with the same level of capital in the next period, e.g. κi for
some i. Since their share (of those with the same initial capital) will be qr, we increment
Tij by qr. If, as will be the typical case, next-period capital doesn’t fall exactly on the
grid, we divide the probability mass proportionally between the closest nodes. Then we
simply repeat the process for other realizations of individual shock and other initial levels
of capital – see algorithm 1 for a more precise description.

Algorithm 1 Computing the transition matrix
initialize Tij = 0,∀i,∀j
for j = 1 to M do {loop over initial levels of capital}
for r = 1 to Nη do {loop over idiosyncratic shock realizations}
compute wealth x = (1 + r(pt, zt)) · κj + w(pt, zt) · exp(ηr)
compute consumption c = c̃(x, act ) and next-period capital k′ = x− c
if k′ < κ1 then
set T1j = T1j + qr

if k′ ≥ κM then
set TMj = TMj + qr

if κ1 ≤ k′ < κM then
find index i such that κi ≤ k′ < κi+1
set Tij = Tij + κi+1−k′

κi+1−κi qr, Ti+1,j = Ti+1,j + k′−κi
κi+1−κi qr

Exogenous shock block: The final equation simply expresses the law of motion for
the exogenous productivity process:

Et
[
zt+1

]
= ρzt. (1.15)

1.4.3 Solution

Now, denote yt =
[
act
avt

]
, χt =

[
pt
zt

]
and collect equations (1.12) - (1.15) into a single system

that can be written as4:
Et [F (yt+1, χt+1, yt, χt)] = 0. (1.16)

Then, the solution method proceeds in two steps:

• First, solve for a steady state without aggregate uncertainty, i.e. solve for ȳ, χ̄ such
that

F (ȳ, χ̄, ȳ, χ̄) = 0.
4In practice (and to avoid invertibility problems), it is enough to keep track of first M − 1 elements of

p, since probabilities must sum to one.
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In this particular case, the steady state corresponds to the well-known Aiyagari
model, and its solution can thus be reduced to a univariate problem of finding a root
to excess demand for capital as a function of the interest rate. To evaluate excess
demand for given r ∈ (−δ, 1

β
− 1), demand for capital (and for the implied wage

rate) is given by firm FOC, while the supply of capital is determined by ergodic
distribution of household asset holdings. The latter can be found by solving for the
household policy function (which is, with constant prices, relatively straightforward,
e.g. through time iteration on Euler equation), computing a discretized transition
matrix (see previous subsection) and solving for its eigenvector corresponding to
the unit eigenvalue.

• Next, we use pertubation methods to solve for the dynamics of the approximate
model in the following form:

yt = g(χt, µ)

χt+1 = h(χt, µ) + µ

 0
σε

 εt+1,

where we let the unknown function formally depend on µ, the perturbation parameter
that scales uncertainty (where µ = 0 corresponds to no aggregate uncertainty, µ = 1
corresponds to the original problem as written in (1.11)). Perturbation finds Taylor
approximations to g, h around the deterministic steady state with µ = 0 by applying
the implicit function theorem to the system (1.16) (Jin and Judd 2002; Schmitt-
Grohé and Uribe 2004; Gomme and Klein 2011).

1.4.4 Linearization vs. second order approximation

In the notation of Gomme and Klein (2011), second order approximation to g, h can be
written as:

g(χ.µ) ≈ ȳ + Fχ̃+ 1
2(Iny ⊗ χ̃′)Eχ̃+ µ2ky

h(χ, µ) ≈ χ̄+ Pχ̃+ 1
2(Inw ⊗ χ̃′)Gχ̃+ µ2kχ,

where χ̃ = χ− χ̄ is the deviation of state from its steady state, nχ, ny are dimensions of
χ, y, F is ny×nχ, P is nχ×nχ, E is nynχ×nχ, G is n2

χ×nχ, ky is ny×1 and kχ is nχ×1.
In linear approximation (where E,G, ky, kχ are zero), the solution does not depend on
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volatility of exogenous shocks due to certainty equivalence. In second-order approximation,
cross-terms between µ and χ are zero (Schmitt-Grohé and Uribe 2004), however, the level
of uncertainty enters through constants ky, kχ. These constants represent shifts in policy
rules and laws-of-motion that move the distribution of variables away from the steady
state and can capture economically relevant effects of uncertainty, such as precautionary
savings or welfare effects.

In practice, to obtain a second-order approximation, the perturbation method requires
the first and second derivatives of model equations (1.16) evaluated at the steady state,
and specifying second moments of exogenous shocks (normalized to unity here) as inputs.
I obtain derivatives through numerical differentiation. The solution is then obtained by
using solab and solab2 routines by Gomme & Klein.

1.5 Accuracy

This section presents some results from the solution to the model, as well as accuracy
checks that allow comparison of first and second order solutions.

1.5.1 Calibration

Economic parameters: I use the same calibration as in Reiter (2009a): β = 0.95,
γ = 1 (log utility), α = 0.33, δ = 0.1, ρz = 0.8, σz = 0.014 and A is set so that
steady-state capital in the corresponding representative-agent model is 1. Idiosyncratic
labor endowment shock is obtained by discretizing lognormal distribution, with log-labor
endowment ∼ N (µη, σ2

η), with ση = 0.2 and µη = −1
2σ

2
η. I use 10-point Gauss-Hermite

quadrature nodes and weights obtained from qnwnorm function in CompEcon toolbox
(Miranda and Fackler 2004). To evaluate the performance in a setting where nonlinearities
may be more important, I also consider a case with large aggregate uncertainty σz = 0.1.

Numerical parameters: The distribution is approximated by an equidistant grid
with 30 points between 0 and 5 (steady state aggregate capital is about 1.13). Expectation
and value functions are approximated by Chebyshev polynomials up to order 9, both over
interval [0.1, 7].

Computational considerations: All computations were done in MATLAB. Eval-
uating the hessian of model equations through numerical derivatives is the most time-
consuming step. Total computation time for the examples presented here is on the order
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K C Y I r w
steady state 1.1097 0.3940 0.5050 0.1110 0.0502 0.3124
σε = 0.014
order 1 1.1116 0.3946 0.5059 0.1112 0.0502 0.3129
order 2 1.1127 0.3948 0.5060 0.1113 0.0501 0.3130
σε = 0.1
order 1 1.1229 0.4039 0.5193 0.1154 0.0559 0.3212
order 2 1.1789 0.4093 0.5281 0.1188 0.0496 0.3266

Table 1.1: Simulated data - first moments.

of dozens of minutes, most of which are spent on obtaining the hessian (though this part
could be presumably sped up by using lower-level language or parallelization).

1.5.2 Results

Steady state: Figure 1.1 plots the steady-state consumption function and capital
distribution. We can see that the borrowing constraint binds for small values of wealth
and for approximately 6% of households. The first row of table 1.1 contains the values of
aggregate macreconomic variables. Aggregate capital stock is about 10% higher than in
the corresponding representative agent model.

First moments: Further rows of table 1.1 give the averages of macroecnomic ag-
gregates from the simulations with aggregate uncertainty. We can see that the means
for calibration with low volatility are quite close to the steady state, in both first and
second order solutions. However, with larger volatility we can see a difference – the second
order solution clearly displays higher capital stock and lower return on capital than in the
steady state.

1.5.3 Accuracy

Law of motion for capital: A common, though not necessarily sufficient way (Den Haan
2010) to evaluate accuracy in models with heterogeneous agents is to look at the fit of the
approximate law of motion for aggregate capital. Since the method described here does
not rely on such an approximate law of motion and instead solves for the dynamics of
the whole distribution (albeit approximated by a histogram), such a test is less relevant.
We can however compare simulated paths for aggregate capital obtained from the model
solution and from simulating a panel of individual agents within the model. With 1000
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Figure 1.1: Steady state: consumption function (upper panel) and cross-sectional
distribution of capital (lower panel).
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Figure 1.2: Aggregate capital realizations: model-implied vs. panel simulation from 1st
(left) and 2nd order solution, in case of low( up) or high (down) volatility. Conditional
on volatility, a more precise solution should yield values closer to the 45-degree line and
higher correlation.

periods and 10000 individuals, resulting scatter-plots are shown in figure 1.2. With small
volatility, solutions from the first and second orders yield very similar results; with larger
volatility, first order solution appears to be surprisingly imprecise5.

Euler equation errors: Next, we may be interested in the accuracy of the individual
policy function. A common metric is to evaluate Euler equation errors (usually expressed
in consumption units). At any point in state space, we can compute (unconstrained) con-
sumption cappr implied by the approximated expectation function, as well as consumption
ctrue implied by “true” expectation evaluated from the model solution (using quadrature

5This is somewhat puzzling, since the difference between the paths of aggregate capital and prices
implied by 1st and 2nd order perturbation solutions is relatively small, but aggregate capital and average
capital from a panel simulation diverge in the linear model. Upon closer inspection, the linearized model
implies higher return to capital in a couple of periods (compared to the 2nd order model), leading to
a relatively large increase in wealth for the richest households, which then persists over the rest of the
simulation. This development is however not captured by the linearized dynamics of aggregate capital
from the model solution. One possible explanation is that the two inaccuracies in the linear model (one
leading to imprecise prices, the other to imprecise tracking of aggregate capital) effectively cancel each
other out, but it might be useful to take closer look at this issue in the future.
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σε = 0.014 σε = 0.1
order 1 order 2 order 1 order 2

Euler errors
mean (log10) -2.47 -2.48 -2.19 -2.49

DHM test (inst.: constant)
single run, χ2

1 stat. 4.161 4.099 7.366 2.148
mult. runs, KS stat. 0.460 0.453 0.744 0.249

DHM test (inst.: constant, x, K, z)
single run, χ2

4 stat. 7.168 7.309 17.89 5.491
mult. runs, KS stat. 0.184 0.181 0.776 0.149

Table 1.2: Accuracy checks (smaller values indicate more accurate solution).

for next-period aggregate shock). The error is then defined as

|cappr − ctrue|
ctrue

The corresponding row of 1.2 contains average error from a simulation with 1000 periods
and one individual (i.e. error is evaluated at points from the simulated trajectory). For
calibration with small volatility, there is almost no difference, while for larger volatility
second-order solution leads to slightly lower errors.

Den Haan & Marcet test: Another way to check accuracy of the individual policy
function is to formally test whether restrictions implied by the model hold in simulated
data (Den Haan and Marcet 1994). If we simulate a time series for aggregate return on
capital rt, together with individual wealth xt, consumption ct and expectation Et (obtained
from approximation to the individual expectation function, see (1.4)), it should be the
case that

Et
[
Et − β(1 + rt+1)c−γt+1

]
= 0,

which for any vector of instruments It observable in time t implies moment conditions

E
[(
Et − β(1 + rt+1)c−γt+1

)
It
]

= 0.

A formal test, similar to the OIR test in GMM estimation, constructs a test statistic
with χ2

q distribution, where q is the number of instruments. Table 1.2 presents results for
two cases: first, It includes only a constant (thus essentially testing whether expectation
errors are zero on average); second, It includes constant, individual wealth xt, aggregate
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Figure 1.3: Cumulative distribution function of DHM statistics in case of small (upper
panels) or large (lower panels) volatility. A more precise solution should yield distribution
closer to the theoretical benchmark (black dashed line). “Instruments” for evaluating
orthogonality of forecast errors include the constant term on the left and a constant with
individual and aggregate states on the right.

capital Kt and productivity zt (thus also jointly testing whether errors are orthogonal
to information available at time t). Alternatively, we can simulate the model many
times, construct a distribution of observed statistics and compare it with the theoretical
benchmark, graphically (shown in figure 1.3, 100 simulations) or by a Kolmogorov-Smirnov
test statistic (table 1.2).

The results indicate that when aggregate volatility is low, there is not much difference
between first and second order solutions. On the other hand, the second order solution is
clearly more accurate when volatility is larger.
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1.6 Applications

1.6.1 Welfare cost of fluctuations

One of advantages of models with heterogeneity is the possibility to make welfare compar-
isons conditional on an agent’s individual state. A well known economic question involving
welfare comparisons considers the cost of business cycle fluctuations. In his influential
contribution, Lucas (1987) tried to estimate costs of business cycles using postwar US
data and concluded that they are very small, on the order of no more than one tenth
of one percent of annual consumption.Naturally, this result turned out to be somewhat
controversial and motivated further research into relaxing the assumptions made above,
see, e.g., reviews by Barlevy (2004) and Lucas (2003). One strand of this literature
uses models with heterogeneous agents who face uninsurable idiosyncratic income or
employment shocks. This allows us to evaluate welfare impacts for different agents, as
those can differ from impacts for a representative agent, e.g., when the consumption of
individual agents is more volatile than aggregate consumption. Eliminating aggregate
uncertainty can change the prices that agents face, as well as their individual income
process.

One of the first contributions in this direction was by Imrohoroglu (1989), who finds
that in a model with idiosyncratic risk, welfare gains from stabilization can be quite high
(more than 1%). Atkeson and Phelan (1994), on the other hand, present an example in
which stabilization leads to very small gains. Krusell and Smith (1999) and Krusell et al.
(2009) compute welfare costs in a version of their model discussed previously, and find
that although the effects can be small on average, they differ across agents depending
on their individual state. Other authors have found larger impacts: Storesletten (2001)
argues that idiosyncratic risk is countercyclical, so recessions are accompanied by greater
volatility of individual income; Krebs (2003) adds a permanent component to idiosyncratic
shocks, which are hard to self-insure against through savings; Beaudry and Pages (2001)
investigate persistance in wages, when workers laid off during recessions will reenter
employment with lower wages; Chatterjee and Corbae (2007) allow for the possibility of a
particularly bad aggregate state (“depression”).

From a methodological point of view, the papers cited above usually either assume
fixed prices, in which case it is enough to solve an individual agent’s problem, make
special assumptions to obtain closed-form solutions, or to use the standard Krusell
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& Smith algorithm and work with welfare computed numerically. The last case is of
particular interest from a computational point of view since aggregate uncertainty enters
the individual’s problem (and thus his utility) essentially only through the perceived law
of motion for aggregate capital. However, although this is an approximation which may
work well for describing the dynamics of aggregate capital, it is not obvious whether it
also leads to precise computation of welfare.

There are some previous results which indicate that this may be problematic. Preston
and Roca (2007) use a different perturbation-based solution method, and find that the
law of motion for aggregate (mean) capital also depends slightly on second moments of
capital distribution, and more importantly, those second moments may also influence
welfare (however, their algorithm provides an approximation only around the deterministic
representative agent steady state). Another possible issue is that the Krusell & Smith
algorithm typically requires one to solve an individual’s dynamic programming problem
over grids for both individual and aggregate capital, where the second grid is usually
sparse to conserve on computational resources. Horvath (2012) reports that results may
not be robust with respect to the choice of aggregate capital grid, as different choices
result in significantly different properties of cross-sectional distribution.

Therefore it might be useful to revisit these calculations using a computational method
which incorporates time-varying prices, allows us to derive a measure of welfare conditional
on the individual state (so we can distinguish impacts on different agents), does not rely
on the approximate aggregation property and avoids problems associated with grid choice
for aggregate capital. Reiter’s method combined with second-order perturbation is likely
to satisfy these conditions. In the following, I describe how such costs can be computed
in the simple benchmark model studied here.6

From the model solution, we obtain an approximation to value function that depends
on individual wealth x, aggregate state χ and perturbation parameter µ:

V unc(x, χ, µ) =
NV∑
i=1

avi (χ, µ)ϕvi (x),

avi (χ, µ) = gvi (χ, µ) ≈ āvi + Dχg
v
i χ̃+ 1

2 χ̃
′Hχχg

v
i χ̃+ kavi µ

2, i = 1, . . . , Nv

where Dχg
v
i , Hχχg

v
i are jacobians and hessians of the function gvi at χ = χ̄, µ = 0 and

6The results are thus to be understood more as illustrations of the methodological approach, since
serious quantitative analysis would require enrichment of the model by at least by some elements referred
to above.
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Figure 1.4: Welfare gain from eliminating TFP fluctuations vs. individual wealth,
measured in terms of compensating relative increase in consumption a household would
require to bear aggregate shocks.

χ̃ is deviations from the steady state χ − χ̄. These value fuctions can be then used to
compare welfare between situations with and without aggregate fluctuations simply by
setting µ = 1 or µ = 0.

Figure 1.4 shows the welfare comparison, in terms of an equivalent permanent relative
change in consumption7, for calibration with small volatility and when the aggregate
state corresponds to the steady state. To avoid conflating the results with trivial effects
of Jensen inequality, I modify equation (1.6) so that the shock enters level, not log, of
productivity.

The results indicate that gains from stabilization are positive, but quantitatively small
(cross-sectional average gain is 0.018% in consumption units). The reason is that in a
given calibration and with iid idiosyncratic shocks, households can self-insure relatively
easily through savings (the same calculation for the representative-agent version of the
model yields a gain of 0.017%). On the other hand, we can see that the gain varies across
households and decreases with individual wealth, with the poorest agents experiencing the
largest costs due to the difficulty of smoothing shocks when they are near the borrowing
constraint.

7A value of, e.g., 0.1% would mean that a household facing aggregate fluctuations would require
permanent increase in consumption by one tenth of a percentage point in order to attain the same utility
as the same household in the steady state. Positive numbers thus indicate gains from stabilization,
negative numbers, losses.
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1.6.2 Time-varying volatility

Shocks to aggregate productivity in the model presented above are homoscedastic. However,
there is some evidence to suggest that volatility of macroeconomic shocks varies over time
(Sims and Zha 2006; Justiniano and Primiceri 2008). Moreover, these changes in volatility
have also received attention as a distinct source of economic fluctuations, or so-called
“uncertainty shocks” (Bloom 2009a). Existing literature has proposed several channels,
through which an increase in uncertainty can influence economic outcomes, see, e.g., survey
by Fernandez-Villaverde and Rubio-Ramirez (2010). For example, if there are nonconvex
adjustment costs or irreversibilities in investment, an increase in uncertainty may depress
investment by inducing firms to postpone decisions (Bernanke 1983; Bloom 2009a). Other
papers have studied effects of time-varying volatility in an open economy setting (Benigno,
Benigno, and Nistico 2011; Fernandez-Villaverde et al. 2011), in models with financial
frictions (Gilchrist, Sim, and Zakrajsek 2010; Christiano, Motto, and Rostagno 2013) or
preferences for robustness (Bidder and Smith 2012). However, existing work usually relies
on the representative agent assumption, so any idiosyncratic risks are implicitly assumed
to be perfectly shared among households.

Once we allow for incomplete markets, it is likely that changes in aggregate uncertainty
will also have impact on idiosyncratic risks facing the household and thus affect its
consumption decisions through the precautionary savings motive. From an empirical
point of view, Parker and Preston (2005) provide evidence that changes in precautionary
saving explain a nontrivial part of variation in average consumption growth. In a general
equilibrum setting, precautionary saving may interact with other channels of uncertainty,
or even counteract them (e.g., while firms may prefer to delay investment, households want
to increase their savings, so the overall effect of an uncertainty shock may be ambiguous).

Of course, general equilibrum models wth heterogeneity and time-varying uncertainty
are challenging to solve and estimate. As a step in this direction, we can incorporate
stochastic volatiity in the model discussed above. The presence of idiosyncratic risk will
likely increase sensitivity of aggregate consumption to uncertainty shock and thus generate
a distinct role for such shocks in explaining the business cycle.

Benigno, Benigno, and Nistico (2013) show how to incorporate distinct effects of
time-varying volatility in a second-order perturbation solution, and their extension is
easily applicable in this setting.

The model used is the same as described in previous chapter. The deviation consists
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of introducing stochastic volatility into the TFP process:

zt+1 = ρzzt + σz
√

1 + vtεz,t+1

vt+1 = ρvvt + σvεv,t+1,

where εz,t+1 and εv,t+1 are iid uncorrelated shocks with zero mean and unit variance. Thus
the conditional variance Vart[zt+1] = (1 + vt)σ2

z changes over time, and vt follows an AR(1)
process.

This particular way of modeling stochastic volatility is motivated by Benigno, Benigno,
and Nistico (2013), who describe how such a formulation can be acccommodated wthin
a second-order perturbation approximation8. Recall that such a solution consists of
a function linking state variables wt (composed of a representation of cross-sectional
distribution and zt) to control variables yt (consisting of coefficients describing individual
policy functions), and the law of motion for wt, which will in this case also depend on vt
as an additional state:

yt = g(χt, vt)

χt+1 = h(χt, vt) +
 0
σz

 εz,t+1.

In a second order solution obtained with the BBN method, functions g, h will be quadratic
in χ and linear in v.

We are interested in impulse responses to a volatility shock εv, and more specifically,
whether such response is stronger in model with idiosyncratic risk than in corresponding
representative-agent model. Figure 1.5 plots impulse responses to both level and volatility
TFP shocks (where we use calibration with σz = 0.014 and theσv = 0.1, i.e. low average
aggregate volatility, and one s.d. volatility shock increases the variance of next-period
z by 10%). We see that responses to a level shock are very similar, whereas response
to a volatility shock is somewhat stronger (by one third to one half) in a model with
heterogeneity. Although the magnitude of response to a volatility shock is very small (which
is, however, at least partially due to the calibration chosen), the qualitative difference
does suggest that precautionary saving due to idiosyncratic risk plays a nontrivial role.

