
CERGE
Center for Economics Research and Graduate Education

Charles University

Essays on Information Economics

Ludmila Matysková

Dissertation

Prague, July 2018





Ludmila Matysková

Essays on Information Economics

Dissertation

Prague, July 2018





Dissertation Committee

Jakub Steiner (CERGE-EI; chair)

Filip Mat¥jka (CERGE-EI)

Avner Shaked (CERGE-EI)

Jan Zápal (CERGE-EI)

Referees

Mark Dean (Columbia University)

Emir Kamenica (University of Chicago)

i



ii



Contents

Abstract vii

Abstract ix

Acknowledgments xi

Introduction 1

1 Manipulation of Cursed Beliefs in Online Reviews 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Cursed posterior beliefs . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 In�ation of price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Bayesian Persuasion with Costly Information Acquisition 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



2.3 Motivation: Simple model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Bayesian persuasion s.t. never-learning . . . . . . . . . . . . . . . . . . . 23

2.5.1 Never-learning constraint . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Extreme-points solution method . . . . . . . . . . . . . . . . . . . 25

2.5.3 Equilibrium with learning? . . . . . . . . . . . . . . . . . . . . . . 27

2.5.4 Characterization of the sender's optimal strategies . . . . . . . . . 28

2.6 Comparative statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Discussion of the cost function . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.A Receiver's RI problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.A.1 Geometric interpretation�Concavi�cation . . . . . . . . . . . . . 35

2.A.2 Characterization of the solution . . . . . . . . . . . . . . . . . . . 35

2.A.3 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.B Di�erent cost function assumption . . . . . . . . . . . . . . . . . . . . . . 37

2.C Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Habit Formation: An Experimental Study 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 A Theoretical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Data summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.2 Logit regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



3.A Proof of Proposition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.B Regression outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.C Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 73

v



vi



Abstract

In the �rst chapter, we study the e�ect on the economy of platforms for online consumer
reviews. Consumer reviews may have perverse e�ects, including delays in the adoption of
new products of unknown quality when consumers are boundedly rational. When consu-
mers fail to take into account that past reviewers self-select into purchases, a monopolist
may manipulate the posterior beliefs of consumers who observe the reviews, because the
product price determines the self-selection bias. The monopolist will charge a relati-
vely high price because the positive selection of the early adopters increases the quality
reported in the reviews.

In the second chapter, we study a game between a sender and a receiver in a framework
of Bayesian persuasion. A sender choosing a signal to be disclosed to a receiver can
often in�uence the receiver's actions. Is persuasion more di�cult when the receiver has
additional information sources? Does the receiver bene�t from having the additional
sources? We extend a Bayesian persuasion model to a receiver's acquisition of costly
information. The game can be solved as a standard Bayesian persuasion model under
an additional constraint: the receiver never gathers her own costly information. The
`threat' of learning hurts the sender. However, the resulting outcome can also be worse
for the receiver. We further propose a new solution method which does not rely on
concavi�cation, and which is also applicable to standard Bayesian persuasion.

The last chapter focuses on habit formation. Using a laboratory experiment, we study
whether habits form mechanically as a consequence of past decisions, or whether they
form only if they help the person to improve her decision-making in a complex, stochastic
environment. We de�ne habits as action inertia and study them in multiple-period binary
tasks with serially correlated incentives. For a �xed sequence of decision problems, habits
form when (i) the subjects do not observe past payo� states, and they do not form when
(ii) the past states are observed. Since the past actions contain useful information in
treatment (i) but not in (ii), the data suggests that habits are a functional adaptation.

vii



viii



Abstract

V první kapitole zkoumáme, jaký efekt mají platformy umoº¬ující spot°ebitelské recenze
na ekonomiku. Kdyº jsou spot°ebitelé omezen¥ racionální, spot°ebitelské recenze mohou
mít zvrácené ú£inky zahrnující zpoºd¥ní v ujímání se nových produkt· neznámé kvality.
Pokud spot°ebitelé opomíjejí, ºe u recenzent· do²lo k samoselekci ohledn¥ zakoupení £i
nezakoupení produktu, monopolista m·ºe manipulovat p°esv¥d£ení spot°ebitel· ohledn¥
kvality produktu aktualizované po p°e£tení recenzí, protoºe cena produktu ur£uje zkre-
slení dané samoselekcí (tzv. self-selection bias). Monopolista nastaví relativn¥ vysokou
cenu, protoºe pozitivní samoselekce u po£áte£ních kupc· zvý²í reportovanou kvalitu v
jejich následných recenzích.

Ve druhé kapitole studujeme hru mezi odesílatelem a p°íjemcem informací v rámci mo-
delu Bayesovského p°esv¥d£ování. Odesílatel, který rozhoduje o tom, jaké informace
se dostanou k p°íjemci, m·ºe £asto ovlivnit p°íjemcovy následné akce. Je p°esv¥d£o-
vání t¥º²í, pokud p°íjemce má i své vlastní zdroje informací? P°inese moºnost získávání
dal²ích informací i z vlastních zdroj· prosp¥ch p°íjemci? V této studii roz²i°ujeme model
Bayesovského p°esv¥d£ování o moºnost, ºe p°íjemce si m·ºe za ur£itou cenu navíc vyhle-
dat dodate£né informace z vlastních zdroj·. �e²ení této hry m·ºeme získat jako °e²ení
standardního modelu Bayesovského p°esv¥d£ování za dodate£né podmínky, která musí
platit: p°íjemce se nikdy nerozhodne získat dal²í (nákladné) informace ze svých zdroj·.
Ona `hrozba' potenciálního dodate£ného u£ení v±ak sniºuje uºitek odesílatele. Nicmén¥,
celkový výsledek m·ºe být hor²í i pro p°íjemce, který tak nutn¥ nemusí mít prosp¥ch
z moºnosti vyhledat své vlastní nákladné informace. Dále nabízíme alternativní postup
pro °e²ení daného modelu, který se neodvíjí od standardní metody tzv. konkavi�kace, a
který je aplikovatelný i na standardní model Bayesovského p°esv¥d£ování.

Poslední kapitola se zam¥°uje na formování návyk·. Pomocí laboratorního experimentu
zkoumáme, zda se návyky vytvo°í mechanicky jakoºto d·sledek p°edchozích rozhodnutí,
nebo zda se vytvo°í pouze v p°ípad¥, kdyº mohou £lov¥ku pomoci zlep²it jeho rozho-
dování v komplexním, stochastickém prost°edí. Návyky de�nujeme jako setrva£nost v
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akcích a studujeme je v binárních úlohách o více periodách s podn¥ty, které jsou sériov¥
korelované. Pro danou sekvenci rozhodovacích problém· se návyk (i) vytvo°í tehdy, kdyº
jsou minulé stavy sv¥ta pozorovány, zatímco (ii) se nevytvo°í tehdy, kdyº minulé stavy
sv¥ta pozorovány nejsou. Vzhledem k tomu, ºe minulé akce obsahují uºite£nou informaci
pouze v p°ípad¥ (i), ale ne v p°ípad¥ (ii), tato data nazna£ují, ºe vytvá°ení návyk· je
funk£ní adaptací.
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Introduction

The unifying topic of all three chapters in this dissertation is acquiring and processing

information, especially in strategic situations. In the �rst two chapters, I theoretically

study strategic manipulation of truthful information in two di�erent settings. In the last

chapter, I experimentally examine information processing in a non-strategic setting. The

�rst chapter concerns a monopolist who indirectly manipulates information about his

product observed in online reviews via pricing decisions: his initial price determines the

composition of actual buyers, hence the composition of reviewers. The second chapter

studies a game between a sender and a receiver. The sender controls what information

is provided to the uninformed receiver while taking into account that the receiver can

later potentially gather her own information (at a cost). The last chapter is a laboratory

experiment, in which we study habit formation in a single-agent dynamic information

acquisition task.

In the �rst chapter, �Manipulation of Cursed Beliefs in Online Reviews � (joint with Jan

�ípek), we study the e�ects of platforms for online reviews of new products on �rm's

pricing decisions. We demonstrate that such platforms can have negative implications

for the society, such as slowing down the di�usion of new products, because the �rm

has an incentive to set a high initial price. When potential buyers have heterogeneous
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preferences, the initial price of the product a�ects the composition of actual buyers. Since

only the actual buyers are also the reviewers, the selection bias translates to a bias in

reviews. When consumers are boundedly rational and ignore the self-selection aspect

(which has been empirically documented and which we model via Eyster and Rabin's

(2005) concept of the `cursed equilibrium'), the initial price is an indirect instrument to

bias posterior beliefs. This new strategic aspect of the price, created by the existence of

the platforms, then drives up the initial price of new products.

In the second chapter, �Bayesian Persuasion with Costly Information Acquisition�, I com-

bine two current streams of literature in Information Economics, Bayesian persuasion

(Kamenica and Gentzkow 2011) and Rational inattention (Sims 2003). Bayesian per-

suasion studies a game in which a sender discloses information to a receiver in order to

persuade her to change her original action. Rational inattention is a theory of endogenous

costly information acquisition. I extend Bayesian persuasion to a receiver's endogenous

information acquisition under an entropy-based cost, commonly used in rational inat-

tention. I show that the possibility of the receiver to obtain additional information has

a disciplinary e�ect on the sender (weakly decreasing his expected equilibrium payo�),

for whom the persuasion becomes more di�cult. However, the overall outcome can be

worse also for the receiver, as the sender can prefer to strategically disclose signi�cantly

less information when facing the threat of additional learning. I exploit the (technical)

similarity in both theories that allows for tractability. I propose a new method showing

that the potentially very complicated problem can be simpli�ed to a search through a

�nite set of information strategies, which is characterized by linear conditions. The new

approach is also applicable to standard Bayesian persuasion and can simplify, sometimes

dramatically, the search for a sender's optimal disclosure strategy (as opposed to the

standard concavi�cation technique usually used to solve these models).

In the �nal chapter, �Habit Formation: An Experimental Study� (joint with Keh Sun),

we study why people form habits, tendencies to excessively repeat previous actions. One

explanation argues that habits are an intrinsic part of preferences�people have (mental)

switching costs (e.g. Abel (1990); Carroll, Overland, and Weil (2000); Constantinides

(1990)). Alternatively, habits can arise as an adaptation in a complex, stochastic envi-

ronment, rather than being a hard-wired feature. An agent who learns about a changing

environment with positively serially correlated payo� states can save on learning costs

by repeating their earlier actions. Such an agent then, in some circumstances, resembles

2



behavior of an agent for whom habits are driven by preferences (Steiner, Stewart, and

Mat¥jka 2017). Habit formation is then information driven and varies with speci�c featu-

res of the environment. However, it is invariant to these variations under �xed switching

costs. Recognizing whether habits are preference- or information-based is important for

the evaluation of policy intervention, such as the impact of monetary policies during

economic crises. We experimentally test these two di�erent theories by observing how

subjects take actions in binary perceptual decision problems over two periods. We consi-

der a stochastic environment with imperfect stochastic information. We de�ne habit as

action inertia that is not explained by variations in optimal actions. For a �xed sequence

of decision problems, habits form when (i) the subjects do not observe past payo� states,

and they do not form when (ii) the past states are observed. Since the past actions

contain useful information in treatment (i) but not in (ii), the data suggests that habits

are a functional adaptation.

3
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Chapter 1

Manipulation of Cursed Beliefs in Online

Reviews

Co-authored with Jan �ípek (CERGE-EI).

1.1 Introduction

This paper challenges the general desirability of online reviews for experience products

for the society. When consumers have heterogeneous preferences, each posted review

re�ects both the product's quality and the reviewer's idiosyncratic taste. With self-

selection to buying decisions, reviews become a biased signal on unknown quality. If

consumers do not correct for the self-selection, a monopolist may manipulate the posterior

beliefs about the quality, because the product price determines self-selection bias. The

monopolist faces a trade-o� between higher demand today and higher posterior beliefs

tomorrow: a higher price today lowers current demand, but intensi�es self-selection to

buying (only people with high enough idiosyncratic expectation/taste buy), resulting in

higher posterior beliefs tomorrow. We show that the monopolist charges a strictly higher

initial price compared to myopic initial price in a setting without reviews, in order to

5



increase bias in the posterior beliefs.

We present a 2-period model, where a monopolist dynamically prices a new experience

product of a quality initially unknown to the monopolist and consumers. Updating of

beliefs occurs by observing reviews that are truthfully and automatically posted by all

past buyers. While the monopolist is rational, consumers have heterogeneous preferences

and are boundedly rational�they do not take into account that reviewers self-select to

purchasing decisions�as in the cursed equilibrium of Eyster and Rabin (2005). The

bounded rationality is motivated by Li and Hitt's (2008) empirical analysis of online

book reviews: this suggests that consumers update beliefs as if the reviews re�ected

their own preferences, despite preference heterogeneity. In cursed equilibrium, agents

correctly predict the distribution of actions, but neglect how these actions are correlated

with other players' private information. Laboratory experiments (Parlour, Prasnikar,

and Rajan 2007) as well as real world examples (Brown, Camerer, and Lovallo 2012)

show behavior consistent with cursed equilibrium. We o�er another application of such

boundedly-rational behavior.

This paper is related to literature on the strategic manipulation of the social learning

(SL) process. Liu and Schiraldi (2012), Bhalla (2013), Bose et al. (2006), and Bose et al.

(2008) analyze a setting where consumers have homogeneous preferences and private

information about the unknown value of the product. Pricing decisions may then screen

private information. In contrast, our consumers hold identical ex-ante information about

quality, but have heterogeneous preferences. The learning does not come from observing

purchasing decisions (revealing ex-ante private information) but from observing reviews

(revealing ex-post satisfaction). The pricing decision then a�ects bias in the learning.

In a speci�c setting of online reviews, Crapis et al. (2016), and Ifrach, Maglaras, and

Scarsini (2014) characterize equilibrium dynamics with rational and boundedly rational

consumers, respectively. Rather than asking what the dynamics of the learning process

are, we ask what distortions in pricing decisions are induced by the existence of reviews.

Ifrach, Maglaras, and Scarsini (2014) show that `the optimal dynamic pricing strategy

charges a lower price than the corresponding myopic policy, which ignores the e�ect of

pricing on the SL process', since a low price speeds up learning. In contrast, we suggest

that the review system also generates incentives for charging a higher initial price than

the corresponding initial myopic price.

6



In a similar setting to ours, Papanastasiou, Bakshi, and Savva (2014) show that a mo-

nopolist, constrained to charging a �xed price, may deliberately under-supply the early

demand in order to increase bias in the consumers' posterior beliefs. However, no op-

timality of such under-supplies remains under dynamic pricing. We analyze a similarly

unconstrained model.

In the framework of online reviews, �rms may post fake reviews to bias consumers' beliefs

(Dellarocas 2006; Mayzlin, Dover, and Chevalier 2014). We show that even if we abstract

from such practices, the monopolist is still able to manipulate consumers' beliefs using

another tool: the price.

1.2 Model

A monopolist is selling an experience product of unknown quality, with zero marginal

costs, over two periods. The monopolist maximizes total undiscounted expected pro�t

by setting price pt ≥ 0 in period t ∈ {1, 2}.

Each period t, a continuum of 1-period-lived consumers of mass one enters the market

(unsatis�ed demand is not carried over to the next period). Each consumer i purchases the

product whenever her expected utility E[u(a, θi, pt)|θi, pt] from purchase is nonnegative,

where

u(q, θi, pt) = q + θi − pt, (1.1)

q is an unknown common quality, and θi is a privately known idiosyncratic taste. Upon

purchase, the consumer learns q and automatically posts her experienced quality q+ θi in

a public review.

Information: q is initially unknown to the monopolist and consumers. Common prior

belief is q ∼ N(µ, σ2). Privately known taste parameters θi are iid random variables

from uniform distribution on [−ε, ε], ε > 0. We denote the random variables and their

realizations by the same symbol. In period 2, all agents observe the average of past-period

reviews r = Eθ[q + θ|µ+ θ − p1 ≥ 0], if there are any, as well as p1 before taking action.

Consumers have the cursed beliefs of Eyster and Rabin (2005): each consumer correctly

7



predicts the distribution of other consumers' actions, but do not take into account how

these actions are correlated with idiosyncratic tastes. They incorrectly believe that others

purchase the product randomly (with actual unconditional probability of purchase) irre-

spective of their taste, rather than in a way speci�ed by their taste-contingent strategy1.

The monopolist is rational and aware of the bounded rationality of consumers. Note that

since all quality-relevant information is public, there is no signaling issue.

Timing: Nature chooses q. Consumers enter the market and privately learn their θi's.

