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Abstract

This dissertation consists of three chapters that empirically investigate questions of in-
creasing relevance in the banking risk and financial economics literature. The first chapter
studies bank risk in the context of its joint determination with bank liquidity and capital
in the Eurozone. The second chapter examines the banks’ appetite for risk using the
comprehensive credit register of the Czech National Bank. Finally, the last chapter refers
to model risk and analyzes the ability of the selected term structure models to value the
interest rate swaps in the Polish market.

The first chapter analyzes the coordination of bank risk, liquidity and capital in the
presence of securitization. Its outcome contributes to the debate on the effectiveness of
the banking regulations. My findings with regard to the simultaneity of capital and risk
decisions are consistent with previous empirical studies. Incorporation of bank liquidity
permits me to establish the presence of the coordination of risk and liquidity decisions.
At the same time, I find no evidence of the direct joint determination of capital and liq-
uidity. Finally, the first chapter partially confirms the theoretical implications of Repullo
(2005).

The second chapter, coauthored with Adam Geršl, Petr Jakubík, Steven Ongena and
José-Luis Peydró, addresses the question of banks’ appetite for risk. In particular, we
examine the impact of monetary conditions on the risk-taking behaviour of banks in the
Czech Republic. Our duration analysis indicates that expansionary monetary conditions
promote risk-taking among banks. At the same time, a lower interest rate during the life
of a loan reduces its riskiness.

The third chapter refers to model risk and analyzes the performance of the selected
term structure models when valuing interest rate swaps in the Polish market. The Nelson-
Siegel, cubic interpolation and CIR models generate adequate fit and transaction values
similar to the realized contract values. The ample performance of the Cox-Ingersoll-Ross
model suggests the rate-reliant nature of the interest rate volatility. The underperfor-
mance of Vasicek’s emphasizes the role of the cross section of interest rates, and thus the
importance of a no-arbitrage argument. Finally, the ex-post accuracy of the Nelson-Siegel
and the cubic spline models indicates that a current cross-section of the yield curve is
highly informative for the future.
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Abstrakt

Tato dizertace obsahuje tři kapitoly, ve kterých jsou empiricky zkoumány klasické otázky
bankovní rizika a finanční ekonomie. V první kapitole zkoumám jestli bankovní likvidita,
kapitál a riziko jsou společně určeny v bankovním sektoru eurozóny. Ve druhé kapitole,
spolu s Adamom Geršlem, Petrem Jakubíkem, Stevnem Ongena a José-Luis Peydró,
zkoumáme roli měnových podmínek pro bankovní rizika v sektoru v ČR. Používǎme
komplexní úvěrověho registru České národní banky. Třetí kapitola se vztahuje na mod-
eloveho rizika a analyzuje výkonnost vybraného modelu vynosove krivky při oceňování
úrokové swapy na polském trhu. Cox-Ingersoll-Ross navrhuje ze volatilita souvisi z ve-
likosti úrokových sazeb. Ex-post Nelson-Siegel model ukazuje, že prurez výnosove křivky
je velmi informativni pro budoucnost.
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Introduction

This dissertation consists of three chapters which empirically examine questions of in-

creasing relevance in the banking risk and financial economics literature. The first chapter

studies bank risk in the context of its joint determination with bank liquidity and capital

in the Eurozone banking sector. The second chapter examines the banks’ appetite for

risk using the comprehensive credit register of the Czech National Bank. Finally, the

last chapter refers to model risk and analyzes the ability of the selected term structure

models to value interest rate swaps in the Polish market.

The recent financial turmoil and developments leading to its emergence have altered

the key sources of banks’ risks. Financial innovations, deregulation and competition from

non-bank financial intermediaries encouraged banks to seek higher returns and securitize

their loans. The new banking model and banks’ greater reliance on wholesale credi-

tors have emphasized the importance of bank liquidity buffers. At the same time, the

"originate-to-distribute" model and securitization might have resulted in an increased in-

terdependence of bank capital, liquidity and risk. This process has revitalized a need for a

proper recognition of risk, on balance and off-balance sheet, and led to revisions of bank-

ing regulations. This dissertation contributes to the discussion on banking regulations by

drawing conclusions from the analysis of risk, liquidity and capital coordination in the

Eurozone banking sector. The crisis has also fueled the discussion about the complexity

of valuation of contemporary financial instruments. Following the crisis, practitioners

and regulators have raised concerns regarding opaque financial products and their pric-

1



ing. This dissertation poses a more basic question, namely it discusses the usefulness

of advanced term structure models in valuation of plain vanilla interest rate sensitive

derivatives. Finally, the relaxed monetary policy of major central banks has been listed

among the causes of the recent financial turbulence. Existing theoretical work shows how

changes in short-term interest rates may affect risk-taking by financial institutions, and

empirical investigations that followed, largely confirmed the theoretical concepts. This

dissertation complements the existing empirical studies with an analysis of the impact

of monetary conditions on the risk-taking behaviour of banks in the Czech Republic, a

small open economy with independent monetary policy and a banking sector dominated

by the foreign ownership.

The first chapter investigates bank risk in the context of its joint determination with

bank liquidity and capital. The study analyzes the coordination of bank liquidity, capital

and risk in the presence of securitization. Its outcome contributes to the debate on the

effectiveness of the banking regulations. The empirical strategy relies on the system of

simultaneous equations and the partial adjustment approach, introduced by Shrieves and

Dahl (1992) and advanced by Heid, Porath, and Stolz (2003). The estimation results for

the securitization show that higher risk in the previous period implies greater securiti-

zation in the next period. My findings with regard to the simultaneity of capital and

risk decisions are consistent with the previous empirical studies. Incorporation of bank

liquidity permits me to establish a presence of the coordination of risk and liquidity de-

cisions. At the same time, I find no evidence of the direct joint determination of capital

and liquidity. Finally, the first chapter partially confirms the theoretical implications of

Repullo (2005).

The second chapter, coauthored with Adam Geršl, Petr Jakubík, Steven Ongena and

José-Luis Peydró, addresses the question of banks’ appetite for risk. In particular, we

examine the impact of monetary conditions on the risk-taking behaviour of banks in the

Czech Republic. Our duration analysis indicates that expansionary monetary conditions

promote risk-taking among banks. At the same time, a lower interest rate during the life

of a loan reduces its riskiness. While seeking to assess the association between banks’

appetite for risk and the short-term interest rate we answer a set of questions related to

the difference between higher liquidity versus credit risk and the effect of a policy rate

2



conditioned on bank and borrower characteristics.

The third chapter refers to model risk and analyzes five term structure models in order

to compare their ability to capture the interest rate dynamics and value the interest rate

swaps in the Polish market. Although model risk is typically associated with complex

derivatives, the choice of a plain interest rate derivative allows for examination of model

risk in the case of a dynamically growing OTC market, such as the Polish one, and a

wider selection of interest rate models, which includes the frameworks of Nelson and Siegel

(1987), Vasicek (1977), Cox, Ingersoll, and Ross (1985), Heath et al. (1992) and the cu-

bic spline curves. The performance and predictive accuracy of the term structure models

are assessed based on the realized contract values. The Nelson-Siegel, cubic interpola-

tion and CIR models generate adequate fit and transaction values similar to the realized

contract values. The Vasicek’s approach gives contract values statistically different from

the amounts actually swapped. The ample performance of the Cox-Ingersoll-Ross model

suggests the rate-reliant nature of the interest rate volatility. The underperformance of

Vasicek’s emphasizes the role of the cross section of interest rates, and thus the impor-

tance of a no-arbitrage argument. Finally, the ex-post accuracy of the Nelson-Siegel and

cubic spline indicates that a current cross-section of the yield curve is highly informative

for the future.
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Chapter 1
Capital, Liquidity and Risk Allocation in the

Eurozone’s Banking Sector

5



Capital, Liquidity and Risk Allocation in the Eurozone’s Banking Sector∗

Dorota Kowalczyk†

CERGE-EI ‡

Abstract

This chapter investigates the capital, risk and liquidity decisions of the European

banks in the period from 2001 to 2007. We examine the coordination of bank liquidity,

capital and risk in the presence of securitization. The empirical strategy relies on the

system of simultaneous equations and the partial adjustment approach, introduced by

Shrieves and Dahl (1992) and advanced by Heid, Porath, and Stolz (2003). The esti-

mation results for the securitization show that higher risk in the previous period implies

greater securitization in the next period. Our findings with regard to the simultaneity of

capital and risk decisions are consistent with the previous empirical studies. Incorpora-

tion of bank liquidity enables us to establish the presence of the coordination of risk and

liquidity decisions. At the same time, we find no evidence of the direct joint determina-

tion of capital and liquidity. This outcome contributes to the debate on the effectiveness

of the banking regulations. Finally, this study partially confirms the theoretical implica-

tions of Repullo (2005).

JEL Classification: G21, G28

Key Words: bank regulation, risk taking, bank capital, bank liquidity
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1.1 Introduction

Financial supervision authorities impose regulations on banks to ensure the safety and

soundness of the banking system. Unregulated banks are believed to maintain too lit-

tle capital and liquidity to absorb losses. Furthermore, it has been established that the

resilient banking sector facilitates proper financial intermediation and enhances capital

allocation in the economy. The key role of financial intermediation to the performance of

the real sector has been empirically established, for instance by Rousseau and Rousseau

and Wachtel (1998) or Dell’Ariccia, Detragiache, and Rajan (2008). Therefore, achieving

and maintaining financial stability has been one of the main concerns of policy makers

and has gained attention from researchers, as has the ongoing reform process of the bank-

ing industry launched in response to the recent financial crisis. Until recently, it had been

believed that a bank’s access to funding liquidity vitally depends on its assets’ quality.

Due to this commonly shared belief liquidity regulations were absent. The capital re-

quirements were to assert the proper quality of bank assets and, in addition, the bank’s

sufficient liquidity. The recent crisis revealed the collective over-confidence in this respect.

The recent financial turmoil and developments leading to its emergence have altered

the traditional roles performed by banking firms and the key sources of their risks. Finan-

cial innovations, deregulation and competition from the non-bank financial intermediaries

encouraged banks to seek higher returns and securitize their loans. The new "originate

and distribute" banking model, and banks’ greater reliance on wholesale creditors, em-

phasized the importance of liquidity requirements. At the same time, the "originate-to-

distribute" model and securitization might have resulted in an increased interdependence

of bank capital, liquidity and risk. This process has revitalized a need for a proper

recognition of risk, on balance and off-balance sheet, and led to revisions of banking

regulations. One of the previously neglected determinants of bank risk is securitization

activity. Furthermore, should the joint reshuffling of the two financial buffers and risk

be confirmed by the banks’ behavior, the design of banking regulations would need to

account for this coordination effect. Any pairwise analysis overlooking the interplay be-

tween the two buffers and the asset quality may lead to inadequate regulatory liquidity

and capital provisions.

Charles University, and the Economics Institute of the Academy of Sciences of the Czech Republic.
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This paper tests whether banks coordinate their decisions on credit risk, capital and

liquidity. In a sense, the main idea of this study was formulated years ago in banks’

annual reports, where one may find descriptions of integrated approaches to managing

capital, liquidity and balance sheet risk exposure, and the role of securitization in releas-

ing capital and liquidity designed to fuel the banks’ business growth1. Finding evidence

for joint allocation of capital, liquidity and risk and for the role of securitization could

shed some light on the way banks have relaxed the constraints of existing regulations

and may have important implications for a potential revision of the banking regulations.

While investigating the European banks’ coordination of the quality of assets, capital

and liquidity we - to some extent - test the predictions of Repullo (2005). Although

Repullo (2005) focuses on the implications of the presence of the lender of last resort

for bank liquidity, it also establishes that higher capital and liquidity induces lower risk.

Our empirical investigation tests the latter theoretical relationship for the EMU banks.

Repullo’s conclusions regarding the reverse relations are more ambiguous. Nevertheless

Repullo (2005), unlike many previous theoretical studies, does not ignore banks’ liquidity

buffers. Notably, it is the first theoretical paper to jointly model banks liquidity, capital

and risk decisions. Therefore, we refer to its findings when discussing our empirical results.

This chapter is organized as follows: the following section discusses the theoretical and

empirical literature, Section 3 outlines the methodology and model specification, while

Section 4 describes the dataset. The estimation results are presented in Section 5 and

Section 6 summarizes and concludes.

1.2 Literature Overview

Financial intermediation enhances capital allocation in the economy. Among essential

functions performed by banks, banking theory identifies asset transformation, which in

turn involves risk associated with financing illiquid loans with short-term deposits. This

mismatch causes banks’ vulnerability to depositors’ confidence. Sufficient bank solvency

1For instance, Deutsche Bank states already in its report for the year 2000 that it carried out secu-

ritization transactions, which allowed for "growth by substantially reducing tied capital". And then it

describes the success of its Global ALCO that managed "all strategic decisions on financial resources,

including the allocation of capital, liquidity and balance sheet to the Group Divisions. This integrated

approach enabled the Bank to release [. . .] regulatory capital through asset securitizations."

8



and liquidity are tools to maintain confidence in banking sectors. The academic litera-

ture on bank capital and capital regulations in the banking system has by now grown

plentiful. Liquidity, on the contrary, is a more complex concept and has only recently

emerged in banking firm theory. Baltensperger (1980) is the first to draw attention to a

bank liquidity buffer. He analyzes the liquidity buffer from a perspective of the inventory

theory. Baltensperger (1980) argues that, on one hand, it is costly for banks to keep a

stock of liquid assets. However, it is at the same time beneficiary, since liquidity buffers

reduce the probability of being ’out of stock’ in case of deposit withdrawals. His study

predicts that the size of liquidity buffer should reflect the cost of forgone return from

holding liquid assets rather than loans, and the cost of raising funds at a short notice.

Prisman, Slovin, and Sushka (1986) introduce liquidity risk into Monti-Klein model and

show that the expected cost of liquidity shortage augments the cost of bank’s resources.

Until Repullo (2005), little if any attention has been paid to modeling liquidity buffers.

His paper investigates a strategic interaction between a bank and the lender of last re-

sort, and concludes that the introduction of the latter reduces the size of bank’s liquidity

buffer. Furthermore, to the best of our knowledge it is the first theoretical study that

addresses the question of banks’ decisions about their level of capital, risk as well as

liquidity. Repullo (2005) studies optimal liquidity, capital and risk choice with and with-

out capital requirement, penalty rates and collateral lending. Crucial to our analysis is

the result obtained under the capital requirement where the bank is obliged to maintain

the amount of equity no lower than regulatory κ portion of its investment in the risky

asset (1−λ). Appendix A.2 features derivations of Repullo (2005) equilibrium under the

capital requirement. In this equilibrium, the first-order condition (A.2.20) characterizing

the bank’s choice of risk suggests that higher capital and liquidity buffers imply lower

risk. This outcome is obtained regardless of the type of the distribution function of the

liquidity shock.

The conclusions of Repullo (2005) regarding the reverse relations are less straightfor-

ward. The bank’s optimal level of capital is derived for a particular density function of

liquidity shocks. Specifically, Repullo employs a simple case of a beta distribution, which

ensures that larger liquidity shocks are less likely than small ones. For this choice, the
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equilibrum level of capital becomes the corner solution: k∗ = κ(1− λ∗). In this case, the

optimal level of capital depends depends inversely on the optimal level of liquidity. The

results for the optimal level of liquidity are obtained solely numerically. In our investiga-

tion we focus on the general outcome, that is the derivations describing the bank’s choice

of optimal risk.

An insightful overview of theoretical approaches to bank capital is presented in Van-

Hoose (2007), who discusses the efficiency of deposit insurance and solvency ratio as

disciplining tools in the frameworks ranging from pure portfolio choice to moral hazard

and incentive models. The stream of literature regarding banks as portfolio managers

indicates that the imposition of a solvency ratio is likely to yield efficient and less risky

asset allocation, providing that the risk weights are market based. On the other hand,

the strand of literature viewing banks mostly as monitors for moral hazard argues that

capital requirements may increase banks’ risk appetites. The underlying rationale is that

banks would seek to compensate for the costs of maintaining a capital cushion by in-

curring higher risk and increasing expected returns. Under the portfolio approach, first

presented by Kahane (1977) and later advanced by Koehn and Santomero (1980) and Kim

and Santomero (1988), a binding capital constraint changes the optimal composition of

the bank’s portfolio. The way in which the asset allocation is altered depends critically

on the risk weights used in the solvency ratio. Koehn and Santomero (1980) employ a

fixed capital-to-asset ratio and find that more stringent restriction on leveraging induces

banks to augment their holdings of risky assets, which from the supervisory point of view

is definitely an unintended outcome.

With mounting discussions on deficiencies of the Basel Capital Accord (1998), includ-

ing the flat rate, the idea of uniform solvency ratio has been superseded by a risk-based

approach. In their seminal paper, Kim and Santomero (1988) formally contrast the two

approaches and establish that stricter uniform capital ratio regulation eliminates some

leveraged parts of the bank’s opportunity set. However, the optimal reduction in the

insolvency risk is obtained under the risk-based plan. The most comprehensive study of

economic theory implications for solvency restrictions and deposit insurance in various

analytical banking models is due to Rochet (1992). Rochet shows that in the complete

markets setup capital requirements prove to be a very inapt tool for limiting the risk

taken by banks. In this case an increase in solvency ratio triggers portfolio reallocation
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leading to specialization in risky assets. Most importantly, Rochet proves that capital

requirements attain the desired outcome in the portfolio model if and only if the risk

weights are proportional to the market betas of respective assets. Other-than-market-

based risk weights cause excessive investment in riskier assets, which corroborates with

Kim and Santomero (1988) result. When Rochet extends his model to account for the

limited liability of banks even market-based capital ratio does not prevent undercapi-

talized banks from specializing in riskier assets. This plethora of theoretical conflicting

recommendations has motivated researchers to empirically examine the bank capital and

capital regulations issues.

One of the most recognized empirical studies of capital buffers is due to Shrieves

and Dahl (1992), who investigate changes in banks’ capital and risk levels in order to de-

termine which of the theoretical arguments are supported by the US data. They identify

one theoretical rationale for a negative risk and capital dependence and four arguments

predicting a positive relation between risk and leverage. In their opinion, a negative

link is likely to characterize banks seeking to exploit deposit insurance subsidy, while

those under regulatory pressure, facing high bankruptcy or regulatory costs, as well as

banks exhibiting managerial risk aversion tend to adjust risk and leverage levels likewise.

Shrieves and Dahl test the capital-risk relation using a simultaneous equations model

with partial adjustment framework and find support for the effectiveness of regulatory

policies on banks’ capital and risk decisions. Heid, Porath, and Stolz (2003) build on

Shrieves and Dahl’s framework and examine German banks’ risk-capital decisions. In

addition to pooled regressions, Heid, Porath, and Stolz employ dynamic panel data tech-

niques, subsample and rolling window approach. They test whether banks approaching

the regulatory minimum adjust their leverage, risk or both and verify the impact of min-

imal capital ratio on well-capitalized banks. Their study indicates that banks adjust

leverage faster than risk. However the speed does not depend on the level of capital

buffers. Moreover, Heid, Porath, and Stolz establish that low capitalized banks tend to

rebuild their capital cushions, while banks with substantial buffers tend to maintain their

leverage levels and alter solely their allocation of risky assets.