8Whereas simply including the equation for s.v. among other model equations and applying a standard
perturbation method would require a third-order solution in order for volatility to play a distinct role.
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Figure 1.5: Impulse responses of consumption (left panels) and capital (right) to a level
(upper) and volatility (lower) shock in productivity for a representative agent model (RA)
and model wth idiosyncratic risk (HA).
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1.7 Conclusion

This paper has investigated the application of second-order perturbation to solving DSGE
models with heterogeneity in the context of the hybrid projection/perturbation approach.
In the simple benchmark model considered here, accuracy gains have been shown to be
rather modest in parametrization with small volatility of aggregate shocks, indicating
that the presence of heterogeneity does not necessarily introduce strong nonlinearities in
aggregate dynamics, at least in models similar to the standard growth model. Nevertheless,
results of a model with larger volatility suggest that going beyond linearization may be
desirable in some situations. Moreover, as we have seen, a second-order solution can be
easily extended to study questions about welfare and impacts of time-varying volatility of
aggregate shocks, which might be difficult to answer otherwise. In the future, it would be
interesting to study those effects in more complicated models where heterogeneity plays a
larger role, and hopefully the approach described in this paper would constitute a relevant
addition to the macreconomists’ toolbox for dealing with such questions.
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Chapter 2
Asset prices in a production economy with

long run and idiosyncratic risk

31



2.1 Introduction

Explaining joint dynamics of both macroeconomic quantities and asset prices within
the context of a microfounded general equilibrium model remains an active area of
economic research. This paper contributes to that effort by constructing a tractable
model of a production economy that combines recursive utility with preference for early
resolution of uncertainty and time-varying uninsurable idiosyncratic risk, and investigates
its macroeconomic and asset pricing properties.

Individually, each of these elements have been studied previously as a possible solution
to the well-known failures of a standard representative-agent model with power utility in
explaining observed equity premium and interest rate1. When households have recursive
preferences (Kreps and Porteus 1978; Epstein and Zin 1989), which break the link between
risk aversion and elasticity of intertemporal substitution and allow for preference for early
resolution of uncertainty, their marginal utility depends not only on current consumption,
but also on the continuation value which encodes expectations about future consumption.
News regarding the level or volatility of future consumption thus becomes an additional
priced factor, as in the long-run risk model of Bansal and Yaron (2004) and in the
production economy2 of Kaltenbrunner and Lochstoer (2010). Another line of research
has shown that when agents face incomplete markets and uninsurable shocks, the amount
of risk they face can also affect asset prices if it changes over time, as in Constantinides
and Duffie (1996) and Krusell and Smith (1997)3.

Therefore, if agents have preference for early resolution of uncertainty and at the
same time face idiosyncratic risk and incomplete markets, it follows that both current
change in the amount of idiosyncratic risk, and also news about future such changes
enter the continuation value and thus affect asset prices. This presents the potential
for interaction between the two mechanisms, studied in the context of an endowment

1See e.g. Mehra and Prescott (1985), Weil (1989) and Hansen and Singleton (1982). A review of the
literature is provided in e.g. Cochrane (2008) and Ludvigson (2013).

2Regarding asset pricing in production/DSGE models, see, e.g., survey by Kogan and Papanikolaou
(2012). Among papers that study asset prices in production economies with recursive preferences are
Tallarini (2000), Kaltenbrunner and Lochstoer (2010), Croce (2014), Rudebusch and Swanson (2012), van
Binsbergen et al. (2012) and Campanale, Castro, and Clementi (2010).

3See also Mankiw (1986), Telmer (1993), Heaton and Lucas (1996), Krebs and Wilson (2004),
Storesletten, Telmer, and Yaron (2007) and Pijoan-Mas (2007). Gomes and Michaelides (2008) also study
a model with heterogeneity, production and recursive preferences, but their focus is primarily on the
effects of limited participation and they do not model variation in either individual or aggregate risk over
time. Empirical evidence is analyzed, e.g., by Cogley (2002, Brav, Constantinides, and Geczy (2002) and
Balduzzi and Yao (2007), with somewhat mixed results.
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economy in recent work by Constantinides and Ghosh (2017), Herskovic et al. (2016)
and Schmidt (2014). However, matching asset prices in a production economy is harder
than in endowment economies due to endogenous consumption process and the need to
simultaneously match properties of quantities and prices. The main focus of this paper is
therefore to look more closely at the interaction between the effects of varying idiosyncratic
risk on macroeconomic dynamics and asset prices.

To illustrate the mechanism, I first construct a simple AK model with households having
access to linear production technologies subject to heterogeneous rates of return on capital
with time-varying variance. Assuming unit intertemporal elasticity of substitution, the
model can be solved analytically and asset returns can be characterized by their exposure
to news about current and future aggregate consumption and variance of idiosyncratic
risk. A quantitative illustration suggests that omitting the last term could nontrivially
underestimate the importance of overall long run risk for determining risk premia.

Next, I contruct a tractable model that embeds the Constantinides-Duffie framework
within an otherwise standard real business cycle (RBC) model4. Individual household
consumption growth is determined, in a reduced-form way, by aggregate consumption
growth and idiosyncratic shock. With homothetic preferences and random walk in
individual consumption, the model has a no-trade equilibrium in which each household
consumes its income. The aggregate stochastic discount factor is determined by the
cross-sectional average of individual intertemporal marginal rates of substitution, and is
used by a representative firm to make choices about investment and dividends, which
in turn determines aggregate consumption growth. Distribution of idiosyncratic shocks
varies over time, possibly allowing for countercyclical variance (Storesletten, Telmer, and
Yaron 2004) or procyclical skewness (Guvenen, Ozkan, and Song 2014).

The fact that there is no trade between households is somewhat unappealing (and
thus resulting allocations should perhaps be interpreted rather as post-trade outcomes
after households have smoothed out transitory shocks), yet it allows us to solve the model
without keeping track of the distribution over individual savings, and thus avoid the need
for numerically intensive computation. The model can be solved by standard perturbation
methods and its linearized dynamics can be characterized semi-analytically. I find that the
countercyclical idiosyncratic risk can raise risk premia, but also affects aggregate dynamics

4A similar approach is used to analyze monetary policy in New-Keynesian models in recent papers by
Braun and Nakajima (2012), Werning (2015) and Takahashi et al. (2016). In these setups, variation in
idiosyncratic risk manifests itself in a similar way as discount rate shocks after aggregation. In a related
study, Albuquerque et al. (2016) study the role of discount rate shocks in asset pricing.
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through its impact on saving and intertemporal smoothing incentives of households. The
introduction of idiosyncratic risk leads to lower “effective” intertemporal elasticity of
substitution on the aggregate level, resulting in more volatile and less predictable aggregate
consumption growth. Inspecting the linearized solution suggests that the strength of this
feedback depends on the cyclicality of idiosyncratic risk and household risk aversion.

On the other hand, thanks to the flexibility of Epstein-Zin preferences, it is, in principle,
possible to recalibrate the discount rate and intertemporal elasticity of substitution (IES)
parameters (to make households more willing to substitute consumption over time) in
a way that compensates for the effect described above, while risk premia remain higher.
After suitable recalibration of the model, I find that introducing heterogeneity raises
the price of risk (Sharpe ratio) by about a third. Decomposing the price of risk by its
source (aggregate consumption or dispersion of individual shocks) and channel (short-run
or long-run risk) shows that the long run idiosyncratic dispersion accounts for about 30
percent of the overall long run channel, which in turn accounts for more than half of the
overall Sharpe ratio. The results are quite similar regardless of whether the variation in
individual risk unfolds through cyclical variance or skewness.

The paper is organized as follows: section 2 presents a simple example to motivate
introduction of recursive preferences, section 3 describes the model, while section 4
discusses calibration and results and section 5 concludes.

2.2 Simple Model

Standard consumption-based asset pricing models explain the existence of risk premia by
comovement of returns with consumption. Assets that pay off more in good times (i.e.
states of the world with high consumption and low marginal utility) than in bad times
(states with low consumption and high marginal utility), are less attractive for households
wishing to smooth their consumption, and thus must offer higher returns to be held in
equilibrium. However, it is well established that the standard model with representative
household and power utility has problems matching the observed level of risk premia
quantitatively. This paper considers two modifications of the baseline model that have
been previously studied as possible explanations of high risk premia.

First, a richer specification for the household utility function, which includes the
preference for earlier resolution of uncertainty, implies that “bad times” happen not
only when current consumption is low, but also when the household receives bad news
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about future consumption. This amplifies the sensitivity of the household to small but
persistent changes in consumption, which helps to increase the price of risk through the
so-called long run risk chanel. Second, households face not only aggregate risk, but also
a large amount of individual variation in their consumption arising from idiosyncratic
shocks and incomplete markets. If the amount of this idiosyncratic risk is larger when the
aggregate consumption is already low, households will be again more sensitive to aggregate
fluctuations and will require higher returns to hold assets with procyclical payoffs.

This paper considers these two features together. If households care about both the
volatility of individual shocks and news about the future, it follows that persistent cyclical
variation in idiosyncratic risk will also be amplified by the long run risk mechanism,
and this interaction can potentially imply higher resk premia with smaller values of risk
aversion. On the other hand, it is also important to consider whether such a story is
consistent with the supply side of the economy, since the consumption process is, in the
end, an endogeous outcome affected by the saving behavior of households. I will therefore
study a production economy with idiosyncratic shocks and long run risk in the subsequent
section. First, however, it may be useful to flesh out the intuition discussed above more
formally in a setting where the consumption process is still effectively exogenous.

This section thus presents a simple AK-like model5 in which the output is produced
using a linear technology with capital as the only input. Each household operates such
technology independently, subject to aggregate and individual productivity shocks with
time-varying dispersion, and can spend the output on consumption, investment or a
risk-free asset. If we assume that households have a unit intertemporal elasticity of
substitution, the model has an analytical solution. Subsequently, the price of risk can be
cleanly decomposed into four contributions, from short run and long run risk in aggregate
productivity and level of idiosyncratic risk. I look into how these contributions depend on
the parameters of the model, and argue that they can be quantitatively relevant.

2.2.1 Setup

Time t is discrete and there is a continuum of agents indexed by i. Each agent enters the
period with some stock of capital Ki,t which is used for production according to Yi,t =
Ai,tKi,t, subject to exogenous productivity process Ai,t (which will have an idiosyncratic

5Previous literature using AK models to analyze asset prices in the presence of idiosyncratic risk
includes Krebs and Wilson (2004), who focused on the case of log utility, and Toda (2014), who provides
theoretical analysis for a class of similar models.
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component and is thus indexed by i). Agents can also trade in risk-free one-period bonds,
although the overall net supply of bonds is zero. Income obtained from production and
bond holdings Bi,t can be used for consumption Ci,t, stored as capital for the next period
(for simplicity we shall assume full depreciation) or spent on new bonds. The budget
constraint thus reads

Ci,t +Ki,t+1 + P b
t Bi,t+1 = Ai,tKi,t +Bi,t,

where P b
t is the bond price.

Agents have identical Epstein-Zin preferences with unit intertemporal elasticity of
subtitution, so that their value function satisfies

Vi,t = C1−β
i,t

(
Et[V 1−γ

i,t+1]
1

1−γ
)β
.

Here parameter β controls time preference and γ is the coefficient of relative risk aversion.
In the following, we shall focus on the empirically relevant case γ > 1, so that agents have
preference for early resolution of uncertainty. Given the process for productivity, bond
price and initial capital, each household will make its consumption-savings and portfolio
choice to maximize the value function defined above.

We shall assume that the productivity has aggregate and idiosyncratic component:

log(Ai,t) = log(At) +√xtηi,t −
xt
2 , ηi,t ∼ N(0, 1)

where idiosyncratic shocks ηi,t are independent both across time and across households.
Another exogenous process xt denotes the cross-sectional variance of log productivity, which
will fluctuate over time, and the last term ensures that the normalization At = Ẽ[Ai,t]
holds (Ẽ[ ] will denote cross-sectional averages, conditional on realizations of aggregate
variables).

2.2.2 Equilibrium

The equilibrium of this economy turns out to be particularly simple:

• Since preferences are homothetic and the value function is linear in wealth, there is
a separation between the consumption-saving decision and portfolio choices. Since
idiosyncratic shocks are uncorrelated over time, the only source of heterogeneity is
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in differing levels of wealth, so that all households make the same portfolio choice.
Given the zero net supply of bonds, the equilibrium must thus involve no trade in
them, so that ∀i,∀t : Bi,t = 0.

• Without bonds, all wealth comes from current production. With unit IES, the
consumption choice will be a constant linear function of wealth, so that Ci,t = κYi,t

and Ki,t = (1− κ)Yi,t, where κ = 1− β.

Defining aggregates straightforwardly as cross-sectional averages (e.g. Kt = Ẽ[Ki,t],
etc.), aggregate dynamics can be summarized easily:

Yt = AtKt,

Ct = κYt,

Kt+1 = (1− κ)Yt.

Note that aggregate dynamics of quantities depends only on the aggregate productivity
process At, not on the cross-sectional variance process xt. If we denote logs in lowercase,
we can also derive aggregate and individual consumption growth as

∆ct = log(Ct/Ct−1) = log((1− κ)At) = log(1− κ) + at,

∆ci,t = log(Ci,t/Ci,t−1) = log((1− κ)Ai,t) = log(1− κ) + at +√xtηi,t −
xt
2 .

The process for individual consumption thus has a similar form as in Constantinides and
Duffie (1996).

2.2.3 Asset prices

Moving on to asset prices, although strictly speaking there is no aggregate capital, we
can naturally define aggregate return to capital as an average payoff at time t+ 1 to one
unit of good invested at time t, so that Rk

t+1 = At+1. Return on bonds is then defined as
Rb
t+1 = 1

P bt
, and the difference between the two returns will be the equity premium. In this

case, the return to capital is entirely determined by the linear technology, so the premium
will be driven by adjusting the risk-free rate in accordance with the intertemporal marginal
rate of substitution of households in the no-trade equilibrium, to which we turn next.
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The intertemporal marginal rate of substitution (IMRS) of i-th household is given by

Mi,t+1 = β

(
Ci,t+1

Ci,t

)−1
 Vi,t+1

Et[V 1−γ
i,t+1]

1
1−γ

1−γ

and includes the usual consumption growth term as well as deviation of the next-period
value function from its certainty-equivalent that would capture news about future con-
sumption. In the equilibrium, each household’s IMRS is a valid stochastic discount factor,
and so will be their cross-sectional average Mt+1 = Ẽ[Mi,t+1]. Returns to capital and
bonds must satisfy the following equations:

1 = Et[Mt+1R
k
t+1], 1 = Et[Mt+1R

b
t+1].

Assuming (conditional) lognormality, we can express the conditional equity premium in
terms of logarithm of stochastic discount factor (SDF) and log returns as

Et[rkt+1] + 1
2Vart[rkt+1]− rbt+1 = −Covt[mt+1, r

k
t+1]. (2.1)

Since the capital return is exogenous, asset pricing properties will mainly depend on
conditional distribution of the stochastic discount factor and its sensitivity to aggregate
shocks.

To explicitly characterize the innovation to the logarithm of SDF, we need to find the
innovation to the value function. To this purpose, define the logarithm of normalized
value function vi,t = log(Vi,t/Ci,t) and rewrite the value function recursion as

vi,t = β
1

1− γ logEt [exp ((1− γ)(vi,t+1 + ∆ci,t+1))]

= β
1

1− γ logEt
[
exp

(
(1− γ)(vi,t+1 + ∆ct+1 −

1
2γxt+1)

)]
,

where the second line follows from substituting for individual consumption growth and
integrating out idiosyncratic shock. Since the above expression involves only aggregate
variables, clearly the normalized value function will be equalized across households:
vi,t = vt. If we furthermore assume that at (and thus ∆ct) and xt jointly follow Gaussian
homoscedastic process, we get

vt = β
(
Et

[
vt+1 + ∆ct+1 −

1
2γxt+1

]
+ 1− γ

2 Σ
)
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with Σ = Vart
[
vt+1 + ∆ct+1 − 1

2γxt+1
]
being a (constant) conditional variance. Iterating

forward and imposing proper terminal condition, value function can be expressed as

vt = β

1− β
1
2(1− γ)Σ +

∞∑
i=1

βi
(
Et
[
∆ct+i −

1
2γxt+i

])
.

The log of aggregate SDF in terms of vt+1 has the form of

mt+1 = log(β)− γ∆ct+1 + (1− γ)(vt+1 − vt/β) + 1
2γ(1 + γ)xt+1,

where the last term arises from integrating over cross-sectional consumption growth.

2.2.4 Price of risk

The innovation to mt+1 can subsequently be shown to equal

mt+1 − Et[mt+1] = −γεct+1 + 1
2γ(1 + γ)εxt+1 − (γ − 1)ηct+1 + 1

2γ(γ − 1)ηxt+1

where εct+1 = ∆ct+1 − Et[∆ct+1] is a short-run innovation to consumption growth, εxt+1 =
xt+1 − Et[xt+1] is a short-run innovation to cross-sectional consumption growth variance,
ηct+1 = (Et+1 − Et)

[∑∞
j=1 β

i∆ct+1+j
]
is an innovation to long-run expected consumption

growth, and ηxt+1 = (Et+1 − Et)
[∑∞

j=1 β
ixt+1+j

]
is an innovation to long-run expected

cross-sectional variance. Increases in current or future consumption growth decrease
marginal utility and thus carry a positive market price of risk, whereas increases in current
or future cross-sectional variance enter with the opposite sign and thus carry a negative
price of risk. In other words, assets which pay well in those states of the world in which a
household receives bad news about current or future cross-sectional risk are less attractive
and must offer higher returns.

In the above expression, the first term is standard and captures aggregate consumption
growth. The second term is the same as in the Constantinides & Duffie model and
captures contemporaneous effects of idiosyncratic risk. The third term describes news
about future consumption, and has been studied in long run risk literature. The final term
then captures news about future idiosyncratic risk, and is present only with preference
for early resolution of uncertainty (γ > 1) and in a non-iid environment. The presence
of this last term can potentially increase the equity premium if bad news about current
and future consumption growth are accompanied by bad news about future levels of
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Figure 2.1: Comparative static of conditional Sharpe ratio decomposition according to
equation (2.2). Filled areas show the relative contribution of each channel (long or short
run, aggregate consumption or idiosyncratic risk). While varying each parameter, others
are kept fixed (β = 0.99, γ = 5, ρc = 0.27, φx = −0.16, see also black lines in corresponding
subplots).

idiosyncratic risk.

As a more specific example, consider the following joint process for ∆ct, xt:

∆ct = (1− ρc)µc + ρc∆ct−1 + εt, εt ∼ N(0, σ2
ε )

xt = µx + φx(∆ct − µc).

so that aggregate consumption growth follows the AR(1) process and the idiosyncratic risk
level is its affine function. Setting φx < 0 corresponds to the countercyclical cross-sectional
variance emphasized by Constantinides & Duffie. Since there is just one aggregate shock,
we can obtain the following expression for log SDF innovation:

mt+1 − Et[mt+1] =
(
−γ + 1

2γ(1 + γ)φx − (γ − 1) βρc
1− βρc

+ 1
2γ(γ − 1)φx

βρc
1− βρc

)
εt+1.

(2.2)
When γ > 1 and φx < 0, all terms inside the paretheses have the same sign and their
magnitude can be interpreted as the contribution of individual channels to the overall
price of risk.

For a quantitative illustration, choose β = 0.99, γ = 5 (standard values), ρc = 0.27
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(autocorrelation of quarterly US consumption growth) and φx = −0.16 (see section 2.4.1).
Following the above expression, we obtain that short-run consumption risk contributes
53.0%, short-run idiosyncratic risk 25.4%, long-run consumption risk contributes 15.5%
and long-run idiosyncratic risk 6.2%. In relative terms, news about future idiosyncratic
risk constitute 40% of the overall long-run risk. Figure 2.1 shows the sensitivity of this
decomposition to each parameter. Varying the discount rate should in principle affect
the weight households put on future events and thus also the relative importance of
long run risk, but for the range of values usually considered it does not seem to play
a large role. Higher risk aversion raises the share of both long run and idiosyncratic
risk. Autocorrelation of consumption growth has a similar, although even stronger, effect,
as with more predictability, a current shock to consumption causes greater revision of
expectations about future. Finally, the degree of countercyclicality (plotted using its
absolute value) makes the role of idiosyncratic risk larger.

The model presented in this section is too simplified in certain aspects. In a more
standard production economy, the aggregate consumption process is endogenous and thus
introduction of idiosyncratic risk may affect asset pricing results via general equilibrium
effects. In addition, equity returns are also endogenous in the sense that the presence of
idiosyncratic risk can affect the sensitivity of price-dividend ratios (and thus of returns
themselves) to aggregate shocks, which might affect the predicted equity premium (al-
though not the Sharpe ratio). For these reasons, in the next section I embed idiosyncratic
risk into a version of a real business cycle model which will allow for both of these
additional effects.