The monopolist sets p1. Consumers make their purchasing decisions. Anyone buying

learns q and posts a review q + θi. Period 1 ends and all consumers leave the market.

New consumers enter the market and privately learn their θi's. The average review r

from the previous period and p1 become public. The monopolist sets p2. Consumers

make purchasing decisions. The game ends.

1.2.1 Cursed posterior beliefs

Self-selection in period 1

If p1 ≤ µ+ε, consumer i from period 1 buys i� θi ≥ θ̂1(p1), where the threshold consumer

θ̂1(p1) is

θ̂1(p1) =

−ε p1 ≤ µ− ε,

p1 − µ µ− ε < p1 ≤ µ+ ε.
(1.2)

If p1 > µ+ ε, nobody purchases the product.

Given the realization of quality q, the average review r(q, θ̂1(p1)), if there is any, is

r(q, θ̂1(p1)) = q + E[θ|θ ≥ θ̂1(p1)]. (1.3)

Rational (Bayesian) updating

Rational agents would account for self-selection. If past reviews exist, they `de-bias' them

appropriately, and recover the realized product quality by taking the inverse of (1.3). Ot-

1 Eyster and Rabin (2005) parametrize the `cursedness' by χ ∈ [0, 1]. Agents believe others use
a type-contingent strategy with probability 1 − χ and act independently of their type otherwise. For
simplicity, we set χ = 1, but our results hold ∀χ > 0.

8



herwise, the posterior beliefs coincide with priors (since there is no new information).

Cursed updating

Consumers mistakenly believe that reviews re�ect the opinions of an unbiased random

sample of the population, i.e., that r(q, θ̂1(p1)) = E[q+θ] = q, even though it is determined

by (1.3). If past reviews exist, the cursed posterior belief is

qc(q, θ̂1(p1)) = r(q, θ̂1(p1))
(1.3)
= q + E[θ|θ ≥ θ̂1(p1)]︸ ︷︷ ︸

bias (≥0)

. (1.4)

Otherwise, the posterior beliefs coincide with priors (since there is no new information).

Since the monopolist is rational, her posterior beliefs are unbiased. The consumers' cursed

posterior beliefs are unbiased only if the demand in period 1 was unity or zero. The

monopolist endogenously manipulates the size of the bias through price p1 (determining

the intensity of the self-selection).

1.3 In�ation of price

De�nition 1. An equilibrium is the monopolist's pair of prices {p∗1, p∗2(q, p∗1)} and con-

sumers' pair of threshold tastes {θ̂∗1(p∗1), θ̂∗2(q, p∗1)} such that:

1. In period 2, given p∗1, q, and

(a) given p∗2(q, p∗1), a consumer i purchases the product i� θi ≥ θ̂∗2(q, p∗1);

(b) given θ̂∗2(q, p∗1), p∗2(q, p∗1) maximizes the second-period monopolist's pro�t.

(c) Consumers' posterior belief is given by (1.4) for p1 = p∗1.

2. In period 1,

(a) given p∗1, a consumer i purchases the product i� θi ≥ θ̂∗1(p∗1);

(b) given a second-period subgame equilibrium for any q (point 1.) and given

θ̂∗1(p1), p∗1 maximizes the total undiscounted expected pro�t.

9



If µ ≤ −ε, nobody buys at any positive price. If 3ε ≤ µ, heterogeneity is relatively

small, compared to µ. The monopolist may �nd it optimal to satisfy the whole demand

of period 1, yielding no bias in qc. A1 ensures a nontrivial case, where the monopolist

always sells to a strict subset of consumers in period 1 (heterogeneity matters relatively).

Assumption 1. (A1): −ε < µ < 3ε.

Comparing p∗1 to its counterpart charged in a setting without review system, we establish

the main result.

Proposition 1. Let A1 hold. Then the optimal �rst-period price is strictly higher in the

setting with the reviews than without them.

Proof. Appendix 1.A.

1.4 Conclusion

This paper illustrates that the presence of consumer reviews may generate undesirable

incentives. A monopolist selling an experience good can manipulate anticipations of

the product's quality, even with truthful reviews. Consumers with the heterogeneous

preferences and cursed beliefs of Eyster and Rabin (2005) fail to take into account that

past consumers self-select themselves into purchasing decisions, leading to excessively

high anticipation of quality. Since the higher the price is, the higher is the self-selection

bias, the monopolist can exacerbate this error by increasing the price. The monopolist

charges a higher initial price than the corresponding myopic price which ignores the e�ect

of pricing on learning. The presence of reviews may thus slow down the di�usion of new

products. Addressing the motivation to post reviews, or the reliability of reviews based

on their sample size (currently absent due to the continuum of consumers assumption)

are some possible extensions of the model.
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1.A Appendix

Proof of Proposition 1

Proof. From the ex-ante point of view, q ∼ N(µ, σ2). The monopolist's maximization

problem is

max
p1∈[µ−ε,µ+ε)

p1
ε− (p1 − µ)

2ε
+ E[Π∗2(qc(q, θ̂1(p1)))], (1.5)

where

Π∗2(qc) =


0 qc < −ε,(

1
2ε

) (
qc+ε

2

)2 −ε ≤ qc ≤ 3ε,

qc − ε qc > 3ε

(1.6)

is the equilibrium second-period pro�t (found by backward induction), and the expecta-

tion is taken over qc(q, θ̂1(p1)) given by (1.4). Given p1 ∈ [µ−ε, µ+ε) and the distribution

assumptions2, qc(q, θ̂1(p1)) ∼ N(µu(p1), σ2) ex-ante, where

µu(p1) = µ+
1

2
(p1 − µ+ ε)︸ ︷︷ ︸

bias

. (1.7)

The slope of (1.5) is

µ− 2p1 + ε

2ε
+

d
dp1

Eqc [Π∗2(qc(q, θ̂1(p1)))]. (1.8)

We show that the slope (1.8) is strictly positive for p1 ∈ [µ− ε, µ+ε
2

], which implies that

the solution to (1.5) is p∗1 >
µ+ε

2
.

A1 ensures that µ+ε
2
∈ [µ− ε, µ+ ε). Furthermore,

1. µ−2p1+ε
2ε

> 0 for p1 <
µ+ε

2
and equals zero at p1 = µ+ε

2
.

2. d
dp1

Eqc [Π∗2(qc(q, θ̂1(p1)))] > 0 for any p1 ∈ (µ− ε, µ+ ε):

2Optimal price p∗1 ∈ [µ − ε, µ + ε), since charging p1 ≥ µ + ε or p1 < µ − ε is strictly dominated by
p1 = µ− ε.
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(a) Since qc is Gaussian with variance independent of p1, and mean µu(p1) increa-

sing in p1, the ex-ante distribution of posterior beliefs �rst-order stochastically

increases in p1 for p1 ∈ [µ− ε, µ+ ε) (Levy 2015).

(b) (1.6) is a non-decreasing function of qc, strictly increasing on some intervals.

First-order stochastic dominance implies d
dp1

Eqc [Π∗2(qc(q, θ̂1(p1)))] ≥ 0. Gaus-

sian distribution3 and Hanoch and Levy (1969), Lemma 1, ensure that the

inequality is strict, d
dp1

Eqc [Π∗2(qc(q, θ̂1(p1)))] > 0.

In a setting without a review system, the monopolist's maximization problem in period

1 is maxp1∈[µ−ε,µ+ε) p1
ε−(p1−µ)

2ε
, resulting in optimal price p∗1,a = µ+ε

2
< p∗1.

3If Gaussian distribution A �rst-order stochastically dominates B, then CDFA(x) < CDFB(x) ∀x ∈ R,
where CDF denotes cummulative distribution function (Levy 2015).
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Chapter 2

Bayesian Persuasion with Costly Information

Acquisition

2.1 Introduction

A decision maker (a buyer, a politician) often relies on free information provided by

an interested party (a seller, a lobbyist), but she may also be able to obtain her own

information at a costly e�ort. Does she bene�t from the ability to acquire her own

information in addition to the given free information? Will she choose to acquire any?

We consider a Bayesian persuasion model (Kamenica and Gentzkow 2011; henceforth

KG) extended to an endogenous acquisition of costly information. As in KG, a sender

chooses a signal conveying information on the unknown state of the world to disclose to

a receiver, a decision maker. However, unlike in KG, before taking an action, the receiver

further chooses her own signal under an entropy-based cost, as in rational inattention

(Sims 2003). We show that the possibility of additional learning lessens the sender's

persuasive power (lowering his expected equilibrium utility). However, the outcome can

be worse also for the receiver, as the sender can strategically prefer to disclose signi�cantly

less information when the receiver has her own learning option. For instance, the sender's
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strategic manipulation of a receiver's consideration set or his dislike for particular actions

can lead to such a scenario, see Section 2.6.

We exploit a similarity in Bayesian persuasion and rational inattention allowing for trac-

tability: any signal is feasible as long as it is consistent with prior beliefs. Signals can

thus be explicitly modeled by posterior distributions over unknown states, under the

martingale property (KG; Caplin and Dean 2013; henceforth CD). An optimal signal is

then found by a concavi�cation of an underlying value function of posterior beliefs related

to the expected utility of the information designer. The concavi�cation method remains

valid in our model, but it requires solving the receiver's maximization problems for an en-

tire space of beliefs �rst, which quickly becomes intractable. Further, the concavi�cation

method itself has limited applicability even for standard Bayesian persuasion problem as

concavi�cation of a general function is notoriously di�cult.

We thus propose a new method not relying on concavi�cation; it is su�cient to search

through a relatively small �nite set of the sender's signals, characterized by a series of

linear conditions. The method is also applicable to a KG model, which is a limiting case of

our model, and can then simplify, sometimes dramatically, the search for a solution. First,

a Never-Learning Lemma states that our model can be solved as a standard Bayesian

persuasion under an additional constraint: the receiver never costly learns. This results

from both the sender's and the receiver's information technology being unconstrained

(apart from the martingale property) and certain properties of the receiver's cost function.

Second, Proposition 1 shows that, using a series of speci�c linear conditions, we can

construct a �nite set of the sender's signals satisfying the additional constraint and in

which some optimal strategy must be contained. The new method complements the

result of Lipnowski and Mathevet (2017) who show, in the standard Bayesian persuasion

model, su�ciency to consider a properly chosen subset of the sender's signals. While they

provide general abstract conditions on the subset, we provide readily applicable linear

conditions, which follow from the entropy-based cost, but are also valid for the standard

Bayesian persuasion at the limit.

We conclude the paper by examining the robustness to variations of the receiver's cost.

The key simpli�cation step (the Never-Learning Lemma) holds for a whole class of

posterior-separable cost functions, for which the entropy-based cost is a prime exam-

ple. Once the information technology is less �exible, this simpli�cation need not hold;
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the sender can take advantage of the restriction on the set of feasible receiver's signals.

However, the possibility that the receiver can be hurt by having the option to learn is

not unique to posterior-separable cost functions.

This paper is organized as follows. Section 2.2 provides an overview of the relevant

literature. Section 2.3 sets up a motivating example. Section 2.4 provides a general

model. Section 2.5 states the main simpli�cation result and describes the new solution

method. Section 2.6 describes comparative statics, giving examples in which the receiver

does not bene�t from having the learning option. Section 2.7 discusses the assumption

of the receiver's information technology, and Section 2.8 concludes.

2.2 Related literature

Our model extends KG by enabling a receiver to endogenously acquire her own costly in-

formation. Extensions with an exogenously privately informed receiver have already been

examined in Kolotilin (2015), Kolotilin (2018) and Kolotilin et al. (2017), and summa-

rized in Bergemann and Morris (2016). Our result showing that the receiver's expected

equilibrium utility can be non-monotone in her information cost parameter has a simi-

lar intuition as Kolotilin (2018), showing that the receiver's expected equilibrium utility

can be non-monotone in the precision of her (costless) exogenous private information:

in strategic environments, a sender can become discouraged and optimally respond to a

receiver with better information technology by disclosing less information. Our model is

more general than the above papers, because we neither restrict the set of actions to be

binary, as they all do, nor do we assume linear environments as Kolotilin et al. (2017)

do. The notion that an agent in a strategic setting can be hurt by having access to a

better information technology is not unique for Bayesian persuasion, e.g., see Roesler and

Szentes (2017) and Kessler (1998) for such a case in a contracting environment.

As the concavi�cation approach has limited applicability for a number of problems, we

also contribute to the Bayesian persuasion literature that focuses on alternative solution

techniques not relying on concavi�cation. For linear environments with binary actions,

a more restricted model than ours, Kolotilin et al. (2017) reformulate the Bayesian per-

suasion problem as the maximization of a linear functional on a bounded set of a convex

functions and use it to simplify the problem to a �nite-variable optimization problem.
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For a more general version, but also with binary actions, Kolotilin (2018) permits the

veri�cation of whether a candidate sender's strategy is optimal. However, this approach

has limited applicability because it does not allow to directly characterize the optimal

sender's strategy. On the other hand, we propose a solution method for a model with ge-

neral utility functions and �nite, but arbitrarily large action and state spaces, that allows

one to directly �nd a solution. Our method is most similar to the Lipnowski and Mat-

hevet (2017) method proposed for the standard Bayesian persuasion model. While they

provide general abstract conditions, we give exact liner conditions that can be readily

used not only for our version of the model, but also for standard Bayesian persuasion.

There is a rapidly growing Bayesian persuasion literature. Kolotilin (2015) studies Baye-

sian persuasion with exogenous public information. Rayo and Segal (2010), Perez-Richet

and Prady (2011), Alonso and Câmara (2018), and Hedlund (2017) explore Bayesian

persuasion with a privately informed sender. Gentzkow and Kamenica (2014) model si-

tuations in which the sender bears a cost associated with his information. They provide

a class of cost functions (including entropy-based cost) that are compatible with the con-

cavi�cation approach. Similarly, we work with an entropy-based cost, but the receiver is

the bearer of the cost. Other extensions include competition (Gentzkow and Kamenica

2016; Gentzkow and Kamenica 2017; Li and Norman 2017), heterogeneous priors (Alonso

and Câmara 2016), or dynamic framework (Au 2015; Ely, Frankel, and Kamenica 2015;

Ely 2017).

The assumptions about the receiver's cost function falls under rational inattention (Sims

2003). Single-agent rational inattention decision problems have been studied for inves-

tment decisions (Van Nieuwerburgh and Veldkamp 2009), rare events (Ma¢kowiak and

Wiederholt 2015), static stochastic choice (Caplin and Dean 2013; Caplin and Dean 2015;

Caplin, Dean, and Leahy 2016; Oliveira et al. 2017; Mat¥jka and McKay 2015), or dyna-

mic stochastic choice (Steiner, Stewart, and Mat¥jka 2017). Yang (2011), Martin (2017),

and Ravid (2017) examine rational inattention in strategic situations. While the overall

framework of our model is strategic, the particular rational inattention problem is essen-

tially a single-agent decision problem since the costly information acquisition occurs at

the last stage of the game. We thus follow the papers on static stochastic choice when

solving a receiver's rational inattention problem.
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2.3 Motivation: Simple model

A seller (he) is persuading a buyer (she) to purchase his product (e.g., a music CD),

which can be either a good match (ω = 1) or a bad match (ω = 0). The buyer can either

buy (a = 1) or not buy (a = 0). u(a, ω) and v(a) are the buyer's and seller's utilities,

u(a, ω) =


1 a = 1 ∧ ω = 1

−1 a = 1 ∧ ω = 0

0 otherwise

, v(a) =

1 a = 1

0 a = 0
.

We identify the beliefs with probability that ω = 1. A common prior belief is µ0 :=

Pr[ω = 1] < 0.5 (under which the buyer's optimal action is not to buy).

The seller may persuade the buyer to take his preferred action (to buy) by providing

further information (e.g., let her listen to a song). The buyer then updates her priors to

an interim belief µ := Pr[ω = 1|seller's information]. The seller's information strategy is

a choice of a lottery τ ∈ ∆([0, 1]) over interim beliefs with mean µ0.

After the buyer updates to a particular interim belief µ, she can gather additional infor-

mation at a costly e�ort (e.g. search on the Internet), further updating her beliefs to a

posterior belief γ = Pr[ω = 1|seller's and buyer's information]. Her information strategy

is a choice of a lottery φ ∈ ∆([0, 1]) over posterior beliefs with mean µ. If the optimal

lottery satis�es supp(φ) = µ, we say she does not learn at µ. Otherwise, we say she learns

at µ.

