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Abstract 

The financial crises in the early 2000s have given prominence to the financial markets’ 

exposure to credit risk. To minimize credit risk, the risk that a borrower will fail to meet her 

contractual obligations, lenders seek to identify borrowers with a high probability of default prior 

to granting credit. In my dissertation I examine several screening devices that lenders utilize in 

alleviating adverse selection present on the credit market.  In the first chapter, I ask whether the 

existence of informal collateral signals better loan repayment. Taking advantage of a unique 

dataset of household loans from a Czech commercial bank, I find that housing loans without lien 

on the property default less compared to loans with unspecified purpose. I also show that the 

interest rate differential between specific purpose loans and unspecified purpose loans is 

systematically higher than their default rate differential. In the second chapter, I investigate the 

role of loan contract terms in household loan demand and performance. Utilizing a sample of 

accepted and rejected Czech household loans, I find that loan demand for low-income borrowers 

is more sensitive to liquidity constraint and loan maturity changes than to interest rate changes. 

The results also suggest that by reflecting the borrower’s riskiness in the interest rate, lenders 

discourage risky borrowers from obtaining short-term loans and this might then lead to their 

higher default probability. Finally, in the third chapter, I focus on credit ratings of financial/non-

financial institutions that issued debt. The paper identifies the determinants of credit rating 

changes by the two incumbent rating agencies: S&P and Moody’s. I show that there is a 

statistically significant difference in the rating evaluations of the two incumbent credit rating 

agencies, and that Fitch’s increasing market share deepens the rating splits between S&P and 

Moody’s. The results also suggest that sovereign ceilings ceased to be restrictive for non-

financial institutions throughout the recent financial crises, and that S&P is a follower in its 

rating actions when compared to Moody’s.  
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Abstrakt 

Finanční krize po roce 2000 poukázali na důležitost expozice finančních trhů vůči 

úvěrovému riziku. Pro minimalizaci úvěrového rizika, tedy rizika, že dlužník nesplní své 

smluvní závazky, se věřitelé snaží identifikovat dlužníky s vysokou pravděpodobností defaultu 

před poskytnutím úvěru. Ve své disertační práci zkoumám několik prostředků kontroly, které 

věřitelé využívají k zmírnění nepříznivého výběru přítomného na úvěrovém trhu. V první 

kapitole si pokládám otázku, zda existence neformální záruky signalizuje lepší splácení úvěru. S 

pomocí unikátního souboru dat o úvěrech domácností z české komerční banky zjišťuji, že u 

úvěrů na bydlení bez zástavního práva k nemovitosti dochází k defaultu méně často ve srovnání s 

úvěry bez konkrétního účelu. Dále ukazuji, že rozdíl v úrokové míře mezi účelovými a 

neúčelovými úvěry je systematicky vyšší než jejich rozdíl v míře defaultu. Ve druhé kapitole 

zkoumám vliv podmínek v úvěrové smlouvě na poptávku domácností po úvěrech a na jejich 

výkon. S využitím vzorku přijatých a odmítnutých úvěrů českých domácností zjišťuji, že 

poptávka nízkopříjmových dlužníků je citlivější na likvidní omezení a změny data splatnosti než 

na změny úrokových sazeb. Výsledky také naznačují, že tím, že věřitelé zohledňují rizikovost 

dlužníka v úrokové sazbě, odrazují rizikové dlužníky od získání krátkodobých úvěrů, což potom 

může vést k vyšší pravděpodobnosti jejich defaultu. Ve třetí kapitole se zaměřuji na úvěrové 

ratingy finančních a nefinančních institucí, které emitují dluh. Tato studie identifikuje příčiny 

změn úvěrových ratingů u dvou zavedených ratingových agentur: S&P a Moody’s. Ukazuji, že 

existuje statisticky významný rozdíl v ratingových hodnoceních těchto dvou zavedených 

ratingových agentur a že rostoucí tržní podíl agentury Fitch dále prohlubuje rozdíly v ratinzích 

mezi S&P a Moody’s. Výsledky rovněž naznačují, že v průběhu finanční krize ratingové stropy 

jednotlivých zemí přestaly pro nefinanční instituce působit restriktivně a že agentura S&P je 

následovníkem ve svých ratingových akcích ve srovnání s Moody’s. 
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Preface 

The rapid growth of the consumer and corporate lending market has drawn 

increased attention to the asymmetric information present between lenders and 

borrowers of credit. Stiglitz and Weiss’s 1981 paper shows that lenders who are 

imperfectly informed about the default probability of borrowers may suffer from 

adverse selection when deciding whether to grant credit or not. Adverse selection occurs 

when, being aware of their own riskiness, “low-risk” borrowers with low probability of 

default are not willing to pay increased prices for credit in the form of higher interest 

rates, while “high-risk” borrowers with a high probability of default will accept them. 

To minimize this, lenders may choose to deny granting the credit rather than to increase 

its price. As the price fails to regain equilibrium in the market, market imperfection 

appears.  

This thesis focuses on the prominence of private information evoking credit 

market failures. It examines several potential devices that might help lenders alleviate 

the adverse selection present on the credit market. Specifically, (1) it studies the effect 

of informal collateral on the default rate of household loans, (2) it offers a joint model 

for estimation of loan demand and loan performance, and examines whether a risk-

based maturity setting improves the quality of granted household loans, (3) and it 

compares the information value and the timeliness of credit rating agencies in assessing 

the creditworthiness of debt issuers. 

The first paper of the thesis focuses on the role of informal collateral in 

explaining household loan default. Consumers with insufficient resources can finance 

purchases by applying for specific purpose loans or unspecified purpose loans. The 

paper examines the default gap of these two types of loans using a unique dataset of 

household loans from a Czech commercial bank. In line with theoretical models that 

perceive collateral as a screening device mitigating adverse selection, the paper 

confirms a negative relationship between the default rate and the presence of informal 

collateral. More importantly, it is not the purpose of the loan, but mainly the unobserved 
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characteristics of the borrower that drive the default rate. The paper also provides 

empirical evidence that the interest rate differential between specific purpose loans and 

unspecified purpose loans is systematically higher than their default rate differential. 

This is in line with the empirical literature according to which financial institutions are 

prudent in household loan pricing and charge high mark-ups when compared to 

mortgage or corporate loans. Nevertheless, this raises the question whether the interest 

rate of housing loans (being subject to tax-deductibility) should not be re-evaluated due 

to lack of their collateralization and higher average amount. The results of the first 

paper imply that information on informal collateral and the applicant’s former loan 

types help reveal the creditworthiness of households, and therefore should be integrated 

parts of financial institutions’ credit scoring methods. 

In the second paper of the thesis I investigate the role of loan contract terms in 

the performance of consumer credit. Taking advantage of a sample of accepted and 

rejected household loans from a Czech commercial bank, I estimate the elasticity of 

loan demand and find that borrowers with a high probability of default are more 

responsive to maturity than interest rate changes. I also argue that risk-based pricing 

may lead to an increase in loan maturity and loan default, rather than alleviating the 

adverse selection present on the lending market. The finding is consistent with the 

theoretical prediction that reduced asymmetric information encourages “high-risk” 

borrowers to either request lower loan amounts or to prolong their loan maturity to 

compensate the lender for their riskiness. Therefore, banks seeking to mitigate adverse 

selection by developing risk-based pricing should also test the increasing riskiness of 

the borrower pool due to the sensitivity to loan duration. Empirical evidence suggests 

that loan performance is time-dependent and default depends on the choice of loan 

duration. The paper implies that in the restriction of the default the borrower’s liquidity 

constraints and the loan maturity should also be considered alongside risk-based pricing. 

The third paper examines the accuracy and timeliness of credit ratings in 

explaining the financial health of debt issuers. Although the desire to assess the 

financial strength of financial and non-financial institutions is strong, the 

creditworthiness of financial market participants is costly to determine. Using annual 
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financial statement data and macroeconomic indicators covering 2005-2013 for 2 500 

financial and non-financial institutions, this paper identifies the determinants of credit 

rating changes by two rating agencies: Moody’s and Standard & Poor’s. Empirical 

evidence suggests that while Moody’s is consistently more conservative in the 

assessment of default risk for non-financial institutions, Standard and Poor’s is 

consistently more conservative in its assessment of default risk for financial institutions. 

Fitch’s increasing market share deepens the rating disagreements between S&P and 

Moody’s. The results also suggest that sovereign ceilings ceased to be restrictive for 

non-financial institutions throughout the recent financial crises, and S&P is a follower 

in its rating actions when compared to Moody’s for both financial and non-financial 

institutions. Overall, the findings imply that policymakers should tighten supervision 

over the rating agencies, as their assessment of credit risk is highly influential for 

financial market participants.  

Although the financial crisis in the early 2000s was expected to represent an 

important structural break in the lending market, the findings of this thesis advocate that 

its impact is distinct across regions and sectors. On the Czech household loan market, 

there is a wide interest rate differential between loan types, though their default rate 

differential is systematically lower. Similar to the results of Horvath and Podpiera 

(2012), this suggests that banks impose a high risk margin on household loans and 

remain prudent in their pricing policy. While the introduction of risk-based pricing aims 

to limit adverse selection, the prolongation of loan maturity is likely to lead to a higher 

default probability even after the financial crisis. On the other hand, the worldwide 

market of debt issuers from financial and non-financial sectors experienced accelerated 

credit quality changes. During pre-crisis and sovereign-debt-crisis periods the reliance 

on prior rating actions of other agencies weakens, but remains highly statistically 

significant when compared to the other determinants of issuer rating change. Overall, 

this diminishing influence of the competitors’ behavior is likely to be caused by the 

increased motivation of rating agencies to protect their reputational capital in assessing 

credit risk. 
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Chapter 1 

Loans for Better Living:  

The Role of Informal Collateral 

 

 

 

1.1 Introduction 

 

Since the early 2000s, the ways consumers may finance their expenditures have become 

diversified to a large extent. The range of loan products is particularly wide for 

financing housing-related expenditures. In addition to mortgage loans and building 

savings schemes, individuals can apply for housing loans granted for financing 

investments related to a property (e.g. home purchase, home renovation, home 

equipment). The key distinction between mortgage and housing loans is that the 

repayment of the latter is not secured by a lien on the property. Hence, housing loans are 

notably more attractive to those who are not willing or able to secure their loan with 

property. Alternatively, if the loan is intended to finance expenditures that are not 

housing-related, the borrower can apply for consumer credit. The key distinction 

between consumer credit and housing loans is that housing loans are granted conditional 

on the ownership of the real estate they finance, even though it does not serve as 

collateral. In this paper, housing loans and consumer credit with a designated purpose 
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are jointly referred to as specific purpose loans (‘purpose-loans’), while consumer credit 

without a designated purpose is referred to as unspecified purpose loans (‘non-purpose 

loans’). The latter is viewed as bearing the highest risk, as no information is available 

on the expenditure they are intended to finance. 

The cost of the loan products varies by their perceived riskiness. Mortgage loans 

are secured (the financed property serves as collateral and can be claimed by the lender 

in case of borrower bankruptcy) - their interest rate and probability of default 

(henceforth referred to as ‘default rate’) is relatively low compared to other types of 

loans. At the end of 2013 in the Czech Republic, the interest rate on new mortgage loans 

was 3.4 percent, while the share of non-performing loans to total mortgage loans was 

3.0 percent. By contrast, housing loans and consumer credit are unsecured loans (there 

is only a general claim on the borrower’s assets in the case of default), and their interest 

rates and default rates are substantially higher than for mortgage loans. As of the end of 

2013 in the Czech Republic, the interest rates on new consumer credit and housing 

loans combined was at 14.5 percent, while the share of non-performing loans to total 

household loans was 12.2 percent for consumer credit and 8.4 percent for housing 

loans.1 Nevertheless, the overall performance of household loans must be evaluated in 

the light of expected loss in case of default. In particular, the two loan types 

significantly differ in their recovery rate (i.e. the percentage of non-performing loan 

amount recovered by the lender). Unlike consumer credit, mortgage loans enjoy the 

presence of high recovery rate in case of default (the expected loss is relatively low), as 

the loans are secured by collateral (the financed property).  

Although previous literature has long emphasized the role of collateral in 

mitigating the asymmetric information between lenders and borrowers at the time of 

loan granting, their conclusions are contradictory. The theoretical predictions of Boot, 

Thakor and Udell (1991), Manove and Padilla (2001) and Inderst and Mueller (2007) 

                                                 
 
1 Czech National Bank - ARAD database – Monetary and financial statistics, 
http://www.cnb.cz/cnb/STAT.ARADY_PKG.STROM_SESTAVY?p_strid=AAABAA&p_sestuid=&p_l
ang=EN 
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suggest that with higher collateral the probability of default rises. The authors support 

their findings with several main arguments: (1) when they require increased collateral, 

financial institutions often weaken their screening mechanisms, (2) to achieve financing, 

borrowers are likely to provide all the required collateral irrespective of their probability 

of default. A contrary view from Jimenez, Salas and Saurina (2006) supports the private 

information hypothesis; it says that collateral sorts loan applicants such that low-risk 

borrowers prefer to pledge their loans (due to their low probability of default) and have 

lower interest rates, while high-risk borrowers prefer not to pledge their loans (given 

their higher probability of default) and have higher interest rates.  

Despite the broad debate on collateral and its impact on loan performance, 

limited research has focused on the role of informal collateral in the housing loan 

market. Housing loans finance home equity (similar to mortgage loans), but are granted 

without collateral (similar to standard consumer credit). Instead, their loan contract 

terms are conditional on informal collateral, which exists whenever the lender has 

evidence of the good the loan is intended to finance. For a housing loan, 

homeownership and an invoice verifying the purpose of the loan serves as evidence of 

informal collateral. These help individuals applying for a housing loan signal their 

better creditworthiness. Because the existence of informal collateral makes the borrower 

eligible for favorable loan contract terms without a lien on the property, the information 

asymmetry between the lender and the borrower might be more severe. This paper 

addresses this issue and tests the effectiveness of informal collateral in alleviating 

adverse selection on the household loan market. It contributes to the findings of 

Kocenda and Vojtek (2011), who were the first to study the default probability of Czech 

household loans with different purposes. 

This empirical paper focuses on three questions. First, I test whether the 

existence of informal collateral influences the likelihood of successful loan repayment, 

by applying a probit model to measure the effect of different loan types on the 

borrower’s default rate. Second, I examine whether the lower default rate on purpose-

loans is driven by the type of product they are intended to finance. This is tested by 

including loan purpose and applicant type dummies into the probit model. The latter is 
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derived from information on multiple loan contracts per applicant and accounts for the 

fact that applicants with different default probability select different loan purposes. 

Third, I test whether applicants with the same application characteristics and loan 

contract terms have the same default rate and interest rate differential, regardless of 

whether they apply for loans with specified or unspecified purpose. I tackle the issue of 

self-selection by using propensity score matching. 

The paper exploits a unique dataset of over 207 000 rejected and accepted 

household loans from a Czech commercial bank.2 It covers three different types of 

household loans granted from 2007 to 2013: housing loans, consumer credit with a 

designated purpose (jointly referred to as ‘purpose-loans’) and consumer credit without 

a designated purpose (referred to as ‘non-purpose loans’). 

1.2 Why the Type of Household Loan Matters 

1.2.1 Description of Household Loan Types 

The share of non-performing loans3 of total loans (hereafter, the “NPL ratio”) varies 

substantially among the household loan types. Its significance is illustrated in Figure 

1.1, which depicts the share of NPL in consumer credit4, mortgage loans and housing 

loans in the Czech Republic. Whereas mortgage loans maintained a solid performance 

between 2002 and 2013, the share of problem loans in the case of consumer credit and 

housing loans sharply increased. Although neither consumer credit nor housing loans 

are backed by collateral, there is a 3.7 percentage point difference in their NPL ratio 

(based on the most recent results from August 2014). 

                                                 
 
2 The Bank does not wish to be explicitly identified. 
3 According to CNB Regulation No. 123/2007, § 196, § 197 non-performing loans are receivables with 
default classified as substandard, doubtful or loss loans. 
4 The statistics cover consumer credit with both specified and unspecified loan purpose. 
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The loan-application process for consumer credit (with specified and unspecified 

purpose) and housing loans begins identically.5 In order to assess the creditworthiness 

of their potential debtors and to decide whether to grant a loan, financial institutions use 

automated credit scoring techniques. Their main purpose is to estimate the probability 

that an applicant will default by a given time in the future. Lenders make loan-granting 

decisions based on the loan application information provided by their customers and the 

probability of default. Application information is evaluated by analyzing a sample of 
                                                 
 
5 On the household loan market, loan types and their loan contract terms vary substantially across 
individual loan providers. Prior to loan application, the borrower has indicative information (for random 
loan amount and a minimum interest rate offer, each lender publishes a menu of maturities and annuity 
payments) about the loan products and the lenders’ offer from publicly available marketing materials. 
When entering the loan application process, the borrower uses this information to decide about his/her 
preferred loan type/maturity/amount given liquidity constraints – this requested loan 
type/maturity/amount can be considered the result of the searching process. Any changes in these 
parameters are assumed to be subject to a new loan application. 
 

Figure 1.1: Share of non-performing loans on total loans (by household loan type) 

 
Source: Czech National Bank (CNB) – ARAD database – Monetary and financial statistics. Note: (1) 
The statistic covers household loan provided in the Czech Republic. (2) Non-performing loans include 
substandard, doubtful or loss loans. 
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past customers who applied for a loan, whose records provide good information on 

subsequent loan performance history. Credit scoring divides loan applicants into ‘good’  

and  ‘bad’ and assists independent lending institutions in their loan-granting decisions. 

Kocenda and Vojtek (2011) provide an extensive survey of literature on existing credit 

scoring techniques (e.g. logistic regression, classification and regression trees) and 

compare their efficiency and discriminatory power. 

1.2.2 The Role of Loan Contract Terms in Alleviating Adverse Selection  

Loan contract terms for the individual household loan types differ. After 

mortgage loans (secured by a lien on a property), housing loans offer the second lowest 

interest rates. To be eligible for a favorable interest rate in the case of housing loans, the 

applicant must document both loan purpose and proof of homeownership.6 The loan 

must finance a property-related investment, and the real estate should be in the name of 

the applicant. Although housing loans can be used to finance home renovation, home 

purchase (to some upper limit), or home equipment, they are not secured by a lien on 

the property as are mortgage loans.7 Another advantage is that housing loans are also 

subject to favorable tax treatment. Upon fulfilling certain conditions, a borrower can 

deduct the interest expenses of housing loans when tax returns are filed. The interest 

rates of loans for vehicle purchases or other purposes are less favorable8, as the loans 

are not backed by homeownership. Borrowers are obliged to submit an invoice 

verifying that the loan was used for the specified purpose, and are then entitled to the 

lower interest rates. If the borrower does not deliver this evidence, the price of the loan 

is raised to the interest rate level of loans without a specified purpose. Loans for 

                                                 
 
6 The terms and conditions of housing loans usually also include requirements on the share of total costs 
(e.g. 20 or 30 percent) to be financed from the borrowers’ own resources. 
7 After exceeding some upper loan limit, the bank may insist on securing a loan by collateral. 
Nevertheless, if the applicant decides to back his loan with property, then the loan application is changed 
to a mortgage loan request, due to the even lower interest rate it offers. In some cases the bank might 
require the property to be insured (the cost of insurance is paid by the borrower). 
8 Comparing loans for vehicle purchase or other purpose, the former offer more favorable loan contract 
terms. This is because vehicles are easier for the bank to repossess in case the borrower defaults. 
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unspecified purposes bear the highest interest rate. This is because individuals who 

cannot or who are not willing to specify the purpose of financing are perceived as risky. 

Although the lender usually keeps a record of whether the borrower owns real estate, 

unless there is a lien on property (as in the case of mortgage loans) or the applicant 

submits the invoice of property-related investment and the proof of homeownership to 

receive a loan (as in case of housing loans), homeownership is not regularly verified and 

cannot be considered as informal collateral.   

Housing loans thus benefit from the presence of informal collateral.9 Individuals 

providing evidence of loan purpose and homeownership can signal their 

creditworthiness and gain favorable loan contract terms. This can prevent market 

inefficiencies that arise on household loan markets when the borrower has private 

information related to loan repayment. To mitigate this asymmetric information 

between lenders and borrowers, the bank can design such loan contract terms (most 

importantly, set interest rates) that aim to reveal the borrower’s risk type. This paper 

tests the effectiveness of informal collateral to alleviate adverse selection on the housing 

loan market, a field that has not previously been studied. 

1.3 Methodology 

This section outlines the identification strategy applied to measure the impact of 

household loan type on the borrower’s default rate.  To estimate the impact of loan type 

on a borrower’s default rate, first the simple probit is applied. Compared to the linear 

probability model, the probit model offers a better modeling of dichotomous outcome 

estimation. Second, the propensity score matching is used to see how the results change 

after the potential selection bias on household loan market is accounted for. This paper 

does not model the process of loan approval and the setting of loan contract terms (loan 

                                                 
 
9 Pavan (2008) is the first to define the role of durable goods as informal collateral in the loan 
performance of unsecured debts.  
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amount, interest rate and maturity).10 These are assumed to be the result of equilibrium 

outcome. 

 

1.3.1 Probit Models 

Hypothesis 1. The purpose of the loan has no impact on the probability of loan 

repayment. 

 

The default rate is a function of information available about the borrower at the 

time of loan application. In Model 1 the probability of default is estimated by the 

following probit model: 

 

iiii PURPOSEXY ϕβββ +++= 21
'

0
*                                                              (1.1) 

 

where iY  denotes default for borrower i, '
iX is the vector of application characteristics 

and the loan contract terms of application i, iPURPOSE  is a categorical variable 

indicating the purpose of a loan (Table 1.A.1 in the Appendix summarizes the 

individual variables and their coding) and iϕ  are unobserved factors assumed to have a 

standard normal distribution with zero mean and variance equal to one. Although the 

latent variable *
iY is not observed, iY  takes the value of 0 if the borrower does not 

default ( 0* <iY ) and iY  takes the value of 1 if the borrower defaults ( 0* >iY ). 

Assuming the standard normal cumulative distribution (.)Φ the probability of default 

can then be derived as follows: 

                                                 
 
10 Kuvikova (2015) estimates loan demand and loan performance jointly, while accounting for the number 
of successful payments until default using the endogeneity of loan contract terms, the potential sample 
selection on the household loan market. The paper also offers an alternative model for default estimation 
by utilizing a duration model that takes into account the number of successful payments until default. 
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)(),|1Pr( 21
'

0
*

iiiiiii PURPOSEXXPURPOSEY ϕβββ +++Φ==              (1.2) 

 

Although the coefficients of the probit model  (𝜕E(𝑌𝑖
∗)

𝜕𝑋𝑘
= 𝛽𝑘) express the direction 

of the impact of the explanatory variables on the binary outcome, unlike in the linear 

probability model they do not express the marginal effects and hence need to be 

calculated explicitly. To quantify the magnitude of the effect (𝜕Pr(𝑌𝑖=1|𝑋𝑖)
𝜕𝑋𝑘

)  the average 

marginal effect is used. It expresses the impact of a one-unit change in the explanatory 

variable on the average change in the probability of the outcome variable.  

Specifically, the null hypothesis tested in Model 1 is that 0: 20 =βH . 

 

Hypothesis 2. The type of applicant choosing loans with different riskiness does 

not affect the loan default. 

 

Applicants with different default probability might select loans with certain loan 

purpose. To differentiate between the effect of loan type and the type of individuals that 

apply for certain loans, Model 2 is defined as  

 

iiiii APPTYPEPURPOSEXY ϕββββ ++++= 321
'

0
*

                                     (1.3) 
 

where the categorical variable iAPPTYPE  indicates the applicant’s type with respect to 

loan purpose. The variable is created using information on multiple loan contracts per 

applicant (both accepted and rejected loans), in which an applicant type dummy is 

assigned to each loan purpose j. This dummy takes the value of one if the loan 

application i is submitted by an individual who has already applied for a loan purpose j. 

This specification enables one to account for the unobserved individual heterogeneity 

connected to the good (certain applicants are more prone to buying riskier goods) and 
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quantify whether the default is driven by the riskiness of the applicant or the riskiness of 

the good the loan is intended to finance (Bicakova, 2007). 

Specifically, the null hypothesis tested in Model 2 is that 0: 30 =βH . 

 

1.3.2 Propensity Score Matching 

Hypothesis 3. The average effect of loan purpose on the loan default is not 

significantly different from zero when similar applicants are compared. 

 

In estimating the effect of loan type on the default rate of borrowers, self-

selection becomes an issue. Specifically, borrowers applying for a purpose-loan may 

differ significantly from those applying for a non-purpose loan. To account for self-

selection and check the robustness of results based on probit regression, the matching 

approach is utilized. The method is used for estimating causal effects, and aims to 

resemble a randomized experiment by comparing treated and control groups with 

similar distribution of covariates.11 Contrary to a standard regression approach that 

might suffer from selection on unobservable characteristics, matching is a non-

experimental method that focuses on controlling for observables. As the method is non-

parametric, it does not impose a functional form and requires fewer assumptions than 

the regression approach.12 

In order to see whether the default rate of purpose-loans differ from the default 

rate of non-purpose loans, I take advantage of the non-experimental matching method 

suggested by Rosenbaum and Rubin (1983). The method allows us to quantify the 

impact of treatment programs that differ across individuals. In particular, it describes 

                                                 
 
11 Stuart (2010) offers a detailed review of matching techniques. 
12 Angrist (1998) argues that the primary difference between the estimates of the approaches lies in the 
weights corresponding to the explanatory variables. Whereas in the regression model the weights are 
larger when the variance of treatment is larger, in the matching approach the weights are larger when the 
probability of treatment is larger. 
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what would have happened in the absence of treatment.  The method assumes that the 

selection of individuals into control and treatment groups is based on a sufficient 

number of observables, where the unobservables are assumed to be unimportant. 

Two potential outcomes of probability of default are compared: iy1  is the 

probability of default for purpose-loans and  is the probability of default for non-

purpose loans. I assume that a population of borrowers exists in which everyone is 

equally eligible to choose between the two types of loans. I observe iy1  only if 1=iD  
(the borrower applied for a purpose-loan) and observe  only if 0=iD (the borrower 

applied for a non-purpose loan). 

Assuming the borrower has a choice between loan types, the aim is to measure 

whether the purpose makes a difference in the default rate of borrowers. The average 

effect of treatment on treated (ATT, hereafter) is chosen to quantify the average effect 

of loan type on the probability of default: 

)1|()1|()1|( 0101 =−===− iiiiiii DyEDyEDyyE .  

If the choice of loan type was completely random, i.e. )0|()1|( 10 === iiii DyEDyE , 

we could simply compare the treatment group (the borrower applied for a loan with 

specified purpose) and control group (the borrower applied for a loan with unspecified 

purpose) as in a randomized experiment.  However, as we deal with a non-randomized 

observational dataset on application characteristics, the treatment and control groups are 

not comparable before the treatment. Thus, a non-parametric matching method13 is 

required to estimate the average effect of loan type. This reduces the bias caused by 

confounding factors in observational datasets where the assignment of customers to the 

treatment and control groups is not random. Controlling for confounding factors, the 

                                                 
 
13 The matching estimators can identify and give consistent estimates of the choice of loan type on default 
rates under the following two assumptions:  (1) iD  is independent of ),( 01 ii yy  conditional on xX = . (2) 

cxXDPc i −<==< 1)|1( , for some 0>c . The first assumption (the unconfoundedness assumption) 
ensures that, conditional on the application characteristics of the borrower, the loan type is independent of 
the default rate of the borrower. The second assumption (the identification assumption) allows for 
borrowers of the two loan types to have similar application characteristics and thus they can be compared. 

iy0

iy0
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matching method corrects for the selection bias by balancing the distribution of 

covariates in the treated and control groups.  

As I deal with a large number of application characteristics when testing the null 

hypothesis, I take advantage of the propensity score matching.14 This approach groups 

the pre-treatment characteristics of each individual into a single scalar and the matching 

is realized solely on this propensity score.15 The propensity score matching is done by 

pairing each treated individual with one or more individuals from the control group 

based on their propensity scores. Motivated by Heckman, Ichimura and Todd (1997), 

who compare different matching methods depending on sample size, I use the “nearest 

neighbor” method for ATT estimation. Specifically, the null hypothesis tested in Model 

3 is that 0)1|(: 010 ==− iii DyyEH .16 

1.4 Data 

In order to analyze the default pattern of the Czech household loan market, a 

dataset of over 207 000 household loans covering the entire Czech Republic has been 

obtained. The random sample of household loans utilized in this paper is drawn from a 

Bank, which (based on total assets) belongs among the top 3 banks operating in the 

Czech banking sector.17 The dataset consists of application information on those 

individuals who were granted/rejected a household loan between 2007 and 2013, 

together with their monthly repayment status. The data observation period lasts until 

2013. Table 1.A.1 in the Appendix lists the available information on household loans. 

                                                 
 
14 Abadie and Imbens (2002) suggest that a bias of simple matching estimators exists, and the simple 
method might be not suitable in cases where there is a wide range of covariates. 
15 Rosenbaum and Rubin (1983) define the propensity score as the propensity towards exposure to 
treatment 1 given the observed pre-treatment covariates. In other words, the propensity score is the 
probability of being granted a purpose loan, conditional on the borrower’s application characteristics and 
the loan contract terms. 
16 Admittedly, endogeneity might cause an identification issue, as the certain types of borrowers prefer 
certain types of loans. Nevertheless, as the default probability is analyzed conditional on the type of loan, 
the matching estimation is considered to be appropriate. 
17 The Bank has a market share of 20% for traditional bank products in the Czech Republic. It is part of 
an international financial group with its core market in Central and Eastern Europe. 
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The dataset can be considered as representative for studying household loan 

performance from several aspects. First, the observed default rate and the interest rate in 

the sample (4.9 percent and 13.4 percent respectively) is comparable to the average 

default rate and interest rate statistics in the Czech Republic (4.1 percent and 13.9 

percent) for 2007-2013. Second, the sample includes only CZK-denominated loans, and 

the vast majority of loans in the Czech Republic are CZK-denominated (the share of 

loans to households denominated in foreign currency is below 1 percent).18 Third, the 

structure of households with respect to monthly income is comparable to the national 

statistics.19 As depicted in Figure 1.A.1 in the Appendix, the mean monthly income 

observed in the sample copies the mean monthly income in the Czech Republic for all 

four age buckets. The income of households in the sample is also analogous to the mean 

income in other countries in Central and Eastern Europe, though it is significantly lower 

than the average in the European Union. Importantly, it has to be acknowledged that the 

characteristics of borrowers applying for household loans might be somewhat worse or 

distinct from the characteristics of the entire population.  

The selection of variables predicting default is driven by the information the 

Bank includes on their loan application form (the borrower’s application characteristics 

and the loan contract terms). Nevertheless, following Kocenda and Vojtek (2011), I also 

conduct a single factor analysis to check the discriminatory power of the variables 

applied in the Bank’s credit scoring. The overall information value of the application 

characteristics is calculated as the sum of information values for each category of 

application characteristics, defined for loan application i  as 

 

Information Valuei= ln(Oddsi) 







−

NoDefault
NoDefault

Default
Default ii

                               (1.4) 

                                                 
 
18 Czech National Bank: ARAD database - Monetary and financial statistics, 
http://www.cnb.cz/cnb/STAT.ARADY_PKG.STROM_SESTAVY?p_strid=AABBAA&p_sestuid=&p_la
ng=EN 
19 Eurostat, 
http://ec.europa.eu/eurostat/web/household-budget-surveys/database 
 

http://www.cnb.cz/cnb/STAT.ARADY_PKG.STROM_SESTAVY?p_strid=AABBAA&p_sestuid=&p_lang=EN
http://www.cnb.cz/cnb/STAT.ARADY_PKG.STROM_SESTAVY?p_strid=AABBAA&p_sestuid=&p_lang=EN
http://ec.europa.eu/eurostat/web/household-budget-surveys/database
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Oddsi = 
















i

i

NoDefault
NoDefault

Default
Default                                                                    (1.5) 

 

where Default represents the total number of defaulted loans and NoDefault represents 

the total number of loans that were repaid. The information value of application 

variables summarized in Table 1.A.2 confirms that the majority of application 

characteristics have an information value of between 0.1 and 0.2. The higher the 

information value, the higher the discriminatory power of the variable with the given 

categorization. 

1.4.1 The Expected Impact of Loan Contract and Application Characteristics 

on Default 

Table 1.A.1 in the Appendix summarizes the expected impact of loan term 

characteristics and application characteristics on the probability of loan default based on 

the related literature. The first set of variables include loan contract terms (Table 1.A.1, 

Panel A), which describe the loan the borrower and lender agreed on. Several 

application and loan term characteristics might signal a borrower’s low probability of 

default. Recent literature findings suggest that lower default is likely on loans of high 

amounts (Dobbie and Skiba, 2013), on loans with a specific purpose (Kocenda and 

Vojtek, 2011), and for loans that were evaluated by applying risk-based pricing20 

(Adams, Einav, and Levin, 2009). A high credit bureau score expresses the applicant’s 

low indebtedness (the score is highest if the borrower has no other debt) and a high 

behavioral score expresses the applicant’s good repayment history (the score is the 

highest if the borrower has had no problems in previous debt repayment).  