2.3 Full Model

This section describes the main model of a production economy with households facing
idiosyncratic shocks. The model could be described as a variant of standard stochastic
growth model, similar to Kaltenbrunner and Lochstoer (2010), modified with a tractable
form of heterogeneity on the household side, modelled according to Constantinides and
Duffie (1996).
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2.3.1 Production

On the production side, there is a representative firm with standard Cobb-Douglas
technology, producing output from capital Kt and labor Ht:

Yt = Kα
t (ZtHt)1−α, (2.3)

where Zt is labor-augmenting productivity and its log growth rate ∆zt = log(Zt)−log(Zt−1)
is a given exogenous stochastic process. The firm hires labor on a competitive market at
wage rate Wt to the point where wage equals the marginal product of labor:

Wt = (1− α) Yt
Ht

. (2.4)

The household labor supply is inelastic and fixed at unity, so in equilibrium

Ht = 1 (2.5)

The firm owns its capital stock, uses part of its profits for investment It into the capital
stock and pays the residual as dividend Dt:

Yt = WtHt + It +Dt. (2.6)

Capital accumulation is standard:

Kt+1 = (1− δ)Kt + It. (2.7)

Since the firm faces an intertemporal choice, it is necessary to discuss its objective.
We shall assume the firm will choose an investment policy to maximize the present
value of its dividends evaluated with a one-period stochastic discount factor Mt+1 (to be
discussed later), which is taken as given by the firm. Multi-period SDF is then defined as
Mt→t+j = ∏j

i=1Mt+i, and the firm’s objective is to maximize the sum of current dividend
and (ex-dividend) stock price P s

t , with the latter equal to the present discounted value of
future dividends:

maxDt + Et

 ∞∑
j=1

Mt→t+jDt+j


︸ ︷︷ ︸

P st

.
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Under constant returns to scale, return to the claim to firm’s equity (priced with the SDF
referred to above) will be equal to return on physical capital (Restoy and Rockinger 1994),
in this case given by

RK
t+1 = α

Yt+1

Kt+1
+ 1− δ (2.8)

and by standard variational arguments, firm’s first order condition is

1 = Et
[
Mt+1R

K
t+1

]
. (2.9)

Finally, resources left for aggregate consumption consist of wages and dividend payments,
or, equivalently, of output less investment:

Ct = Dt +WtHt = Yt − It. (2.10)

Note that the production side of the model determines the dynamics of macroeconomic
aggregates such as capital, output and consumption once the stochastic discount factor is
specified. Of course, in equilibrium the SDF process captures the attitudes of households
toward intertemporal choice and risk, so we shall discuss the household side of the model
next.

2.3.2 Households

There is a continuum of households indexed by i, with each having (the same) Epstein-Zin
preferences over its own consumption stream {Ci,t}, summarized by a recursion for the
value function

Vi,t =
{

(1− β)C1−ρ
i,t + βEt

[
V 1−γ
i,t+1

] 1−ρ
1−γ

} 1
1−ρ

, (2.11)

where β captures time preference, ρ is the inverse of intertemporal elasticity of substitution
and γ is relative risk aversion. Each household also inelastically supplies one unit of labor.

The main object of interest on the household side of the model is the stochastic
discount factor, which enters into the firm’s intertemporal decision. In a model with
a representative household, we could drop the i subscript and the relevant SDF would
be directly determined by the representative household’s intertemporal marginal rate of

43



substitution, the expression for which is known to be

MRA
t+1 = β

(
Ct+1

Ct

)−ρ Vt+1

Et
[
V 1−γ
t+1

] 1
1−γ


ρ−γ

.

On the other hand, if households face idiosyncratic risks and markets are incomplete, so
the risk cannot be insured away, we will observe dispersion in individual consumption
growth rates. In principle, individual consumption is an endogenous outcome, depending
on the household’s optimal decisions, which are themselves functions of individual and
aggregate state variables. Generally, the aggregate state would include a cross-sectional
distribution of wealth, necessitating the use of complex solution methods, such as those
used in Krusell and Smith (1998). Instead, I will follow Constantinides and Duffie (1996)
and assume directly6 that the resulting dispersion of consumption growth rates can be
described by a multiplicative shock to the aggregate consumption growth:

Ci,t+1

Ci,t
= Ct+1

Ct
exp(ηi,t+1) (2.12)

where innovations ηi,t+1 are uncorrelated across households and across time. However,
since we are interested in idiosyncratic risk with varying severity over the business cycle,
we shall allow the distribution of ηi,t to vary according to an exogenous parameter process
xt. It will turn out advantageous to summarize this dependence via a moment-generating
function

G(τ ;x) = E [eτη|x] (2.13)

and to assume that the parametrization satisfies the property G(1, x) = 1 for all possible
x, ensuring that average consumption equals the aggregate consumption. For example, if
ηi,t is normal with variance xt and mean −xt/2, the MGF would be G(τ ;x) = e(x/2)(τ2−τ).

The main advantage of the above approach is that it allows us to define the aggregate
stochastic discount factor as a cross-sectional average of individual marginal rates of
subtitution in a tractable way, so that the resulting expression depends only on aggregate
variables. For this purpose, define the logarithm of value function scaled by individual
consumption vi,t = log(Vi,t/Ci,t), as well as the logarithm of scaled certainty equivalent

6See section 2.3.4 for a discussion of how such a result could be derived as a particular equilibrium
outcome.
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ψi,t = log
(
Et
[
V 1−γ
i,t+1

] 1
1−γ /Ci,t

)
, which satisfy the following:

vi,t = 1
1− ρ log ((1− β) + β exp((1− ρ)ψi,t))

ψi,t = 1
1− γ log (Et [exp((1− γ)(vi,t+1 + ∆ci,t+1))])

Under the maintained assumption on individual consumption growth, we have ∆ci,t+1 =
∆ct + ηi,t+1, and the distribution of ηi,t+1 is the same for each household from the point of
view of period t. Using the law of iterated expectation to integrate over ηi,t+1 (conditional
on the next-period parameters of its distribution xt+1), we can rewrite the scaled value
function recursion in terms of aggregates only, implying that these variables are equalized
across households (thus we can drop the i subscript):

vt = 1
1− ρ log ((1− β) + β exp((1− ρ)ψt))

ψt = 1
1− γ log (Et [exp((1− γ)(vt+1 + ∆ct+1)) ·G(1− γ, xt+1)])

(2.14)

Note the MGF term G(1− γ, xt+1) = E[exp((1− γ)ηi,t+1)|xt+1], which arises from inte-
grating over individual shock in the next period, conditional on its distribution which
depends on aggregate variables xt+1.

The individual household’s intertemporal marginal rate of substitution is

Mi,t+1 = β

(
Ci,t+1

Ci,t

)−ρ Vi,t+1

Et
[
V 1−γ
i,t+1

] 1
1−γ


ρ−γ

(2.15)

which can be equivalently expressed as

Mi,t+1 = β exp (−γ∆ci,t+1 + (ρ− γ)(vt+1 − ψt)) , (2.16)

and subsequently the aggregate SDF is obtained by averaging over individual Mi,t+1

conditional on aggregate variables up to and including in period t+ 1:

Mt+1 = β exp (−γ∆ct+1 + (ρ− γ)(vt+1 − ψt)) ·G(−γ, xt+1). (2.17)

where again the term G(−γ, xt+1) appears due to integration over individual shock.

Although defining aggregate SDF by averaging individual rates of substitution may
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seem arbitrary, if we grant that individual consumption allocations are outcomes of some
(still unspecified) equilibrium, and abstracting from binding portfolio constraints, each
household intertemporal rate of substitution would in fact be a valid SDF in the sense
that it would be compatible with asset prices in the economy. Taking a cross-sectional
average of these will result in a SDF which is valid too, but does not depend directly on
any individual-level variables.

The presence of idiosyncratic risk thus affects the resulting discount factor through
the properties of its distribution: specifically, through the G(1− γ, xt+1) term in the value
function recursion, provided that ρ 6= γ, as well as through G(−γ, xt+1) term in the SDF.
Since the modifications are expressed in terms of moment generating functions, all the
higher moments of idiosyncratic risk could, in principle, affect the economy, although in
the most commonly studied case of normal shocks, only the variance will matter. It is
also clear that if the distribution of idiosyncratic shocks were time-invariant (i.e. xt were
constant), the only effect would be to introduce constant offsets into the value function
and discount factor, while risk premia would not be affected directly. Finally, making
the distribution of η collapse to a constant would yield expressions identical to those of a
representative-agent version of the model, which can thus be considered a special case of
the setup presented above.

2.3.3 Quantity dynamics and asset prices

To close the model, we need to further specify the exogenous process for productivity Zt
and the evolution of parameters xt controlling the distribution of individual shocks (these
could be functions of other aggregate variables, or follow their own exogenous process).

Productivity is assumed to be a random walk, so that

∆zt = µz + σzεt, εt ∼ N (0, 1) (2.18)

Regarding the form of individual risk, I will assume that the individual element of
consumption growth is lognormal, so that

ηi,t ∼ N
(
−xt2 , xt

)

and xt representes its variance, which is exogenously given as an affine function of
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consumption growth
xt = µx + φx(∆ct − µz). (2.19)

Equations (2.18) and (2.19) together with equations (2.3), (2.5), (2.7), (2.8), (2.9),
(2.10), (2.14), (2.17) and the functional form for G(τ, x) mean that we have a sufficient
number of relationships for solving the model. Since there is no need to track cross-
sectional distribution of assets, the model can be solved by standard perturbation methods
after detrending.

In terms of asset prices, unlevered return to capital has been defined in (2.8), and its
logarithm will be denoted rkt+1 = logRk

t+1. We will define the price of a one-period riskless
bond that pays one unit in the following period in a standard way:

P b
t = Et [Mt+1 · 1] (2.20)

and define log-return on the bond as rbt+1 = log(1/P b
t ). The excess return is the difference

between return to capital and return to bonds: rxt+1 = rkt+1 − rbt+1. The conditional equity
premium and Sharpe ratio are then defined as:

EPt = Et[rxt+1]

SRt = Et[rxt+1]√
Vart[rxt+1]

(2.21)

and their unconditional averages are EP = E[EPt], SR = E[SRt].

Recall the expression for conditional equity premium in a lognormal setting (adjusted
for Jensen inequality) from equation (2.1):

Et[rkt+1] + 1
2Vart[rkt+1]− rbt+1 = −Covt[mt+1, r

k
t+1].

In case of just one aggregate shock, so that mt+1 − Et[mt+1] = ηmεεt+1, the conditional
Sharpe ratio and equity premium is approximately

SRt ≈ |ηmε|σz, EPt = SRtVart[rxt+1].

In the model, all conditional volatility of returns arises from fluctuations in the marginal
product of capital, which is not volatile enough to match the observed variation in stock
returns. This issue could in principle be fixed by introducing capital adjustment costs
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or leveraged equity, although in this paper I will focus mainly on the price rather than
quantity of risk, i.e. on the Sharpe ratio.

2.3.4 No trade equilibrium

The model presented so far relies on a reduced-form way to incorporate idiosyncratic
consumption risk. It is possible to support such an outcome as a no-trade equilibrium7

of a model with households facing particularly defined idiosyncratic additive shocks
to their budget constraints, which could represent unexpected expenditures, gains or
redistitributive payments (which, however, cancel out in the aggregate) that cannot
be insured against due to incomplete markets. Intuitively, given that a household’s
utility function is homothetic and in the proposed equilibrium the deviation of individual
consumption from the aggregate is a geometric random walk with shocks uncorrelated in
time, all the households behave essentially symmetrically in their consumption/saving and
portfolio decisions, thus implying no trade in assets. No trade, together with symmetric
initial portfolios, in turn lead to individual consumption heterogeneity of the form described
in previous sections. For completeness, this section will present such an equilibrium in
more detail.

The individual household receives labor income and can trade firm shares and bonds.
Its budget constraint reads:

Ci,t + P s
t Ai,t+1 + P b

t Bi,t+1 = Wt + (P s
t +Dt)Ai,t +Bi,t + Υi,tCt,

where P s
t , P b

t are prices of firm equity and a risk-free one-period bond respectively, Ai,t, Bi,t

are the household’s beginning-of-period portfolio positions, and other variables are as
defined previously. The household also faces an additive shock Υi,t to its wealth, scaled
by the current level of aggregate consumption. We will require that the cross-sectional
average of Υi,t equals zero, so that individual shocks do not add or subtract resources to
the economy.

The evolution of idiosyncratic shock is specified as:

Υi,t = (1 + Υi,t−1) exp(ηi,t)− 1
7The discussion here adapts the no-trade equilibrium setup of Constantinides and Duffie (1996) from

endowment to a production economy with EZ preferences. A close, although not identical aggregation
approach is offered in Braun and Nakajima (2012), who allow for elastic labor supply, but also consider
only time-separable utility function.
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where ηi,t are the same shocks which were previously characterized in equation (2.13). Since
we assumed

∫
exp(ηi,t)di = 1, the above law of motion maintains a zero cross-sectional

mean of Υi,t. For example, if ηi,t is normally distributed, Υi,t will have a lognormal
distribution shifted by a negative constant.

The household takes asset prices, wages, dividends, aggregate consumption and idiosyn-
cratic shocks as given, and chooses its consumption and portfolio positions to maximize
its value function (2.11). Given the allocation of consumption across households, the rest
of the model functions as previously described, although we will also require that stock
and bond prices are consistent with market clearing in financial markets, so that, in the
aggregate, households own the whole firm (

∫
Ai,tdi = 1) and bonds are in zero net supply

(
∫
Bi,tdi = 0). Given the specification of exogenous shocks Zt,Υi,t, the equilibrium of the

economy can be thus defined as:

• stochastic process for aggregate output Yt, consumption Ct, investment It, capital
Kt, wage Wt, return to capital Rk

t and dividend Dt,

• firm equity price P s
t and bond price P b

t

• individual household consumption Ci,t, portfolio positions Ai,t, Bi,t, value function
Vi,t and IMRS Mi,t+1

• aggregate SDF Mt+1

such that

• given the aggregate SDF, Yt, It, Kt, Ct, Dt, R
k
t ,Wt are consistent with firm optimality

condition (2.9), production function (2.3), capital accumulation (2.7), resource
constraints (2.6), (2.10) and marginal products (2.4), (2.8).

• markets for financial assets clear.

• Ci,t, Ai,t, Bi,t, Vi,t and Mi,t+1 are consistent with optimal decisions by a household.

• Mt is consistent with cross-sectional aggregation of household intertemporal rates of
substitution Mi,t as described in (2.17).

Next, notice that if households held symmetric market-clearing portfolios, i.e. ∀t,∀i :
Ai,t = 1, Bi,t = 0, their consumption growth would be in fact described by (2.12), since in
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such case their consumption is Ci,t = Wt+Dt+Υi,tCt = (1+Υi,t)Ct and their consumption
growth thus satisfies

Ci,t+1

Ci,t
= Ct+1

Ct

1 + Υi,t+1

1 + Υi,t

= Ct+1

Ct
exp(ηi,t+1)

The following result shows that an outcome where households hold symmetric portfolios
at all times, embedded within the rest of the model described previously, is in fact an
equilibrium:

Claim: Consider an allocation where

• firm stock price is given by P s
t = Kt+1 and bond price is determined by aggregate

SDF as in (2.20),

• households hold symmetric portfolios Ai,t = 1, Bi,t = 0,

• and rest of the model functions as described previously;

then such an allocation is an equilibrium. Moreover, households are in agreement in terms
of the firm’s investment policy.

To see why the above holds, we need to check whether first-order conditions of
individual households are satisfied. The intertemporal rate of substitution of household i
between two consecutive periods (implicitly, taking as given current aggregate state of the
economy; I also supress time indices for clarity) can be generally written as a function of
some first-period individual state si and second-period individual shock η′i and aggregate
shock ε′: Mi(si, η′i, ε′). In our case, however, individual IMRS given by (2.16) depends on
the individual state only through the household’s consumption growth, which is assumed
to be uncorrelated over time and determined by future idiosyncratic shock η′i. Therefore
individual IMRS does not depend on the initial individual state and can be written as
M(η′i, ε′). Intuitively, if individual consumption behaves like a multiplicative random walk
and households have homothetic preferences, any differences in wealth are simply a matter
of scale.

The aggregate stochastic discount factor is obtained by averaging over individual shocks:
M(ε′) = E [Mi(η′i, ε′) | ε′] (since distribution of shocks is symmetric across households, this
does not actually depend on i). We can then show that the aggregate optimality condition
E [M(ε′)R(ε′)] for some return R also implies individual optimality E [Mi(η′i, ε′)R(ε′)], since
here this follows directly from the law of iterated expectations. The aggregate optimality
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is satisfied by return on bonds by assumption, and it is easy to show that it also holds
for return on stocks held by households8. It then follows that the household individual
optimality conditions are also satisfied and that a no-trade euqilibrium is consistent with
optimal consumption and portfolio choice by households.

The same argument also ensures that households do not differ in their preferred
investment policy (see also Carceles-Poveda and Coen-Pirani (2009) for a more general
discussion of when this is true): in equilibrium, each household receives the stream
of dividends from the firm, so its preferred policy is to maximize the present value
of future dividends, using its own IMRS as a discount factor. This would lead to a
first order condition for investment 1 = E[Mi(η′i, ε′)RK(ε′)], but by the same logic of
iterated expectations, this is equivalent to the assumed firm’s condition (2.9). Another
possible question is whether a different choice of weights across households when defining
the aggregate SDF might affect the results. In general this is possible in models with
incomplete markets (Carceles-Poveda 2009), but it turns out that in the current model
weighting does not matter. Any weights corresponding to some reasonable corporate
governance mechanism should depend only on current states of firm owners, not on
realizations of next-period shocks. A weighted SDF M̃(ε′) = E [w(s)Mi(s, η′i, ε′) | ε′] will
not make a difference when Mi is independent of s.

2.4 Results

To evaluate how the addition of idiosyncratic risk affects the behavior of the neoclassical
growth model, I first calibrate most of the parameters based on a representative-agent
version of the model, then solve the model with and without idiosyncratic risk, and inspect
its properties. In the second part of this section, I proceed by describing a log-linear
approximate solution to the model, which is helpful to illustrate the interplay between
idiosyncratic risk and dynamics of macroeconomic aggregates in the model. Finally, I
will also consider an alternative way to model cyclical variation in the distribution of
idiosyncratic risk by way of cyclical skewness rather than variance.

8This can be verified by plugging in the proposed expression for stock price into the definition of return
and using the fact that Dt+1 = Yt+1 −Wt+1 − It+1 = αYt+1 − It+1. After some rearranging, we obtain
that the stock return is equal to the return to capital defined in (2.8), and thus satisfies the condition
due to the firm’s optimality condition (2.9).
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Parameter Value Description
β 0.988 discount factor
ρ 0.7 inverse of IES
γ 5 risk aversion
α 0.33 capital share
δ 0.025 depreciation rate
µz 0.005 mean productivity growth
σz 0.015 volatility of productivity shock
µx 0.0036 mean level of ind. risk
φx -0.16 cyclicality of ind. risk

Table 2.1: Parameter values.

2.4.1 Calibration

Model calibration is summarized in table 2.1. Frequency is quarterly. Starting with a
representative-agent version of the model, most parameters are chosen close to standard
values in the literature, as in, e.g., Campbell (1994). α is set to match the capital share of
income of one third, δ implies annual depreciation rate of 10%. Discount rate β and the
inverse of IES ρ are set so as to match the steady state return to capital of 6% per annum
and output growth being twice as volatile as consumption growth. Trend productivity
growth is set at 2% per year. The volatility of productivity shocks matches standard
deviation of quarterly output growth of 1%, roughly corresponding to postwar US data.
Finally, risk aversion is set to 5, a relatively standard value.

Following Storesletten, Telmer, and Yaron (2007), who use a process for variance
of idiosyncratic shocks of the same form, I set µx = 0.0036 (i.e. their value 0.014
rescaled to quarterly setting) and φx = −0.16. The average level µx corresponds to
annualized standard deviation of individual consumption growth of about 12%. The
value of sensitivity φx captures the sensitivity of idiosyncratic risk to the business cycle,
with negative values representing counter-cyclical variation. Given that quarterly (non-
annualized) standard deviation of consumption growth will be approximately half a
percent and assuming a normal distribution, the chosen value implies that fluctuations
in xt correspond to the annualized standard deviation of individual consumption growth
ranging from approximately 9% to 15% with 95% probability (in terms of the ergodic
distribution).

After detrending by productivity (a list of detrended equations can be found in the
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data model: RA model: HA1 model: HA2
moments:
σ[∆yt] 1.90% 2.02% 2.01% 2.02%
σ[∆ct]/σ[∆yt] 0.56 0.50 0.74 0.49
σ[∆it]/σ[∆yt] 2.58 2.65 1.81 2.63
cor(∆yt,∆yt−1) 0.37 0.03 0.02 0.03
cor(∆ct,∆ct−1) 0.27 0.21 0.06 0.21
Sharpe ratio 0.39 0.121 0.163 0.161
risk price decomposition:
short run, ∆c - 39.1% 45.8% 29.7%
short run, x - 0.0% 22.0% 14.2%
long run, ∆c - 60.9% 23.0% 40.1%
long run, x - 0.0% 9.2% 16.0%

Table 2.2: Comparison of model-implied annualized moments. Data: US quarterly series
1947-2016; see appendix for definitions. Model RA: calibrated as in table 2.1, but setting
µx = φx = 0. Model HA1: as in table 2.1, but setting β = 0.973 to match RA model
steady state. Model HA2: as in table 2.1, but setting β = 0.975, ρ = 0.214 to match
RA model steady state and quantity dynamics. Standard deviations and Sharpe ratio
are annualized by doubling from quarterly values. The bottom section shows relative
contributions to the price of risk based on loglinear approximation.

appendix), I solve the model by a 3rd-order perturbation method using Dynare (Adjemian
et al. 2011), as higher-order approximation is necessary to obtain non-zero risk premia
when the perturbation approach is used for numerical solution. Model-implied moments
for various variables are then computed from a pruned representation of the system,
using the approach and code presented by Andreasen, Fernandez-Villaverde, and Rubio-
Ramirez (2013). In a recent work, Pohl, Schmedders, and Wilms (2018) argue that models
with long-run risk can exhibit nonlinearities that make local approximations potentially
unreliable, and suggest using global solution methods. It turns out that in the model
presented here, nonlinearities are quite mild, so that local and global solutions yield very
similar results, as documented in the appendix.