While the seller's information is costless, the buyer bears a cost for her information (e.g.

opportunity cost of time). Given µ, the cost of a lottery φ is λ (H(µ)− EφH(γ)), where

λ ≥ 0 is an information cost parameter and H(µ) − EφH(γ) ≥ 0 states how much

uncertainty about the match, as measured by Shannon entropy1 H(·), is expected to be

reduced by φ.

To solve the game, we exploit one feature of the buyer's optimal behavior: once she obtains

her chosen information (updates to a particular posterior γ), she never wishes to engage

in another round of learning even if given a chance. This stems from a set of the buyer's

information strategies being unconstrained (apart from the consistency requirement that

1 The Shannon entropy at belief p ∈ [0, 1] is H(p) = −(p ln p+ (1− p) ln(1− p)) where 0 ln 0 = 0.
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a mean is preserved) and from her cost function being posterior-separable (see Section

2.7). The latter guarantees that the cost is increasing in Blackwell informativeness and

that it is invariant to intermediate stages2. As the seller's set of information strategies is

also unconstrained, he can always skip the buyer's potential learning and directly `send'

her to the corresponding posteriors where she would have ended up by herself, without

changing the outcome of the game. Since the seller's information is costless, it is thus

su�cient to focus on a speci�c class of the seller's strategies under which the buyer never

decides to further costly learn.

Buyer's optimal behavior

We follow an approach of CD to solve for the buyer's optimal behavior. Given µ, the

buyer maximizes

maxφ∈∆([0,1]) Eφ[B(γ)]− λ (H(µ)− Eφ[H(γ)]) (2.1)

s.t. Eφ[γ] = µ,

where the expectation is taken over posterior beliefs induced by φ and B(γ) is the buyer's

gross expected utility at posterior γ given that her subsequent action is optimal. Hence,

B(γ) = 0 for γ < 1/2 (not buying) and B(γ) = 2γ − 1 otherwise (buying).

Note that the problem (2.1) can be rewritten as

maxφ∈∆([0,1]) Eφ[û(γ)]− λH(µ)︸ ︷︷ ︸
=const.

(2.2)

s.t. Eφ[γ] = µ,

where û(γ) = B(γ) + λH(γ) is the buyer's value function at posterior γ. The problem

(2.2) has a geometric interpretation. Let U(γ) be a concavi�cation of û(γ) de�ned as

the smallest concave function that is everywhere weakly greater than û(γ). CD showed

that the support of an optimal lottery φ∗ are those posterior beliefs that support the

tangent hyperplane to the lower epigraph of the concavi�cation above the interim belief

µ, U(µ). Hence, whenever û(µ) = U(µ), the receiver does not learn at µ and whenever

2 The cost of achieving a particular distribution of posterior beliefs would be the same regardless of
whether the learning occurs in one or more stages.
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Figure 2.1: Buyer's value function û(γ) and its concavi�cation U(γ)
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û(µ) < U(µ), she learns at µ, where the support of the optimal lottery is always the

same: supp(φ∗) = {µ, µ}, see Figure 2.1.

Hence, there are two threshold interim beliefs3 0 ≤ µ ≤ µ ≤ 1 that divide the space

of interim beliefs into two non-learning regions and one learning region. A non-learning

region of a particular action are all interim beliefs at which the buyer does not learn and

optimally takes that action. A non-learning region of not buying is [0, µ] and that of

buying is [µ, 1]. For intermediate values of µ, when the buyer is very uncertain about

what the right thing to do is, she learns and only sometimes buys (in the case of favorable

information). Note that once she obtains her information (updates her beliefs either to a

posterior µ or µ), she does not wish to engage in another round of learning even if given

the chance4.

Bayesian persuasion s.t. never-learning constraint

For each µ, let v̂(µ) be the seller's expected utility which already accounts for the optimal

buyer's behavior at µ.5 Let V (µ) be a concavi�cation of v̂(µ) de�ned as the smallest

concave function that is everywhere weakly greater than v̂. Then the seller's expected

3 Solving the buyer's maximization problem, we obtain µ = 1

1+e
1
λ
and µ = e

1
λ

1+e
1
λ
(see Appendix 2.A).

4As the buyer's value function û(γ) and its concavi�cation U(γ) coincide at values µ and µ, no learning

is optimal either at µ or at µ.
5 Hence, v̂(µ) = 0 if µ ≤ µ (the buyer does not learn and does not buy), v̂(µ) = 1 if µ ≥ µ (the buyer

does not learn and buys), and v̂(µ) = 1
µ−µµ−

µ

µ−µ for µ ∈ (µ, µ).
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Figure 2.2: Function v̂(µ) and sender's optimal information strategy
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equilibrium utility is the concavi�cation evaluated at the prior, V (µ0), and the support

of the optimal sender's lottery can be found from the graph in the same fashion as in the

buyer's problem. See Figure 2.2 for an example of v̂(µ) and the resulting optimal sender's

strategy with λ → ∞ (equivalent to KG's setting with a buyer who cannot gather her

own information) and with λ = 1.5.

The support of the optimal lottery is supp(τ ∗) = {0, µ} (when λ → ∞, µ = µ = 1/2).

These are beliefs that belong to non-learning regions. We show that it is generally

su�cient to only consider the seller's information strategies under which the buyer never

costly learns, i.e., the lotteries with the support over interim beliefs from non-learning

regions only. This is because the buyer never wishes to have more than one round of

costly learning, the set of the seller's information strategies is unconstrained, and his

information is costless. The seller can then skip the receiver's learning part with his

information without changing the outcome of the game.

Further, note that the support of the optimal lottery, supp(τ ∗) = {0, µ}, are extreme

points6 of the non-learning regions. We show that it is su�cient to consider the sender's

strategies under which only extreme points of non-learning regions are chosen. Hence, in

this example, one only needs to consider lotteries with support over interim beliefs from

the set {0, µ, µ, 1}, where the thresholds µ, µ are speci�ed by particular linear equations

6 An extreme point of a convex set S is a point in S which does not lie in any open line segment
joining two points of S. Hence, extreme points of non-learning region [0, µ] are {0, µ} and extreme points

of non-learning region [µ, 1] are {µ, 1}.
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resulting from the characterization of the optimal receiver's strategy.

2.4 General model

A receiver (she) chooses an action a from a �nite set A. A payo�-relevant state ω is

drawn from a �nite set Ω according to an interior prior distribution µ0 ∈ ∆(Ω). Before

choosing her action, the receiver obtains free information about ω provided by a sender

(he) and rationally updates her beliefs from the prior µ0 to interim belief µ ∈ ∆(Ω).

A sender's (information) strategy is a choice of a distribution τ ∈ ∆(∆(Ω)) over the

(updated) interim beliefs s.t. Eτ [µ] = µ0 (martingale property).

After updating to a particular µ and before her move, the receiver can acquire additional

costly information about ω, further rationally updating her beliefs from µ to a posterior

belief γ ∈ ∆(Ω). A receiver's strategy is comprised of an information strategy, which

is a choice of a distribution φ ∈ ∆(∆(Ω)) over the (further updated) posterior beliefs

s.t. Eφ[γ] = µ (martingale property), and an action strategy σ : ∆(Ω)→ A, where σ(γ)

indicates the choice of action at a posterior belief γ. Let S be the set of all action stra-

tegies. We focus on sender-preferred subgame perfect equilibria: in case of indi�erence,

the receiver uses a strategy that is (weakly) preferred by the sender7.

The sender bears no information costs and derives utility v(a, ω). The value of the

sender's strategy is the equilibrium expectation of v(a, ω) under that strategy pro�le.

The sender bene�ts from persuasion if there exists τ whose value is strictly larger than

the equilibrium expectation of v(a, ω) under no sender's information, de�ned as τ0 with

supp(τ0) = µ0.

The receiver derives gross utility u(a, ω), where the term `gross' indicates that information

costs are not included. As is standard in RI literature, we assume Shannon-entropy

based cost. For a random variable T with �nite support distributed according to µ ∈
∆(supp(T )), the Shannon entropy is given by

H(T |µ) = −
∑

θ∈supp(T )

µ(θ) lnµ(θ), (2.3)

7 See 2.A for a su�cient assumption for a unique optimal receiver's strategy.
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which is a measure of uncertainty about T (where 0 log 0 = 0 by convention). We assume

the cost is proportional to the conditional mutual information8

I(φ, ω|µ) = H(ω|µ)− Eφ[H(ω|γ)] (2.4)

between a receiver's information strategy φ and the state ω. Given µ, it captures how

much uncertainty about ω is expected to be reduced by φ. The receiver solves the

following problem.

De�nition 2. Given interim belief µ, the receiver's rational inattention problem (hence-

forth receiver's RI problem) is

max
φ∈∆(∆(Ω)),σ∈S

Eφ

[∑
ω∈Ω

γ(ω)u (σ(γ), ω)

]
− λI(φ, ω|µ) (2.5)

s.t. Eφ[γ] = µ,

where λ ≥ 0 is an information marginal cost parameter, and the expectation is over

posterior beliefs γ distributed according to φ; γ(ω) denotes the probability of state ω at

belief γ.

Mat¥jka and McKay (2015) prove the existence of a solution to (2.5), which we denote

by (φ∗µ, σ
∗)9. For a characterization of the receiver's optimal behavior, see 2.A. Say the

receiver does not learn at µ if supp(φ∗µ) = µ. Otherwise, say the receiver learns at µ.

Applying backward induction, we can express the conditional sender's expected utility

for each µ, denoted by v̂(µ), where

v̂(µ) := Eφ∗µ

[∑
ω∈Ω

γ(ω)v(σ∗(γ), ω)

]
, (2.6)

where the expectation is over posterior beliefs γ distributed according to φ∗µ. v̂(µ) is the

sender's expected utility at an interim belief µ already accounting for the subsequent

optimal receiver's behavior at µ. The sender solves the following problem.

8For more on the Shannon entropy and mutual information, see Cover and Thomas (2006).
9 The optimal action strategy is independent of the interim belief as arg maxa Eγu(a, ω) is independent

of the intermediate steps as to how one arrives at having posterior belief γ.
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De�nition 3. Given prior µ0, the sender's maximization problem is

max
τ∈∆(∆(Ω))

Eτ [v̂(µ)] (2.7)

s.t. Eτ [µ] = µ0,

where the expectation is over interim beliefs µ distributed according to τ .

Say the receiver never learns if the optimal sender's strategy τ ∗ satis�es: ∀µ ∈ supp(τ ∗),

the receiver does not learn at µ.

2.5 Bayesian persuasion s.t. never-learning

While v̂(µ) is straightforward when the receiver has no additional learning option10, it

becomes complicated once she can learn. It requires �nding the receiver's optimal beha-

vior for an entire space of interim beliefs, {(φ∗µ, σ∗)}µ∈∆(Ω), which is intractable already

for a small state space. We provide an approach that avoids such calculations.

First, we show that the game can be solved as a standard Bayesian persuasion model

subject to an additional constraint: the receiver never costly learns. Determining the

interim beliefs at which the receiver does not learn is su�cient. At such beliefs, the

receiver's behavior is deterministic and v̂(µ) =
∑

ω∈Ω µ(ω)v(σ∗(µ), ω). We then further

specify a �nite set of these beliefs on which some optimal sender's strategy must be

supported.

2.5.1 Never-learning constraint

When the receiver is fairly uncertain about what the right thing to do is, she �rst learns

to re�ne her beliefs before acting. However, when her interim belief is precise enough,

she does not learn. Let us formalize the subsets of such interim beliefs.

10 With no additional learning option, the receiver's optimal action is always deterministic at µ. In
that case, v̂(µ) is a piecewise-linear (upper semi-continuous) function: ∀µ ∈ ∆(Ω) we have v̂(µ) =∑
ω∈Ω µ(ω)v(σ∗(µ), ω).
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De�nition 4. A non-learning region of action a ∈ A is

NLa := {µ ∈ ∆(Ω) : supp(φ∗µ) = µ ∧ a ∈ arg max
a′∈A

∑
ω∈Ω

µ(ω)[u(a′, ω)]}. (2.8)

The non-learning region of some action are all interim beliefs µ at which no learning and

taking that action are optimal11. In the introductory example, a non-learning region of

not buy is µ ∈ [0, µ], and that of buy is µ ∈ [µ, 1].

The following Never-Learning Lemma states that it is su�cient to focus on a subset of

the sender's strategies under which the receiver never learns. The game can be solved as

a standard Bayesian persuasion problem subject to a never-learning constraint12.

Lemma 1 (Never-Learning). Let τ be a sender's information strategy of value v. Then

there exists a sender's strategy τ ′ of value v where ∀µ ∈ supp(τ ′): µ ∈ ∪aNLa.

In a proof of Never-Learning Lemma, we use a speci�c feature of the receiver's optimal

behavior captured in Lemma 2.

Lemma 2. The receiver wants to costly learn at most once, even if more rounds of costly

learning were possible: ∀µ ∈ ∆(Ω), a receiver's optimal information strategy φ∗µ satis�es:

if γ ∈ supp(φ∗µ) then γ ∈ ∪a∈ANLa.

Lemma 2 follows from the set of the receiver's information strategies being unconstrai-

ned, the cost being increasing in Blackwell informativeness and invariant to intermediate

stages13. Then, as the set of the sender's information strategies is also unconstrained,

he can incorporate, at no cost, any receiver information strategy. Lemma 2 implies

that doing so does not change the particular outcome of the game (a distribution of the

receiver's actions conditional on the state) with respect to what outcome the original

sender's information strategy induced. Thus, there is no need to solve the receiver's RI

problems for an entire space of interim beliefs; �nding non-learning regions is su�cient.

The Never-Learning Lemma is an analogy to a revelation principle in mechanism design

problems.
11 When non-learning regions overlap, i.e. ∃µ ∈ NLa: | arg maxa′∈A

∑
ω∈Ω µ(ω)[u(a′, ω)]| > 1, the

optimal action strategy, σ∗(µ), follows a sender-preferred equilibrium assumption.
12For any λ ∈ R, v̂(µ) di�ers from v̂(µ) when the receiver has no additional learning option (λ→∞)

only at µ not belonging to some non-learning region.
13 The cost of achieving a particular distribution of posterior beliefs would be the same regardless of

whether the learning occurs in one or more stages.
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Figure 2.3: Extreme points of non-learning regions and a candidate sender's optimal
strategy (a, ω ∈ {1, 2, 3}, u(a, ω) = a if a = ω and 0 otherwise, λ = 2).
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2.5.2 Extreme-points solution method

Recall that in the introductory example, there is a (unique) seller's strategy, under which

only the extreme points of non-learning regions are induced. While the uniqueness pro-

perty is not general (see Section 2.5.3), the optimality of some such strategy is generally

guaranteed, which is captured in Proposition 2.

Let EP a denote the set of extreme points14 of a non-learning region NLa.

Proposition 2. The set ∪a∈AEP a is non-empty and �nite. Furthermore, whenever a

sender's problem (2.7) has a solution, there exists an optimal sender's strategy τ ∗, for

which |supp(τ ∗)| ≤ |Ω| and ∀µ ∈ supp(τ ∗): µ ∈ ∪a∈AEP a.

Note that a sender-preferred equilibrium assumption implies an upper semi-continuity of

v̂, which guarantees the existence of the equilibrium. Proposition 2 then says that we can

solve the game by comparing values of a �nite number of the sender's strategies. These

strategies induce (at most |Ω| of) extreme points of non-learning regions. See Figure 2.3

for an illustration of one such candidate sender's strategy. Once v(a, ω) is speci�ed, we can

determine the optimal one. The proof of Proposition 2 shows that for any sender strategy

τ under which the receiver never learns, there exists a sender's strategy τ ′, inducing only
14An extreme point of a convex set B is a point in B which does not lie in any open line segment

joining two points of B.
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the extreme points, that has weakly higher value (where the sender-preferred assumption

is used for a limit case of λ → ∞). Carathéodory's theorem is then used in restricting

the size of the support of an optimal sender's strategy.

The following lemmas characterize the set ∪aEP a and the values of the candidate sender's

strategies from Proposition 2. First, Lemma 3 characterizes the non-learning regions as

being either a closed convex set determined by a �nite series of linear inequalities (where

the receiver's primitives�u(a, ω), λ�are the parameters) or an empty set. The linear

conditions result from taking Shannon entropy as a measure of uncertainty in a posterior-

separable cost function, see Section 2.7. The conditions follow from eq. (2.14) in Appendix

2.A, where the receiver's optimal behavior is characterized.