The first broad investigation of determinants of banks’ liquidity buffers is due to As-

pachs, Nier, and Tiesset (2005), who build on theoretical implications of Repullo (2005).

Aspachs, Nier and Tiesset study the liquidity policy of the UK banks and find that the
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higher the bank’s expectations of receiving assistance from the lender of last resort the

lower the liquidity buffers maintained. Their study also suggests that liquidity buffers

are counter-cyclical as a result of the financial constraints on the banks’ lending policy.

Aspachs, Nier, and Tiesset (2005), however, focuse mainly on the liquidity moral haz-

ard in the UK banking system and the interaction between the macroeconomic situation

and the banks’ liquidity buffers. In contrast, we employ the comprehensive theoretical

framework of Repullo (2005) to investigate its implications for the banks’ coordination of

liquidity, capital and risk decisions. The first study to investigate the relation between

banks’ capital, credit risk and securitization was by Dionne and Harchaoui (2008). They

find that securitization activity negatively affects banks’ capital ratios and positively af-

fects their credit risk. In other words, banks that are involved in securitization tend to

be more risky. Moreover, banks constrained by the solvency ratio increase their securi-

tization activity. In their opinion, a high risk level prevailing together with high total

capital adequacy ratios suggests that BIS weights may inadequately capture the riskiness

of banking activities.

1.3 Methodology and Model Specification

1.3.1 Determinants of Securitization

This paper tests whether banks coordinate their decisions on credit risk, capital and

liquidity. We first focus on securitization as this activity is likely to provide an additional

link for the interplay of risk, capital and liquidity. The immediate effect of securitization

is a reduction in the risk-weighted assets and untying of regulatory capital due to a re-

moval of the securitized loans from the bank’s balance sheet. Whether or not it decreases

the overall risk exposure depends on the bank’s lending and investment strategies and

the competitiveness of the financial sector. Financing new assets with the released liq-

uidity should result in an increased diversification and should lower the bank risk. While

Instefjord (2005) recognizes the benefits of risk sharing, he additionally shows that se-

curitization encourages more risk-taking. Increased competition in the financial markets

strengthens the impact of the latter effect (Instefjord (2005)). Moreover, Greenbaum and

Thakor (1987) argue that banks tend to withhold poorer quality assets. Given the benign

macroeconomic conditions and the search for yield observed in the analyzed period, we

expect a positive dependancy between the asset quality, measured by credit risk, and
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the securitization activity. The predictions about the interaction between the liquidity

and securitization and bank capital and securitization are even less evident. Therefore,

we simply expect to obtain a significant relation. The research hypotheses regarding the

securitization can be summarized as:

(HA 1.1) Higher risk in the previous period implies greater securitization in the next

period.

(HA 1.2) There is a significant impact of the liquidity and capital on the securitization

in the next period.

To verify the validity of these predictions we estimate the equation for the securitization

activity given by:

∆SECi,t = ξCAPi,t−1 + ψRISKi,t−1 + ζLIQi,t−1 + CONTROLS + ωi,t (1.1)

where CAPi,t−1 , RISKi,t−1 and LIQi,t−1 are the previous period levels of bank capital,

risk and liquidity defined as in the next section. Following Altunbas, Gambacorta, and

Marques-Ibanez (2009), SECi,t relates the flow of the securitized lending in the current

year to the total assets in the previous year. Using equation (1.1) we test whether ψ

is positive and ψ, ξ and ζ are significant. All variable definitions are also provided in

Table A1.1. The bank controls are bank-level variables affecting the decision to sell

loans. Due to the economies of scale, the bank size is a good candidate for a control

variable. Additionally, the alternative cost of funding new assets is likely to impact the

securitization activity. Banks able to attract "cheap" deposits (low interest on deposits) or

with a lot of "cheap" capital (low return on capital) should be less prone to finance new

assets with securitization (for a detailed discussion refer to Han, Park, and Pennacchi

(2010)). In our case, the size effect proved to significantly influence the securitization

activity.

1.3.2 Coordination of Risk, Capital and Liquidity

As already mentioned, the main goal of this paper is to test whether banks coordinate

their decisions on credit risk, capital and liquidity. By doing so, to some extent we verify

the predictions of Repullo (2005). Repullo (2005) studies the implications of the presence

of the lender of last resort for the bank liquidity. However Repullo also derives optimal

liquidity, capital and risk choice with and without capital requirement, penalty rates and
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collateral lending. The outcome obtained under the capital requirement, where the bank

is obliged to maintain the amount of equity no lower than regulatory κ portion of its

investment in the risky asset (1 - λ), is vital to our analysis. A simplified exposition

of the banking model of Repullo (2005) is provided in Appendix A.2. In short, Repullo

argues that higher capital and liquidity induces lower risk. Conclusions regarding the

reverse relations are more ambiguous. The bank’s optimal level of capital is derived for

a simple case of a beta distribution of liquidity shocks. Such a density function ensures

that larger liquidity shocks are less likely than small ones. For this choice, the equilibrum

level of capital becomes the corner solution: k∗ = κ(1 − λ∗). In this case, the optimal

level of capital depends inversely on the optimal level of liquidity. The results for the

optimal level of liquidity are obtained solely numerically. In our investigation we focus

on the general outcome, that is the derivations describing the bank’s choice of optimal

risk.

While testing the implications of economic theory for the relationship between cap-

ital, risk and liquidity we employ a simultaneous equations estimation with partial ad-

justments. An important aspect of this approach is that it recognizes the simultaneity of

leverage and risk decision-making, which is suggested by the theory and emphasized in

the work of Shrieves and Dahl (1992) and Heid, Porath, and Stolz (2003), among others.

The observed changes in banks’ leverage, risk and liquidity levels are caused not solely

by banks’ discretionary behavior, but also as a result of unanticipated shocks. This argu-

ment has been emphasized by Hart and Jaffee (1974) and incorporated in most previous

empirical studies. Accordingly, we model observed changes in capital, liquidity and risk

as the sum of a discretionary component and a random shock. The fact that we obtain

solely the estimates for the discretionary part of the observed changes is one of the jus-

tifications for the use of a partial adjustment framework. An even stronger rationale for

using partial adjustment stems from rigidities and adjustment costs assumed in a number

of theoretical banking models. This framework presumes that banks aim at establishing

optimal capital, risk and liquidity and, when driven away from those targets by exogenous

shocks, adjust their actual levels gradually. Full adjustments might be simply too costly

or unfeasible. The partial adjustment can be generally expressed as:

∆CAPit = α∆CAPD
it + ϵit (1.2)

∆RISKit = β∆RISKD
it + νit (1.3)
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∆LIQit = γ∆LIQD
it + ηit (1.4)

where ∆CAPit, ∆RISKit and ∆LIQit are the observed changes, while ∆CAPD
it , ∆RISKD

it

and ∆LIQD
it are the endogenously determined changes in bank’s capital, risk and liquid-

ity respectively. The coefficients α, β and γ capture the speed of adjustment for capital,

risk and liquidity. Following the conventional approach in the field, we estimate equa-

tions for the changes and not the absolute values of capital, risk and liquidity. In fact, in

the absence of the theory on optimal leverage, modeling deviations from banks’ internal

targets within the partial adjustment framework becomes a very convenient strategy for

conducting empirical studies. As a result, we obtain the following equations:

∆CAPit = α(CAP ∗
i,t − CAPi,t−1) + ϵit (1.5)

∆RISKit = β(RISK∗
i,t −RISKi,t−1) + νit (1.6)

∆LIQit = γ(LIQ∗
i,t − LIQi,t−1) + ηit (1.7)

The unobservable internal targets are usually captured by proxies, which are sug-

gested by banking theory, such as bank’s size or return on assets. First, however, we

discuss the measures of capital, risk and liquidity and only afterwards do we turn to their

unobservable targets. The simultaneity of capital, risk and liquidity decisions implies

that the system of equations (1.5 -1.7) becomes:

∆CAPit = α(CAP ∗
i,t − CAPi,t−1) + ϕ1∆RISKi,t + φ1∆LIQi,t + ϵit (1.8)

∆RISKit = β(RISK∗
i,t −RISKi,t−1) + τ1∆CAPi,t + φ2∆LIQi,t + νit (1.9)

∆LIQit = γ(LIQ∗
i,t − LIQi,t−1) + ϕ2∆RISKi,t + τ2∆CAPi,t + ηit (1.10)

Finally, we can formulate our research hypotheses regarding the coordination effect and

the test of Repullo’s predictions as follows:

(HA 2) There is a significant impact of the risk, capital and liquidity on each other.

(HA 3) Higher capital and liquidity imply lower risk.
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1.3.3 Empirical Model and Variable Measures

Empirical studies commonly use one of the following measures of capital, either the

leverage ratio or the risk-based capital ratio. The leverage ratio is defined as total capital

over total assets and the risk-based capital ratio is total capital to risk-weighted assets.

The latter measure has become more popular after the introduction of risk-based regu-

lation (see for example Jacques and Nigro (1997), Ediz, Michael, and Perraudin (1998),

Aggarwal and Jacques (2001) and Rime (2001)). Given our definition of RISK, we

measure capital as the leverage ratio2 (CAP ). The definition of risk causes even more

problems. The empirical investigations mostly rely on the ratio of risk-weighted assets

to total assets (RWATA ) as the risk measure. Such a choice stems from the belief that,

by reflecting the allocation of bank’s assets among risk categories, RWATA is the true

determinant of a bank’s risk. However, Shrieves and Dahl (1992) argue that RWATA ne-

glects the impact of loans quality and add a third equation, with nonperforming loans as

an additional measure of risk. Contrary to them, Jacques and Nigro (1997), Rime (2001)

and Heid, Porath, and Stolz (2003) claim that RWATA captures both the allocation and

quality of portfolio risk and rely solely on this risk measure. We also employ the ratio

of risk-weighted assets to total assets (RISK), since together with our capital measure

they constitute the BIS capital adequacy ratio imposed on the EU banks to monitor their

soundness. Finally, liquidity (LIQ) is measured by the relation of liquid assets to total

assets (see for instance Aspachs, Nier, and Tiesset (2005)). The liquid assets comprise

cash, reverse repos, bills and commercial papers. All variable definitions are summarized

in Table A1.1.

The partial adjustment models account for the unobservable targets with the help of

variables describing the nature of the bank’s business and its current financial stance. For

the sake of comparability we rely on variables typically chosen in the related empirical

literature. As a rule, the bank size (SIZE) is considered to affect the target leverage,

liquidity and risk. SIZE is measured as the logarithm of a bank’s total assets. Among

others, the size effect matters for relative access to capital and liquidity, for the investment

possibilities and diversification of bank activities. Additionally, due to the economies of

scale in screening and monitoring, bigger banks might have less risky loan portfolios. Still,

the sign of the size effect on the risk, capital and liquidity is undetermined. Loan losses

2The same measure is used for instance in Shrieves and Dahl (1992) and Heid, Porath, and Stolz
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lower the amount of risk-weighted assets and thus may affect the risk target. Additionally

to the size effect, we proxy the capital target by the ratio of net income to total assets

(ROA). We expect a positive coefficient on the return on assets. Earnings, if retained,

increase the capital. The bank size and loan losses are assumed to influence the target level

of risk. We approximate loan losses (LLOSS) with the ratio of new loan loss provisions

over the sum of banks’ loans net loan loss reserves. LLOSS is included in the risk

equation with an expected negative sign. Among the idiosyncratic factors influencing the

liquidity target we include the bank size and the loan growth rate (↑ LOAN). The loan

growth rate is defined as new lending volume over the loan portfolio in the previous year.

Finally, we include the year dummies. Thus, the system of equations to be estimated

takes the following form:

∆CAPit = α0 + α1SIZEi,t + α2ROAi,t − α3CAPi,t−1 + α4∆RISKi,t

+α5∆LIQi,t + α6∆SECi,t +DUMMIESY EAR + ϵit (1.11)

∆RISKit = β0 + β1SIZEi,t + β2LLOSSi,t − β3RISKi,t−1 + β4∆CAPi,t

+β5∆LIQi,t + β6∆SECi,t +DUMMIESY EAR + νit (1.12)

∆LIQit = γ0 + γ1SIZEi,t + γ2 ↑ LOANi,t − γ3LIQi,t−1 + γ4∆CAPi,t

+γ5∆RISKi,t + γ6∆SECi,t +DUMMIESY EAR + ηit (1.13)

1.3.4 Estimation Strategy

Given the simultaneous nature of the model, the estimation strategy has to account for

the endogeneity of ∆CAPit, ∆LIQit and ∆LIQit. The two-stage least squares and three-

stage least squares (3SLS) take into account the endogeneity of the regressors and yield

consistent estimates. As we wish to recognize the contemporaneous correlation between

the error terms in the three equations, we use 3SLS procedure. In such cases 3SLS

produces asymptotically more efficient estimates3. Typically, the empirical studies in the

(2003).
3For a description of the procedure refer to econometric textbooks, e.g. (Baltagi 2008), pp. 131-132.
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field rely on the pooled 3SLS methodology. Therefore, for the sake of comparability and

as a robustness check, we estimate and report the results for the three-stage least squares.

In the absence of the unobserved heterogeneity, the 3SLS procedure produces unbiased

estimates. However, when the "left-aside" bank-specific effects are not negligible, the

3SLS outcome is biased. To control for bank-specific heterogeneity we employ dynamic

panel data technique of Blundell and Bond (1999). The two-step Blundell-Bond system

GMM estimator uses lagged variables as instruments in the first difference equations and

lagged first differences in the levels equations. In both estimation techniques we use

dummy variables for the years studied. In addition to the system of the capital, risk and

liquidity equations, we model the bank securitization activity as a function of the three

key variables and the bank size. The securitization is also estimated with the help of the

two-step Blundell-Bond system GMM estimator. The fitted values serve as instruments

for the securitization in the system of equations (1.11) - (1.13).

1.4 Data Description

This study uses annual bank financial data gathered from Bankscope, Bloomberg and

AMC Dealogic (former Bondware). Bankscope is a commercial database maintained by

International Bank Credit Analysis Ltd. and Bureau van Dijk, which contains financial

results for banks together with such additional metrics as Fitch ratings. Dealogic is

an independent data distributor, which provides information on various over-the-counter

structural finance transactions and syndicated loans. We use the extended dataset of

ABS securities and cash flow CDOs from Dealogic employed in Altunbas, Gambacorta,

and Marques-Ibanez (2009). When it comes to the financial statements data, if both

consolidated and unconsolidated figures are available, the consolidated ones are utilized.

We analyze annual data since this frequency accounts for more discretionary behavior by

capturing long-term trends. The dataset covers the period 2000 to 2007. However, due

to the use of first differences and lagged values, the reported results refer to 2002-2007.

The number of analyzed banks differs across years from 201 to 443 (see Table A1.4).

We consider solely the banks operating in the Eurozone. The number of bank records

is limited by the data availability. Table 1.1 displays main descriptive statistics for the

obtained data, while Table A1.2 and Table A1.3 present the bivariate dependencies in our

sample. The rationale for the variable selection is discussed in the sections: Empirical

Model and Variable Measures and Determinants of Securitization. All variable definitions
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are summarized in Table A1.1.

Table 1.1: Data Descriptive Statistics

Variable Type Freq. Obs. Mean Std. Dev. Min. Max.
RISK # year 2, 477 0.605 0.313 0.011 2.693
CAP # year 2, 477 0.090 0.061 0.002 0.632
LIQ # year 2, 458 0.148 0.165 0 0.988
SEC # year 2, 477 3.969 26.37 0 532
SIZE # year 2, 477 15.21 2.44 9.47 21.67
ROA % year 2, 477 0.895 0.976 −11.13 20.25
LLOSS # year 2, 366 0.004 0.026 −0.733 0.407
↑ LOAN % year 2, 097 15.63 29.28 −96 256

1.5 Estimation Results

The estimation results for Equation (1.1) are presented in Table 1.2. We estimate the

securitization activity using the dynamic panel data procedure discussed in the section

Estimation Strategy. This approach allows us to account for the possible bank-specific

effects. To capture the two-way relation of risk, capital, liquidity and securitization, we

use GMM-type instruments for CAPi,t−1, RISKi,t−1 and LIQi,t−1. The Hansen test indi-

cates the validity of the instruments. The condition for the GMM estimator consistency is

also met. The test reports serial correlation in the first-differenced residuals and the lack

of the serial correlation for the second-order differences. The results show that the size

effect play a significant role in the determination of the level of securitization (0.488∗∗).

More importantly, the estimate for RISKi,t−1 is significant and amounts to 4.695∗∗.

Therefore, we find evidence to support our hypothesis (HA 1.1). Higher risk in the

previous period implies greater securitization in the next period. The outcome suggests

no significant influence of liquidity and capital on securitization (H0 1.2). The fitted val-

ues obtained for securitization serve as instruments in the estimation of the coordination

of the risk, capital and liquidity bank decisions.

With respect to the coordination of capital, risk and liquidity adjustments, the pooled

3SLS and the dynamic panel estimations agree on the simultaneity of the risk and cap-

ital decisions as well as the impact of the risk adjustment on the liquidity correction.

None of the methodology finds evidence of the simultaneity between capital and liquid-

ity. Therefore, our hypothesis (HA 2) is solely partially supported. In each equation, the

effect of the fitted securitization proves to be insignificant. Its effect is likely to be already

19



captured by the levels of endogenous variables themselves. As each equation includes cor-

responding lagged variables, CAPi,t−1, RISKi,t−1 and LIQi,t−1, each of them is identified.

The validity of the overidentifying restrictions is confirmed by the Hansen test (see the

estimation output in Tables 1.3 - 1.5). To capture the simultaneity of risk, capital and liq-

uidity in the dynamic approach, we use GMM-type instruments for CAPi,t−1, RISKi,t−1

and LIQi,t−1. The Hansen test indicates the validity of the instruments. The condition

for the GMM estimator consistency is also met. The test reports serial correlation in

the first-differenced residuals and the lack of the serial correlation for the second-order

differences (for details refer to Tables 1.3 -1.5). The outcome for the capital equation

are provided in Table 1.3. The 3SLS and Blundell-Bond GMM estimates indicate a pos-

itive coordination of capital and risk. The estimated coefficients for the risk are 0.165∗∗∗

and 0.078∗∗∗ respectively. In addition, both procedures find the significant impact of the

return on assets on the capital adjustment. The sign is as expected and corroborates

with the empirical evidence (e.g. Heid, Porath, and Stolz (2003)). The size effect and

the coefficient on CAPt−1 become significant under the dynamic panel treatment. Since

this approach accounts for any possible unaccounted bank-specific effects, the dynamic

panel estimators are regarded as more reliable in this context. The negative adjustment

coefficient (−0.145∗∗∗) supports the validity of the partial adjustment framework. The

size effect indicates the inverse relation between the bank size and the capital adjustment

(−0.001∗∗∗).