2.4.2 Quantitative results

Table 2.2 displays selected unconditional moments from three versions of the model, as
well as from US quarterly macroeconomic data. A representative agent variant of the
model (RA column) matches variances of output and consumption growth (which, of
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Figure 2.2: Impulse responses of log consumption and output to a 1 s. d. (permanent)
productivity shock. Right panel: models RA (representative agent) and HA2 (het. agents,
with β and ρ adjusted to match RA model dynamics). Left panel: model HA1 (het.
agents, with β adjusted to match RA model steady state).

course, it has been calibrated to match), as well as autocorrelation of consumption growth.
The implied Sharpe ratio of about 12% is lower than observed, yet still quite substantial
compared to its value in a model with separable utility (approximately 0.6%). The second
variant (HA1 column) is a model with idiosyncratic risk parameters calibrated as described
above and otherwise the same as a representative-agent model, with the exception of the
discount factor β which has been adjusted to obtain the same steady state. Looking at
our main object of interest, we see that the presence of countercyclical idiosyncratic risk
has increased the market price of risk (proxied here by the Sharpe ratio of excess returns)
by approximately a third, but the dynamics of macroeconomic quantities has also changed
significantly: with idiosyncratic risk, aggregate consumption growth has volatility closer to
that of the output growth and autocorrelation closer to zero, which worsens the empirical
fit of the model. In the third version (HA2 column), both the discount factor and the
intertemporal elasticity of substitution are modified to maintain the same dynamics of
output and consumption as in the RA variant of the model. We can see that the market
price of risk remains high, so that by using a suitable choice of preference parameters, the
model can be relatively succesful along both dimensions.

Even though the model with idiosyncratic risk has a higher price of risk relative to the
representative agent model, the overall level of the Sharpe ratio still does not achieve the
observed values. In principle, one could achieve a higher Sharpe ratio by cranking up the
risk aversion. However, high values of γ are often considered unrealistic, as they imply
implausibly conservative behavior by agents faced with a risky choice. In addition, higher
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risk aversion would make it harder to match the behavior of consumption in a model
with idiosyncratic risk by requiring excessive adjustment of the intertemporal elasticity
parameter (see also the discussion in the following subsection). The results presented here
should then be interpreted as offering a partial resolution of the equity premium puzzle in
a model with a moderate amount of risk aversion, but to explain the observed Sharpe
ratio fully would likely require a richer model.

The bottom part of the table presents decomposition of the risk premium based on
loglinear approximation, similar to the discussion in section 2.2 (see also the next subsection
and the appendix for more details about loglinear solution). Dispersion of idiosyncratic
shocks constitutes a bit less than a third of the overall long run risk contribution and
around a third of the overall short run risk contribution. The overall contribution of long
run risk is 61% in representative agent model and 56% in the HA2 model, but it is only
32% in the HA1 model, due to the overall amount of predictability in the economy being
lower (the aggregate consumption is closer to a random walk).

To better understand how the introduction of idiosyncratic risk affects the behavior
of output and consumption, figure 2.2 plots impulse responses to a productivity shock
of output and consumption (log) levels for both RA and HA1 variants of the model
(impulse responses in HA2 calibration are by construction close to the RA variant). The
representative agent version shows both consumption and output growing over time toward
their new, permanently higher, values implied by the permanent increase in productivity,
but the response of consumption on impact is about half of output response (in line
with calibration targeting volatility of consumption growth being half of output growth
volatility). Thus households are willing to spread consumption increases over a longer
horizon and to accept variation in future consumption growth rates in order to accumulate
capital stock more quickly and thus to obtain more benefits from the increased productivity.
However, in the model with idiosyncratic risk, the response of consumption on impact
is much stronger and essentially consumes the whole productivity gain straight away at
the cost of slower accumulation of capital, as if households were much more averse to
intertemporal substitution of consumption.

This effect on consumption smoothing also complicates the analysis of asset prices,
since the price of risk can be affected by the presence of idiosyncratic risk, in addition to
its direct impact on the stochastic discount factor described in section 2, also through
the changes in the endogenous process for aggregate consumption caused by a lower
steady state interest rate and lower “aggregate” intertemporal elasticity of substitution.
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Specifically, with less predictable consumption growth, the long run consumption risk
emphasized by Kaltenbrunner and Lochstoer (2010) becomes less important, although
the overall market price of risk has gone up in our case. On the other hand, as can
be seen from the final column of table 2.2, it is possible to counteract such impacts by
increasing IES (i.e. decreasing ρ) of individual households, although in general the size of
the adjustment will depend on both the level and cyclicality of idiosyncratic risk, as well
as households risk aversion, as discussed in more detail in the next subsection.

2.4.3 Qualitative analysis

To gain better intuition about the implications of idiosyncratic risk, we shall inspect
a loglinear approximation to the model solution along the lines of Campbell (1994).
Since the productivity process is a random walk, the detrended model has just one
relevant state variable, (log) ratio of capital and productivity k∗t = log(Kt/Zt) (in terms
of notation, lowercase symbols shall denote logs and starred variables are detrended by
productivity). The dynamics of capital, output and consumption are determined by the
deterministic steady state and by the sensitivity of detrended consumption to detrended
capital: c̃∗t = ηckk̃

∗
t , with a tilde denoting deviation from the steady state value.

A complete derivation can be found in the appendix, but it is possible to show that
the steady state depends on preference and idiosyncratic risk parameters only through
their effect on steady state return to capital r̄k = − log(β) + ρµz − 1

2γ(1 + ρ)µx. The
coefficient ηck depends on the steady state, as well as on the “effective” inverse of IES
ρ̂ = ρ− 1

2γ(1 + ρ)φx. In other words, any combinations of parameters β, ρ, γ, µx, φx which
imply the same r̂k and ρ̂ will lead to identical dynamics of output and consumption
growth.

More specifically, if we start with a representative-agent model with parameters
βRA, ρRA, γRA (i.e. µRAx = φRAx = 0), and then introduce idiosyncratic risk by setting
µx > 0, φx 6= 0, we can maintain the same quantity dynamics in the heterogeneous-agent
model by choosing parameters βHA, ρHA, γHA such that

− log(βRA) + ρRAµz = − log(βHA) + ρHAµz −
1
2γ

HA(1 + ρHA)µx

ρRA = ρHA − 1
2γ

HA(1 + ρHA)φx

If we, for example, decide to keep risk aversion the same: γHA = γRA, the above two
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equations pin down the new values of the discount rate and intertemporal elasticity of
substitution. If the individual risk was acyclical (φx = 0), the only necessary adjustment
is in the discount rate, which should be set lower to counteract the precautionary saving
effect pushing interest rates down. In the presence of countercyclical individual risk
(φx < 0), we would additionally need to make ρHA lower9, to counteract the greater
aversion of agents to intertemporal substitution.

Why do agents exhibit this aversion? We can gain some intuition by looking at
the power utility case (γ = ρ). The individual Euler’s equation can be then written
approximately as

log(β) + ρEt[∆ci,t+1]− 1
2ρ

2V art[∆ci,t+1] = rbt+1

Since ∆ci,t+1 = ∆ct+1 + ηi,t+1, if we ignore the small normalization shift in ηi,t+1, expected
individual consumption growth moves one to one with aggregate expected consumption
growth. However, with countercyclical risk, the conditional variance of individual con-
sumption growth will vary inversely to ∆ct+1, and thus the whole left hand side will be
more sensitive to Et[∆ct+1]. As a result, if we considered only aggregate data, the agent
behaves as if he had higher ρ (lower intertermporal substitution) than he really does,
which is consistent with empirical estimates of IES finding higher values when estimated
on micro data compared with findings from aggregate time series (Havranek 2015).

Moreover, if the agent has Epstein-Zin preferences with risk aversion differing from
the inverse of IES, the above result suggests that the degree of required adjustment in ρ
depends on risk aversion as well, or alternatively, that risk aversion affects the dynamics of
macroeconomic aggregates even at a first order approximation. The separation property
described by Tallarini (2000) (i.e. that risk aversion affects the risk premia but not the
behavior of quantities) thus does not hold outside the representative-agent model. A
related issue with the proposed adjustment might be that, if idiosyncratic risk is strongly
cyclical (φx has large magnitude) or households are very risk averse (γ is high), the
adjustment might imply parameter values for ρ that are too low or even negative. It is
possible that introducing other extensions affecting intertemporal choice, such as habit
formation, might counteract this tendency, although I do not follow this direction in the
current paper.

9A similar expression for “effective” intertemporal substitution in CRRA case was derived in Constan-
tinides and Duffie (1996).
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Figure 2.3: Comparative static for the conditional Sharpe ratio. Left: dependence on
idiosyncratic risk parameters. Right: dependence on risk aversion. At each point, ρ and β
are recalibrated to imply the same dynamics of aggregate quantities.

Even though the above discussion would suggest that the effect of idiosyncratic risk (at
least as modelled here) does not affect qualitative properties of the representative-agent
model conditional on suitable recalibration of preference parameters, the equivalence does
not carry over to asset prices. Up to a linear approximation, log of scaled value function
vt = log(Vi,t/Ci,t) can also be solved for as a function of capital stock, so that in terms of
deviations from steady state, ṽt = ηvkk̃

∗
t . The coefficient ηvk is a function of the steady

state and ηck, but depends also on both µx and φx. With countercyclical risk (φx < 0),
the value function will be more sensitive to detrended capital stock and thus also to a
productivity shock. The innovation to log SDF can be written as

mt+1 − Et[mt+1] = −
[(
γ − 1

2γ(1 + γ)φx
)
ηcz + (γ − ρ)(−ηvk)

]
︸ ︷︷ ︸

ηmε

εt+1 = ηmεεt+1

implying a conditional Sharpe ratio

log
(
Et[Rk

t+1]
)
− rbt+1

sdt[rkt+1] = −ηmεσz

Therefore, even if we recalibrate the parameters to maintain the same dynamics of
aggregate consumption, market price of risk will still differ from the one implied by the
representative-agent model with the same dynamics.

The left panel of figure 2.3 plots the (annualized) conditional Sharpe ratio as a function
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of µx, φx when preference parameters are recalibrated to match the quantity dynamics of
the representative-agent model solved previously. Each point on the graph thus implies
the same consumption process so that we can distinguish the pure effects of idiosyncratic
risk on the risk premium. If the risk was acyclical (φx = 0), the price of risk would actually
go slightly down due to lower required discount rate, which in turn weakens the impact of
long-run consumption risk (this effect is present only when consumption growth is not
iid, otherwise acyclical idiosyncratic risk would have no impact, as in Krueger and Lustig
(2010)). However, making the risk countercyclical increases the price of risk substantially.
Note that Epstein-Zin preferences are crucial for this result, since if we imposed γ = ρ,
we would obtain ηmε = −ρ̂ηcz and thus the recalibration procedure would imply the same
price of risk for any combination of parameters.

The right panel of figure 2.3 plots the dependence of the risk premium on the risk
aversion parameter, for a representative-agent model and for a model with idiosyncratic
risk calibrated as in the previous section, again while keeping the quantity dynamics the
same. We can observe that the presence of idiosyncratic risk not only makes the risk
premium rise faster with higher risk aversion, but it causes it to do so at an increasing
rate, leading to a convex relationship (whereas the dependence is linear in RA model).
This confirms that the combination of Epstein-Zin preferences with idiosyncratic risk leads
to an interaction that makes it easier to match observed risk premia with lower levels of
risk aversion.

2.4.4 Cyclical skewness

Recent research (Guvenen, Ozkan, and Song 2014) suggests that it is cyclical variation in
skewness, rather than variance of idiosyncratic shocks that is more consistent with data.
Although cyclical variance, as analyzed in the previous sections, is especially tractable
given the loglinear form of moment generating function for Gaussian distribution, the
model allows the use of other distributions as well, as long as their moment generating
function can be expressed in closed form. To see how much the results described above
depend on specific form of idiosyncratic risk, I solve the model with ηi,t following a mixture
of three normal distributions with time varying means, as proposed by McKay (2017)10.

10To be precise, I use the distribution of the permanent component of income shock faced by employed
agents in the model described in that paper.
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Specifically I assume that

ηi,t ∼ constant +


N(µ1,t, σ

2
1) with prob. p1

N(µ2,t, σ
2
2) with prob. p2

N(µ3,t, σ
2
3) with prob. p3

where the constant captures normalization, so that E[exp(ηi,t)] = 1, the means are given
by

µ1,t = 0

µ2,t = µ2 − xt, µ2 < 0

µ3,t = µ3 − xt, µ3 > 0

and, as before, xt is a function of aggregate consumption growth:

xt = φx(∆ct − µz).

Individual consumption growth can belong either to the first mixture component, which
stands for the “normal” experience faced by a majority of households, or to one of the
other two components which represent negative or positive jumps. Movements in xt then
shift the position of the second and third components relative to first one, making the
size of negative jumps larger during recessions (provided φx < 0) and thus making the
cross-sectional distribution of consumption growth more negatively skewed.

The calibration of means, variances and probabilities of the mixture elements follows
McKay (2017), although I scale the overall size of the shock (i.e. means and standard
deviations of mixture components) by one half to achieve a variance comparable to
lognormal calibration used in previous sections. Sensitivity of xt is estimated by regressing
the time series for xt provided by Alisdair McKay on his website11 on US consumption
growth, and the resulting coefficient is also scaled by one half. The chosen parameters
are thus: µ2 = −0.835, µ3 = 0.1970, σ1 = 0.0319, σ2 = σ3 = 0.1668, p1 = 94.87%,
p2 = 3.24%, p3 = 1.89% and φx = −7.285. At the steady state, standard deviation of
η with given parameters is 6.1%, or around 12.2% annualized, while the coefficient of
skewness is 1.05 and of kurtosis 27.6, so the distribution is slightly positively skewed

11http://people.bu.edu/amckay/files/risk_time_series.csv
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data model: RA model: HA3 model: HA4
moments:
σ[∆yt] 1.90% 2.02% 2.01% 2.02%
σ[∆ct]/σ[∆yt] 0.56 0.50 0.76 0.53
σ[∆it]/σ[∆yt] 2.58 2.65 1.69 2.47
corr(∆yt,∆yt−1) 0.37 0.03 0.02 0.03
corr(∆ct,∆ct−1) 0.27 0.21 0.05 0.17
SR 0.39 0.121 0.189 0.184
risk price decomposition:
short run, ∆c - 39.1% 41.1% 26.4%
short run, x - 0.0% 26.1% 16.8%
long run, ∆c - 60.9% 20.8% 36.1%
long run, x - 0.0% 12.0% 20.8%

Table 2.3: Comparison of model-implied annualized moments under cyclical skewness.
Data: US quarterly series 1947-2016; see the appendix for definitions. Model RA: calibrated
as in table 2.1 without idiosyncratic risk. Model HA3: as in table 2.1 and section 2.4.4,
but setting β = 0.974 to match RA model steady state. Model HA4: as in table 2.1
and section 2.4.4, but setting β = 0.974, ρ = 0.255 to match RA model steady state and
quantity dynamics. Standard deviations and Sharpe ratio are annualized by doubling
from quarterly values. The bottom section shows relative contributions to the price of
risk computed using the loglinear approximation.

and fat-tailed. Measured in terms of plus/minus two standard deviations of aggregate
consumption growth, skewness ranges from -1.5 to 3.1 over the business cycle.

Table 2.3, organized similarly as table 2.2, contains unconditional moments from two
versions of a model with cyclical skewness. Again, I compare a version of the model with
β recalibrated to match steady state return to capital (HA3 column), and another (HA4
column) with β and ρ recalibrated to match the dynamics of output and consumption12.
The results are largely comparable to those in table 2.2, although the Sharpe ratio of 18%
under skewed idiosyncratic shocks is somewhat higher compared to 16% under lognormal
shocks. Without adjusting individual intertemporal elasticity of substitution, we again
observe a change in the behavior of aggregate consumption, although the change is not
as strong as in the lognormal case. Decomposition of risk premium is qualitatively also
similar to the lognormal case, but quantitatively the role of idiosyncratic risk is slightly
higher in relative terms.

12It is possible to derive approximate formulas for adjusting the parameters as in the previous section,
although they are somewhat more involved due to the necessity of loglinearizing MGF terms. However,
qualitatively the direction of adjustment is same as before.
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2.5 Conclusion

In this paper, I have studied how preferences for early resolution of uncertainty and
idiosyncratic, uninsurable risk affect risk premia in a tractable macroeconomic model with
production. On one hand, the combination of the two elements implies that households
care about direct shocks as well as news about both aggregate consumption and the
amount or shape of individual risk, and if the latter varies cyclicaly over time, both
can increase the price of risk more than each element would in isolation. On the other
hand, when households can shift consumption intertemporally by investing in productive
capital, countercyclical risk affects their incentive to do so, and on the aggregate level,
the economy behaves as if households had lower intertemporal elasticity of substitution,
potentially leading to different behavior of macroeconomic quantities. Nevertheless, at
least in the setting analyzed here, one can maintain the same quantity dynamics by
suitably recalibrating preference parameters. Specifically, if we are willing to assume that
individual agents have higher intertemporal elasticity of substitution, it is possible to
compensate for the effect of cyclical risk on aggregate consumption while keeping the
price of risk higher.

There are several directions that could be pursued in further research. Introducing
elastic labor supply or habit formation would allow for greater flexibility in matching
macroeconomic dynamics. It might be also interesting to investigate independent shocks to
the process describing distribution of idiosyncratic risk, either as a source of macroeconomic
fluctuations or as an asset pricing factor, although identifying such shocks might present
a challenge. An additional direction to consider would be to include stochastic volatility
of aggregate shocks, which is another channel of time-varying uncertainty often analyzed
in the literature, in order to compare and contrast the effects of “macro” and “micro”
uncertainty on the economy. Finally, closer comparison to models with more realistic
structure of household heterogeneity and trade between households would be useful in
establishing the validity of the modelling approach used in the present paper.

2.A Appendix

2.A.1 Detrended model equations

Notation:
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Lowercase variable names usually denote logarithms, e.g. kt = log(Kt). Starred
variables denote variables detrended by productivity, i.e. y∗t = log(Yt/Zt) = yt − zt. Delta
denotes 1st difference, e.g. ∆ct = ct − ct−1.

List of variables:

Variable Description

∆zt productivity growth rate
y∗t log detrendend output
k∗t log detrended capital
c∗t log detrended agg. consumption

∆ct growth rates of output, consumption
rkt log return to capital
pbt log bond price
rbt log return to risk-free bond
mt log of aggregate SDF
vt log of scaled value function
ψt log of scaled certainty equivalent
xt variance of individual consumption growth rates
εt productivity shock

Equations:

• The production block contains equations describing productivity growth, the produc-
tion function, capital accumulation, marginal product of capital, the Euler equation
for investment and definition of consumption growth:

∆zt = µz + εt

y∗t = αk∗t

exp
(
k∗t+1 + ∆zt+1

)
= (1− δ) exp (k∗t ) + exp (y∗t )− exp (c∗t )

exp
(
rKt
)

= α exp ((α− 1)k∗t ) + 1− δ

1 = Et
[
exp

(
mt+1 + rKt+1

)]
∆ct+1 = c∗t+1 − c∗t + ∆zt+1

• The household block contains equations describing scaled value function, certainty
equivalent, process of variance of individual consumption growth rates and the
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stochastic discount factor:

vt = 1
1− ρ log (1− β + β exp((1− ρ)ψt))

exp((1− γ)ψt) = Et [exp((1− γ)(vt+1 + ∆ct+1−(γ/2)xt+1))]

xt+1 = µx + φx(∆ct+1 − µz)

mt+1 = log(β)− ρ∆ct+1 + (ρ− γ)(vt+1 − ψt + ∆ct+1)+(1/2)γ(1 + γ)xt+1

• The remaining equations describe price and return of the risk-free bond:

exp(pbt) = Et [exp (mt+1)]

rbt = −pbt−1

Steady state:

Setting productivity shocks to zero allows us to find a stationary steady state, which
corresponds to the balanced growth path in terms of original, undetrended variables. We
shall denote steady state values by dropping the time index and bars over the variables.

• Along the balanced growth path, productivity and consumption grow at the same
rate, so ∆z = ∆c = µz. Idiosyncratic risk is at its average level: x̄ = µx.