The second set of variables contains individual application characteristics (Table 

1.A.1, Panel B), which represent the socio-demographic characteristics of the potential 

borrower at the time of loan application. From the application characteristics, the 
                                                 
 
20 The Bank has been applying risk-based pricing (i.e. pricing based on the borrower’s expected riskiness) 
since January 2012. 
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likelihood of bankruptcy is expected to diminish for older (Dobbie and Skiba, 2013), 

female (Chandler and Ewert, 1976), married and university-graduated applicants 

(Kocenda and Vojtek, 2011). In addition, previous literature suggests that employment 

with stable income (Gross and Souleles, 2002), home ownership (Adams et al., 2009) 

and long employment duration (Kocenda and Vojtek, 2011) should also have a positive 

impact on loan repayment. Certain application characteristics might be omitted from 

credit scoring models. Chandler and Ewert (1976) show that if gender is allowed, men 

have a significantly smaller chance of being granted a loan. This can be because other 

variables, like low income and part-time employment, signal good repayment behavior 

in the case of females, but bad repayment behavior in the whole population. In order to 

estimate the probability of default, this paper uses the list application information 

(including gender) that the Bank applies in its credit scoring model. 

1.4.2 Descriptive Statistics 

The descriptive statistics of the application characteristics and loan contract 

terms are presented in Table 1.A.3 in the Appendix. The mean values of personal loan 

information suggest that an average borrower has been employed for more than 5 years 

and has an average net income above CZK 17 000 monthly. On average the applicants 

were approved for a loan amount of CZK 100 000 with a four-and-a-half-year maturity 

at an interest rate of 14 percent. 

Although there are several different definitions of ‘defaulted’ loans, similar to 

the literature on installment loans (Gross and Souleles, 2002; Barron, Chong, and 

Staten, 2008), I measure loan performance using delinquency rate as a proxy for 

expected default rate. I consider a loan to be in default if the borrower is more than 30 

days overdue on any payment connected with the loan. Later, for the purposes of the 

sensitivity analysis, I use the definition set by the Basel Committee on Banking 

Supervision (2004): a loan is considered to be in default if the borrower is more than 90 

days overdue on any payment connected with the loan. Table 1.1 summarizes the 

default rate of loans by loan type. 
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Purpose-loans include loans for home purchase, home renovation, purchase of 

home equipment, purchase of a new/used car and loans for other purposes (e.g. mobile 

phone, computers, etc.) and represent 14% of the total dataset (accepted and rejected 

loans). Table 1.2 presents the default rate and interest rate differentials of accepted 

loans. Consistent with national statistics, housing loans (loans for home purchase, home 

renovation, and purchase of home equipment) have a lower default rate than consumer 

credit with unspecified purpose by around 3.5%. The interest rates reflect how easy it 

would be for the bank to repossess assets from the borrower in the case of default: the 

cheapest are housing loans (connected to the ownership of property), then loans for 

vehicle purchase (connected to car ownership), and the least favorable interest rate is for 

loans with other or unspecified purposes. 

 

1.5 Results 

The results of estimating the effect of application characteristics and loan contract terms 

on borrowers’ probability of default conforms to expectations. The estimation results 

from the probit model and propensity score matching suggest that the impact of loan 

purpose on the probability of default rate is significant. Interestingly, the default rate 

differential between purpose-loans and non-purpose loans is much smaller than the 

interest rate differential. 

Table 1.1: Default rate by loan type 
Loan type No default Default Accepted  loans Acceptance rate 
Unspecified purpose 94.5% 5.5%                  91 305    50.9% 
Specified purpose 98.6% 1.4%                  14 454    51.4% 
Total             100 508                    5 219                   105 759    50.9% 
Note: Random sample of household loans, data from 2007-2013. 
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1.5.1 The Effect of Informal Collateral on Loan Default  

In order to interpret the effect of the individual loan determinants on the probability of 

default while keeping all the other covariates constant, I follow Greene (2003) and 

calculate the marginal effects from the estimation results. Table 1.3 displays the 

calculated average marginal effects of the probit model with corresponding standard 

errors for Model 1 and Model 2. 21  

Panel A of Table 1.3 summarizes the probit estimation results with respect to 

loan term characteristics.  The results from Model 1 indicate that the hypothesis that the 

purpose of the loan has no impact on the probability of loan repayment can be rejected. 

In particular, the probability of default decreases with an indicated loan purpose. 

Applicants with clear intentions and carefully planned objectives default less. 

Specifically, as a result of financing a home purchase, the borrower’s probability of 

default decreases on average by 3.6 percentage points (compared to a non-purpose 

loan). 

 

                                                 
 
21 The reference group for the application factor variables is always the one with the lowest coding 
(summarized in Table 1.A.1 in the Appendix) and the individual estimates refer to indicated changes in 
the dependent variable due to a change in the particular application characteristic compared to its 
reference group. For example, according to the positive sign of education level, relative to primary 
education being the reference group, the higher a customer’s level of education, the lower the predicted 
default is expected to be. 

Table 1.2: Default rates and interest rates per loan purpose 

Loan purpose Default rate Interest rate Accepted loans Acceptance rate 
Unspecified purpose 5.5% 14.0%                  91 305    50.9% 
Home purchase 2.3% 8.1%                    3 171    51.2% 
Home renovation 1.2% 8.2%                    6 818    51.4% 
Home equipment 1.3% 7.8%                        477    38.9% 
New/used car purchase 1.6% 11.6%                        251    48.6% 
Other purpose 0.8% 13.4%                    3 737    54.2% 
Total 4.9% 13.4%                105 759    50.9% 
Note: Random sample of household loans, data from 2007-2013. 
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The effect of financing home renovation, purchase of home equipment or a used car is 

analogous. Applicants funding other purposes (e.g. mobile phones, computers, etc.) are 

also less likely to have repayment difficulties, though the default only declines by 2.8 

Table 1.3: Probit estimation  results (Panel A – Loan term characteristics) 
    Model 1 Model 2 
Dependent variable: Default 

  
dy/dx  

(Delta method - standard error) 
 Risk-based pricing  -0.043*** -0.043*** 

 
    (0.001)    (0.001) 

Approved amount  -0.003*** -0.003*** 

 
    (0.001)    (0.001) 

Loan maturity   0.026***  0.026*** 

 
    (0.001)    (0.001) 

Loan purpose Home purchase -0.036*** -0.028*** 

  
   (0.002)    (0.005) 

 
Home renovation -0.034*** -0.010 

  
   (0.002)    (0.007) 

 
Home equipment -0.037*** -0.039*** 

  
   (0.006)    (0.006) 

 
New/used car purchase -0.036***  0.835 

  
   (0.008)    (17.367) 

 
Other purpose -0.028***  0.031** 

  
   (0.004)    (0.012) 

Applicant type Home purchase 
 

-0.014 

   
   (0.009) 

 
Home renovation 

 
-0.037*** 

   
   (0.008) 

 
Home equipment    0.011 

   
   (0.014) 

 
New/used car purchase 

 
-0.352 

   
   (9.828) 

 
Other purpose 

 
-0.062*** 

   
   (0.006) 

N   105 759 105 759 
R2 

 
0.2079 0.2132 

Prob> chi2 
 

0.000 0.000 
Loglikelihood ratio (LR) chi2   8 647.4 8 864.8 
Note: (1) The estimates denote the calculated average marginal effects for factor levels (dy/dx) 
expressing the discrete change from the base level. (2) The reference groups for the categorical 
variables are the following: Loan purpose - Non-purpose loans; Application type – Applicants only 
requesting non-purpose loans. (3) Only statistically significant results (***, **, and * denote 
significance at the 1%, 5%, and 10% levels) are presented. Standard errors are in parenthesis. 
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percentage points on average (compared to a non-purpose loan). This is natural as these 

applicants most likely finance one-time expenditures that have a relatively short lifespan 

(unlike investments in real estate). These findings complement the results of Kocenda 

and Vojtek (2011), who also utilize data from a Czech commercial bank and find that 

compared to loans for house building, loans with other purposes (e.g. renovation, the 

purchase of an apartment, land or house) have a higher estimated probability of default. 

Nevertheless, this paper goes further and aims to compare the default rate and pricing 

differential of purpose-loans and non-purpose loans after accounting for potential 

selection bias. 

When controlling for unobserved individual heterogeneity, the negative 

relationship between loan purpose and default probability is altered. The applicant’s 

type might be viewed as a proxy for assessing the ordering of expenditures by 

borrowers. Based on historical observations the applicant’s type should indicate his/her 

unobserved riskiness (i.e. what type of loan product the individual is more inclined to 

apply for). Housing loans are more likely to be chosen by risk-lover individuals (i.e. 

they invest the borrowed money in a property), while consumer credit with unspecified 

purpose is most likely to be chosen by less thoughtful individuals (i.e. the borrowed 

money is not necessarily invested and might finance unpremeditated consumption).  The 

results summarized in Panel A of Table 1.3 suggest that when controlling for the 

applicant’s type, the role of loan purpose in explaining default might be prevailed by the 

applicant’s type. Specifically, the hypothesis from Model 2 (the type of applicant 

choosing loans with different riskiness does not affect the loan default) can be rejected. 

After accounting for the applicant’s type (j dummies created for borrowers who applied 

for the loan purpose j at least once), the effect of the loan purpose diminishes and it is a 

different type of borrower with unobserved riskiness that drives the default rate. 

Compared to non-purpose loans, home renovations default less by 3.7 percentage points 

solely due to the fact that these borrowers have higher repayment incentives than loans 

without specific purpose. In the case of applicants financing a home purchase, the effect 

of loan purpose overweighs the effect of applicant type in explaining the lower default. 

The lower default rate of home equipment loans is also driven by the loan type. The 
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applicant type has the most extreme impact on loans for other purposes (e.g. loans for 

mobile phones, computers, etc.): although borrowers of these durable goods default 

more, it is the applicant’s lower riskiness that drives the better loan repayment. These 

findings are in line with Bicakova (2007), who presents qualitatively similar results on a 

sample of Italian household loans. 

The remaining loan contract terms have similar influence on default probability 

for Model 1 and Model 2. In line with the findings of Dobbie and Skiba (2013), default 

declines with the approved loan amount. This result is surprising given the asymmetric 

information between lenders and borrowers that stimulates the prominence of moral 

hazard (i.e. default is more likely on larger loans, while borrowers do not pay for the 

increased default costs) on the household loan markets (Adams et al., 2009). On the 

other hand, the default increases with longer loan maturity similar to Adams et al. 

(2009). This is predictable as default is more probable over a longer time period. 

Interestingly, interest rates turn out to be statistically insignificant. A credit bureau score 

(indicating the applicant’s indebtedness) can also successfully reveal the borrower’s 

riskiness. Both Gross and Souleles (2002) and Barron et al. (2008) confirm that the 

higher the credit bureau score, the less likely the borrower will default. The behavioral 

score (indicating the applicant’s repayment history) encompasses information about 

whether the borrower historically accepted/rejected and repaid/defaulted on loans. The 

higher the score, the better the applicant’s credit history and the better his/her future 

loan repayment behavior. These results follow the findings of Marshall, Tang and Milne 

(2010) who argue that a longer lending relationship improves the quality of loan 

portfolios. 

Application characteristics explain loan performance well and conform to 

expectations. Panel B of Table 1.3 indicates that the results are stable across the models. 

From the set of variables, monthly income is perceived as a key indicator of a 

borrower’s creditworthiness. With respect to its relationship to loan repayment, it is 

expected that the higher the applicant’s monthly income, the lower the probability s/he 

will go bankrupt. Similarly to Gross and Souleles (2002), this paper provides empirical 

evidence that after accounting for other application characteristics, the impact of 
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monthly income on default probability is very low in magnitude. This is also in line 

with Kocenda and Vojtek (2011), who find that including income in the credit scoring 

specification improves discrimination between ‘good’ and ‘bad’ applicants only 

marginally. Although Marshall et al. (2010) highlight that students are less likely to 

default, Model 1 and Model 2 cannot support this finding with statistically significant 

results. Instead, pensioners have on average (by 2.5 percentage points) a lower default 

rate than employed applicants. The level of education is also a key characteristic that 

indicates how reliable the borrower will be in repaying the loan. Applicants with only 

primary school education have the highest probability of default. In line with the results 

of Kocenda and Vojtek (2011), with every additional level of education the likelihood 

of loan default declines. Similarly, I also find that a lower probability of default is 

expected for married applicants (due to the assumption that they have an additional 

source of income in the case of job loss), and borrowers employed for a longer period or 

employed by a public organization (due to the assumption that they are more risk-

averse). The results suggest that borrowers who own real estate are also less likely to 

default (similar to Adams et al., 2009). Application and loan term characteristics not 

presented in Table 1.3 yield statistically insignificant estimation results. 

 

1.5.2 Default and Interest Rate Differential between Purpose-Loans and 

Non-Purpose Loans 

To predict the probability that an applicant for a household loan will default, 

lenders need a credit scoring model that captures the behavior of an average applicant. 

The information most frequently used is the repayment behavior of applicants who were 

granted a loan; the characteristics of those applicants who were denied a loan is not 

recorded.  Yet estimating the probability of default only on a sample of accepted 

applicants and then applying it to the sample of all applicants leads to biased estimates 

of the parameters. This exclusion of rejected applicants then results in an 

underestimation of the predictive power of the credit scoring model. 
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Table 1.3: Probit estimation results (Panel B – Application characteristics) 

    Model 1 Model 2 
Dependent variable: Default 

  

 
dy/dx (Delta method - standard 

error) 
Behavioral score  -0.001*** -0.001*** 
     (0.001)    (0.001) 
Credit bureau score  -0.001*** -0.001*** 

     (0.001)    (0.001) 
Female  -0.008*** -0.008*** 

  
   (0.001)    (0.001) 

Education Secondary (general)  0.029***  0.029*** 

  
   (0.006)    (0.006) 

 
Post-secondary (technical) -0.020*** -0.020*** 

  
   (0.007)    (0.007) 

 
Secondary (vocational) -0.011** -0.010** 

  
   (0.005)    (0.005) 

 
University -0.026*** -0.025*** 

  
   (0.005)    (0.005) 

Employment status 
   

 
Pensioner -0.025*** -0.025*** 

  
   (0.002)    (0.002) 

Employment duration  -0.001*** -0.001*** 

  
   (0.001)    (0.001) 

    Employment type Bank/insurance company -0.041*** -0.040*** 

  
   (0.003)    (0.003) 

 
Private company -0.014*** -0.013*** 

  
   (0.002)    (0.002) 

 
Public organization -0.018*** -0.018*** 

  
   (0.002)    (0.002) 

Net monthly income   0.001** 0.001** 

  
   (0.001)   (0.001) 

Marital status Married -0.012** -0.012** 

  
   (0.006)    (0.006) 

Housing status Living with parents -0.025*** -0.024*** 

  
   (0.004)    (0.004) 

 
Sharing property -0.021*** -0.020*** 

  
   (0.005)    (0.005) 

 
Personal property -0.026*** -0.025*** 

  
   (0.004)    (0.004) 

N   105 759 105 759 
R2 

 
0.2079 0.2132 

Prob> chi2 
 

0.000 0.000 
Loglikelihood ratio (LR) chi2   8 647.4 8 864.8 
Note: (1) The estimates denote the calculated average marginal effects for factor levels (dy/dx) expressing the 
discrete change from the base level. (2) The reference groups for the categorical variables are the following: 
Education – Secondary (technical); Employment status – Employed; Employment type, Marital status, Housing 
status – Unspecified by the applicant. (3) Only statistically significant results (***, **, and * denote significance 
at the 1%, 5%, and 10% levels) are presented. Standard errors are in parenthesis. 
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In order to ensure that borrowers with the same application characteristics are 

compared when quantifying the impact of loan purpose on the probability of default, 

propensity score matching is applied.  The ATT is estimated in the following steps: 

First, on the sample of household loan application data where all individuals 

have a unique observation, I estimate the propensity score on the individual 

characteristics by fitting a logistic regression: 

 

iii XPURPOSEL εββ ++= 10 ,                                                                       (1.6) 

 

Where iPURPOSEL  is the binary variable taking the value of one for purpose-loans 

and taking the value of zero for non-purpose loans, iX is the set of application 

characteristics and iε is the error term. This gives the predicted probability of loan type 

based on the set of application characteristics as a composite score.  

As a second step, I test whether the above specification is applicable. That is, 

after the propensity score is created, I test for the balancing hypothesis. It says that 

observations with the same propensity score must have the same distribution of 

application characteristics independent of loan type. The results of the balancing 

hypothesis summarized in Table 1.A.4 in the Appendix suggest that a significant part of 

the covariates is well-balanced.  

Finally, once the propensity score satisfies the balancing hypothesis, I examine 

the effect of loan type on default by using propensity score matching. Specifically, I 

group applicants with similar application characteristics and loan contract terms to show 

that the variation in default rate remains even after controlling for observable borrower 

risk. The ATT estimation results using the “nearest neighbor” matching method with 

bootstrapped standard errors are summarized in Table 1.4. The results suggest that the 

hypothesis that the average effect of loan purpose on the loan default is not significantly 

different from zero when similar applicants are compared can be rejected. Purpose-loans 

have a 0.7 percentage point lower default rate when compared to non-purpose loans. 
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The statistically significant result at a 1% level is achieved by matching over 14 000 

purpose-loans with over 90 000 non-purpose loans (Table 1.A.5 in the Appendix). 

When compared to the unmatched sample results, for the matched sample, the default 

rate differential between purpose-loans and non-purpose loans decreased by 3.4 

percentage points. 

To see the interest rate differential between the two loan types, propensity score 

matching is conducted on the same observable characteristics and loan contract terms. 

The results summarized in Table 1.5 suggest that after controlling for observable 

characteristics, purpose-loans have 3.6 percentage point higher interest rates than non-

purpose loans. The test of the balancing hypothesis (summarized in Table 1.A.6 in the 

Appendix) is favorable and only two observations are off common support (summarized 

in Table 1.A.7 in the Appendix) during the propensity score matching. 

The high interest rate differential for loans with similar default probability is 

further evidence of the heterogeneity in pricing policy for different loan types. In the 

example of the Czech Republic, Horváth and Podpiera (2012) show that the interest rate 

for household loans does not follow the market interest rate as closely as those of other 

types of loans. Alternatively, the authors suggest that the high interest rate for 

household loans is linked to the high risk margin that financial institutions impose on 

these loans. This paper goes further and points out that the high risk margin can be the 

result of mispricing or the conservative loan-granting strategy of the financial 

institution. Therefore, the pricing policy of financial institutions should be closely 

monitored in order to limit subsequent difficulties in household loan repayment. 

Table 1.4: Default rate differential - ATT estimation results 

Variable Sample Treated Controls Difference S.E. T-stat 
Default rate Unmatched  0.0137 0.0550  -0.0413 0.0019 -21.34 

       
 

Sample Treated Controls Difference Bootstrap Std. Err. z 

 
ATT 0.0138 0.0206  -0.0067 0.0023  -2.88  

 
Note: (1) “Treated” and “Control” stands for purpose-loans and non-purpose loans, respectively. (2) A 
loan is in default if the borrower is more than 30 days overdue on any payment connected with the 
loan. 
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1.6 Sensitivity Analysis 

To test the validity of the identification strategy, propensity score matching is 

performed applying an alternative definition of default. In particular, I use the definition 

set by the Basel Committee on Banking Supervision (2004) and consider a loan to be in 

default if the borrower is more than 90 days overdue on any payment connected with 

the loan. Table 1.A.8 in the Appendix summarizes the default rate of loans by loan type 

under the original definition (default occurs after 30 days overdue in payments) and the 

alternative definition (default occurs after 90 days overdue in payments). By relaxing 

the definition of default, the sample of loans in default is significantly reduced (from 

5 219 to 3 744 observations). More importantly, after the definition change there is a 

substantial drop in the default rate differential between purpose-loans and non-purpose 

loans (from 4.1pp to 3.1pp). 

The sensitivity analysis indicates that controlling for observable characteristics, 

the small difference between the default rate of the two loan types remains. The 

estimation results with the alternative definition of default are presented in Table 1.6 - 

the ATT is equal to 0.6 percentage points and is statistically significant at a 1% 

level;22that is, when comparing applicants with same characteristics and loan contract 

terms, purpose-loans have a default rate of only 0.6 percentage points higher than non-

                                                 
 
22 The detailed results of the propensity score matching are available upon request. 

Table 1.5: Interest rate differential - ATT estimation results  

Variable Sample Treated Controls Difference S.E. T-stat 
Interest rate Unmatched 9.5712 13.9741 -4.4030 0.0214 -206.12 

       
 

Sample Treated Controls Difference Bootstrap Std. Err. z 

 
ATT 9.5714 13.1382 -3.5668 0.0344 -103.80   

 
Note: “Treated” and “Control” stands for purpose-loans and non-purpose loans, respectively.  



 

 
29 

 

purpose loans. Hence, the alternative definition of default confirms the validity of the 

identification strategy and the robustness of the results.  

Borrowers’ sensitivity across loans with and without purpose was tested by 

interacting loan purpose with application characteristics. The results suggest that the 

effect of application characteristics on default does not vary for different types of loans 

as none of the regression coefficients on the interaction terms were statistically 

significant at 1% level.  

1.7 Conclusion 

Loans to households constitute the largest part of the banking loan portfolios in several 

economies.23 This paper addresses a primary problem of lending institutions; that is, 

how to evaluate customers’ probability of default prior to granting loans. Utilizing data 

from a large set of household loans from the Czech Republic, the default rates of 

purpose-loans and non-purpose loans are analyzed and compared. 

The paper offers several contributions to the current literature on the household 

loan market. First, the results provide evidence that housing loans are defaulted less 

                                                 
 
23 For instance, as at the end of 2013 in the Czech Republic, loans to individuals represented (first largest) 
49.0 percent, and loans to non-financial corporations represented (second largest) 38.9 percent of loans 
granted in the economy (Czech National Bank - Financial Market Supervision Report 2013, 
http://www.cnb.cz/en/supervision_financial_market/aggregate_information_financial_sector/financial_m
arket_supervision_reports/index.html) 

Table 1.6: Sensitivity analysis - ATT estimation results 

Variable Sample Treated Controls Difference S.E. T-stat 
Default rate Unmatched 0.0082 0.0397 -0.0315 0.0017  -19.05 

       
 

Sample Treated Controls Difference Bootstrap Std. Err. z 

 
ATT 0.0083 0.0144 -0.0061 0.0019  -3.26 

 

Note: (1) “Treated” and “Control” stands for purpose-loans and non-purpose loans, respectively. (2) A 
loan is in default if the borrower is more than 90 days overdue on any payment connected with the 
loan. 
 
 

http://www.cnb.cz/en/supervision_financial_market/aggregate_information_financial_sector/financial_market_supervision_reports/index.html
http://www.cnb.cz/en/supervision_financial_market/aggregate_information_financial_sector/financial_market_supervision_reports/index.html
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often. The existence of informal collateral (i.e. evidence of homeownership and invoice 

about loan purpose) signals better loan repayment. This is in line with theories that 

consider collateral as a tool to alleviate adverse selection on the household loan market. 

Second, the default rate differentials between household loan types are in several cases 

not driven by the purpose they intend to finance, but the type of borrower. This effect is 

most significant in the case of loans for home renovation. Third, controlling for 

observable application characteristics and loan contract terms, the default rate 

differential between purpose-loans and non-purpose loans decreases, though the interest 

rates differential between these two types of loans remains substantial. Specifically, 

while purpose-loans have, on average, only a 0.7pp higher default rate, their interest rate 

is 3.6pp higher than for non-purpose loans.  

These findings provide evidence of the asymmetric information present on the 

household loan market. Borrowers applying for purpose-loans and non-purpose loans 

have very similar default probability, but are charged substantially different interest 

rates.  This is in line with the empirical literature, according to which, financial 

institutions are prudent in household loan pricing and charge a high mark-up when 

compared to mortgage or corporate loans. Nevertheless, this raises a question whether 

the interest rate for housing loans (being subject to tax-deductibility) should not be re-

evaluated due to their lack of collateralization and higher average amount. 
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Appendix 

Figure 1.A.1: Comparison of the mean monthly income  
 

 
 

Source: Eurostat. Note: The figure depicts the mean monthly income between years 2007-2013. 
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Table 1.A.1: The list of personal loan information  
(Panel A – Loan term   characteristics) 

 

Variable description Variable name 
 in dataset Encoding 

Expected 
effect on 
default 

Recent literature 

     
Loan term characteristics  

   Loan approval indicator APPROVED dummy   
Approved amount (in CZK) AAMOUNT continuous        - Dobbie and Skiba (2013) 
   + Adams et al. (2009) 
Interest rate (in %) IR continuous   Approved loan maturity  
(in months) AMATURITY continuous + Adams et al. (2009) 

Risk band  NRISK 
   

Very low-risk 
 

1   
Low-risk 

 
2   

High-risk 
 

3   
Very high-risk 

 
4   

Credit bureau information CBINFO dummy   
Purpose-loan PURPOSEL dummy - Kocenda and Vojtek(2011) 
Loan purpose PURPOSE    

Non-purpose loan  1   
Home purchase  2   
Home renovation  3   
Home equipment  4   
New/used car purchase  5   
Other purpose  6   

Risk-based pricing RBPRICING dummy - Adams et al. (2009) 
     
Note: Random sample of household loans, data from 2007-2013. 
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Table 1.A.1: The list of personal loan information 
(Panel B – Application characteristics) 

 

Variable description Variable name 
 in dataset Encoding 

Expected 
effect on 
default 

Recent literature 

     
Application characteristics  

   Age (in months) AGE continuous - Dobbie and Skiba (2013) 
Female  FEMALE dummy - Chandler and Ewert (1976) 
Marital status MARITS    

Unspecified 
 

1   
Divorced 

 
2 + Barron et al. (2008) 

Married 
 

3 - Kocenda and Vojtek (2011) 

Partner 
 

4   
Single 

 
5   

Widow/er 
 

6   
Education EDU    

Secondary (technical) 
 

1   
Secondary (general) 

 
2   

Post-secondary (technical) 
 

3   
Secondary (vocational) 

 
4   

Post-secondary (vocational) 
 

5   
University 

 
6 - Kocenda and Vojtek (2011) 

Housing status HOUSE    
Unspecified 

 
1   

Living with parents 
 

2   
Sharing property 

 
3   

Personal property 
 

4 - Adams et al. (2009) 

Renting 
 

5   
Student dormitory 

 
6   

Employment status EMPLOYS    
Employed 

 
1   

House wife 
 

2   
Pensioner 

 
3   Student 

 
4 - Marshall et al. (2010) 

Employment duration (in months) EMPLOYY continuous - Kocenda and Vojtek (2011) 
Employment type EMPLOYT    

Unspecified 
 

1   
Bank/insurance company 

 
2   Entrepreneur 

 
3 + Marshall et al. (2010) 

Foreign company 
 

4   
Private company 

 
5   

Public organization 
 

6 - Kocenda and Vojtek (2011) 
Net monthly income (in CZK) INCOME continuous - Gross and Souleles (2002) 
Region (NUTS2) REGION dummy   
Credit bureau score CBSCORE continuous - Barron et al. (2008) 
Application score APPSCORE continuous   Behavioral score BEHAVSCORE continuous - Marshall et al. (2010) 
Note: Random sample of household loans, data from 2007-2013. 
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Table 1.A.2:  Information value of application characteristics 

Variable No default Default Total Odds  Information value  
Education     0.2 

Secondary (technical) 1 108 108 1 216 2 
 Secondary (general) 6 775 690 7 465 2 
 Post-secondary (technical) 1 713 48 1 761 1 
 Secondary (vocational) 43 951 1 813 45 764 1 
 Post-secondary (vocational) 36 512 2 371 38 883 1 
 University 10 480 190 10 670 0 
 Employment type 

    
0.3 

Unspecified 45 331 3 222 48 553 1 
 Bank/insurance company 2 142 20 2 162 0 
 Entrepreneur 2 246 201 2 447 2 
 Foreign company 3 029 380 3 409 2 
 Private company 28 023 912 28 935 1 
 Public organization 19 768 485 20 253 0 
 Marital status 

    
0.1 

Unspecified 896 76 972 2 
 Divorced 17 638 943 18 581 1 
 Married 45 385 1 672 47 057 1 
 Partner 905 63 968 1 
 Single 32 304 2 342 34 646 1 
 Widow/er 3 411 124 3 535 1 
 Gender 

    
0.0 

Male 53 205 3 269 56 474 1 
 Female 47 334 1 951 49 285 1 
 Housing status     0.2 

Unspecified 2 685 245 2 930 2 
 Living with parents 15 922 1 121 17 043 1 
 Sharing property 3 333 248 3 581 1 
 Personal property 59 617 1 892 61 509 1 
 Renting 18 976 1 712 20 688 2 
 Student dormitory 6 2 8 6 
 Employment status 

    
0.0 

Employed 86 999 4 654 91 653 1 
 House wife 1 747 122 1 869 1 
 Pensioner 11 698 437 12 135 1 
 Student 95 7 102 1 
 Loan purpose     0.2 

Non-purpose loan 86 283 5 022 91 305 1 
 Home purchase 3 098 73 3 171 0 
 Home renovation 6 734 84 6 818 0 
 Home equipment 471 6 477 0 
 New/used car purchase 247 4 251 0 
 Other purpose 3 706 31 3 737 0   

Note: Random sample of household loans, data from 2007-2013. 
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Table 1.A.3:  Descriptive statistics (Panel A – Loan term characteristics) 

Variable name Mean Std. Dev.  Min   Max  

     Loan term characteristics  Accepted loans (N=105 759) 

 
    Approved amount (in CZK) 93 653 82 100 4 000 1 000 000 

Approved loan maturity (in months) 54.0 26.5 1.0 134 
Interest rate (in %) 13.4 2.8 3.7 25.9 
Default indicator 0.04 0.19 0 1 
Purpose-loan 0.102 0.303 0 1 
Credit bureau score 318 269 -40 1 120 
Application score 178 222 -4 998 
Behavioral score 454 192 0 1 012 
          
Note: Loan characteristics are available only for approved loans. 
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Table 1.A.3:  Descriptive statistics (Panel B – Application characteristics) 

Variable name Mean Std. Dev.  Min   Max  

     Application characteristics  Accepted and rejected loans (N=207 640) 

 
    Age (in months) 485 155      216    1 159 

Female  0.479 0.500 0 1 
Marital status 

    Divorced 0.184 0.387 0 1 
Married 0.418 0.493 0 1 
Partner 0.012 0.107 0 1 
Single 0.335 0.472 0 1 
Widow/er 0.010 0.100 0 1 

Education 
    Secondary (general) 0.103 0.303 0 1 

Post-secondary (technical) 0.015 0.120 0 1 
Secondary (vocational) 0.400 0.490 0 1 
Post-secondary (vocational) 0.387 0.487 0 1 
University 0.084 0.278 0 1 

Housing status 
    Living with parents 0.170 0.375 0 1 

Sharing property 0.033 0.180 0 1 
Personal property 0.541 0.498 0 1 
Renting 0.220 0.414 0 1 
Student dormitory 0.000 0.009 0 1 

Employment status 
    House wife 0.030 0.172 0 1 

Pensioner 0.142 0.349 0 1 
Student 0.001 0.029 0 1 

Employment duration (in months) 71 90 0 579 
Employment type 

    Bank/insurance company 0.017 0.129 0 1 
Entrepreneur 0.027 0.161 0 1 
Foreign company 0.032 0.176 0 1 
Private company 0.261 0.439 0 1 
Public organization 0.178 0.383 0 1 

Net monthly income (in CZK) 17 451 11 861 1 500 000 
Credit bureau information 0.756 0.429 0 1 
Risk band  

    Low-risk 0.362 0.480 0 1 
High-risk 0.122 0.327 0 1 
Very high-risk 0.029 0.167 0 1 

Loan approval indicator 0.510 0.500 0 1 
          
Note: Loan characteristics are available only for approved loans. 
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Table 1.A.4: Balancing hypothesis – Default rate estimation 

Application and loan term characteristics Mean t-test 
Treated Control %bias t p>|t| 

            
Risk-based pricing 0.342 0.569 -51.4 -39.45 0.000 
Behavioral score 476.66 516.14 -20.0 -17.66 0.000 
Credit bureau score 385.14 513.48 -47.1 -39.92 0.000 
Interest rate 9.642 10.344 -26.8 -23.78 0.000 
Loan maturity 2.736 2.739 -0.5 -0.50 0.615 
Approved amount (in CZK) 2.713 2.731 -2.0 -2.24 0.025 
Age 485.14 507.5 -16.1 -14.74 0.000 
Female 0.435 0.462 -5.5 -4.59 0.000 
Secondary (general) 0.037 0.036 0.2 0.19 0.849 
Post-secondary (technical) 0.020 0.016 3.5 2.96 0.003 
Secondary (vocational) 0.471 0.471 -0.1 -0.08 0.934 
Post-secondary (vocational) 0.293 0.300 -1.4 -1.24 0.216 
University 0.170 0.173 -0.8 -0.60 0.549 
House wife 0.018 0.016 1.5 1.29 0.196 
Pensioner 0.063 0.081 -6.4 -6.03 0.000 
Student 0.001 0.001 0.8 1.00 0.317 
Employment duration (in months) 82.11 88.965 -7.6 -6.12 0.000 
Bank/insurance company 0.029 0.020 5.5 4.58 0.000 
Entrepreneur 0.023 0.016 4.3 3.97 0.000 
Foreign company 0.022 0.011 6.5 7.06 0.000 
Private company 0.331 0.487 -34.2 -27.04 0.000 
Public organization 0.215 0.182 8.3 6.99 0.000 
Net monthly income 22585 24360 -12.4 -9.26 0.000 
Divorced 0.171 0.201 -8.0 -6.57 0.000 
Married 0.522 0.537 -2.9 -2.44 0.015 
Partner 0.011 0.011 0.1 0.11 0.910 
Single 0.266 0.225 9.0 8.01 0.000 
Widow/er 0.020 0.023 -2.1 -1.96 0.050 
Living with parents 0.114 0.101 3.9 3.66 0.000 
Sharing property 0.028 0.009 10.6 11.53 0.000 
Personal property 0.690 0.747 -11.8 -10.63 0.000 
Renting 0.148 0.125 6.0 5.61 0.000 
            
   Summary of the distribution of |bias| 

       Pseudo R2 LR chi2 p>chi2 MeanB MedB 
  0.089 3488.96 0.000 8.7 5.5 
Note: “Treated” and “Control” stands for purpose-loans and non-purpose loans, respectively. 
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Table 1.A.5: Common support – Default rate estimation 

Treatment assignment Common support Total 
Off support On support 

Untreated 0 91 297 91 297 
Treated 294 14 160 14 454 
Total 294 105 457 105 751 
Note: “Treated” and “Control” stands for purpose-loans and non-purpose loans, respectively. 
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Table 1.A.6: Balancing hypothesis – Interest rate estimation 

Application and loan term characteristics Mean t-test 
Treated Control %bias t p>|t| 

 
     Risk-based pricing applied 0.342 0.336 1.2 0.98 0.326 

Behavioral score 474.34 478.92 -2.3 -2.00 0.045 
Credit bureau score 384.51 381.06 1.3 1.07 0.286 
Loan maturity 2.740 2.735 0.8 0.87 0.387 
Approved amount (in CZK) 2.717 2.725 -0.9 -1.09 0.276 
Age 486.52 488.2 -1.2 -1.11 0.269 
Female 0.436 0.444 -1.5 -1.32 0.188 
Secondary (general) 0.037 0.037 0.1 0.06 0.950 
Post-secondary (technical) 0.020 0.020 0.2 0.17 0.866 
Secondary (vocational) 0.470 0.466 0.8 0.71 0.479 
Post-secondary (vocational) 0.292 0.301 -1.8 -1.58 0.113 
University 0.171 0.167 1.4 1.05 0.293 
House wife 0.018 0.017 0.6 0.54 0.589 
Pensioner 0.064 0.062 0.7 0.75 0.453 
Student 0.001 0.001 0.0 -0.00 1.000 
Employment duration (in months) 82.267 84.032 -2.0 -1.62 0.106 
Bank/insurance company 0.028 0.028 0.0 0.04 0.972 
Entrepreneur 0.023 0.021 1.3 1.13 0.259 
Foreign company 0.022 0.021 0.5 0.49 0.624 
Private company 0.330 0.333 -0.5 -0.41 0.680 
Public organization 0.216 0.219 -0.8 -0.66 0.512 
Net monthly income 22467 22253 1.5 1.15 0.250 
Divorced 0.171 0.166 1.2 1.05 0.293 
Married 0.525 0.529 -0.8 -0.71 0.480 
Partner 0.011 0.012 -0.5 -0.38 0.702 
Single 0.263 0.258 1.0 0.88 0.377 
Widow/er 0.020 0.022 -1.3 -1.26 0.206 
Living with parents 0.113 0.112 0.2 0.22 0.823 
Sharing property 0.028 0.027 0.5 0.47 0.638 
Personal property 0.693 0.690 0.5 0.45 0.656 
Renting 0.147 0.149 -0.7 -0.66 0.508 
            

      Summary of the distribution of |bias| 
       Pseudo R2 LR chi2 p>chi2 MeanB MedB 

  0.001 39.89 0.475 0.9 0.8 
Note: “Treated” and “Control” stands for purpose-loans and non-purpose loans, respectively. 
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Table 1.A.7: Common support – Interest rate estimation 

Treatment assignment Common support Total 
Off support On support 

Untreated 0 91 297 91 297 
Treated 2 14 452 14 454 
Total 2 105 749 105 751 
 Note: “Treated” and “Control” stands for purpose-loans and non-purpose loans, respectively. 
 