Lemma 3. For any λ ≥ 0 we have ∪a∈ANLa 6= ∅. Furthermore,

NLa =

{
µ ∈ ∆(Ω) :

∑
ω∈Ω

µ(ω)

(
e
u(a′,ω)

λ

e
u(a,ω)
λ

)
≤ 1 ∀a′ 6= a

}
∀a ∈ A. (2.9)

Whenever NLa 6= ∅, Lemma 3 implies that NLa has (�nitely many) extreme points

(Krein-Milman Theorem). Lemma 4 states that an extreme point of a non-learning

region is a belief in NLa for which |Ω| of constraints from Lemma 3 are binding.

Lemma 4. An extreme point of NLa is µ ∈ R|Ω| where
∑

ω µ(ω) = 1 that satis�es (i)

∀ω ∈ Ω: µ(ω) ≥ 0 and µ(ω) ≤ 1; and (ii)
∑

ω∈Ω µ(ω)

(
e
u(a′,ω)

λ

e
u(a,ω)
λ

)
≤ 1 ∀a′ 6= a, of which

|Ω| − 1 a�ne independent constraints are binding.

Lemma 5 determines the value v̂(µ) when µ is an extreme point of some non-learning

region. When an extreme point belongs to more non-learning regions, the sender-preferred

equilibrium assumption applies.

Lemma 5. Let µ ∈ EP a and a = σ∗(µ). Then v̂(µ) =
∑

ω∈Ω µ(ω)v(a, ω).

Hence, to �nd an optimal sender's strategy, it su�ces to:

(i) determine ∪a∈AEP a (using Lemma 4);

(ii) evaluate v̂(µ) at those beliefs (using Lemma 5);

(iii) compare the values of the sender's strategies that satisfy Bayes' law and induce at

most |Ω| beliefs from the set ∪a∈AEP a.
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Note that Lemmas 3, 4, 5 and Proposition 2 are applicable to KG, the case of a receiver

with no additional learning option, by taking λ→∞.

2.5.3 Equilibrium with learning?

In a setting with binary action and state spaces, a setting used in a number of recent

papers15, the receiver never costly learns in an equilibrium as long as the sender bene�ts

from persuasion, see Proposition 3. In a more general setting, however, this does not

necessarily hold in case of the multiple equilibria (even when the sender bene�ts from

persuasion), see Example 1. However, if we further assumed that the sender incurs a

strictly positive cost whenever the receiver learns (e.g., waiting cost), equilibria with

additional learning would disappear.

Let us �rst slightly restrict the sender's preferences, a necessary and su�cient condition

for a unique equilibrium in a binary action and state spaces case. We rule out pathological

cases that can lead to situations in which two actions a and a′ are both induced (under

no learning) by a sender's optimal strategy, but at the belief at which the receiver takes

a, the sender is exactly indi�erent between a and a′.

Assumption 2. There exists no action a ∈ A s.t. (i) ∀µ ∈ ∆(Ω) : v̂(µ) ≤
∑

ω∈Ω µ(ω)v(a, ω),

and (ii) ∃µ ∈ NLa′ where a′ 6= a and v̂(µ) =
∑

ω∈Ω µ(ω)v(a, ω).

Proposition 3. Suppose |A| = |Ω| = 2 and the sender bene�ts from persuasion. Then,

(i) the receiver never learns in any equilibrium; and (ii) A2 holds if and only if there

exists unique equilibrium.

Example 1. Let A = Ω = {0, 1, 2}; u(a, ω) = 1 if a = ω and u(a, ω) = 0 otherwise;

v(a, ω) = 1 if a 6= 0, a 6= ω, and v(a, ω) = 0 otherwise; λ = 0.75; prior belief: {µ0(0) =

0.5, µ0(1) = µ0(2) = 0.25}.

Figure 2.4 depicts two optimal sender strategies for Example 1. In part a), an opti-

mal sender's strategy τ ∗: supp(τ ∗) = {µ1, µ2, µ3} from Proposition 2 is shown. Under

this strategy, the receiver never learns. In part b), a di�erent sender's strategy τ ′∗:

15 Standard Bayesian persuasion was applied to bank regulation (Gick and Pausch 2012), electoral
manipulation (Gehlbach and Simpser 2015), investment decisions (Bizzotto, Rüdiger, and Vigier 2015),
and forecasting of disasters (Aoyagi 2014).
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Figure 2.4: (a) Equilibrium with no learning; (b) Equilibrium with learning: the receiver
learns at µ′2 optimally inducing posteriors {γ1, γ2}.
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supp(τ ′∗) = {µ′1, µ′2} is considered. At µ′2, the receiver learns and optimally induces

posteriors {γ1, γ2} = {µ2, µ3} with appropriate probabilities. Here, it is no longer true

that the receiver never learns. As the outcome of the game (distribution of the receiver's

strategies conditional on the state) is the same under both τ ∗ and τ ′∗, τ ′∗ is also optimal.

Note that the assumption A2 is satis�ed in this example and hence A2 generally is not a

su�cient assumption for uniqueness of equilibria.

2.5.4 Characterization of the sender's optimal strategies

Let us provide further characterization of candidate strategies from Proposition 2. Recall

that in the introductory example, the optimal sender's strategy has supp(τ ∗) = {0, µ};
the buyer does not buy when µ = 0 and buys when µ = µ. Note two properties. First,

whenever the buyer chooses the least-preferred action (not to buy), she is certain of the

state, µ = 0; she never rejects a good match. Second, whenever the buyer chooses an

action that is not the seller's least-preferred (to buy), her beliefs are at a border of a non-

learning region16. If her belief was inside a non-learning region when she buys (µ > µ),

the seller can increase the probability of buying by slightly decreasing µ.

16 With a binary state, a border coincides with an extreme point.
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The �rst of these properties holds in general. Say an action a is a worst action if v(a, ω) <

v(a, ω) for all a 6= a and ω. Let EP∆(Ω) denote the set of extreme points of the probability

simplex ∆(Ω).

Proposition 4. If an optimal sender's strategy from Proposition 2 induces a belief µ ∈
NLa, where a is a worst action, and a = σ∗(µ), then µ ∈ EP∆(Ω).

Proposition 4 states that whenever the receiver takes a worst action in an equilibrium

(under the sender's strategy from Proposition 2), the state is fully revealed17. In the

introductory example, the action not to buy is a worst action. When the receiver takes

it, she is certain that the state is bad.

The second property holds under restriction on the sender's preference. When A2 is not

satis�ed, the sender can be exactly indi�erent to a change in the probability mass between

two di�erent actions that are both induced (under no learning) by an optimal sender's

strategy. This may break the second property.

Let bd(B) denote a boundary of the set B.

Proposition 5. Let A2 hold and suppose the sender bene�ts from persuasion. If an

optimal sender's strategy induces µ ∈ NLa, then µ ∈ bd(NLa).

Note that NLa has a piecewise-linear boundary. Consider two di�erent extreme points of

NLa from di�erent `linear segments' of its boundary. Proposition 5 implies that, under

A2, both beliefs cannot be optimally induced (otherwise an optimal sender's strategy

inducing an interim belief from the interior of NLa also exists)18.

2.6 Comparative statics

In this section, we examine the relationship between agents' expected equilibrium utilities

and the receiver's information cost parameter λ. We show that the access to information
17 If the receiver takes a worst action in an equilibrium under a di�erent strategy than that of Propo-

sition 2, there is no uncertainty left in the sense that the probability of states for which a is not optimal
to choose is zero. Proposition 4 is an analogy of Proposition 4 in KG.

18 Proposition 5 is a modi�cation of Proposition 5 in KG, which states that any optimally induced
interior belief leads the receiver to being indi�erent between at least two di�erent actions (given the
analogy of A2 is satis�ed).
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has a disciplinary e�ect on the sender (decreases his expected equilibrium utility), but it

is not necessarily bene�cial for the receiver either.

2.6.1 Sender

Proposition 6. The sender's expected equilibrium utility (weakly) increases in λ.

As the receiver's access to her own information represents an additional never-learning

constraint for the sender, it can only hurt him. The non-learning regions, and hence the

set of the sender's strategies under which the receiver never learns, do not shrink as λ

increases. The receiver's potential learning is less threatening as her information becomes

more expensive.

2.6.2 Receiver

Proposition 7. Assume A2, |A| = |Ω| = 2, and the sender bene�ts from persuasion

∀λ > 0. Then the receiver's expected equilibrium utility (weakly) decreases in λ.

In a binary setting, the receiver (weakly) bene�ts from cheaper information, see Proposi-

tion 7. In general, however, the receiver does not necessarily gain from having the threat

of learning; for intermediate cost, she can prefer commitment to not having the option

to learn at all. Ceteris paribus, an agent would bene�t from information being cheaper.

However, in a strategic setting, the opponent responds to how expensive the information

of the other agent is. With con�ict of interest, the sender's choice under intermediate λ

can be less informative (Blackwell sense19) than his choice under higher λ, making the

receiver strictly prefer high to intermediate cost. We illustrate this in two examples.

In Example 2, the sender targets a speci�c consideration set of the receiver (the set of

actions chosen with strictly positive probability), and in Example 3, the sender dislikes

a particular set of actions.

19 An information strategy τ is more Blackwell-informative than τ ′ if and only if obtaining information
via τ is preferred to information via τ ′ by all expected utility maximizers. Equivalently, τ is more
Blackwell-informative than τ ′ if and only if supp(τ ′) lie inside the convex hull of supp(τ) (Blackwell and
Girshick 1954), Thm 12.2.2.).
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Figure 2.5: Example 2�Manipulation of the receiver's consideration set: v̂ over non-
learning regions and an optimal sender's strategy. The sender targets: (a) actions {l, s}
(less information); (b) actions {l, r} (more information).
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Example 2. Ω = {0, 1}, A = {l, r, s}, the prior belief µ0 := Pr[ω = 1] = 0.1, and

u(a, ω) =



0.9 a = l ∧ ω = 0

1.5 a = r ∧ ω = 1

0.7 a = s

0 otherwise

, v(a, ω) =


4 a = r ∧ ω = 0

0.9 a = s

0 otherwise

.

Consider a receiver with three actions, two risky (l, r) and one safe (s). At her prior, she

would choose l, the sender's least preferred action. The sender can design an informative

experiment inducing one other action to be chosen (upon favorable realization), where

the `amount' determines which one. With enough information, a sender's most preferred

action, r, is chosen upon favorable realization. With less information, s is chosen upon

favorable realization, but that happens with higher probability. Figure 2.5 depicts the

sender's optimal choice; µ0 and µ denote the prior and interim probabilities of ω =

1, respectively. When λ → ∞, the sender targets r. However, when λ = 1.5, too

much information is now needed to target r and the sender �nds it optimal to give less

information and to be satis�ed with targeting s, but with higher probability. Figure 2.6

depicts the agents' equilibrium expected utilities. For intermediate values of λ, the sender

�nds it optimal to target action s.
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Figure 2.6: Example 2�Equilibrium expected utilities as a function of λ.
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Example 3. Ω = {0, 1}, A = {L,R, l, r}. Let u(L, 0) = u(R, 1) = 1, u(l, 0) = u(r, 1) =

0.8, u(l, 1) = u(r, 0) = 0.2, and u(a, ω) = 0 otherwise. Let v(a, ω) = u(a, ω) if a ∈ {l, r}
and v(a, ω) = 0 otherwise. Let the prior µ0 := Pr[ω = 1] = 1/2. Consider λ1 = 1.25 and

λ2 = 1250.

A receiver has four risky actions (L,R, l, r) and a prior belief at which she learns and

possibly takes either l or r. A sender dislikes actions L,R, but cares about determining

which of the two actions l, r is optimal for the receiver. He wants to give as much informa-

tion as possible to distinguish which of the actions l, r is better, under the constraint that

neither L nor R is chosen, occurring if too much information is given. As the receiver's

information becomes more expensive, this constraint is less restrictive and the sender is

able to give `more' information (Blackwell sense) than before, see Figure 2.7; µ0 and µ

denote the prior and interim probabilities of ω = 1, respectively.

2.7 Discussion of the cost function

The assumed cost is a posterior-separable cost (Caplin, Dean, and Leahy 2017):

De�nition 5. Given µ, a posterior-separable cost function is

c(φ;ω|µ) = F (ω|µ)− Eφ[F (ω|γ)] (2.10)

where F : ∆(Ω) −→ R+ is a concave function and the expectation is over posteriors γ
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Figure 2.7: Example 3�v̂(µ) over non-learning regions and an optimal sender's strategy.
The sender provides more information when λ = 1250 than when λ = 1.25.

0.39 0.61Μ0 1

Μ

0.64

HaL Λ1 = 1.25

v
`HΜL

0.33 0.66Μ0 1

Μ

0.67

HbL Λ2 = 1250

v
`HΜL

induced by φ.

Lemma 2 and the Never-Learning Lemma hold under any posterior-separable cost because

of the following properties. The cost is invariant to intermediate stages: the cost of

achieving a particular distribution of posterior beliefs is the same if the learning occurs

in one or more stages. The cost also does not impose any restriction on the set of

feasible information strategies. The marginal cost of any receiver's information strategy

is independent of the interim belief, i.e., of the starting point of the receiver's RI problem,

and it is increasing in Blackwell informativeness. These properties guarantee Lemma 2,

which is the core of the Never-Learning Lemma. Proposition 2 applies as well when the

�niteness of ∪aEP a is omitted from the statement. Lemmas 3 and 4 are speci�c for

Shannon entropy, F (·) = λH(·).

The Never-Learning Lemma does not hold for all possible cost functions. For instance,

a receiver choosing a precision of a normally distributed signal at some cost can wish to

costly learn once more upon some signal realizations. However, in such a setting, if the

receiver were allowed to engage in as many learning rounds as she wanted, an analogy of

the Never-Learning Lemma would be obtained.

The possibility that the receiver can be hurt by having access to better information

technology is not unique to posterior-separable costs. In Appendix 2.B, we solve the

introductory example under a di�erent cost function: by paying c ≥ 0, the buyer obtains

a binary signal s ∈ {good, bad} of �xed precision p := Pr[s = ω|ω] > 0.5. The seller

exploits the restrictiveness of the buyer's set of signals, adding an additional e�ect in
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play. First, the key simpli�cation step�the Never-Learning Lemma�fails. As the buyer

cannot vary the precision of her signal with interim beliefs, she may wish to engage in

more than one round of learning. The seller can take advantage of this invariance and can

strictly prefer to target buying through learning. Second, the seller's expected equilibrium

utility is non-monotone in c. Whenever he induces learning, he prefers a receiver with

lower cost, because then inducing learning requires less provided information. Third, the

buyer's expected equilibrium utility is non-monotone in c. The buyer prefers intermediate

to low or high cost. Whenever the seller induces learning, he gives just enough information

so that the buyer is indi�erent between learning and not. Hence, any bene�t from costly

learning is exactly o�set by paying cost c. With su�ciently high cost, however, the

seller targets buying directly without the buyer's learning, who thus obtains valuable

information without paying c.

2.8 Conclusion

We extend a model of Bayesian persuasion to a possibility of additional costly informa-

tion acquisition by the receiver, modeled as in rational inattention. We exploit common

features of Bayesian persuasion and rational inattention, resulting in a tractable model

which can be used as a building block for applied problems. Based on the characterization

of an optimal receiver's strategy, we o�er an alternative solving algorithm characterized

by a series of linear conditions. The new algorithm, which does not rely on standard con-

cavi�cation, is also applicable to a standard Bayesian persuasion model and can simplify,

sometimes dramatically, the search for an optimal sender's strategy. We further show that

the receiver does not necessarily bene�t from having additional sources of information

and can prefer commitment to not having any.
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2.A Receiver's RI problem

2.A.1 Geometric interpretation�Concavi�cation

The receiver's RI problem (2.5) can be rewritten as

maxφ∈∆(∆(Ω)) Eφ[û(γ)]− λH(ω|µ)︸ ︷︷ ︸
=const.

(2.11)

s.t. Eφ[γ] = µ

where û(γ) := B(γ) + λH(ω|γ) is a receiver's value function at posterior γ and B(γ) :=

Eγ[u(σ∗(γ), ω)] is a receiver's expected utility at posterior γ under her optimal action stra-

tegy σ∗(γ) ∈ arg maxa∈A Eγ[u(a, ω)]. The problem (2.11) has a geometric interpretation.

Let

U(γ) := sup{z ∈ R|(γ, z) ∈ co(û)}, (2.12)

where sup denotes supremum and co(û) denotes the convex hull20 of the graph û, be the

concavi�cation of û. U is the smallest concave function that is everywhere weakly greater

than û. CD showed that U(µ) − λH(ω|µ) is the receiver's expected utility under her

optimal behavior, the receiver learns at µ if and only if U(µ) > û(µ), and the support

of the optimal information strategy, supp(φ∗µ), are the posterior beliefs that support the

tangent hyperplane to the lower epigraph of the concavi�cation U above µ. See Figure

2.1 in Sec. 2.3 for this interpretation in the introductory example.