Table 1.4 summarizes the results for the risk equation. The 3SLS and Blundell-Bond

GMM estimates indicate a positive coordination of capital and risk. The estimated coef-

ficients for the capital are 3.829∗∗∗ and 2.629∗∗ respectively. Moreover, both procedures

find a significant impact of RISKt−1, which corroborates with the partial adjustment

framework. The GMM estimates for the coordination of the liquidity and risk adjust-

ments is highly significant and amounts to −0.268∗∗∗. Due to the possible unaccounted

bank-specific effects, the dynamic panel estimators are regarded as more reliable. Yet,

the insignificant pooled 3SLS estimate signals the result is not robust. The size effect

becomes marginally significant under the dynamic treatment (−0.006∗). As in the case

of the capital equation, the size effect indicates the inverse relation between the bank size

and the risk adjustment. The impact of the loan losses on the risk adjustment proves to

be insignificant.
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Table 1.2: Determinants of Securitization, 2003-2007

Dep. variable Coefficient
SEC (Robust Std. Err).
SECt−1 0.401∗

(0.230)
SECt−2 −0.225

(0.204)
RISKt−1 4.695∗∗

(2.072)
CAPt−1 −5.343

(4.094)
LIQt−1 −4.883

(4.091)
SIZE 0.488∗∗

(0.243)
Intercept −8.396∗

(4.572)
Year dummies Yes
N 1, 844
χ2
(11) 43.874

Sargan test 0.384
AR(1) test 0.113
AR(2) test 0.979

Notes: The dependent variable, SEC, is defined as securitization activity (deal values) in the current year over total

assets at the end of the previous year. SECt−1 and SECt−2 are one- and two-period lags respectively. The fitted values

of securitization are used in subsequent estimations. CAPi,t is total capital over total assets, RISKi,t are risk-weighted

assets over total assets and LIQi,t are liquid assets over total assets. SIZE is defined as the natural log of total assets.

Significance levels at 10%, 5%, 1% in a two-tailed t-test are shown as ∗, ∗∗ and ∗ ∗ ∗ respectively. Estimation with the

Blundell-Bond Two-Step GMM procedure. To account for simultaneity of risk, capital, liquidity and securitization

adjustments I use GMM-type instruments for CAPi,t−1, RISKi,t−1 and LIQi,t−1. The Hansen test reports a p-value for

the Hansen test of overidentifying restrictions. AR(1) and AR(2) tests report p-values for the test of no first-order and

second-order autocorrelation in the first-differences residuals.
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Table 1.3: Simultaneous Estimation for the Capital Equation, 2002-2007

Dep. variable (I) Coefficient (II) Coefficient
∆ CAP (Robust Std. Err.) (Robust Std. Err.)
CAPt−1 0.007 −0.145∗∗∗

(0.010) (0.046)
∆RISK 0.165∗∗∗ 0.078∗∗∗

(0.019) (0.011)
∆LIQ 0.019 0.002

(0.020) (0.008)
∆SÊC 0.000 0.000

(0.000) (0.000)
SIZE 0.000 −0.001∗∗

(0.000) (0.001)
ROA 0.002∗∗∗ 0.004∗∗∗

(0.001) (0.001)
Intercept −0.009∗ 0.026∗∗

(0.005) (0.012)
Year dummies Yes Yes
N 866 866
Log-likelihood 5191.150
χ2
(10) 128.934

Hansen test 0.127 0.131
AR(1) test - 0.002
AR(2) test - 0.861

Notes: The dependent variable, ∆CAPi,t, is defined as a change in total capital over total assets. ∆RISKi,t is a change

in risk-weighted assets over total assets and ∆LIQi,t is a change in liquid assets over total assets. SEC is a fitted value of

securitization activity (see Table 1.2). ∆ indicates the first difference. SIZE is defined as the natural log of total assets.

ROA is return on assets. Significance levels at 10%, 5%, 1% in a two-tailed t-test are shown as ∗, ∗∗ and ∗ ∗ ∗

respectively. (I) The capital equation, the risk equation and the liquidity equation are estimated simultaneously using the

three-stage least squares procedure. The Hansen test reports a p-value for the Hansen-Sargan test of overidentifying

restrictions. (II) Estimation with the Blundell-Bond Two-Step GMM procedure. To account for simultaneity of risk,

capital and liquidity adjustments I use GMM-type instruments for ∆RISKi,t and ∆LIQi,t. The Hansen test reports a

p-value for the Hansen test of overidentifying restrictions. AR(1) and AR(2) tests report p-values for the test of no

first-order and second-order autocorrelation in the first-differences residuals.
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Table 1.4: Simultaneous Estimation for the Risk Equation, 2002-2007

Dep. variable (I) Coefficient (II) Coefficient
∆ Risk (Robust Std. Err.) (Robust Std. Err.)
RISKt−1 −0.037∗∗∗ −0.108∗

(0.012) (0.061)
∆CAP 3.829∗∗∗ 2.629∗∗

(0.002) (1.193)
∆LIQ 0.020 −0.268∗∗∗

(0.111) (0.083)
∆SÊC 0.000 0.000

(0.000) (0.001)
SIZE −0.001 −0.006∗

(0.002) (0.003)
LLOSS 0.394 0.638

(0.249) (0.590)
Intercept 0.062∗∗ 0.168∗

(0.028) (0.088)
Year dummies Yes Yes
N 866 866
Log-likelihood 5191.150
χ2
(9) 51.691

Hansen test 0.127 0.299
AR(1) test - 0.001
AR(2) test - 0.100

Notes: The dependent variable ∆RISKi,t is defined as a change in risk-weighted assets over total assets ∆LIQi,t is a
change in liquid assets over total assets and ∆CAPi,t is a change in total capital over total assets. SÊC is a fitted value
of securitization activity (see Table 2). ∆ indicates the first difference. SIZE is defined as the natural log of total assets.
LLOAN are loan loss provisions over the sum of banks loans net loan loss reserves. Significance levels at 10%, 5%, 1% in
a two-tailed t-test are shown as ∗, ∗∗ and ∗ ∗ ∗ respectively. (I) The capital equation, the risk equation and the liquidity
equation are estimated simultaneously using the three-stage least squares procedure. The Hansen test reports a p-value
for the Hansen-Sargan test of overidentifying restrictions. (II) Estimation with the Blundell-Bond Two-Step GMM
procedure. To account for simultaneity of risk, capital and liquidity adjustments I use GMM-type instruments for
∆CAPi,t and ∆LIQi,t. The Hansen test reports a p-value for the Hansen test of overidentifying restrictions. AR(1) and
AR(2) tests report p-values for the test of no first-order and second-order autocorrelation in the first-differences residuals.
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Table 1.5: Simultaneous Estimation for the Liquidity Equation, 2002-2007

Dep. variable (I) Coefficient (II) Coefficient
∆ LIQ (Robust Std. Err.) (Robust Std. Err.)
LIQt−1 −0.168∗∗∗ −0.366∗∗∗

(0.019) (0.121)
∆RISK 0.543∗∗∗ −0.101∗∗∗

(0.209) (0.026)
∆CAP −1.811∗ −0.010

(0.962) (0.195)
∆SÊC 0.000 0.000

(0.001) (0.001)
SIZE −0.003∗∗∗ −0.003∗

(0.001) (0.002)
↑ LOAN 0.0001∗∗∗ −0.0001∗∗∗

(0.000) (0.000)
Intercept 0.023 0.077∗∗

(0.018) (0.035)
Year dummies Yes Yes
N 866 866
Log-likelihood 5191.150
χ2
(9) 408.791

Hansen test 0.127 0.148
AR(1) test - 0.000
AR(2) test - 0.268

Notes: The dependent variable is ∆LIQi,t defined as a change in liquid assets over total assets. ∆RISKi,t is a change
in risk-weighted assets over total assets and ∆CAPi,t is a change in total capital over total assets. SÊC is a fitted value
of securitization activity (see Table 2). ∆ indicates the first difference. SIZE is defined as the natural log of total assets.
↑ LOAN is a loan portfolio growth defined as new volume to previous period loan amount. Significance levels at 10%,
5%, 1% in a two-tailed t-test are shown as ∗, ∗∗ and ∗ ∗ ∗ respectively. (I) The capital equation, the risk equation and the
liquidity equation are estimated simultaneously using the three-stage least squares procedure. The Hansen test reports a
p-value for the Hansen-Sargan test of overidentifying restrictions. (II) Estimation with the Blundell-Bond Two-Step
GMM procedure. To account for simultaneity of risk, capital and liquidity adjustments I use GMM-type instruments for
∆RISKi,t and ∆CAPi,t. The Hansen test reports a p-value for the Hansen test of overidentifying restrictions. AR(1) and
AR(2) tests report p-values for the test of no first-order and second-order autocorrelation in the first-differences residuals.
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Table 1.5 presents the estimation outcome for the liquidity equation. The 3SLS and

Blundell-Bond GMM estimates indicate a significant impact of the risk adjustment on

the liquidity adjustment. Yet, the procedures do not agree on the direction of this inter-

action. Given the concerns about the unaccounted bank-specific effects, we rely on the

GMM dynamic estimation and conclude that there is coordination of the risk and liquid-

ity adjustments. As the estimate for the impact of the liquidity adjustment in the risk

equation, the corresponding coefficient for the risk adjustment in the liquidity equation

is negative (−0.101∗∗∗). Both procedures find a significant impact of LIQt−1, which pro-

vides support the partial adjustment framework (−0.168∗∗∗ and −0.366∗∗∗ for the pooled

3SLS and dynamic GMM respectively). In addition, the effect of the loan growth on the

liquidity adjustment proves to be negative and highly significant under both methodolo-

gies (0.0001∗∗∗). The size is significant and negative under the two estimation procedures,

however only marginally significant in the GMM estimation (−0.003∗∗∗ and −0.003∗).

Finally, all estimation results indicate the presence of the coordination of capital and

risk. In addition, the dynamic approach suggests the coordination of liquidity and risk

decisions. Therefore, our hypothesis (HA 2) is partially supported. In particular, we find

no evidence for the coordination of the capital and liquidity decisions. Still, the reshuffling

between the risk and liquidity as well as risk and capital calls for further investigation,

especially in the context of the efficiency of the new capital and liquidity banking reg-

ulations. Furthermore, the estimation results only partially confirm the predictions of

Repullo (2005). The corresponding hypothesis (HA 3) states that higher capital and

liquidity imply lower risk. Our findings suggest that higher capital induces higher risk,

while higher liquidity indeed yields to lower risk. Moreover, we confirm that the partial

adjustment approach to modeling deviations from the internal target levels of risk, capital

and liquidity is the appropriate one. The coefficients on the three lagged variables are

significant, and of the expected size in each equation respectively. By expected sign we

mean the range between −1 and 0, which suggest that after a shock occurs our model

returns to the target equilibrium.

1.6 Conclusion

This study examines the capital, risk and liquidity decisions of the European banks

in the period leading to the recent crisis. In particular, we investigate to what extent

25



banks coordinate capital, risk and liquidity adjustments in the presence of securitization.

We employ the partial adjustment approach, introduced by Shrieves and Dahl (1992)

and advanced by Heid, Porath, and Stolz (2003). To account for the coordination effect,

we estimate the system of simultaneous equations. The empirical strategy relies on the

dynamic panel estimation and, additionally, includes the pooled 3SLS procedure. Our

research contributes to the debate on the global banking reform process.

To the best of our knowledge, we are the first to jointly examine capital, risk and

liquidity decisions of the European banks. In line with the previous empirical evidence,

we find support for the simultaneity of capital and risk decisions. In addition, our results

suggest a coordination of risk and liquidity decisions. At the same time, we find no evi-

dence of the direct coordination of capital and liquidity.

Since securitization is one of the previously neglected determinants of the bank risk

and a possible strengthening link for the capital, risk and liquidity coordination, we in-

clude the securitization in our investigations. The estimation results for the securitization

show that higher risk in the previous period implies greater securitization in the next pe-

riod. This study only partially confirms the theoretical implications of Repullo (2005).

Our findings regarding the joint allocation of liquidity and risk suggest how banks could

have relaxed the constraints resulting from the banking regulations. The issue of how the

existing capital requirements proved ineffective is of critical importance to the reform of

the banking regulatory framework.
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Chapter 2
Monetary Conditions and Banks’ Behaviour in
the Czech Republic
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2.1 Introduction

One of the factors often mentioned as a cause of the recent financial turbulence has been

the relaxed monetary policy of major central banks, which might have increased finan-

cial institutions’ appetite for risk. Monetary policy influences bank behaviour and the

supply of loans via several channels (Bernanke and Gertler 1995). Because of imperfect

information, incomplete contracts and imperfect bank competition, monetary policy may

affect loan supply. In particular, expansive monetary policy may increase bank loan sup-

ply either directly (the bank lending channel) or indirectly by improving borrower net

worth and, hence, by reducing the agency costs of lending (the balance sheet channel). In

the “balance sheet channel”, higher interest rates, by reducing borrower net worth, may

induce a flight to quality from financiers (Bernanke and Gilchrist 1996) or more lending

to borrowers with more pledgeable assets (Matsuyama 2007). On the other hand, when

there is a reduction of overnight rates, financiers start lending more to borrowers that

previously had a too-low net worth (hence, too-high agency costs of lending), because

thanks to the lower rates their net worth rises enough to make lending possible. However,

in this case, the potential softening of credit standards is not regarded as greater bank

appetite for risk induced by low rates.

Recent theoretical work shows how changes in short-term interest rates may affect

risk-taking by financial institutions. This effect has been labelled the “risk-taking chan-

nel” of monetary policy following Borio and Zhu (2012) and can be considered a part

of the credit channel (Diamond and Rajan 2006), and Stiglitz and Greenwald (2003).

Borio and Zhu (2012) advocate that the policy rate may affect the risk tolerance of

banks due to increased wealth or the presence of “sticky” targets for rates of return. The

latter transmission mechanism is quite self-explanatory. Banks targeting rigid rates of

returns would reach out to riskier borrowers to recoup their drop in profits at times of

monetary expansion. The former argument rests upon the conjecture that, in general,

the risk tolerance of any economic agent increases with wealth. Such an effect can be

found, for instance, in the mean-variance portfolio framework, where investors become

less risk-averse during economic expansions because their consumption increases relative

to its normal level (Campbell and Cochrane 1999). If risk aversion decreases with wealth,

lower interest rates may in turn induce more risk-taking among banks by augmenting as-

set and collateral values.
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Furthermore, lower interest rates may reduce the threat of deposit withdrawals (Dia-

mond and Rajan 2006), reduce adverse selection problems in credit markets (Dell’Ariccia

and Marquez 2006), improve bank net worth (Stiglitz and Greenwald 2003), or lead to

a search for yield (Rajan 2006), allowing banks to relax their credit standards. This

softening happens not only for riskier loans, which have an adjusted net present value

(NPV) close to zero, but also for average loans. On the other hand, higher interest rates

increase the opportunity cost of holding cash for banks, thus making risky alternatives

more attractive (Smith 2002). Higher interest rates could also reduce bank net worth

down to a point where a “gambling for resurrection” strategy becomes attractive (Kane

1989), and Hellman and Stiglitz (2000). Given the conflicting theoretical implications,

the impact of short-term interest rates on risk-taking is ultimately a critical empirical

question.

Theoretical advancements in the field of monetary policy and bank risk interac-

tion, together with recent economic developments, have invigorated the related empirical

work. Altunbas, Gambacorta, and Marques-Ibanez (2009) re-examine the monetary pol-

icy transmission mechanism in the euro area and, contrary to previous studies, accounts

for the role of bank risk. However, Altunbas, Gambacorta, and Marques-Ibanez (2009)

concentrate on the influence of bank risk on the credit supply and not risk tolerance as

such. In contrast, Altunbas, Gambacorta, and Marques-Ibanez (2014) examine banks’

risk responses to changes in the monetary policy indicator. The study concludes that

low interest rates increase bank risk, but employs solely bank-level and macroeconomic

data. The renewed interest has also fuelled research of bank lending standards. Lown and

Morgan (2006) estimate a VAR model for credit standards, lending volumes and output

fluctuations in order to examine the role of lending frictions on the two latter quantities.

The authors find that fluctuations in commercial credit standards significantly explain

changes in bank loan supply and real GDP. Maddaloni and Scope (2009), on the other

hand, assess the impact of monetary policy on bank lending standards and establish that

lower interest rates lead to softening of bank credit standards.

To the best of our knowledge, the first empirical investigations of the impact of mone-

tary policy on bank risk-taking behaviour were by Ioannidou and Peydró-Alcalde (2007)

and Jiménez and Saurina (2008). The latter tests the effect of interest rates on banks’

30



appetite for credit risk on Spanish data, while the former explores this question using the

credit register from Bolivia. Both papers find that in the short run a lower short-term

interest rate augments banks’ appetite for risk, while the medium-term effect is a decrease

in credit risk for existing bank portfolios. In the longer term, both effects yield a net

increase in the risk incurred. The analysis of Bolivian banks’ appetite for risk is further

advanced in Ioannidou and Peydró-Alcalde (2009), where the authors additionally explore

the pricing of credit risk. We draw upon the methodology of Jiménez and Saurina (2008)

and answer many of their questions in the Czech context. The Czech banking sector

has undergone tremendous changes with respect to regulatory policy and banks’ attitude

towards corporate lending and credit risk assessment. The Czech Republic is an example

of an economy that has paved a way from central planning to a small open economy

with a banking sector dominated by foreign ownership. Meanwhile, and in addition to

the transition experience, EU accession and Basel II implementation have taken place.

Clearly, the Czech banking sector is an appealing one to investigate.

Estimating the impact of short-term interest rates on banks’ attitude to liquidity and

credit risk should enhance the understanding of the link between monetary policy and

financial stability in the Czech Republic. This link has been explored using macroeco-

nomic modelling, VAR methodology and bank-by-bank stress testing (e.g. Babouček and

Jančar (2005), Čihák and Heřmánek (2005), and Jakubík and Schmieder (2008)) as well

as validation of credit risk (rating) models on a simulated corporate loan portfolio of the

Czech banking sector Kadlčáková and Keplinger (2004). However, our study is the first

to apply panel data analysis on macroeconomic, bank, loan and borrower data to study

the Czech monetary conditions and financial stability relation from the perspective of

banks’ attitude to risk and its sensitivity to the short-term interest rate. In contrast

to other studies, which investigate the link between asset quality and macroeconomic

indicators for a panel of countries (e.g. Nkusu (2011), or Glen and Mondragón-Vélez

(2011)) we employ a unique microlevel dataset obtained from the Czech Credit Registry.

Moreover, most studies focus on the advanced economies, while we explore these linkages

for a transition economy.

This chapter is organized as follows. The following section outlines the methodology

and model specification, Section 3 describes the dataset, while Section 4 presents the

estimation results and provides robustness checks. Section 5 summarizes and concludes.
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2.2 Methodology and Model Specification

This study poses two main and distinct research questions that relate monetary policy

stance and bank risk-taking. First, we examine whether lower interest rates promote more

lending to borrowers with a riskier past (H1.1). Such an effect is likely to be attributed to

higher current net worth of borrowers. Next, we investigate whether lower interest rates

encourage banks to incur more risk by accepting borrowers with a higher probability of

default (H1.2). Default is defined as failure to pay a loan instalment and/or interest 90

or more days past the due date. Risky past stands for other overdue loans prior to the

origination of a new loan. In addition to these main questions, we test whether all types

of banks are equally affected by the monetary policy stance. In this vein, we also study

the impact of the interest rate conditioned on bank liquidity (H2.1), capital (H2.2) and

lending strategy diversification (H2.3).