Table 1.A.8: Default rate by loan type 

  Default = 30 days  overdue Default = 90 days  overdue 

Loan type No default Default No default Default 

Unspecified purpose 94.5% 5.5% 96.0% 4.0% 

Specified purpose 98.6% 1.4% 99.2% 0.8% 

Total    100 508           5 219          101 983      3 744    
Note: Random sample of household loans, data from 2007-2013. 
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Chapter 2 

 

 

Does Loan Maturity Matter in Risk-Based Pricing? 

Evidence from Household Loan Data 
 

 

 

2.1 Introduction 

 

Over recent decades, substantial increases in the number of household loans24 have been 

observed worldwide. Lending to individuals to finance the purchase of goods or 

services has become particularly popular in emerging markets. Despite the initial 

difficulties related to the availability of only minimal credit history on borrowers and 

pioneering methods used to evaluate the creditworthiness of borrowers, lending 

institutions instituted extensive provision of household loans. The quantitative 

                                                 
 
24 The European Central Bank defines household loans in the following way: Credit for consumption 
(loans granted for mainly personal consumption of goods and services) includes loans to sole 
proprietors/unincorporated partnerships if the loan is predominantly used for personal consumption. 
Loans included in this category may or may not be collateralized by various forms of security or 
guarantee. Typical examples of loans in this category are loans granted for the financing of motor 
vehicles, furniture, domestic appliances and other consumer durables, holiday travel, etc. Loans to cover 
overdrafts and credit card loans also typically belong in this category. Lending for house purchase is 
excluded from this category.  
Manual on Monetary Financial Institution balance sheet statistics, 
https://www.ecb.europa.eu/pub/pdf/other/manualmfibalancesheetstatistics201204en.pdf?426543c0dbb56
bb78f5afd978b44db17 

https://www.ecb.europa.eu/pub/pdf/other/manualmfibalancesheetstatistics201204en.pdf?426543c0dbb56bb78f5afd978b44db17
https://www.ecb.europa.eu/pub/pdf/other/manualmfibalancesheetstatistics201204en.pdf?426543c0dbb56bb78f5afd978b44db17
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importance of household loans in emerging markets can be illustrated using the example 

of the Czech Republic, where between 2000 and 2012 the total volume of household 

loans rose from CZK 31.1bn to CZK 157.3bn. 25 

The rapid growth of the consumer credit market has drawn increased attention to 

the asymmetric information present between lenders and borrowers. Stiglitz and 

Weiss’s 1981 paper shows that lenders who are imperfectly informed about the default 

probability of borrowers (henceforth referred to as a borrower’s ‘riskiness’) may suffer 

from adverse selection when deciding to grant a loan or not. Adverse selection occurs 

when, being aware of their own riskiness, “low-risk” borrowers with low probability of 

default will not be willing to pay increased prices for loans in the form of higher interest 

rates, while “high-risk” borrowers with a high probability of default will accept them. 

To minimize this, lenders may choose to deny loans rather than raise interest rates. As 

the price fails to regain equilibrium in the market, market imperfection appears. Stiglitz 

and Weiss (1981) define the solution of limiting the amount of credit as credit rationing 

equilibrium, a situation when certain borrowers are refused funds even if they are 

willing to pay higher interest rates, as lenders are already maximizing profit. According 

to Jaffee and Stiglitz (1990) lenders can also react to adverse selection by offering 

multiple loan contract terms (i.e. loan packages with a distinct loan amount, interest rate 

and maturity). 

Differentiating interest rates based on the borrowers’ riskiness (i.e. applying 

risk-based pricing of interest rates) is one such attempt to mitigate asymmetric 

information on the household loan market. A number of studies (Edelberg, 2006; Einav, 

Jenkins, and Levin, 2012) argue that borrowers are highly responsive to interest rate 

variations. Specifically, they provide evidence that risk-based pricing raises the 

borrowing costs of “high-risk” applicants’; and hence restricts the level of their debt.  

Addressing excess loan demand under imperfect information becomes more 

important in a loan market where borrowers have liquidity constraints. An individual 

with liquidity constraints does not have sufficient funds to finance present consumption 

                                                 
 
25 Czech Statistical Office - Statistical Yearbook of the Czech Republic, 
http://www.czso.cz/csu/.nsf/engpubl/10n1-04-2004 

http://www.czso.cz/csu/2004edicniplan.nsf/engpubl/10n1-04-2004
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with income that will be accumulated in the future. Adams, Einav, and Levin (2009) 

show that this inability to reallocate funds over time can result in notable adverse 

selection (i.e. borrowers with a high probability of default increase their debt amount). 

Supporting the results of the previous literature, Adams et al. (2009) highlight that risk-

based pricing can effectively diminish the severity of the information problem (i.e. 

“high-risk” borrowers receive lower loan amounts). Nevertheless, in identifying loan 

demand and loan repayment the authors did not consider an important aspect for 

borrowers with liquidity constraints, the role of loan maturity. 

Although practitioners and policymakers consider interest rates as a key driver 

of loan demand, the sensitivity of loan demand to maturity might be equally crucial. 

Estimating the demand elasticity with respect to both interest rate and maturity, 

Attanasio, Goldberg, and Kyriazidou (2008) and Karlan and Zinman (2008) show that 

borrowers with low income are more responsive to maturity changes than to interest rate 

changes. Their finding is consistent with binding liquidity constraints, a situation when 

borrowers with limited available cash choose longer loan maturity in order to reduce 

monthly payments, rather than decreased interest rates. The authors shed light on the 

role of maturity on purchasing behavior; however, limited and inconclusive empirical 

evidence exists about its implications for loan performance or pricing decisions. 

The current paper attempts to fill this gap by estimating loan demand and loan 

performance jointly and highlighting the implications of maturity choice for screening 

out risky borrowers. First, I derive the econometric specifications for loan granting and 

repayment. I use these to estimate the elasticity of loan demand and probability of 

default with respect to both interest rate and loan maturity.  Specifically, I test the null 

hypothesis that loan interest rate and maturity have no role in loan demand, whether 

borrowers are liquidity constrained or not. Second, I point out the role of a risk-based 

maturity setting in decreasing the information asymmetries on the loan market. In 

particular, I test the null hypothesis that maturity choice after risk-based pricing has no 

impact on loan default. Third, I show that the time of default is maturity-dependent and 

differs across borrowers in the different risk categories. The key contribution of this 

paper is that it shows that by reflecting the borrower’s riskiness in the price of a loan, 
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both loan maturity and loan defaults increase. Specifically, liquidity constrained “high-

risk” borrowers are offered high interest rates and most often choose long-term loans. 

This eventually increases their probability of default. Hence, a risk-based maturity 

setting does not necessarily improve the quality of household loans granted or alleviate 

the adverse selection present on the lending market. 

This paper utilizes a unique dataset of rejected and accepted household loans 

from a Czech commercial bank (hereafter, the “Bank”).26 These include loans granted 

for the purchase of goods and services, loans granted for the 

modernization/reconstruction of housing and loans without a stated purpose. The unique 

dataset contains extensive information on borrower application characteristics, loan 

contract terms, and loan performance information of over 220 000 individuals who 

applied for a household loan between 2007 and 2013. From January 2012, the Bank has 

applied risk-based pricing, which is reviewed and developed periodically. 

2.2 The Lending Process 

Altman (1980) defines the lending process as a sequence of activities involving two 

principal parties whose association spans from loan application to successful or 

unsuccessful loan repayment. Figure 2.1 illustrates the five key levels of the lending 

process.  

Level 1  

The individual enters the household loan market by submitting an application 

form for a loan.27 The borrower discloses information about his/her socio-demographic 

characteristics such as age, marital status, education, etc. (application characteristics) 

                                                 
 
26 The Bank does not wish to be explicitly identified. The anonymized data is available for replication. 
27 On the household loan market, loan contract terms vary substantially across individual loan providers. 
Prior to loan application, the borrower has indicative information (for random loan amount and a 
minimum interest rate offer, each lender publishes a menu of maturities and annuity payments) about the 
lenders’ offer from publicly available marketing materials. When entering the loan application process, 
the borrower uses this information to decide about his/her preferred loan maturity/amount given liquidity 
constraints – this requested loan amount and loan maturity can be considered the result of a searching 
process.  
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and information related to the requested loan such as the loan amount, loan maturity, 

etc. (loan term characteristics). The loan maturity is initially set by the applicant and is 

assumed to be driven by the long-term unemployment incidence of the region where the 

loan is requested.28  

Level 2 

The lender determines whether to grant the requested loan to the applicant. In 

order to assess the creditworthiness of their potential debtors, financial institutions use 

credit scoring techniques. The main purpose of these techniques is to estimate the 

probability that an applicant for credit will default by a given time in the future.29 In its 

credit scoring model, the Bank estimates the default probability using 3 types of credit 

scores: behavioral score (derived from the applicant’s repayment history), application 

score (derived from the applicant’s descriptive socio-demographic characteristics) and 

credit bureau score (derived from information about the applicant’s existing and prior 

debt). Using these scores the bank assigns each applicant a risk band (four groups of 

“very low-risk”, “low-risk”, “high-risk” and “very high-risk” borrowers). If the 

applicant’s loan is pre-accepted (based on his/her aggregate credit score), the lender 

then assigns an interest rate for the requested loan maturity/amount. The interest rate is 

set primarily by the lender.30 The lender offers loan contract terms that maximize its 

expected profit (taking into account the expected profit from an alternative investment 

of the loan amount). The interest rate is assumed to be driven by the applicant’s risk 

margin, which is the price for the riskiness of the borrower and reflects the lender’s risk 

aversion at the time of the loan request. 

 

 

                                                 
 
28 The change of loan maturity is subject to a new loan application. 
29 These are evaluated by analyzing a sample of customers who applied for loans in the past, where there 
is good information on subsequent loan performance history. 
30 The assumption that loan maturity is primarily set by the borrower and the approved loan 
amount/interest rate is set primarily by the lender is made based on the Bank’s best practice applied in the 
household loan market. It is also in line with the related literature. In Karlan and Zinman (2008) the 
lender identifies the loan price based on the borrower’s pre-approved riskiness; and Attanasio et al. 
(2008) argue that credit-constrained borrowers’ loan maturity is driven by their liquidity. 
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Level 3 

Given the approved loan amount, interest rate and maturity the applicant has a 

chance to accept (open the account) or reject the loan contract conditions (no loan is 

originated). The borrower’s decision is driven by his/her risk awareness and by the 

amount of monthly annuity payment (especially if the applicant is liquidity constrained). 

A loan is considered to be approved if it is approved by both the lender and the 

applicant. A loan is considered to be rejected if it is rejected by either the lender or the 

applicant. 

Level 4 

Given that the lender and the borrower agree on loan contract terms31 and the 

borrower is granted the loan, the borrower starts repaying the principal and interest in 

the form of monthly annuity payments. The borrower can either follow the agreed 

repayment schedule, or renegotiate the loan contract terms (e.g. early repayment).32 

Level 5 

The borrower either fully repays the loan or defaults. The borrower is considered 

to be in default if he/she is more than 90 days overdue with any payment connected with 

the loan.  

                                                 
 
31 The final loan contract terms are determined by the relative risk aversion across the borrower and the 
lender. The Bank’s lending process is designed such that the lender reflects his/her risk aversion primarily 
through interest rate level and the borrower reflects its risk aversion primarily through maturity choice. In 
line with Adams et al. (2009) I assume that the competitive outcome is the contract that maximizes the 
borrowers’ utility subject to lenders making non-negative profits. 
32 Early repayment might be more likely for “high-risk” borrowers, since they can have then better credit 
after successful payments. However, early repayment is connected with additional borrowing costs in the 
form of a prepayment penalty. 
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Figure 2.1: The lending process and data availability 
 

 

Note: Author’s illustration of the lending process based on the description of the Bank. For loan request i the following information is available: li - loan amount, ri - 
loan interest rate, ti - loan maturity, xi - the borrower’s application characteristics, ni - the region in which is loan is requested, ui - the region’s long-term unemployment 
incidence, ai - approved loan, bi - number of debtors registered at the Czech Banking Credit Bureau at the time of loan request, mi - risk margin, yi - dummy for risk-
based pricing, yi - dummy for renegotiated loan, di - dummy for default, tdi - months until default. The individual equations of the econometric specification are 
described in Section 1.3 Methodology. 

Level 1 Borrower: Loan application Borrower: No loan application
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(2.2)

Level 3 Borrower: Loan agreement          Borrower: No loan agreement
(105 759 obs)      (9 185 obs) (2.6)
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2.3 Methodology 

Overall, the main objective of this paper is to develop an econometric model that 

demonstrates the role of risk-based pricing and loan maturity on a consumer credit 

market with asymmetric information. I start by estimating the loan demand elasticity 

with respect to maturity and interest rate. Then I highlight the time dependency of 

default and examine the maturity specific factors of loan performance.  

The expected impact of selected variables and the predictions of the related 

literature are summarized in Table 2.A.1 in the Appendix. 

2.3.1 Modeling Loan Demand 

The loan demand estimation is complicated by the endogeneity of loan contract terms 

and sample selection (the non-random character) present in the household loan data. 

These can cause the parameter estimates to be biased. This section discusses how this 

paper deals with these two key issues in the loan demand estimation. 

 

Loan Interest Rate 
       
Interest rate endogeneity arises as lenders can change the loan price based on loan 

demand, and vice versa, the borrower can adjust his/her loan demand based on offered 

interest rates. In setting the price, the profit-maximizing lender aims to increase the 

interest rate, whereas the borrower aims to receive a loan at the lowest possible rate.  

The literature deals with the endogeneity of interest rates in different ways. In 

Alessie, Weber, and Hochguertel (2005), the Italian usury law of 1997 (which limited 

interest rate charges) is used as an instrument for the identification of endogenous 

interest rate in loan demand estimation. The authors find evidence for the interest-rate 

elasticity of loan demand and argue that it is region specific. In Attanasio et al. (2008), 

the endogeneity of loan interest rate is addressed by exploiting data on the U.S. tax 

reform of 1986 (the change in interest deductibility affected the after-tax interest rate on 

the household loan market). Adams et al. (2009) identify loan demand on the car loan 
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market by exploiting variation in list prices (i.e. catalogue car prices that differ from 

negotiated prices) and variation in the level of down payments. 

Similarly to Karlan and Zinman (2008), this paper captures the variation in the 

interest rate by information on the applicant’s risk category. Applicants are classified 

into risk bands based on their estimated riskiness. These bands are then translated into 

risk margins taking into account the (conservative or aggressive) loan granting strategy 

of the lender. The higher the lender’s risk aversion, the higher the risk margin and the 

final loan interest rate.  I assume that the lender sets the final interest rate based on the 

loan’s risk margin (the lender’s willingness to accept the expected risk of the borrower). 

The interest margin has no effect on the loan amount, as the borrower is not aware of 

the lender’s (frequently changing) loan granting strategy when setting its preferences 

aiming to smooth consumption. 

 

Loan Maturity 
 
Endogeneity of maturity is a further issue if the borrower cares primarily about monthly 

borrowing costs rather than the ultimate price of the loan. If the borrower is credit 

constrained and offered monthly payments (as result of maturity chosen by the borrower 

and interest rate set by the lender) that s/he cannot afford, s/he can either apply for a 

lower loan amount (which might decrease the interest rate) or prolong the maturity of 

the initially requested loan (accepting the initial interest rate). I assume that setting loan 

maturity is primarily the decision of the borrower, who aims to decrease the cost of 

lending by choosing shorter loans. S/he is willing to prolong the length of the loan only 

to such an extent that the decreased monthly payments are acceptable for her expected 

future financial resources. The lender aims to prolong the loan maturity, as this is 

associated with higher interest income, while the higher riskiness of the borrower is 

implicitly reflected in the interest rate. It is questionable how successful the lender is in 

transferring the riskiness of borrower into the loan price or how significant the adverse 

selection is on the market. I discuss this issue in more detail in the next section. 

The majority of studies neglect the effect of loan maturity on loan demand 

(Edelberg, 2006; Adams et al., 2009), and only limited empirical literature focuses on 

the role of loan maturity in borrowing behavior. In Attanasio et al. (2008) the 



 

53 
 

endogeneity of loan maturity is addressed by using data on the increased durability of 

cars (due to slower car depreciation, the maturity of loans is prolonged). Karlan and 

Zinman (2008) cooperate with the lender to generate exogenous variation in loan 

maturity. Specifically, randomly assigned “maturity suggestions” (loan offers for 

different maturities) are used to identify the elasticity of loan demand with respect to 

maturity. The randomized trial was conducted by a microfinance institution in South 

Africa.  

To identify loan maturity in the loan demand equation, this paper utilizes data on 

the region’s unemployment duration. Specifically, I follow Jurajda and Munich (2002) 

and use the long-term unemployment incidence (hereafter, the “LTU incidence”) as a 

measure of unemployment duration. The LTU incidence is defined as the share of 

persons unemployed for 12 months or more in the total number of unemployed persons, 

expressed as a percentage.33 There are two reasons to use LTU incidence as a measure 

of unemployment duration. First, as opposed to the LTU rate (the share of the number 

of long-term unemployed to the size of the labor force), the definition of LTU incidence 

is more transparent in transition countries where the concept of labor-force participation 

has been adopted gradually. Second, LTU incidence allows a researcher to capture the 

specifics of the business cycle (during recession it first declines driven by the increase 

in short-term unemployed workers, then it rises driven by the difficulty of the short-

term unemployed to find employment) with the required regional granularity.  

Several studies emphasize the role of unemployment in determining the duration 

of household loans. Navratil (1981) is the first to highlight that in periods of high 

unemployment rates, the short-term lending for auto loans is likely to increase, thus 

decreasing loan maturity. A contrary finding is provided by the more recent paper by 

Chetty (2008), who shows that for the unemployed, the welfare gains of longer loans 

are much higher than the welfare gains of shorter loans. In particular, by prolonging the 

loan maturity, borrowers can decrease the monthly repayment amount and overcome 

                                                 
 
33 Eurostat, 
http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tgs0005
3 
 

http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tgs00053
http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tgs00053
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financial difficulties during longer periods of unemployment. Attanasio et al. (2008) and 

Stephens (2008) argue that liquidity constraints determine the length of loans.  

Motivated by the above studies, this paper utilizes the incidence of regional 

unemployment for the identification of loan maturity. Higher unemployment is expected 

to prolong household loans, as obtaining loans with longer maturity enables borrowers 

to take precautions against the risk of a long period of unemployment. On the other 

hand, the region’s long-term unemployment incidence does not influence the number of 

loans requested, because the requested loan is primarily the result of the borrower’s 

preferences about smoothing his/her consumption. If the borrower prefers to borrow 

some amount (rather than to save over a period of time for an expenditure), s/he is not 

discouraged from borrowing because s/he lives in a region which has experienced an 

increase in its long-term unemployment incidence. What s/he primarily cares about in 

such a region are favorable loan contract terms.  

 

Sample Selection 
 
Sample selection arises for two reasons: 

1) no information is available on those who did not wish to borrow;  

2) information on rejected applicants is limited - loan contract terms are available 

only for those who were approved for a loan. 

The related empirical literature acknowledges the difficulties in correcting for sample 

selection on the household loan market. Alessie et al. (2005) accept that the sample 

selection cannot be corrected, using Heckman’s (1979) model, as the authors fail to find 

a variable that predicts loan approval but does not influence loan demand. They assume 

that a bank with a leading market position attracts applicants with good repayment 

behavior. Their solution is to estimate loan demand by controlling for the observable 

characteristics of the borrowers. Specifically, Alessie et al. (2005) correct for the 

composition effect connected to observable characteristics by p-score weighting the 

individual observations. Using data on auto loans, Attanasio et al. (2008) correct the 

sample selection in the loan demand equation through characteristics that have impact 

on buying a car, but do not necessarily affect loan amount (e.g. dummy for car 

ownership). 
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In line with the literature, this paper could not account for individuals who did 

not apply for a loan. I assume that the probability that an individual will apply for a loan 

has no endogenous effect on the probability of default. An individual can apply for a 

loan regardless of his/her expectation of the default probability it will be granted, as 

credit bureaus collect only information on borrowers who were eventually provided a 

loan.34 If a potential borrower is rejected by the credit scoring evaluation, this is 

recorded in the credit bureau system for a maximum of 12 months. Thus, unless the 

customer has a bad loan repayment/default history connected with a previously 

provided loan, being rejected has no direct impact on the quality of his future loans after 

12 months. In such cases, the probability of being accepted is equal in all institutions 

with no rejection history. The only cost implied by loan application is the time cost. 

On the other hand, this paper does take into account the limited information on 

those who applied, but did not ultimately sign the loan contract. This includes both 

cases when the Bank rejects the applicant or when the applicant does not accept the loan 

contract terms offered by the Bank. To solve this problem of missing data on rejected 

loans, I follow Heckman (1979) and first estimate the selection equation on the whole 

sample of applicants. Similarly to Haas, Ferreira, and Taci (2010) and Bicakova, 

Prelcova, and Pasalicova (2010), the level of information-sharing about the borrowers’ 

indebtedness is used to capture the variation in loan approval. Specifically, in this paper 

the exclusion restriction for the selection equation is the number of debtors monitored 

by the Czech Banking Credit Bureau. Over the past ten years, the credit bureaus have 

achieved substantial development both in the quality of information and the coverage of 

debt in the financial sector. This allows the use of information about a varying number 

of debtors to identify loan approval. The more positive information that is available 

about the debt level of a borrower, the more likely it is that the borrower is reliable and 

will maintain regular monthly loan repayments. At the same time, the borrower’s 

decision about the requested loan amount is independent of developments in credit 

                                                 
 
34 The CBCB - Czech Banking Credit Bureau was established in 2002 for the purpose of operating the 
Client Information Bank Register (CIBR). It contains data on contractual (loan) relations between banks 
and their clients  
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bureau information. His/her available credit history affects the decision of the 

prospective borrower to apply for a loan rather than the amount he/she applies for. 

 

Model Specification   
  
I specify the borrower’s loan demand with respect to interest rate and maturity by the 

following econometric specification: 

 

liiiiiii strxLl εαααα ++++== 4321)log( ,                                              (2.1)  

riiiiii snmxr εββββ ++++= 4321 ,                                                               (2.2)                                                                                  

tiiiiii snuxt εχχχχ ++++= 4321 ,                                                                (2.3)  

 

where for each loan application i = 1…N the following is known: iL  is the approved 

loan amount (takes logarithmic form as loans are non-negative) , ix  is the vector of the 

information on application characteristics, behavioral and credit bureau score; ir  is the 

loan interest rate set primarily by the lender, it  is the loan maturity set primarily by the 

borrower, im  is the borrower’s risk margin, iu is the long-term unemployment 

incidence in the borrower’s region, in  is the region where the application I was 

submitted to the lender, is  is a dummy for risk-based pricing introduced by the Bank in 

January 2012; and tiri εε , , liε  are the unobserved error terms. Consequently, using a 

loan repayment schedule with equal total payments, the lender charges the borrower a 

monthly annuity payment of ))1(1/()*()( it
iiiii rrLLp −+−= . 

To jointly account for both endogeneity and sample selection, I extend the 

sample selection model for endogenous explanatory variables suggested by Wooldridge 

(2002) and estimate the structural equation of interest (2.1) together with the two 

equations describing the endogenous interest rate (2.2) and maturity (2.3), and the 

selection equation (2.4):     

 

)0(1 54321 >+++++= biiiiiii sbumxa εδδδδδ                                             (2.4)  
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where ia  is a binary variable indicating whether the loan is accepted )1( =ia or rejected 

)0( =ia  either by the borrower or the lender, im  is the borrower’s risk margin, iu is the 

long-term unemployment incidence in the borrower’s region, ib is the number of 

debtors registered at the Czech Banking Credit Bureau at the time of the loan request 

and biε  is the unobserved error term.  

The following assumptions are made: 

(a) ),,,,,( iiiiii sbumnx  is always observed, ),,( iii trl  is observed when 1=ia ; 

(b) ),( bili εε  is independent of ),,,,,( iiiiii sbumnx ; 

(c)  bε ~ Normal (0, 1); 

(d) bibili εγεε 4)|( =Ε ; 

(e) 0)'( 1 =Ε riz ε  (where iiii snmxz 43211 βββββ +++= ) and ;02 ≠β  

0)'( 2 =Ε tiz ε  (where iiii snuxz 43212 χχχχχ +++= ) and .02 ≠χ  

Assumption (a) emphasizes the non-random nature of the sample. The exogeneity of 

application characteristics ix  and the two exogenous variables ii um ,  is formalized by 

assumption (b). Assumption (c) states that the error term of the selection equation 

follows standard normal distribution. Linearity in the regression of liε  on biε  is 

required by assumption (d).  Lastly, assumption (e) results from the endogeneity of loan 

contract terms in the loan demand equation (2.1). It states that (i) the error terms tiri εε ,

have zero mean and are uncorrelated with the right-hand-side variables, and (ii), 

),( 22 χβ  are non-zero, requiring that at least two exogenous variables  ),( ii um  do not 

appear in the loan demand equation (the order condition). Under this assumption the 

parameters 2β  and 2χ are identified. 

The derived estimating equation has the following form: 

 

giiiiiiiiiiiii asbumnxgstrxl εαααα +++++= ),,,,,,(4321 ,                   (2.5) 
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where ),,,,,,|(),,,,,,( iiiiiiiliiiiiiii asbumnxasbunmxg εΕ≡ and 

),,,,,,|( iiiiiiililigi asbumnxεεε Ε−≡ . By definition the error term is uncorrelated with 

the exogenous variables: 0),,,,,,|( =Ε iiiiiiigi asbumnxε . Equation (2.5) is estimated 

by 3SLS on the sample of accepted loan applications )1( =ia  using the exogenous 

variables and the estimated inverse Mills ratio, where  

)()1,,,,,|( 543214 iiiiiiiiiiili sbumxasbumx δδδδδlαε ++++==Ε .   

Specifically, the estimation is performed in two steps. First, using all 

observations the selection equation is estimated by probit and the estimated inverse 

Mills ratio i

^
l  is obtained. Second, using the subsample for which both ),( ii tr  are 

observed, the equation 

 

giiiiiii strxl εlααααα +++++= ˆ
54

^

3

^

21                                                    (2.6) 

 

is estimated by 3SLS, using the exogenous variables ),,,(
^

iiii bum l . 35 In particular, I 

test the null hypothesis that interest rate and loan maturity have no effect on the 

approved loan amount: )0:( 20 =αH and )0:( 30 =αH . The sensitivity of loan demand 

to loan contract terms is estimated both on the pooled sample (including all 

observations) and on the subsample of low-income borrowers (liquidity constrained 

borrowers36 whose net monthly income at the time of loan application is below the 

sample’s median net monthly income).   Finally, the null hypothesis of no selection bias 

( 0: 50 =Η α ) is tested by exploiting the 3SLS t statistic for 5α̂ ; and the null hypothesis 

of no endogeneity is tested by estimating the structural model (2.1) that includes the 

residuals from the two equations describing the endogenous interest rate (2.2) and 

maturity (2.3). 

                                                 
 
35 The sample selection correction is also present in the equations for interest rate (2.2) and maturity (2.3) 
as these are estimated on approved loans. 
36 Borrowers with liquidity constrains cannot be easily identified. This paper utilizes the approach of 
Attanasio et al. (2008) who assume that low-income borrowers are liquidity constrained borrowers. 
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2.3.2 Modeling Default Probability 

The goal of this section is to propose an econometric model that uses demand estimates 

for predicting default probability. The model should reflect how the different loan 

contract terms influencing consumer behavior affect the loan performance. Specifically, 

I focus on the time dependency of default (the length of time the borrower avoided 

default has an impact on the probability of default) and test for the significance of 

asymmetric information hidden in the maturity choice.37 

To do this, I take advantage of the semi-parametric proportional hazard model, 

which relates the individual covariates and the time of event (or failure, as I refer to 

default) occurrence in multiplicate form.  If ),( idi xtl is the probability that an individual 

defaults at time dit  (conditional on making regular payments until default), ix are 

application characteristics, the relationship between the distribution of failure times and 

the vector of application characteristics can be expressed by the semi-parametric 

proportional hazard model developed by Cox (1972) as 

 

)exp().(),( 7654321 iiiiiiiidioidi ynrstysxtxt φφφφφφφll ++++++= ,         (2.7)              

 

where is  is a dummy variable taking  the value 1 if the application was evaluated using 

risk-based pricing, and iy  is a dummy variable taking  the value 1 if the application 

renegotiated ex post. The advantage of proportional hazard models is that whereas 

parametric models use information over the whole time horizon (distributional 

assumption for baseline hazard )(0 ditl ; estimation of the cumulative hazard), semi-

                                                 
 
37 Flannery (1986), Diamond (1991) and Berger, Espinosa-Vega, Frame, and Miller (2005) were the first 
to suggest that the size of asymmetric information between lenders and borrowers can significantly affect 
the choice of loan maturity. They focused on commercial and industrial loans. 
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parametric models use only the information at failure times (no distributional 

assumption for baseline hazard; estimation of the direct hazard). 