2.A.2 Characterization of the solution

Convexity of the entropy-based cost function implies that strictly more informative stra-

tegies are strictly more costly than less informative such strategies. Hence optimization is

inconsistent with the choice of the same action in two distinct posteriors (receiving distinct

signals that lead to the same action is ine�cient as information is acquired but not acted

upon). This implies that given µ, for purposes of optimization, an optimal receiver's stra-

tegy (φ∗µ, σ
∗) can be speci�ed as a subset of available actions Cµ ⊆ A (a consideration set)

20 A convex hull of a set X is the smallest convex set that contains X.
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chosen with strictly positive unconditional probabilities Paµ := Eφ∗µ(Pr[σ∗(γ) = a]) > 0

and corresponding act-speci�c posteriors γaµ := {γ ∈ ∆(Ω) : γ ∈ supp(φ∗µ) ∧ σ∗(γ) = a},
see Mat¥jka and McKay (2015). Caplin, Dean, and Leahy (2016) provide characterization

of the receiver's optimal strategy, which is captured in De�nition 6.

De�nition 6. Given interim belief µ, a rational inattentive strategy at µ (henceforth, RI

strategy)�a solution to problem (2.5)�consists of tuples {Paµ}a∈A and {γaµ}a∈Cµ , where
each action is chosen in at most one posterior, such that ∀ω ∈ Ω : µ(ω) =

∑
a∈APaµγaµ(ω),

and:

1. Invariant Likelihood Ratio Equations for Chosen Actions: given a, a′ ∈ Cµ, and

ω ∈ Ω,

γaµ(ω)

e
u(a,ω)
λ

=
γa
′
µ (ω)

e
u(a′,ω)

λ

(2.13)

2. Likelihood Ratio Inequalities for Unchosen Actions: given a ∈ Cµ and a′′ ∈ A \Cµ,

∑
ω∈Ω

γaµ(ω)

(
e
u(a′′,ω)

λ

e
u(a,ω)
λ

)
≤ 1. (2.14)

Applying Lemma 4 to the motivating example in Section 2.3, we can �nd the (unknown)

extreme points of non-learning regions µ, µ by solving (1 − µ)e
−1
λ + µe

1
λ = 1 and (1 −

µ) 1

e
−1
λ

+ µ 1

e
1
λ

= 1, respectively. Hence, µ = 1

1+e
1
λ
and µ = e

1
λ

1+e
1
λ
.

2.A.3 Uniqueness

Generally, the receiver's RI strategy may not be unique at all µ ∈ ∆(Ω).

Assumption 3. {e
u(a,ω)
λ , a ∈ A} are a�ne independent. That is, one cannot �nd scalars

αa, not all zero, such that
∑

a∈A αa = 0 and
∑

a∈A αae
u(a,ω)
λ = 0.

Mat¥jka and McKay (2015) and CD show that A3 is a su�cient condition for uniqueness.

Lemma 6. If A3 holds, then the receiver's optimal strategy is always unique.

36



A3 rules out cases such as a receiver with two duplicate actions giving her the same

state-dependent payo�s. It is not very restrictive: when A3 fails, it holds under a slight

perturbation of u(a, ω). When A3 holds, all equilibria are sender-preferred since the

receiver is never indi�erent between two strategies in an equilibrium.

2.B Di�erent cost function assumption

Here, we solve the introductory example under a di�erent cost function. We assume the

receiver can obtain a partially revealing binary signal at a �xed cost c ≥ 0.

Let Ω = {0, 1}, A = {0, 1}, v(a, ω) = a, u(a, ω) = 1 if a = ω = 1, u(a, ω) = −1 if a = 1

and ω = 0 and 0 otherwise. For the purpose of this part of the appendix, we identify all

the beliefs with the probability of state ω = 1. Let µ0, µ, γ ∈ [0, 1] be the probability of

ω = 1 at a prior, interim, and posterior belief, respectively.

Given µ, the receiver can obtain a binary signal s ∈ {0, 1} of precision p := Pr[s = ω|ω] >

0.5 by paying c ≥ 0. Say the receiver learns if she pays c and gets the signal.

Receiver's maximization problem

Given µ, if the receiver learns, she updates her beliefs to a posterior γs(µ) := Pr[ω = 1|s, µ]

with probability φs(µ) := Pr[s|µ], where

γ1(µ) =
pµ

φ1

, φ1(µ) = pµ+ (1− p)(1− µ),

γ0(µ) =
(1− p)µ

φ0

, φ0(µ) = (1− p)µ+ p(1− µ).

The receiver takes action a = 1 if and only if γs ≥ 1/2. Her expected utility from learning

is

UL(µ) = max{0, 2γ1(µ)− 1}φ1(µ) + max{0, 2γ0(µ)− 1}φ0(µ)− c.
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If she does not learn, she takes action a = 1 if and only if µ ≥ 1/2, obtaining expected

utility

UNL(µ) = max{0, 2µ− 1}.

For su�ciently low cost c, there are two interim beliefs at which the receiver is indi�erent

between learning and not: µ < 1/2 such that upon s = 1, the receiver switches to action

a = 1, but the expected marginal bene�t is exactly c: UNL(µ|µ < 1/2) = UL(µ|µ <

1/2, γ1(µ) ≥ 1/2); and µ ≥ 1/2 such that upon s = 0, the receiver switches to action

a = 0, but the expected marginal bene�t is exactly c: UNL(µ|µ ≥ 1/2) = UL(µ|µ >

1/2, γ0(µ) < 1/2). The �rst equation is 0 =
(
2γ1(µ)− 1

)
φ1(µ) − c and the second

equation is 2µ− 1 = (2γ1(µ)− 1)φ1(µ)− c, yielding

µ = 1− p+ c, µ = p− c,

where p− c ≥ 1/2 must hold.

Hence, if c ≤ p − 1/2, there are two non-learning, [0, µ), [µ, 1], and one learning, [µ, µ),

regions. In contrast to the original model, a non-learning region need not be closed, as

the sender-preferred equilibrium assumption puts the belief µ to the learning region. If

c > p− 1/2, the receiver never learns for any µ.

Sender's maximization problem

Suppose c ≤ p− 1/2. A seller's conditional expected utility v̂(µ) is

v̂(µ) =


0 0 ≤ µ < µ

pµ+ (1− p)(1− µ) µ ≤ µ < µ

1 µ ≤ µ ≤ 1

.

A sender's optimal strategy can be found by concavi�cation V of v̂. Figure 2.8 depicts

v̂(µ) and an optimal sender's strategy with p = 0.8 when c→ 0 and c = 0.2.
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Figure 2.8: v̂(µ) and the sender's optimal strategy with p = 0.8. The sender targets
(a) learning (less information) and (b) no learning (more information).
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Figure 2.9: Equilibrium expected utilities as a function of c with p = 0.8.
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Comparison with the original model

First, the key simpli�cation step�the Never-Learning Lemma�does not hold. The posterior

γs can fall into a learning region. If the sender then `sent' the receiver to γs directly, the

receiver would learn instead of acting right away, thus changing the outcome of the game.

Second, v̂(µ) is discontinuous at the indi�erence points of learning/not, i.e., at {µ, µ}.
In the original model, such discontinuities do not exist in the introductory example as

the threshold beliefs {µ, µ} have a di�erent interpretation. They are points toward which

the optimal amount of learning gradually shrinks, but at which it is strictly optimal not

to learn. The sender-preferred assumption is not needed there, because the RI strategy

is always unique. Third, the sender can strictly prefer to induce a = 1 indirectly through
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the receiver's learning and provide her with just enough information so that she learns

(supp(τ ∗) = {0, µ} in Figure 2.8 (a)). Under entropy-based cost, the receiver can vary the

precision of her information, but here it is �xed, which is taken advantage of. Fourth, the

sender's expected equilibrium utility Ev∗(a, ω) is non-monotone in c: he strictly prefers low

to intermediate cost, see Figure 2.9 (b). When the sender targets a = 1 indirectly through

the receiver's learning, the required amount of information to induce learning increases

with c. Fifth, the receiver strictly prefers intermediate to high and low cost. Under low

cost, the sender targets the receiver's learning. He provides just enough information so

that the receiver is indi�erent between learning and not; any bene�t is exactly o�set by

paying c. With su�ciently high cost, however, the sender induces a = 1 directly without

the receiver's learning; the receiver obtains valuable information without paying any cost.

In contrast, under entropy-based cost, the receiver's expected equilibrium utility is always

the highest when her information cost parameter λ = 0. As she can decide on the amount

of her information, she always becomes fully informed when λ = 0, not leaving any room

for the sender's manipulation.

2.C Proofs

Proof of Lemma 1

Proof. Let τ be the sender's strategy of value v. Suppose ∃µ′ ∈ supp(τ) and µ′ 6= ∪aNLa.
Then the receiver's optimal information strategy at µ′, φ∗µ′ , satis�es: µ

′ /∈ supp(φ∗µ′), µ
′ lies

in the convex hull of supp(φ∗µ′) and supp(φ∗µ′) ⊆ ∪aNLa (Lemma 2). Then there exists the

sender's strategy τ ′ where supp(τ ′) = (supp(τ)) \ µ′)∪ supp(φ∗µ′), which does not change

the distribution of the receiver's actions conditional on the state (since supp(φ∗µ′) ⊆
∪aNLa). Hence, the value of τ ′ is also v. Formally,

τ ′(µ) =


τ(µ) µ /∈ {µ′} ∪ supp(φ∗µ′)

0 µ = µ′

τ(µ) + τ(µ′)φ∗µ′(µ) µ ∈ supp(φ∗µ′)

.
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Proof of Lemma 2

Proof. Note that the functions used here are de�ned in Appendix 2.A. Let φ∗µ be the

receiver's optimal information strategy at µ and suppose that ∃γ′ ∈ supp(φ∗µ) for which

γ′ /∈ ∪aNLa. That is, there exists distribution φγ′ of posterior beliefs γ, Eφγ′ [γ] = γ′,

such that

Eφγ′ [B(γ) + λH(γ)]− λH(γ′) > B(γ′),

Eφγ′ [B(γ) + λH(γ)] > B(γ′) + λH(γ′),

Eφγ′ [û(γ)] > û(γ′).

Consider a di�erent receiver's information strategy φ′, where

φ′(γ) =


φ∗µ(γ) γ /∈ {γ′} ∪ supp(φγ′)

0 γ = γ′

φ∗µ(γ) + φ∗µ(γ′)φγ′(γ) γ ∈ supp(φγ′)

.

But then φ′ gives the receiver strictly higher expected utility than φ∗µ, contradicting the

optimality of φ∗µ.

Proof of Lemma 3

Proof. For λ > 0, the receiver's marginal cost of becoming fully informed is in�nity

(property of Shannon entropy). Hence, for any λ > 0, the receiver never decides to

become fully informed, implying ∪aNLa 6= ∅ (if λ→ 0, the non-learning regions are the

generic interim beliefs at which the state is fully revealed). The rest of the statement

follows from the equation (2.14) of the solution to the receiver's RI problem.

Let us further state another Lemma that will be used throughout the following proofs.

Lemma 7. Let V (µ) be concavi�cation of v̂(µ) de�ned as the smallest concave function

that is everywhere weakly greater than v̂.

i) If µ ∈ supp(τ ∗), then V (µ) = v̂(µ).
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ii) The sender bene�ts from persuasion if and only if v̂(µ0) < V (µ0).

Lemma 7 is an analogy of Lemma 2 and Corollary 2 from KG, which is applicable to our

setting when v̂(µ) modi�ed to our setting is considered.

Proof of Proposition 2

Proof. First, let us show that the set ∪aEP a is non-empty and �nite. Lemma 3 shows

∪aNLa 6= ∅. Let a be an action for which NLa 6= ∅. By the Krein-Milman Theorem

and (2.9)�showing convexity of NLa�NLa is a closed convex hull of its extreme points;

EP a 6= ∅. As NLa is an intersection of the simplex ∆(Ω) and a collection of half-spaces{
µ ∈ RΩ :

∑
ω∈Ω µ(ω)

(
e
u(a′,ω)

λ

e
u(a,ω)
λ

)
≤ 1 ∀a′ 6= a

}
, the set EP a is �nite. As the action space

A is �nite, then ∪aEP a 6= ∅ and is also �nite.

Second, let τ ∗ be the sender's optimal strategy under which the receiver never learns.

Suppose ∃µ′ ∈ supp(τ ∗): µ′ ∈ NLa \ EP a. Then there exists a subset X ⊆ EP a where

µ′ lies in the convex hull of X. Hence, there exists another sender's strategy τ ′ where

supp(τ ′) = (supp(τ ′) \ µ′) ∪X. If the chosen action at some belief of X is di�erent from

σ∗(µ′), the action chosen at µ′, it can only lead to the sender's higher expected utility by

the sender-preferred assumption.

Third, let τ ∗ be the sender's optimal strategy and suppose |supp(τ ∗)| > |Ω|. Then

supp(τ ∗) supports the tangent hyperplane to the lower epigraph of the concavi�cation

above prior. Such hyperplane is de�ned by any |Ω| di�erent points it contains. By

Carathéodory's theorem, there exists a subset C ⊂ |supp(τ ∗)| with |C| ≤ |Ω| such that

the prior belief µ0 lies in the convex hull of C. Hence, there exists a sender's strategy τ ′

with supp(τ ′) = C. As supp(τ ′) supports the tangent hyperplane to the lower epigraph

of the concavi�cation above prior, τ ′ is thus also optimal.

Proof of Proposition 3

Proof. Let A2 hold, A = Ω = {0, 1}, and suppose the sender bene�ts from persuasion.

Let µ0, µ ∈ [0, 1] be the probability of ω = 1 at the prior and interim belief, respectively.

For any λ > 0, there are two non-learning regions with EP 0 = {0, µ}, EP 1 = {µ, 1}
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where 0 < µ ≤ µ < 1. Note that v̂(µ) is a piecewise-linear function, with linear segments

over [0, µ], [µ, µ], and [µ, 1]. Without the loss of generality, we can consider the sender's

strategies that induce at most 2 di�erent interim beliefs.

Part i)

The concavi�cation V (µ) of v̂(µ) can have four forms:

i) v(µ) = V (µ) if µ ∈ [µ, 1] ∪ {0} and v(µ) < V (µ) otherwise,

ii) v(µ) = V (µ) if µ ∈ [0, µ] ∪ {1} and v(µ) < V (µ) otherwise,

iii) v(µ) = V (µ) if µ ∈ {0} ∪ {1} and v(µ) < V (µ) otherwise,

iv) v(µ) = V (µ) if µ ∈ [0, 1].

Note that the in iv), the sender does not bene�t from persuasion for any prior µ0 ∈ [0, 1].

Suppose, contrary to the proposition, that there exists a sender's optimal strategy τ ∗

with µ̃ ∈ supp(τ ∗) and µ̃ ∈ (µ, µ)�the receiver learns at µ̃. Then v̂(µ̃) = V (µ̃) (Lemma

7). Since v̂(µ) is linear over [µ, µ], this implies that v̂(µ) = V (µ) for all µ ∈ [µ, µ]. But

then, only case iv) can happen. In particular, v̂(µ0) = V (µ0), which contradicts with the

sender bene�tting from persuasion.

Part ii)

Let us prove the only if part. From part i) the receiver never learns in an equili-

brium. Let A2 hold and let τ ∗ be an optimal sender's strategy. From Proposition

5, the shape of v̂(µ) and the fact that the sender bene�ts from persuasion, we have

supp(τ ∗) = {µl, µr} ∈ {{0, µ}, {µ, 1}, {0, 1}}. Note that each pair is a point on the

frontier of NL0 and NL1. Suppose, contrary to the proposition, there are two di�erent

optimal sender's strategies. Then there is a non-learning region of one of the actions

such that one strategy induces belief on one frontier and the other strategy induces belief

on the other frontier of that non-learning region. But then a new strategy that would

instead, ceteris paribus, induce a convex combination of these two beliefs would also be

optimal (since the convex combination still leads to the same action). However, such a

new belief lies inside the non-learning region, which contradicts Proposition 5.