• Given the constant consumption growth, we can solve for the value function and
steady state SDF:

v̄ = 1
1− ρ log

(
1− β

1− βe(1−ρ)(µz−(γ/2)µx)

)

ψ̄ = v̄ + µz − (γ/2)µx

m̄ = log(β)− ρµz + 1
2γ(1 + ρ)µx

• Steady state SDF determines the return to capital, which in turn allows us to solve
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model: RA model: HA1 model: HA2
3rd order perturbation
Sharpe ratio 0.121 0.163 0.161
projection
Sharpe ratio 0.119 0.160 0.160

Table 2.4: Comparison of solutions from perturbation and projection methods.

for steady state capital, output and consumption:

r̄k = − log(β) + ρµz −
1
2γ(1 + ρ)µx

k̄∗ = 1
α− 1 log

exp
(
r̄k
)
− 1 + δ

α


ȳ∗ = αk̄∗

c̄∗ = log
(
exp(ȳ∗)− (exp(µz)− 1 + δ) exp(k̄∗)

)

• Finally, the SDF determines the bond price and return, which equals the return to
capital:

p̄b = log(β)− ρµz + 1
2γ(1 + ρ)µx

r̄b = − log(β) + ρµz −
1
2γ(1 + ρ)µx

2.A.2 Local vs. global solution

To find whether solving the model numerically with perturbation omits any substantial
nonlinearities, I also solve a version of the model with counter cyclical variance also by using
a projection method. I approximate consumption and value functions as combinations
of Chebyshev polynomials up to the 10-th degree and solve for polynomial coefficients
such that forward-looking conditions (i.e. the definition of the value function and the
Euler equation, with expectations evaluated by 5-point Gauss-Hermite quadrature) hold
exactly at a set of corresponding collocation nodes. Table 2.4 shows the resulting Sharpe
ratios (obtained as averages from a simulation with each solution), which are very similar.
Other moments are omitted as they were virtually identical up to 3 decimal places. Thus
it seems that for the model and calibration studied here, nonlinearities do not matter very
much.
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2.A.3 Linearized solution

The model summarized above has a single state variable, detrended capital k∗t and thus its
inearized solution can be found explicitly. We shall denote deviations from a steady state
value by tilde, e.g. k̃∗t = k∗t − k̄∗. First, linearize key equations around the steady state:

k̃∗t+1 = λ1k̃
∗
t − λ2c̃

∗
t − εt+1

r̃Kt = λ3k̃
∗
t

Et[r̃Kt+1] = −Et[m̃t+1]

m̃t+1 = −γ∆̃ct+1 + (ρ− γ)(ṽt+1 − ψ̃t)+(1/2)γ(1 + γ)x̃t+1

ṽt = κψ̃t

ψ̃t = Et
[
ṽt+1 + ∆̃ct+1 − (γ/2)x̃t+1

]
∆̃ct+1 = c̃∗t+1 − c̃∗t + ∆̃zt+1

∆̃zt+1 = εt+1

x̃t+1 = φx∆̃ct+1

where λ1, λ2, λ3 and κ are defined as

λ1 = exp
(
r̄k − µz

)
λ2 = exp

(
c̄∗ − k̄∗ − µz

)
λ3 = α(α− 1) exp

(
(α− 1)k̄∗ − r̄K

)
κ = β exp((1− ρ)(µz − (γ/2)µx))

We are looking for consumption policy in the form of c̃∗t = ηckk̃
∗
t .

Claim: if we can write the expected log SDF as Et[m̃t+1] = −ρ̂Et
[
∆̃ct+1

]
for some ρ̂,

then ηck can be found by using the method of undetermined coefficients as a (positive)
solution to the quadratics

ρ̂λ2η
2
ck + (ρ̂− λ2λ3 − ρ̂λ1) ηck + λ1λ3 = 0.

Proof: substitute law of motion for capital and consumption policy into the linearized
Euler equation, take expectation (simply cancels shock), rearrange. There will be two
real roots, one positive, one negative (since ρ̂λ2 > 0 and λ1λ3 < 0), and the positive one
corresponds to the stable solution. �
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Claim: our model satisfies the above with

ρ̂ = ρ− 1
2γ(1 + ρ)φx.

Proof: since
ṽt+1 − ψ̃t = ṽt+1 − Et[ṽt+1]− Et[∆̃ct+1] + (γ/2)Et[x̃t+1]

and
Et[ṽt+1 − ψ̃t] = −Et[∆̃ct+1] + (γ/2)Et[x̃t+1]

after bit of algebra, we get

Et[m̃t+1] = −
(
ρ− 1

2γ(1 + ρ)φx
)
Et
[
∆̃ct+1

]

�

Finally, we can also solve for the value function in the form of ṽt = ηvkk̃
∗
t , also by using

the method of undetermined coefficients. The result:

ηvk =
κ
(
1− γ

2φx
)
ηck (λ1 − λ2ηck − 1)

1− κ (λ1 − λ2ηck)
.

Having solved for the consumption and value functions, innovation to the log SDF can
be expressed as

mt+1 − Et[mt+1] =
(
γ(1− ηck) + (γ − ρ)(−ηvk) + 1

2γ(1 + γ)(−φx)(1− ηck)
)

(−εt)

Since typically γ > ρ, ηvk < 0 and φx < 0, each of the three added terms inside the
large parentheses is positive and can be understood as standing for short-run aggregate
consumption risk, long run risk and short-run idiosyncratic risk, respectively. To further
decompose long run risk, iterate forward on the definition of ṽt to obtain

ṽt =
∞∑
i=1

κi
(
Et[∆̃ct+i]−

1
2γEt[x̃t+i]

)
=
(

1 + 1
2γ(−φx)

) ∞∑
i=1

κiEt[∆̃ct+i]

so that the share of long run risk attributable to news about x can be taken as
1
2γ(−φx)

(1+ 1
2γ(−φx)) .

67



2.A.4 Linearized solution with general MGF

The previous derivation of loglinear approximation can be relatively easily extended to the
case of a general moment-generating function describing the distribution of idiosyncratic
shocks. Specifically, let G(t, x) be the MGF as described in the main text (normalized
so that G(1, x) = 1), and denote the cumulant generating function g(t, x) = log(G(t, x)).
We will continue to assume that x is a scalar following xt = µx + φx∆̃ct. The relevant
equations for the value function and log-SDF are modified as follows:

exp((1− γ)ψt) = Et

[
exp

(
(1− γ)

(
vt+1 + ∆ct+1 + 1

1− γ g(1− γ, xt+1)
))]

mt+1 = log(β)− ρ∆ct+1 + (ρ− γ)(vt+1 − ψt + ∆ct+1) + g(−γ, xt+1)

and their steady state values, given that x̄ = µx, are

v̄ = 1
1− ρ log

 1− β
1− βe(1−ρ)(∆c+ 1

1−γ g(1−γ,x̄))


ψ̄ = v̄ + ∆c+ 1

1− γ g(1− γ, x̄)

m̄ = log(β)− ρ∆c+ γ − ρ
1− γ g(1− γ, x̄) + g(−γ, x̄)

To solve for dynamics, linearize g wrt. x at t = −γ and t = 1− γ:

g(−γ, x) ≈ g(−γ, x̄) + θ(−γ)x̃

g(1− γ, x) ≈ g(1− γ, x̄) + θ(1−γ)x̃

where θ(t) = ∂g(t,x̄)
∂x

. Linearized equations then become

ṽt = κψ̃t

ψ̃t = Et
[
ṽt+1 + ∆̃ct+1 + (1/(1− γ))θ(1−γ)x̃t+1

]
m̃t+1 = −γ∆̃ct+1 + (ρ− γ)(ṽt+1 − ψ̃t) + θ(−γ)x̃t+1

where κ = β exp
(
(1− ρ)

(
∆c+ 1

1−γg(1− γ, µx)
))

. Everything else is the same as in the
previous case, and following the same argument we can derive effective inverse IES:

ρ̂ = ρ+ γ − ρ
γ − 1θ(1−γ)φx − θ(−γ)φx
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and then ηck is (the positive) solution to

ρ̂λ2η
2
ck + (ρ̂− λ2λ3 − ρ̂λ1) ηck + λ1λ3 = 0

Using the method of undetermined coefficients, ηvk can be derived to be

ηvk =
κ
(
1 + 1

1−γ θ(1−γ)φx
)
ηck (λ1 − λ2ηck − 1)

1− κ (λ1 − λ2ηck)

Then one can show that the innovation to log-SDF is

mt+1 − Et[mt+1] =
(
γ(1− ηck) + (γ − ρ)(−ηvk) + θ(−γ)(−φx)(1− ηck)

)
(−εt+1)

which can again be used to decompose the risk premium, with the share of long run risk
attributable to news about x being ( 1

1−γ θ(1−γ)φx)
(1+ 1

1−γ θ(1−γ)φx) .

2.A.5 Data sources

Data moments in table 2.2 for macroeconomic variables are obtained from quarterly
national accounts data constructed by the U.S. Bureau of Economic Analysis and published
in the St. Louis Fed FRED database. The sample period is 1947Q1 - 2016Q2. Output
and investment growth (∆y, ∆i) are computed as logarithmic growth rates of GDP and
gross private domestic fixed investment quantity indices (NIPA table 1.1.3) divided by
population (NIPA table 7.1). Consumption growth (∆c) is computed as a weighted average
of logarithmic growth rates in quantity indices for nondurables and services consumption
(NIPA table 1.1.3) divided by population, with weights determined by nominal shares of
both consumption components in combined nominal nondurable+services consumption
(NIPA table 1.1.5), i.e. using the Tornqvist index method (however, simply summing both
series in real chained dollars yields almost identical results).

Data for financial returns are constructed from monthly dataset on Fama-French 3
factors published on Kenneth French’s website13. In place of the return on capital/firm
stock (Rs) I use the market return (i.e. the return on value-weighted portfolio of all firms
listed at NYSE, AMEX or NASDAQ), while the risk-free rate (Rb) is represented by the
return on 1-month Treasury bill. Returns are expressed in real terms by subtracting
CPI inflation (series CPIAUCSL from FRED) and aggregated to quarterly frequency by

13http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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summing monthly returns over the given quarter. The resulting sample period is 1947Q1 -
2016Q3.
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Chapter 3
Uncertainty shocks with heterogeneous

firms and firm owners
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3.1 Introduction

The role of time-varying uncertainty1 in the economy has been subject of much attention
in recent years (summarized, e.g., by Bloom (2014)). Various measures of uncertainty are
usually countercyclical. Recessions are associated with greater variance of shocks, larger
dispersion of outcomes across firms and households and uncertain beliefs about future
events. A natural question is whether and to what extent uncertainty might be a cause of
economic fluctuations and through which mechanisms would an exogenous increase in
uncertainty lead to economic downturns.

There are multiple dimensions of uncertainty which can affect the economy in different
ways. One proposed channel involves an exogenous increase in the volatility of idiosyncratic
productivity shocks faced by individual firms. In the presence of irreversible investment,
higher uncertainty may depress new investment by raising the value of waiting and
postponing investment or hiring decisions. Such a freeze in firm activity is then reflected in
lower output and less efficient reallocation of production factors. This “real option” channel
has been studied in partial equilibrium by Bloom (2009b) and in general equilibrium by
Bloom et al. (2012) and by Bachmann and Bayer (2013), who find that an uncertainty
shock can cause a noticeable drop in economic activity, even though the effect is somewhat
muted in the latter case.

Even when embedded in a general equilibrium, this mechanism has so far been studied
under the assumption of either risk-neutrality or with a representive household owning
all firms in the economy. In such a case, however, households are insulated from the
uncertainty itself, because although firm-specific shocks are more dispersed, this dispersion
will wash out in the aggregate. And while the uncertainty shock may affect the level of
future aggregate capital, output or prices, households will not face a larger amount of
uncertainty about their future income or consumption than before. In reality, ownership of
firms is not fully diversified, especially in case of private, unlisted companies (Moskowitz
and Vissing-Jørgensen 2002), and more volatile firm profits can spill over to more volatile
entrepreneur incomes. This paper aims to investigate how micro uncertainty in firm-specific
productivity affects investment, saving and consumption decisions when households are
exposed to (a part of) firm-specific volatility.

1The term “uncertainty” sometimes refers to ambiguity, i.e. a situation where agents lack well-defined
probabilistic beliefs about random events they face. In the paper, in accordance with previous literature
in this area, I will understand uncertainty in terms of risk, i.e. situations where random events are
described by (objective or subjective) probabilities.
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First, I illustrate the proposed mechanism in a simple two-period model with idiosyn-
cratic but no aggregate uncertainty. When risk-averse entrepreneurs fully own their firm
and are unable to insure against the risk they face, they will prefer to lower investment
into new capital when faced with more volatile profits, both due to the real option effect
(arising here from irreversible investment) and to the portfolio choice effect (a more
risky asset is less attractive). With convex marginal utility, they will also want to lower
their current consumption due to the precautionary saving motive. In contrast, when a
representative household owns all the firms, its consumption is effectively deterministic
and thus not affected by the precautionary motive, and the investment decision will be
equivalent to that of a risk-neutral firm. i.e. higher compared to the non-diversified
case. With higher investment, the drop in subsequent output will be relatively less severe.
Theory suggests that abstracting away from the heterogeneity of firms owners and their
exposure to profit volatility can potentially understate the effect of an uncertainty shock.

The sequence of events described above seems consistent with existing VAR estimates
presented in Bachmann and Bayer (2013) and Gilchrist, Sim, and Zakrajšek (2014), who
find that an increase in idiosyncratic firm volatility is associated with a subsequent drop
in both consumption and investment. There is also evidence that higher volatility is
associated with increases in the net foreign assets of a country (Fogli and Perri 2015). In
this paper, I investigate a cross-country panel with different uncertainty measures collected
by Baker and Bloom (2013) and their impact on several macroeconomic aggregates. I
find that both “macro” (time-varying volatility of broad index stock returns) and “micro”
(cross-sectional dispersion of individual stock returns) proxies of uncertainty are linked with
subsequent falls in output, consumption and investment and increases in current account
balance. Moreover, when including interaction with a measure of financial development
(standing in for the degree of diversification in firm ownership), I find that the impact is
stronger in less financially developed countries.

Next, I construct a dynamic model of an open economy with heterogeneous firms and
entrepreneurs, who face idiosyncratic productivity shocks and irreversibility constraint on
investment. Each entrepreneur controls the investment decisions of their own company,
as well as choices about consumption and savings in foreign financial assets. Incomplete
diversification is introduced by assuming that entrepreneurs own a share 1− θ of their own
company, and the remaining θ share is owned jointly by a collective of all entrepreneurs.
The profits received in each period are then a combination of the entrepreneur’s own firm
profits and aggregate (average) profits. This approach offers a tractable way to vary the
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degree of diversification, from autarky (θ = 0) to full risk-sharing (θ = 1).
Using the model, I study how such an economy reacts to an exogenous uncertainty

shock that raises the volatility of idiosyncratic shocks to a firm’s productivities, and
especially how such a reaction depends on the diversification parameter θ. The model
predicts that the degree of diversification can substantially affect the economy’s reaction
to the uncertainty shock, where lower diversification makes the drop in investment larger
and the recovery longer, while at the same time depressing consumption and increasing
savings. On the other hand, diversification is less relevant for analyzing the behavior
of output and investment in response to other kinds of shocks (such as fluctuations
in productivity or interest rate), although even then it matters to some extent for the
dynamics of consumption and savings. Interestingly, while a lack of diversification lowers
the average level of capital and output in the economy, it does not seem to impact the
efficiency of capital allocation across firms.

Related literature. The theory of investment under uncertainty with irrevesibilities
has been studied extensively (Dixit and Pindyck 1994; Abel and Eberly 1994). Conse-
quently, macroeconomists have paid increasing attention to the role of firm heterogeneity in
determining aggregate investment (Caballero 1999), as well as macroeconomic fluctuations
more generally (Veracierto 2002; Khan and Thomas 2008). The current paper is most
closely related to the literature studying macroeconomic effects of changing cross-sectional
uncertainty in firm productivity. In a well known contribution, Bloom (2009b) shows that,
in the presence of irreversibility and fixed costs, exogenous increases in the volatility of
firm-specific productivity shocks leads to a drop in investment and hiring in the short-run.
Subsequent research, such as Sim (2007), Bloom et al. (2012) and Bachmann and Bayer
(2013), has studied this mechanism in general equilibrium.

More recent papers have looked at differences in response to uncertainty shocks between
durables and nondurables industries (Kehrig 2015), interaction of cyclical uncertainty with
a financial accelerator mechanism (Chugh 2016), effects of fiscal stimulus (Winberry 2016)
and the role of cyclical skewness in dispersion of firm productivity (Kuehn, Schreindorfer,
and Ehouarne 2016). Alternatively, in the presence of financial frictions, an increase in
volatility can also depress investment by raising credit spreads and interfering with firm’s
external financing, as described by Arellano, Bai, and Kehoe (2012), Gilchrist, Sim, and
Zakrajšek (2014) and Christiano, Motto, and Rostagno (2014). All of these contributions
model the consumer side of the economy via a representative household and thus abstract
away from the precautionary channel studied here. One exception can be found in Dou
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(2016), who also presents a model with underdiversified risk-averse entrepreneurs and
uncertainty shocks, with a primary focus on its asset-pricing implications.

More broadly, the issue of comovement in consumption and investment in response to
an increase in uncertainty has been discussed in Basu and Bundick (2017). The paper is
also related to literature on how entrepreneurs with an inside stake affect the decisions
of the firm (Chen, Miao, and Wang 2010; Panousi and Papanikolaou 2012) and on the
implications of idiosyncratic entrepreneurial risk (Angeletos and Calvet 2006). The effect
of precautionary and portfolio channels on investment has been also studied by Bayer et al.
(2015) in a setting with labor income risk. On the empirical side, interaction between the
response of aggregate output to macroeconomic uncertainty and financial development has
been previously studied in Karaman (2015). This paper complements previous results by
looking at the responses of several macroeconomic outcomes to a cross-sectional uncertanty
shock.

Organization. Section 3.2 illustrates the main mechanism in a two-period model and
presents empirical evidence. Section 3.3 desscribes the dynamic model and section 3.4
presents model results. More technical details can be found in the appendix.

3.2 Motivation

3.2.1 Theory

To illustrate the relationship between uncertainty, investment and consumption, consider a
simple two-period model. There is a population of entrepreneurs, each with initial resources
W . In the first period, i-th agent decides how to spend their wealth on consumption,
savings in risk-free asset yielding fixed return (here normalized to 1) and physical capital
in their own firm:

W = Ci,1 + A+Ki.

In the second period, each firm faces a random realization of idiosyncratic productivity
Zi. A portion p of firms also gets a chance, independent of productivity, to adjust their
firm’s capital stock upward to a new value K ′i ≥ Ki. In such a case, the investment
is financed from within-period profits. The remaining 1 − p share of firms will have
capital stay fixed at their original choice: K ′i = Ki. Next, firms will produce output
according to decreasing-returns production function Yi = Zi (K ′i)

α, 0 < α < 1, and finally,
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second-period consumption is the sum of savings and output less any new investment:

Ci,2 = A+ Zi (K ′i)
α − (K ′i −Ki) .

Each agent will make his initial choices and adjust capital conditional on the second-period
state (if allowed) to maximize expected utility:

max
Ci,1,Ki,Ai,K′(K,Z)

u (Ci,1) + E [u (Ci,2)]

Let us denote ηi a random variable capturing whether the firm can invest in the second
period (η = 1) or not (η = 0). Iterating backwards, the second period investment is a simple
static problem where the firm either chooses unconstrained optimum K∗(Z) = (αZ)

1
1−α if

it is higher than its original investment (i.e. when productivity is high), or is limited by
the irreversiblity constraint so that K ′ = K, the same as firms without the opportunity
to adjust. Then we can write total profits from production as

D(K,Z, η) =


ZKα if η = 0 or η = 1 and K∗(Z) < K

α
α

1−α (1− α)Z
1

1−α +K if η = 1 and K∗(Z) ≥ K

and the utility maximization problem, symmetric in the first period, can be written as

max
C1,A,K

u(C1) + E [u (A+D(K,Z, η))] s. t. C1 + A+K = W.

The above model treats entrepreneurs as acting independently, essentially in autarky.
With the financial market limited to a risk-free asset, each agent is fully exposed to
second-period idiosyncratic risk. An opposite extreme would be a situation in which all
agents collectively own all the firms and split profits equally, so that the idiosyncratic risk
is fully diversified away. Individual consumption would be equal to average consumption,
and thus the decision problem changes to

max
C1,A,K

u(C1) + u (E [A+D(K,Z, η)]) s. t. C1 + A+K = W.

The main point of interest is how the optimal choice varies with the degree of uncertainty
in Z both in cases of autarky and full diversification. The following result (derived more
precisely in the appendix) summarizes the qualitative properties of both solutions.

76



Claim: Assume 0 < p < 1 and u′′′() > 0. Let Aa, Ka, Ca
1 denote the solution for the

autarky model, Ad, Kd, Cd
1 for the diversified model. Denote Z̄ = E[Z].

1. If there is no uncertainty in productivity, i.e. Z = Z̄ always, both solutions coincide:
Aa = Ad = Ā, and similarly for capital and consumption.

2. If there is uncertainty, the initial capital choice of diversified entrepreneurs is lower
than in the deterministic case, Kd < K̄.

3. Capital choice in the case of autarky under uncertainty is lower than diversified
choice under uncertainty: Ka < Kd.

4. Similarly, consumption choice in the case of autarky is lower than diversified choice:
Ca < Cd, and thus necessarily savings are larger: Aa > Ad.

Regardless of the degree of diversificaiton, initial investment is lower under uncertainty.
This is the well known real option channel, since, due to the irreversibility constraint,
having too much capital is more costly than having too little. In addition, physical
capital is even less attractive for nondiversified entrepreneurs who would require a risk
premium to hold an asset with uncertain return. Moreover, if marginal utility is convex
(i.e. preferences exhibit “prudence”), nondiversified agents will also further decrease their
consumption because of the precautionary saving motive. As a result, we can expect that
an introduction of uncertainty in the case of autarky will lead to lower investment, lower
initial consumption and higher savings compared to the case of full diversification.

Figure 3.1 provides a quantitative illustration by plotting optimal first period choices
and average second period output against a mean-preserving dispersion of individual
productivity2. The pattern described above is clearly visible and quantitatively not trivial.
Capital is decreasing with dispersion, more so for the nondiversified case. For this specific
parametrization, the consumption of diversified agents actually increases in response to
uncertainty, as they choose to consume part of the funds freed by lower capital investment.
Consumption of nondiversified entrepreneurs falls, in contrast, as they channel their
resources into the safe asset. Average production also behaves differently, mostly falling
with uncertainty in the autarky model, but increasing in the diversified model, in spite of

2Parameters used: W = 1, α = 1
2 , p = 1

2 , u(c) = 1−e−γc

γ with γ = 5, log(Z) ∼ N
(
−σ

2

2 , σ
2
)
.