The incomplete information on the occurrence of events during the observation 

period belongs among the specifics of duration time estimation. As the information 

about the loan performance after the end of the observation period is missing, I deal 

with right censored data. There are three possibilities of the event status: the event 

occurred by *
dit   (duration time), the event did not occur by the end of observation 

period or the event did not occur before loan completion ( ct ). For each individual one 

observes dit , where ),min( *
cdidi ttt = .   

Loan amount and default jointly are modelled jointly: 38 

 

)ˆexp().(),( 7654321 giiiiiiiidioidi nrststxtxt εφφφφφφφll ++++++= ,      (2.8)             

 

I test the null hypothesis that loan maturity choice after risk-based pricing has no impact 

on the loan default; formally I test 0: 20 =φH . Similarly to Adams et al. (2009), the 

identification is through the two-stage control function approach – to estimate the loan 

default, the estimated residual giε̂  from loan demand estimation is used as a control 

variable. The main goal is to identify the borrowers’ private information at the time of 

loan application that affects both loan amount and loan default. The models for loan 

demand (2.6) and the default probability (2.8) are also estimated for short-, medium- 

and long-term loans39 and across borrowers in the different risk categories. 

                                                 
 
38 In line with Adams et al. (2009), the hazard model does not control for general macroeconomic 
conditions, as the loan amount and default are modeled jointly. Loan demand is assumed to reflect the 
macroeconomic development, as it is likely to decrease during recessions and grow during booms. 
39 Glennon and Nigro (2005) argue that the determinants of default are maturity-specific. 
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2.4 Data 

2.4.1 Data Description 

The data sample consists of the household loan information of over 220 000 individuals. 

The dataset includes application characteristics (e.g. age, marital status, education, etc.), 

loan contract information (e.g. interest rate, loan maturity, loan amount, etc.) and 

performance indicators (e.g. date of default, monthly outstanding balance, overdue 

payments, etc.).  The consumers requested the loans between 2007 and 201340, where 

the last performance observation is from April 2013. Table 2.A.2 in the Appendix 

summarizes the list of available information on household loans. Table 2.A.3 in the 

Appendix, reporting the basic descriptive statistics, suggests that an average borrower is 

40 years old, receives a net monthly income above CZK 17 000 and has been employed 

for more than 5 years. 

In order to measure the performance of the loans, monthly data on repayment 

status are used. For each loan, one piece of the following information is available: the 

number of the months until default, the number of months until on-time repayment or 

the number of months until the end of the data observation interval (April 2013). That 

is, each loan has its survival time: either time to default or time to non-default (being 

repaid or censored data). This enables a more precise estimation of default, as the 

number of successful payments until default is also taken into account.  

When monitored on 30th April 2013, 3.6% of those who had obtained a loan had 

defaulted and the rest of the borrowers had performed well.  Although there are several 

different definitions of “defaulted” loans, the one of the Basel Committee on Banking 

Supervision (2004) is applied: a loan is in default if the borrower is more than 90 days 

overdue with any payment connected with the loan. 

Rejected loans comprise 48.9% of the total number of household loans. These 

include those applications that were either rejected by the lender (due to application 

                                                 
 
40 The dataset differentiates between the date of loan request and loan opening. Year dummies are created 
based on the loan request date at which the Bank decided to accept or reject the applicant. 
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characteristics or credit history) or the borrower (due to unfavorable loan terms offered 

by the lender). Figure 2.1 illustrates the number of rejected loans by the lender (92 696 

loans) and by the borrower (9 185 loans). Rejection by the borrower is not identified 

separately, as 90% of the applicants are rejected based on the information gained from 

the credit bureau. 

In addition to information on interest rate, data on risk margin are also limited. 

Risk margin is observed only after risk-based pricing is implemented (January 2012). I 

solve this issue by multiple imputation (similar to Adams et al. 2009). For each 

approved loan application prior to January 2012, the missing risk margin is replaced 

with predicted values from a regression analysis of the complete data. The development 

of risk margin over the observation period is summarized in Table 2.A.4 in the 

Appendix. The sample statistics indicate that there is a gradual increase in the risk 

margin and lenders requested the highest risk margin during 2012. 

The household loan data utilized in this paper is application-specific – for one 

application I observe only one outcome (loan contract terms, loan performance) and the 

change of loan contract terms is subject to a new unidentified loan application. 

Renegotiated loans were first signed with initial loan contract terms, and then during the 

loan repayment period the loan contract terms were renegotiated. As information on the 

renegotiated interest rates is not available, renegotiated loans cannot be used to study 

the incidence of change in loan maturity before and after the introduction of risk-based 

pricing. 

Figure 2.1 summarizes how the data availability differs over the individual 

levels of lending process. 

 

2.4.2 Data Analysis 

Although there are several estimation techniques of the survival functions, non-

parametric methods are very useful for descriptive purposes in the first place. They 

illustrate the shape of the unconditional hazard and survival functions before 
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introducing the covariates into the model. Specifically, the survivor and the hazard 

functions are easily interpretable and effective in describing the duration dependence. 

Figure 2.A.1 in the Appendix depicts the cumulative hazard function (with 95% 

confidence intervals) estimated by the Nelson-Aalen method. It suggests that at the end 

of the household loan observation period, almost 90% of the sample remained without 

default. Figure 2.2 plots the estimated hazard rate (with 95% confidence intervals), 

which expresses the instantaneous probability of default conditional on making regular 

payments until a particular month during the time under analysis. According to the 

smoothed hazard function that treats all household loans equally and does not 

distinguish between maturity or risk bands (‘pooled’), defaults are most likely to occur 

around the 30th month from the date of loan provision. On the other hand, the smoothed 

hazard function by maturity suggests that default is not only time-dependent, but also 

maturity dependent. 

Table 2.1 presents the preliminary sample statistics of average maturity (Panel 

A) and average default rate (Panel B) before/after the introduction of risk-based pricing. 

Due to the limited observation period after the introduction of risk-based pricing 

(January 2012), the before/after periods are represented only by one year (2011/2012). 

After the introduction of risk-based pricing, borrowers in all risk bands increase their 

average loan duration, but the “very high-risk” group remains almost unchanged. This is 

mostly likely driven by the low number of observations in the “very high-risk” group. 

The statistics from Table 2.1 (Panel A) are in line with Karlan and Zinman (2008), who 

show that by longer maturity the borrower can lower the amount of monthly payments 

and, hence, afford a higher loan amount. Panel B summarizes the observed average 

default rate for risk bands and loans with different maturities. One year before the 

introduction of risk-based pricing, “very high-risk” borrowers with medium-term loans 

(2-year to 5-year) have the highest incidence of default. One year after the introduction 

of risk-based pricing, borrowers with long-term loans (more than 5-year) default the 

most frequently.  

Hence, the main focus of this paper is whether banks applying risk-based pricing 

are able to decrease the adverse selection (i.e. borrowers with high probability of default 
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increase their debt amount) for liquidity constrained borrowers who are more sensitive 

to maturity changes (relative to interest rate changes).  

 

 

 

 

 

 

Figure 2.2: Smoothed hazard function pooled and by maturity 

 

Note: (1) The figure on the left depicts pooled data, i.e. treats all household loans equally and does not 
distinguish between maturity or risk bands. (2) The figure on the right depicts smoothed hazard 
functions for short-term loans with maturity up to 2 years, medium-term loans with maturity between 
2 and 5 years and long-term loans with maturity more than 5 years.  
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Table 2.1: Sample statistics on before/after risk-based pricing 

Panel A - Average maturity 

 
Average loan maturity Number of observations 

Risk band Before  risk-
based pricing 

After  risk-
based pricing 

Before  risk-
based pricing 

After  risk-
based pricing 

Very low-risk 4.4 4.6 8 667 9 902 
Low-risk 4.5 4.7 6 443 6 624 
High-risk 4.1 4.2 1 450 1 580 

Very high-risk 3.5 3.5 551 454 
Total 4.4 4.5 17 111 18 560 

 

Panel B - Average default rate 

Risk band Before  risk-
based pricing 

After  risk-
based pricing 

Very low-risk 0.6% 0.1% 
<2Y 0.1% 0.0% 
2Y-5Y 0.4% 0.1% 
>5Y 1.0% 0.2% 

Low-risk 1.8% 0.4% 
<2Y 1.0% 0.3% 
2Y-5Y 1.8% 0.4% 
>5Y 2.1% 0.4% 

High-risk 3.9% 1.3% 
<2Y 2.9% 1.0% 
2Y-5Y 4.0% 1.3% 
>5Y 4.2% 1.3% 

Very high-risk 5.3% 4.0% 
<2Y 3.1% 2.9% 
2Y-5Y 6.2% 3.3% 
>5Y 5.2% 6.4% 

Total 1.5% 0.4% 
 

Note: (1) The Bank classifies borrowers into risk bands based on the estimated riskiness. (2) Before 
risk-based pricing is represented by year 2011, and after risk-based pricing is represented by year 
2012.  
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2.5 Results 

This section starts with the estimation of the loan demand model that accounts for both 

the presence of sample selection and the issue of endogeneity. Then I discuss the 

estimates of default probability derived from the Cox proportional hazard model and 

highlight the implications of risk-based pricing on the quality of granted loans, i.e. on 

the probability of default. Both loan demand and loan performance are examined with 

respect to loan contract terms and with respect to the borrower’s application 

characteristics. Finally, I illustrate the maturity-dependent default probability for 

borrowers in the different risk categories. 

 

2.5.1 The Elasticity of Loan Demand to Interest Rate and Maturity 

First, I correct for the non-random feature of the data, by estimating the probability of 

loan approval based on selection equation (2.6).41 The non-random issue of the sample 

arises as there is no information available on those individuals who do not apply for a 

loan and limited information on those who apply but do not sign the loan contract. 

Therefore, I estimate the Heckman (1979) selection model that corrects for this type of 

incomplete information. The number of individuals monitored in the Czech Banking 

Credit Bureau at the time of loan application is used as an exclusion restriction. 

Second, using the estimated inverse Mills ratio from the Heckman (1979) model 

I estimate the loan demand equation (2.1) with the two equations describing the 

endogenous interest rate (2.2) and loan maturity (2.3). The three equations are estimated 

using 3SLS, where the two exclusion restrictions are the borrower’s risk margin and the 

average long-term unemployment incidence in the borrower’s region.  

I reject the null hypothesis that loan interest rate and maturity have no role in 

loan demand (Table 2.2). Consistent with Alessie et al. (2005), the results suggest that 
                                                 
 
41 I follow the variable (non-)categorization of the Bank. In all models the variables are used in the same 
manner as they enter the Bank’s credit scoring model. The individual estimates refer to indicated changes 
in the dependent variable due to a change in the particular application characteristic compared to its 
reference group. 
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increasing interest rates discourage individuals from borrowing (loan demand 

decreases), whereas with longer maturity the loan amount increases (similar to 

Attanasio et al.’s 2008 study).  

The test results suggest that both the null hypothesis of no-sample-selection and 

the null hypothesis of no-endogeneity can be rejected at 1%.  First, I use the t statistic 

on the inverse Mills ratio (variable INVMILLS) as a test for the presence of sample 

selection 0: 40 =Η α . The z-value of 15.6 is strong evidence against the null hypothesis 

of no-sample-selection (Table 2.2, Column 2). Second, I test the endogeneity of interest 

rate and maturity jointly. Specifically, for both endogenous variables I obtain the 

reduced form residuals, and then I test the joint significance of these residuals in the 

structural equation using an F test.  The F (2, 105723) being equal to 188.8 is well 

above the 1% critical value in the F distribution, so I reject the null hypothesis that 

interest rate and loan maturity have no effect on the approved loan amount. In addition, 

I reject the null hypothesis that risk margin has no effect on the loan interest rate (at 1% 

significance level) or that LTU incidence has no effect on the loan maturity (at 5% 

significance level). One percentage point increase in the risk margin leads to a 0.3 

percentage point increase in the interest rate (similar to Karlan and Zinman’s2008 

findings); and a one-year increase in the region’s long-term unemployment leads to a 

0.4-year increase in the loan maturity rate (similar to Chetty’s  2008 findings). 

In Table 2.2, I also compare the interest rate and maturity elasticity of loan 

demand for the pooled sample (Column 2) and for the subsample of low-income 

borrowers (Column 4). The results suggest that the loan amount of a low-income 

borrower increases with longer maturity (a one-month increase in the loan maturity 

results in a 2.1% increase in the loan amount), while the interest rate has statistically no 

significant effect for these borrowers. The increasing importance of loan maturity for 

low-income borrowers is in line with Karlan and Zinman’s 2008 findings. However, 

this paper goes further and uses the maturity elastic demand estimates to see the 

probability of default they imply (see the details in the next section).  

Table 2.A.5 in the Appendix summarizes how the borrower’s application 

characteristics affect loan demand. The parameter estimates have the expected signs. If 

focusing on low-income borrowers, the results suggest that women, pensioners, students 
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and borrowers who rent housing borrow less. Interestingly, married borrowers, with a 

university education who are employed in a banking/insurance company have the higher 

loan demand. The results are qualitatively comparable to the loan demand determinants 

derived by Attanasio et al. (2008) and Adams et al. (2009). 

2.5.2 The Impact of Risk-Based Pricing on Loan Performance 

The borrower’s probability of default is estimated on the loan contract term and the 

borrower’s application characteristics using the Cox proportional hazard model. In 

addition to the loan and application characteristics, the estimated residual from the loan 

Table 2.2: Estimation results of loan demand and default probability 

Dependent variable Loan demand Default probability 

  Pooled sample Low-income 
subsample Pooled sample Low-income 

subsample 

 Coef.  Coef.  Haz. ratio  Haz. ratio  
Interest rate        -0.035***            0.003 

 
1.172*** 

 
1.084***  

  (0.004)    (0.006)  (0.010)   (0.017)  
Approved maturity  0.015***   0.021*** 

 
1.004*** 

 
1.005***  

  (0.001)    (0.001)  (0.001)   (0.001)  
Credit bureau score 0.001***  -0.001*** 

 
0.999*** 

 
0.999*** 

   (0.000)    (0.001)  (0.001)   (0.000)  
Behavioral score 0.001***    0.001*** 

 
0.998*** 

 
0.998*** 

   (0.000)     (0.001)  (0.001)  (0.000)  
Inverse Mills ratio 0.326***            0.013 

       (0.028)    (0.037)      
Risk-based pricing 0.060***  0.020**  0.442*** 

 
       0.328**  

 (0.005)     (0.008)  (0.127)    (0.164)  
Renegotiated loan 

 
 

  
6.020*** 

 
 6.671*** 

      (0.294)   (0.415)  
Approved maturity 
*Risk-based pricing             1.009** 

 
       1.013  

       (0.004)   (0.008)  
Loan demand 
residual 

 
 

  
0.819*** 

 
 0.793*** 

      (0.024)   (0.032)  
R2 0.5093  0.4639   

 
  

 
  

N 105 759  46 598  105 759  46 598  
Log likelihood     -38 221  -20 223  
Prob> chi2     0.000  0.000  Loglikelihood ratio 
(LR) chi2        4 858   2 639   

Note: (1) For loan demand estimation the logarithmic form of approved loan amount is used. (2) 
Estimation results presented only for variables that were statistically significant at least in one model. 
***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. Standard errors are in 
parenthesis. 
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demand equation is included in the model as a control variable. Table 2.2 summarizes 

the estimation results (hazard rates) for the pooled sample (Column 6) and for the 

subsample of low-income borrowers (Column 8). The Cox partial likelihood model 

provides a semi-parametric specification for the relationship between hazard rates and 

the application characteristics.42 Column 6 and Column 8 in Table 2.2 quantify the 

hazard rate, )exp(β , for the application characteristics as a percentage of the hazard rate 

for their reference groups. The results provide evidence of the effect of risk-based 

pricing (variable RBPRICING) introduced by the Bank over the observation time (in 

January 2012). As the elasticity of loan demand with respect to maturity has been 

shown to be statistically significant, I introduce an interaction term of risk-based pricing 

with approved maturity (RBPRICING*AMATURITY). The hazard ratio on this 

interaction term suggests that the null hypothesis that maturity choice after risk-based 

pricing has no impact on loan default can be rejected. Given risk-based pricing, 

prolonging loan maturity increases the probability of default for the pooled sample of 

borrowers by 1.3% (derived from coefficients in Table 2.2 Column 6) and for the sub-

sample of low-income borrowers by 1.2%.43 The time-dependence in default described 

below suggests that the negative impact of long-term loans is likely to increase as the 

observation period is extended (loan performance after introducing risk-based pricing is 

examined only over the fourteen-month period between January 2012 and April 2013). 

In other words, differentiating between borrowers solely through different interest rates 

causes borrowers to choose either to reduce the loan amount or to prolong maturity to 

compensate the lender for their riskiness. The latter then leads to higher default 

probability for both the liquidity constrained and liquidity unconstrained borrowers. 

Thus, banks seeking to mitigate adverse selection by developing risk-based pricing 

should also test for the increasing riskiness of the borrower pool with respect to loan 

duration. These results complement the findings of Adams et al. (2009), who quantify 

                                                 
 
42The reference group for the application factor variables is always the one with the lowest coding. For 
the coding of variables refer to Table 3.A.3 in the Appendix. 
43 As a robustness check the simple probit of loan default was performed on all observations (with default 
occurring within 24 months after loan origination). This alternative specification yields similar 
conclusions as those derived from the Cox proportional hazard model. 
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the positive impact of risk-based pricing on loan performance without controlling for 

the endogeneity of loan maturity.  

The effect of individual application characteristics on default probability 

presented in Table 2.A.5 in the Appendix is in line with the expectations. For instance, 

consistent with Kocenda and Vojtek (2009), the hazard ratio for low-income borrowers 

with a university education is only 56% of the hazard rate for those who have a 

secondary technical education. A longer survival time without default increases with a 

longer period of employment as in Bicakova (2007). Borrowers who own property are 

associated with a 43% lower risk of default than those who do not own property. These 

results are in line with the predictions of Einav et al. (2012). 

Figure 2.A.2 in the Appendix plots the fitted Cox proportional hazards 

regression by loan maturity. It depicts the estimated default probability for the pooled 

sample and for the subsamples with different maturity: borrowers of short-term loans 

(maturity up to two years) are the most likely to be defaulted after the 18th month of 

granting; medium-term loans (maturity between two and five years) are the most likely 

to be defaulted at the 30th month, and long-term loans (more than five years maturity) 

are defaulted most frequently around the 34th month. Comparing the pooled 

proportional hazards and the proportional hazards by maturity, all achieve their peak 

before the end of the third year.44 These results suggest that the timing of default is 

maturity-specific. While Glennon and Nigro (2005) find that between 1983 and 1998 

the default most frequently occurs before the end of the second year after loan 

origination, Figure 2.A.2 shows that between 2007 and 2013 the default occurrence 

peaks around the third year. This can be explained by the overall prolongation of 

household loans. 

                                                 
 
44 It has to be highlighted that the results would be more precise by extending the observation period. 
Specifically, the timing of default might be influenced by the observed length of the loan (time span 
between loan origination and the date of default, maturity or the end of the observation period). At the 
time of monitoring (in April 2013), 64% of loans originated between 2007-2013 are right censored (did 
not reach default or maturity), with the average loan length for the observed loans being 29 months. 
Therefore, to see the sensitivity of loan performance, I estimate the Cox proportional hazards regression 
only for loans originating between 2007-2009 with an average loan length of 42 months. Compared to the 
findings derived based on the original sample the overall hazard rate increases, but the default for the 
pooled sample remains most likely around the 30th month from loan origination. 
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To see how significant the time-dependent default is across borrowers in the 

different risk categories, I also report the brief description of the data and plot the 

proportional hazard by maturity and by risk band (Figure 2.3). In line with expectations, 

the basic survival-time data statistics suggest that the default rate (i.e. number of failures 

per subject) increases with risk band for each sample. Nevertheless, after accounting for 

the application and loan contract characteristics in estimating the Cox model, “high-

risk” borrowers prevail over “very high-risk” borrowers in default. This might be 

explained by the prudent loan granting strategy of the Bank, which aimed to closely 

monitor the quality and strictly limit the number of “very-high risk” households in the 

sample.  

The overall model fit of the individual hazard regressions is assessed by 

computing the Cox-Snell residuals. If the model is correct, the real cumulative hazard 

function based on the covariate vector has an exponential distribution and a hazard rate 

of one. The default variation plotted in Figure 2.3 is the most significant for long-term 

loans. Comparing the dashed line with Cox-Snell residuals in Figure 2.3, it can be 

concluded that the maturity-specific models fit the data equally as well as the model for 

the pooled sample. The results suggest that in addition to risk-based household loan 

pricing, maturity-based credit scoring is also inevitable. 

 

Figure 2.3: Cox proportional hazards regression pooled and by maturity/by risk bands     

 
                                                                           (continued on next page) 
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Note: The model fit is evaluated by the comparison of the Cox cumulative hazard to the Cox Snell 
residual.  
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2.6 Conclusion 

Driven by the sharp increase in household loan demand, the role of credit scoring 

methods in assessing a borrowers’ creditworthiness is becoming more and more 

important.  Thanks to the wide range of credit history collected by credit bureaus, 

lenders can screen out risky borrowers in their credit scoring models, not only based on 

application characteristics, but also on behavioral and credit history information. 

However, the ultimate effect of different loan contact terms on loan demand and loan 

performance has not yet been examined in the process of loan provision. 

The aim of this paper is to present empirical evidence about whether a risk-

based maturity setting improves the quality of granted household loans and alleviates 

the adverse selection present on the lending market. Taking advantage of a sample of 

both accepted and rejected household loans from a Czech commercial bank, this paper 

is the first to point out the importance of maturity in loan demand and loan 

performance. 

This study contributes to the existing literature on household loan markets in 

several ways. First, it shows that low-income borrowers can be credit-constrained and 

thus have limited access to credit at market interest rates. Empirical evidence suggests 

that loan demand for low-income borrowers is more sensitive to available cash and loan 

maturity changes than to interest rate changes. This is consistent with the assumption 

that borrowers with liquidity constraints are likely to prolong the maturity of their loans 

in order to borrow the desired loan amount. Second, by reflecting the borrower’s 

riskiness in the interest rate, lenders discourage risky borrowers from obtaining short-

term loans. This then leads to higher default probability for both liquidity-constrained 

and liquidity-unconstrained borrowers. The finding is consistent with the theoretical 

prediction that reduced asymmetric information encourages “high-risk” borrowers to 

either demand lower loan amounts or to prolong their loan maturity to compensate the 

lender for their riskiness. Therefore, banks seeking to mitigate adverse selection by 

developing risk-based pricing should also test the increasing riskiness of borrower pool 

due to the sensitivity to loan duration. Finally, this paper provides evidence that the time 

of default is maturity-dependent and differs across borrowers in the different risk 
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categories. Hazard models that differentiate between loan maturities and risk bands have 

an equally good model fit as one that treats all household loans as pooled and does not 

distinguish between these two factors. These results further advocate the necessity of 

maturity-based credit scoring. 
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Appendix 

 

Figure 2.A.1: Nelson-Aalen estimator of the cumulative hazard function 

 
Note: Random sample of household loans, data from 2007-2013. 
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Figure 2.A.2: Cox proportional hazards regression pooled and by maturity 

 
Note: The figure on the upper left corner depicts Cox proportional hazards for pooled data, i.e. treats all 
household loans equally and does not distinguish between maturity. The other three figures depict the 
Cox proportional hazards for short-term loans with maturity up to 2 years, medium-term loans with 
maturity between 2 and 5 years and long-term loans with maturity of more than 5 years.  
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Tables  

Table 2.A.1: Expected relationship between selected dependent 

and independent variables 
Dependent 
variable Independent variable Expected 

relationship Literature 

Loan approval Car ownership + Alessie et al. (2005) 

 Use of credit bureau information + Bicakova et al. (2010) 
Loan demand Interest rate - Alessie et al. (2005) 

 Maturity + Attanasio et al. (2008) 

Loan interest rate Risk category + Karlan and Zinman 
(2008) 

 
Tax reform on phase out of interest 
deductibility + Attanasio et al. (2008) 

 Usury law on max interest rate level - Alessie et al. (2005) 
Loan maturity Unemployment rate + Chetty et al. (2008) 

 Durability of cars + Attanasio et al. (2008) 
Default 
probability Interest rate + Adams et al. (2009) 

  Maturity + Adams et al. (2009) 
Note: Author’s literature review.  
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Table 2.A.2: The list of personal loan information (Panel A) 

Variable description Variable name 
 in dataset Encoding 

Application characteristics   Age (in months) AGE continuous 
Female  FEMALE dummy 
Marital status MARITS  Unspecified 

 
1 

Divorced 
 

2 
Married 

 
3 

Partner 
 

4 
Single 

 
5 

Widow/er 
 

6 
Education EDU  Secondary (technical) 

 
1 

Secondary (general) 
 

2 
Post-secondary (technical) 

 
3 

Secondary (vocational) 
 

4 
Post-secondary (vocational) 

 
5 

University 
 

6 
Housing status HOUSE  Unspecified 

 
1 

Living with parents 
 

2 
Sharing property 

 
3 

Personal property 
 

4 
Renting 

 
5 

Student dormitory 
 

6 
Employment status EMPLOYS  Employed 

 
1 

House wife 
 

2 
Pensioner 

 
3 

Student 
 

4 
Employment duration (in months) EMPLOYY continuous 
Employment type EMPLOYT  Unspecified 

 
1 

Bank/insurance company 
 

2 
Entrepreneur 

 
3 

Foreign company 
 

4 
Private company 

 
5 

Public organization 
 

6 
Net monthly income (in CZK) INCOME continuous 
Region (NUTS2) REGION dummy 
Credit bureau score CBSCORE continuous 
Application score APPSCORE continuous 
Behavioral score BEHAVSCORE continuous 

                   Note: Random sample of household loans, data from 2007-2013.



 

82 
 

Table 2.A.2: The list of personal loan information (Panel B) 

Variable description Variable name 
 in dataset Encoding 

Loan term characteristics  
 Requested amount (in CZK) RAMOUNT continuous 

Year of loan request RYEAR dummy 
Loan approval indicator APPROVED dummy 
Approved amount (in CZK) AAMOUNT continuous 
Interest rate (in %) IR continuous 
Risk margin (in %) RM continuous 
Approved loan maturity (in months) AMATURITY continuous 
Risk band  NRISK 

 Very low-risk 
 

1 
Low-risk 

 
2 

High-risk 
 

3 
Very high-risk 

 
4 

Credit bureau information CBINFO dummy 
Loan with specified purpose PURPOSE dummy 
Number of individuals monitored in the CBCB (in mil.) CBIND continuous 
Long-term unemployment rate (in %) UNDUR continuous 
Risk-based pricing RBPRICING dummy 
Default indicator DEF dummy 
Renegotiated loan RENEG dummy 
Number of months to default DEFAULT continuous 
Note: Random sample of household loans, data from 2007-2013. 
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Table 2.A.3:  Descriptive statistics (Panel A) 

Variable name Mean Std. Dev.  Min   Max  

     Application characteristics  Accepted and rejected loans (N=207 640) 
Age (in months) 485 155 216 1 159 
Female  0.479 0,500 0 1 
Marital status 

    Divorced 0.184 0.387 0 1 
Married 0.418 0.493 0 1 
Partner 0.012 0.107 0 1 
Single 0.335 0.472 0 1 
Widow/er 0.010 0.100 0 1 

Education 
    Secondary (general) 0.103 0.303 0 1 

Post-secondary (technical) 0.015 0.120 0 1 
Secondary (vocational) 0.400 0.490 0 1 
Post-secondary (vocational) 0.387 0.487 0 1 
University 0.084 0.278 0 1 

Housing status 
    Living with parents 0.170 0.375 0 1 

Sharing property 0.033 0.180 0 1 
Personal property 0.541 0.498 0 1 
Renting 0.220 0.414 0 1 
Student dormitory 0.000 0.009 0 1 

Employment status 
    House wife 0.030 0.172 0 1 

Pensioner 0.142 0.349 0 1 
Student 0.001 0.029 0 1 

Employment duration (in months) 71 90 0 579 
Employment type 

    Bank/insurance company 0.017 0.129 0 1 
Enterepreneur 0.027 0.161 0 1 
Foreign company 0.032 0.176 0 1 
Private company 0.261 0.439 0 1 
Public organization 0.178 0.383 0 1 

Net monthly income (in CZK) 17 451 11 861 1 500 000 
Loan with specified purpose 0.102 0.303 0 1 
Existence of credit bureau information 0.756 0.429 0 1 
Risk band  

    Low-risk 0.362 0.480 0 1 
High-risk 0.122 0.327 0 1 
Very high-risk 0.029 0.167 0 1 

Loan approval indicator 0.510 0.500 0 1 
              Note: Loan characteristics are available only for approved loans. 
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Table 2.A.3:  Descriptive statistics (Panel B) 

Variable name Mean Std. Dev.  Min   Max  

     Loan term characteristics  Accepted loans (N=105 759) 
Approved amount (in CZK) 93 653 82 100 4 000 1 000 000 
Approved loan maturity (in months) 54.0 26.5 1.0 134 
Interest rate (in %) 13.4 2.8 3.7 25.9 
Long-term unemployment rate (in %) 2.8 1.2 0.7 6.1 
Risk margin (in %) 1.8 1.4 -5.2 10.6 
Number of individuals monitored in the CBCB (in mil.) 4.9 0.3 4.2 5.3 
Default indicator 0.04 0.19 0 1 
Credit bureau score 318 269 -40 1 120 
Application score 178 222 -4 998 
Behavioral score 454 192 0 1 012 
          
Note: Loan characteristics are available only for approved loans. 

 

 

Table 2.A.4: Summary statistics of risk margin by year 

Year of loan request N Mean Standard deviation 
2007 12 167 1.40 1.44 
2008 16 567 1.52 1.38 
2009 18 378 1.79 1.39 
2010 17 784 1.88 1.39 
2011 17 122 1.99 1.44 
2012 36 866 2.65 2.32 
2013 10 523 2.47 2.18 
Total 129 407 2.06 1.84 
Note: Prior to January 2012 the missing risk margin data is derived based on predicted value from a 
regression analysis of the complete data. 
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Table 2.A.5: Estimation results of loan demand and default probability 
Dependent variable Loan demand Default probability 

  Pooled sample Low-income sample Pooled sample Low-income sample 

 Coef.  Coef.  Haz.ratio  Haz.ratio  
Age -0.001*** 

 
        -0.001 

 
       1.000** 

 
0.999  

    (0.001)       (0.001)    (0.001)       (0.001)  
Female  -0.125*** 

 
    -0.053*** 

 
 0.742*** 

 
    0.710***  

    (0.004)        (0.006)     (0.028)      (0.035)  
Education 

   
  

    Secondary (general) -0.125*** 
 

    -0.080*** 
 

1.762*** 
 

  1.592** 
    (0.178)        (0.023)    (0.216)      (0.253)  

Post-secondary        
(techn.)  0.065*** 

 
0.016 

 
0.607** 

 
  0.449** 

    (0.021)         (0.031)     (0.127)      (0.158)  
Secondary (voc.) 0.034*** 

 
0.001 

 
0.751** 

 
  0.674** 

   (0.016)        (0.022)     (0.088)      (0.105)  
Post-secondary   
(voc.)       -0.054** 

 
  -0.048** 

 
        1.067 

 
        1.017 

      (0.017)        (0.022)     (0.124)      (0.156)  
University  0.130*** 

 
    0.076*** 

 
  0.396*** 

 
  0.559** 

   (0.173)        (0.026)     (0.059)      (0.134)  
Employment status 

   
  

    House wife -0.129*** 
 

    0.063***          1.050 
 

        0.956 
    (0.015)       (0.017)     (0.121)     (0.125)  

Pensioner -0.160*** 
 

-0.023** 
 

  0.529*** 
 

   0.573***  
 0.010      (0.011)     (0.040)      (0.052)  
Student -0.257*** 

 
       -0.119* 

 
        1.597 

 
        1.409 

    (0.056)        (0.064)    (0.717)      (0.712)  
Employment duration        -0.001*    -0.001*** 

 
  0.996*** 

 
   0.997*** 

       (0.001)      (0.000)     (0.001)      (0.001)  
Employment type 

   
  

    Bank/insurance   
company        -0.038** 

 
   0.157*** 

 
0.410** 

 
        0.635 

       (0.018)      (0.040)    (0.111)      (0.243)  
Entrepreneur        -0.013 

 
        0.021 

 
        1.180* 

 
        1.148 

       (0.012)     (0.014)      (0.102)      (0.124)  
Foreign company    0.060*** 

 
        0.017 

 
        0.986 

 
        1.152 

       (0.010)     (0.016)     (0.062)       (0.102)  
Private company         0.010* 

 
-0.017** 

 
0.880** 

 
        1.129 

      (0.005)      (0.009)     (0.046)      (0.085)  
Public organization -0.071*** 

 
 -0.039*** 

 
 0.691*** 

 
  0.786** 

    (0.006)     (0.010)   (0.042)      (0.066)  
(continued on next page)
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Table 2.A.5: Estimation results of loan demand and default probability 
 Dependent variable Loan demand Default probability 

  Pooled sample Low-income sample Pooled sample Low-income sample 

 Coef.  Coef.  Haz.ratio  Haz.ratio  
Net monthly income  0.001***   0.001***  1.001     0.999***  
   (0.001)   (0.001)        (0.001)      (0.001)  
Marital status          
     Divorced         0.022  -0.063***  1.013          0.984  
   (0.019)    (0.023)        (0.144)     (0.173)  
     Married  0.116***   0.080***    0.793*          0.840  
   (0.018)    (0.022)        (0.111)     (0.144)  
     Partner  0.091***          0.078**  0.929          0.928  
   (0.026)     (0.033)       (0.188)     (0.243)  
     Single  0.098***          0.026  0.979          1.001  
    (0.019)    (0.023)        (0.138)     (0.173)  
     Widow/er  0.072***         -0.012  0.908          1.001  
   (0.021)      (0.024)       (0.159)     (0.213)  
Housing status          
      Living with parents  0.104***    0.093***      0.564***    0.564***  
   (0.012)     (0.015)       (0.048)     (0.061)  
      Sharing property         0.030**         -0.031      0.616***  0.670**  
   (0.014)     (0.019)      (0.066)     (0.094)  
      Personal property  0.035***          0.005      0.562***    0.574***  
   (0.011)     (0.014)       (0.046)     (0.060)  
      Renting  0.030***         -0.026*           1.000          1.015  
  (0.011)      (0.015)      (0.079)     (0.104)  
      Student dormitory  0.089***          0.067           1.812          1.685  
           (0.199)    (0.234)      (1.294)     (1.213)  
Region. Loan Purpose Yes 
R2 0,5093   0,4639           
N 105 759  46 598  105 759  46 598  
Log likelihood     -38 221  -20 223  
Prob> chi2     0.000  0.000  Loglikelihood ratio (LR) chi2         4 858   2 639   
Note: (1) For loan demand estimation the logarithmic form of approved loan amount is used. (2)  ***, **, 
and * denote significance at the 1%, 5%, and 10% levels, respectively. Robust standard errors are in 
parenthesis. 
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Chapter 3 

Credit Ratings and Their Information Value: 

Evidence from the Recent Financial Crisis 

 

 

 

3.1 Introduction 

The financial crisis in the early 2000s has underscored the financial markets’ reliance on 

credit ratings. Credit ratings express rating agencies’ opinion about the ability and 

willingness of debt issuers to meet their financial obligations in full and on time. They 

assist investors in evaluating the financial health of debt issuers and regulatory 

authorities in overseeing the financial market through rating-contingent policies. 