Most studies exploring the theoretical mechanisms that could be directly or indirectly

linked to the “risk-taking channel” suggest that banks should be more reluctant to grant

risky loans at times of monetary contraction. Thus, we state hypothesesH1.1 andH1.2 in

the spirit of opposite movements: lower interest rates imply more credit risk-taking. Nat-

urally, in the econometric analysis we expect a negative sign on the estimated coefficient

on the interest rate prior to loan origination. This negative relation can be attributed to

weaker incentives to screen borrowers when interest rates that determine banks’ financing

costs are low (Dell’Ariccia and Marquez 2006). Lower interest rates decrease financing

costs, thus banks’ motivation to screen borrowers declines, which in turn may result in

them accepting riskier applicants. Another reason could be a reduced threat of deposit

withdrawals at times of excess liquidity, as in Diamond and Rajan (2006). Lower interest

rates generate more liquidity in the banking sector, which provides less of an incentive

for depositors to withdraw and more of an incentive for banks to finance risky projects.

It is reasonable to assume that a bank’s risk tolerance might vary with its economic

profile. Typically, the theoretical banking literature links a bank’s riskiness with its level

of capital and, as in Keeley (1990), predicts a negative relation between the two. Note,

however, that the theory concentrates on bank capital and default risk, not risk tolerance.

Moreover, in a banking sector shared between few banks, a highly capitalized bank might

easily become “too big to fail”. Due to this moral hazard problem, banks rich in capital
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may engage in riskier lending at times of monetary expansion. On the other hand, the

Czech banking sector is not only concentrated, but also dominated by foreign capital, and

foreign capital usually induces more monitoring effort. In short, the effect of bank capital

is not easily foreseeable and we expect any outcome, albeit an insignificant one (H2.1).

Bank liquidity is another characteristic likely to differentiate a bank’s attitude to risk in

low and high interest rate regimes. Diamond and Rajan (2006) develop a model of the

“liquidity channel”, as a modification of the “lending channel”, and obtain that banks accu-

mulating liquid assets tend to grant less risky loans. In our hypothesis H2.2 we test their

implications. Finally, economic theory provides us with contradicting suggestions about

the optimal strategy and, thus, loan portfolio composition. The literature on intermedi-

ation following Diamond (1984) promotes diversification as a way of minimizing the risk

of failure. In doing so, such authors use the argument of uncorrelated returns in line with

Markowitz’s (1952) portfolio theory. On the other hand, the corporate finance literature

argues that specializing may lead to improvement in a bank’s monitoring effectiveness

and incentives, and thus is likely to reduce credit risk Stomper (2006). Nevertheless, we

formulate hypothesis H2.3 based on studies on financial intermediation, and expect less

risk-taking among more diversified banks. Therefore, our main research hypotheses can

be summarized as follows:

H 1 The monetary policy stance affects credit risk, in particular:

H 1.1 Lower interest rates lead to more lending to borrowers with a riskier past.

H 1.2 Lower interest rates encourage banks to incur more risk by accepting not only

borrowers who are riskier ex ante, but also those with a higher probability of default per

time period.

H 2 Not all types of banks are equally affected by the monetary policy stance; in partic-

ular:

H 2.1 Banks with a poorer liquidity profile tend to take more risk in lower-interest-rate

periods.

H 2.2 Banks’ capital significantly influences and differentiates their risk-taking behaviour

in response to monetary and macroeconomic changes.

H 2.3 A lending strategy based on diversification, ceteris paribus, limits banks’ risk ap-

petite.
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This study considers two different measures of credit risk-taking. First, we estimate

the likelihood that a borrower with observable past non-performance obtains a new loan.

We treat all firms with overdue loans six months prior to new loan origination as borrowers

with a bad credit history and, thus, ex-ante riskier. The dependant variable in our

probit model1, Bad history, equals one for the ex-ante riskier borrowers. We explain the

probability that a borrower with a “bad history” receives a loan, conditioning on selected

bank, loan, firm and macroeconomic variables. Among those explanatory variables, the

interest rate prior to loan origination is of primary interest to us. Consequently, within

the probit framework we explore whether lower interest rates lead to more lending to

borrowers with a riskier past (H1.1) and estimate the following model:

P (Bad history = 1|X) = Φ(Xβ + e) (2.1)

where:

Bad history = 1 if a borrower had overdue loans 6 months prior to new

loan initiation

Φ( ) – the standard normal cumulative distribution function

X – a set of macroeconomic, bank, borrower and loan-related regressors

The other measure of credit risk-taking employed in this paper is the time-specific

likelihood of loan default. Default is defined as failure to pay a loan instalment and/or

interest 90 or more days past the due date. By time-specific likelihood we mean the prob-

ability that loan default occurs within a specific time-span. Such a treatment emphasizes

that there is a dynamic element to loan performance and that defaults differ at different

points of the loan “life”. After all, the loan survival time, i.e. the time for which the

borrower has managed to pay regularly, affects the risk of default in the following pe-

riod. By incorporating duration dependence we do not ignore the data on regular loans

that eventually become nonperforming. On the contrary, all the available information

helps us to determine the credit default risk at each point in the loan “life” (see Kiefer

(1988)). Our methodology follows Shumway (2001), Chava and Jarrow (2004) and Duffie

and Wang (2007), who strongly advocate the importance of duration in bankruptcy pre-

1A situation of a binary choice – a borrower with or without a bad history – calls for a discrete choice

model such as probit.
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dictions. Moreover, including duration dependence enables us to differentiate between

the effects of monetary policy on new and outstanding loans. Finally, Matsuyama (2007)

and Dell’Ariccia and Marquez (2006) show that monetary policy influences risk-taking

and also lending standards and, thus, maturity. Ideally, to disentangle credit risk from

liquidity risk, or the maturity effect, one should employ a measure of default probabil-

ity normalized per period of time. The duration model offers such a dynamic measure

of risk, namely the hazard rate. The same treatment of time-specific credit risk-taking

is employed in Jiménez and Saurina (2007) and Ioannidou and Peydró-Alcalde (2009),

making the results of all three studies comparable.

The hazard function is the limiting probability of default in a given interval con-

ditional on the loan having survived until this period, divided by the width of the period.

Duration, i.e. the length of time a loan is performing, is also referred to as spell length

(t). In general, the hazard function depends on the survival probability and the den-

sity function associated with the distribution of the spells, f(t). When estimating hazard

functions, it is convenient to assume a proportional hazard specification with the baseline

hazard λ0(t) a function of t alone. This paper follows the Cox semi-parametric approach,

which specifies no shape for the baseline hazard function Cox (1972). Therefore, we

model the time to loan default, T , using a set of macroeconomic, bank, borrower and

loan-related regressors (X) within the following framework:

λ(t) = λ0(t)exp (f (X,X(τ); β, βτ )) (2.2)

where:

X – characteristics constant over time

X(τ) – time-varying covariates

β and βτ – parameters (including time-varying variables)

T – duration of a spell

t – loan spell

τ – calendar time

The regressors are described in the data section. As we use flow sampling and con-

sider only new loans, our data does not suffer from left censoring. The right censoring
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problem is alleviated in a standard way, that is by expressing the log-likelihood func-

tion as a weighted average of the sample density of completed duration spells and the

survivor function of uncompleted spells. We estimate four duration models and con-

trast their outcomes. The survival models differ in line with the shifting focus of our

analysis. Each formulation contains the core covariates, namely a set of macroeconomic

variables to control for major economic developments in the Czech Republic. First of all,

we explore how risk-taking varies with bank characteristics. The role of banks’ balance

sheets (Matsuyama 2007) and moral hazard problems (Rajan 2006) in determining the

sensitivity of bank risk-taking to monetary policy is well-established in the theory. Ini-

tially, we account for banks’ heterogeneity2 by applying shared frailty duration analysis

(Model I). The shared frailty effect is estimated along with the other model parameters,

and the random effects are common among groups of loan spells of the same bank. A

comprehensive introduction to frailty and shared frailty duration analysis is provided in

Gutierrez (2002). In the next formulation (Model II), we incorporate bank characteris-

tics and thus capture the variety across banks in their risk-taking reactions to changing

monetary conditions. Naturally, banks tend to differ in their lending strategies and thus

their loan portfolio diversification may impact on their risk behaviour in different interest

rate regimes. Therefore, the specification for Model IV incorporates additionally the

Hirschman-Herfindahl Index (hereof: HHI) as a measure of bank loan portfolio diversi-

fication.

By introducing firm and loan characteristics in Model III we control for changes in

the loan and borrower pools throughout the time span of our study. More importantly,

we hope to separate credit supply and demand effects. As we examine bank risk-taking,

we need to identify whether the observed increases in riskier loans are supply-driven. On

the other hand, bad borrowers seeking more credit when rates are low could also cause

higher loan hazard rates. The difference is that with a demand-driven increase in haz-

ardous loans the risk premiums should also rise, while the supply effect should cause a

drop in the risk premiums. Ideally, we would test how risk “pricing” reacts to changes

in monetary conditions in the Czech banking sector and identify either the supply or

demand effect. However, that requires data on loan pricing, specifically each loan con-

tract interest rate, and the Central Credit Register maintained by the Czech National

2Generally, when controlling for unobserved heterogeneity we follow the flexible approach of Heckmann

and Singer (1984).
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Bank does not record such data. The second-best empirical strategy is to control for the

quality of borrowers throughout the time span and for those loan characteristics which

are regarded by financial intermediation theory as screening devices. The role of loan size

and collateral as intermediary screening devices is grounded in the theory. Loan maturity

also plays some role in disentangling supply and demand effects, as banks taking more

risk will not mind engaging in long-term financing. This is no longer true for a demand-

driven rise in loan riskiness.

Finally, we note that this study examines two distinct research questions relating

bank risk-taking to the monetary policy stance, uses two different measures of risk-taking

(the likelihood of financing an ex-ante riskier borrower and the time-specific loan default

risk) and subsequently estimates two different models – a probit model and a duration

model. Obviously, the outcomes of the two examinations are not comparable. Still, one

would expect to see low interest rates promoting either more risk-taking in both cases

or less risk-taking in both cases. However, this is not what our results for the Czech

banking sector suggest. We come back to this issue when discussing the outcome of our

estimations.

2.3 Data Description

2.3.1 Data Sources

The dataset used in this study contains 207 356 loan-period observations (N ; loan spells

in the duration analysis). The data on loans is combined with information from bank

financial reports and, where available, from the financial statements of borrowers. We

consider solely corporate loans for non-financial firms. In addition, we complete the

dataset with macroeconomic variables describing the performance of the Czech and euro

area economies. Prior to any analyses our dataset was anonymized.

The loan data comes from the Czech National Bank’s Central Credit Register (CCR).

Out of all the borrowers issued with loans between October 2002 and January 2010 we

select a random sample amounting to 3% of all companies granted new loans in this

period.3 The CCR was launched in October 2002, so this is the first available month for

3We consider solely loans and overdrafts granted by the bank, and exclude unauthorized debits and
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the loan data. The information on borrowers is obtained from two sources: the CCR and

the Magnus database maintained by CEKIA. The time span for the firms’ financials is

also limited by data availability and covers the period from January 2000 to December

2009. We discuss the two data sources in greater detail below. The bank covariates

originate from the Czech National Bank’s (CNB) internal database. Clearly, the scope

of the central bank’s knowledge about the economic situation of each “supervised” bank

is quite broad. In our analysis we limit ourselves to the key bank performance variables

and the bank ownership type, foreign or local. Finally, the macroeconomic variables are

collected from the Statistical Data Warehouse of the European Central Bank (SDW), the

Czech Statistical Office (CZSO) and the CNB’s public database ARAD. ARAD contains

time series of monetary indicators, aggregated financial markets data, balance of pay-

ments statistics and fiscal statistics. ARAD data is processed directly by the CNB, but

also comes from external sources such as the CZSO. The macrofinancial variables include

overnight money market rates (CZEONIA and EONIA), GDP growth rates and consumer

price indices (CPI) for the Czech and euro area economies as well as the exchange rate

between the Czech koruna and the euro.

The Central Credit Register of the Czech National Bank contains monthly infor-

mation on clients’ loans, overdrafts, current account debit balances, guarantees, undrawn

lending arrangements and standby credits. Our study focuses solely on the first three

categories. The CCR data includes the loan identification number, NACE code4, type,

purpose, currency and classification. In accordance with CNB amending Regulation No.

193/1998, Czech banks classify loans according to a five-tier scheme and assign each loan

a “standard”, “watch”, “substandard”, “doubtful” or “loss” grade. In the case of nonper-

forming loans, the dataset provides information on the loan’s principal, interest, fees and

days overdue. Moreover, the CCR records the loan amounts granted and remaining as

well as the dates of loan origination, maturity and, if applicable, write-off.

The firm-related covariates are obtained from two sources: the CCR and the Magnus

database maintained by CEKIA. The Magnus data is mostly available at a yearly fre-

quency. CEKIA supplies business information about Czech companies and their financial

loans bought from other banks.
4NACE is the European industry standard classification system (Statistical Classification of Economic

Activities in the European Community).
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statements, namely balance sheets and profit and loss accounts. The corporate charac-

teristics cover the firm’s identification number, NACE code5, legal form, ownership type,

amount of registered capital, number of employees, turnover and state of operation. The

Magnus dataset also carries information on the dates when the company was launched

and, where applicable, ceased to operate. Additionally, it contains the firm’s position

among the top 100 Czech companies and its rating, if provided by the Czech Rating

Agency. The accounting variables are numerous and include, among others, the value

of assets (total, fixed, current and other), equity, liabilities (total, other), sales, costs,

operating income and net and pre-tax profits.

2.3.2 Data Description and Construction of Variables

In the paper, we use several money market rates to represent the monetary conditions in

which Czech banks operate. Given that in the Czech Republic most traditional banking

business is done in local currency (Czech koruna), the koruna money market rates (such as

the PRIBOR reference rates or the overnight CZEONIA index) are the relevant variables

to which banks react. The central bank of the Czech Republic, the Czech National Bank

(CNB), pursues an independent monetary policy within its inflation targeting regime and

a floating exchange rate.

The Czech banking market is not euroized – the share of foreign currency loans in

total loans to households is virtually zero. This contrasts with the situation in many

other Central and Eastern European countries, where FX loans to households are much

more common. The main reason for the total dominance of local currency loans is the

very low and sometimes even negative spread between koruna and FX interest rates, so

that households have not had any incentive to demand FX loans in order to benefit from

better interest rate conditions. In the non-financial corporations segment, FX loans exist,

but only on a relatively minor scale (roughly 20% of loans to non-financial corporations

are denominated in foreign currencies, mainly euro). This instrument is used mainly by

export-oriented companies and commercial real estate developers for hedging purposes,

as these two types of corporations have large revenues in euro.

5The same classification system as in the case of loans (the European industry standard classification

system), although this time the code applies to the company’s industry.
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Nevertheless, given the deep economic integration of the Czech Republic into the

rest of the EU via foreign trade, the Czech business cycle is to a large extent synchro-

nized with that of the Eurozone and especially Germany. Therefore, Czech monetary

policy rates – and thus also money market rates, which follow monetary policy rates

quite closely – co-move with ECB monetary policy rates. The relationship works via two

channels – directly, i.e. via the exchange rate transmission channel (a decrease in ECB

rates and thus euro area money market rates leads to appreciation of the Czech koruna

vis-a-vis the euro, contributing to lower inflation pressures and thus lower CNB rates),

and indirectly, via common movement of the Eurozone and Czech economies in the cycle.

A natural candidate for capturing the monetary conditions in the Czech Republic

is CZEONIA. CZEONIA is a weighted average of O/N rates on trades executed in a

given day and, as such, it reflects real trading in the money market among Czech banks.

Moreover, the O/N segment is the most liquid part of money market trading (CNB,

2010). We could also employ the PRIBOR rate. However, PRIBOR rates are solely ref-

erence rates and do not reflect real trading. In order to properly capture the effect of the

monetary conditions on credit risk both on the date of loan origination and during the life

of individual loans, we have to control for potential reverse causality and endogeneity of

the monetary conditions represented by CZEONIA. CZEONIA, mirroring the official 2W

repo rate of the CNB, may itself strongly depend on the level of credit risk in the banking

system, as the central bank would react to worsening economic conditions and an increase

in bad loans in banks’ portfolios by decreasing the official CNB repo rates. Furthermore,

if we happen to ignore controls correlated with both the Czech monetary stance and

Czech banks’ risk-taking, our analysis would suffer from omitted variable inconsistency.

Thus, we use EONIA as an instrument, or alternatively a proxy, for CZEONIA. The tests

applied confirmed that EONIA is a valid instrument for CZEONIA, reflecting strong cor-

relation between these two rates as discussed above. Therefore, throughout our analysis

we rely upon the monthly average of euro area money market overnight rates to capture

the existing monetary policy conditions in the Czech Republic.

Apart from interest rates, each duration or probit model contains a set of macroe-

conomic variables to control for major economic developments in the Czech Republic.
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The set includes Czech inflation6 (CPIt) and the spread7 between Czech and European

Monetary Union 10-year maturity government bond yields (Country riskt) dated at loan

origination. We also add a time trend and time trend squared, which are functions of

calendar time. In the duration models we also incorporate two GDP growth rates, one

dated prior to loan origination and the other prior to loan default or maturity. The probit

analysis, which lacks the dynamic loan-life perspective, contains solely the GDP growth

rate prior to loan origination. GDP growth is the seasonally adjusted quarterly rate of

change of gross domestic product in the Czech Republic.

Banks tend to differ in their lending strategies and thus also in their credit risk

behaviour. In order to account for differences in credit risk profiles across banks, and

for the reasons discussed in the methodology section, we introduce bank characteristics

stemming from the CCR as well as the banks’ financial statements reported to the CNB.

We include bank size, bank type and risk appetite as well as the liquidity and own funds

to total assets ratios. Typically, bank size is given as the logarithm of total assets. Bank

type is a dummy variable equal to one if the loan is granted by a foreign-owned bank.

Liquidity ratiot−1 and Own funds/total assetst−1 are, respectively, the bank’s liquid assets

over its total assets and its equity over total assets. The difference between the bank’s

and other banks’ non-performing loan ratios, Bank NPLb - NPLt−1, depicted in Figure

2.1, measures the credit risk already on the books.

Figure 2.1: The Average NPL in the Czech Banking Sector

The methodology section contains a discussion of the identification challenges faced

in our econometric investigation. It points out that the second-best empirical strategy for

6Inflation is measured by monthly consumer price indices (CPI).
7Monthly averages.
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the troublesome separation of the loan supply and demand sides is to control for changes

in the quality of borrowers and loan characteristics. As the borrower-related controls we

employ the firm’s turnover and employment categories as well as the firm’s regional and

industry dummies. In addition, we construct measures of the firm’s age and its number

of bank relations. The turnover and number of employees categories are obtained based

on the classes recorded in the CCR. The regional and industry dummies are also derived

from CCR data. Following Jiménez and Saurina (2007) we proxy the firm’s age by

its age as a borrower, that is the time since the origination of the first loan taken by

the firm. Bank relationst−1 is the logarithm of the number of bank relationships of the

borrower plus one measured prior to loan origination. By the same token, Bank debtt−1

is the logarithm of the borrower’s total amount of bank debt augmented by one. We

account for the changing pool of loans by controlling for their size, purpose, maturity

and currency and the way they are collateralized. The methodology section outlines the

rationale for the inclusion of loan size, collateral and maturity. What is left to describe

is the construction of the variables. As typically done in the literature, we calculate the

loan size as the logarithm of the amount granted. The effect of loan maturity is captured

by three dummy variables accounting for terms of up to three, six and twelve months.