Expectation is approximated with 7-point Gauss-Hermite quadrature, and the objective function is then
maximized numerically.
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Figure 3.1: Two-period model: comparative static with respect to dispersion in Z.

lower initial investment. This is due to the Oi-Abel-Hartmann effect, as output is convex
in Z when capital can be freely adjusted, which is true for some of the firms in the model.

3.2.2 Empirics

The preceding discussion suggests that an increase in uncertainty faced by firms at the
micro level will possibly lower investment, but its direct effect on consumption will depend
on the amount of risk that passes through to firm owners. In general, uncertainty is
considered countercyclical and therefore negatively correlated with both investment and
consumption. Previous research specifically estimating VAR responses to a rise in firm-
specific shock volatility (Bachmann and Bayer 2013; Gilchrist, Sim, and Zakrajšek 2014)
indicates negative impacts on both components of economic activity. Such comovement is,
however, not easily obtained in general equilibrium models in which firms are owned by a
representative household, as in Bloom et al. (2012). Similar issue arises even with other
forms of uncertainty shocks in a class of real business cycle models, as discussed by Basu
and Bundick (2017) who instead achieve a negative response of consumption through
aggregate demand effects under sticky prices. The mechanism proposed in this paper would,
on the other hand, affect incentives for consumption directly through the precautionary
savings channel, and thus can potentially work alongside general equilirbrium forces. In
addition, the precautionary motive would also lead to higher net savings in an open
economy setting, where higher volatility has previously been found to be associated with
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increases in net foreign assets (Fogli and Perri 2015).
For further empirical evidence, in this section I investigate effects of uncertainty shocks

on macroeconomic aggregates using a cross-country panel dataset collected by Baker and
Bloom (2013), which covers 60 countries over 1970-2013. The dataset includes several
measures of uncertainty, of which I will use volatility of daily broad index returns as a proxy
for “macro” uncertainty, and cross-sectional dispersion of individual firm stock returns
as a proxy for “micro” uncertainty. The main outcome variables of interest, obtained
from the World Bank’s WDI database, are output, consumption and investment growth,
and change in the ratio of current account relative to GDP, all at annual frequency. The
response of economic activity to uncertainty is estimated by a local projection approach
(Jordà 2005), i.e. by regressing future outcome y on current uncertainty x and other
controls at different horizons:

yi,t+h = αSi,t + β(h)xi,t + εi,t,

where yi,t for country i at year t is growth rate or change in ratio to GDP of respective
macroeconomic outcome expressed in percentage points, xi,t is a logarithm of respective
volatility measure and controls Si,t include xi,t−1, yi,t−1, country and year fixed effects.
Including contemporaneous value of uncertainty but not of the outcome variable is
equivalent to standard VAR recursive identification with uncertainty ordered first. Of
course, an increase in uncertainty could be either an exogenous impulse or an endogenous
response to other shocks (or both), and disentangling the two with coarse annual data is a
difficult challenge. The coefficients thus do not necessarily represent causal effects3. The
main objective of these regressions is to provide additional evidence consistent with the
hypothesis that an uncertainty shock, in both the “macro” and the “micro” sense, leads
to a comovement in major macroeconomic aggregates, including consumption and savings.
Such a comovement is a fact for which the hypothesis in current paper could provide one
possible explanation.

Results are shown in figure 3.2, which plots estimated coefficients β(h) against horizon
h for each combination of four outcome and two input variables. Given variable definitions,
a coefficient β = −2 would, for example, correspond to an increase in volatility by one
fifth leading to drop in the growth rate or ratio by roughly 0.4 percentage points. We

3In their original study, Baker and Bloom (2013) used only output as outcome and their main focus
was on estimating causal effects of uncertainty using disasters as instruments. In this paper I use their
dataset together with multiple outcome variables, but do not seek to explicitly identify causal effects.
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Figure 3.2: Cross-country panel estimates of the response of macroeconomic variables
to uncertainty shock at different horizons. First row: response to log “macro” volatility;
second row: response to log “micro” volatility. Outcome variables in columns from left to
right: GDP growth, consumption growth, investment growth, change in CA/GDP ratio.
Shaded bands represent ±1 and ±2 (clustered, robust) standard errors.

can see that response to uncertainty is negative on impact for both consumption and
investment, regardless of the uncertainty measure. The current account also increases
on impact, so that countries export more or import less and accumulate foreign assets.
After 2-3 years, the economy recovers and the situation reverses, although some estimates
are more imprecise at that point. The evidence thus supports the observation that cross-
sectional uncertainty affects both investment and consumption decisions, consistent with
the explanation proposed in the previous section.

An additional question of potential interest is whether the response is heterogeneous
across countries. Specifically, if the precautionary response of entrepreneurs plays an
important role, we would expect those economies where they are more exposed to idiosyn-
cratic productivity risk to react more strongly to a cross-sectional uncertainty shock. One
way to investigate this hypothesis would be to regress macroeconomic outcomes on uncer-
tainty interacted with a measure of financial development as an indicator of the degree of
diversification in the economy. A similar approach has been used by Karaman (2015),
who finds evidence in favor of a heterogeneous response of output to macro uncertainty
shock (ie.e overall stock market volatility). More relevant for this paper, I also find similar
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(1) (2) (3) (4)
outcome: growth Y growth C growth I change CA

Y

CSVOL -6.80*** -7.30*** -14.6** 2.13
(-4.6) (-3.9) (-2.4) (1.8)

CSVOL × FINDEV 8.41*** 8.47*** 16.1* -1.33
(3.4) (2.8) (1.9) (-0.8)

(β + δz) | p25(z) -3.54 -4.01 -8.36 1.64
(β + δz) | p75(z) -0.77 -1.21 -3.01 1.16

N 993 984 966 890

Table 3.1: Cross-country panel estimates of the response of macroeconomic variables to
uncertainty shock and its interaction with financial development. t-statistics based on
clustered robust s. e. in parentheses. Stars: * p<0.10, ** p<0.05, *** p<0.01.

results also for responses of consumption and investment to a cross-sectional uncertainty
shock by estimating a regression

yit = αSi,t + βxit + γzit + δxitzit + εit

where the aditional variable z captures the degree of financial development and Sit includes
country and year fixed effects. The actual sensitivity of the economy to uncertainty is
then given by β + δzi,t, and from the previous discussion we may expect δ > 0 for growth
rates and δ < 0 for current account.

As for the choice of z, there is a large literature studying the effects of financial
development on economic growth (see, e.g., recent review in Popov 2017) which uses
various proxies of development such as size of credit to private sector or stock market
capitalization. Since it is not clear which specific indicator would correspond most closely
to the mechanism analyzed here, I use the financial development index constructed by
Svirydzenka (2016) that combines many commonly used variables collected in the World
Bank’s GFDD dataset. Results are presented in table 3.1 and show that the coefficients
have the expected signs and most of the time are statistically significant. The heterogeneity
implied by the interaction term is quantitatively quite substantial. The bottom two bottom
rows present implied values β+ δz at values of z corresponding to 25-th or 75-th percentile
of its distribution. In this comparison, a less financially developed country is more than
twice as sensitive to an uncertainty shock as a more financially developed country.
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3.3 Model

In order to study more closely the relation between the degree of diversification and
economy’s response to an uncertainty shock, this section describes a dynamic model of
a small open economy with heterogeneous firms and entrepreneurs. Time is discrete
and indexed by t. There is a population of entrepreneurs indexed by i, each of which
operates a distinct firm. Each firm produces output Y from capital K and labor H using
Cobb-Douglas technology with decreasing returns to scale:

Yi,t = Zi,tK
αk
i,t H

αh
i,t .

Each firm faces exogenous idiosyncratic productivity process Zi,t. The firm hires labor on
a competitive market at wage Wt in each period, so that its profits Π are

Πi,t = Π(Ki,t, Zi,t,Wt) = max
H

Zi,tK
αk
i,t H

αh −WtH.

Profits are used to finance investment I into capital stock, which is owned by the firm
and evolves according to

Ki,t+1 = (1− δ)Ki,t + Ii,t.

The investment is irreversible, meaning that the firm is bound by constraint Ii,t ≥ 0.
Remaining funds are paid out to owners as a dividend Di,t = Πi,t − It. It is possible for a
dividend to be negative, in which case the funds flow from owners to the firm (effectively,
investment is financed as if by issuing new equity).

A share θ of each firm is owned collectively by all entrepreneurs, but the remaining
1− θ share is owned by the individual entrepreneur who manages the firm. Dividends are
distributed accordingly, so that i-th entrepreneur receives a share θ of average dividend
D̄t =

∫
Di,t di and 1− θ share of dividends from i-th firm. Each entrepreneur has a full

control over the split of profits between investment and dividends in their own firm (we
shall assume this is the case even if θ > 1

2). In addition, they can (individually) invest into
risk-free bonds with return R. The entrepreneur’s objective is to maximize discounted
expected CARA utility from consumption

maxE
[ ∞∑
t=0

βtU(Ci,t)
]
, U(C) = 1

γ

(
1− e−γC

)
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subject to budget constraint

Ci,t + 1
R
Bi,t+1 = Bi,t + (1− θ)Di,t + θD̄t.

One reason to use exponential utility is due to modelling convenience4, since it leads to a
closed-form steady-state policy function when θ = 1 that can be used as starting point for
numerical solution. It also allows, to some extent, for negative consumption, a situation
which may occasionally happen if a firm with low capital receives a very good productivity
shock and wishes to expand capital rapidly.

To keep the savings distribution stationary (c.f. Schmitt-Grohe and Uribe 2003), I
will also assume that time preference is lower for richer individuals, or more formally, that
the discount rate βt (from period 0 to period t) satisfies

βt+1 = β0 exp(−φCi,t)βt.

so that the discount factor between periods t and t+ 1 is β̃(Ci,t) = β0 exp(−φCi,t).

In addition to entrepreneurs, there is a population of homogeneous workers who supply
labor. They do not have access to financial markets and thus consume their earnings
in each period. The labor supply is determined by maximizing GHH preferences over
consumption and leisure:

Uw(Cw, Hw) = Cw − θ (Hw)1+χ

1 + χ

subject to budget constraint Cw
t = Hw

t Wt, where Cw, Hw describe worker’s consumption
and labor. The corresponding labor supply curve is then

Hw
t =

(
Wt

θ

) 1
χ

.

In equilibrium, we require that the market for labor clears, so that
∫
Hi,tdi = Hw

t .

The process for firm-specific productivity evolves as AR(1) in logs, subject to time-
varying volatility vt:

zi,t+1 = log (Zi,t+1) = ρzzi,t + σz exp(vt)εi,t+1 + ξt, εi,t+1 ∼ N (0, 1)

4For its tractability, CARA utility has been previously used to study consumption/savings problems
with idiosyncratic risks, see e.g. Caballero (1990), Wang (2003) and Toda (2017).
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where idiosyncratic standard normal shocks εi,t are iid over time and over households
and ξt presents a normalizing factor ensuring

∫
Zi,tdi = 1 (see appendix for more details).

Volatility, which serves as the source of exogenous variation for the economy, fluctuates
over time according to

vt+1 = ρv + σvηt+1, ηt+1 ∼ N (0, 1).

Let Si,t = (Ki,t, Zi,t, Bi,t) denote individual state variables. The aggregate state of the
economy can be summarized by exogenous variable vt and cross-sectional distribution
over individual state, Γt. A recursive equilibrium can be characterized in terms of: policy
functions for consumption C(S,Γ, v), new capital choice K ′(S,Γ, v), and bond choice
B′(S,Γ, v), wage function W (Γ, v), aggregate dividend function D̄(Γ, v) and law of motion
for the distribution Γ′ = H(Γ, v) such that: 1) policy functions solve the entrepreneur’s
investment and consumption-saving problem, taking as given process for aggregate state,
wages and aggregate dividends; 2) aggregate dividends is consistent with aggregation over
individual dividends; 3) wage clears the labor market; 4) distribution evolves consistently
with individual policies.

Looking closer at the entrepreneur’s problem, it is possible to derive that their optimal
choice must satisfy the following first order conditions:

1 = β̃(Ci,t)REt
[
U ′(Ci,t+1)
U ′(Ci,t)

]

1− µi,t = β̃(Ci,t)Et
[
U ′(Ci,t+1)
U ′(Ci,t)

(
∂

∂K
Π(Ki,t+1, Zi,t+1,Wt+1) + (1− δ)(1− µi,t+1)

)]

Ki,t+1 ≥ (1− δ)Ki,t, µi,t ≥ 0, µi,t (Ki,t+1 − (1− δ)Ki,t) = 0

The first condition, which describes the usual consumption smoothing, holds with equality,
since we did not impose a binding borrowing constraint. The second condition, which
captures optimal capital choice, involves a multiplier on the irreversibility constraint (scaled
by marginal utility). The presence of multiplier effectively means that if the constraint
is binding in current period, the expected marginal product of capital is lower than the
current cost of investment, and if it is binding in the next period, remaining future capital
has a lower value. Note that the investment FOC does not depend directly on the degree
of risk-sharing θ, since higher risk-sharing lowers the entrepreneur’s cost and benefit from
investing in their own firm equally. It does, however, depend on entrepreneur’s marginal
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utility when θ < 1, since the condition puts higher weight on future states in which the
entrepreneur individually experiences low consumption. On the other hand, if there is
full risk-diversification, i.e. θ = 1, each entrepreneur receives an aggregate dividend and
is not affected by the profits of their company at all, so there is no heterogeneity across
entrepreneurs. If we abstract from fluctuations in aggregate consumption, investment
decisions in such a case will correspond to that of a risk-neutral manager discounting
future profits at rate R.

In terms of solving the model, obtaining the solution without aggregate uncertainty
(vt = 0) is relatively straightforward. One can solve the entrepreneur’s problem numerically
for given wage and aggregate didvidend, then simulate a panel of agents to obtain (discrete
approximation of) the cross-sectional distribution. Equilibrium values of wage and dividend
are found in the outer loop imposing consistency and market clearing. To solve for dynamics
with aggregate uncertainty, I follow Reiter (2009b) and use perturbation to solve for
dynamics of coefficients describing the policy functions and cross-sectional distribution.
Since the distribution is over a 3-dimensional state that would be hard to store directly
(e.g. by histogram), I keep track only of its first and second moments. For any current
moments, I reconstruct the discrete approximation to a cross-sectional distribution5 so
that it matches the moments while being close to the steady-state distribution using the
maximum entropy approach described in Tanaka and Toda (2013). Given the distribution
and current policy, next-period moments required to evaluate optimality conditions can
be calculated easily. More details are provided in the appendix.

3.4 Results

The parameters of the model have been mostly calibrated to match selected macroeconomic
moments or based on standard values used in the literature. The time period is one
quarter. The persistence of the firm productivity process is set to 0.9, consistent with
the range of values used in other work: for example, Gilchrist, Sim, and Zakrajšek (2014)
use 0.8, Cooper and Haltiwanger (2006) estimates 0.885 at annual frequency (i.e. approx.
0.95 at quarterly freq.), Bachmann and Bayer (2013) choose a value close to unit root.
The standard deviation is chosen at σz = 0.11 to match the average range of TFP values
across firms reported in Syverson (2004). Following Veracierto (2002), labor share αh

5Other approaches based on mapping from moments to space of “reference” distributions can be found
in Algan, Allais, and Den Haan (2008) and Winberry (2018).

85



is set to 0.64 and capital share αk to 0.21. δ = 0.025 corresponds to 10% depreciation
over the year. Interest rate R = 1.015 matches annual return to capital of 6%. Utility
curvature γ = 10 implies relative risk aversion on average in the range of 2-6 (depending
on average consumption of entrepreneurs). Given χ = 1, I set η to match average hours
worked equal to one third. Given φ = 0.1, I choose β0 to obtain zero average savings
in a fully deterministic version of the economy (without aggregate or individual shocks).
Regressing the (annual) measure of cross-sectional volatility from Baker and Bloom (2013)
on its lag and country fixed effects yields coefficient of around 0.65 (similar results are
obtained with an Arellano-Bond estimator), which corresponds to a quarterly persistence
coefficient ρv of around 0.85. The shock to the volatility process has a standard deviation
σv = 0.13 to match the unconditional standard deviation of the same volatility measure
(after demeaning by country fixed effects).

A key parameter in the model is θ, which controls the degree of diversification in
firm ownership. A model with a representative household would correspond to θ = 1,
while θ = 0 would mean that each entrepreneur is the sole owner of their firm. The
value that would best describe real economies lies somewhere in between, although likely
significantly below 1. Holderness (2009) shows that, even for publicly traded firms in the
US, large blockholders own, on average, 40% of a firm, and the largest shareholder owns
26%, and finds relatively similar results for other countries. The degree of diversification
is even lower in case of private firms. Moskowitz and Vissing-Jørgensen (2002) report
that the value of private equity in the US is comparable to the value of public equity, and
for households which hold private equity, on average 70% of it is in their own business;
similarly, Gentry and Hubbard (2004) find that US entrepreneurs hold 41.5% of all assets
(i.e. not only equity) in their active businesses. In a large sample of European firms,
Faccio, Marchica, and Mura (2011) estimate that across firms, the largest shareholder
owns on average around a 63% share; across investors, the average Herfindahl index of
their portfolio shares is 83% (which, if taken literally, would correspond to θ = 0.09 in the
model). Given the range of plausible values, I will compare two parametrizations, one
with θ = 0.75 and one with θ = 0.25, to stand in for high and low diversification. All the
parameters are summarized again in table 3.2.

Table 3.3 summarizes aggregate quantities in the steady state, i.e. with aggregate
shocks turned off. In the less diversified economy, aggregate capital stock is somewhat lower
compared to more diversified economy. As a result, the output and worker consumption
is lower as well. Intuitively, capital is much riskier to hold for entrepreneurs and thus
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parameter value description
β0 0.99954 baseline discount factor
φ 0.1 discount sensitivity to consumption
γ 10 risk aversion
η 3.7 labor supply scale
χ 1 labor supply wage sensitivity
αk 0.21 capital share
αh 0.64 labor share
δ 0.025 depreciation rate
R 1.015 return on bonds
ρz 0.9 persistence of firm productivity
σz 0.11 baseline vol. of firm shocks
θ {0.75, 0.25} degree of diversification
ρv 0.85 persistence of volatility shock
σv 0.13 size of volatility shock

Table 3.2: Calibration of model parameters.

K B Y Centr Cwork sd[log(Ki)] sd[Bi] effic.
θ = 0.75 2.82 4.00 0.67 0.23 0.43 0.50 0.69 0.84
θ = 0.25 2.17 27.89 0.62 0.58 0.39 0.53 1.11 0.84

Table 3.3: Moments of steady state without aggregate uncertainty.

they prefer to save through risk-free asset instead. Therefore the average savings in
a less diversified economy is substantially larger and also more dispersed due to more
volatile income of entrepreneurs. Interestingly, larger savings imply larger capital gains
from financial assets, so that consumption of entrepreneurs is actually higher in a less
diversified economy. We can also observe that distribution of capital across firms has
roughly the same dispersion in both economies, suggesting that lack of diversification
affects the overall level of capital but not its relative allocation across firms. The last
column shows one possible measure of allocative efficiency, the ratio of actual output
to a hypothetical output obtained if capital were allocated optimally across firms (see
appendix for the precise definition), and in both cases the efficiency is around 84%.

Consumption and investment functions of entrepreneurs, as well as cross-sectional
distributions over individual state variables (capital, productivity and bonds) are plotted in
figure 3.3. Investment is decreasing in current capital stock and increasing in productivity,
with a substantial portion of firms being constrained and investing zero. Investment is, in
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general, a bit lower in the low risk sharing economy, reflecting higher volatility of profits,
which makes it a less attractive way of saving, and as a result the distribution of capital
is also shifted to lower values. Consumption (plotted in deviations from the mean, as
the two economies have different average consumption levels) is more sensitive to the
state of the firm when θ is lower (which is natural, given that individual profits consistute
a larger part of income in such a case), but interestingly is also more sensitive to the
holding of bonds. As a result, marginal propensity to consume out of a wealth shock is
higher under lower risk sharing, perhaps due to the presence of endogenous discounting
and higher average consumption. Finally, the amount of savings in bonds does not seem
to affect the investment choice (in the plotted case, the firm with average state variables
is constrained, but the policy function for investment seems to be horizontal in the bond
dimension at other points also). This is not entirely unexpected, as the model does not
include more realistic forms of financial frictions such as borrowing constraints, collateral
requirements or varying interest rate schedules. Further, the result also shows that the
lack of diversification is not simply equivalent to other forms of financial frictions, so that
any effects of uncertainty shocks must work through different mechanisms.

Turning to model dynamics, impulse responses of the main aggregates to a volatility
shock are plotted in figure 3.4. The effects of shock on output are about three times
stronger in the less diversified economy, causing a fall in output by about third of a
percentage point (i.e. 1.2 points in terms of annualized growth rate). As predicted by
the real otion channel, both economies respond to heightened volatility with a rapid drop
in investment, but the drop is larger and more persistent in the less diversified economy.
This leads to a larger and more persistent drop in capital stock, which is the main cause
of lower output. The behavior of consumption is also different, with larger drop in the
less diversified economy in agreement with the precautionary channel. In both cases, the
initial drop in investment and/or consumption results in an increase in financial savings,
since the volatility shock does not affect the productive capabilities of the economy upon
impact. The excess savings are quickly spent again in the more diversified economy, as the
investment rebounds, whereas with less diversification the rise in savings is much more
persistent.