Let us prove the if part. Suppose there is a unique equilibrium, let τ ∗ be the optimal

sender's strategy, but, contrary to the proposition, A2 does not hold. Without the loss
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of generality, let a = 0 be the action that does not satisfy A2. That is, ∀µ ∈ [0, 1]:

v̂(µ) ≤ (1− µ)v(0, 0) + µv(0, 1) and ∃µ ∈ [µ, 1]: v̂(µ) = (1− µ)v(0, 0) + µv(0, 1). Then it

is either v̂(µ) = (1 − µ)v(0, 0) + µv(0, 1), v̂(1) = v(0, 1), or both. Since the equilibrium

is unique and the sender bene�ts from persuasion, it must be supp(τ ∗) = {µl, µr} ∈
{{0, µ}, {µ, 1}, {0, 1}} (from Proposition 2).

Suppose v̂(µ) = (1 − µ)v(0, 0) + µv(0, 1). Then v̂(µ) is linear over the whole [0, µ] and

supp(τ ∗) 6= {0, µ} (since then the sender would not bene�t from persuasion from Lemma

7). Furthermore, as v̂(1) ≤ v(0, 1), then supp(τ ∗) /∈ {{µ, 1}, {0, 1}}, because under such
strategies he cannot bene�t from persuasion.

Suppose v̂(µ) < (1− µ)v(0, 0) + µv(0, 1) and v̂(1) = v(0, 1). Then the values v̂(0), v̂(µ),

v̂(1) lie on the same line, which is thus the concavi�cation V . Therefore, v̂(0) = V (0),

v̂(µ) = V (µ), v̂(1) = V (1) and v̂(µ) < V (µ). Hence, supp(τ ∗) 6= {0, µ} from Lemma 7.

But then supp(τ ∗) = {µ, 1} if and only if supp(τ ∗) = {0, 1}, contradicting the uniqueness
of an equilibrium.

Proof of Proposition 4

Proof. We can follow the proof of Proposition 4 in KG applied to our setting.

Proof of Proposition 5

Proof. Let A2 hold and suppose the sender bene�ts from persuasion. Proposition 5 of

KG, applied to our setting, implies that for any optimal sender's strategy τ ∗ we have

supp(τ ∗) ∩ ∪a∈Aint(NLa) = ∅, where int(NLa) denotes the interior of NLa.

Proof of Proposition 6

Proof. Focusing on the sender's strategies under which the receiver never learns is su�-

cient (Lemma 1). We show that the non-learning regions do not shrink as λ increases.

As the sender can choose from the same (or possibly even bigger) set of strategies, he

never becomes strictly worse o� as λ increases.
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Given µ, let s be a particular receiver's strategy at µ, EV (s) be a gross expected receiver's

utility under s, and I(s;ω|µ) be mutual information based on Shannon entropy associated

with s. Let λ ≥ 0. Suppose the receiver does not learn at µ. Let sNL be the receiver's

optimal non-learning strategy at µ. Let sL be an arbitrary strategy with strictly positive

learning at µ. We have

EV (sNL)− λI(sNL;ω|µ) ≥ EV (sL)− λI(sL;ω|µ).

Let λ′ > λ. Then λI(sNL;ω|µ) = λ′I(sNL;ω|µ) = 0 (no-learning costs zero) and

λI(sL;ω|µ) < λ′I(sL;ω|µ). Hence, EV (sNL) − λ′I(sNL;ω|µ) > EV (sL) − λ′I(sL;ω|µ),

showing that no-learning strategy remains optimal at µ.

Proof of Proposition 7

Proof. Let A2 hold, A = Ω = {0, 1}, and suppose the sender bene�ts from persuasion

∀λ > 0. Let µ0, µ ∈ [0, 1] be the probability of ω = 1 at the prior and interim belief,

respectively. For λ > 0, there are two non-learning regions with EP 0 = {0, µ(λ)},
EP 1 = {µ(λ), 1} where 0 < µ(λ) ≤ µ(λ) < 1. For each λ > 0 there is a unique

sender's optimal strategy τ ∗λ , where supp(τ ∗λ) = {µl, µr} ∈ {{0, µ(λ)}, {µ(λ), 1}, {0, 1}}
(Proposition's 2 and 3). The receiver never learns under τ ∗λ .

1. If supp(τ ∗λ) = {0, 1}, the receiver obtains complete information. If there is any

change in the sender's strategy as a result of an increase in λ, the receiver can only

be worse o�.

2. Since the non-learning regions do not shrink as λ increases (proof of Proposition

6), we have ∂µ(λ)

∂λ
≥ 0 and ∂µ(λ)

∂λ
≤ 0. Therefore, the sender's strategies inducing

either always {0, µ(λ)} or always {µ(λ), 1} are (weakly) Blackwell less informative

as λ increases. Without the loss of generality, assume supp(τ ∗λ1) = {0, µ(λ1)}.
Consider any λ2 > λ1. We show that inducing {0, µ(λ2)} remains optimal when

the receiver's marginal cost of information is λ2. Let v̂λi , Vλi denote v̂ and its

concavi�cation V , respectively, when the marginal cost of information is λi. We

have 0 < µ(λ1) ≤ µ(λ2) ≤ µ(λ2) ≤ µ(λ1) < 1. From Lemma 7 and the uniqueness

of the sender's strategy, it must be the case that the line connecting v̂λ1(0) and
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v̂λ1(µ(λ1)) is strictly above the line connecting v̂λ1(µ(λ1)) and v̂λ1(µ(λ1)). Based on

the shape of v̂ in this setting and the fact that 0 < µ(λ2) ≤ µ(λ2), this then implies

that the line connecting v̂λ1(0) and v̂λ2(µ(λ2)) will also be strictly above the line

connecting v̂λ2(µ(λ2)) and v̂λ2(µ(λ2)). Hence v̂λ2(µ(λ2)) 6= Vλ2(µ(λ2)). A similar

logic applies to showing that inducing {0, 1} is not optimal either.
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Chapter 3

Habit Formation: An Experimental Study

Co-authored with Keh-Kuan Sun (Washington University in St. Louis)1.

3.1 Introduction

When faced with the same choices repeatedly, people often form habits, i.e. tendencies to

excessively repeat previous actions. In macroeconomics, a utility function that depends

both on current and previous choices often explains empirical puzzles such as the equity

premium puzzle (Constantinides 1990; Jermann 1998), and �ts the data better than

models with standard preferences (Carroll, Overland, and Weil 2000; Fuhrer 2000)2.

In this paper, we ask why habits are formed. We consider a stochastic environment

1This study is a part of a larger project on the experimental testing of behavior in dynamic information
acquisition tasks jointly with Brian Rogers (Washington University in St. Louis), Jakub Steinr (CERGE-
EI), and Keh Sun (Washington University in St. Louis). This study provides some of the project's initial
results.

2Other examples include a `status quo bias', a tendency to maintain the status quo (Samuelson and
Zeckhauser 1988), `patient inertia', failure of patients to initiate treatment even after the diagnosis of a
medical problem (Suri et al. 2013), `clinical inertia', failure of health care providers to intensify therapy
having unattained treatment goals (Okonofua et al. 2006; Phillips et al. 2001), or `social inertia', the
resistance to change in societies (Bourdieu 1985).
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with imperfect stochastic information. We de�ne habit as action inertia that is not

explained by variations in optimal actions. One explanation argues that habits are driven

by preferences, implicitly assuming people face some (mental) `switching costs' (e.g. Abel

(1990), Carroll, Overland, and Weil (2000), Constantinides (1990)). Alternatively, habits

can arise as an adaptation rather than being a hard-wired feature. An agent who learns

about a changing environment with positively serially correlated payo� states can save on

learning costs by repeating their earlier actions. Such agents can then exhibit behavior

as if they had switching costs (Steiner, Stewart, and Mat¥jka 2017). Habit formation is

then information driven and varies with speci�c features of the environment. However,

it is invariant to these variations under �xed switching costs.

Recognizing whether habits are preference- or information-based is important for the

evaluation of policy interventions. For instance, consider the impact of monetary po-

licies, which operate through price stickiness (resulting from habits in pricing). If the

state of the economy is more volatile (less serially correlated) during economic crises,

then price-stickiness is low during crises under the information-based explanation. The

monetary policy is less relevant during the crises when it is needed the most. However,

this prediction does not hold for the preference-based explanation.

We test habit formation by observing how subjects take actions in binary perceptual

decision problems over two periods. Past actions can have an informational value in

these problems: if optimal actions are serially correlated, then past actions can contain

useful information about a current optimal action. We vary this informational value. We

test whether subjects form a habit only when there is such value, but not otherwise.

The main focus of our study is decision problems with positively serially correlated opti-

mal actions. Two treatments are considered: (i) subjects freely observe feedback revealing

past optimal actions; or (ii) no such feedback is provided. In (i), a past action does not

contain useful information on a current optimal action since the feedback provides more

precise information. Information-driven habits form only in (ii). Preference-driven habits,

on the other hand, form in both (i) and (ii). We found that the subjects' behavior is not

consistent with the preference-based explanation and it supports the information-based

explanation�habits are formed only in (ii). The subjects also face two additional treat-

ments (feedback and no feedback variations) with serially independent optimal actions.

We examine whether subjects treat independent decision problems independently, which
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is supported by the data. We do not observe action inertia when the optimal actions are

serially independent, regardless of the information feedback.

Our paper studies repeated behavior in dynamic information acquisition problems un-

der no explicit cost of information. The paper closest to ours is by Khaw, Stevens,

and Woodford (2017). Their subjects trace a state variable whose properties change at

unknown random times. They focus on choice inertia and discreteness in adjustment.

They argue that a rational inattention model (Sims 2003)�a model of costly information

processing�provides a better �t than a model with constant switching costs. Our paper

complements theirs by o�ering directly testable qualitative predictions for each theory

instead of �tting di�erent models to the data.

Closely related is an emerging literature on information acquisition under no explicit cost

in static problems, which focuses on the rationalizability of subjects' behavior by a general

model of costly information processing (Caplin and Dean 2015; Oliveira et al. 2017), by a

model with more restricted information-processing costs (Dean and Neligh 2017; Dewan

and Neligh 2017), and by a speci�c model with entropy-based information-processing

costs (Caplin and Dean 2013; Cheremukhin, Popova, and Tutino 2015). Recently, Caplin,

Csaba, and Leahy (2018) directly recover subjects' information-processing costs from the

data instead of testing behavioral predictions implied by a certain model. Usually, the

behavior can be rationalized by some model of costly information processing, but is not

consistent with the entropy-based cost. We extend the design of Caplin and Dean (2013),

Caplin and Dean (2015), and Dean and Neligh (2017) to a dynamic environment. We ask

whether a dynamic feature of subjects' behavior, the action inertia, is consistent with a

general model of costly information processing.

3.2 Hypotheses

Is habit a mechanical consequence of past decisions? Or, is habit a functional adaptation

that is formed only if it is advantageous to the decision-maker? We hypothesize that

two channels can result in habits: (i) a mechanical, preference-driven, channel; and/or

(ii) an adaptive, information-driven, channel. We o�er an experiment with four di�erent

treatments giving di�erent behavioral predictions for (i) and (ii).
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Table 3.1: Hypotheses about habit formation via preference-based (H0, H ′0) and
information-based (A) channels.

H0: A habit is formed in all four treatments.

H ′0: A habit is formed in treatments FC and NC. A habit is not formed in treatments
FI and NI.

A: A habit is formed in treatment NC. A habit is not formed in treatments FI, NI,
and FC.

An agent faces the same binary task over two periods, t = 1, 2. At each t, a binary

payo� state is realized. Correctly identifying the state yields a strictly positive reward.

Before each action, the agent can acquire information about the realized state. Four

treatments are considered. Both state realizations are equally likely at t = 1 in all

treatments. In independent treatments (I), both state realizations are equally likely at

t = 2, independently of the past state. In correlated treatments (C), the states are

positively serially correlated. In feedback treatments (F), an additional free feedback

revealing the past state before t = 2 is provided. In no feedback treatments (N), no such

feedback is provided. This gives four treatments: FI, FC, NI, NC.

Denote at, θt the action and the state at t.

De�nition 7. We say a habit is formed if, controlling for variations in the states, a1 has

a predictive value on a2. That is, Pr[a2|θ1, θ2, a1] 6= Pr[a2|θ1, θ2]. Otherwise, we say a

habit is not formed.

Table 3.1 states behavioral predictions based on preference-driven (hypotheses H0 and

H ′0), and information-driven (hypothesis A) channels3.

First, consider an agent with preference for action repetition. She incurs disutility, `men-

tal' switching costs, whenever a2 6= a1. The agent has only imperfect stochastic infor-

mation about the states, which results in stochastic choice. In all four treatments, the

switching costs create asymmetry in payo�s at t = 2 with a bias toward action repetition,

beyond what can be explained by imperfectly tracking the evolution of states (H0). The

hypothesis H ′0 is a version for more �exible switching cost: the agent has zero switching

3An agent with both a preference- and information-driven channel behaves as in H0 and H ′0.
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costs for independent decision problems (�each day is a completely new day�), but positive

switching cost otherwise.

Second, consider an agent with zero switching costs, but for whom it is costly to learn and

process information. When her past behavior is informative about the current optimal

action, she may decide to repeat past actions in order to save on learning costs. The

behavior then resembles an agent with switching costs (Steiner, Stewart, and Mat¥jka

2017). However, whether the agent's own past behavior is informative or not varies

with treatments. For serially independent optimal actions (treatments FI, NI), the past

action contains no information on the current optimal action. For positively serially

correlated optimal actions under feedback (treatment FC), feedback reveals more precise

information than past actions. Only for positively serially correlated optimal actions

under no feedback (treatment NC), the agent's own past action is informative about the

current optimal action.

3.3 Experimental design

Our design follows Caplin and Dean (2015). Subjects are presented with a screen with

100 red and blue balls. There are two possibilities (states of the world): either 51 red and

49 blue or 51 blue and 49 red balls are displayed. The position of the balls is random.

Subjects are asked to determine a prominent color, see Fig. 3.1.

The subjects do not face any explicit cost of information and can perfectly learn the

realized state. Information cost stems from real cognitive e�ort and time. For technical

reasons, a 45s time limit is imposed, after which the screen with the balls disappears and

the decision is forced4.

We recruited 41 subjects from the University of California, Santa Barbara over 2 sessions.

Participants were randomly assigned to numbered stations in the laboratory. In each

session, subjects faced 4 di�erent treatments. Each treatment consisted of 12 iterations;

each iteration consisted of 2 periods of ball-counting tasks. In each iteration, both state

realizations were equally likely at t = 1. The treatments di�ered in: (i) a serial correlation

between the states within an iteration, and (ii) free informational feedback.
4The time limit was set to ensure a reasonable ending time for the whole experiment, but so that the

subjects do not feel pressured by the time limit.
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Figure 3.1: A representative screenshot of a ball-counting decision problem

First, given an iteration, let ρ = Pr[θ1 = θ2|θ1]. In independent treatments (I), ρ = 1/2�

the states are serially independent. In correlated treatments (C), ρ = 3/4�the states

are positively serially correlated. The states were drawn from a given distribution by a

computer.

Second, in feedback treatments (F), the subjects were shown the realized state imme-

diately after each taken action. Hence, they perfectly learned the realization θ1 before

entering t = 2, independently of their learning e�ort at t = 1. In no feedback treatments

(N), the subjects were shown the realized states only after actions in both periods were

taken. Hence, at the beginning of t = 2 they could draw inference only from information

actively gathered at t = 2. The four treatments are captured in Table 3.2. Prior to

starting each treatment, subjects were informed about the state generating process and

feedback speci�cation. The order of the treatments was: FI, FC, NI, NC (session 1) and

NI, NC, FI, FC (session 2). Within a treatment, each subject faced the same sequence

of images.

Prior to making their decisions, subjects were informed that their payo� would proba-
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Table 3.2: Four di�erent treatments

feedback no feedback
ρ = 1/2 (independent states) FI NI
ρ = 3/4 (correlated states) FC NC

bilistically depend on their choices. At the end of the experiment, for each subject one

decision problem was selected at random and the reward based on the subject's answer

to the selected decision problem was added to a $10 show-up fee. The additional reward

was $10 for a correct answer and $0 otherwise. Hence, the expected additional payo�

for a correct answer was $10
96
≈ $0.1 in each decision problem5. Instructions are in the

Appendix.

3.4 A Theoretical example

In this section, we derive the above hypotheses in a theoretical model. We consider Sims

(2003) model of information acquisition with entropy based information-processing costs

and (mental) switching costs.

An agent chooses an action at ∈ {0, 1} at t = 1, 2. Let θt ∈ {0, 1} denote a payo�-

relevant state. The states are symmetrically distributed: θ1 is equally likely to be 0 or

1, and, whatever the realized value of θ1, the probability that θ2 = θ1 is ρ ≥ 1/2. When

ρ = 1/2, the states are serially independent (FI and NI treatments); when ρ > 1/2, they

are positively serially correlated (FC and NC treatments).