Dummy variables are also employed to allow for difference in the riskiness of loans with

collateral and granted8 in euros, dollars or pounds as opposed to other currencies. The

CCR dataset contains ten possible variables accounting for the type of collateral and

fifteen possible types. We coarsely classify each type based on its riskiness and pool

those with a similar likelihood of default. As a result we obtain ten collateral dummy

variables displayed together with their statistical characteristics in Table 2.1.

Table 2.1: Collateral Type: Data Descriptive Statistics

Variable Unit Mean Std Dev Max Min
No collateral 0|1 0.34 0.47 1.00 0.00
Pledge on own real estate 0|1 0.15 0.36 1.00 0.00
Pledge on third party’s real estate 0|1 0.02 0.14 1.00 0.00
Pledge on movable property without transfer 0|1 0.02 0.15 1.00 0.00
Ensuring note 0|1 0.25 0.43 1.00 0.00
Guarantee deposit 0|1 0.02 0.14 1.00 0.00
Guarantee 0|1 0.05 0.21 1.00 0.00
Pledged assets 0|1 0.07 0.26 1.00 0.00
Blockage of premium 0|1 0.00 0.07 1.00 0.00
Other collateral 0|1 0.05 0.22 1.00 0.00

While investigating banks’ risk-taking behaviour in the Czech banking system, we
8Loan currencyt = 1 if the loan is granted in euros, dollars or pounds.
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also examine whether or not it depends on the type of bank lending strategy – focused

or diversified. We measure the banks’ loan portfolio diversification using the Hirschman-

Herfindahl Index. The Hirschman-Herfindahl Index (HHI) is a commonly accepted mea-

sure of concentration, which we employ to measure each bank’s relative credit exposure

to a particular industry prior to new loan origination. The index is the sum of the squares

of banks’ relative credit exposures to each industry. Figure 2.2 depicts the evolution of

the Hirschman-Herfindahl index for the Czech banking sector. On average, Czech banks

moderately increased their loan portfolio diversification until mid-2008, when a slight

decline can be observed.

Figure 2.2: The Average Herfindahl-Hirschman Index in the Czech Banking Sector
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2.4 Estimation Results

2.4.1 Ex-ante Riskier Borrowers

In this section we explore Czech banks’ appetite for ex-ante riskier borrowers at times of

monetary easing. In particular, we examine whether lower interest rates promote more

lending to corporate clients with overdue loans prior to new loan origination. This ques-

tion is addressed by estimating the probability that a new loan is granted to a borrower

with a recent bad credit history. Those recently “bad” borrowers, or – more accurately –

borrowers with overdue loans six months prior to new loan origination, are considered to

be “ex-ante riskier”. We estimate a probit model using the bank, firm, loan and macroe-

conomic variables described in the data section, and primarily focus on the impact of

the interest rate present in the money market one month prior to loan origination. The

estimation results are given in Table 2.2.

Due to the presence of the endogeneity problem, we instrument the Czech money

market interest rate (CZEONIA) by the EONIA rate reported by the ECB. The instru-

mental variable probit regression shows that expansive monetary policy encourages Czech

banks to grant fewer loans to borrowers who exhibited a recent bad credit history prior

to loan origination. This means that lower interest rates imply less credit risk incurred

by Czech banks. Consequently, our data do not support hypothesis H.1.1 and contradict

the findings of Ioannidou and Peydró-Alcalde (2007) and Jiménez and Saurina (2008).

However, the probit results of our study and the other two are not completely comparable

due to differences in defining the dependent variables. In Ioannidou and Peydró-Alcalde

(2007), bad credit history refers to borrower past default and not to non-performance.

Prudential regulations prevent Czech banks from financing previously defaulted firms.

Jiménez and Saurina (2008) classifies a borrower as ex-ante riskier when it is overdue on

another loan, as in our study, but contrary to us checks any time before the new loan

is granted. As the CCR was launched in 2002 and our analysis spans to the year 2010,

we consider solely the six-month period preceding new loan origination.9 The other co-

efficients are mostly as expected. Larger banks, ceteris paribus, are less prone to lend to

firms with a recent bad credit history (-0.025∗∗∗). By the same token, banks holding more

liquid assets are likely to accept fewer risky borrowers (-1.910∗∗∗). Moreover, banks with

9We also experiment with one year prior to new loan origination and obtain the same positive depen-
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higher than average non-performing loan ratios are less inclined to tolerate additional risk

and finance companies with overdue loans in the previous six months (-0.721∗∗∗). Surpris-

ingly, the estimation output suggests that less leveraged banks are likely to grant loans

to borrowers with a risky past (0.190∗∗), while more indebted borrowers are less likely to

have a recent bad credit history (-0.016∗∗∗). Table 2.3 presents the riskiness of industries

obtained within the instrumental probit framework. We note that lower interest rates

imply, ceteris paribus, a lower likelihood of default on loans granted to manufacturers

(0.120∗∗∗), and higher defaults on loans provided to construction companies (-1.185∗∗∗).

Finally, we observe recent default or bad history less frequently in the case of younger

firms (0.166∗∗∗) with fewer bank relationships (0.757∗∗∗).

Table 2.2: Estimation Results: Instrumental Probit

Variable Coefficient Std. Err.
Interest ratet−1 0.152∗∗∗ 0.012
Bank sizet−1 -0.025∗∗∗ 0.005
Liquidity ratiot−1 -1.910∗∗∗ 0.036
Bank NPLb - NPLt−1 -0.721∗∗∗ 0.070
Own funds/total assetst−1 0.190∗∗ 0.083
Bank typet−1 0.139∗∗∗ 0.015
ln(2+ age as borrower)t−1 0.166∗∗∗ 0.004
Bank relationst−1 0.757∗∗∗ 0.015
Bank debtt−1 -0.016∗∗∗ 0.001
Loan sizet 0.020∗∗∗ 0.002
Loan currencyt 0.235∗∗∗ 0.015
Maturity 0–3 monthst 0.345∗∗∗ 0.017
Maturity 3–6 monthst 0.251∗∗∗ 0.018
Maturity 6–12 monthst 0.252∗∗∗ 0.012
Loan purposet -0.085∗∗∗ 0.008
GDPCRt−1 -0.018∗∗∗ 0.002
CPIt -0.009∗∗ 0.004
Country riskt 0.048∗∗∗ 0.015
Time trend 0.015∗∗∗ 0.001
Time trend sq. 0.000∗∗∗ 0.000
Intercept -1.632∗∗∗ 0.072
Collateral dummies yes
Firm turnover categories yes
Firm employment categories yes
Firm regional dummies yes
Firm industry dummies yes
N 205,270
χ2
(49) 21,841.344

Wald χ2
(1) 410.84

The endogeneity problem is detected both by the Wald statistic, reported in Table

2.2, and the tests robust to weak instruments. The test outcome obtained in the presence

dence.
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of potentially weak instruments, an approach due to Finlay and Magnusson (2009), is

provided in Table B1.3. We rely on IV probit estimates rather than on the coefficients

of the regular probit regression, but the two approaches yield similar results with respect

to the monetary policy impact. To be precise, we refer to the probit model as the

one estimated on the loan-level clusters. We also perform probit analysis on clusters of

borrowers. Since the outcome corrected for firm-level clustering remains almost unaltered,

we refrain from reporting it. The probit estimates corrected for loan clustering and the

corresponding robust standard errors are reported in Table B1.4 in Appendix B.1. One

final remark concerning endogeneity is that its presence strengthens the main points and

concerns underlying our previous discussion of the potential reverse causality issue.

Table 2.3: Estimation Results: Instrumental Probit by Industries

Variable Coefficient Std. Err.
Manufacturing 0.120∗∗∗ 0.014
Other -0.091∗∗∗ 0.018
Repair & related -0.586∗∗∗ 0.082
Electricity, gas & heat 0.079 0.057
Water distribution & related 0.137∗∗∗ 0.028
Construction -1.185∗∗∗ 0.117
Motor vehicle trade -0.022 0.018
Transport 0.038∗∗∗ 0.015
Accommodation 0.073∗∗∗ 0.025
Broadcasting -0.166∗∗∗ 0.025
Information activities 0.115∗∗∗ 0.034
Financial intermediation 0.044 0.044
R&D, advertising & market research -0.155∗∗∗ 0.030
Scientific & technical activities -0.068∗∗∗ 0.019
Security & investigation -0.578∗∗∗ 0.098
Education -0.222∗∗∗ 0.042
Artistic & entertainment activities -0.579∗∗∗ 0.074
Gambling 0.385∗∗∗ 0.042
Sport & recreation -1.416∗∗∗ 0.172
N 204,757
χ2
(65) 22,304.536

We fit the probit model to assess the influence of the monetary policy stance on banks’

willingness to accept ex-ante riskier borrowers. If Czech banks were more prone to grant

loans to ex-ante riskier firms at times of monetary expansion, we could claim that banks

believed economic fundamentals were strong enough to reduce the default probability.

One reason for that could have been higher net worth of borrowers in periods of lower

interest rates. However, our data do not confirm that. One possible explanation of the

link between low interest rates and lower probability of granting loans to borrowers with

a riskier past might be the specific time period for which the analysis is done, which
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was marked by several structural changes. As banks were privatized before 2002, the

banking sector experienced no state interventions and was relatively competitive in the

period 2002–2010. Nevertheless, the rises and falls of money market rates (mirroring the

CNB repo rate) between 2002 and 2009 happened under different conditions. There were

two pronounced sub-periods of monetary policy expansion (2002–2004 and 2007–2009)

and one pronounced sub-period of monetary policy tightening (2005–2007). In the first

expansionary period of 2002–2004, the major domestic banks had just been cleared of

nonperforming assets dating from the 1990s, as a part of a balance sheet consolidation

process before privatization, and started to refocus their business on household loans. In

this sub-period, referred to in the literature as a “credit crunch” in the corporate seg-

ment Geršl and Hlaváček (2007), corporate loans were declining and banks were not keen

on providing new loans to corporations with a bad credit history despite the monetary

expansion, effectively decreasing their risk-taking. The second monetary expansion, in

2007–2009, was a reaction to the global economic crisis and the economic recession in the

euro area, again a period when banks were not keen on financing risky borrowers. On the

contrary, anecdotal evidence shows that in this period, banks decreased their risk-taking,

got rid of risky borrowers and maintained their loan relationships with rather less risky

ones. In the period of monetary tightening, 2005–2007, which was itself a reaction to

accumulating inflation pressures due to the strong economic and credit boom in those

years, the banks strengthened their risk-taking owing to both competitive pressures and

overall optimism in the economy, relaxed their lending standards and fuelled the credit

boom even further, despite increases in money market rates. These structural factors

are likely to have produced the puzzling positive relation between interest rate levels and

banks’ appetite for risk.

We conducted several robustness checks on the probit estimations. We test our hy-

potheses on models developed according to the guidelines of Hosmer & Lemeshow (1999,

pp. 158–180) and Hosmer & Lemeshow (2000, pp. 92–116) for the probit regressions.

Both suggest an approach to building a model with covariates chosen optimally. Gen-

erally, our choice of covariates is grounded in economic reasoning, supported, to some

extent, by the findings of the previous studies. When constructing the specifications for

the robustness checks, we greatly emphasize another important variable selection crite-

rion, namely statistical significance. We employ the fractional polynomials methodology

as a tool to validate the significance of the variables. The methodology of fractional
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polynomials is presented in Appendix B.2. When necessary, we also use fractional poly-

nomials to suggest transformations of the continuous variables. All the steps involved in

building the statistically desirable probit models for our data are also discussed in Ap-

pendix B.2. There are cases where the methodology suggested the inclusion of additional

predictors, some transformation of continuous covariates or different grouping of selected

categorical variables. Therefore, Table B2.1 contains the definitions of the optimally

chosen covariates which differ from those employed in the main part of our analysis. The

reasoning provided above also applies to the survival analysis (see next section). The

descriptive statistics of the alternative predictors are summarized in Tables B2.2–B2.4.

We begin with our first measure of risk-taking, namely the likelihood of financing

an ex-ante riskier borrower. Similarly to our regular analysis, the estimates obtained

for the robust probit suggest that a relaxed monetary policy encourages Czech banks to

finance fewer borrowers with a recent bad credit history (0.471∗∗∗). Therefore, the model

with optimally selected covariates also does not support hypothesis H.1.1, which says

that lower interest rates lead to more lending to borrowers with a riskier past. As in the

case of our main probit regressions, we reject the null hypothesis of no endogeneity and

rely on IV probit estimates. Still, the two approaches produce comparable outcomes,

which for the probit model with observations clustered on the loan level are displayed in

Tables B2.5–B2.9 in Appendix B.2. Additionally, we perform the analysis on borrower

clusters and obtain almost unaltered coefficients.

Following the optimal variable selection strategy for the probit regressions results in

the inclusion of an additional bank characteristic (Deposit ratiot−1), a different bank type

measure (Bank unitt−1) and an altered grouping of loan maturity, purpose and collateral.

Bank unit is a dummy variable taking the value of one if the loan is granted by a branch

in the Czech Republic (as opposed to a headquarters in the Czech Republic or a branch

abroad). Additionally, Bank debtt−1 and loan size are excluded from the alternative probit

specification. Thus, we solely compare the other estimated parameters for bank and firm

covariates. We observe a reverse sign of the bank capital measure. Contrary to our main

analysis findings, here banks holding more own funds are likely to accept fewer risky

borrowers (-0.466∗∗∗). The other coefficients in the robust and regular probit analysis

are alike. Larger and more liquid banks are less prone to lend to firms with a recent bad

credit history (-0.028∗∗∗ and -1.123∗∗∗). Moreover, banks with higher than average non-
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Table 2.4: Estimation Results: Robust Instrumental Probit

Variable Coefficient Std. Err.
Interest ratet−1 0.471∗∗∗ 0.020
Bank sizet−1 -0.028∗∗∗ 0.007
Liquidity ratiot−1 -1.123∗∗∗ 0.058
Bank NPLb - NPLt−1 -1.402∗∗∗ 0.173
Own funds/total assetst−1 -0.466∗∗∗ 0.152
Deposit ratiot−1 1.228∗∗∗ 0.069
Bank unitt−1 -0.224∗∗∗ 0.014
ln(2+ age as borrower)t−1 0.411∗∗∗ 0.006
Bank relationst−1 1.412∗∗∗ 0.016
Loan currencyt -0.159∗∗∗ 0.022
Maturity 2–3.5 yearst -0.074∗∗∗ 0.015
Maturity 4–8 yearst -0.311∗∗∗ 0.014
Maturity 5.5 yearst 0.342∗∗∗ 0.032
Maturity 8.5–10 yearst -0.181∗∗∗ 0.026
GDPCRt−1 0.021∗∗∗ 0.003
CPIt -0.138∗∗∗ 0.006
Country riskt 0.195∗∗∗ 0.025
Time trend 0.015∗∗∗ 0.001
Time trend sq. 0.000∗∗∗ 0.000
Intercept -4.067∗∗∗ 0.102
Loan collateral: 1st - 3rd yes
Loan purpose: [1]-[5] yes
Firm turnover categories yes
Firm employment categories yes
Firm regional dummies yes
Firm industry dummies yes
N 207,352
χ2
(67) 24,849.675

Wald χ2
(67) 286.23
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performing loan ratios are less likely to tolerate additional risk and finance companies

that were late with loan payments in the previous six months (-1.402∗∗∗). Finally, we

observe recent default or bad history less frequently in the case of younger firms (0.411∗∗∗)

with fewer bank relationships (1.412∗∗∗).

2.4.2 Dynamic Riskiness of Loans

Duration models of loan default consider not only the default itself, but also its timing.

As in the probit regression, we still account for observed and unobserved loan quality

by origination date. However, in addition, survival analysis enables us to capture the

changing conditions over the loan life. Thus, we may investigate bank risk-taking in a

broader, dynamic, context. This richer approach also allows for a richer set of covariates.

Duration analysis enables us to examine the impact of the monetary policy stance on the

riskiness of new loans as well as its effect on the existing loan portfolio. Therefore, our

hazard rate models comprise not only the interest rate measured prior to loan origination,

but also the interest rate prior to loan default or maturity. The latter allows us to test

how monetary policy affects the performance of loans already on the books. We also

incorporate two GDP growth rates, one dated prior to loan origination and the other

prior to loan default or maturity.

We fit four duration models and contrast their outcomes. The rationale for each

specification is laid out in the empirical strategy section. The survival models differ in

line with the shifting focus of our analysis. Nevertheless, each formulation contains the

core covariates, namely a set of macroeconomic variables to control for major economic

developments in the Czech Republic. The first two models, Model I and Model II, con-

trol for diverse lending strategies across banks. The former is the estimated shared frailty

survival model, with frailties common to loans of the same bank. The latter analyses a

duration model with bank characteristics incorporated in an explicit manner. Model III

accounts for the changes over time in the pool of borrowers and loans, and includes the

firm and loan covariates. Model IV further enriches our analysis with the loan portfolio

concentration measure (HHI).

The coefficient on the short interest rate preceding loan origination is negative and

significant in all the estimated formulations. The models with bank unobserved hetero-
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geneity (Model I) and loan portfolio diversification (Model IV) yield coefficients significant

solely at the 10 per cent level and equal respectively to -0.214∗ and -0.289∗. The two

other models render even more significant negative results. The estimated impact of

the interest rate prior to loan origination in the model with bank characteristics (Model

II) amounts to -0.312∗∗ and that in the model with bank, loan and borrower covariates

equals -0.298∗∗ (Model III). Therefore, all cases indicate that at times of lower inter-

est rates banks tend to grant loans with higher hazard rates. In other words, a more

relaxed monetary conditions policy encourages banks to take on more credit risk. This

finding gives support to hypothesis H.1.2 and corroborates the outcomes of Ioannidou

and Peydró-Alcalde (2007) and Jiménez and Saurina (2008).

All four formulations produce highly significant and positive estimated coefficients

on the interest rate prevailing during the loan life. The impact of the interest rate prior

to loan maturity ranges from 0.278∗∗∗ to 0.296∗∗∗ for the model with bank characteris-

tics (Model II). The lowest impact is obtained for the case of bank, loan and borrower

characteristics (Model II). The formulation with bank unobserved heterogeneity yields

an only slightly higher estimate (0.279∗∗∗, Model I). The outcome for the case with the

incorporated measure of loan portfolio diversification is also not much different (0.282∗∗∗,

Model IV). The positive dependence in all four cases implies that the higher the interest

rate prior to loan maturity, the greater the probability of loan default per time period.

This result is as expected and can be attributed to lower refinancing costs or a reduced

loan repayment burden at times of low interest rates. Thus, relaxed monetary conditions

give rise to fewer loan defaults or lower riskiness of the outstanding portfolio.