Nevertheless, there are at least three issues financial market participants should 

consider when relying on credit ratings. First, inflated credit ratings failed to predict the 

recent financial crises. This has evoked widespread debate on the quality of credit 

ratings. Second, credit ratings are costly for companies.  Although unrated companies 

may have financial difficulties they do not wish to reveal, the lack of a credit rating does 

not necessarily convey a negative signal about the company’s creditworthiness in 

certain markets. Third, credit ratings can differ across the three rating agencies, 

Standard and Poor’s (hereafter, S&P), Moody’s Investor Services (hereafter, Moody’s), 

and Fitch Ratings (hereafter, Fitch), depending on their prevailing rating methodology. 

Inconsistency in credit ratings becomes essential when ratings are used to fulfil 

financial regulatory requirements. Although a debt issuer can be rated by more than one 

agency, financial market participants can only use one rating to evaluate the credit risk 
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related to the issuer. For instance, the capital requirements of banks can substantially 

increase when banks use the more conservative (worse) rating. Recent empirical papers 

(Morgan, 2002; Livingston, Wei, and Zhou, 2010) find that disagreement in issuer 

ratings is substantial both in the case of financial and non-financial institutions. 

Livingston, Naranjo, and Zhou (2008) argue that rating splits (disagreement) between 

rating agencies might trigger subsequent rating changes. The authors show that rating 

splits can increase the probability of rating upgrade/downgrade within one year by up to 

6%, and rating splits influence the pricing (credit spreads) of the issued debt. However, 

no study has tested which rating agency is consistently more prudent45 within the 

individual industry sectors, crisis periods or rating grades. The information whether 

rating splits are industry-, time- and rating-dependent might be of high prominence for 

bond investors, as they often alter their behavior based on rating actions, and bond 

yields often rely on the rating of the more prudent agency (Livingston et al., 2010). The 

first hypothesis tested in this paper is that the distribution of credit ratings across the 

two major rating agencies46 (Moody’s and S&P) is identical for different industry 

sectors, crisis periods and rating grades. 

Regulators and policymakers view increasing competition between credit rating 

providers as a fundamental driver of precise and prompt ratings. Nevertheless, rating 

agencies’ reputational concerns and their costs of information acquisition vary over the 

business cycle. The theoretical model of Bar-Isaac and Shapiro (2013) suggests that the 

accuracy of ratings is determined by the extent of competition (the reputation losses) 

among rating agencies. Becker and Milbourn’s (2011) empirical findings support this 

prediction and find that the rating quality (defined as ‘the ability of rating to be 

informative about bond values and the ability to be accurate in predicting issuer 

default’) of S&P and Moody’s decreased after Fitch’s market share increased. The 

                                                 
 
45 While more prudent rating agencies prefer to protect their reputational capital by assigning timely and 
accurate ratings; less prudent rating agencies prefer to increase their own profits (credit ratings are issuer-
paid) by assigning favorable issuer ratings.  
46 Fitch was established in 1997 and over 2005 and 2014 it had a much smaller rating coverage than S&P 
and Moody’s (established in the early 1900s). Thus, unless stated otherwise, this paper focuses on credit 
ratings assigned by the two incumbent rating agencies, S&P and Moody’s. Fitch’s credit ratings are only 
used to measure how competitive the rating market is (unless stated otherwise). 
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existence of a third rating opinion is highly relevant for regulatory rating classification, 

which accepts only one credit rating classification (the Basel Accord). If an issuer is 

rated by two or more rating agencies, the prevailing institutional rule is to use the 

‘second best’ rating. In their recent paper, Bongaerts, Cremers, and Goetzmann (2012) 

find that gaining a third rating opinion results in regulatory rating improvement. 

Nevertheless, while the above studies focus on the ratings information value for 

investors and their accuracy in predicting default, no empirical evidence exists on how 

the incidence of rating split was affected by increased competition over the recent 

financial crises. The question is important due to the risk of ‘rating shopping’ (the 

hypothesis positing that issuers are prone to paying for a third rating opinion in the hope 

of enhancing their rating) that might result in more favorable ‘second best’ ratings. This 

paper tests the hypothesis that any disagreement between the issuer ratings of S&P and 

Moody’s is independent of the competition between rating providers.  

The recent financial crisis attracted the attention of the financial market to the 

severity of sovereign rating deterioration. This also has a direct effect on the private 

sector, as distressed economies often restrict the financial leverage of corporations 

(Borensztein, Cowan, and Valenzuela, 2013). Consequently, rating agencies may cap 

issuer ratings by the country rating in which they operate (henceforth referred to as 

‘ceiling effect’). Chen, Chen, Chang, and Yang (2013) emphasize that sovereign 

downgrades have a significant impact on declines in private investments. The influence 

of sovereign rating change is more substantial in low-rated economies (Ismailescu and 

Kazemi, 2010). Despite the broad empirical research on the effect of sovereign ratings 

on issuer ratings, no previous literature has explored its importance over the recent 

sovereign debt crisis for both financial and non-financial industry sector. The third 

hypothesis of this paper tests whether the sovereign ceilings cease to be restrictive for 

issuer ratings.  

Rating agencies aim to provide timely information about the credit quality of 

issuers. When rating changes occur, they have extensive power to alter the decisions of 

financial market participants. Thus, identifying the rating agency that is consistently 

more prompt in capturing the changing creditworthiness of the issuers is of crucial 

importance. Although Hill, Brooks, and Faff (2010) and Alsakka and Gwilym (2010) 
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find interdependence in sovereign rating actions, there is limited related research into 

the timeliness of rating actions for corporations. Thus, the final hypothesis tested in this 

paper is that there is no leader-follower relationship between rating agencies for 

financial and non-financial institutions. 

The empirical results of this paper draw on extensive financial statement and 

credit rating data of over 2500 financial and non-financial institutions. Credit ratings 

assigned by Moody’s, S&P and Fitch are available both for financial/non-financial 

institutions that issued debt (i.e. issuer company rating) and their country of domicile47 

(i.e. issuer sovereign rating). The panel data includes information about the companies 

from December 2005 to October 2014. 

3.2 Credit Ratings 

3.2.1 The Process of Credit Rating Assessment 

Accurate and timely information is one of the key prerequisites of credit risk assessment 

and investment decisions. Information, however, is not evenly distributed among 

investors, borrowers, lenders and other market participants. Rating agencies, which 

assess the creditworthiness of debt issuers and issues (corporate or government financial 

obligation, such as a bond), aim to mitigate information asymmetry on the financial 

market by translating their credit risk assessment of issuers/issues into a rating grade 

from AAA to D. There are three major global rating agencies, each providing a 

comparable and independent credit risk assessment of debt issuers/issues. The rating 

assessment is based on publicly available methodologies, which creates a common 

comparison basis for all end users. Thus, rating agencies offer two pivotal benefits for 

financial markets in the form of credit rating: i) easy comparability of ratings in a global 

context, ii) favorable access to capital market funding for rated issuers. 
                                                 
 
47 The country of domicile  (country in which the company has its headquarters) is a good proxy for 
‘country of risk’ (International Organization for Standardization country code taking into account 
management location, country of primary listing, country of revenue and reporting currency of the issuer) 
– for 98% of the examined issuers, the country of domicile and the country of risk coincide. 
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Rating requests are assumed to be randomly ordered, as credit ratings are issuer-paid 

and one rating is sufficient to fulfill most rating-based regulations (Livingston et al. 

2010). Nevertheless, as issuers pay for the rating, they have incentives to solicit positive 

bias in credit rating by switching between rating agencies or by paying for multiple 

rating assessments. The motivation of issuers to pay for multiple credit ratings can be 

interpreted by three hypotheses. First, according to the ‘information production’ 

hypothesis, multiple ratings reduce the market participants’ uncertainty about the 

creditworthiness and the default probability of the issuer (Güntay and Hackbarth, 2010). 

Second, according to the ‘rating shopping’ hypothesis, issuers will apply for an extra 

rating assessment if they anticipate an enhancement in average credit rating (Skreta and 

Veldkamp, 2009). Third, according to the ‘regulatory certification’ hypothesis, issuers 

rated close to the investment– non-investment grade boundary (i.e. with BBB and BB 

ratings) are often highly motivated to pay for two or more credit ratings. The main 

reason is that when an issuer is differently rated by two or more rating agencies, the 

prevailing institutional rule is to use the ‘second best’ rating. Thus, avoiding non-

investment grade ‘second best’ rating might allow debt issuers to borrow at lower 

interest rates (Bongaerts et al., 2012). In general, most thorough issuers seek rating 

services from at least two agencies. This approach strengthens the issuer’s reliability 

compared to its peers who seek ratings by a single agency only, and appreciates its debt 

issuances (rated companies can issue debt/borrow at lower interest rates). 

Based on the best practice of rating agencies, the process to obtain a rating takes 

approximately 90 days. In the first 30 days contracts are set up and signed. The issuer is 

then transferred to the analytical team within the rating agency, which collects the 

required documentation and sets meeting dates with the issuer over the next 30 days. 

During the meetings, the agencies’ analysts and the issuer’s representatives discuss all 

outstanding points required for credit rating assessment. After this rating visit, the 

analytical team has an additional 30 days to carry out the rating analysis, present the 

rating to an internal rating committee for approval48 and announce the rating to the 

                                                 
 
48 A rating committee has at least 5 voting members: the lead analyst for the issuer, three other attendees 
with voting rights and a rating chair who is usually the most senior committee attendee. The chair casts 
his vote last so his opinion does not influence more junior voters.  
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issuer. Subsequently, depending on the timeliness of the issuer’s publication consent, 

the credit rating is publicly released. 

Once the rating is released to the market, the issuer is regularly monitored until 

the rating is withdrawn or, in the case of debt issue ratings, the debt matures. The rating 

agency’s analytical team monitors the rated issuer regularly (reviews financial reports, 

industry development) and arranges a meeting with the issuer prior to the update of the 

rating analysis (usually annually). Nevertheless, the issuer’s rating can be changed 

outside of the dates reserved for annual review. If the rating agency identifies material 

changes in the issuer’s idiosyncratic risk profile or material shocks in exogenous factors 

(for instance, overall deterioration of the industry’s performance or a change in the 

issuer’s country rating), the rating is immediately adjusted. The rating action (rating 

downgrade, rating upgrade, change in rating outlook) can be released quickly, within 

days from the moment the rating agency learns the new information. In the case of 

issuers rated by multiple rating agencies, a rating change from one rating agency does 

not necessarily trigger a rating change by its competitor(s). 

The building block of any rating assessment is an industry-specific methodology 

that describes in detail the rating scorecard used to derive the credit rating. The rating 

scorecard is comprised of quantitative and qualitative rating factors. In general, 

quantitative factors (financial profile) play a key role (70-90% weight on the final 

rating). The qualitative factor assessment (business profile) often rests on the subjective 

evaluation of the rating analysts (10-30% weight on final rating). 49 The rating derived 

based on the scorecard serves then as a basis for approval by the internal rating 

committee. If the rating committee members fail to reach mutual agreement, the 

assigned rating may deviate from that proposed by the scorecard. 

                                                 
 
49 Similarly to the existing research on credit ratings, this paper cannot fully control for the qualitative 
rating factors and thus considers the financial indicators essential to credit rating determinants. 
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3.2.2 Why Financial Institutions Are Different 

Before examining the determinants and the quality of credit ratings, the specific features 

of the financial sector must be highlighted. Unlike non-financial corporations, the 

creditworthiness of financial institutions is particularly difficult to evaluate for at least 

two reasons. One is that their asset quality is determined mainly by their leading line of 

business. For instance, a bank mainly issues loans to different types of borrowers (e.g. 

individuals, corporations, and public organizations), so the financial strength of the 

institution stems from the quality of loans that it provides to borrowers with different 

levels of riskiness. Nevertheless, external market participants cannot accurately estimate 

the embedded riskiness of these loans. The second difficulty is that financial institutions 

are highly leveraged, and therefore the shareholders’ equity (i.e. capital) at stake is low. 

Consequently, regulators and investors view the high (low) capital-to-asset ratio as a 

particularly useful signal of a financial institution’s conservative (aggressive) business 

strategy, reflecting asset quality with low (high) risk. Recent research by Mehran and 

Thakor (2011) provides theoretical justification that higher capital has a positive impact 

on financial institutions’ asset and liability structure. This view is supported by the 

empirical findings of Berger and Bouwman (2013), which show that companies with 

higher capital monitor their asset bases more strictly and focus on more conservative 

investment strategies. 

The importance of capital in the performance of financial institutions has been 

highlighted over the recent financial crisis. To restrain risk and potential losses by the 

financial sector, the Basel Committee on Banking Supervision set out specific 

requirements regarding the capital of financial institutions. These regulatory capital 

requirements aim to strengthen the stability of the financial sector and define how much 

capital the financial institution must hold. The level of capital becomes a concern as 

soon as the assets of the company shrink due to losses in the company’s business (e.g. 

defaults on granted loans). As the volume of assets drops, the volume of liabilities and 

shareholders’ equity (capital) must also decrease on the balance sheet. In the first place, 

the shareholders’ equity is used to cover the losses on the company’s assets. If the level 

of capital is not sufficient, the financial institutions’ liabilities must go down (e.g. 
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individuals lose their deposits). To protect the financial sector from such scenarios, 

capital must be at a level that absorbs the company’s losses before depositors’ funds 

must be tapped. 

Although financial institutions must strictly follow the regulatory capital 

requirements, the recent financial crises have shown that these were insufficient to 

restore prudent risk-taking at the financial institutions. Hence, the determinants, the 

quality and the implications of credit ratings as important inputs for financial market 

regulations should be closely monitored. 

3.3 Methodology 

The four key hypotheses of this paper can be summarized as follows. 

 

Hypothesis 1 (H1). The distribution of credit ratings across the two major rating 

agencies (Moody’s and S&P) is identical for different industry sectors, crisis periods 

and rating grades. 

 

The alternative hypothesis to H1 is that a significant disagreement exists between the 

credit rating of the two incumbent rating agencies. This would suggest that given the 

same public information, the ratings of S&P or Moody’s are systematically different 

when compared for the same company. Rating splits across industry sectors, crisis 

periods and rating grades might appear for the following reasons: (i) Rating splits are 

likely to vary by the industry coverage of the rating agency (i.e. if the two agencies have 

different rating coverage in the given industry, the probability of rating split is higher); 

(ii) Rating disagreements are expected to deepen over time (i.e. as a result of 

improvements in the credit rating agencies’ regulation during the recent financial 

crises50, rating agencies are gradually forced to protect their reputational capital and to 

                                                 
 
50 For example, the Dodd-Frank Wall Street Reform and Consumer Protection Act (effective from July, 
2010) increases the credit rating agencies’ liability for issuing inaccurate ratings. 
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restrict ratings that follow the issuers’ preferences or other rating agencies’ actions); (iii) 

Rating splits are anticipated to be more frequent around the investment-non-investment 

grade boundary (i.e. as the difference in bond credit spreads is often the highest between 

investment-non-investment grade bonds). 

In order to test for the null hypothesis that the distribution of credit ratings 

across rating agencies differ, the non-parametric Wilcoxon signed rank sum test is 

conducted. It tests the equality of matched pairs of observations  

( PSsMoody medianmedianH &'0 : = ). As opposed to previous studies (Galil and Sofer, 

2011), the distribution of credit ratings is also compared across industry sectors, crisis 

periods and rating grades. 

 

Hypothesis 2 (H2). Any disagreement between the issuer ratings of S&P and 

Moody’s is independent of the competition between rating providers. 

 

The alternative hypothesis to H2 is that besides the analysts’ different expert judgments, 

the rating disagreement (split) is affected by the increased competition on the credit 

rating market after the expansion of Fitch. If Fitch’s issuer rating is different from the 

ratings assigned by S&P or Moody’s, then Fitch’s entry to the market might serve as a 

trigger for the two main rating agencies to reassess the creditworthiness of the issuer. 

This might then result in the rating split of S&P and Moody’s issuer ratings.    

To test whether competition on the credit rating market also contributes to rating 

disagreement, the probit model51 is estimated with fixed effects controlling for average 

industry-, region- and time-characteristics: 

 

                                                                                                                                               
 
https://www.sec.gov/about/laws/wallstreetreform-cpa.pdf 
51 One of the drawbacks of the identification strategy is that it does not account for the selection having 
two ratings and does not consider the sequence of rating requests from the issuer. 

https://www.sec.gov/about/laws/wallstreetreform-cpa.pdf
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where tcjiSPLIT ,,, is a binary variable that takes the value of 1 if credit ratings (of issuer i 

from industry j, region c, at year t) assigned by Moody’s and S&P are different, and 

takes the value of 0 if the credit ratings of the two agencies are consistent.52  

tcj PERIODREGIONINDUSTRY ,,  are categorical variables for industry sector, 

geographical region and crisis period. The variable tiFINANCIALS ,  expresses the 

financial statement data53, which is industry-specific. For financial institutions the 

choice of financial indicators is motivated by the CAMEL model (Caouette, Altman, 

Narayanan, and Nimmo, 2008; Golin and Delhaise, 2013), and for non-financial 

institutions it is motivated by the Altman Z score model (Altman, 1968; Altman and 

Rijken, 2004). Both are discussed in detail in a later section. Variables

tcSOVEREIGNNIG ,_  and tiISSUERNIG ,_  are dummy variables that take the value 

of 1 if the sovereign rating / issuer rating (assigned by S&P, as the rating agency with 

widest rating coverage) is non-investment grade. The error term tcji ,,,µ  is assumed to be 

normally distributed. 

Similarly to Becker and Milbourn (2011), Fitch’s market share is used as a 

measure of competition in the ratings industry. The variable 

tjFITSHAREMARKET ,__ denotes the share of debt issues rated by Fitch on the total 

number of debt issues rated by the three rating agencies (the ratio is derived based on 
                                                 
 
52 The rating split between the two main rating agencies is evaluated at year-ends. Rating updates on 
arrival of new information are disregarded in testing the effect of increased rating completion on the 
rating split. This paper focuses on the sequence of rating updates when studying the leader-followership 
between the rating agencies. 
53 The incorporation of financial statement data as determinant of rating split is motivated by Morgan 
(2002), who estimates the disagreement between rating agencies based on the banks’ asset structure. The 
author suggests that disagreement between rating agencies is a gauge of uncertainty about the financial 
health of the company. He argues that banks with a high share of loans and trading assets might 
encompass risk that is difficult to assess (due to the unknown risk of borrowers and counterparties), and 
hence these banks might be rated differently. 
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Bloomberg’s rated debt issue universe). Fitch’s market share captures the variation in 

the competition between rating providers both across industry sectors and over time. 

This paper focuses on testing the null hypothesis that the increased competition of Fitch 

has no effect on the disagreement between ratings assigned by S&P and Moody’s  

( 0: 40 =δH ). 

 

Hypothesis 3 (H3). The sovereign ceilings cease to be restrictive for issuer 

ratings. 

 

The alternative hypothesis to H3 is that the issuer’s credit rating remains inherent to its 

operational or regulatory environment.  

To estimate which predictors carry significant weight in explaining credit rating 

changes, the probit model is adopted. Motivated by the literature (Williams, Alsakka, 

and Gwilym, 2013) this paper explores the determinants of credit ratings separately for 

issuer rating upgrades and issuer rating downgrades: 
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where A
tcjiR ,,,D , B

tcjiR ,,,D , C
tcjiR ,,,D are binary variables of rating upgrade/downgrade 

originated by the rating agencies S&P, Moody’s and Fitch (A, B, C, respectively).  
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Besides fluctuations in the issuer’s financial ratios (defined by the Altman Z-

score model for non-financial institutions and defined by the CAMEL model for 

financial institutions), the variable tiFINANCIALS ,  also considers the size of the 

company (Hau, Langfield, and Marques-Ibanez’s 2013 study shows that larger banks 

are more highly rated) and the earnings per share (Ederington and Goh’s 1998 empirical 

paper argues that a decline in earnings is a good proxy for market expectations and 

efficiently forecasts downgrades). As deteriorations in the macroeconomic conditions 

(in the issuer’s country of domicile) might enhance the exposure of public and private 

debt and hence influence credit ratings, selected macroeconomic indicators ( tcMACRO , ) 

are also incorporated in the model (similarly to Borensztein et al., 2013). Motivated by 

Ismailescu and Kazemi (2010), who show that rating changes are more severe in 

countries with low ratings, dummy variables for countries/issuers rated by non-

investment grade ( tcSOVEREIGNNIG ,_ and tiISSUERNIG ,_ ) are part of the empirical 

specification. 
refers to the rating of the issuer’s country of domicile. It is 

expected to be a significant determinant of issuer rating as negative fluctuations in 

sovereign ratings also have an adverse impact on the issuer’s rating (Cantor and Packer, 

1996; Hills et al., 2010; Borensztein et al., 2013 and Williams et al., 2013). On the other 

hand, the magnitude of sovereign risk on issuer rating might be fundamentally different 

before (pre-crises period, subprime lending crisis) and during the sovereign debt crisis. 

Using the above econometric specification, this paper tests the null hypothesis that 

sovereign ceilings cease to be restrictive for issuer ratings ( ).   

Apart from financial statement data, macroeconomic indicators or sovereign 

ratings, rating actions of the competitors ( A
tcjiR ,,,D , B

tcjiR ,,,D , C
tcjiR ,,,D ) might also 

contribute to the yearly changes in the issuer’s credit assessment. As replicating the 

rating upgrades/downgrades of the competitor is less time- and cost-intensive than 

performing their own independent credit assessment, rating agencies tend to react to the 

competitors’ behavior (Guttler and Wahrenburg, 2007). These prompted rating actions 

are then highly appreciated by investors, who after the downgrade/upgrade might 

experience loss/gain in the rating-driven borrowing costs.  

tcSOVEREIGN ,

0: 90 =βH
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Hypothesis 4 (H4). There is no leader-follower relationship between rating 

agencies. 

 

The alternative hypothesis is that some rating agencies are systematically 

dependent on their competitors’ rating actions, even though investors are highly 

sensitive to timely and accurate information about credit quality changes. 

In order to quantify the effect of an issuer rating change (i.e. rating 

upgrade/downgrade) by rating agency A on an issuer rating change by rating agency B, 

the Granger-like ordered logit model54 is utilized. The Granger-like model reflects the 

serial correlation in rating changes. It assumes that past rating changes influence the 

future rating changes, and past rating actions carry unique information about the future 

rating changes.55 The ordinal model’s key advantage is that it accounts for the ordinal 

scale of credit ratings. Similarly to Guttler and Wahrenburg (2007) and Alsakka and 

Gwilym (2010), the daily rating change is modelled for the two major rating agencies 

(S&P and Moody’s) separately: 
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54The model assumes that rating agencies have access to the same publicly available information, and past 
rating changes internalize any shocks affecting the rating. 
55Rating changes indicate the speed of rating analysis required to re-assess the issuer’s creditworthiness. 
They do not correspond to the sequence of the initial rating requests (as rating agencies are obliged to 
update the issuer’s rating immediately after observing changes in its idiosyncratic risk profile or material 
shocks in exogenous factors), but might reflect the initial rating mistakes made by one of the rating 
agencies (rating changes could be faster for the agency that was more wrong in its previous rating). 
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where A
diR*

,D and B
diR*

,D  are the unobserved latent variables of rating changes of issuer i at 

day d originated by the rating agencies A and B, respectively, while diR ,D  refers to the 

observed difference in the rating grades. 
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The terms A
híU , and B

híU ,  are dummy variables for an issuer rating upgrade, A
híD ,  

and B
híD ,  are dummy variables for an issuer rating downgrade.  

The leader-follower relationship might take several forms. Specifically, as a 

result of one agency’s rating action, the second agency might update the issuer’s rating 

methodology (e.g. changing thresholds or weights that drive the rating change), review 

the issuer’s credit quality or it might make a rating change release strategically 

dependent on the first-mover (Güttler and Wahrenburg, 2007). As any of these scenarios 

are equally likely, the leader/follower sequence is examined in time span ranging from 1 

day to 180 days. Specifically, following Alsakka and Gwilym (2010) the rating changes 

of the potential follower (dependent variable) are examined in h time windows after the 

rating change by the potential leader: 1=h denotes 1-15 days, 2=h denotes 16-90 days, 

3=h denotes 91-180 days, and 4=h  denotes more than 180 days. Rating reaction within 

a few days might indicate that the rating agencies independently reacted to the same 

publicly available rating drivers, but the follower was either slow in processing the 

rating change or made its rating change strategically dependent on the leader’s reaction. 

On the other hand, rating reaction after 180 days is expected to have no relation to the 

original rating changes and it can be considered as a result of a new fundamental event 

happening half a year late. 
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3.4 Data 

The dataset is described in three steps. First, I outline how the sample of financial and 

non-financial companies was acquired. Next, separately for the financial and non-

financial sectors, I describe the selected financial indicators and their expected impact 

on company performance. Finally, I illustrate the credit rating distribution of the 

companies across industry sectors and credit rating agencies.  

3.4.1 Data Collection 

Bloomberg, one of the largest market data providers, is the source of financial statement 

and credit rating data used. The data were collected in the following steps: 

1) Index members of major equity indices create the basis of the sample of debt 

issuers. In particular, using Bloomberg’s IMEN function, the list of 500 major 

equity indices traded on Bloomberg was gained. The equity indices are 

performance indicators of a particular equity market and are derived from the 

prices of selected stocks (most frequently using a weighted average). The index 

members are companies based in 65 countries worldwide.  

2) The initial list of financial and non-financial institutions was defined using the 

constituents of these 500 major equity indices. 

3) To enlarge the sample, Bloomberg’s peer group assignment was utilized to 

identify competitive companies for the initial list of financial and non-financial 

institutions.  

4) After eliminating duplicates of companies on several markets, the final list 

consists of over 2 500 financial and non-financial institutions. 

5) For the final list of 600 financial and 1 900 non-financial institutions, 

comprehensive financial statement and credit rating data (observed at the end of 

years 2005 to 2013) were obtained. Specifically, the following information was 
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downloaded: (1) basic company information (industry sector56, country of 

domicile, parent company), (2) financial statements and financial indicators, (3) 

long-term issuer company and sovereign ratings57 assigned by S&P, Moody’s 

and Fitch. Sovereign ratings are available for 61 countries (48% of issuers are 

from the USA) observed for 9 years (2005-2013). The dataset covers 10 regions 

(United States, Euro Area, Japan, Other Advanced Economies, Commonwealth 

of Independent States, Emerging and Developing Asia, Emerging and 

Developing Europe, Latin America and the Caribbean, the Middle East and 

North Africa and Sub-Saharan Africa).58  

6) Finally, daily data on company and sovereign rating actions (over 14 000 

downgrades, upgrades, and changes in rating outlook) were obtained. The rating 

changes were implemented by the three rating agencies from December 2005 to 

October 2014. In particular, for the sample of 2 500 financial and non-financial 

institutions both initial 59 and new ratings are observed along with the date of the 

rating change. 

Bloomberg’s rated universe is used for the derivation of the individual rating 

agencies’ market share across industry sectors and over time. Specifically, the market 

share of S&P, Moody’s and Fitch is derived for 9 industry sectors (Basic Materials, 

Communications, Consumer – Cyclical, Consumer – Non-cyclical, Diversified, Energy, 

Industrial, Technology and Utilities) and 9 years (2005-2013). The market share of a 

rating agency is determined as a portion of debt issues rated by this agency and the total 

                                                 
 
56 Table 3.A.1 (Panel A) in the Appendix summarizes the average issuer ratings by industry sector. It 
suggests that the ratings reflect the specifics of individual industry sectors. All three agencies agree that 
the highest average ratings (on average A-) are assigned in the financial sector (due to the presence of 
governmental or parental external support), while the lowest average ratings (on average BB+) are 
assigned in the sector of Cyclical Consumer Goods (as highly dependent on the economic cycle). The 
highest disagreement between the three agencies is in the case of sectors such as Industrial, Basic 
Materials and Communications. 
57 The issuer is attributed a sovereign rating based on its country of domicile.  
58 Table 3.A.1 (Panel B) in the Appendix presents the share of issuer ratings in the individual regions. The 
vast majority of debt issuers in the sample have their country of domicile in the United States 
(approximately 60 percent). Debt issuers from the Euro Area and Japan are represented in the sample only 
by 8-16 percent (depending on the rating agency).  
59 The issuer’s first rating in the dataset is considered to be the initial rating. 
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number of debt issues rated by the three rating agencies in a given year and industry 

sector. 

The World Bank, the database of World Development Indicators60, is the 

source of the macroeconomic indicator data. The downloaded dataset includes current 

account balance (% of GDP), GDP growth (annual %), GDP per capita (US$ of 2014) 

and inflation (GDP deflator, annual %). 

3.4.2 Sample Statistics of Financial Indicators 

A wide range of industry sectors is represented in the dataset. The data on the 

financial sector includes primarily banks, insurance companies and real estate 

investment trusts (REITS). The data on the non-financial sectors cover the following 

industry sectors (defined by Bloomberg Industry Classification System61): Basic 

Materials (e.g. Chemicals, Mining, Iron/Steel), Communications (e.g. 

Telecommunications, Media, Internet), Consumer – Cyclical (e.g. Retail, Entertainment, 

Auto Manufacturers), Consumer – Non-cyclical (e.g. Food, Commercial Services, 

Pharmaceuticals), Diversified (e.g. Holding Companies), Energy (e.g. Oil&Gas, 

Pipelines, Coal), Industrial (e.g. Transportation, Electronics, Building Materials), 

Technology (e.g. Semiconductors, Computers, Software) and Utilities (e.g. Electric, 

Gas, Water).  

It is necessary to distinguish between the credit rating determinants based on 

industry sector. Caouette et al. (2008) and Golin and Delhaise (2013) suggest that 

financial institutions should be evaluated according to the Capital-Assets-Management-

                                                 
 
60 The World Bank, http://data.worldbank.org/data-catalog/world-development-indicators 
61 The BICS (Bloomberg Industry Classification System) classification is based on the issuer's business 
characteristic and, similarly to GICS (Global Industry Classification Standard), it consists of 10 sectors. 
The classification of BICS (Basic Materials, Communications, Consumer - Cyclical, Consumer - Non-
cyclical, Energy, Industrial, Utilities, Financial and Diversified) and GICS (Materials, 
Telecommunication Services, Consumer Discretionary, Consumer Staples, Energy, Industrials, Utilities, 
Financials and Health Care) are almost identical. 

http://data.worldbank.org/data-catalog/world-development-indicators
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Earnings-Liquidity (CAMEL) model, which defines a set of financial indicators that 

capture capital adequacy, asset quality, profitability and liquidity assessment. 62 

Panel A in Table 3.A.2 in the Appendix shows the selected financial indicators 

for the credit rating prediction of financial institutions. In particular, the industry sub-

sector of banks is used as an example to illustrate the mean values of these ratios across 

companies with different rating grades. 