Before choosing an action at each t, the agent can acquire costly information about the

realized state θt. There is a �xed realization signal space X satisfying 2 ≤ |X| < ∞.

A signal πt consists of a family of distributions {πt(·|θt)}θt∈{0,1} over X, such that 0 ≤
πt(xt|θt) ≤ 1 for each xt, θt and

∑
xt∈X πt(xt|θt) = 1 for each θt. The agent chooses a

signal πt and observes a signal realization xt ∈ X. In addition, after choosing a1, she

observes a costless signal realization y from a �nite signal space Y distributed according

to a given {g(·|θ1)}θ1∈{0,1}, which is assumed to be independent of a1 and x1. Two cases

5In Caplin and Dean (2013), the expected payo� per correct answer in each decision problem varied
from $0.01 to $0.15.
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are considered: (i) there is no costless information, corresponding to |Y | = 1 (treatments

NC, NI); or (ii) the costless information perfectly reveals the realization θ1, corresponding

to |Y | = {0, 1} and g(y = θ1|θ1) = 1 for all θ1 (treatments FC, FI). Let s1 = {x1} and
s2 = {x1, x2, y}. We refer to st as a signal history at t. At each t, the agent forms a

posterior µs
t

t = Pr[θt = 1|st] using Bayes' law and then she takes an action at. At each

t, the agent's strategy consists of an information strategy πt, and an action strategy

σt : [0, 1]→ {0, 1}, where σt(µs
t

t ) states a chosen action at at a posterior µs
t

t .

In each period in which the agent matches the action to the state, she obtains a reward

R > 0, and 0 otherwise. Further, whenever a2 6= a1, she has to pay a `mental' switching

cost 0 ≤ c < R. There is no discounting. Her payo�s ut are thus

u1(a1, θ1) =

R if a1 = θ1

0 if a1 6= θ1

, u2(a1, a2, θ2, c) =

R− c|a1 − a2| if a2 = θ2

−c|a1 − a2| if a2 6= θ2

.

As is standard in the literature on rational inattention, we assume entropy-based information-

processing cost. For a binary random variable T ∈ {0, 1} distributed according to

p = Pr[T = 1] ∈ [0, 1], the entropy is

HT (p) = −(p ln p+ (1− p) ln(1− p)), (3.1)

where 0 ln 0 = 0 by convention. It is a measure of uncertainty about T at distribution

p. Let µ0
t denote the prior belief at the beginning of period t about θt. We have µ0

1 =

Pr[θ1 = 1] = 1/2 in all treatments, and

µ0
2 = Pr[θ2 = 1|s1, y] =

ρy + (1− ρ)(1− y) in FC and FI treatments

ρµs
1

1 + (1− ρ)(1− µs11 ) in NC and NI treatments
. (3.2)

where y equals the realization θ1 in FC and FI treatments. At any prior µ0
t , we assume

that the cost of signal πt is proportional to the conditional mutual information6

I(θt; πt|µ0
t ) = Hθt(µ

0
t )− Ext∼πt [Hθt(µ

st

t )] (3.3)

between the signal πt and the state θt. Before observing xt, the agent's level of uncer-

6For more on Shannon entropy and mutual information, see Cover and Thomas (2006).
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tainty about θt is given by Hθt(µ
0
t ). After observing xt, it is Hθt(µ

st

t ). Given µ0
t , the

conditional mutual information thus captures how much uncertainty about θt is expected

to be reduced after observing a signal realization xt drawn from πt.

The agent solves the following problem7:

De�nition 8. The agent's maximization problem is

max
σ1,σ2,π1,π2

E

[
u1(σ1(µs

1

1 ), θ1) + u2(σ1(µs
1

1 ), σ2(µs
2

2 ), θ2, c)− λ

(∑
t=1,2

I(θt; πt|µ0
t )

)]
(3.4)

where λ > 0 is an information cost parameter, and the expectation is taken with respect

to the distribution of the sequences (θt, µ
st

t )t and µ0
2 induced by the prior µ0

1 together with

the strategies (σ1, σ2, π1, π2) and the distributions g of a costless signal.

We impose a regularity condition that the agent learns strictly a positive amount of

information in both periods: I(θt; π
∗
t |µ0

t ) > 0 for µ0
1 and for each realized µ0

t induced by

π∗1 or feedback, where π∗t is part of the solution to (3.4)8.

Under perfect information, at = θt at each t. However, a marginal cost of perfect infor-

mation is in�nite (a property of the cost function) and a marginal bene�t is �nite. Hence,

the agent never chooses to become perfectly informed for any t. The agent's behavior is

thus stochastic re�ecting randomness in the obtained signal realizations and she someti-

mes makes mistakes. Recall De�nition 7. When a habit is formed, the mistakes at t = 2

are not fully random and can be partly predicted by past action.

Proposition 8.

i) Let c > 0 for all ρ ≥ 1/2. Then a habit is formed in all treatments. That is,

Pr[a2|θ1, θ2, a1] 6= Pr[a2|θ1, θ2] in all treatments.

ii) Let c > 0 for all ρ > 1/2 and c = 0 for ρ = 1/2. Then a habit is formed in treatments

NC and FC, and a habit is not formed in treatments NI and FI. More speci�cally,

Pr[a2|θ1, θ2, a1] 6= Pr[a2|θ1, θ2] in treatments NC and FC, and Pr[a2|θ1, θ2, a1] =

Pr[a2|θ2] in treatments NI and FI.

7Alternatively, we can assume a myopic agent who does not internalize the continuation value of
information. She chooses {πt, σt} in order to maximize the static expected gross payo�s net of any costs
in that period only.

8The data shows that variations in a2 are predominantly explained by variations in θ2, suggesting
subjects were learning in period 2 (see Section 3.5.2).
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iii) Let c = 0 for all ρ ≥ 1/2. Then a habit is formed in treatment NC, and a habit

is not formed in treatments NI, FI, and FC. More speci�cally, Pr[a2|θ1, θ2, a1] =

Pr[a2|θ2, a1] 6= Pr[a2|θ2] in NC treatment, Pr[a2|θ1, θ2, a1] = Pr[a2|θ1, θ2] 6= Pr[a2|θ2]

in FC treatment, and Pr[a2|θ1, θ2, a1] = Pr[a2|θ2] in NI and FI treatments.

Proposition 8 speci�es when a habit is formed under optimal behavior. Part (i) considers

an agent with in�exible switching costs: c > 0 for all ρ ≥ 1/2. Part (ii) considers an

agent with more �exible switching costs: c > 0 only when the states are positively serially

correlated. Part (iii) considers an agent with zero switching costs independently of serial

correlation in states. Under strictly positive switching costs, a1 can always explain some

variations in a2 after controlling for the states. Under zero switching costs, this remains

to hold only in NC treatment. More speci�cally, a2 is then predicted only by variations

in θ2 in NI and FI treatments, and it is predicted by variations in both θ1 and θ2 in FC

treatment.

Part (i) follows from asymmetry in u2 depending on a past action with a bias toward

action repetition, ceteris paribus. Part (iii) follows from (3.2) describing the relationship

between µ0
2 and µs

1

1 (associated with optimal action σ∗1(µs
1

1 )) and µ0
2 and the costless

signal y (when it is informative). When ρ = 1/2, then µ0
2 = 1/2 regardless of the

distribution speci�cation of the costless signal: the states are serially independent and

µ0
2 is independent of θ1 and σ∗1(µs

1

1 ). When ρ > 1/2, then µ0
2 depends on θ1 but not on

σ∗1(µs
1

1 ) when the past state is freely observed and on σ∗1(µs
1

1 ) but not on θ1 when the past

state is not freely observed. Part (ii) is then implied by (i) and (iii). See the Appendix

for the proof.

3.5 Results

3.5.1 Data summary

We recruited 41 subjects over two sessions; 20 subjects in session 1 and 21 subjects in

session 2. There were 4 treatments with 12 iterations of 2-period decision problems.

Each subject answered 96 decision problems. For each treatment, we thus have 492

observations per period about the subjects' choices.

56



Figure 3.2: Aggregate precisions in period 1 (left) and period 2 (right).
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Figure 3.3: Proportion of observations with a1 = a2 and θ1 = θ2 pooled across subjects
for each treatment.
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The error rate was low and similar across treatments. Subjects answered correctly in

both periods in 1,529 cases, only in period 2 in 179 cases, only in period 1 in 166 cases,

and in neither period in 94 cases. Fig. 3.2 captures the precision de�ned as a proportion

of correct choices pooled across subjects in each period of each treatment. It ranges from

0.84 to 0.9.

Subjects exhibited serial correlation in actions. Fig. 3.3 depicts the total proportion

of observations with a1 = a2 (action inertia) and with θ1 = θ2 (realized state inertia)

for each treatment. Action inertia equal to 1/2 means that Pr[a2 = a1] = Pr[a2 6= a1]:

unconditionally, the actions are serially independent. Action inertia higher than 1/2
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means that Pr[a1 = a1] > Pr[a2 6= a1]: unconditionally, the actions are positively serially

correlated. In all treatments, the action inertia is in between the theoretical state inertia

(ρ)9 and the realized state inertia. The factors underlying action inertia, the focus of our

study, are discussed in Section 3.5.2.

3.5.2 Logit regressions

We run four logit regressions separately for each treatment for a latent variable form

speci�cation

an2,i =

1 β0 + βa1a
n
1,i + βθ1θ

n
1 + βθ2θ

n
2 + βsession2session2 + βscorescore

n
i θ

n
2 + εni > 0

0 otherwise
(3.5)

with robust standard errors clustered at the subject level, where ant,i is an action taken

by subject i in iteration n = 1, . . . , 12 at t = 1, 2; θnt is the realized state in iteration n at

t; session2 is a dummy variable equal to 1 if session = 2 and 0 otherwise; and scoreni is

a subject-speci�c proxy for her ability added to control for subjects' heterogeneity.

We de�ne scoreni as the total number of correct answers of subject i in all treatments

excluding answers in iteration n of the considered treatment to avoid the endogeneity

problem. Hence, scoreni can vary from 0 (all included answers were incorrect) to 94 (all

included answers were correct). The minimum was 49, the maximum was 94, with mean

81.3 and standard deviation 13.2. We use scoreni θ
n
2 in the regressions in order to capture

the sensitivity/ability with which subjects recognize the realized state (when θn2 = 1, then

a correct answer is an2,i = 1). Not accounting for subjects' heterogeneity could result in

omitted variable bias.

Table 3.3 reports the estimated average marginal e�ects and p-values of the explanatory

variables based on the estimated regressions (3.5), taking into account that all variables

but score are binary. The regression outputs are in the Appendix.

The results are not consistent with the null hypotheses H0 and H ′0, but they support the

alternative A stated in Section 3.2. In all four treatments, variations in a2 are predo-

minantly explained by variations in θ2: subjects were learning at t = 2. When states

9Recall that ρ = 1/2 in NI and FI treatments, and ρ = 3/4 in FC and NC treatments.
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Table 3.3: The estimated average marginal e�ects and p-values of explanatory variables
in regressions (3.5) for each treatment.

a1 θ1 θ2 session2 score

FI -.021 (.548) .071 (.092) .681 (.000∗) -.005 (.862) .002 (.034∗)
NI .034 (.406) -.026 (.596) .692 (.000∗) -.011 (.749) .004 (.000∗)
FC .017 (.603) .258 (.000∗) .611 (.000∗) -.038 (.050) .001 (.120)
NC .191 (.000∗) .002 (.948) .629 (.000∗) .026 (.327) .004 (.000∗)

are serially independent (treatments FI, NI), θ2 is the only statistically signi�cant expla-

natory variable apart of the score: subjects treated the decision problems as unrelated.

The average marginal e�ect of θ2 decreases with positive serial correlation in states: sub-

jects were o�setting part of their learning at t = 2 by drawing inference from the past

period. Consistently with the hypothesis A, they partly followed θ1 when the feedback

was provided (FC treatment), and a1 when no feedback was provided (NC treatment).

3.6 Conclusion

We design an experiment in order to test habit formation. Using a simple perceptual

binary choice task, we aim to answer two questions. First, are habits formed as a mecha-

nical consequence of past actions (preference-based explanation)? Or, is habit a functional

adaptation that is formed only if it is advantageous to the decision-maker (information-

based explanation)? Our data support the hypotheses that habits are not formed when

the repeated decision problems are independent, and whenever they are observed, they

follow the predictions laid out by information frictions rather than intrinsic preferences.

In our experiment, the incentives are either serially independent or positively serially

correlated. An interesting direction for future research is a similar exercise with negatively

serially correlated incentives. An implication of the information-based explanation is that

we should observe excessive switching rather than excessive action inertia.
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3.A Proof of Proposition 8

To solve the model, we will use a posterior-based approach (Caplin and Dean 2013;

Kamenica and Gentzkow 2011). Given a signal πt, each signal realization xt leads to a

posterior µs
t

t . Accordingly, each πt leads to a distribution over posterior beliefs. Let the

distribution denote by φt ∈ ∆([0, 1]). A signal πt induces φt if supp(φt) = {µstt }xt∈X and

µs
t

t =
πt(xt|θt = 1)µ0

t

πt(xt|θt = 1)µ0
t + πt(xt|θt = 0)(1− µ0

t )
for all xt

φt(µt) =
∑

xt: µs
t
t =µt

(
πt(xt|θt = 1)µ0

t + πt(xt|θt = 0)(1− µ0
t )
)

for all µt.

A distribution φt satis�es the martingale property if the expected posterior probability

equals the prior:

∑
supp(φt)

µtφt(µt) = µ0
t . (3.6)

Caplin and Dean (2013) and Kamenica and Gentzkow (2011) show that the choice of

a signal πt can be equivalently expresses as a choice of a distribution over posteriors φt

subject to (3.6).

For the purpose of our discussion, we only need to focus on the optimal behavior at t = 2

without the need to solve the optimal behavior per se at t = 1.

Optimal behavior at t = 2

No switching costs: c = 0

Given µ0
2, the agent maximizes

maxφ2∈∆([0,1]) Eφ2 [max{µ2R, (1− µ2)R}+ λH(µ2)]− λH(µ0
2)︸ ︷︷ ︸

=const.

(3.7)

s.t. Eφ2 [µ2] = µ0
2 (3.8)

where the expectation is with respect to the posteriors µ2 induced by φ2. The �rst term

is the agent's expected gross utility at µ2 under her optimal action strategy: σ∗2(µ2) = 1
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if and only if µ2 ≥ 1/2.

Matysková (2018), Lemma 4, shows that the optimal information strategy satis�es supp(φ∗2) =

{µ2, µ2}, where µ2e
R
λ + (1− µ2) 1

e
R
λ

= 1 and µ2
1

e
R
λ

+ (1− µ2)e
R
λ = 1 yielding

µ2 =
1

1 + e
R
λ

< 1/2, µ2 =
e
R
λ

1 + e
R
λ

= 1− µ2 > 1/2. (3.9)

The agent's optimal action strategy satis�es σ∗2(µ2) = 0 and σ∗2(µ2) = 1. Hence, the con-

ditional probabilities with which action a2 = 1 is chosen is the probability with which the

posterior µ2 is realized conditional on the prior µ0
2, which is determined by the martingale

property (3.8): Pr[a2 = 0|µ0
2]µ2 + Pr[a2 = 1|µ0

2]µ2 = µ0
2. Hence,

Pr[a2 = 1|µ0
2, a1] =

µ0
2 − µ2

µ2 − µ2

, (3.10)

where µ2, µ2 are given by (3.9). Note that this probability is independent of action a1

once controlled for a possible e�ect of a1 on µ0
2.

Switching costs: c > 0

The switching costs create asymmetry in the payo�s from taking action a2 depending on

a1. Consider a1 = 0. The agent maximizes

maxφ2∈∆([0,1]) Eφ2 [max{µ2R− c, (1− µ2)R}+ λH(µ2)]− λH(µ0
2)︸ ︷︷ ︸

=const.

(3.11)

s.t. Eφ2 [µ2] = µ0
2 (3.12)

where the expectation is with respect to the posteriors µ2 induced by φ2. The �rst term

is the agent's expected gross utility at a posterior µ2 under her optimal action strategy:

σ∗2(µ2) = 1 if and only if µ2 ≥ R+c
2R

.