The results for the GDP growth rate offer limited scope for interpretation. Out

of the two rates, solely the GDP growth rate during the loan life proves to be statistically

significant. Moreover, it is significant only when borrower characteristics are accounted

for. We obtain a significant and negative coefficient on the GDP growth rate during the

loan life for the specification with bank, loan and borrower covariates without and with

the measure of loan portfolio diversification – -0.066∗∗ and -0.067∗∗ respectively for Model

III and Model IV. The direction of the effect of GDP on the riskiness of the outstanding

portfolio is as expected. At times of higher economic growth, loan defaults are less fre-

quent.
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The parameters for inflation remain positive and highly significant for all four models

(0.215∗∗∗, 0.210∗∗∗, 0.194∗∗∗ and 0.191∗∗∗). They indicate that higher inflation at origina-

tion increases the loan hazard rate. Finally, the negative and highly significant estimated

coefficients on the time trend indicate an overall decrease in new credit volume observed

over (calendar) time in the Czech banking sector. Indeed, since 2002 Czech banks have

substantially changed their lending strategies and credit risk assessment. This observed

general improvement is revealed on top of the effects captured by bank characteristics

and the change in the pool of loans and borrowers.

Next, we focus on the results for bank characteristics. The sole bank covariates

that prove to be statistically significant in all three model specifications10 are bank liq-

uidity and type. We find that more liquid banks, ceteris paribus, are likely to grant loans

with lower hazard rates. The estimated parameters amount to -3.083∗∗∗, -3.437∗∗∗ and

-3.758∗∗∗ for the model with bank characteristics (Model II), the model with bank, loan

and borrower covariates (Model III) and the model with loan portfolio diversification

(Model IV) respectively. The inverse influence of the bank’s liquidity on its loan hazard

rate supports hypothesis H.2.1 and suggests that banks accumulating liquid assets tend

to grant less risky loans, thus confirming one of the implications of Diamond and Rajan

(2006). The bank size effect proves to be positive in the specification with bank covari-

ates. Such an outcome indicates that larger banks are willing to accept more credit risk

(0.181∗∗). One might argue that in a banking sector dominated by few banks, as in the

Czech Republic, the positive bank size could be attributable to a “too big to fail” effect.

In doing so, we would employ the same line of argument as Boyd and Runkle (1993)

and Ioannidou and Peydró-Alcalde (2007), who obtained similarly puzzling estimates for

their data. In our study, Model II is the only case where the size effect is significant. Fi-

nally, we obtain that foreign banks tend to extend more hazardous loans (0.470∗, 0.840∗∗∗

and 0.831∗∗∗). The impact of all other bank characteristics is statistically insignificant.

Therefore, we find no support for hypothesis H.2.2, which relates bank leverage and bank

credit risk appetite.

10In Model I differences between banks are captured by the “frailty effect”. Given the standard error

of θ and the likelihood-ratio test statistic (χ̄2
(01) = 47.25), we find a significant frailty effect, meaning

that the correlation across loans grouped by banks cannot be ignored.
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In the Czech Republic, the association between high liquidity and low risk appetite

(low hazard rates) may be explained by a preference of most large banks to attract and

keep depositors. Domestic banks apply a very conservative banking model, hardly en-

gage in risky investments and focus on collecting deposits and granting loans. Moreover,

compared to their European counterparts, Czech banks are very prudent in their lending

activities and prefer to maintain low credit risk profiles. At the same time, they prefer

to hold large liquidity buffers, mainly for two reasons: first, when relying on a large pool

of (mainly sight) deposits, the banks need liquid assets to be able to saturate poten-

tial demand for liquidity should deposit withdrawals increase in stress times; second, a

large liquidity buffer is an important signal – together with low credit risk indicators –

to existing and potential depositors. Moreover, given their conservative banking model

and overhang of deposits, most domestic banks invest in Czech government bonds, which

constitute an important part of their liquid assets CNB (2011).

Furthermore, we examine the estimated impact of loan and borrower covariates. Not

surprisingly, we obtain that hazardous borrowers are more likely to default in the future

(1.129∗∗∗). To measure the firm’s riskiness we look for previous overdue loans in its re-

cent credit history. As in the probit analysis, younger firms are safer. In other words,

loans to younger firms tend to survive longer (0.241∗∗∗). Table 2.6 presents the hazard

rates for firm industries. Interestingly, all significant industry effects are solely positive.

Such results indicate that lower interest rates imply, ceteris paribus, a lower likelihood

of default or no significant effect of loans granted to all but agricultural producers. By

introducing credit size, purpose, currency and maturity we wish to control for modifica-

tions in the loan pool over the time span of our study. We find that modest-sized loans

tend to be more risky (-0.202∗∗∗). The estimated effect of loan purpose, captured by a

dummy for overdrafts, suggests that overdrafts and current account debits exhibit a lower

hazard rate (-0.553∗∗∗). Additionally, loans granted in euros, dollars or pounds are more

hazardous than the others, which are mostly granted in Czech korunas (0.997∗∗∗). The

influence of each loan maturity dummy is highly significant and positive. All the same,

the magnitude of the estimated maturity parameters decreases with the loan maturity

and amounts to 1.889∗∗∗, 1.132∗∗∗ and 0.729∗∗∗ respectively. In other words, the shorter

the loan term, the greater the probability of default.
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Adding the diversification measure of banks’ corporate loan portfolio only slightly

modifies the magnitude of the effect of bank, firm and loan covariates on the hazard rate.

In all but one case we note no change of sign or significance level. The sole exception is

the bank capital coefficient, which remains insignificant, but changes sign. Finally, we

obtain that in the analysed period the type of lending strategy, diversified or focal, has

no explanatory power for Czech banks’ risk appetite. We present solely the results for the

Herfindahl-Hirschman index. However, we find that using neither the Gini coefficient nor

the Shannon entropy as a concentration measure speaks in support of hypothesis H2.3.

The results of our analysis offer important policy lessons for the macroprudential pol-

icy of central banks, which – ideally – need to take into account the consequences of

the monetary policy stance regarding bank risk-taking. The estimated parameters for

interest rates, both prior to loan origination and during the life of the loan, enable us

to quantify the potential effect of different interest rate paths on credit risk. The coef-

ficient on the interest rate prior to loan origination varies between -0.2 and -0.3, with a

standard error of around 0.15. For macroprudential purposes, it is recommended to be

rather conservative. Assuming the highest (in absolute terms) coefficient plus two stan-

dard deviations implies that an interest rate decline of one percentage point increases

the hazard rate by 0.6 percentage points. Thus, a substantial easing of monetary policy

which would bring interest rates down from 5% (as in 2001–2002) quickly to 2% (as in

2004) could increase the hazard rates by almost 2 percentage points. The increase in the

hazard rate would, however, happen under two conditions: (a) a worsening of the eco-

nomic environment, such as an economic decline and an increase in retail interest rates,

which would make it more difficult for borrowers to repay loans, (b) a worsening of the

economic environment happening after a time of, say, at least one or two years, in order

to “enable” new borrowers who took out loans in the period of rapid monetary easing

to default on their obligations. Assuming that the hazard rates were in line with the

default rates, which remained between 2% and 3% in 2007, just the risk-taking behaviour

could increase the default rates by some 2 percentage points11 in addition to the effect

of the economic decline and a possible increase in interest rates (i.e. debt servicing costs).

As to the robustness checks, we used the same approach as in the probit analysis.

11To be precise, the figure would be 1.8 percentage points given a 3 percentage point drop in interest

rates and a conservative change in the hazard rate of 0.6 percentage points.
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Table 2.5: Estimation Results: Duration Models

Variable Model I Model II Model III Model IV
Interest ratet−1 -0.214∗ -0.312∗∗ -0.298∗∗ -0.289∗

(0.129) (0.131) (0.149) (0.151)
Interest rateT−t−1 0.279∗∗∗ 0.296∗∗∗ 0.278∗∗∗ 0.282∗∗∗

(0.069) (0.066) (0.077) (0.077)
GDPCRt−1 -0.018 0.006 -0.018 -0.013

(0.037) (0.038) ( 0.042) (0.042)
GDPCRT−t−1 -0.019 -0.024 -0.066∗∗ -0.067∗∗

(0.028) (0.027) (0.032) (0.032)
Bank sizet−1 0.181∗∗ 0.155 0.056

(0.085) (0.105) (0.142)
Liquidity ratiot−1 -3.083∗∗∗ -3.437∗∗∗ -3.758∗∗∗

(0.676) (0.836) (0.900)
Own funds/total assetst−1 -1.942 0.037 -0.061

( 1.494) (2.074) (2.119)
Bank NPLb - NPLt−1 0.048 -0.624 -1.616

(0.429) (2.100) (2.786)
Bank typet−1 0.470∗ 0.840∗∗∗ 0.831∗∗∗

(0.282) (0.312) (0.316)
ln(2+ age as borrower)t−1 0.241∗∗∗ 0.249∗∗∗

(0.085) (0.086)
Bad historyt−1 1.129∗∗∗ 1.129∗∗∗

(0.151) (0.151)
Bank relationst−1 -0.151 -0.170

(0.227) (0.228)
Loan sizet -0.202∗∗∗ -0.205∗∗∗

(0.021) (0.021)
Loan currencyt 0.997∗∗∗ 0.989∗∗∗

( 0.228) (0.229)
Maturity 0–3 monthst 1.889∗∗∗ 1.915∗∗∗

(0.443) (0.454)
Maturity 3–6 monthst 1.132∗∗∗ 1.134∗∗∗

(0.411) (0.413)
Maturity 6–12 monthst 0.729∗∗∗ 0.710∗∗∗

(0.232) (0.230)
Loan purposet -0.553∗∗∗ -0.557∗∗∗

(0.153) (0.153)
HHIt−1 0.085

(0.076)
CPIt 0.215∗∗∗ 0.210∗∗∗ 0.194∗∗∗ 0.191∗∗∗

(0.056) (0.056) (0.064) (0.064)
Country riskt -0.410 -0.429 -0.563 -0.542

(0.290) (0.297) (0.343) (0.344)
Time trend -0.097∗∗∗ -0.098∗∗∗ -0.095∗∗∗ -0.095∗∗∗

(0.020) (0.020) (0.020) (0.020)
Time trend sq. 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) ( 0.000) (0.000) (0.000)
Collateral dummies no no yes yes
Firm regional/industry dummies no no yes yes

N 154,372 154,368 152,316 152,316
Log-likelihood -2,092.978 -2,103.071 -1,564.971 -1,564.218
χ2 108.63(8) 169.781(13) 563.224(40) 570.244(40)

We proceed with modelling the time to loan default, our other measure of risk-taking.

We consider the statistically robust survival model with bank characteristics. The choice

of bank-level controls used here is described in Appendix B.2. In the duration model we

include bank size, risk appetite and profitability, bank unit, and the ratios of liquidity
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Table 2.6: Estimation Results by Industries

Variable Coefficient Robust Std. Err.
Manufacturing 1.539∗∗ 0.719
Other 1.630∗∗ 0.735
Repair & related -41.827 0.000
Electricity, gas & heat -43.143 0.000
Water distribution & related 2.323∗∗∗ 0.779
Construction -41.215 0.000
Motor vehicle trade 1.262∗ 0.758
Transport 1.551∗∗ 0.714
Accommodation 1.952∗∗ 0.780
Broadcasting 1.956∗∗ 0.775
Information activities 0.274 1.246
Financial intermediation -42.773 0.000
R&D, advertising & market research 0.606 0.916
Scientific & technical activities 1.191 0.760
Security & investigation 2.404∗∗ 1.226
Education -43.602 0.000
Artistic & entertainment activities -42.248 0.000
Gambling -42.981 0.000
Sport & recreation -42.560 0.000
N 152,316
Log-likelihood -1,552.528
χ2
(48) 594.003

and own funds to total assets. Bank size and the liquidity and leverage ratios are defined

as in the regular survival analysis. The bank unit is designed as in the robust probit

model and equals one if the loan is granted by a bank branch in the Czech Republic.

As a measure of the credit risk already on the books the fractional polynomials method

suggested the inverse of the capital adequacy ratio (CAR−1
t−1). Finally, we add to the

model bank profits scaled down by millions of Czech korunas. We also use another mea-

sure of bank profitability, namely the return on equity (ROE). Since the outcome with

ROE instead of scaled profits leaves the main results almost unaltered, we refrain from

reporting it here. The estimation output is displayed in Table 2.7.

Consistently with our core analysis, the coefficient on the interest rate prior to loan

origination is negative and significant (-0.463∗∗∗). This negative relationship indicates

that an expansionary monetary policy encourages more credit risk-taking among banks.

Moreover, the alternative specification with bank characteristics produces a positive and

highly significant coefficient on the interest rate during the loan life (0.290∗∗∗). This

positive dependence indicates that a higher interest rate prior to loan maturity raises the

probability of loan default per time period and confirms our previous results. Thus, once
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again we find evidence to support hypothesis H.1.2.

Table 2.7: Estimation Results: Robust Model with Bank Characteristics

Variable Coefficient Robust Std. Err.
Interest ratet−1 -0.463∗∗∗ 0.141
Interest rateT−t−1 0.290∗∗∗ 0.068
GDPCRt−1 0.074∗ 0.043
GDPCRT−t−1 -0.021 0.027
Bank sizet−1 0.347∗∗∗ 0.105
Liquidity ratiot−1 -3.559∗∗∗ 0.913
Own funds/total assetst−1 -11.994∗∗∗ 2.721
CAR−1

t−1 -23.354∗∗∗ 5.471
Bank unitt−1 -0.523∗∗∗ 0.162
Bank profitt−1 -0.406∗∗∗ 0.076
CPIt 0.247∗∗∗ 0.061
Country riskt -0.540∗ 0.307
Time trend -0.092∗∗∗ 0.021
Time trend sq. 0.001∗∗∗ 0.000
N 136,680
Log-likelihood -1,974.24
χ2
(14) 210.815

As previously, higher inflation at origination tends to augment the loan hazard rate

(0.247∗∗∗). In addition, the optimally derived bank-level specification confirms that banks

with higher liquidity ratios are likely to grant loans with lower hazard rates (-3.559∗∗∗).

Not surprisingly, emphasizing statistical significance in variable selection produces a

model with numerous significant characteristics. Therefore, in contrast to our main model

with bank characteristics, here the impact of all bank characteristics matters. More cap-

italized and profitable banks are likely to grant loans with lower hazard rates (-0.406∗∗∗

and -11.994∗∗∗ respectively). The negative coefficient on own funds to total assets corrob-

orates the theoretical findings of Keeley (1990), where banks with more capital exhibit a

lower default risk. The negative coefficient on the inverse of the capital adequacy ratio

suggests that banks persist in their hazardous lending (-23.354∗∗∗).

Finally, we compare the two survival models with bank, loan and borrower char-

acteristics. The estimation output for the survival model with robust borrower and loan

covariates is provided in Table 2.8. Consistently with our core analysis, we observe that

adding the firm and loan variables does not alter our key findings. A lower interest rate

prior to loan origination increases the hazard rate of new loans (-0.383∗∗). Once again, we

find evidence in support of hypothesis H.1.2, which relates increases in bank riskiness to
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expansionary monetary conditions. At the same time, a lower short rate during the loan

life decreases non-payment of outstanding loans (0.349∗∗∗). Contrary to the main model,

the robust specification also produces a significant and negative coefficient on the GDP

growth rate during the loan life (-0.080∗∗∗). Therefore, the robust model suggests that

more dynamic economic growth reduces the riskiness of the outstanding loan portfolio.

The parameter for inflation remains positive and highly significant, which indicates that

higher inflation at origination increases the loan hazard rate (0.186∗∗∗).

The bank, firm and loan covariates employed in the optimally built survival model

are defined as in the corresponding main specification. However, the core survival anal-

ysis contains more bank, loan and borrower characteristics. Implementing the optimal

variable selection strategy results in the exclusion of bank type, loan currency and the

measure of bank relations maintained by the borrowers prior to new loan origination. In

addition, the fractional polynomials method suggested capturing the credit risk already

on the books by the capital adequacy ratio (CARt−1) instead of the non-performing loan

ratio (Bank NPLb - NPLt−1).

All characteristics included in both the main and robust model yield similar results.

As in the core part of our survival study, more modest loans tend to be more risky

(-0.246∗∗∗). In both regression outputs, overdrafts have a lower hazard rate (-0.662∗∗∗

in the robust model versus -0.553∗∗∗ in the main model). Moreover, we obtain the same

effect of loan maturity as in the main model, namely each coefficient on the maturity

dummy is highly significant and positive. In addition, we observe that the shorter the

loan term, the greater the probability of default (2.341∗∗∗, 1.319∗∗∗ and 0.979∗∗∗ respec-

tively).
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Table 2.8: Estimation Results: Robust Model with Bank, Loan and Borrower Charac-
teristics

Variable Coefficient Robust Std. Err.
Interest ratet−1 -0.383∗∗ 0.152
Interest rateT−t−1 0.349∗∗∗ 0.077
GDPCRt−1 0.011 0.043
GDPCRT−t−1 -0.080∗∗∗ 0.031
Bank sizet−1 0.193∗∗ 0.085
Liquidity ratiot−1 -4.978∗∗∗ 0.770
Own funds/total assetst−1 -4.202∗∗ 2.126
CARt−1 0.035∗∗∗ 0.008
ln(2+ age as borrower)t−1 0.180∗∗ 0.070
Bad historyt−1 0.939∗∗∗ 0.195
Loan sizet -0.246∗∗∗ 0.020
Maturity 0–3 monthst 2.341∗∗∗ 0.447
Maturity 3–6 monthst 1.319∗∗∗ 0.348
Maturity 6–12 monthst 0.979∗∗∗ 0.239
Loan purposet -0.662∗∗∗ 0.158
CPIt 0.186∗∗∗ 0.064
Country riskt -0.570 0.347
Time trend -0.097∗∗∗ 0.020
Time trend sq. 0.001∗∗∗ 0.000
Firm regional dummies yes
Firm industry dummies yes
N 152,316
Log-likelihood -1,594.287
χ2
(27) 556.858

59



2.5 Conclusions

This paper contributes to the debate on the impact of monetary conditions on banks’

appetite for risk by investigating the case of the Czech Republic. The mechanism of bank

risk-taking coined by Borio and Zhu (2012) can be identified in studies on the credit

channel, for instance Diamond and Rajan (2006) and Stiglitz and Greenwald (2003).

Generally speaking, higher tolerance to risk implies that at times of low interest rates

banks will seek to finance riskier borrowers. We focus on two aspects of the discussion,

namely whether a monetary easing leads to more lending to borrowers with a riskier

past and whether it encourages banks to extend new loans that default sooner. The two

questions are vital both for macroprudential authorities and for academics due to their

contradictory theoretical implications and their consequences for monetary policy design.

We use Czech National Bank Credit Register data to model the probability of accepting

borrowers with a bad credit history and the time to loan failure in association with a

set of macroeconomic, firm, loan and bank characteristics. We ask two distinct research

questions, employ two different measures of risk, and thus use two different econometric

methodologies – a probit model and a duration model. Therefore, our results are not

directly comparable.

The outcome of our probit analysis suggests that at times of monetary expansion

Czech banks do not necessarily believe that the economic fundamentals are strong enough

to reduce the default probability of borrowers with a recent bad credit history and are

less likely to finance them. We provide a possible explanation for this – at first glance

– puzzling result. The estimated influence of bank characteristics shows that larger and

more liquid banks tend to extend fewer loans to firms with a recent bad credit history.

Additionally, banks with a worse relative credit risk track record tend to finance fewer

companies with a riskier past. Interestingly, we find that less leveraged banks are less

likely to incur credit risk.