- Capital Adequacy – Basel III63 requires that the Tier 1 Capital of banks must be 

at least 6.0% of risk-weighted assets. The Tier 1 ratio, calculated as the sum of 

core capital and disclosed reserves relative to risk-weighted assets, measures the 

company’s financial strength. The higher the ratio, the higher the company’s 

buffer against unexpected losses. 

- Asset Quality – The non-performing Loans / Total Loans ratio indicates the 

severity of problems regarding the credit quality of the company’s borrowers. A 

loan is considered to be non-performing if the borrower is more than 90 days 

overdue on any payment connected with the loan. Indeed, the higher the Non-

performing Loans / Total Loans ratio, the worse the company’s asset quality.  

The situation is even worse if the bank does not create enough Loan Loss 

Reserves to cover Non-Performing Loans (NPL), that is, it has low NPL 

coverage. 

- Profitability – The profitability of banks is most frequently measured by the 

Return on Equity (ROE) and the Return on Assets (ROA). ROE expresses the 

profit generated from the shareholders’ investments, while ROA shows how 

efficiently the management uses the company’s assets to generate earnings. The 

rule of thumb in most markets is that an ROE of between 10 and 20 percent and 

an ROA of between 1 and 2 percent indicate acceptable performance. 

Companies below (above) these ranges have weak (very strong) profitability. 

                                                 
 
62 As management (corporate governance) quality is a qualitative factor and it is hard to find a proxy for 
that indicator, this paper had to neglect its impact on the company’s rating. 
63 Third Basel Accord issued by the Bank for International Settlements, 
http://www.bis.org/publ/bcbs189.pdf 

http://www.bis.org/publ/bcbs189.pdf
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- Liquidity – The ratio between Total Loans and Total Deposits is a key measure 

of a company’s liquidity. A ratio below 100 percent means that the company is 

funding its loan portfolio from core deposits, while a ratio above 100 percent 

signals that it also uses other types of market funding. The strength and stability 

of the bank’s customer deposit base can be also measured by the Deposit to 

Funding ratio. If the ratio is high, it indicates that the company is less dependent 

on more volatile interbank or commercial sources of funding. 

A broad set of control variables is also available for non-financial institutions. 

However, to avoid multicollinearity, only selected financial ratios are used to assess the 

credit quality of the company. Guided by Altman (1968) and Altman and Rijken (2004), 

non-financial institutions are evaluated based on the Z-score model. The model is 

comprised of five financial ratios that have the highest discriminating power in 

predicting corporate bankruptcy (Altman, 1968). These include proxies for liquidity 

(Working Capital / Total Assets), profitability (Retained Earnings / Total Assets, 

Earnings before Interest and Taxes / Total Assets), leverage (Total Equity / Total 

Liabilities) and the efficient use of assets (Sales / Total Assets). 

Panel B in Table 3.A.2 in the Appendix presents descriptive statistics of selected 

financial ratios for the non-financial sector. Specifically, on the example of cyclical 

consumer goods the mean values of financial indicators are summarized by rating 

grades. 

- Working Capital / Total Assets – The ratio is a measure of liquidity; the 

company’s short-term financial health. Working Capital is calculated as the 

difference between Current Assets and Current Liabilities and expresses the 

ability of the company to cover its short-term obligations with short-term assets. 

Thus, the Working Capital / Total Assets ratio shows the percentage of 

remaining liquid assets (after repayment of current liabilities) on the total assets. 

As reported in Panel B of Table 3.A.2, this measure increases with the credit 

quality of the company. 

- Retained Earnings / Total Assets - The ratio provides insight into the 

cumulative profitability of the company. Altman (1968) argues that the ratio 

effectively reflects the age of the company in terms of its probability of 
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bankruptcy: companies in their earlier years accumulate relatively low retained 

earnings and, accordingly, are more exposed to financial difficulties. As the 

company grows older, it should enhance its Retained Earnings / Total Assets 

ratio. The higher the ratio, the better the company’s financial performance. 

- Earnings before Interest and Taxes / Total Assets – The ratio expresses the 

general profitability of the company’s assets. It considers the company’s 

earnings before tax and leverage reductions are taken into account. As Panel B 

in Table 3.A.2 indicates, the Earnings before Interest and Taxes / Total Assets 

ratio can take negative values if the company generates losses and is close to 

default.  

- Total Equity / Total Liabilities – The ratio is the measure of the company’s 

leverage. It shows how much short-term and long-term debt the company can 

take and still be covered by its equity. The lower the Total Equity / Total 

Liabilities ratio, the lower the company’s solvency. 

- Net Sales / Total Assets – The ratio indicates how efficiently the company 

deploys its assets to generate net sales. Net sales (calculated as the difference 

between total revenue and any allowances or discounts provided to the 

customer) compared to total assets are heavily industry-specific. For instance, 

industries with low (high) assets and high (low) sales may have a ratio above 

200 (below 50) percent. Panel B in Table 3.A.2 reports that the Net Sales / Total 

Assets ratio of cyclical consumer goods increases with higher credit ratings, but 

does not reach 100 percent. 

3.4.3 Sample Statistics of Issuer Ratings 

To express the forward-looking predictions of rating agencies about the credit 

risk of the individual financial and non-financial institution, long-term issuer credit 

ratings64 assigned by three rating agencies (Moody’s, S&P and Fitch) are utilized. 

                                                 
 
64 “Credit ratings express the agency’s opinion about the ability and willingness of an issuer, such as a 
corporation or state or city government, to meet its financial obligations in full and on time. Credit ratings 
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Credit ratings assessing the creditworthiness of obligors range from AAA (highest 

quality) to D (default). Nevertheless, S&P/Fitch and Moody’s rating grades differ 

slightly. To make them comparable, the ratings need to be mapped into a common 

numeric scale. Table 3.A.3 in the Appendix summarizes the credit ratings together with 

their interpretation and the assigned rating grades on finer/wider scales. 

The following sample statistics of issuer ratings guide the hypotheses formulated 

in this paper: 

Figure 3.1 indicates that the rating coverage of rating agencies across the 

individual industry sectors (i.e. the share of each agency in the total number of issuer 

ratings within industry sectors) differs significantly. The sample statistics confirm the 

expectations that S&P and Moody’s (both established in early 1900) have much higher 

rating coverage than Fitch (established in 1997). While in each industry sector both 

S&P and Moody’s rate at least 40% of the issuer ratings, the rating coverage of Fitch is 
                                                                                                                                               
 
can also speak to the credit quality of an individual debt issue, such as a corporate note, a municipal bond 
or a mortgage-backed security, and the relative likelihood that the issue may default.” 
Standard & Poor’s, http://www.standardandpoors.com/ratings/definitions-and-faqs/en/us 

Figure 3.1: Industry coverage by S&P, Moody’s and Fitch 

 

Note: The figure depicts the share of each agency on total number of issuer ratings within industry 
sectors. The total number of 3 955 issuer ratings is gained using the sample of 2 486 issuers. The 
rating coverage is evaluated at the end of 2013.  

 

 

http://www.standardandpoors.com/ratings/definitions-and-faqs/en/us
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well below 20% (except in the financial industry sector). Therefore, this paper examines 

the credit ratings of S&P and Moody’s (if not stated otherwise), and the rating coverage 

of Fitch is only used as a measure of varying competition between rating agencies. 

Table 3.1 suggests that the discrepancy in issuer ratings between these agencies 

is substantial. It summarizes the number of times Moody’s and S&P differently rated 

the issuer, given the issuer was rated by both agencies. The disagreement is measured in 

a sample of 2 486 issuers at the end of years 2005-2013. From a total amount of 22 374 

observations, the two agencies assigned different rating to the issuers in 5 839 cases. 65 

In the case of financial institutions, the two rating agencies significantly disagree when 

assigning ratings A and BBB. In the case of non-financial institutions, credit ratings 

across the two agencies also vary for issuers rated BBB and BB (i.e. at the investment– 

non-investment grade boundary). 

From the early 2000s, rating agencies have gradually changed their approach to 

reflecting the country ratings in the issuer’s rating. The cases in which issuer ratings are 

higher than their country rating have become more frequent.  Figure 3.2 provides some 

preliminary insight into the relationship of issuer and sovereign ratings during the pre-

crisis period (2005-2007), during the subprime lending crisis (2008-2010) and during 

the sovereign debt crisis (2011-2013). It suggests that after the subprime lending crises, 

rating agencies ceased restricting company ratings by sovereign rating. When 

comparing the three rating agencies, Moody’s relaxes the sovereign cap most 

frequently. 

                                                 
 
65 Although the distance between the two ratings would provide a more precise measure of the rating 
split, this paper focuses only on the existence of a disagreement between Moody’s and S&P. In the 
examined sample, one notch rating difference constitutes 75 percent of total rating splits between the 
agencies. 
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Table 3.1:  Disagreement between S&P and Moody’s in issuer ratings 

(A) Financial institutions 

  
Number of Moody's Issuer Ratings Different from S&P Issuer Ratings 
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1 
                

1 
AA+ 

  
5 

                
5 

AA 1 24 
 

19 3 
              

47 
AA- 9 37 52 

 
33 4 

 
1 

           
136 

A+ 
 

12 28 81 
 

53 9 3 
 

3 
         

189 
A 

  
10 51 138 

 
42 18 5 

   
2 

      
266 

A- 
  

3 17 53 102 
 

58 36 3 1 
        

273 
BBB+ 

   
2 17 51 64 

 
88 31 2 

 
1 

      
256 

BBB 
    

1 10 30 80 
 

71 13 1 4 
      

210 
BBB- 

     
2 11 30 52 

 
32 8 11 2 2 

    
150 

BB+ 
       

1 2 26 
 

20 6 4 
     

59 
BB 

     
2 

 
1 

 
7 19 

 
36 16 

     
81 

BB- 
          

5 8 
 

42 9 2 
   

66 
B+ 

          
1 13 11 

 
6 8 4 

  
43 

B 
          

1 
 

4 13 
 

9 3 
  

30 
B- 

          
1 

 
2 4 2 

 
7 

  
16 

CCC+ 
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1 1 4 
CCC 

            
1 1 1 2 4 
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2 
  

2 
CC 

              
1 

    
1 

Total 10 73 99 170 245 224 156 192 183 141 75 50 78 82 21 23 20 1 1 1844 
 

                                                        (continued on next page)   



 

110 
 

(B) Non-financial institutions 

  
Number of Moody's Issuer Ratings Different from S&P Issuer Ratings 

 
 

  AAA AA+ AA AA- A+ A A- BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC+ CCC CCC- CC Total 
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AAA   7                                     7 
AA+     7 2                                 9 
AA   53   13 21 1                             88 
AA-   17 37   44 24 4 2                         128 
A+     17 45   70 31 2                         165 
A     4 8 90   84 29 1                       216 
A-     1   29 90   174 63 9 12                   378 
BBB+         3 16 113   249 43 5                   429 
BBB 1       1 2 29 131   271 37 3         1       476 
BBB- 2     5   2 2 6 147   157 41 9             1 372 
BB+             2 2 15 47   142 33 2 1           244 
BB             1   12 6 117   203 47 2 1       6 395 
BB-                 1 1 15 106   193 36 3       2 357 
B+                   1 1 10 106   139 20 5 1   2 285 
B                         12 83   115 23 5 2   240 
B-                         5 7 51   61 11 7 4 146 
CCC+                             3 16   5 2 4 30 
CCC                               2 2   5   9 
CCC-                                   1     1 
CC                                 1 2 4   7 
D                             3 1 1 1 3 4 13 

 
Total 3 77 66 73 188 205 266 346 488 378 344 302 368 332 235 158 94 26 23 23 3995 

Note: The table summarizes the number of times Moody’s and S&P differently rated the issuer, given the issuer was rated by both agencies. It is based on credit ratings 
of 2 486 issuers observed at the end of years 2005-2013 (i.e. over 9 years totaling 22 374 observations). While for financial institutions a rating disagreement is 
observed in 1 844 cases, for non-financial institutions the disagreement is observed in 3 995 cases. 
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To see whether there is a potential leader-follower relationship between S&P 

and Moody’s, daily information on rating actions are utilized. For the sample of rating 

actions observed for 2 486 issuers between December 2005 and October 2014, Figure 

3.3 depicts the distribution of time elapsed between rating actions originated by 

Moody’s and S&P. Specifically, it illustrates the probability that the potential follower’s 

rating action is within a certain time window after the potential leader’s rating action. 

The figures suggest that while upgrades of the potential leader do not evoke immediate  

Figure 3.2: The relationship between company and sovereign ratings 

(A) Ratings assigned by S&P                           (B) Ratings assigned by Moody’s 

 

(C) Ratings assigned by Fitch 

 

Note: (1) The figures illustrate the relationship between company and sovereign ratings using a 
sample of 2 486 issuer ratings and their sovereign ratings assigned by S&P, Moody’s and Fitch during 
three periods: pre-crisis period (2005-2007), subprime lending crisis (2008-2010) and sovereign debt 
crisis (2011-2013). It depicts to what extent issuer ratings are capped by sovereign ratings. (2) The 
numeric rating grades range from Aaa=1 to D=21. 
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actions by the potential follower, both agencies most likely react to the downgrade of 

the other agency within 50 days. 

Table 3.2 summarizes the magnitude of the follower’s rating change on the 

preceding rating change of the leader.66 In particular, Panel A and B show what share of 

                                                 
 
66 Rating change refers only to a downgrade or an upgrade in the issuer’s rating. New rating assignments 
(by an additional rating agency) or rating withdrawals are not considered in the analysis of leader-
follower relationship, as these are driven by the decision of the issuer and there might be several reasons 
for them. For example, new rating assignments might correspond to the issuer asking for a second rating 
opinion either because the first agency assigned an unfavorable rating, or because the industry peers are 
strengthening their market position through an additional rating opinion. The opposite logic might 
motivate rating withdrawals. 

Figure 3.3: The distribution of time between rating actions 

 

Note: (1) The figures illustrate the distribution of time between S&P and Moody’s rating changes 
observed in a sample of 2 486 issuers between December 2005 and October 2014. (2) The figures 
illustrate the probability that the potential follower’s rating action is in a certain time window after the 
potential leader’s rating action. (3) Only rating changes within 1-180 days are plotted. 
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S&P’s rating change is a reaction to a prior rating change by Moody’s, and Panel C and 

D present what share of Moody’s rating change is a reaction to a prior rating change by 

S&P. Panel B for non-financial institutions suggests that if Moody’s 

downgrades/upgrades at some point in time, on average 80% of these rating actions are 

followed by S&P within 90 days. Panel D for non-financial institutions shows that 

Moody’s reaction to S&P’s rating changes is lower, at 67% on average. The leader-

follower relationship for financial institutions is slightly different. Considering the same 

time window, around 65% of Moody’s downgrades/upgrades are followed by S&P 

(Panel A), while only 56% of S&P’s rating actions are copied by Moody’s (Panel C). 

These preliminary statistics suggest that S&P is likely to be the follower on the credit 

rating market. 

3.5 Results 

3.5.1 Disagreement in Rating Assessments across Industry, Time and Rating 

As investors tend to differentiate between ratings, and bond yields often reflect the 

rating of the more prudent agency, the rating disagreement across industry sectors is of 

high prominence for the financial market participants. Based on the results of the 

Wilcoxon signed rank sum test summarized in Table 3.3 (Panel A), I reject the null 

hypothesis that the choice of rating agency has no effect on the credit rating of the 

issuer. Moody’s is consistently more prudent in rating non-financial institutions. This 

finding is in line with Livingston et al. (2010) who on the sample non-financial U.S. 

corporations show that conservative ratings assigned by Moody’s are also detected by 

the investors (when two ratings are available and Moody’s rating is higher, bond yields 

are at a lower level than when S&P’s rating is higher). Nevertheless, this paper extends 

the results of the recent literature by examining rating split also within the nonfinancial 

sector. Contrary to expectations, the results of the Wilcoxon signed rank sum test 

suggest that rating agencies agree in creditworthiness of issuers from the Technology 

and Communications industry sectors.  
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Table 3.2: The magnitude of the follower’s rating change on the preceding rating change of the leader 

 

Panel A - Leader: Moody’s, 
 Industry: Financial 

Downgrade 
by Moody's 
in previous 
1-15 days 

Downgrade 
by Moody's 
in previous 
16-90 days 

Downgrade 
by Moody's 
in previous 

91-180 
days 

Downgrade 
by Moody's 
in previous 
more than 
180 days 

Upgrade by 
Moody's in 
previous 1-

15days 

Upgrade by 
Moody's in 

previous 
16-90 days 

Upgrade by 
Moody's in 

previous 
91-180 

days 

Upgrade by 
Moody's in 

previous 
more than 
180 days   

Total rating 
action by 

S&P 
S&P downgrade by 2 or more notches 28.2% 18.4% 11.6% 5.8% 0.0% 0.0% 0.0% 0.0% 

 
130 

S&P downgrade by 1 notch 43.6% 42.9% 25.6% 43.5% 0.0% 4.2% 0.0% 13.0% 
 

447 
No rating change 28.2% 36.7% 53.5% 34.8% 40.0% 29.2% 14.8% 35.9% 

 
2266 

S&P upgrade by 1 notch 0.0% 2.0% 9.3% 15.9% 60.0% 62.5% 77.8% 50.0% 
 

400 
S&P upgrade by 2 or more notches 0.0% 0.0% 0.0% 0.0% 0.0% 4.2% 7.4% 1.1% 

 
29 

Grand Total 39 98 43 69 5 24 27 92   3272 
 

 

Panel B -Leader: Moody's;  
Industry: Non-financial 

Downgrade 
by Moody's 
in previous 
1-15 days 

Downgrade 
by Moody's 
in previous 
16-90 days 

Downgrade 
by Moody's 
in previous 

91-180 
days 

Downgrade 
by Moody's 
in previous 
more than 
180 days 

Upgrade by 
Moody's in 
previous 1-

15 days 

Upgrade by 
Moody's in 

previous 
16-90 days 

Upgrade by 
Moody's in 

previous 
91-180 

days 

Upgrade by 
Moody's in 

previous 
more than 
180 days   

Total rating 
action by 

S&P 
S&P downgrade by 2 or more notches 26.2% 18.3% 8.0% 3.4% 0.0% 1.1% 1.5% 1.0% 

 
427 

S&P downgrade by 1 notch 55.9% 54.3% 45.0% 38.2% 3.0% 0.0% 3.0% 8.9% 
 

1576 
No rating change 16.6% 26.4% 43.0% 31.4% 16.7% 13.8% 22.4% 34.0% 

 
7543 

S&P upgrade by 1 notch 0.7% 0.0% 3.0% 25.0% 63.6% 71.3% 68.7% 53.6% 
 

1593 
S&P upgrade by 2 or more notches 0.7% 1.0% 1.0% 2.0% 16.7% 13.8% 4.5% 2.4% 

 
227 

Grand Total 145 197 100 204 66 87 67 291   11366 
                                                                                                                                                                                                                                    (continued on next page) 
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Panel C – Leader: S&P, 
Industry: Financial 

Downgrade 
by S&P in 
previous 1-

15 days 

Downgrade 
by S&P in 
previous 

16-90 days 

Downgrade 
by S&P in 
previous 
91-180 

days 

Downgrade 
by S&P in 
previous 

more than 
180 days 

Upgrade 
by S&P in 
previous 1-

15 days 

Upgrade 
by S&P in 
previous 

16-90 days 

Upgrade by 
S&P in 

previous 91-
180 days 

Upgrade 
by S&P in 
previous 

more than 
180 days   

Total 
rating 

action by 
Moody's 

Moody's downgrade by 2 or more notches 28.6% 31.4% 16.7% 3.8% 0.0% 0.0% 0.0% 0.0% 
 

142 
Moody's downgrade by 1 notch 20.4% 26.7% 16.7% 37.7% 5.4% 0.0% 0.0% 4.9% 

 
306 

No rating change 51.0% 41.9% 66.7% 54.7% 21.6% 57.1% 55.6% 53.4% 
 

2473 
Moody's upgrade by 1 notch 0.0% 0.0% 0.0% 3.8% 43.2% 14.3% 38.9% 35.0% 

 
285 

Moody's upgrade by 2 or more notches 0.0% 0.0% 0.0% 0.0% 29.7% 28.6% 5.6% 6.8% 
 

66 
Grand Total 49 105 18 53 37 7 18 103   3272 
 

 

Panel D – Leader: S&P, 
Industry: Non-financial 

Downgrade 
by S&P in 
previous 1-

15 days 

Downgrade 
by S&P in 
previous 

16-90 days 

Downgrade 
by S&P in 
previous 
91-180 

days 

Downgrade 
by S&P in 
previous 

more than 
180 days 

Upgrade by 
S&P in 

previous 1-
15 days 

Upgrade by 
S&P in 

previous 
16-90 days 

Upgrade by 
S&P in 

previous 
91-180 

days 

Upgrade by 
S&P in 

previous 
more than 
180 days   

Total rating 
action by 
Moody's 

Moody's downgrade by 2 or more notches 23.2% 19.2% 10.1% 2.7% 1.3% 2.5% 0.0% 0.0% 
 

205 
Moody's Downgrade by 1 notch 46.4% 46.6% 46.8% 28.7% 1.3% 2.5% 4.3% 6.7% 

 
889 

No rating change 29.8% 32.4% 43.0% 55.3% 34.8% 25.3% 21.3% 44.2% 
 

9323 
Moody's upgrade by 1 notch 0.7% 0.5% 0.0% 12.8% 53.5% 55.7% 66.0% 46.8% 

 
838 

Moody's upgrade by 2 or more notches 0.0% 1.4% 0.0% 0.5% 9.0% 13.9% 8.5% 2.2% 
 

111 
Grand Total 151 219 79 188 155 79 94 267   11366 
Note: The table presents the magnitude of the rating changes of the follower (downgrade by more than 2 notches, downgrade by 1 notch, no rating change, upgrade by 
1 notch, upgrade by 2 notches), given the leader’s actions (downgrade, upgrade) in the previous 1-15 days, 16-90 days, 91-180 days or more than 180 days. For 
example, the first column of Panel C suggests that 15days after S&P downgraded the issuers; Moody’s subsequently downgraded the issuers by more than 2 notches in 
28.6% of cases, downgraded the issuers by 1 notch in 20.4% cases and did not change its rating in 51% of cases. The rating change statistics express the magnitude and 
the timing between subsequent rating updates (rating changes could be faster for the agency that was more wrong in its previous rating), where the initial rating is the 
first rating in the dataset. In total, the table covers 5 572 rating changes by Moody’s and 9 066 rating changes by S&P observed on the sample of 2 236 issuers between 
January 2005 and October 2014 (for the remaining 250 issuers no rating changes were observed). 
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For the other non-financial industry sectors the numerical rating grades provided by 

S&P are lower (indicating a better rating) than the numerical rating grades provided by 

Moody’s (Column 8 of Table 3.3, Panel A) and the disagreement is statistically 

significant at least at the 5% level (Column 5 of Table 3.3, Panel A).Interestingly, in the 

assessment of default risk for financial institutions S&P is the more conservative rating 

agency. These results might be explained by the difference in rating methodologies or 

the higher costs of overrating67 financial institutions for S&P. 

The difference between S&P and Moody’s credit ratings deepens over time 

(Table 3.3, Panel B). During the pre-crisis period (2005-2007), it is statistically 

significant only at a 10% level, while during the subprime lending crisis (2008-2010), it 

is statistically significant at a 5% level and during the sovereign debt crisis (2011-2013), 

it is statistically significant at a 1% level. 

According to Table 3.3 (Panel C), the two rating agencies also differ across 

rating grades divided into investment grade (ratings from AAA to BBB) and non-

investment grade (ratings from BB to D). For investment grade ratings, the Wilcoxon 

sum rank test for the equality of median ratings is rejected at a 5% statistical 

significance level, while for non-investment grade ratings, the equality of median 

ratings between S&P and Moody’s is already rejected at 1%. 

 

                                                 
 
67 Although credit ratings are issuer paid, rating agencies seek to protect their reputational capital by 
assigning timely and accurate ratings.   
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Table 3.3: Wilcoxon signed rank test of issuer ratings 

Panel A 
  

 
        

Industry sector Rating 
agency 

Complete 
sample 

 

Sub-sample of 
issuers rated by 

both S&P & 
Moody's 

   Sub-sample of issuers with different rating  
from S&P & Moody's  

  N  N 

Wilcoxon 
signed-
rank p-
value 

 N 

Split % 
of 

Complete 
Sample 

 Mean  Median  Standard 
deviation 

Basic Materials       S&P 1 728  792 0.016  330 19% 
     10.1          10.0     2.7 

 
Moody's  

 
     10.3          10.0     2.7 

Communications        S&P 1 827  787 0.530  388 21% 
     10.9          11.0     3.7 

 
Moody's  

 
     10.8          11.0     3.7 

Cyclical    S&P 2 853  1 298 0.000  661 23% 
     11.7          12.0     3.3 

 
Moody's  

 
     12.2          13.0     3.4 

Non-cyclical  S&P 2 898  1 427 0.000  743 26% 
       9.2            9.0     3.6 

 
Moody's  

 
       9.7          10.0     3.6 

Diversified         S&P 126  53 0.004  18 14% 
     10.4          11.0     1.8 

 
Moody's  

 
     11.4          12.5     2.5 

Energy             S&P 1 620  947 0.000  449 28% 
     10.5          11.0     3.5 

 
Moody's  

 
     10.8          11.0     4.1 

Financial              S&P 5 490  2 874 0.000  1 844 34% 
       8.0            8.0     3.0 

 
Moody's  

 
       7.6            7.0     3.5 

Industrial            S&P 3 411  1 465 0.000  726 21% 
     10.0          10.0     3.5 

 
Moody's  

 
     10.6          11.0     3.8 

Technology          S&P 1 008  308 0.764  161 16% 
       9.8            9.0     3.4 

 
Moody's  

 
       9.8            9.0     3.8 

Utilities            S&P 1 413  883 0.000  519 37% 
       8.2            8.0     2.5 

 
Moody's  

 
       8.3            8.0     2.8 

Total                S&P 22 374  10 834 0.000 
 

5 839 26%        9.4            9.0     3.5 
Moody's   

       9.5            9.0     3.9 
(continued on next page) 
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Panel B 
           

Time period Rating 
agency 

Complete 
sample  

Sub-sample of 
issuers rated by 

both S&P & 
Moody's 

 
 Sub-sample of issuers with different rating  

from S&P & Moody's  

   N  N 

Wilcoxon 
signed-
rank p-
value 

 N 

Split % 
of 

Complete 
Sample 

Mean  Median  
 

Standard 
deviation  

Pre-crisis period 
(2005-2007)       S&P 7 458  3 179 0.073 

 
1 705 23% 

9.0 9.0 3.4 

 
Moody's  

 
9.1 9.0 3.9 

Subprime lending crisis  
(2008-2010)        S&P 7 458  3 686 0.025 

 
2 055 28% 

9.4 9.0 3.6 

 
Moody's  

 
9.5 9.0 4.0 

Sovereign debt crisis 
 (2011-2013)    S&P 7 458  3 969 0.000 

 
2 079 28% 

9.6 9.0 3.4 

  Moody's  
 

9.9 10.0 3.7 

Total S&P 22 374  10 834 0.000 
 

5 839 26% 9.4 9.0 3.5 
Moody's   

9.5 9.0 3.9 
 
 
 

           Panel C 
           

Rating grade Rating 
agency 

Complete 
sample  

Sub-sample of 
issuers rated by 

both S&P & 
Moody's 

 
 Sub-sample of issuers with different rating  

from S&P & Moody's  

   N  N 

Wilcoxon 
signed-
rank p-
value 

 N 

Split % 
of 

Complete 
Sample 

Mean  Median  
 

Standard 
deviation  

Investment grade  
(AAA to BBB-)       S&P 10 699  7 195 0.025  3 801 36% 

7.3 7.0 2.0 

 
Moody's   7.3 8.0 2.6 

Non-investment grade 
 (BB+ to D)        S&P 11 675  3 639 0.000  2 038 17% 13.3 13.0 1.8 

  Moody's   13.6 14.0 2.1 

Total S&P 22 374  10 834 0.000 
 

5 839 26% 9.4 9.0 3.5 
Moody's   

9.5 9.0 3.9 
Note: (1) The table compares Moody’s and S&P issuer ratings by industry sector (Panel A), by time 
period (Panel B) and by rating grade (Panel C). The first part of the table summarizes the complete 
sample that consists of credit ratings of 2 486 issuers observed at the end of years 2005-2013 (i.e. over 9 
years totaling 22 374 observations). The second part of the table shows the results of Wilcoxon signed-
rank test conducted on the sub-sample of issuers rated by both S&P and Moody’s at year-ends. The third 
part of the table presents the descriptive statistics of credit ratings on the sub-sample of issuers with 
different rating from S&P & Moody's. (2) Cyclical denotes consumer goods industries that rely heavily on 
the business cycle and economic conditions. Non-cyclical denotes consumer goods industries that are 
immune to economic fluctuations. 
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3.5.2 Rating Split is Dependent on Competition between Rating Providers 

A simple probit model was used to estimate the relationship between rating splits and 

selected rating determinants. The estimation results conducted separately for financial 

and non-financial institutions are summarized in Table 3.4. These show that Fitch’s 

increasing market share has a positive and statistically significant (at a 5% level) effect 

on the rating split between S&P and Moody’s in the non-financial sector (the impact in 

the financial sector is not statistically significant). These results extend the findings of 

Becker and Milbourn (2011), who show that the quality of issuer-paid credit ratings 

lowered (the rating’s information value for investors and their accuracy in predicting 

default decreased) after Fitch entered the market.68 Nevertheless, Fitch’s increasing 

market share not only lowers the rating quality of S&P and Moody’s, but it also 

increases the likelihood of rating split (as shown in Table 3.4). If Fitch’s issuer rating is 

different from the ratings assigned by S&P or Moody’s, then Fitch’s entry to the market 

might serve as a trigger for the two main rating agencies to reassess the creditworthiness 

of the issuer. This might then result in the rating split of S&P and Moody’s issuer 

ratings. Another possible explanation is that some rating agencies might prefer to 

protect their reputational capital by assigning timely and accurate ratings (i.e. likely to 

issue lower ratings); other rating agencies might prefer to increase their own profits 

(credit ratings are issuer-paid) by assigning favorable issuer ratings (i.e. likely to issue 

higher ratings). The results of this paper suggests that rating shopping (acquiring an 

additional rating opinion in the hope of rating improvement) fosters further 

disagreement between rating agencies, and hence reinforces the use of ‘second best’ 

issuer rating for regulatory purposes. 

Other determinants of rating splits are also in line with expectations. The 

disagreement between issuer ratings deepens over time. During the sovereign debt 

crisis, the rating split is, on average, higher by 3.4 percentage points than during the pre-

crisis period. Interestingly, for non-investment grade issuers, the rating split is less 

frequent. The results also suggest that rating disagreement is present even in relation to 
                                                 
 
68 Xia (2014) and Cornaggia and Cornaggia (2013) show that rating quality increases when investor-paid 
rating agencies are present on the credit rating market. 
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the key financial indicators (the choice of key financial indicators predicting the rating 

of financial and non-financial institution is in line with the literature - Altman, 1968; 

Altman and Rijken, 2004; Caouette et al., 2008; Golin and Delhaise, 2013; Hau et al., 

2013). This can be partially explained by the different weights the rating agencies place 

on individual financial fundamentals. 

A one-year change in the earnings-per-share (EPS), as the measure of 

performance volatility, does not influence rating splits. Although Ederington and Goh 

(1998) argue that a decline in earnings is a good proxy for market expectations and 

efficiently forecasts downgrades, the estimation results summarized in Table 3.4 

suggest that the volatility of EPS has no statistically significant effect on the rating 

disagreement between Moody’s and S&P. 