Next, figure 3.5 displays the responses of several additional variables. The reaction
of aggregate capital mirrors the behavior of investment, so that the drop is more severe
and persistent with less diversification. Lower capital stock generates lower demand for
labor, resulting in lower wage and worker consumption. The fifth panel confirms that the
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Figure 3.3: Policy functions (slices in single dimension, holding other individual state
variables at their mean) and cross-sectional distributions (marginal) for entrepreneurs
in the steady state of a high risk-sharing (θ = 0.75) and a low risk-sharing (θ = 0.25)
calibration. Consumption is plotted in deviations from (calibration-specific) average value.
Bond holdings are normalized by (calibration-specific) mean and standard deviation.
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Figure 3.4: Impulse responses to a one st. dev. volatility shock.

response of entrepreneur consumption is qualitatively very different in the two economies
and is responsible for most of the difference in the contemporaneous reaction of aggregate
consumption. Finally, the last panel shows the response of the efficiency measure defined
earlier and finds that the degree of diversification again does not seem to matter, since the
drop in efficiency caused by a freeze in investment looks very similar in both economies.

Together, results shown in figure 3.4 seem to support the claims that the degree
of diversification in firm ownership can play an important role in determining how the
economy responds to a cross-sectional uncertainty shock affecting firm productivity. A
natural question is whether the degree of diversification also matters for responses to other
kinds of shocks. Figure 3.6 plots impulse responses to a shock in aggregate productivity
and in the return to financial savings6. We can observe that the reactions of output
and investment are virtually identical in the two economies, reacting positively to higher
productivity and negatively to higher interest rate (which represents higher cost of
capital). The behavior of consumption and savings is, however, somewhat different, with
the response of consumption being more muted in the less diversified economy.

6More formally, the firm’s production function is extended to Yi,t = eatZi,tKαk
i,t H

αh
i,t and constant

interest rate is replaced with Rt = Rert , in which at and rt follow independent zero-mean AR(1) processes
with parameters of ρa, σa and ρr, σr. The parameters used to generate the figure are ρa = ρr = 0.9 and
σa = 0.01, σr = 0.0025.
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Figure 3.5: Additional impulse responses to a one st. dev. volatility shock.
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Figure 3.6: Impulse responses to productivity and interest rate shocks.

91



3.5 Conclusion

It is well known that an increase in the volatility of idiosyncratic productivity shocks
can lead to a drop in economic activity due to the real option effect. This paper uses
a dynamic model with heterogeneous firms and firm owners as well as cross-country
empirical evidence to investigate an additional channel through which an uncertainty
shock can be amplified and propagated. When risk-averse entrepreneurs are exposed to an
increase in volatility because lack of diversification in their portfolio makes their income
process more risky, they will respond to higher volatility by further cutting back on their
consumption. Moreover, the fact that returns to capital become more risky will provide
an additional incentive to reallocate their savings from risky capital to risk-free asset.
As a result, the response of the economy to the uncertainty shock is stronger and more
persistent if the degree of diversification is lower.

The model presented is relatively simple and includes only one, rather extreme form
of investment irreversibility. It also abstracts from specific sources behind the lack of
diversification faced by firm owners, which is instead introduced in a stylized way. It
could thus be potentially useful to study a model with a richer structure of adjustment
costs and more explicit microfoundations in future. In addition, it might be interesting
to introduce nominal rigidities that would allow for simultaneous drops in investment
and consumption to further depress output through the aggregate demand channel. It
is likely that in such setting a low degree of diversification would lead to even greater
amplification of an uncertainty shock.

3.A Appendix

3.A.1 Two-period model

Consider first order conditions:

• autarky:

u′(W − A−K) = E [u′ (A+D(K,Z, η))]

u′(W − A−K) = E
[
u′ (A+D(K,Z, η))× ∂D

∂K
(K,Z, η)

]
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• diversification:

u′(W − A−K) = u′ (E [A+D(K,Z, η)])

u′(W − A−K) = u′ (E [A+D(K,Z, η)])× E
[
∂D

∂K
(K,Z, η)

]

1. With Z known in advance, every firm chooses optimal capital right away. η thus
plays no role in determining payoff and with no uncertainty, first order conditions of
both problems will coincide.

2. Combining diversified FOCs and writing out expectation wrt. η explicitly, we have
conditions for K̄ and Kd

1 = (1− p)∂D
∂K

(
K̄, Z̄, 0

)
+ p

∂D

∂K

(
K̄, Z̄, 1

)
1 = E

[
(1− p)∂D

∂K

(
Kd, Z, 0

)
+ p

∂D

∂K

(
Kd, Z, 1

)]

Note that marginal profitability of initial capital ∂D
∂K

is a mix of functions which are
linear and convex in Z. Moreover for η = 1 and values Z > Z̄ (and since Z̄ is mean
of Z, such values exist with positive probability) irreversibility will not be binding
and ∂D

∂K
will be strictly convex. From Jensen inequality we then have

1 > E
[
(1− p)∂D

∂K

(
K̄, Z, 0

)
+ p

∂D

∂K

(
K̄, Z, 1

)]

and thus the expected marginal profit is too low at the deterministic capital choice.
Since ∂D

∂K
is decreasing in capital, the optimal choice must necessarily be lower than

K̄.

3. By combining autarky FOC we get

E [u′ (A+D(Ka, Z, η))] = E
[
u′ (A+D(Ka, Z, η))× ∂D

∂K
(Ka, Z, η)

]

Decompose the term on the right side according to E[XY ] = E[X] ·E[Y ]+Cov(X, Y )
and rearrange to get

1− E
[
∂D

∂K
(Ka, Z, η)

]
= Cov

(
u′ (A+D(Ka, Z, η))

E [u′ (A+D(Ka, Z, η))] ,
∂D

∂K
(Ka, Z, η)

)
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Marginal profit is increasing in Z while the marginal utility of consumption in
the second period is decreasing in Z, so the covariance term will be negative and
expected marginal profit is thus greater than 1. Recalling FOC for diversified choice,
we have

E
[
∂D

∂K
(Ka, Z, η)

]
> 1 = E

[
∂D

∂K
(Kd, Z, η)

]

and therefore Ka < Kd.

4. Consider autarkic FOC for savings written in terms of consumption: u′(Ca
1) =

E[u′(Ca
2)]. Since we assumed marginal utility is convex, this implies u′(Ca

1) >

u′(E[Ca
2 ]), meaning that first-period consumption is expected to be lower than

second-period consumption, or

Ca
1 <

1
2 (Ca

1 + E [Ca
2 ])

The expected sum of consumption over the two periods can be written as

(Ca
1 + E [Ca

2 ]) = W + E [D(Ka, Z, η)]

and similarly for the diversified case

(Ca
1 + Ca

2) = W + E
[
D(Kd, Z, η)

]

(note that diversified consumption is deterministic)

Recalling earlier FOC for diversified capital choice Kd, we see that it maximizes
the right hand expression W + E [D(K,Z, η)]. Since we have also established that
Ka < Kd, we must have total average autarky consumption lower than total
diversified consumption:

1
2 (Ca

1 + E [Ca
2 ]) < 1

2
(
Cd

1 + Cd
2

)

The last expression is, however, equal to Cd
1 since diversified entrepreneurs will

choose same consumption in both periods, so then Ca
1 < Cd

1 .
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3.A.2 Data

Uncertainty. Measures of uncertainty are taken from a cross-country panel dataset
collected by Baker and Bloom (2013). These include the log of stock market volatility
(lavgvol) computed from daily returns in a quarter (then averaged over last four quarters),
and the log of cross-sectional volatility (lavgcs_vol) computed from the standard deviation
of quarterly individual stock returns of different firms (then also averaged over 4 quarters).
The original dataset is quarterly, but I use fourth quarter values to obtain the annual
uncertainty measure.

Financial development. I use the financial development index constructed by
Svirydzenka (2016) based on indicators collected in the World Bank’s Global Financial
Development Database, more specifically the main overall index (FD).

The two datasets were downloaded from N. Bloom’s website7 and the IMF’s website8

respectively. I am grateful to the authors for making their data available.

Macroeconomic variables. From the World Bank’s WDI dataset, I use obser-
vations on real GDP growth (NY.GDP.MKTP.KD.ZG), real household final consump-
tion expenditure growth (NE.CON.PRVT.KD.ZG), real gross capital formation growth
(NE.GDI.TOTL.KD.ZG) and current account balance relative to GDP (BN.CAB.XOKA.GD.ZS),
with the last entering estimation in differences.

3.A.3 Dynamic model

Normalizing productivity: Since productivities follows linear AR(1) process in logs,
fluctuations in volatility would change the first moment of productivity distribution
through the Jensen inequality term. To ensure that

∫
exp(zi,t)di = 1, the law of motion

for z is modified to
zi,t+1 = ρzzi,t + σz exp(vt)εi,t+1 + ξt+1

where the shift ξt+1 depends on exogenous volatility and auxiliary state variable tracking
cross-sectional dispersion xt:

ξt+1 = 1
2
(
ρz(1− ρz)xt − σ2

z exp(2vt)
)

7https://people.stanford.edu/nbloom/sites/default/files/bakerbloom2.zip
8http://www.imf.org/external/pubs/cat/longres.aspx?sk=43621
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and xt follows
xt+1 = ρ2

zxt + σ2
z exp(2vt).

Efficiency: Define the firm’s output after optimizing over labor

Y ∗(K,Z;W ) = ZKαk (H∗)αh , H∗ = arg max
H

ZKαkHαh −WH

I define efficiency as the ratio of actual output to “potential output”, where the latter
would be obtained if capital were optimally reallocated across firms, taking distribution of
productivities Zi and wage W as given. For that to be the case, the marginal products of
capital must be equalized across firms, so that ∂Y ∗

∂K
is constant for each firm. This implies

that capital must be proportional to Z
1

1−αk−αh
i , meaning that

Ki =

 Z
1

1−αk−αh
i∫

Z
1

1−αk−αh
j dj

 K̄

if K̄ is average capital. After some algebra, the corresponding optimal output is given by

Ȳ opt =
A(αL

W

)αL (∫
Z

1
1−αK−αL
i di

)1−αK−αL
K̄αK

 1
1−αL

which can be easily computed given wage and cross-sectional distribution of productivity.
Individual control variables: The solution method requires first order conditions

expressed in terms of equalities. The approximated decision variables will consist of: (for
simplicity I supress endogenous discounting and aggregate uncertainty)

• “pseudomultiplier” µ̃(K,Z,B) (based on Sim 2007 satisfying

µ̃(K,Z,B) =

1− βEZ′|Z
[
U ′(C(K ′, Z ′, B′))
U ′(C(K,Z,B))

(
∂

∂K
Π(K ′, Z ′) + (1− δ)(1−max{µ̃(K ′, Z ′, B′), 0})

)]

evaluated at K ′ = (1− δ)K and B′ implied from capital and consumption choice.
When the irreversibility constraint is binding, the condition is the same as for the
true multiplier, and when it is not binding, the pseudomultiplier is nonpositive. The
actual multiplier is thus µ = max{µ̃, 0}.

• unconstrained target capital K∗(K,Z,B) that the firm would choose if the irre-
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versibility constraint were dropped in current period:

1 = βEZ′|Z
[
U ′(C(K ′, Z ′, B′))
U ′(C(K,Z,B))

(
∂

∂K
Π(K ′, Z ′) + (1− δ)(1−max{µ̃(K ′, Z ′, B′), 0})

)]

evaluated at K ′ = K∗(K,Z,B) and B′ implied from capital and consumption
choice. Actual future capital will then be the higher of target capital or bound from
irreversibility.

• consumption, which satisfies the original Euler equation evaluated at actual future
capital:

1 = βREZ′|Z
[
U ′(C(K ′, Z ′, B′))
U ′(C(K,Z,B))

]

evaluated at K ′ = max{K∗(K,Z,B), (1 − δ)K} and B′ implied from capital and
consumption choice.

Approximating policy functions: the policy functions defined above are approx-
imated with the tensor product of Chebyshev polynomials. Let vector b collect all the
polynomial coefficients. With aggregate uncertainty, policy functions expressed as func-
tions of an individual state will change over time according to the overall state of the
economy, so bt varies over time. To pin down its dynamics, require that the above condi-
tions evaluated with given coefficients hold with equality at a set of collocation nodes. This
implies a system of forward-looking equations that links bt and bt+1 (conditional on the
current and future state of the economy, but averaging over individual shock realizations).

Steady state solution: For given aggregate wages and dividends, coefficients of
individual policy functions are found by using a projection method, i.e. by solving
the nonlinear system in b implied by the steady-state version of the residual for bt, bt+1

described above. Given the policy functions, a panel of agents is simulated and final
period distribution is used to compute the aggregate dividend and market-clearing wage
implied by the aggregate labor demand. Wages and dividends themselves are found in an
outer fixed-point loop. To achieve convergence, I start by solving the model for θ = 1,
which has an analytic solution for the consumption function, use that solution as the
starting point for the model with lower θ, and so on in multiple steps until the actual
desired value of θ is reached.

Approximating cross-sectional distribution: The steady state solution yields
a simulated panel of agents from which I construct a discrete approximation to the
cross-sectional distribution by using an empirical distribution of simulated households
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in the last period (i.e. the points of the distribution are observed individual states,
the weights of the distribution are uniform). Evaluating first order conditions for the
dynamic solution requires current wage and aggregate dividend, which in turn depend on
time-varying cross-sectional distribution over (K,Z,B), but storing the full distribution
as a state variable is intractable. I approximate the distribution by its first and second
moments (with the exception of purely exogenous moments of productivity), which become
state variables in the model. Given moments, I “reconstruct” the full distribution by
tweaking the weights on discrete points of the reference, steady state distribution so
that the reconstructed distribution satisfies the moments and is close to the reference
distribution in the Kullback-Leibler information sense. This approach, described in Tanaka
and Toda (2013), first solves a minimization problem for a vector of multipliers (one
for each moment), then expresses new weights as an explicit function of multipliers. I
include multipliers as additional control variables and append first order conditions from
the minimization problem as another set of equations to the model. Once the current
distribution is obtained, applying the policy functions yields the next-period distribution
and thus implies the law of motion for the moments.

Dynamic solution: Let Xt be a vector collecting all aggregate state variables in the
model (exogenous variables, distribution moments and possibly others), and Yt collect all
aggregate control variables (coefficients of policy function approximation, multipliers on
distribution moments and any other variables of interest). Collect all the model equations
into residual function F that satisfies Et [F (Xt+1, Yt+1, Xt, Yt)] = 0 (expectation is wrt.
aggregate shocks). The system is linearized around the steady state (with derivatives
evaluated by automatic differentiation)9 and the linear solution is then obtained by
standard methods (Klein 2000).

Accuracy: There are two main approximations involved when solving the model.
First, individual policy functions are approximated by low order polynomials. Table 3.4
shows the mean and median absolute value of residuals from an individual entrepreneur’s
Euler equations (as defined previously in this appendix), where the moments are computed
in the steady state using the reference cross-sectional distribution. The residuals are
hard to interpret straightforwardly, but since the first order conditions are defined in the
form of a ratio or product of terms being equal to one, the Euler equation terms implied

9The model is implemented in Julia 0.6 using ForwardDiff.jl package (Revels, Lubin, and Papa-
markou 2016) for differentiation and BasisMatrices.jl package (https://github.com/QuantEcon/
BasisMatrices.jl) for function approximation.
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θ = 0.75 θ = 0.25
mean median mean median

|eµ| 0.0361 0.0245 0.0689 0.0470
|ek| 0.0405 0.0340 0.0818 0.0658
|ec| 0.0352 0.0267 0.0745 0.0574

Table 3.4: Mean and median absolute residual from model optimality conditions in the
steady state.

by the approximate policy functions seem to be within a couple of percentage points of
their correct values. Second, when solving for the aggregate dynamics, the cross-sectional
distribution is summarized with a finite number of moments. Figure 3.7 plots a comparison
of impulse responses when a different number of moments is used for this purpose. Either
only the first moments are used (line denoted “less”), second moments as in the rest of
the results section (line “base”), or second moments with added third moments in capital
and bonds (line “more”). The results seem to be qualitatively comparable, although the
responses with only first moments seem to be sufficiently different to justify the inclusion
of higher moments for tracking the distribution.

99



0 5 10 15 20
-2

-1

0

1

y

10 -3  = 0.75

0 5 10 15 20
-4

-2

0

2
10 -3  = 0.25

less base more

0 5 10 15 20
-0.3

-0.2

-0.1

0

0.1

i

0 5 10 15 20
-0.3

-0.2

-0.1

0

0.1

0 5 10 15 20
-1

-0.5

0

0.5

1

c

10 -3

0 5 10 15 20
-3

-2

-1

0

1
10 -3

0 5 10 15 20
-0.01

0

0.01

0.02

B

0 5 10 15 20
0

5

10

15

20
10 -3

Figure 3.7: Impulse response with different number of moments for tracking the cross-
sectional distribution.

100



Bibliography

Abel, Andrew B., and Janice C. Eberly. 1994. “A Unified Model of Investment Under
Uncertainty.” The American Economic Review 84 (5): 1369–1384 (December).

Adjemian, Stephane, Houtan Bastani, Frederic Karame, Michel Juillard, Junior Maih,
Ferhat Mihoubi, George Perendia, Johannes Pfeifer, Marco Ratto, and Sebastien
Villemot. 2011, April. “Dynare: Reference Manual Version 4.” Dynare working
papers 1, CEPREMAP.

Aiyagari, S. Rao. 1994. “Uninsured Idiosyncratic Risk and Aggregate Saving.” Quarterly
Journal of Economics 109 (3): 659–684.

Albuquerque, Rui, Martin Eichenbaum, Victor Xi Luo, and Sergio Rebelo. 2016. “Valua-
tion Risk and Asset Pricing.” The Journal of Finance 71 (6): 2861–2904 (December).

Algan, Yann, Olivier Allais, and Wouter J. Den Haan. 2008. “Solving heterogeneous-
agent models with parameterized cross-sectional distributions.” Journal of Economic
Dynamics and Control 32 (3): 875–908.

Algan, Yann, Olivier Allais, and Wouter J. Den Haan. 2008. “Solving heterogeneous-
agent models with parameterized cross-sectional distributions.” Journal of Economic
Dynamics and Control 32 (3): 875–908.

Algan, Yann, Olivier Allais, Wouter J. Den Haan, and Pontus Rendahl. 2014. “Solving
and Simulating Models with Heterogeneous Agents and Aggregate Uncertainty.” In
Handbook of Computational Economics, edited by Karl Schmedders and Kenneth L.
Judd, Volume 3 of Handbook of Computational Economics, 277–324. Elsevier.

Andreasen, Martin M., Jesus Fernandez-Villaverde, and Juan Rubio-Ramirez. 2013,
April. “The Pruned State-Space System for Non-Linear DSGE Models: Theory
and Empirical Applications.” Working Paper 18983, National Bureau of Economic
Research.

Angeletos, George-Marios, and Laurent-Emmanuel Calvet. 2006. “Idiosyncratic pro-
duction risk, growth and the business cycle.” Journal of Monetary Economics 53,
no. 6.

Arellano, Cristina, Yan Bai, and Patrick J. Kehoe. 2012. “Financial frictions and
fluctuations in volatility.” Technical Report 466, Federal Reserve Bank of Minneapolis.

101



Atkeson, Andrew, and Christopher Phelan. 1994. “Reconsidering the costs of business
cycles with incomplete markets.” Chapter 4 of NBER Macroeconomic Annual 1994,
Volume 9, 187 – 218. MIT Press.

Bachmann, Rudiger, and Christian Bayer. 2013. “Wait-and-See business cycles?” Journal
of Monetary Economics 60 (6): 704–719 (September).

Baker, Scott R., and Nicholas Bloom. 2013, September. “Does Uncertainty Reduce
Growth? Using Disasters as Natural Experiments.” Working Paper 19475, National
Bureau of Economic Research. DOI: 10.3386/w19475.

Balduzzi, Pierluigi, and Tong Yao. 2007. “Testing heterogeneous-agent models: an
alternative aggregation approach.” Journal of Monetary Economics 54 (2): 369–412
(March).

Bansal, Ravi, and Amir Yaron. 2004. “Risks for the long run: A potential resolution of
asset pricing puzzles.” The Journal of Finance 59 (4): 1481–1509.

Barlevy, Gadi. 2004, November. “The Cost of Business Cycles and the Benefits of
Stabilization: A Survey.” Working paper 10926, National Bureau of Economic
Research.

Basu, Susanto, and Brent Bundick. 2017. “Uncertainty Shocks in a Model of Effective
Demand.” Econometrica 85 (3): 937–958 (May).

Bayer, Christian, Ralph Lütticke, Lien Pham-Do, and Volker Tjaden. 2015. “Precaution-
ary Savings, Illiquid Assets, and the Aggregate Consequences of Shocks to Household
Income Risk.” Technical Report 10849, C.E.P.R. Discussion Papers.

Beaudry, Paul, and Carmen Pages. 2001. “The cost of business cycles and the stabilization
value of unemployment insurance.” European Economic Review 45 (8): 1545–1572.

Benigno, Gianluca, Pierpaolo Benigno, and Salvatore Nistico. 2011, June. Pages 247–309
in Risk, Monetary Policy and the Exchange Rate. University of Chicago Press.