The result of our survival analysis indicates that relaxed monetary conditions pro-

mote risk-taking among banks. This outcome is confirmed irrespective of the way we

address differences in bank profiles. Specifically, we obtain a positive association between

low interest rates prior to loan origination and the loan hazard rate both when bank co-

variates are explicitly accounted for and when the effect of unobserved bank heterogeneity
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is estimated. Controlling for loan and borrower characteristics confirms that banks tend

to extend loans with a higher hazard rate at times of monetary easing. We separate de-

mand and supply for hazardous loans by using a set of borrower and loan characteristics,

and proxy the Czech money market rate by the euro area overnight rate. Estimation of

the hazard model, which in its essence works with the failure rate normalized per time

period, enables us to disentangle credit risk from the effect of the overnight rate on loan

maturity and, thus, liquidity risk. The survival model allows us to examine the effect of

the monetary policy stance on the outstanding loan portfolio. Conditional on the loan

being extended, a lower interest rate during the loan life reduces its hazard rate. This

result can be attributed to lower refinancing costs or, simply, a reduced loan repayment

burden.

At the same time, we find hardly any support for an impact of the real cycle in

determining the risk of new loans and the outstanding portfolio. The specification with

bank, borrower and loan covariates yields a negative impact of the GDP growth rate

on existing loans. Other estimated effects of the real cycle turn out to be statistically

insignificant in the survival data for Czech loans. The impact of monetary policy on

risk-taking varies with bank characteristics. More liquid banks tend to grant loans with

lower hazard rates. The negative association between loan riskiness and bank liquidity

shows that banks accumulating liquid assets tend to grant less risky loans and confirms

one of the implications of Diamond and Rajan (2006). Finally, we find that foreign-owned

banks are willing to accept more credit risk than local banks or foreign branches.
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Chapter 3
Evaluation of Swap Contracts Using Various

Term Structure Models in the Polish Market
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Evaluation of Swap Contracts Using Various Term Structure Models in the

Polish Market ∗

Dorota Kowalczyk†

Abstract

A growing role of derivatives reinforces a need for their consistent valuation and thus

for reliable term structure models. In this paper I analyze five term structure models

in order to compare their ability to capture the interest rate dynamics and value the

interest rate swaps in the Polish market. A choice of the plain interest rate derivative

allows for a wider selection of interest rate models, which includes the frameworks of

Nelson and Siegel (1987), Vasicek (1977), Cox, Ingersoll, and Ross (1985), Heath et al.

(1992) and the cubic spline curves. The performance and predictive accuracy of the term

structure models are assessed based on the realized contract values. The Nelson-Siegel,

cubic interpolation and CIR models generate adequate fit and transaction values similar

to the realized contract values. A special case of the Heath-Jarrow-Morton model with

the volatility corroborated by the observable market data produces mostly unreliable

fitted curves, while Vasicek’s approach gives contract values statistically different from

the actually swapped amounts. The ample performance of the Cox-Ingersoll-Ross model

suggests the rate-reliant nature of the interest rate volatility. The underperformance of

the Vasicek model emphasizes the role of the cross section of interest rates, and thus the

importance of a no-arbitrage argument. Finally, the ex-post accuracy of the Nelson-Siegel

and the cubic spline models indicates that a current cross-section of the yield curve is

highly informative for the future.
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3.1 Introduction

The financial turmoil, which took its first toll in 2007, but seemed to unveil its truly

disastrous nature only in 2008, has fueled a discussion about the complexity of contem-

porary financial instruments’ valuation. Following the crisis, practitioners and regulators

have raised concerns regarding opaque financial products and their pricing. This study

poses a more basic question, namely it discusses the usefulness of advanced term struc-

ture models in the valuation of plain vanilla interest rate sensitive derivatives. As it

investigates the value added of theoretically-grounded term structure models in valua-

tion of real life swap contracts, this chapter also refers to model risk. Model risk "occurs

when the investment strategy relies on valuation or risk models that are flawed" (Jorion

(2009), p. 419). Although model risk is typically associated with complex derivatives,

the choice of a plain interest rate derivative allows for examination of model risk in the

case of a dynamically growing OTC market, such as the Polish one, and a wider selection

of interest rate models.

However, the motivation of my investigation does not stem solely from the recent

developments. The relationship of yields on risk-free assets to maturity and its deter-

minants has already gained a great deal of attention in the economic literature over

previous decades. Economists have attempted to derive, model and understand the term

structure for reasons ranging from extracting expectations to valuing future contingent

claims. With the growing role of derivatives a quest for pricing, hedging and, in general,

managing risk associated with their portfolios has become one of the priorities in finance.

Since valuing instruments contingent on future developments calls for deriving a yield

curve, a need for a commonly accepted term structure model has followed. While for

stock options Black and Scholes (1973) have successfully established the major model,

interest contingent claims and term structure modeling continue to be addressed by a

vast number of methods used among scholars and practitioners.

The lack of a universally employed term structure model could be attributed to the

complex stochastic behavior exhibited by interest rates and their non-tradability. Unques-

tionably, the efforts to explain the behavior of the yield curve, which depicts the relation
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between maturities and interest rates, have been intensified since the introduction of op-

tion trading on bonds and interest rate swaps (IRS). Roughly speaking, under an interest

rate swap agreement, a fixed and agreed upon rate is exchanged for a floating interest

rate. Thus, in the case of interest rate swaps as well as other interest contingent deriva-

tives the term structure affects not only the discounting future but, more importantly, it

drives the underlying ’asset’ value. Despite all the effort undertaken, understanding and

modeling the term structure remains one of the challenging topics in financial research.

This study empirically examines whether the five models of the yield curve differ sig-

nificantly in terms of the implications for valuing interest rate swaps. Selecting a plain

interest rate derivative allows me to investigate interest rate models that are applicable

in a broader context and may be used to extract expectations about the economy, con-

duct monetary policy, assess and manage financial risk1. Consequently, this investigation

centers on the valuation for a longer horizon. Translated to a real-life setting, the choice

of the term structure model is considered from the perspective of financial institutions,

such as banks, and their portfolio of the interest sensitive claims with a longer holding

period. Thus, the performance of the term structure models is essentially assessed by the

predictive accuracy of the fitted yield curves and fitted swap contract values. I estimate

the term structure models of Nelson and Siegel (1987), Vasicek (1977), Cox, Ingersoll,

and Ross (1985), Heath et al.(1992) and construct the cubic spline curves. By comparing

the outcomes of these techniques, I also investigate the value added of a complex and

computationally expensive versus simplistic approach to interest rate modeling. Pricing

of interest rate derivatives depends vitally on the term structure and it is of great interest

to verify the extent to which the discrepancies in modeling the term structure impact the

valuation of these contingent claims.

This chapter is organized as follows: Section 2 describes the term structure models,

while Section 3 focuses on the interest rate swaps and their valuation. Section 4 discusses

the data and the estimation methodology. Section 5 summarizes the findings, and Section

6 concludes.

1This argument is discussed in more detail in Section 3.
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3.2 Term Structure Models

The term structure of interest rates describes the relationship between the yield on

a default free debt instrument and its time to maturity. Strictly speaking, this term is

reserved for more formal descriptions of the yield-to-maturity relation, while the graph-

ical relationship is often called the yield curve. Nonetheless, both constructs tend to be

employed interchangeably. Term structure modeling refers to two related, but separate,

questions in finance. The first question focuses merely on curve construction, whereas

the second - and much broader problem - involves a specification of factors driving the

term structure dynamics over time. Within the latter approach two distinct research

strands have evolved. Simply put, researchers either develop empirical models and esti-

mation methods for the yield curve or propose theories about the nature of the stochastic

process that governs interest rates. Loosely speaking, the empirical methods seek to de-

sign mathematical functions that reproduce the typical yield curve shapes. Thus, clearly

they lack any theoretical underpinnings. On the contrary, the theoretical studies derive

interest rate models from the theory of asset pricing and economic fundamentals. The

model building blocks are state variables, which constitute the source of uncertainty in

the economy, and processes characterizing their intertemporal dynamics. These dynam-

ics successively determine the stochastic behavior of interest rates. Many term structure

frameworks assume that the instantaneous interest rate itself is a source of uncertainty

in the economy.

Essentially, two approaches to the theoretical modeling of interest rates dominate

in the finance literature2. Earlier works focus on the evolution of the short rate, while

studies following Heath, Jarrow, and Morton (1992) start directly with the movement of

the entire term structure. From the economic perspective the two classes of stochastic

interest rate models are arbitrage-free or equilibrium models. Strictly speaking, the vast

majority of equilibrium frameworks are built under the partial equilibrium condition.

Even in their case, however, the no-arbitrage argument is crucial for obtaining a bond

pricing formula3. Such an approach has been pioneered by the celebrated paper of Va-

2For a detailed discussion of various classifications of interest rate models and the models’ exposition

refer to Brigo and Mercurio (2006), Cairns (2004), James and Webber (2009) or Wu (2009) to name just

a few.
3Therefore, even the seminal Vasicek (1977) paper can be classified as the no-arbitrage model (see a

critical evaluation of Vasicek (1977) provided in Heath, Jarrow, and Morton (1992), pp. 77-78).
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sicek (1977), which is discussed in the following section. The general equilibrium models

achieve the specification of the term structure within a representative agent endowment

economy from a set of steady-state conditions. Their prominent example, due to Cox,

Ingersoll, and Ross (1985), is also presented below. Finally, the arbitrage pricing models

impose an exogenous stochastic process on spot or forward rates in a way that excludes

unexploited price differences in the market of interest rate contingent claims. The far

reaching paper of Heath, Jarrow, and Morton (1992) with its unifying framework is an

excellent illustration of the arbitrage-free studies.

3.2.1 The Vasicek Model

In his seminal paper, Vasicek starts with a certain stochastic behavior of interest rates

and the market price for risk and then derives the price of all contingent claims assuming

the absence of arbitrage opportunities. He models the instantaneous interest rate as an

Ornstein-Uhlenbeck process of the following form:

dr(t) = κ(θ − r(t))dt+ σdW (t), (3.1)

where κ, θ and σ are positive constants and W (t) denotes a standard Wiener process. The

reasoning is similar to that of Black and Scholes (1973). The solution to the stochastic

differential equation (3.1) is given by:

r(t) = θ + (r(s)− θ) e−κ(t−s) + σ

t∫
s

e−κ(t−u)dW (u) (3.2)

The interest rate r(t) implied by this structure is a Gaussian random variable with the

following conditional moments:

E (r(t)|F0) = θ + (r0 − θ) e−κt

Var (r(t)|F0) =
σ2

2κ

(
1− e−2κt

)
where F0 is the filtration for W (0) and, more generally, Ft is the filtration for the Wiener

process W (t). The derivation of equation (3.2) and the conditional variance of r(t) are

provided in the Appendix. It is easy to see that lim
t→∞

E (r(t)) = θ. Therefore, the pa-
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rameter θ represents the average long-run interest rate. Parameter σ is the volatility of

the short rate. Moreover, whenever r(t) exceeds its long-run mean (θ), the drift term

becomes negative, which pushes r(t) down towards θ. Clearly, the speed of this adjust-

ment is captured by the parameter κ. Likewise, when the interest rate is lower than its

long-run mean (r(t) < θ), the positive drift term pushes r(t) up towards θ. Thus, the

Vasicek model exhibits mean reversion, an appealing feature from the economic point of

view. Roughly speaking, in times of an economic downturn and rising interest rates the

demand for loans decreases, which eventually pulls the rates down. By the same token,

the opposite can be argued. The mean reversion process prevents the expected value and

variance of the instantaneous rate from exploding, which in turn limits the occurrence

of unreasonably high and low rates. However, negative yields for distant maturities may

still appear.

Generally, the term structure of interest rates is characterized by yields to maturity.

The continuously compounded yield at time t of bond maturing at T is defined by:

R(t, T ) = − ln P (t, T )

T − t
(3.3)

where P (t, T ) is the price in period t of a discount bond maturing at T , for all 0 ≤
t ≤ T ≤ T ∗. We fix a time horizon, T ∗, before which all bonds will mature. To ensure

that the bond prices satisfy the no-arbitrage condition one needs to apply the Girsanov

theorem and redefine the diffusion process for the instantaneous interest rate under the

risk neutral probability measure4. The Appendix features a detailed presentation of the

risk neutral determination of bond prices and yields within the Vasicek framework. The

obtained risk-adjusted diffusion process for the short rate is characterized by:

dr(t) = κ

(
θ − λσ

κ
− r(t)

)
dt+ σ dW̃ (t) (3.4)

In a nutshell, the above given equation reformulates the short rate equation (3.1) using

the following equivalence:

dW (t) = dW̃ (t)− λ dt (3.5)

where W (t) is the original Wiener process and W̃ (t) is the Wiener process under a risk-

4Rigorously speaking, it is required that the diffusion process for the bond prices has the martingale

property. For the full treatment of risk-neutral pricing refer to Shreve (2004).
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adjusted measure Q. The parameter λ denotes a market price of risk and is assumed to

be constant in the Vasicek model. Finally, given the character of the spot rate process,

r(t), Vasicek (1977) derives prices for discount bonds (P (t, T )) under the risk neutral

probability measure Q and conditional on the information available at time t. The price

of a discount bond at time t with maturity T ≤ T ∗ is defined as:

P (t, T ) = EQ

(
exp

(
−
∫ T

t

r(u) du

) ∣∣∣∣∣Ft

)
(3.6)

In the Vasicek model the time-t price of the discount bond maturing at T for any 0 ≤
t ≤ T ≤ T ∗ is described by:

P (t, T ) = exp

[(
θ − λσ

κ
− r(t)

)
1− e−κ(T−t)

κ
− (θ − λσ

κ
)(T − t) (3.7)

+
σ2

4κ3
(
4e−κ(T−t) − e−2κ(T−t) + 2κ(T − t)− 3

)]

Once inverted, the bond prices serve to determine the term structure of interest rates,

which Vasicek (1977) expresses as:

R(t, T ) = − 1

T − t

[
1

κ

(
e−(T−t)κ − 1

)
r(t) +

σ2

4κ3
(
1− e−2(T−t)κ) (3.8)

+
1

κ

(
θ − λσ

κ
− σ2

κ2

)(
1− e−(T−t)κ)− (θ − λσ

κ
− σ2

κ2

)
(T − t)

]

where κ, θ and σ are the same positive constants as in equation (3.1), the parameter

λ is the risk premium introduced by the risk-neutral pricing and r(t) is the current

period instantaneous interest rate driven by the stochastic differential equation (3.1). The

derivations are included in the Appendix. In addition, the term θ− λσ
κ
− σ2

2κ2
represents the

infinite maturity interest rate R(t,∞). Depending on the relation between r(t), R(t,∞)

and σ2

4κ2
Vasicek (1977) generates upward sloping, downward sloping and humped yield

curves. All three types of shapes corroborate the stylized facts about yields curves.

3.2.2 The Cox, Ingersoll and Ross Model

Cox, Ingersoll, and Ross (1985) adapt an equilibrium approach to interest rate model-

ing. The paper develops a single-good continuous time homogeneous economy in which
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interest rates are derived from the supply and demand of investors with a constant rel-

ative risk aversion. In each period a representative agent faces production opportunities

determined by the state of technology, which evolves according to a first-order stochastic

differential equation. The equilibrium risk-free rate and the expected return on contingent

claims are such that "all wealth is invested in the physical production"5. Therefore, the

endogenized interest rate depends on the production opportunities and the rate dynam-

ics moves in line with the evolution of the stochastic state of the production technology.

Using the assumption about the production dynamics, Cox, Ingersoll, and Ross (1985)

arrive at the following diffusion process for the risk-free rate of interest:

dr(t) = κ (θ − r(t)) dt+ σ
√
r(t)dW (t) (3.9)

where κ, θ and σ are positive constants and W (t) denotes a standard Wiener process

associated with filtration Ft. Generally, a closed-form solution cannot be derived, however

a unique positive solution takes the form of:

r(t) = θ + (r(s)− θ) e−κ(t−s) + σe−κ(t−s)
t∫

s

eκ(u−s)
√
r(u)dW (u) (3.10)

Additionally, in order to preserve a positive short rate the condition 2κθ > σ2

is imposed. Derivations are provided in the Appendix. The endogenously determined

process characterized by equation (3.10) is similar to the stochastic process for the inter-

est rate in Vasicek (1977). However, the volatility of the CIR process for the short rate

increases with the rate level. Feller (1951) shows that processes as described by equation

(3.10) have a noncentral chi-squared distribution. Specifically, conditioned on filtration

Fs for s < t the short rate r(t) follows a noncentral chi-squared distribution6:

r(t)|Fs ∼ χ2 [2cr(t); 2q + 2, 2u]

with 2q + 2 degrees of freedom and parameter of noncentrality 2u proportional to r(s)

and where:

c ≡ 2κ

σ2 (1− e−κ(t−s))

u ≡ cr(s)e−κ(t−s)

5Cox, Ingersoll, and Ross (1985), p. 387.
6For more details refer to Cox, Ingersoll, and Ross (1985), pp. 391-392.
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q ≡ 2κθ

σ2
− 1

The interest rate r(t) implied by the square-root diffusion process has the following con-

ditional moments:

E(r(t)|Fs) = θ + (r(s)− θ)e−κ(t−s)

V (r(t)|Fs) = r(s)
σ2

κ

(
e−κ(t−s) − e−2κ(t−s))+ θ

σ2

2κ

(
1− e−κ(t−s)

)2
The Appendix presents derivations of the conditional moments in the Cox-Ingersoll-Ross

framework. As in the case of the instantaneous short-rate process proposed by Vasicek

(1977), in the CIR model the parameter θ represents the average long-run interest rate

and the parameter κ captures the speed of mean-reverting dynamics. Whenever r(t)

moves away from its long-run mean, the drift term pulls it back towards θ. However, the

two models differ with respect to the volatility function of the short rate, which for the

CIR process becomes σ
√
r(t) and moves with the spot rate level.

Similar to Vasicek (1977), Cox, Ingersoll, and Ross (1985) use the market efficiency

to derive the price of discount bonds and the yield-to-maturity. The no-arbitrage price

of discount bonds is implied by the existence of a risk-neutral measure Q. Changing the

probability measure from the actual to the risk-neutral modifies the drift term exactly

as in the Vasicek model. In the CIR model the mean-reverting risk-neutral dynamics

becomes:

dr(t) = κ

(
θ − κ+ λσ

κ
r(t)

)
dt+ σ

√
r(t)dW̃ (t) (3.11)

At the Cox-Ingresoll-Ross equilibrium the risk premium, λ(t), assumes the form of

λ
√
r(t) and corresponds to the constant λ in Vasicek’s equation (3.5). In both cases

the market price for risk preserves the same structure under the actual and the risk-

neutral probability measure. The Appendix outlines steps involved in the derivation of

bond prices in the Cox-Ingresoll-Ross framework. Given the character of the square-root

process for the spot rate, r(t), the price of a discount bond at time t with maturity

T ≤ T ∗ is given as:

P (t, T ) = A(t, T )e−B(t,T )r(t) (3.12)
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where

A(t, T ) =

[
2γe(κ+γ+λ)(T−t)/2

(γ + κ+ λ)(eγ(T−t) − 1) + 2γ

]2κθ/σ2

B(t, T ) =
2(eγ(T−t) − 1)

(γ + κ+ λ)(eγ(T−t) − 1) + 2γ

γ =
√

(κ+ λ)2 + 2σ2

where κ, θ and σ are the same positive constants as in equation (3.9), the parameter

λ is introduced by the risk-neutral pricing and r(t) is the current period instantaneous

interest rate driven by the stochastic differential equation (3.11). Using equation (3.3) the

continuously compounded yield for discount bonds in the CIR model can be expressed

as:

R(t, T ) =
−lnA(t, T ) + B(t, T )r(t)

T − t

where A(t, T ) and B(t, T ) are defined as in formula (3.12). It can be shown that the

infinite maturity yield in the Cox-Ingresoll-Ross model amounts to:

R(t,∞) =
2κθ

γ + κ+ λ

As in Vasicek (1977), all three types of yield curves shapes are admissible. The CIR term

structure becomes upward sloping for instantaneous rates lower than the long-term yield,

downward sloping for rates exceeding κθ
κ+λ

and exhibits humps for intermediate values of

the short interest rate.