Matysková (2018), Lemma 4, shows that the optimal information strategy satis�es supp(φ∗2) =

{r, r}, where the values r, r are given by reR−cλ +(1−r) e
−c
λ

e
R
λ

= 1, and r 1

e
R−c
λ

+(1−r) e
R
λ

e
−c
λ

= 1,
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yielding

r =
e
c+R
λ − 1

e
2R
λ − 1

, r = e
R−c
λ r. (3.13)

The agent's optimal action strategy satis�es: σ∗2(r) = 0 and σ∗2(r) = 1. As before,

the conditional probability that a2 = 1 is the probability that a posterior r is realized

conditional on the prior µ0
2, which is determined by the martingale property (3.12). Hence,

Pr[a2 = 1|µ0
2, a1 = 0] =

µ0
2 − r
r − r

. (3.14)

Consider a1 = 1. The agent's optimal action strategy is then σ∗2(µ2) = 1 if and only if

µ2 ≥ R−c
2R

. Let supp(φ∗2) = {s, s} be the support of the optimal strategy. Analogically,

we get

s = 1− r, s = 1− r. (3.15)

The agent's optimal action then satis�es σ∗2(s) = 0 and σ∗2(s) = 1. As before, the

conditional probability that a2 = 1 is the probability with which posterior s is realized

conditional on the prior µ0
2, which is determined by the martingale property. Hence,

Pr[a2 = 1|µ0
2, a1 = 1] =

µ0
2 − s
s− s

. (3.16)

Action inertia

NI and FI treatments

The prior belief µ0
2 = 1/2, i.e., it is independent of a1 and θ1 regardless of the distribution

speci�cation of the costless signal. Then a habit is not formed when c = 0 (eq. (3.10) is

independent of a1), while a habit is formed when c > 0 (eq.'s (3.14) and (3.16) are not

equal even when µ0
2 = 1/2).
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NC treatment

Note that in period t = 1, the (myopic and a fully rational) agent always learns10.

Therefore, it must be µs
1

1 6= 1/2. From the optimality of action strategy we have: if

σ∗1(µs
1

1 ) = 1, then µs
1

1 > 1/2 and if σ∗1(µs
1

1 ) = 0, then µs
1

1 < 1/2. Therefore, a habit is

formed for all c ≥ 0: eq.'s (3.10), (3.14) and (3.16) are strictly increasing in µ0
2 where µ0

2

under a1 = 1 is higher than µ2
0 under a1 = 0.

FC treatment

The agent perfectly learns the realization θ1 from the costless signal. Then the prior µ0
2

depends on θ1, but is independent of a1 (see eq. (3.2)). As the eq. (3.10) depends on µ0
2

but not explicitly on a1, a habit is not formed when c = 0. However, a habit is formed

when c > 0 as eq.'s (3.14) and (3.16) are not equal, keeping µ2
0 �xed.

10At the prior µ0
1 = 1/2, he is exactly indi�erent between the actions. The marginal value of information

is thus in�nite while the marginal cost of information is �nite.
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3.B Regression outputs

Note that we use a command that exports the estimated coe�cients already as an esti-
mated odds ratio instead of a log odds ratio.

FI TREATMENT

Logistic regression Number of obs = 492

Wald chi2(6) = 142.93

Prob > chi2 = 0.0000

Log pseudolikelihood = -163.10254 Pseudo R2 = 0.5150

(Std. Err. adjusted for 41 clusters in subject)

--------------------------------------------------------------------------------

| Robust

choice2 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------------+----------------------------------------------------------------

1.choice1 | .8083733 .2882132 -0.60 0.551 .4019102 1.625904

1.state1 | 1.96372 .7578438 1.75 0.080 .921683 4.183862

1.state2 | .0000563 .0000942 -5.85 0.000 2.12e-06 .0014955

1.session2 | .9545169 .2568266 -0.17 0.863 .5633204 1.617379

|

state2#c.score |

0 | .9325278 .0140836 -4.63 0.000 .905329 .9605438

1 | 1.108449 .0179016 6.38 0.000 1.073912 1.144097

|

_cons | 35.59983 41.01105 3.10 0.002 3.722741 340.4341

--------------------------------------------------------------------------------

Average marginal effects Number of obs = 492

Model VCE : Robust

Expression : Pr(choice2), predict()

dy/dx w.r.t. : 1.choice1 1.state1 1.state2 1.session2 score

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.choice1 | -.0213619 .0355646 -0.60 0.548 -.0910673 .0483434

1.state1 | .0717546 .042604 1.68 0.092 -.0117478 .1552569

1.state2 | .680717 .0323603 21.04 0.000 .617292 .7441419

1.session2 | -.0046997 .0270881 -0.17 0.862 -.0577913 .048392
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score | .0021162 .0009961 2.12 0.034 .000164 .0040684

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

NI TREATMENT

Logistic regression Number of obs = 492

Wald chi2(6) = 133.54

Prob > chi2 = 0.0000

Log pseudolikelihood = -169.51864 Pseudo R2 = 0.3798

(Std. Err. adjusted for 41 clusters in subject)

--------------------------------------------------------------------------------

| Robust

choice2 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------------+----------------------------------------------------------------

1.choice1 | 1.389138 .5456704 0.84 0.403 .6432551 2.999907

1.state1 | .7762836 .3740146 -0.53 0.599 .3019328 1.995863

1.state2 | .0013902 .0030984 -2.95 0.003 .0000176 .109694

1.session2 | .8971487 .3004906 -0.32 0.746 .4653324 1.729679

|

state2#c.score |

0 | .9428402 .0218128 -2.54 0.011 .9010427 .9865765

1 | 1.073454 .0132159 5.76 0.000 1.047861 1.099671

|

_cons | 21.84399 41.73286 1.61 0.106 .5165522 923.7395

--------------------------------------------------------------------------------

Average marginal effects Number of obs = 492

Model VCE : Robust

Expression : Pr(choice2), predict()

dy/dx w.r.t. : 1.choice1 1.state1 1.state2 1.session2 score

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.choice1 | .0341974 .0411712 0.83 0.406 -.0464966 .1148914

1.state1 | -.0262127 .0494824 -0.53 0.596 -.1231964 .070771

1.state2 | .6918165 .0542746 12.75 0.000 .5854404 .7981927

1.session2 | -.0112297 .0351127 -0.32 0.749 -.0800493 .0575899

score | .0044963 .0010308 4.36 0.000 .002476 .0065166

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.
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FC TREATMENT

Logistic regression Number of obs = 492

Wald chi2(6) = 102.34

Prob > chi2 = 0.0000

Log pseudolikelihood = -108.77105 Pseudo R2 = 0.6757

(Std. Err. adjusted for 41 clusters in subject)

--------------------------------------------------------------------------------

| Robust

choice2 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------------+----------------------------------------------------------------

1.choice1 | 1.292079 .6226411 0.53 0.595 .5024617 3.322579

1.state1 | 13.99275 7.383847 5.00 0.000 4.974295 39.36175

1.state2 | .0000638 .0001345 -4.58 0.000 1.02e-06 .0039746

1.session2 | .5520429 .1616916 -2.03 0.043 .3109271 .9801375

|

state2#c.score |

0 | .9254083 .0185939 -3.86 0.000 .8896732 .9625788

1 | 1.10163 .0182308 5.85 0.000 1.066471 1.137947

|

_cons | 20.33895 28.34802 2.16 0.031 1.324162 312.4036

--------------------------------------------------------------------------------

Average marginal effects Number of obs = 492

Model VCE : Robust

Expression : Pr(choice2), predict()

dy/dx w.r.t. : 1.choice1 1.state1 1.state2 1.session2 score

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.choice1 | .016663 .0320507 0.52 0.603 -.0461552 .0794813

1.state1 | .257624 .0581595 4.43 0.000 .1436334 .3716147

1.state2 | .6112043 .045856 13.33 0.000 .5213282 .7010805

1.session2 | -.0378612 .0193417 -1.96 0.050 -.0757701 .0000478

score | .0010713 .0006895 1.55 0.120 -.00028 .0024226

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.
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NC TREATMENT

Logistic regression Number of obs = 492

Wald chi2(6) = 195.03

Prob > chi2 = 0.0000

Log pseudolikelihood = -130.91083 Pseudo R2 = 0.5968

(Std. Err. adjusted for 41 clusters in subject)

--------------------------------------------------------------------------------

| Robust

choice2 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------------+----------------------------------------------------------------

1.choice1 | 6.528634 3.008268 4.07 0.000 2.646093 16.10792

1.state1 | 1.029548 .4622255 0.06 0.948 .4270629 2.482

1.state2 | .000018 .0000266 -7.37 0.000 9.84e-07 .0003276

1.session2 | 1.38445 .4490417 1.00 0.316 .7331505 2.614338

|

state2#c.score |

0 | .9290356 .0170773 -4.00 0.000 .8961604 .9631167

1 | 1.120191 .0174057 7.30 0.000 1.086591 1.154831

|

_cons | 20.5216 27.46066 2.26 0.024 1.490011 282.6396

--------------------------------------------------------------------------------

Average marginal effects Number of obs = 492

Model VCE : Robust

Expression : Pr(choice2), predict()

dy/dx w.r.t. : 1.choice1 1.state1 1.state2 1.session2 score

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.choice1 | .1910301 .0509049 3.75 0.000 .0912583 .2908018

1.state1 | .0023206 .0358441 0.06 0.948 -.0679325 .0725737

1.state2 | .6287987 .0674834 9.32 0.000 .4965337 .7610637

1.session2 | .0259479 .0264879 0.98 0.327 -.0259674 .0778633

score | .0035593 .0007534 4.72 0.000 .0020827 .0050358

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.
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3.C Instructions

Welcome to the experiment! Please take a record sheet at the front if you don't have one already. 
Please do not use the computers during the instructions.  When it is time to use the computer, please 
follow the instructions precisely.(Repeat if necessary.) 
 
Please raise your hand if you need a pencil. Please put away and silence all your personal belongings, 
especially your phone. We need your full attention during the experiment.  
 
Raise your hand at any point if you cannot see or hear well. 
 
The experiment you will be participating in today is an experiment in decision making. At the end of 
the experiment, you will be paid for your participation in cash. The amount you earn depends on your 
decisions and on chance. You will be using the computer for the experiment, and all decisions will be 
made through the computer. DO NOT socialize or talk during the experiment. 
 
All instructions and descriptions that you will be given in the experiment are accurate and true. In 
accordance with the policy of this lab, at no point will we attempt to deceive you in any way. 
 
If you have any questions, raise your hand and your question will be answered out loud so everyone 
can hear.  
 
After you have completed all the tasks, please wait while everyone else finishes his or her tasks.  Once 
everyone has completed the experiment, I will ask you to fill in the questionnaire. After the 
questionnaire you will collect your earnings and leave. 
 
//////////////////////////////////////////////////////////////////////////////////////////////////// 
 
I will now describe the main features of the experiment and show you how to use the software. Again, 
if you have any questions during this period, please raise your hand. 
 
You will be presented with a series of choices to make. There will be four SETS of choices in today's 
experiment. Each set contains twelve ITERATIONS, and each iteration has two PERIODS. In each period, 
you will be shown a picture of 100 dots. Each dot will be either RED or BLUE. We have displayed an 
example of such a screen on your computer monitor. (show an example screen) 
 
This is an example of the screens you will see during the experiment. In every period, the picture will 
contain either 51 red dots and 49 blue dots, or instead, 51 blue dots and 49 red dots. We will call these 
two cases MAJORITY RED and MAJORITY BLUE, respectively.  In each case, the dots are randomly 
allocated to the positions in the matrix.  In each period the computer will choose randomly between 
MAJORITY RED and MAJORITY BLUE. You will be told in advance how likely each case is to happen.   
 
In each period, you will be asked to determine if the image is MAJORITY RED or MAJORITY BLUE. While 
you may take as much time as you need to make your choice, the image will disappear after 45 
seconds. 
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I am now going to describe the details of the experiment.   
 
The experiment is divided into four SETS. In each set, you will be presented with twelve iterations, and 
each iteration consists of two periods, each with its own image.  The rules for the 12 iterations within 
each set are identical, but the rules are different in different sets.   
 
In PERIOD 1 of each iteration, the image is always generated so that there is an equal chance of 
MAJORITY RED and MAJORITY BLUE, meaning that there is a 50% chance of MAJORITY RED and a 50% 
chance of MAJORITY BLUE. 
 
In period 2 of each iteration, the image will be generated in a way that differs across sets.  In some sets, 
the majority color for period 2 is chosen in a way that is completely separate from the period 1 image, 
and is randomly generates so that there is an equal chance of MAJORITY RED and MAJORITY BLUE, just 
like the period 1 image.  But in other sets, the period 2 image depends on the majority color of the 
period 1 image.  In these sets, the computer generates the period 2 image so that there is a 75% 
chance that the majority color matches the period 1 majority color, and a 25% chance that the majority 
color is different from the period 1 majority color.   
 
 
It is important to remember that while the periods within each iteration may be related to each other, 
the periods across iterations are never related. 
 
After making your choices, you will always be told what the majority color was, but the timing of this 
differs from set to set. In some sets, the majority colors will be revealed after every period. In other 
sets, the majority colors for an iteration will not be revealed until you complete both periods. Before 
each set, you will be told about the timing of the feedback you will receive. 
 
The amount of money you will receive at the end of the experiment depends on your choices. After we 
have completed all four sets, you will have made 96 choices (4 sets times 12 iterations times 2 periods).  
The computer software will randomly select one of these 96 periods.  Your payment will be 
determined by your choice in that single period.  If your choices in the randomly chosen period 
matches the majority color, you will earn an additional $5 dollars on top of the $15 show-up fee. 
Otherwise, you will receive no additional payment, but you will still receive the show-up fee. 
 
After you complete the last set, please wait until we start the questionnaire part. After you finish the 
questionnaire, please fill your record sheet on the desk. I will pay one by one to keep everyone’s 
privacy. 
 
To summarize, remember that we have four sets in the experiment today. Each set consists of 12 
iterations, and each iteration consists of two periods. The sets will vary in how likely it is that the 
majority colors are the same for both periods within an iteration, and in the timing that the majority 
colors are revealed. Please raise your hand if you have any questions. 
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(1) FI/FC/NI/NC 

Feedback/IID:  

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 
an equal chance of MAJORITY RED and MAJORITY BLUE, and it does not depend on the majority color in 
the first period. 

The majority colors will be revealed after every period, so that you will be told the majority color from 
period 1 before you see the image for period 2. Please raise your hand if you have any question. 

 

Feedback/Corr.: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 
a 75% chance that the majority color matches the majority color from period 1, and a 25% chance that 
the majority color is different from period 1. 

The majority colors will be revealed after every period, so that you will be told the majority color from 
period 1 before you see the image for period 2. Please raise your hand if you have any question. 

 

No Feedback/IID: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 
an equal chance of MAJORITY RED and MAJORITY BLUE, and it does not depend on the majority color in 
the first period. 

The majority colors for both periods of an iteration will be revealed only at the end of each iteration, so 
that you will see the period 2 image before being told the majority color from period 1.   Please raise 
your hand if you have any question. 

 

No Feedback/Corr.: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 
a 75% chance that the majority color matches the period 1 majority color, and a 25% chance that the 
majority color is different from the period 1 majority color. 

The majority colors for both periods of an iteration will be revealed only at the end of each iteration, so 
that you will see the period 2 image before being told the majority color from period 1.   Please raise 
your hand if you have any question. 
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(2) NI/NC/FI/FC 

No Feedback/IID: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 
an equal chance of MAJORITY RED and MAJORITY BLUE, and it does not depend on the majority color in 
the first period. 

The majority colors for both periods of an iteration will be revealed only at the end of each iteration, so 
that you will see the period 2 image before being told the majority color from period 1.   Please raise 
your hand if you have any question. 

 

No Feedback/Corr.: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 
a 75% chance that the majority color matches the period 1 majority color, and a 25% chance that the 
majority color is different from the period 1 majority color. 

The majority colors for both periods of an iteration will be revealed only at the end of each iteration, so 
that you will see the period 2 image before being told the majority color from period 1.   Please raise 
your hand if you have any question. 

 

Feedback/IID:  

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 
an equal chance of MAJORITY RED and MAJORITY BLUE, and it does not depend on the majority color in 
the first period. 

The majority colors will be revealed after every period, so that you will be told the majority color from 
period 1 before you see the image for period 2. Please raise your hand if you have any question. 

 

Feedback/Corr.: 

In the next set of twelve iterations, the majority color for period 2 is randomly generated so that there is 
a 75% chance that the majority color matches the majority color from period 1, and a 25% chance that 
the majority color is different from period 1. 

The majority colors will be revealed after every period, so that you will be told the majority color from 
period 1 before you see the image for period 2. Please raise your hand if you have any question. 
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