3.5.3 Sovereign Ceilings Are Restrictive Only for Financial Institutions 

Table 3.5 summarizes the key determinants of S&P and Moody’s issuer rating 

changes estimated based on model (3.2) and (3.3). The regressions are run separately for 

financial and non-financial institutions. Panel A of Table 3.5 demonstrates that in the 

case of financial institutions, S&P increased the reliance of issuer rating on sovereign 

(i.e. country of domicile) rating over the observed period. Specifically, while during a 

pre-crisis period a one-notch sovereign upgrade has no impact on issuer rating (one 

notch sovereign downgrade decreases the likelihood of issuer rating downgrade - as the 

sovereign ceiling is most likely not low enough to imply a burden on the financial 

sector), over a sovereign debt crisis a one-notch sovereign upgrade leads to a 13.2% 

higher likelihood of issuer upgrade (a one-notch sovereign downgrade leads to an 8.6% 

higher likelihood of issuer downgrade). On the other hand, Panel C of Table 3.5 

suggests that Moody’s reflected the country ratings in its issuer ratings over all the 

examined periods, but the magnitude of sovereign effect is decreasing. Over the 

subprime lending crisis both agencies overhauled their rating methodologies with 

respect to their perceptions of government support, and slightly changed the weight of 

individual rating factors. In 2007, Moody’s introduced the Joint Default Analysis 
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(JDA)69, in which the issuer rating has no explicit country rating restrictions and 

government support depends on the bank’s systemic importance. In 2011, S&P 

introduced the Banking Industry Country Risk Assessments (BICRA)70, according to 

which the macroeconomic indicators and industrial/regulatory environment 

(determining country rating) might explicitly affect the stand-alone rating of the issuer. 

The change in the two agencies’ approach underscores that there is no unique metric in 

measuring the systemic risk (the industrial, financial and economic environment) to 

which financial institutions are exposed. 

Another explanation for the high reliance of financial sector on sovereign rating 

change is the dominant foreign ownership of financial institutions, where the high rating 

of the parent company is limited by the lower rating of the issuer’s country. A recent 

contribution from Williams et al. (2013) similarly shows the importance of sovereign 

ratings for financial institutions in emerging markets for 1999-2009. Nevertheless, the 

findings in Table 3.5 suggest that the role of sovereign rating change is also essential in 

other than emerging markets and remains statistically significant at 1% in the sovereign 

debt crisis. Possessing a non-investment grade issuer/sovereign rating has no 

statistically significant impact on rating downgrade/upgrade. 

The two major rating agencies put significantly less weight from sovereign 

ratings on the rating of non-financial institutions. In almost all time periods the 

sovereign rating change does not affect the issuer rating for S&P or Moody’s (Panel B 

and D). Borensztein et al. (2013) analyze the relationship between sovereign and issuer 

ratings and find the same results for ratings assigned by S&P. This paper contributes to 

the literature with an important finding – throughout the recent financial crises, neither 

of the two incumbent rating agencies applied sovereign restriction on the rating of non-

financial institutions. 
                                                 
 
69 Moody's Investors Services (2007): Incorporation of Joint-Default Analysis into Moody's Bank 
Ratings: A Refined Methodology, 
https://www.moodys.com/research/Moodys-Announces-Bank-Rating-Actions-Resulting-From-
Implementation-Of-JDA--PR_128399 
 
70 Standard and Poor’s (2011): Banking Industry Country Risk Assessment Methodology And 
Assumptions, 
http://www.standardandpoors.com/spf/upload/Ratings_EMEA/2011-11-
09_CBEvent_CriteriaFIBankIndustryCountryRiskAssessment.pdf 

https://www.moodys.com/research/Moodys-Announces-Bank-Rating-Actions-Resulting-From-Implementation-Of-JDA--PR_128399
https://www.moodys.com/research/Moodys-Announces-Bank-Rating-Actions-Resulting-From-Implementation-Of-JDA--PR_128399
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Table 3.4: Determinant of rating disagreement between S&P and Moody’s 

Dependent variable – 
Rating disagreement 

Financial institutions 
 (Marginal effects)   

Non-financial institutions 
(Marginal effects) 

    Sovereign debt crisis                     0.003 
 

                0.034*** 
  (0.033)   (0.011) 
Fitch market share                     1.310 

 
                0.281** 

   (2.152)   (0.127) 
Non-investment grade issuer                   -0.437***   -0.134*** 

 
(0.031) 

 
(0.009) 

Non-investment grade sovereign                    0.256*** 
 

-0.002 
  (0.052)   (0.031) 
Total asset                   -0.000 

 
-0.000*** 

 
(0.000) 

 
(0.000) 

Volatility of Earnings per Share                   -0.000 
 

0.000*** 

 
(0.000) 

 
(0.000) 

Net interest margin                     0.000** 
 

- 

 
(0.000) 

 
- 

Non-performing assets to total assets                     0.016*** 
 

- 

 
(0.005) 

 
- 

Deposits to funding                    -0.002*** 
 

- 
  (0.001)   - 
Retained Earnings / Total Assets - 

 
0.000** 

 
- 

 
(0.000) 

Total Equity / Total Liabilities - 
 

-0.001*** 

 
- 

 
(0.000) 

Net Sales /Total Assets - 
 

-0.000*** 

 
- 

 
(0.000) 

Euro Area                     0.077 
 

-0.097*** 

 
(0.051) 

 
(0.015) 

Japan                   -0.158*** 
 

-0.250*** 

 
(0.055) 

 
(0.014) 

Other Advanced Economies                    0.104** 
 

-0.114*** 

 
(0.041) 

 
(0.013) 

Commonwealth of Independent States                    0.001 
 

 0.138*** 

 
(0.125) 

 
(0.051) 

Emerging and Developing Asia                    -0.138*** 
 

                -0.081** 

 
(0.050) 

 
(0.032) 

Emerging and Developing Europe                    0.304*** 
 

                -0.125* 

 
(0.089) 

 
(0.067) 

Latin America and the Caribbean                   -0.030 
 

 -0.105*** 

 
(0.058) 

 
(0.022) 

Middle East, North Africa                    0.180*** 
 

- 
  (0.045)     
Materials - 

 
-0.055*** 

 
- 

 
(0.020) 

Communications - 
 

-0.039** 

 
- 

 
(0.019) 

Industrials - 
 

 -0.043*** 

 
- 

 
(0.016) 

Technology - 
 

-0.060** 

 
- 

 
(0.025) 

Observations 1 553   10 238 
R-squared 0.2001   0.0938 
Note: (1) The results are derived using issuers that are rated by S&P or Moody’s over 2005-2013. 
Estimation results presented only for variables that were statistically significant at least in one model. 
(2) For Sovereign debt crisis the reference value is the Pre-crisis period, for Region the reference 
value is USA, for Industry sector of non-financial institutions the reference value is the financial 
sector. (3) Standard errors are in parenthesis. ***, **, and * denote significance at the 1%, 5%, and 
10% levels, respectively. 
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Turning to the other determinants of issuer rating change, Table 3.5 shows that 

competition is one of the key triggers of rating action. While the effect of the rating 

agencies’ industry coverage is particularly strong in the case of financial institutions, for 

non-financial institutions the competitors’ rating actions drive the rating update. When 

comparing the determinants of issuer rating change during pre-crisis and sovereign debt 

crisis periods, the reliance on the competitors’ rating action weakens, but remains 

statistically significant. For instance, while for financial institutions a one-notch 

upgrade of Moody’s (Fitch) issuer rating during a pre-crisis period increases the 

likelihood of an S&P upgrade by 25.6 percent (12.4 percent), this same change during 

the sovereign debt crisis increases the probability of an S&P upgrade by only 7.5 

percent (8.7 percent). Although during a pre-crisis period a one-notch downgrade of 

Moody’s (Fitch) issuer rating might even decrease the likelihood of an S&P downgrade, 

this same change increases the S&P downgrade during a subprime lending crisis by 8 

percent (8.4 percent) and during a sovereign debt crisis by only 3.2 percent (2.5 

percent). The competitors’ impact on Moody’s issuer rating change is similar, though 

much less significant. Overall, this diminishing influence of the competitors’ behavior 

might be explained by the increased motivation of rating agencies to protect their 

reputational capital.  

Table 3.A.4 in the Appendix reports the responses of rating agencies to 

macroeconomic, financial, geographical71 and sectoral variables from models (3.2) and 

(3.3). In the case of financial institutions, the two agencies agree that a one-year change 

of macroeconomic indicators is statistically more significant than the fluctuation or the 

absolute level of the financial results. This also explains the importance of sovereign 

ceiling in this sector. For non-financial institutions, rating upgrades/downgrades are 

more influenced by changes in financial results, even though their magnitude and 

statistical significance are weak. For instance, a 1 percent improvement in Earnings 

before Interest and Taxes / Total Assets increases the likelihood of rating upgrade only 

by 0.7 percent. Moody’s rating changes are less likely in geographical regions other 

than the United States. In the case of S&P the dependence of issuer rating change on 
                                                 
 
71 As the sample includes debt issuers from over 60 countries, dummy variables for geographical region 
are included among the determinants of issuer rating change. 



 

124 
 

geographical region is limited. The behavior of rating agencies for the individual non-

financial industry sectors does not vary essentially. Nevertheless, during the subprime 

lending crisis and the sovereign debt crisis the probability of rating changes was higher 

for the majority of non-financial sectors (by around 10 percent) than for the financial 

sector. 

3.5.4 S&P Tends to Be the Follower in Rating Actions 

Having confirmed a close link between several rating actions, this sections turns to 

examining the leader-follower relationship of rating agencies. Table 3.6 presents the 

results of the ordered logit model for rating changes, where S&P (Moody’s) is a 

potential follower and Moody’s (S&P) is a potential leader. The estimation is conducted 

using daily rating changes between December 2005 and October 2014. The rating 

actions are analyzed in four time windows: the follower’s rating action is 1-15 days72, 

16-90 days, 91-180 days or more than 180 days after the leader’s rating action.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                 
 
72 Rating changes within two days account for only 1% of the total number of rating actions. 
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Table 3.5: Determinants of issuer rating change 

Panel A – Issuer rating: S&P, Industry: Financial 

    
Dependent variable - Issuer rating 

upgrade by S&P 
Dependent variable - Issuer rating 

downgrade by S&P 
        

Rating change determinants 
 

Pre-crisis: 
Financial 

inst. – 
Marg. 
effects 

Subprime 
lending 
crisis: 

Financial 
inst. – 
Marg. 
effects 

Sovereign 
debt crisis: 
Financial 

inst. – Marg. 
effects 

Pre-crisis: 
Financial 

inst. – 
Marg. 
effects 

Subprime 
lending 
crisis: 

Financial 
inst. – 
Marg. 
effects 

Sovereign 
debt 

crisis: 
Financial 

inst. – 
Marg. 
effects 

                
Upgrade of Sovereign by S&P 

 
0.135 0.096*** 0.132*** 

   
  

(0.086) (0.032) (0.040) 
   Upgrade of Issuer by Moody's 

 
0.256*** 0.020 0.075* 

   
  

(0.053) (0.034) (0.039) 
   Upgrade  of Issuer by Fitch 

 
0.124* 0.051* 0.087** 

   
  

(0.066) (0.026) (0.043) 
   Downgrade of Sovereign by S&P 

    
-0.144* -0.034 0.086*** 

     
(0.078) (0.028) (0.021) 

Downgrade of Issuer by Moody's 
    

-0.104*** 0.080*** 0.032* 

     
(0.040) (0.021) (0.018) 

Downgrade of Issuer by Fitch 
    

-0.016 0.084*** 0.025 

     
(0.064) (0.024) (0.027) 

Sovereign rating by S&P 
 

0.018 -0.008* -0.004 0.007 0.012* 0.004 

  
(0.014) (0.005) (0.005) (0.016) (0.007) (0.007) 

Non-investment grade issuer 
 

-0.246*** -0.056** -0.112*** -0.255*** -0.082** -0.139*** 

  
(0.092) (0.025) (0.029) (0.095) (0.038) (0.041) 

Non-investment grade sovereign 
 

0.047 0.124*** 0.012 0.144 0.141** 0.046 

  
(0.117) (0.038) (0.057) (0.127) (0.062) (0.072) 

S&P industry market share 
 

21.359***  0.483 1.004* 13.223** -15.778** 0.021 

  
(6.039) (4.591) (0.590) (6.268) (6.872) (0.790) 

        Pseudo R2   0.2804 0.3506 0.3335 0.2172 0.3860 0.3197 
Observations   293 496 638 293 631 638 

(continued on next page) 
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Panel B – Issuer rating: S&P, Industry: Non-financial 

    
Dependent variable - Issuer 

rating upgrade by S&P 
Dependent variable - Issuer rating 

downgrade by S&P 
                

Rating change determinants 
 

Pre-crisis: 
Non-

financial 
inst. – 
Marg. 
effects 

Subprime 
lending 
crisis: 
Non-

financial 
inst. – 
Marg. 
effects 

Sovereig
n debt 
crisis: 
Non-

financial 
inst. – 
Marg. 
effects 

Pre-crisis: 
Non-

financial 
inst. – 
Marg. 
effects 

Subprime 
lending 
crisis: 
Non-

financial 
inst. – 
Marg. 
effects 

Sovereign 
debt crisis: 

Non-
financial 

inst. – 
Marg. 
effects 

                
Upgrade of Sovereign by S&P 

 
0.088*** 0.026 0.042 

   
  

(0.025) (0.026) (0.032) 
   Upgrade of Issuer by Moody's 

 
0.185*** 0.150*** 0.152*** 

   
  

(0.019) (0.013) (0.014) 
   Upgrade  of Issuer by Fitch 

 
0.143*** 0.123*** 0.099*** 

   
  

(0.028) (0.022) (0.022) 
   Downgrade of Sovereign by S&P 

    
-0.131*** -0.030 0.021** 

     
(0.032) (0.025) (0.010) 

Downgrade of Issuer by Moody's 
    

-0.029 0.048*** 0.029* 

     
(0.022) (0.013) (0.015) 

Downgrade of Issuer by Fitch 
    

 0.074*** 0.039** 0.022 

     
(0.024) (0.017) (0.023) 

Sovereign rating by S&P 
 

 0.001 -0.003 -0.006* -0.015 0.006 0.004 

  
(0.007) (0.005) (0.004) (0.009) (0.007) (0.005) 

Non-investment grade issuer 
 

-0.010  0.006  0.002 -0.053*** -0.021 -0.032** 

  
(0.014) (0.009) (0.010) (0.018) (0.014) (0.014) 

Non-investment grade sovereign 
 

-0.002  0.034 -0.024 -0.046 0.034 -0.031 

  
(0.047) (0.034) (0.032) (0.062)   (0.046) (0.046) 

S&P industry market share 
 

 0.144  0.149 -0.243   0.074 -0.021 -0.234 

  
(0.320) (0.121) (0.165) (0.427) (0.183) (0.218) 

Pseudo R2   0.1342 0.1728 0.1573 0.0575 0.0910 0.0742 
Observations   2 595 4 057 3 889 2 595 4 060 3 908 

(continued on next page) 
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Panel C – Issuer rating: Moody’s, Industry: Financial 

    
Dependent variable - Issuer rating 

upgrade by Moody's 
Dependent variable - Issuer rating 

downgrade by Moody's 

        

Rating change determinants   

Pre-crisis: 
Financial 

inst. – 
Marg. 
effects 

Subprime 
lending 
crisis: 

Financial 
inst. – 
Marg. 
effects 

Sovereign 
debt crisis: 
Financial 

inst. – 
Marg. 
effects 

Pre-crisis: 
Financial 

inst. – Marg. 
effects 

Subprime 
lending 
crisis: 

Financial 
inst. – 
Marg. 
effects 

Sovereign 
debt crisis: 
Financial 

inst. – 
Marg. 
effects 

        Upgrade  of Sovereign by 
Moody's 

 
0.458*** 0.607*** 0.201*** 

   
  

(0.082) (0.118) (0.033) 
   Upgrade  of Issuer by S&P 

 
0.192*** 0.015 0.037 

   
  

(0.039) (0.023) (0.024) 
   Upgrade  of Issuer by Fitch 

 
0.097 0.303*** 0.050* 

   
  

(0.061) (0.069) (0.027) 
   Downgrade of Sovereign by 

Moody's 
    

-0.485*** -0.081*** -0.010 

     
(0.084) (0.028) (0.020) 

Downgrade of Issuer by S&P 
    

-0.189*** 0.052** 0.045* 

     
(0.039) (0.024) (0.025) 

Downgrade of Issuer by Fitch 
    

-0.041 0.028 0.033 

     
(0.048) (0.029) (0.030) 

Sovereign rating by Moody's 
 

-0.018 0.003 0.009* -0.012 0.015** -0.008 

  
(0.014) (0.006) (0.005) (0.014) (0.006) (0.007) 

Non-investment grade issuer 
 

-0.353** -0.011 0.029 -0.390** -0.135*** 0.092** 

  
(0.159) (0.025) (0.024) (0.157) (0.045) (0.039) 

Non-investment grade 
sovereign 

 
0.474*** 0.067 0.033 0.517*** 0.054 0.063 

  
(0.141) (0.047) (0.037) (0.149) (0.072) (0.069) 

Moody's industry market share 
 

89.031*** -43.147*** -1.052 86.166*** 18.423*** 5.150*** 

  
(16.600) (13.377) (1.023) (17.831) (6.938) (1.702) 

        Pseudo R2   0.4823 0.8019 0.5575 0.476 0.3835 0.2809 
Observations   289 411 575 289 631 632 

(continued on next page) 
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Panel D – Issuer rating: Moody’s, Industry: Non-financial 

 

    
Dependent variable - Issuer rating 

upgrade by Moody's 
Dependent variable - Issuer rating 

downgrade by Moody's 

        

Rating change determinants 
 

Pre-crisis: 
Non-

financial 
inst. – 
Marg. 
effects 

Subprime 
lending 
crisis: 
Non-

financial 
inst. – 
Marg. 
effects 

Sovereign 
debt crisis: 

Non-
financial 

inst. – 
Marg. 
effects 

Pre-
crisis: 
Non-

financial 
inst. – 
Marg. 
effects 

Subprime 
lending 
crisis: 
Non-

financial 
inst. – 
Marg. 
effects 

Sovereign 
debt crisis: 

Non-
financial 

inst. – 
Marg. 
effects 

                
Upgrade  of Sovereign by Moody's 

 
-0.012 0.026 0.042* 

   
  

(0.025) (0.017) (0.023) 
   Upgrade  of Issuer by S&P 

 
0.093*** 0.075*** 0.087*** 

   
  

(0.010) (0.007) (0.008) 
   Upgrade  of Issuer by Fitch 

 
0.087*** 0.068*** 0.057*** 

   
  

(0.017) (0.012) (0.015) 
   Downgrade of Sovereign by 

Moody's 
    

0.014 -0.022* 0.005 

     
(0.039) (0.013) (0.009) 

Downgrade of Issuer by S&P 
    

-0.016 0.029*** 0.008 

     
(0.012) (0.007) (0.009) 

Downgrade of Issuer by Fitch 
    

0.043** 0.003 0.007 

     
(0.019) (0.013) (0.020) 

Sovereign rating by Moody's 
 

0.006 -0.003 0.001 -0.006 0.016** 0.010*** 

  
(0.006) (0.004) (0.003) (0.009) (0.006) (0.004) 

Non-investment grade issuer 
 

-0.006 0.003 0.014* 
-
0.046*** -0.027** 0.003 

  
(0.009) (0.007) (0.009) (0.014) (0.011) (0.012) 

Non-investment grade sovereign 
 

-0.068** 0.005 0.007 -0.017 -0.058 -0.076** 

  
(0.032) (0.021) (0.024) (0.045) (0.044) (0.036) 

Moody's industry market share 
 

0.175 -0.043 0.666** 0.171 -0.328** 0.705* 

  
(0.259) (0.108) (0.285) (0.350) (0.162) (0.390) 

        Pseudo R2   0.1906 0.2386 0.1930 0.0599 0.0791 0.0680 
Observations   2 567 3 994 3 882 2 567 4 060 3 908 
Note: (1) The table presents the results of probit estimation (Eq. (3.2) and Eq. (3.3)) with robust standard 
errors. It reports the impact of own/other agency’s sovereign/issuer ratings on the probability of the issuer 
rating change (marginal effects) originated by S&P and Moody’s. The dependent variable is a binary 
variable for rating upgrade/downgrade observed at the end of years 2005-2013 for a sample of 2 486 
financial and non-financial institutions. Rating downgrades and upgrades are examined separately due to 
their different determinants. The determinants of issuer rating changes are presented for three different 
periods: pre-crisis period (2005-2007), subprime lending crisis (2008-2010) and sovereign debt crisis 
(2011-2013). The impact of financial and macroeconomic data on issuer rating change is presented in 
Table 3.A.4. (2) Standard errors are in parentheses. ***, **, and * denote significance at the 1%, 5%, and 
10% levels, respectively. 
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The rating downgrade/upgrade of the competitor is statistically significant at the 

1% level in all examined time windows. In line with expectations, the more time that 

has passed after the leader’s rating action, the less likely it is that the follower will 

downgrade/upgrade its rating (i.e. the impact of a 1-notch rating change is more 

substantial in magnitude than a 2-notch rating change). Comparing the reaction of one 

rating agency 1-15 days after the other agency’s downgrade/upgrade, the following can 

be concluded: (1) Moody’s issuer downgrade/upgrade increases the likelihood of S&P’s 

issuer downgrade/upgrade by 25-30% on average (Panel A and Panel B); (2) S&P’s 

issuer downgrade/upgrade increases the likelihood of Moody’s issuer 

downgrade/upgrade by only 15-19% on average (Panel C and Panel D). This suggests 

that S&P is more likely to be the follower in rating actions when compared to Moody’s. 

The results do not vary substantially for financial and non-financial institutions. Overall, 

rating actions are less likely to be affected by the agency’s own previous rating 

downgrades/upgrades. The result is qualitatively similar to the findings of Alsakka and 

Gwilym (2010), which show that Moody’s is the first mover on the sovereign credit 

rating market. 

After measuring market reaction (stock return movement) to rating outlook73 

changes, Bannier and Hirsch (2010) argue that outlooks have not only an informative 

role, but serve as early warning indicators.  As a robustness check, a model utilizing 

rating outlook changes was also estimated. However, the results of model (3.4) and 

(3.5) with rating outlook are very similar to those predicted using credit rating changes; 

the findings are not presented in this paper. 

 

 

 

                                                 
 
73 “A rating outlook assesses the potential direction of a long-term credit rating over the intermediate term 
(typically six months to two years). In determining a rating outlook, consideration is given to any changes 
in the economic and/or fundamental business conditions. An outlook is not necessarily a precursor of a 
rating change.” 
Standard & Poor’s, 
https://www.standardandpoors.com/ratings/articles/en/us/?articleType=HTML&assetID=1245378053126 

https://www.standardandpoors.com/ratings/articles/en/us/?articleType=HTML&assetID=1245378053126
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Table 3.6: Leader-follower relationship between S&P and Moody’s 

Panel A - Follower: S&P, Industry: Financial 

   Financial institutions (Marginal effects) 

Dependent variable 

 

 
S&P 

upgrade by 
1 notch 

 
S&P 

upgrade by 
more than 2 

notches 

 
S&P 

downgrade 
by 1 notch 

 
S&P 

downgrade 
by more 
than 2 

notches 
  

     Downgrade by Moody's in previous 1-15days   -0.245*** -0.015*** 0.283*** 0.071*** 

  
(0.025) (0.003) (0.030) (0.008) 

Downgrade by Moody's in previous 16-90days 
 

-0.204*** -0.012*** 0.235*** 0.059*** 

  
(0.017) (0.003) (0.021) (0.006) 

Downgrade by Moody's in previous 91-180days 
 

-0.121*** -0.007*** 0.140*** 0.035*** 

  
(0.029) (0.002) (0.034) (0.009) 

Downgrade by Moody's in previous 180 and more days 
 

-0.126*** -0.008*** 0.145*** 0.036*** 
    (0.025) (0.002) (0.029) (0.007) 
Upgrade by Moody's in previous 1-15days   0.249*** 0.015*** -0.288*** -0.072*** 

  
(0.048) (0.004) (0.056) (0.015) 

Upgrade by Moody's in previous 16-90days 
 

0.239*** 0.015*** -0.277*** -0.069*** 

  
(0.030) (0.003) (0.035) (0.010) 

Upgrade by Moody's in previous 91-180days 
 

0.275*** 0.017*** -0.318*** -0.079*** 

  
(0.032) (0.003) (0.036) (0.012) 

Upgrade by Moody's in previous more than 180 days 
 

0.162*** 0.010*** -0.188*** -0.047*** 
    (0.021) (0.002) (0.024) (0.007) 
Downgrade by S&P in previous 1-15days 

 
-0.135*** -0.008*** 0.156*** 0.039*** 

  
(0.046) (0.003) (0.053) (0.014) 

Downgrade by S&P in previous 16-90days 
 

-0.177*** -0.011*** 0.204*** 0.051*** 

  
(0.023) (0.002) (0.027) (0.008) 

Downgrade by S&P in previous 91-180days 
 

-0.172*** -0.010*** 0.199*** 0.049*** 

  
(0.027) (0.003) (0.032) (0.009) 

Downgrade by S&P in previous more than 180 days 
 

-0.107*** -0.006*** 0.123*** 0.031*** 

  
(0.024) (0.002) (0.030) (0.008) 

Upgrade by S&P in previous 1-15days   0.033 0.002 -0.038 -0.010 

  
(0.027) (0.002) (0.031) (0.008) 

Upgrade by S&P in previous 16-90days 
 

 -   -   -   -  

  
 -   -   -   -  

Upgrade by S&P in previous 91-180days 
 

0.153*** 0.009*** -0.177*** -0.044*** 

  
(0.039) (0.003) (0.046) (0.012) 

Upgrade by S&P in previous more than 180 days 
 

0.065** 0.004** -0.075** -0.019** 

  
(0.031) (0.002) (0.035) (0.009) 

Observations 
 

 3 766  
Pseudo R2    0.0862  

(continued on next page) 
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Panel B - Follower: S&P, Industry: Non-financial 

 
 Non-financial institutions (Marginal effects) 

Dependent variable 

  
S&P 

upgrade by 
1 notch 

 
S&P 

upgrade by 
more than 2 

notches 

 
S&P 

downgrade 
by 1 notch 

 
S&P 

downgrade by 
more than 2 

notches 

   
    Downgrade by Moody's in previous 1-15days  -0.305*** -0.041*** 0.296*** 0.075*** 

 
 (0.015) (0.004) (0.015) (0.005) 

Downgrade by Moody's in previous 16-90days  -0.262*** -0.035*** 0.254*** 0.065*** 

 
 (0.014) (0.003) (0.014) (0.004) 

Downgrade by Moody's in previous 91-180days  -0.179*** -0.024*** 0.173*** 0.044*** 

 
 (0.020) (0.003) (0.019) (0.005) 

Downgrade by Moody's in previous more than 180 days  -0.063** -0.008** 0.061** 0.016** 
   (0.027) (0.004) (0.027) (0.007) 
Upgrade by Moody's in previous 1-15days  0.309*** 0.041*** -0.299*** -0.076*** 

 
 (0.024) (0.004) (0.023) (0.007) 

Upgrade by Moody's in previous 16-90days  0.319*** 0.043*** -0.309*** -0.079*** 

 
 (0.019) (0.003) (0.018) (0.006) 

Upgrade by Moody's in previous 91-180days  0.265*** 0.035*** -0.256*** -0.065*** 

 
 (0.019) (0.003) (0.019) (0.006) 

Upgrade by Moody's in previous more than 180 days  0.186*** 0.025*** -0.180*** -0.046*** 
   (0.014) (0.002) (0.013) (0.004) 
Downgrade by S&P in previous 1-15days  0.121* 0.016* -0.117* -0.030* 

 
 (0.065) (0.009) (0.063) (0.016) 

Downgrade by S&P in previous 16-90days  -0.193*** -0.026*** 0.187*** 0.047*** 

 
 (0.016) (0.003) (0.016) (0.004) 

Downgrade by S&P in previous 91-180days  -0.174*** -0.023*** 0.168*** 0.043*** 

 
 (0.018) (0.003) (0.017) (0.005) 

Downgrade by S&P in previous more than 180 days  -0.030** -0.004** 0.029** 0.007** 

 
 (0.015) (0.002) (0.014) (0.004) 

Upgrade by S&P in previous 1-15days  -0.008 -0.001 0.007 0.002 

 
 (0.012) (0.002) (0.011) (0.003) 

Upgrade by S&P in previous 16-90days   -   -   -   -  

 
  -   -   -   -  

Upgrade by S&P in previous 91-180days  0.075** 0.010** -0.073** -0.018** 

 
 (0.035) (0.005) (0.034) (0.009) 

Upgrade by S&P in previous more than 180 days  0.097*** 0.013*** -0.094*** -0.024*** 

 
 (0.011) (0.002) (0.010) (0.003) 

Observations  10 872 
Pseudo R2  0.0748 

(continued on next page) 
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Panel C - Follower: Moody’s, Industry: Financial 

 
  Financial institutions (Marginal effects) 

Dependent variable 

 

 
Moody's 

upgrade by 
1 notch 

 
Moody's 

upgrade by 
more than 2 

notches 

 
Moody's 

downgrade 
by 1 notch 

Moody's 
downgrade 

by more 
than 2 

notches 
  

 
        

Downgrade by S&P in previous 1-15days   -0.140*** -0.029*** 0.156*** 0.062*** 

  
(0.019) (0.005) (0.021) (0.009) 

Downgrade by S&P in previous 16-90days 
 

-0.153*** -0.032*** 0.171*** 0.068*** 

  
(0.014) (0.005) (0.016) (0.007) 

Downgrade by S&P in previous 91-180days 
 

-0.102*** -0.021*** 0.113*** 0.045*** 

  
(0.025) (0.006) (0.027) (0.011) 

Downgrade by S&P in previous more than 180 days 
 

-0.095*** -0.020*** 0.106*** 0.043*** 
    (0.016) (0.004) (0.018) (0.007) 
Upgrade by S&P in previous 1-15days   0.186*** 0.039*** -0.207*** -0.083*** 

  
(0.064) (0.014) (0.071) (0.029) 

Upgrade by S&P in previous 16-90days 
 

0.218*** 0.046*** -0.243*** -0.097*** 

  
(0.022) (0.006) (0.024) (0.012) 

Upgrade by S&P in previous 91-180days 
 

0.142*** 0.030*** -0.158*** -0.063*** 

  
(0.027) (0.006) (0.030) (0.013) 

Upgrade by S&P in previous more than 180 days 
 

0.125*** 0.026*** -0.140*** -0.056*** 
    (0.013) (0.004) (0.015) (0.007) 
Downgrade by Moody's in previous 1-15days   -0.149** -0.032** 0.166** 0.067** 

  
(0.059) (0.013) (0.066) (0.027) 

Downgrade by Moody's in previous 16-90days 
 

-0.132*** -0.028*** 0.147*** 0.059*** 

  
(0.021) (0.005) (0.023) (0.010) 

Downgrade by Moody's in previous 91-180days 
 

-0.134*** -0.028*** 0.149*** 0.060*** 

  
(0.019) (0.005) (0.021) (0.008) 

Downgrade by Moody's in previous more than 180 days 
 

0.004 0.001 -0.005 -0.002 
    (0.024) (0.005) (0.027) (0.011) 
Upgrade by Moody's in previous 1-15days 

 
0.045 0.009 -0.050 -0.020 

  
(0.139) (0.029) (0.154) (0.062) 

Upgrade by Moody's in previous 16-90days 
 

0.010*** 0.002*** -0.011*** -0.004*** 

  
(0.002) (0.001) (0.003) (0.001) 

Upgrade by Moody's in previous 91-180days 
 

0.061 0.013 -0.068 -0.027 

  
(0.075) (0.016) (0.084) (0.034) 

Upgrade by Moody's in previous more than 180 days 
 

0.105*** 0.022*** -0.117*** -0.047*** 

  
(0.013) (0.003) (0.015) (0.007) 

Observations 
 

 3 766  
Pseudo R2    0.0973  

(continued on next page) 
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Panel D - Follower: Moody’s, Industry: Non-financial 

  Non-financial institutions (Marginal effects) 

Dependent variable 

  
Moody's 

upgrade by 1 
notch 

 
Moody's 

upgrade by 
more than 2 

notches 

 
Moody's 

downgrade 
by 1 notch 

Moody's 
downgrade 

by more 
than 2 

notches 
           
Downgrade by S&P in previous 1-15days  -0.175*** -0.015*** 0.190*** 0.031*** 

 
 (0.010) (0.002) (0.011) (0.003) 

Downgrade by S&P in previous 16-90days  -0.166*** -0.014*** 0.180*** 0.030*** 

 
 (0.009) (0.002) (0.009) (0.002) 

Downgrade by S&P in previous 91-180days  -0.143*** -0.012*** 0.155*** 0.025*** 

 
 (0.012) (0.002) (0.012) (0.003) 

Downgrade by S&P in previous more than 180 days  -0.064*** -0.006*** 0.069*** 0.011*** 
   (0.014) (0.001) (0.015) (0.003) 
Upgrade by S&P in previous 1-15days  0.178*** 0.015*** -0.194*** -0.032*** 

 
 (0.013) (0.002) (0.014) (0.003) 

Upgrade by S&P in previous 16-90days  0.160*** 0.014*** -0.174*** -0.029*** 

 
 (0.009) (0.002) (0.010) (0.003) 

Upgrade by S&P in previous 91-180days  0.181*** 0.016*** -0.197*** -0.032*** 

 
 (0.011) (0.002) (0.012) (0.003) 

Upgrade by S&P in previous more than 180 days  0.128*** 0.011*** -0.140*** -0.023*** 
   (0.008) (0.001) (0.009) (0.002) 
Downgrade by Moody's in previous 1-15days  -0.022 -0.002 0.024 0.004 

 
 (0.044) (0.004) (0.048) (0.008) 

Downgrade by Moody's in previous 16-90days  -0.128*** -0.011*** 0.139*** 0.023*** 

 
 (0.014) (0.002) (0.015) (0.003) 

Downgrade by Moody's in previous 91-180days  -0.148*** -0.013*** 0.161*** 0.026*** 

 
 (0.014) (0.002) (0.015) (0.003) 

Downgrade by Moody's in previous more than 180 days  0.012 0.001 -0.013 -0.002 
   (0.030) (0.003) (0.033) (0.005) 
Upgrade by Moody's in previous 1-15days  - - - - 

 
 - - - - 

Upgrade by Moody's in previous 16-90days  0.087*** 0.008*** -0.094*** -0.015*** 

 
 (0.032) (0.003) (0.034) (0.006) 

Upgrade by Moody's in previous 91-180days  0.129*** 0.011*** -0.140*** -0.023*** 

 
 (0.033) (0.003) (0.036) (0.006) 

Upgrade by Moody's in previous more than 180 days  0.092*** 0.008*** -0.100*** -0.016*** 

 
 (0.013) (0.001) (0.014) (0.003) 

Observations  10 872 
Pseudo R2  0.1500 
Note: (1) The table presents the results of ordered logit estimation (Eq. (4) and Eq. (5)) with robust 
standard errors. It reports the impact of potential leader’s/follower’s rating action on the probability of the 
follower’s rating upgrade/downgrade (marginal effects). The results are based on the sample of daily 
rating changes between December 2005 and October 2014 originated by S&P and Moody’s. The 
dependent variable is a binary variable taking the value of 1 if the follower upgraded/downgraded the 
issuer by one/two or more notches. The independent variables are dummy variables taking the value of 1 
if the issuer is upgraded/ downgraded by the potential leader/follower in four previous time windows (1-
15 days, 16-90 days, 91-180 days, more than 180 days). (2) Standard errors are in parenthesis. ***, **, 
and * denotes significance at the 1%, 5%, and 10% levels, respectively. 
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3.6 Conclusion 

The recent financial crisis has prompted increased analysis of the quality of credit 

ratings. Several issues focused the attention of the financial market on credit ratings: (1) 

significant but slow credit rating fluctuations over the past decades, (2) Basel III 

continuing to give high prominence to ratings in bank capital requirements, (3) 

excessive power of ratings to influence market expectations. 