. 2013. “Second-order approximation of dynamic models with time-varying risk.”
Journal of Economic Dynamics and Control 37 (7): 1231–1247.

Bernanke, Ben S. 1983. “Irreversibility, Uncertainty, and Cyclical Investment.” The
Quarterly Journal of Economics 98 (1): 85–106.

Bewley, Truman. 1977. “The permanent income hypothesis: A theoretical formulation.”
Journal of Economic Theory 16 (2): 252–292 (December).

Bidder, R.M., and M.E. Smith. 2012. “Robust animal spirits.” Journal of Monetary
Economics 59 (8): 738 – 750.

Bloom, Nicholas. 2009a. “The Impact of Uncertainty Shocks.” Econometrica 77 (3):
623–685.

. 2009b. “The Impact of Uncertainty Shocks.” Econometrica 77 (3): 623–685.

. 2014. “Fluctuations in Uncertainty.” Journal of Economic Perspectives 28 (2):
153–76.

Bloom, Nicholas, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen J.
Terry. 2012, July. “Really Uncertain Business Cycles.” Working Paper 18245, National
Bureau of Economic Research.

102



Braun, R. Anton, and Tomoyuki Nakajima. 2012. “Uninsured Countercyclical Risk: An
Aggregation Result and Application to Optimal Monetary Policy.” Journal of the
European Economic Association 10 (6): 1450–1474 (December).

Brav, Alon, George M. Constantinides, and Christopher C. Geczy. 2002. “Asset Pricing
with Heterogeneous Consumers and Limited Participation: Empirical Evidence.”
Journal of Political Economy 110 (4): 793–824.

Caballero, Ricardo J. 1990. “Consumption puzzles and precautionary savings.” Journal
of Monetary Economics 25 (1): 113–136.

. 1999. “Chapter 12 Aggregate investment.” In Handbook of Macroeconomics,
edited by John B. Taylor and Michael Woodford, Volume 1, Part B, 813–862. Elsevier.

Campanale, Claudio, Rui Castro, and Gian Luca Clementi. 2010. “Asset pricing in a
production economy with Chew-Dekel preferences.” Review of Economic Dynamics
13 (2): 379–402 (April).

Campbell, John Y. 1994. “Inspecting the mechanism: An analytical approach to the
stochastic growth model.” Journal of Monetary Economics 33 (3): 463–506 (June).

Carceles-Poveda, Eva. 2009. “Asset prices and business cycles under market incomplete-
ness.” Review of Economic Dynamics 12 (3): 405–422.

Carceles-Poveda, Eva, and Daniele Coen-Pirani. 2009. “Shareholders’ Unanimity with
Incomplete Markets*.” International Economic Review 50 (2): 577–606 (May).

Chatterjee, Satyajit, and Dean Corbae. 2007. “On the aggregate welfare cost of Great
Depression unemployment.” Journal of Monetary Economics 54 (6): 1529–1544.

Chen, Hui, Jianjun Miao, and Neng Wang. 2010. “Entrepreneurial Finance and Nondi-
versifiable Risk.” The Review of Financial Studies 23 (12): 4348–4388 (December).

Christiano, Lawrence, Roberto Motto, and Massimo Rostagno. 2013, January. “Risk
Shocks.” Working paper 18682, National Bureau of Economic Research.

Christiano, Lawrence J., Roberto Motto, and Massimo Rostagno. 2014. “Risk Shocks.”
American Economic Review 104 (1): 27–65 (January).

Chugh, Sanjay K. 2016. “Firm risk and leverage-based business cycles.” Review of
Economic Dynamics 20 (Supplement C): 111–131 (April).

Cochrane, John H. 2008. “Financial Markets and the Real Economy.” In Handbook of
the Equity Risk Premium, edited by Rajnish Mehra, Handbooks in Finance, 237 –
325. San Diego: Elsevier.

Cogley, Timothy. 2002. “Idiosyncratic risk and the equity premium: evidence from the
consumer expenditure survey.” Journal of Monetary Economics 49 (2): 309 – 334.

Constantinides, George M., and Anisha Ghosh. 2017. “Asset Pricing with Countercyclical
Household Consumption Risk.” The Journal of Finance 72 (1): 415–460 (February).

Constantinides, George M, and Darrell Duffie. 1996. “Asset pricing with heterogeneous
consumers.” Journal of Political economy, pp. 219–240.

Cooper, Russell W., and John C. Haltiwanger. 2006. “On the Nature of Capital
Adjustment Costs.” The Review of Economic Studies 73 (3): 611–633.

103



Croce, Mariano M. 2014. “Long-run productivity risk: A new hope for production-based
asset pricing?” Journal of Monetary Economics 66 (September): 13–31.

Den Haan, Wouter J. 1997. “Solving Dynamic Models with Aggregate Shocks and
Heterogeneous Agents.” Macroeconomic Dynamics 1 (02): 355–386 (June).

. 2010. “Comparison of solutions to the incomplete markets model with aggregate
uncertainty.” Journal of Economic Dynamics and Control 34 (1): 4–27.

Den Haan, Wouter J., and Pontus Rendahl. 2010. “Solving the incomplete markets
model with aggregate uncertainty using explicit aggregation.” Journal of Economic
Dynamics and Control 34 (1): 69–78.

Den Haan, Wouter J. 2010. “Assessing the accuracy of the aggregate law of motion in
models with heterogeneous agents.” Journal of Economic Dynamics and Control 34
(1): 79–99.

Den Haan, Wouter J., and Albert Marcet. 1994. “Accuracy in Simulations.” The Review
of Economic Studies 61 (1): 3–17.

Dixit, Avinash K., and Robert S. Pindyck. 1994, January. Investment under Uncertainty.
Princeton, N.J: Princeton University Press.

Dou, Winston Wei. 2016. “Embrace or fear uncertainty: growth options, limited risk
sharing, and asset prices.” Unpublished working paper, MIT.

Epstein, Larry G., and Stanley E. Zin. 1989. “Substitution, Risk Aversion, and the
Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework.”
Econometrica 57 (4): pp. 937–969.

Faccio, Mara, Maria-Teresa Marchica, and Roberto Mura. 2011. “Large Shareholder
Diversification and Corporate Risk-Taking.” The Review of Financial Studies 24 (11):
3601–3641.

Fernandez-Villaverde, Jesus, Pablo Guerron-Quintana, Juan F. Rubio-Ramirez, and
Martin Uribe. 2011. “Risk Matters: The Real Effects of Volatility Shocks.” American
Economic Review 101 (6): 2530–61 (September).

Fernandez-Villaverde, Jesus, and Juan Rubio-Ramirez. 2010, December. “Macroeco-
nomics and Volatility: Data, Models, and Estimation.” Working paper 16618, National
Bureau of Economic Research.

Fogli, Alessandra, and Fabrizio Perri. 2015. “Macroeconomic volatility and external
imbalances.” Journal of Monetary Economics 69 (January): 1–15.

Gentry, William M., and R. Glenn Hubbard. 2004. “Entrepreneurship and Household
Saving.” Advances in Economic Analysis & Policy 4, no. 1.

Gilchrist, Simon, Jae W. Sim, and Egon Zakrajšek. 2014, April. “Uncertainty, Financial
Frictions, and Investment Dynamics.” Working Paper 20038, National Bureau of
Economic Research. DOI: 10.3386/w20038.

Gilchrist, Simon, Jae W Sim, and Egon Zakrajsek. 2010. “Uncertainty, financial frictions,
and investment dynamics.” Technical Report.

Gomes, Francisco, and Alexander Michaelides. 2008. “Asset Pricing with Limited Risk
Sharing and Heterogeneous Agents.” Review of Financial Studies 21 (1): 415–448.

104



Gomme, Paul, and Paul Klein. 2011. “Second-order approximation of dynamic models
without the use of tensors.” Journal of Economic Dynamics and Control 35 (4):
604–615.

Guvenen, Fatih. 2011. “Macroeconomics with Heterogeneity: A Practical Guide.” Federal
Reserve Bank of Richmond Economic Quarterly 97 (3): 255–326.

Guvenen, Fatih, Serdar Ozkan, and Jae Song. 2014. “The Nature of Countercyclical
Income Risk.” Journal of Political Economy 122 (3): 621–660 (June).

Hansen, Lars Peter, and Kenneth J. Singleton. 1982. “Generalized instrumental variables
estimation of nonlinear rational expectations models.” Econometrica 50 (5): 1269–
1286.

Havranek, Tomas. 2015. “Measuring Intertemporal Substitution: The Importance
of Method Choices and Selective Reporting.” Journal of the European Economic
Association 13 (6): 1180–1204 (December).

Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L. Violante. 2009. “Quantitative
Macroeconomics with Heterogeneous Households.” Annual Review of Economics 1
(1): 319–354.

Heaton, John, and Deborah J Lucas. 1996. “Evaluating the Effects of Incomplete Markets
on Risk Sharing and Asset Pricing.” Journal of Political Economy, pp. 443–487.

Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Stijn Van Nieuwerburgh. 2016. “The
common factor in idiosyncratic volatility: Quantitative asset pricing implications.”
Journal of Financial Economics 119 (2): 249–283 (February).

Holderness, Clifford G. 2009. “The Myth of Diffuse Ownership in the United States.”
The Review of Financial Studies 22 (4): 1377–1408.

Horvath, Michal. 2012. “Computational Accuracy and Distributional Analysis in Models
with Incomplete Markets and Aggregate Uncertainty.” Economics Letters 117 (1):
276–279.

Huggett, M. 1993. “The risk-free rate in heterogeneous-agent incomplete-insurance
economies.” Journal of Economic Dynamics and Control 17 (5-6): 953–969 (Novem-
ber).

Imrohoroglu, Ayse. 1989. “Cost of Business Cycles with Indivisibilities and Liquidity
Constraints.” Journal of Political Economy 97 (6): 1364.

Jin, H., and K.L. Judd. 2002. “Perturbation methods for general dynamic stochastic
models.”

Jordà, Òscar. 2005. “Estimation and Inference of Impulse Responses by Local Projections.”
American Economic Review 95 (1): 161–182 (March).

Judd, K. 1998. Numerical methods in economics. MIT Press.
Justiniano, Alejandro, and Giorgio E. Primiceri. 2008. “The Time-Varying Volatil-

ity of Macroeconomic Fluctuations.” American Economic Review 98 (3): 604–41
(September).

Kaltenbrunner, Georg, and Lars A. Lochstoer. 2010. “Long-Run Risk through Consump-
tion Smoothing.” Review of Financial Studies 23 (8): 3190–3224.

105



Karaman, Seçil Yıldırım. 2015. “Essays on uncertainty.” Thesis, Bilkent University.
Kehrig, Matthias. 2015, January. “The Cyclical Nature of the Productivity Distribution.”

SSRN Scholarly Paper ID 1854401, Social Science Research Network, Rochester, NY.
Khan, Aubhik, and Julia K. Thomas. 2008. “Idiosyncratic Shocks and the Role of

Nonconvexities in Plant and Aggregate Investment Dynamics.” Econometrica 76 (2):
395–436.

Kim, Jinill, and Sunghyun Henry Kim. 2003. “Spurious welfare reversals in international
business cycle models.” Journal of International Economics 60 (2): 471–500.

Klein, Paul. 2000. “Using the generalized Schur form to solve a multivariate linear
rational expectations model.” Journal of Economic Dynamics and Control 24 (10):
1405–1423.

Kogan, Leonid, and Dimitris Papanikolaou. 2012. “Economic Activity of Firms and
Asset Prices.” Annual Review of Financial Economics 4 (1): 361–384.

Krebs, T. 2003. “Growth and welfare effects of business cycles in economies with
idiosyncratic human capital risk.” Review of Economic Dynamics 6 (4): 846–868.

Krebs, Tom, and Bonnie Wilson. 2004. “Asset returns in an endogenous growth model
with incomplete markets.” Journal of Economic Dynamics and Control 28 (4):
817–839 (January).

Kreps, David M., and Evan L. Porteus. 1978. “Temporal Resolution of Uncertainty and
Dynamic Choice Theory.” Econometrica 46 (1): 185 (January).

Krueger, Dirk, and Hanno Lustig. 2010. “When is Market Incompleteness Irrelevant for
the Price of Aggregate Risk (and when is it not)?” Journal of Economic Theory 145
(1): 1–41.

Krusell, P, and Anthony A Smith. 1999. “On the Welfare Effects of Eliminating Business
Cycles,.” Review of Economic Dynamics 2 (1): 245–272.

Krusell, Per, Toshihiko Mukoyama, Aysegul Sahin, and Anthony A. Smith. 2009.
“Revisiting the welfare effects of eliminating business cycles.” Review of Economic
Dynamics 12 (3): 393–404.

Krusell, Per, and Anthony Smith. 1997. “Income and wealth heterogeneity, portfolio
choice, and equilibrium asset returns.” Macroeconomic dynamics 1:387–422.

Krusell, Per, and Anthony A. Smith. 1998. “Income and Wealth Heterogeneity in the
Macroeconomy.” Journal of Political Economy 106 (5): 867.

Kuehn, Lars, David Schreindorfer, and Cedric Ehouarne. 2016. “Misallocation Cycles.”
Technical Report 1482, Society for Economic Dynamics.

Lucas, Robert. 1987. Models of business cycles. Yrjö Jahnsson lectures. Basil Blackwell.
. 2003. “Macroeconomic Priorities.” American Economic Review 93 (1): 1–14.

Ludvigson, Sydney C. 2013. “Advances in Consumption-Based Asset Pricing: Empirical
Tests.” In Handbook of the Economics of Finance, Volume 2, 799–906.

Mankiw, N Gregory. 1986. “The equity premium and the concentration of aggregate
shocks.” Journal of Financial Economics 17 (1): 211–219.

106



McKay, Alisdair. 2017. “Time-Varying Idiosyncratic Risk and Aggregate Consumption
Dynamics.” Journal of Monetary Economics 88:1–14.

Mehra, Rajnish, and Edward C Prescott. 1985. “The equity premium: A puzzle.” Journal
of Monetary Economics 15 (2): 145–161.

Miranda, M.J., and P.L. Fackler. 2004. Applied computational economics and finance.
MIT press.

Moskowitz, Tobias J., and Annette Vissing-Jørgensen. 2002. “The Returns to En-
trepreneurial Investment: A Private Equity Premium Puzzle?” American Economic
Review 92 (4): 745–778 (September).

Panousi, Vasia, and Dimitris Papanikolaou. 2012. “Investment, Idiosyncratic Risk, and
Ownership.” The Journal of Finance 67 (3): 1113–1148 (June).

Parker, Jonathan A., and Bruce Preston. 2005. “Precautionary Saving and Consumption
Fluctuations.” American Economic Review 95 (4): 1119–1143 (September).

Pijoan-Mas, Josep. 2007. “Pricing Risk in Economies with Heterogeneous Agents and
Incomplete Markets.” Journal of the European Economic Association 5 (5): 987–1015
(September).

Pohl, Walter, Karl Schmedders, and Ole Wilms. 2018. “Higher-Order Effects in Asset
Pricing Models with Long-Run Risks.” The Journal of Finance. forthcoming.

Popov, Alexander. 2017, December. “Evidence on finance and economic growth.” Working
Paper Series 2115, European Central Bank.

Preston, Bruce, and Mauro Roca. 2007. “Incomplete Markets, Heterogeneity and
Macroeconomic Dynamics.” Working paper 13260, NBER.

Reiter, Michael. 2009a. “Solving heterogeneous-agent models by projection and pertur-
bation.” Journal of Economic Dynamics and Control 33 (3): 649–665.

. 2009b. “Solving heterogeneous-agent models by projection and perturbation.”
Journal of Economic Dynamics and Control 33 (3): 649 – 665.

. 2010. “Nonlinear Solution of Heterogeneous Agent Models by Approximate
Aggregation.”

Restoy, Fernando, and G. Michael Rockinger. 1994. “On Stock Market Returns and
Returns on Investment.” The Journal of Finance 49 (2): 543–556.

Revels, Jarrett, Miles Lubin, and Theodore Papamarkou. 2016. “Forward-Mode Auto-
matic Differentiation in Julia.” arXiv:1607.07892 [cs], July. arXiv: 1607.07892.

Rudebusch, Glenn D., and Eric T. Swanson. 2012. “The Bond Premium in a DSGE
Model with Long-Run Real and Nominal Risks.” American Economic Journal:
Macroeconomics 4 (1): 105–43.

Schmidt, Lawrence D. W. 2014. “Climbing and Falling Off the Ladder: Asset Pricing
Implications of Labor Market Event Risk.” August.

Schmitt-Grohé, S., and M. Uribe. 2004. “Solving dynamic general equilibrium models
using a second-order approximation to the policy function.” Journal of Economic
Dynamics and Control 28 (4): 755–775.

107



Schmitt-Grohe, Stephanie, and Martin Uribe. 2003. “Closing small open economy
models.” Journal of International Economics 61 (1): 163–185.

Sim, Jae W. 2007. “Uncertainty, Irreversible Investment and General Equilibrium.”
Sims, Christopher A., and Tao Zha. 2006. “Were There Regime Switches in U.S. Monetary

Policy?” American Economic Review 96 (1): 54–81 (September).
Storesletten, K. 2001. “The welfare cost of business cycles revisited: Finite lives and

cyclical variation in idiosyncratic risk.” European Economic Review 45 (7): 1311–1339.
Storesletten, Kjetil, Chris I. Telmer, and Amir Yaron. 2004. “Cyclical Dynamics in

Idiosyncratic Labor Market Risk.” Journal of Political Economy 112 (3): 695–717
(June).

Storesletten, Kjetil, Christopher I Telmer, and Amir Yaron. 2007. “Asset pricing with
idiosyncratic risk and overlapping generations.” Review of Economic Dynamics 10
(4): 519–548.

Svirydzenka, Katsiaryna. 2016, January. “Introducing a New Broad-based Index of
Financial Development.” Technical Report 16/5, International Monetary Fund.

Syverson, Chad. 2004. “Product Substitutability and Productivity Dispersion.” Review
of Economics and Statistics 86 (2): 534–550.

Takahashi, Yuta, Lawrence Schmidt, Konstantin Milbradt, Ian Dew-Becker, and David
Berger. 2016. “Layoff risk, the welfare cost of business cycles, and monetary policy.”
Technical Report 1293, Society for Economic Dynamics.

Tallarini, Thomas D. 2000. “Risk-sensitive real business cycles.” Journal of Monetary
Economics 45 (3): 507 – 532.

Tanaka, Ken’ichiro, and Alexis Akira Toda. 2013. “Discrete approximations of continuous
distributions by maximum entropy.” Economics Letters 118 (3): 445 – 450.

Telmer, Chris I. 1993. “Asset-pricing Puzzles and Incomplete Markets.” The Journal of
Finance 48 (5): 1803–1832.

Toda, Alexis Akira. 2014. “Incomplete market dynamics and cross-sectional distributions.”
Journal of Economic Theory 154:310 – 348.

. 2017. “Huggett economies with multiple stationary equilibria.” Journal of
Economic Dynamics and Control 84:77–90.

van Binsbergen, Jules H., Jesus Fernandez-Villaverde, Ralph S.J. Koijen, and Juan
Rubio-Ramirez. 2012. “The term structure of interest rates in a DSGE model with
recursive preferences.” Journal of Monetary Economics 59 (7): 634–648 (Nov).

Veracierto, Marcelo L. 2002. “Plant-Level Irreversible Investment and Equilibrium
Business Cycles.” The American Economic Review 92 (1): 181–197 (March).

Wang, Neng. 2003. “Caballero Meets Bewley: The Permanent-Income Hypothesis in
General Equilibrium.” American Economic Review 93 (3): 927–936.

Weil, Philippe. 1989. “The equity premium puzzle and the risk-free rate puzzle.” Journal
of Monetary Economics 24 (3): 401–421.

108



Werning, Ivan. 2015, August. “Incomplete Markets and Aggregate Demand.” Working
Paper 21448, National Bureau of Economic Research.

Winberry, Thomas. 2016. “Lumpy Investment, Business Cycles, and Stimulus Policy.”
. 2018. “A Method for Solving and Estimating Heterogeneous Agent Macro

Models.”
Young, Eric R. 2010. “Solving the incomplete markets model with aggregate uncertainty

using the Krusell-Smith algorithm and non-stochastic simulations.” Journal of
Economic Dynamics and Control 34 (1): 36 – 41.

Young, Eric R. 2005. “Approximate Aggregation.”

109


	Abstract
	Abstrakt
	Acknowledgments
	Introduction
	Solving a heterogeneus-agent DSGE model with 2nd-order perturbation
	Introduction
	Literature
	Model
	Households
	Firms
	Market clearing
	Equilibrium

	Solution
	Approximate model
	Model equations
	Solution
	Linearization vs. second order approximation

	Accuracy
	Calibration
	Results
	Accuracy

	Applications
	Welfare cost of fluctuations
	Time-varying volatility

	Conclusion

	Asset prices in a production economy with long run and idiosyncratic risk
	Introduction
	Simple Model
	Setup
	Equilibrium
	Asset prices
	Price of risk

	Full Model
	Production
	Households
	Quantity dynamics and asset prices
	No trade equilibrium

	Results
	Calibration
	Quantitative results
	Qualitative analysis
	Cyclical skewness

	Conclusion
	Appendix
	Detrended model equations
	Local vs. global solution
	Linearized solution
	Linearized solution with general MGF
	Data sources


	Uncertainty shocks with heterogeneous firms and firm owners
	Introduction
	Motivation
	Theory
	Empirics

	Model
	Results
	Conclusion
	Appendix
	Two-period model
	Data
	Dynamic model


	Bibliography