This paper contributes to the recent related literature in several ways. First, 

empirical evidence suggests that there is a statistically significant difference in the 

rating evaluations of the two incumbent credit rating agencies. While Moody’s is 

consistently more conservative in its assessment of default risk for non-financial 

institutions, S&P is consistently more conservative in its assessment of default risk for 

financial institutions. The two rating agencies systematically agree in credit ratings only 

in the Communications and Technology industry sectors. The difference between S&P 

and Moody’s credit ratings has deepened over time, becoming the most substantial 

during the sovereign debt crisis from 2011 to 2013.  

Second, empirical evidence indicates that Fitch’s increasing market share has a 

positive and statistically significant effect on the rating split between S&P and Moody’s 

in the non-financial sectors. This might be because some rating agencies might prefer to 

protect their reputational capital by assigning timely and accurate ratings; other rating 

agencies might prefer to increase their own profits (ratings are issuer-paid) by assigning 

more favorable ratings. Thus, instead of promoting rating competition, the reporting 

requirements about financial data should be vastly enhanced to reduce sole reliance on 

credit ratings. The findings of this paper also imply that rating shopping (acquiring an 

additional rating opinion) fosters further disagreement between rating agencies, and 

hence reinforces the use of ‘second best’ issuer rating for regulatory purposes. 

Third, this paper confirms that sovereign ratings remain significant determinants 

of issuer ratings in the case of financial institutions, even though S&P gradually 

increases and Moody’s gradually relaxes its weight. For non-financial institutions, the 

approach of rating agencies is exactly the opposite. While S&P issuer ratings reflect 

sovereign ceilings, Moody’s does not constrain the rating of non-financial institutions 
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by the issuer’s country rating. The findings suggest that sovereign ceilings constitute a 

potential source of negative externality for financial institutions in low- rated countries, 

given that the financial health (rating) of the issuer is much stronger than of the parent 

company. 

Lastly, the empirical results of this paper strongly support the idea that the rating 

actions of one agency are considerably influenced by the prior ratings of other agencies. 

When compared to Moody’s, S&P is a follower in its rating actions for both financial 

and non-financial institutions. Further research should examine at what point financial 

market participants internalize this fact in their investment decisions. 
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Appendix 

Table 3.A.1: Descriptive statistics by rating agency 
Panel A – Average rating by industry sector 

Industry sector S&P Moody’s Fitch 
Financial 8.4 8.6 7.6 
Basic Materials 10.1 9.8 8.8 
Communications 11.0 10.7 9.4 
Consumer, Cyclical 11.0 11.6 11.1 
Consumer, Non-cyclical 9.5 9.7 8.3 
Diversified 9.3 9.1 7.7 
Energy 10.9 10.9 9.4 
Industrial 9.8 10.2 8.6 
Technology 9.6 9.3 8.2 
Utilities 8.8 8.8 8.3 

 
Panel B – Geographical coverage by rating agency 

Region S&P Moody’s Fitch 
United States 57% 60% 63% 
Euro Area  16% 15% 15% 
Japan 8% 8% 14% 
Other Advanced Economies 6% 4% 1% 
Commonwealth of Independent States 6% 5% 2% 
Emerging and Developing Asia 4% 5% 3% 
Emerging and Developing Europe 1% 1% 0% 
Latin America and the Caribbean 1% 1% 2% 
Middle East, North Africa, Afghanistan and Pakistan 1% 1% 0% 
Sub-Saharan Africa 0% 0% 0% 

Note: The descriptive statistics are based on the sample of 2 486 issuer ratings assigned as at the end of 
2013. The credit ratings in Panel A are mapped into 21 numerical values, where AAA is the best rating 
category and SD/D (semi-default/default) is the worst rating category. In particular, A- = 7, BBB+ = 8, 
BBB = 9, BBB- = 10, BB+ = 11. 
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Table 3.A.2: Mean financial statistics per rating grade 

Panel A – Financial sector: Banks 

                in % 

Rating grade Tier 1  

Common 
Equity / 
 Total 
Assets 

Loan Loss 
Reserves / 

 Non-
performing 

Assets 

Non-
performing 

Assets / 
Total 

Assets 

Return 
on 

Assets 

Return 
on 

Equity 

Total 
Loans /  
Total 

Deposits 

Deposits 
/ 

Funding 

 AAA  N/A 2.0 N/A 1.0 0.3 7.3 61.4 59.9 
 AA  12.0 30.0 104.3 1.2 0.6 10.8 131.1 60.3 
 A  11.4 111.0 77.2 2.4 0.6 5.8 108.4 68.2 
 BBB  12.3 62.0 134.5 3.2 0.5 5.7 94.8 80.0 
 BB  12.8 26.0 93.1 3.0 0.6 5.0 94.1 76.6 
 B  14.7 10.0 97.1 5.4 0.7 4.1 109.1 72.1 
 CCC  N/A N/A N/A N/A N/A N/A N/A N/A 
 C  N/A N/A N/A N/A N/A N/A N/A N/A 
 NR  11.4 59.0 117.4 2.1 0.6 6.4 82.8 88.0 

 

Panel B – Non-financial sector: Consumer-Cyclical 

          in % 

Rating grade 
Working capital 

/ 
 Total Assets 

Retained 
Earnings / 

Total Assets 

Earnings before 
Interest and 

Taxes / 
Total Assets 

Total Equity /  
Total 

Liabilities 

Net Sales / 
Total Assets 

AAA N/A N/A N/A N/A N/A 
AA 16.9 36.4 1.7 99.7 82.2 
A 10.6 20.9 1.6 54.2 78.9 
BBB 10.3 12.6 1.7 63.8 84.6 
BB 14.1 4.9 1.6 53.7 77.9 
B 9.8 -12.6 1.3 26.6 99.5 
CCC 4.2 -19.7 0.0 29.1 71.8 
C -127.9 -52.0 -0.7 -29.5 67.4 
NR 18.9 13.8 1.7 127.0 103.2 
Note: (1) The summary statistics are based on financial statement data from the end of 2009 credit rating 
assigned by S&P. As several indicators provide meaningful interpretation only if evaluated within the 
same sector, the table summarizes the financial ratios of only two industry sub-sectors. Based on the total 
number of observations in the dataset, the industry sub-sectors of banks and cyclical consumer goods 
were chosen to illustrate the financial indicators of the financial and non-financial sectors. (2) NR denotes 
issuers not rated by S&P, N/A stands for missing observations.  
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Table 3.A.3: Credit rating interpretation and numeric scales 

Original rating grades Interpretation New rating grades 

S&P/ 
Fitch Moody's   

Fine scale Wide scale 

Numeric Letter Numeric Letter 
  Investment grades     
AAA AAA Extremely strong capacity to meet financial 

commitments 
1 AAA 1 AAA 

AA+ Aa1 
Very strong capacity to meet financial 
commitments 

2 AA+ 2 AA 
AA Aa2 3 AA 2 AA 
AA- Aa3 4 AA- 2 AA 
A+ A1 Strong capacity to meet financial 

commitments, but somewhat susceptible to 
adverse economic conditions and changes 
in circumstances. 

5 A+ 3 A 
A A2 6 A 3 A 
A- A3 7 A- 3 A 

BBB+ Baa1 Adequate capacity to meet financial 
commitments, but more subject to adverse 
economic conditions 

8 BBB+ 4 BBB 
BBB Baa2 9 BBB 4 BBB 

BBB- Baa3 Considered lowest investment grade by 
market participants 

10 BBB- 4 BBB 

  Non- investment (speculative) grades     

BB+ Ba1 Less vulnerable in the near-term but faces 
major ongoing uncertainties to adverse 
business, financial and economic 
conditions 

11 BB+ 5 BB 
BB Ba2 12 BB 5 BB 
BB- Ba3 13 BB- 5 BB 

B+ B1 More vulnerable to adverse business, 
financial and economic conditions but 
currently has the capacity to meet financial 
commitments 

14 B+ 6 B 
B B2 15 B 6 B 
B- B3 16 B- 6 B 

CCC+ Caa1 Currently vulnerable and dependent on 
favorable business, financial and economic 
conditions to meet financial commitments. 

17 CCC+ 7 CCC 
CCC Caa2 18 CCC 7 CCC 
CCC- Caa3 19 CCC- 7 CCC 
CC Ca Currently highly vulnerable 20 CC 8 CC 
C C Currently highly vulnerable obligations 

and other defined circumstances 
21 C 9 C 

SD/D  Payment default on financial commitments 21   9 D 
Note: (1) The credit ratings are mapped into 21 numerical values, where AAA is the best rating category 
and SD/D (semi-default/default) is the worst rating category. (2) The interpretation of credit ratings is 
defined by S&P, http://www.standardandpoors.com/ratings/definitions-and-faqs/en/us 

 

http://www.standardandpoors.com/ratings/definitions-and-faqs/en/us
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Table 3.A.4: Determinants of issuer rating change 
Panel A – Issuer rating: S&P, Industry: Financial 

    
Dependent variable - Issuer 

rating upgrade by S&P 
 

Dependent variable - Issuer 
rating downgrade by S&P 

         

Rating change determinants   

Pre-crisis: 
Financial 

institutions 
- Marginal 

effects 

Subprime 
lending 
crisis: 

Financial 
institutions 
- Marginal 

effects 

Sovereign 
debt crisis: 
Financial 

institutions 
- Marginal 

effects   

Pre-crisis: 
Financial 

institutions 
- Marginal 

effects 

Subprime 
lending 
crisis: 

Financial 
institutions - 

Marginal 
effects 

Sovereign 
debt crisis: 
Financial 

institutions 
- Marginal 

effects 
Total asset   -0.000* 0.000** -0.000   -0.000** 0.000 -0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Return on assets 
 

-0.023 -0.007 0.019** 
 

-0.003 -0.023 0.006 

  
(0.033) (0.009) (0.009) 

 
(0.036) (0.014) (0.014) 

Common equity to total assets 
 

-0.015* 0.003 -0.000 
 

-0.021** 0.002 0.003 

  
(0.008) (0.002) (0.003) 

 
(0.009) (0.003) (0.004) 

Total loans to total deposits 
 

0.000 0.000 0.000 
 

0.000 0.000*** -0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Deposits to funding 
 

-0.003* 0.001** 0.000 
 

-0.003* -0.000 -0.002** 
    (0.002) (0.001) (0.001)   (0.002) (0.001) (0.001) 
1Y change in Return on assets   0.019* 0.000 -0.003***   -0.013 0.001*** -0.002*** 

  
(0.011) (0.000) (0.001) 

 
(0.012) (0.000) (0.001) 

1Y change in Net interest margin 
 

0.065 0.024** 0.071 
 

0.072 0.092*** 0.096 

  
(0.054) (0.011) (0.043) 

 
(0.059) (0.032) (0.069) 

1Y change in  Common equity to total assets -0.143 -0.044 0.004 
 

0.076 -0.041 0.059*** 

  
(0.137) (0.060) (0.005) 

 
(0.128) (0.073) (0.022) 

1Y change in Loan loss reserves to non-performing assets -0.012 -0.066 -0.023 
 

-0.004 0.000*** -0.026 

  
(0.011) (0.044) (0.025) 

 
(0.008) (0.000) (0.047) 

1Y change in Non-performing assets to total assets 0.026 -0.037 -0.016 
 

0.038* -0.001 -0.033 

  
(0.021) (0.025) (0.031) 

 
(0.022) (0.007) (0.040) 

     
(continued on next page) 
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1Y change in Total loans to total deposits -0.031 -0.003 0.060 

 
0.111 0.127 -0.306* 

  
(0.211) (0.081) (0.124) 

 
(0.194) (0.130) (0.176) 

1Y change in Deposits to funding 
 

0.462** -0.149 0.097 
 

0.602*** 0.155 -0.125 
    (0.202) (0.114) (0.120)   (0.185) (0.140) (0.176) 
Current account to GDP   -0.014*** -0.001 0.000   -0.011*** -0.006** -0.000 

  
(0.003) (0.001) (0.002) 

 
(0.004) (0.002) (0.003) 

GDP per capita 
 

-0.000 -0.000 -0.000** 
 

-0.000 0.000 -0.000** 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

1Y change in Current account to GDP 
 

-0.022*** -0.004 -0.001 
 

-0.024*** -0.010** 0.013 

  
(0.006) (0.003) (0.007) 

 
(0.009) (0.005) (0.021) 

1Y GPD growth 
 

-0.013 -0.002 -0.024*** 
 

-0.016 -0.010** -0.042*** 

  
(0.009) (0.004) (0.006) 

 
(0.013) (0.004) (0.008) 

1Y change in GDP per capita 
 

0.536 0.406*** 1.176*** 
 

0.729 0.436** 1.430*** 

  
(0.685) (0.141) (0.288) 

 
(0.765) (0.211) (0.293) 

1Y change in Inflation 
 

0.002 0.001 -0.008* 
 

0.004 -0.000 -0.007 

  
(0.013) (0.002) (0.005) 

 
(0.015) (0.004) (0.005) 

Euro Area   -0.251*** 0.059 -0.068  -0.240** -0.037 -0.002 
  (0.088) (0.048) (0.087)  (0.100) (0.058) (0.078) 
Emerging and Developing Europe  0.066 0.028 0.046  -0.032 -0.082 0.249** 
  (0.186) (0.040) (0.074)  (0.207) (0.102) (0.111) 
Middle East, North Africa, Afghanistan and Pakistan  0.241* 0.019 -0.027  0.236 0.036 -0.067 
  (0.125) (0.044) (0.054)  (0.146) (0.060) (0.074) 
Pseudo R2   0.2804 0.3506 0.3335   0.2172 0.3860 0.3197 
Observations   293 496 638   293 631 638 

                         (continued on next page)  
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Panel B – Issuer rating: S&P, Industry: Non-financial 

    

Dependent variable – 
Issuer rating upgrade 

by S&P 
 

Dependent variable –  
Issuer rating downgrade 

by S&P 

Rating change determinants   

Pre-crisis: 
Non-

financial 
institutions 
- Marginal 

effects 

Subprime 
lending 

crisis: Non-
financial 

institutions 
- Marginal 

effects 

Sovereign 
debt crisis: 

Non-
financial 

institutions 
- Marginal 

effects   

Pre-
crisis: 
Non-

financial 
institutio

ns - 
Marginal 
effects 

Subprime 
lending 
crisis:  
Non-

financial 
institutions 
- Marginal 

effects 

Sovereign 
debt crisis: 

Non-
financial 

institutions - 
Marginal 
effects 

Total asset   -0.000 -0.000 -0.000   -0.000 0.000 -0.000** 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Earnings per Share 
 

-0.000 0.000 0.000*** 
 

-0.000** -0.000** -0.000* 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Retained Earnings /Total Assets 
 

-0.000** 0.000 -0.000 
 

0.000 -0.000 0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Earnings before Interest and Taxes /Total Assets 0.007*** 0.005** -0.000 
 

0.003 -0.001 -0.002 

  
(0.002) (0.002) (0.002) 

 
(0.002) (0.002) (0.001) 

Total Equity / Total Liabilities 
 

-0.000*** -0.000 -0.000 
 

-
0.001*** -0.000** -0.000*** 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Net Sales /Total Assets 
 

0.000 0.000** 0.000 
 

-0.000 0.000 -0.000 
    (0.000) (0.000) (0.000)   (0.000) (0.000) (0.000) 
1Y change in Working capital /  Total Assets 0.001 0.000** 0.000   0.000 0.000 0.000 

  
(0.001) (0.000) (0.000) 

 
(0.001) (0.000) (0.000) 

1Y change in Retained Earnings / Total Assets -0.000 -0.000 -0.001*** 
 

-0.002 -0.000 -0.001*** 

  
(0.001) (0.000) (0.000) 

 
(0.001) (0.000) (0.000) 

1Y change in Earnings before Interest and Taxes / Total Assets 0.001 0.000 0.002** 
 

0.001 0.000 0.002 

  
(0.001) (0.000) (0.001) 

 
(0.002) (0.000) (0.001) 

1Y change in Total Equity / Total Liabilities -0.001 0.000 -0.001 
 

-0.001 0.001 -0.002* 
    (0.002) (0.000) (0.001)   (0.003) (0.001) (0.001) 
Current account to GDP 

 
0.005** 0.001 0.003* 

 
0.007*** -0.000 0.003 

  
(0.002) (0.001) (0.002) 

 
(0.003) (0.002) (0.002) 
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GDP per capita 
 

-0.000 0.000 -0.000 
 

-0.000 0.000 0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Inflation 
 

0.001 -0.004 0.006 
 

0.009 -0.003 -0.001 

  
(0.006) (0.003) (0.004) 

 
(0.008) (0.004) (0.005) 

1Y change in Current account to GDP -0.002 -0.001 0.019**   -0.006 0.000 0.008 

  
(0.004) (0.001) (0.009) 

 
(0.004) (0.001) (0.007) 

1Y GPD growth 
 

-0.008 0.002 -0.006 
 

-0.017 -0.002 -0.009 

  
(0.008) (0.002) (0.004) 

 
(0.011) (0.003) (0.005) 

1Y change in GDP per capita 
 

0.312 0.218** 0.114 
 

0.436 0.023 0.084 

  
(0.221) (0.085) (0.124) 

 
(0.300) (0.123) (0.122) 

1Y change in Inflation 
 

0.003 -0.006** 0.000 
 

-0.003 -0.006 -0.000 

  
(0.006) (0.002) (0.000) 

 
(0.007) (0.004) (0.001) 

Japan  -0.039 -0.095*** -0.151***  -0.127** -0.258*** -0.211*** 
  (0.041) (0.025) (0.029)  (0.054) (0.037) (0.029) 

Other Advanced Economies  -0.088*** -0.044*** -0.053***  
-
0.102*** -0.040* -0.049** 

  (0.032) (0.015) (0.016)  (0.038) (0.022) (0.019) 
Emerging and Developing Asia  -0.166* -0.032 0.043  -0.148 -0.103* -0.002 
  (0.086) (0.039) (0.038)  (0.109) (0.061) (0.052) 
Emerging and Developing Europe  0.055 -0.048   0.275** -0.113 -0.076 
  (0.078) (0.073)   (0.113) (0.111) (0.098) 
Latin America and the Caribbean  -0.082 0.004 0.006  -0.144* -0.005 -0.004 
    (0.061) (0.030) (0.032)   (0.082) (0.045) (0.041) 
Basic Materials   -0.021 0.005 0.025   -0.001 0.102*** 0.037 
  (0.045) (0.025) (0.035)  (0.060) (0.039) (0.045) 
Communications  -0.059** 0.014 0.027  -0.004 0.085*** 0.021 
  (0.028) (0.020) (0.031)  (0.035) (0.031) (0.042) 
Consumer, Cyclical  -0.027 -0.004 0.057*  0.020 0.142*** 0.079* 
  (0.027) (0.021) (0.030)  (0.035) (0.031) (0.041) 
Consumer, Non-cyclical  -0.086* -0.012 0.004  -0.030 0.019 -0.005 
    (0.046) (0.019) (0.030)   (0.060) (0.028) (0.039) 
Pseudo R2   0.1342 0.1728 0.1573   0.0575 0.0910 0.0742 
Observations   2 595 4 057 3 889   2 595 4 060 3 908 
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Panel C – Issuer rating: Moody’s, Industry: Financial 

    

Dependent variable –  
Issuer rating upgrade by 

Moody's 
 

Dependent variable – 
 Issuer rating downgrade 

by Moody's 

Rating change determinants   

Pre-crisis: 
Financial 

institutions - 
Marginal 
effects 

Subprime 
lending 
crisis: 

Financial 
institutions 
- Marginal 

effects 

Sovereign 
debt crisis: 
Financial 

institutions 
- Marginal 

effects 
 

Pre-crisis: 
Financial 

institutions 
- Marginal 

effects 

Subprime 
lending 
crisis: 

Financial 
institutions 
- Marginal 

effects 

Sovereign 
debt crisis: 
Financial 

institutions - 
Marginal 

effects 
Total asset   -0.000 0.000** -0.000   -0.000 -0.000 -0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Earnings per Share 
 

0.000 0.000*** -0.000 
 

0.000 -0.000 -0.000* 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Return on assets 
 

0.039 0.046** -0.002 
 

0.047 -0.019 -0.016 

  
(0.030) (0.018) (0.007) 

 
(0.031) (0.015) (0.019) 

Net interest margin 
 

-0.000 0.000*** -0.000 
 

-0.000 0.000*** 0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Common equity to total assets 
 

-0.005 0.024*** -0.005** 
 

-0.012* -0.018*** 0.001 

  
(0.007) (0.006) (0.002) 

 
(0.007) (0.005) (0.005) 

Loan loss reserves /Non-performing assets 
 

-0.000 -0.000** -0.000 
 

-0.000 -0.000 -0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Non-performing assets / Total assets 
 

-0.004 0.031** 0.008* 
 

-0.002 0.013* -0.007 

  
(0.016) (0.012) (0.005) 

 
(0.016) (0.007) (0.006) 

Total loans to total deposits 
 

0.000 0.000** 0.000 
 

-0.000 -0.000 0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Deposits to funding 
 

0.003* 0.000 -0.002** 
 

0.003* -0.003*** -0.005*** 
    (0.001) (0.001) (0.001)   (0.001) (0.001) (0.001) 
1Y change in Return on assets   -0.017 -0.009** -0.000   -0.058*** 0.000* 0.002 

  
(0.013) (0.004) (0.000) 

 
(0.014) (0.000) (0.002) 

1Y change in Net interest margin 
 

0.008 0.010 -0.061 
 

0.022 0.014 -0.171* 

  
(0.052) (0.018) (0.043) 

 
(0.056) (0.031) (0.103) 

1Y change in Common equity / Total Assets 
 

0.060 0.037 -0.007 
 

0.057 0.083 -0.022* 

  
(0.132) (0.034) (0.007) 

 
(0.149) (0.067) (0.012) 

1Y change in Loan loss reserves to non-performing assets -0.008 -0.075** 0.054** 
 

-0.004 0.000*** 0.061 

  
(0.048) (0.032) (0.025) 

 
(0.052) (0.000) (0.046) 
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1Y change in Non-performing assets to total assets -0.015 -0.158** -0.012 
 

-0.013 -0.002 -0.005 

  
(0.019) (0.063) (0.053) 

 
(0.021) (0.008) (0.039) 

1Y change in Deposits to funding 
 

0.049 -0.310** 0.136 
 

0.185 -0.120 -0.298 
    (0.192) (0.143) (0.102)   (0.172) (0.152) (0.205) 
Current account to GDP   0.001 0.008*** -0.008**   0.001 0.002 -0.001 

  
(0.004) (0.003) (0.004) 

 
(0.004) (0.002) (0.003) 

GDP per capita 
 

0.000 -0.000** -0.000 
 

0.000** 0.000 0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Inflation 
 

-0.005 0.004 -0.003 
 

-0.007 0.004* -0.011* 
    (0.010) (0.003) (0.005)   (0.011) (0.003) (0.007) 
1Y change in Current account to GDP 

 
-0.002 0.003*** -0.004 

 
-0.002 0.004*** -0.022** 

  
(0.005) (0.001) (0.003) 

 
(0.006) (0.001) (0.009) 

1Y GPD growth 
 

-0.020* 0.045*** -0.004 
 

-0.020* -0.001 -0.025*** 

  
(0.011) (0.010) (0.005) 

 
(0.011) (0.004) (0.009) 

1Y change in GDP per capita 
 

3.778*** 0.201 -0.037 
 

3.895*** -0.238 0.899** 

  
(0.739) (0.197) (0.141) 

 
(0.735) (0.211) (0.359) 

1Y change in Inflation 
 

-0.020 0.025*** 0.007*** 
 

-0.016 -0.011*** -0.002 

  
(0.018) (0.006) (0.003) 

 
(0.016) (0.004) (0.003) 

Euro Area  
 

-0.095 
 

-0.624*** 
 

-0.132 -0.023 0.105 

  
(0.090) 

 
(0.186) 

 
(0.089) (0.053) (0.084) 

Other Advanced Economies 
 

-0.357*** 0.056 -0.061 
 

-0.412*** -0.037 -0.007 

  
(0.098) (0.053) (0.041) 

 
(0.102) (0.060) (0.071) 

Emerging and Developing Asia 
 

-0.344* -0.363*** -0.175*** 
 

-0.427** -0.150* 0.137* 

  
(0.192) (0.123) (0.067) 

 
(0.201) (0.084) (0.078) 

Latin America and the Caribbean 
 

-0.421*** -0.304*** -0.171*** 
 

-0.522*** -0.135* -0.054 
    (0.152) (0.104) (0.056)   (0.162) (0.079) (0.084) 
Pseudo R2   0.4823 0.8019 0.5575   0.476 0.3835 0.2809 
Observations   289 411 575   289 631 632 

(continued on next page)
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Panel D – Issuer rating: Moody’s, Industry: Non-financial 

    

Dependent variable –  
Issuer rating upgrade by 

Moody's 
 

Dependent variable –  
Issuer rating downgrade by 

Moody's 

Rating change determinants   

Pre-crisis: 
Non-

financial 
institutions - 

Marginal 
effects 

Subprime 
lending 
crisis: 
Non-

financial 
institutions 
- Marginal 

effects 

Sovereign 
debt crisis: 

Non-
financial 

institutions 
- Marginal 

effects 
 

Pre-crisis: 
Non-

financial 
institutions - 

Marginal 
effects 

Subprime 
lending 
crisis: 
Non-

financial 
institutions 
- Marginal 

effects 

Sovereign 
debt crisis: 

Non-
financial 

institutions 
- Marginal 

effects 
Total asset   0.000 0.000 -0.000* 

 
0.000 -0.000 -0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Earnings before Interest and Taxes / 
Total Assets 0.004*** 0.000 0.003** 

 
0.002 -0.001 0.000 

  
(0.001) (0.001) (0.001) 

 
(0.002) (0.001) (0.001) 

Total Equity /  
Total Liabilities 

 
-0.000* -0.000 -0.000 

 
-0.000*** -0.000*** -0.000*** 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

Net Sales / 
Total Assets 

 
0.000 -0.000 -0.000 

 
-0.000 -0.000 -0.000* 

    (0.000) (0.000) (0.000) 
 

(0.000) (0.000) (0.000) 
1Y change in Earnings per Share/ Total Assets 0.001* -0.000 0.000 

 
0.000 -0.000 0.000 

  
(0.000) (0.000) (0.000) 

 
(0.000) (0.000) (0.000) 

1Y change in Retained Earnings / Total Assets 0.000 -0.000 0.002** 
 

0.000 -0.000 0.000 

  
(0.000) (0.000) (0.001) 

 
(0.000) (0.000) (0.001) 

1Y change in Earnings before Interest and Taxes / Total Assets -0.000 0.000 -0.000 
 

0.000 0.000** 0.000 

  
(0.001) (0.000) (0.000) 

 
(0.002) (0.000) (0.001) 

1Y change in Total Equity / Total Liabilities -0.002 -0.000 -0.001* 
 

0.002 -0.000 -0.002** 

  
(0.001) (0.000) (0.001) 

 
(0.003) (0.000) (0.001) 

1Y change in Net Sales /Total Assets 0.017** 0.001 -0.012 
 

0.005 -0.002 -0.007 
    (0.008) (0.001) (0.015) 

 
(0.015) (0.004) (0.028) 

Current account to GDP  0.004** -0.000 -0.002  0.004* 0.002 -0.001 
  (0.002) (0.001) (0.002)  (0.002) (0.001) (0.002) 
Inflation  -0.001 -0.007** -0.004  -0.009 -0.007** -0.007 

  (0.004) (0.003) (0.004)  (0.006) (0.003) (0.005) 
       (continued on next page) 
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1Y GPD growth  -0.005 0.001 -0.000  -0.001 -0.003 -0.013*** 

  (0.006) (0.002) (0.004)  (0.008) (0.003) (0.005) 
1Y change in GDP per capita  -0.077 0.260** 0.050  0.295 0.052 0.163* 
  (0.160) (0.104) (0.093)  (0.224) (0.109) (0.094) 
1Y change in Inflation 

 
0.003 0.004* 0.000 

 
-0.000 0.001 0.001 

  
(0.005) (0.002) (0.001) 

 
(0.006) (0.004) (0.001) 

Euro Area   -0.062** -0.026** -0.043**  -0.087*** -0.023 -0.028 
  (0.025) (0.013) (0.017)  (0.032) (0.018) (0.024) 
Japan  -0.073*** -0.082*** -0.109***  -0.160*** -0.147*** -0.129*** 
  (0.028) (0.021) (0.024)  (0.037) (0.028) (0.024) 
Other Advanced Economies  -0.053** -0.029* -0.027**  -0.089*** -0.049*** -0.049*** 
  (0.025) (0.015) (0.013)  (0.031) (0.019) (0.017) 
Emerging and Developing Asia  -0.073 -0.057 -0.079**  -0.060 -0.156** 0.012 

  (0.059) (0.035) (0.036)  (0.085) (0.061) (0.050) 
Latin America and the Caribbean  -0.062 -0.043 -0.026  -0.036 -0.131** -0.032 
    (0.049) (0.036) (0.027)   (0.069) (0.051) (0.041) 
Basic Materials  -0.005 0.012 0.099**  -0.003 0.039* 0.086 

  (0.019) (0.015) (0.047)  (0.028) (0.024) (0.063) 
Communications  -0.005 0.013 0.074*  0.003 0.021 0.074 

  (0.019) (0.015) (0.045)  (0.026) (0.023) (0.060) 
Consumer, Cyclical  -0.036* 0.014 0.099***  -0.013 0.083*** 0.081 

  (0.020) (0.015) (0.036)  (0.025) (0.022) (0.050) 
Consumer, Non-cyclical  -0.046** 0.015 0.102**  -0.013 0.009 0.085 

  (0.023) (0.016) (0.046)  (0.032) (0.023) (0.063) 
Energy  -0.013 0.025* 0.092**  0.001 0.044** 0.079 

  (0.022) (0.013) (0.038)  (0.029) (0.021) (0.052) 
Industrial  -0.048 0.006 0.075**  -0.065 0.030 0.041 

  (0.039) (0.014) (0.035)  (0.052) (0.020) (0.047) 
Pseudo R2   0.1906 0.2386 0.1930 

 
0.0599 0.0791 0.0680 

Observations   2 567 3 994 3 882 
 

2 567 4 060 3 908 
Note: (1) The table presents the impact of financial and macroeconomic data on the probability of the issuer rating change (marginal effects) from the probit 
estimation (Eq. (3.2) and Eq. (3.3)). It summarizes the remaining (statistically significant) determinants of issuer rating change not presented in Table 3.5. The 
dependent variable is a binary variable for rating upgrade/downgrade observed at the end of years 2005-2013 for the sample of  
2 486 financial and non-financial institutions. (2) The reference for regions is the United States, and the reference for the industry sector is the Financial sector. 
(3) Standard errors are in parenthesis. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 
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