The great appeal of both interest rate models is their analytical tractability. On

the other hand, one of the drawbacks of the Vasicek and the Cox- Ingersoll-Ross model

stems from the fact that they do not take the whole yield curve as an input in the price

structure. Instead, the yield curve is what those models produce. In particular, Heath,

Jarrow, and Morton (1992) criticizes the models of Cox, Ingersoll, and Ross (1985) and

Vasicek (1977) for introducing arbitrary specification of the market price for risk. Both

models derive the term structure from the prices for risk-free claims, which originate

from the value of the discount bond bearing some risk. Such reverse pricing may lead

to inconsistencies and arbitrage opportunities. To exclude arbitrage, the price structure

should take into account the entire curve observed in the market. This consideration has

fueled the evolution of the arbitrage pricing models.
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3.2.3 The Heath-Jarrow-Morton Model

Heath, Jarrow, and Morton (1992) propose a unifying framework for all arbitrage

pricing models. Any specific arbitrage-free model can be expressed as a special case of

their model. Amongst others, their work is a generalized formulation of such classical

cases as Vasicek (1977), Hull and White (1987) (Extended Vasicek) or Ho and Lee (1986),

which is the first arbitrage-free term structure model calibrated to the term structure

data. As already mentioned, a basic feature of arbitrage models is taking the entire curve

as state variables. Heath-Jarrow-Morton’s methodology imposes stochastic structure on

the forward rates and its state variable is the forward rate curve. The evolution of the

term structure of the forward rates is described by7:

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t), 0 ≤ t ≤ T ≤ T ∗ (3.13)

or in an integral form:

f(t, T ) = f(0, T ) +

t∫
0

α(u, T )du+

t∫
0

σ(u, T )dW (u) (3.14)

where σ(u, T ) denotes a family of volatilities of the forward rate for maturity T and W (u)

is a standard Wiener process. For any maturity T , the volatilities σ(u, T ) and the drifts

α(u, T ) are adapted processes in the u variable. The model also postulates that

T∫
0

|α(u, T )|du+
T∫

0

|σ(u, T )|2du

is almost surely finite. In general, the volatilities σ(u, T ) and the drifts α(u, T ) depend

on the history of the Wiener process and on the rates up to time t. For any time t,

0 ≤ t ≤ T ≤ T ∗, the model assumes that the initial forward rate curve f(0, T ) is known.

Thus, by construction, the model fits the initial observed term structure.

A major contribution of Heath, Jarrow, and Morton (1992) is that it recognizes the

implication of the arbitrage-free assumption for the relationship between the drift and

the volatility of the forward rate. In the no-arbitrage setting, the drifts of the forward

7For the simplicity of the exposition I present a one factor specification
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rates, α(u, ·) are uniquely determined by the volatilities, σ(u, ·), and the market price for

risk. Formally, the condition reads:

α(t, T ) = σ(t, T )

 T∫
t

σ(t, u)du+ λ(t)

 ,∀t ∈ [0, T ], T ∈ [0, T ∗] (3.15)

The Appendix features derivation of equation (3.15). Using the no-arbitrage drift re-

striction, the forward-rate process in (3.13) can be formulated under the risk-neutral

probability measure Q as:

df (t, T ) =

σ (t, T ) T∫
t

σ (t, u) du

 dt+ σ (t, T ) dW̃ (t) (3.16)

where W̃ (t) is the Wiener process under the martingale measure Q, while λ(t) denotes a

market price of risk and 0 ≤ t ≤ T ≤ T ∗. The Heath-Jarrow-Morton methodology offers

a broad range of models, each characterized by specific functional forms of the drifts and

the volatilities of the forward rates. Due to the drift condition (3.15), the choice of any

particular model reduces to the choice of a functional form of the volatility.

A simple way to postulate the dynamics for the short rate under the Heath-Jarrow-

Morton framework is to consider the spot rate as a limit of the instantaneous forward

rate:

r(t) = lim
s→t−

f(s, t)

= f(0, t) +

t∫
0

σ(u, t)

 t∫
u

σ(u, ν)dν

 du+

t∫
0

σ(u, t)dW̃ (u) (3.17)

In general, the HJM forward rate framework results in a path-dependant evolution (3.17)

for the spot rates. Since the Markovian models are numerically easier to handle, a

condition additionally imposed on the Heath-Jarrow-Morton specification is that the

short rate needs to be Markovian. Equation (3.17) implies the following differential form

for the spot interest rate process:
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dr(t) = df(t, T )

∣∣∣∣∣
T=t

=
∂f(t, T )

∂T

∣∣∣∣∣
T=t

dt+ σ(t, t)dW̃ (t) (3.18)

Given the regularity conditions and under the risk-neutral probability, the yields on

contingent claims are determined by the initial term structure and the volatility function

of the forward rates in the following way:

R(t, T ) = R(0, T ) +

1
2

t∫
0

(
T∫
u

σ(u, s)ds

)2

du

T − t
−

t∫
0

r(u)du

T − t

+

t∫
0

T∫
u

σ(u, s)ds dW̃ (u)

T − t
(3.19)

The Appendix outlines the derivations of equations (3.16) and (3.19). It is worth

noting that Heath, Jarrow, and Morton (1992) obtain the value of the discount bonds

directly from a finite number of state variables under the assumption of the absence of

arbitrage. Thus, by construct, their model consistently prices all contingent claims on

the term structure. Given the generality of the Heath-Jarrow-Morton methodology and

its flexibility regarding the functional forms of σ(t, ·), there have been numerous attempts

to extend and validate the HJM model by assuming and testing a certain functional form

for the forward-rate volatility.

3.2.4 Empirical Yield Curve Models

Early attempts within the empirical approach focused on advancing the polynomial

splines models. This methodology was introduced by McCulloch (1971) and extended by

McCulloch (1975) and Langetieg and Smoot (1981). Polynomials, however, fail to con-

form to the variety of yield curve shapes observed in reality and tend to produce unstable

forward rates with unacceptable asymptotic properties. A pioneering work in the expo-

nential approximation of the yield curve is due to Vasicek and Fong (1982). The paper

suggests an exponential spline formulation, well-fitting the term structures observed in

reality. Vasicek and Fong (1982) avoid a tedious nonlinear estimation of the discount

factor coefficients due to a logarithmic transform of the discount function’s arguments.

As a result, an ordinary least squares estimation can be employed. When tested on the
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US Treasury bills, the methodology generates stable forward rates that are a continuous

function of time, exhibit desirable asymptotic characteristics for long maturities and con-

form to a wide range of shapes.

Building on Vasicek and Fong’s results, Nelson and Siegel (1987) proposed an expo-

nential model which is simple, parsimonious and at the same time flexible enough to

generate monotonic, humped and S-shaped curves. Their model is capable of replicating

important stylized facts of the yield curve. Nelson and Siegel (1987) develop the term

structure model starting with a function for the instantaneous forward rate. The frame-

work includes three specifications of the instantaneous forward rate functions, namely

a second-order exponential equation with unequal roots, with equal roots and, finally,

a simple exponential specification. Given that the simple specification performs unsat-

isfactorily, whereas the case of unequal roots tends to cause overparametrization, they

are both excluded from my investigation. Nelson and Siegel (1987) report that the for-

mulation with equal roots failed to accurately approximate solely the extreme cases. In

particular, the model with equal roots overestimated the long-term discount rates and

underestimated their short term counterparts in their in- and out-of-sample estimations

for the U.S. Treasury bills. The second-order exponential equation with equal roots

characterizing the instantaneous forward rate r(m) for maturity m has the form8:

r(m) = β0 + β1 exp
−m
τ

+ β2

(
m

τ
· exp −m

τ

)
(3.20)

where τ is a time constant that determines the rate at which the regressors decay to zero

and β0, β1, β2 are the coefficients to be estimated. The determinant of the speed of decay

needs to be calibrated to the data. Small τ conforms to low maturities, whereas high

values of τ generate slow decay and thus fit long maturities best. Using equation (3.20),

the evolution for the yield to maturity m can be expressed as:

R(m) = β0 + β∗
1

1− e−
m
τ

m
τ

+ β2
(
−e−

m
τ

)
(3.21)

where R(m) is the yield for maturity m and β∗
1 = β1 + β2. Parameters τ , β0, β1 and β2

are defined as in expression (3.20). By construct, β0 is the limiting value of the yield

for very large maturities. It can be also shown that for maturities close to 0 the yield

8I follow the notation of Nelson and Siegel (1987).
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approaches (β0 + β1). The derivations are provided in the Appendix. The factors of

the Nelson-Siegel model have appealing interpretations, namely they can be regarded as

the yield curve level, slope and curvature. The long-term factor β0 governs the level of

the term structure of interest rates, while β1 and β2 are responsible for monotonic and

humped shapes of the curves.

The Nelson-Siegel methodology has become very popular and gave rise to an entire

class of models. The approach is extensively used by practitioners, in particular central

banks (ECB (2008) and BIS (2005)). The most recognized extensions of the Nelson-Siegel

approach are by Diebold and Li (2006) and Dahlquis and Svensson (1996). The Svensson

model adds even more flexibility to the Nelson-Siegel framework by including a second

hump factor, which produces a much broader range of term structure shapes. The real

value added of Diebold and Li (2006) stems from modeling the coefficients dynamically

with the use of the autoregressive process of order one. By doing so, the study enriches

the Nelson-Siegel model with a time-series dimension. An out-of-sample forecasting based

on Diebold and Li estimates for US Treasury bonds exhibits an improvement in precision

of prediction as time horizon lengthens. This result could be attributed to the dynamics

imposed in the estimated parameters. The Diebold and Li variation of the Nelson-Siegel

model proves the robustness of the latter one to modifications and restrictions. It also

supports the choice for this study of the second-order exponential model with equal roots.

Finally, a frequently employed algorithm for the curve construction is a cubic spline

interpolation. Hagan and West (2006) features a comprehensive survey of the yield curve

construction. The interpolation methods use the set of available observations to recover

the in-between "missing" yields. A cubic spline9 is a spline constructed of piecewise third-

order polynomials, which pass through a set of control points. The second derivative of

each polynomial is commonly set to zero at the endpoints, which provides a boundary

condition that completes the system of equations and allows for solving for the system’s

coefficients.

9http://mathworld.wolfram.com/CubicSpline.html
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3.3 Interest Rate Swaps

A plain-vanilla interest-rate swap is an agreement between two parties to exchange

fixed for floating payments in the future10. The interest rate swaps are an appropriate

choice to empirically compare the performance of the term structure models for several

reasons. Since their introduction in the early 1980s, swaps have dominated the over-the-

counter derivative market. Additionally, the interest rate swap market is liquid, deep

and practically hardly regulated. What’s more, selecting a plain interest rate derivative

allows the investigation of interest rate models applicable in a broader context. If in-

stead the interest-rate options were selected, the choice of models would be naturally

confined to the interest-rate market models. As noticed by Brigo and Mercurio (2006),

the unquestionable popularity of the market models stems from the fact that they have

been tailored to a specific interest rate option’s type and its market segment11. Unlike

options, the interest rate swap is equivalent to a portfolio of bonds or a series of forward

rate agreements. As shown below in this section, the swap can be valued as a portfolio

of either of the two instruments. The term structure models that characterize evolution

of bond prices, the same that serve to extract expectations about the economy, conduct

monetary policy, assess and manage financial risk, may also be used to price plain inter-

est rate derivatives such as swaps. In his acknowledged text on term structure modeling,

Rebonato (1998) emphasizes that "any yield curve model capable of pricing discount

bonds exactly must recover the market swap rates correctly for any choice of the model

volatility"12. Contrary to this traditionally established approach, Duffie and Singleton

(1997) develop a new framework for pricing caps, floors swaptions and swaps using a

default and liquidity-adjusted instantaneous short rate. Their risk-adjusted model is a

natural consequence of the empirical studies of the default spreads in the swap market (

Sun, Sundaresan, and Wang (1993) and Malhotra (1997)). To mitigate the problem of

default risk premia, I analyze the contracts between banks of similar credit quality. None

10Rebonato (1998), p. 8
11Brigo and Mercurio (2006), p. 195. In particular, the Brace-Gatarek-Musiela (BGM) model is

compatible with Black’s pricing formula for caps, floors or caplets, while the lognormal forward-swap

model (LSM) is compatible with pricing swaptions. Their calibration to each specific instrument’s market

in developed countries is relatively straightforward. A calibration to the markets in transition economies

is examined in Vojtek (2004). An overview of the market models can be found in Brigo and Mercurio

(2006) or Cairns (2004).
12Rebonato (1998), p. 12
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of the examined deals incorporates a spread over the money market reference rate13. The

symmetric nature of the interest rate swaps implies no default risk premium (Sorensen

and Bollier (1994)) and Duffie and Huang (1996)). Therefore, the swap pricing theory

and common yield curve models may be applied.

The series of swap fixed payments are often referred to as the fixed legs, and the

floating payments as the floating legs of a swap. Both legs are calculated on the same

principal and for the same period. The fixed rate and the future dates of exchanges are

know at the outset of the swap. The floating rate is reset at each payment time. The

widely known reference rate of interest employed in standardized quotations and financial

derivatives valuation is the London Interbank Offered Rate. LIBOR is the reference in the

Eurocurrency market which, though centered in London, is the global money market for

wholesale deposits and loans in all easily convertible currencies. More precisely, LIBOR

is the rate of interest offered by banks on deposits from other banks in the Eurocurrency

market. However, the use of interbank interest rates is not confined to London. Natu-

rally, most financial centers quote their own interbank offered rates. These rates include,

among many others, the Frankfurt Interbank Offered Rate (FIBOR), the Paris Inter-

bank Offered Rate (PIBOR) or the Warsaw Interbank Offered Rate (WIBOR), which is

charged on bank deposits in the Warsaw money market. As previously mentioned, the

reference rates are key to derivatives valuation. In this study I examine the interest rate

swap agreements signed in the Polish market, in the Polish zloty, and where fixed interest

payments were exchanged for the WIBOR-linked payments. Therefore, the reference rate

for the sake of this investigation is the Warsaw Interbank Offered Rate (WIBOR).

The value of the interest rate swap is by default zero or close to zero at the contract

outset. Under IRS, the principal amount is not exchanged and thus it is solely a notional

principal. The swap fixed rate is determined by equalizing the net present value of both

fixed- and floating-rate cash flows. Throughout the swap’s life the contract gains or

loses in value. The swap pricing theory suggests two approaches to interest rate swap

valuation. One approach determines the swap value in terms of bond prices, the other by

treating an IRS as a portfolio of forward rate agreements (FRAs). Valuing the interest

13Unlike in many other studies, my dataset contains very detailed information on the interest rate

swaps including all contractual provisions.
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rate swap as bonds reduces to finding a difference between the prices of a floating- and

a fixed-rate bond. From the point of view of the fixed-rate payer, an interest rate swap

is a long position in a floating-rate bond combined with a short position in a fixed-rate

bond. Thus, the fixed-rate payer calculates the value of the IRS by subtracting the price

of the fixed-rate bond from the price of the floating-rate bond. The opposite is true for

the floating-rate payer. At any time of the IRS’s life its value to the fixed-rate payer is

equal to14:

Vswap = Bfl −Bfix (3.22)

Bfix =
n∑
i=1

ke−riti + Le−rntn (3.23)

Bfl = (L+ k∗) e−r
∗t∗ (3.24)

where ti is a time interval until the i-th payments are exchanged, ri is the WIBOR15 zero

rate corresponding to maturity ti and k is a fixed payment made on each payment date.

Expression (3.24) presumes that the next exchange date is t∗. Then, r∗ is the correspond-

ing WIBOR zero rate and k∗ is the floating-rate payment. To understand formula (3.24)

one needs to recall that immediately after each exchange, the floating-rate bond is worth

just the notional amount (L). Therefore, in the period between the payment date t∗ and

a preceding payment date, the bond’s value equals the notional principal augmented by

the corresponding discounted floating payment.

Alternatively, any IRS could be valued in terms of FRAs. A FRA or a forward rate

agreement is a contract that determines the rate of interest to be paid or received on

an obligation beginning at some future date16. In order to price an interest rate swap

as a portfolio of FRAs one needs to determine the implied forward rate for each future

floating payment specified under the contract. The forward interest rate rFi,i+1 for the

period between time ti and ti+1 is given by the formula17:

rFi,i+1 =
ri+1ti+1 − riti
ti+1 − ti

(3.25)

14Hull (2002), pp. 136-137.
15More generally, the LIBOR zero rate corresponding to maturity ti. In what follows, I will refrain from

recalling that for the Eurocurrency market the appropriate LIBOR rate would be used instead of WIBOR.
16Based on Hull (2008), p. 85.
17Hull (2008), p. 83.
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where ri and ri+1 are the WIBOR zero rates for maturities ti+1 and ti respectively.

Clearly, further steps assume that the forward rates are realized. Under this assumption,

the future swap floating rates equal the implied forward rates. As a result, the swap cash

flows can be calculated for each exchange date ti+1 as the net present value18 of the swap

payments:

NPV CFi+1 = (ti+1 − ti)L(rfix − rFi,i+1)e
−ri+1

i+1
12 (3.26)

where ti+1 and ti is a time interval until respectively the i+ 1 and i-th payments are

exchanged, ri+1 is the WIBOR zero rate corresponding to maturity ti+1 and rfix is the

fixed interest rate. Finally, rFi,i+1 is the implied forward interest rate for the period

between dates ti and ti+1. Eventually, the IRS value is simply equal to the present value

of all cash flows:

Vswap =
n∑
i=1

NPV CFi (3.27)

It can be seen from the valuation of interest rate swaps to what extent IRS are

sensitive to changes in interest rates. This sensitivity makes IRS a good candidate to test

the impact of differences in modeling term structure on derivatives valuation. The choice

of the interest rate swap contracts is further motivated by the fact, that the swap market

is liquid, deep and practically hardly regulated. Not all interest rate contingent claims

are traded in the markets, which share these characteristics. The swap market liquidity

follows from the amount of deals concluded. The size of the IRS market constitutes a

most significant portion of the over-the-counter (OTC) interest rate derivatives both in

terms of outstanding notional amounts and gross market values of the contracts. The

IRS dominance in the OTC interest rate market is reflected in market data surveys,

a good example of which are the Bank for International Settlements (BIS) quarterly

reviews listing outstanding total derivatives notional amounts and market values in the

G10 countries. The statistics are provided in Tables 3.1 – 3.4. BIS regularly gathers

data from national regulators and extracts from it the worldwide consolidated derivatives

exposure of major banks and dealers in the developed countries to assess the OTC market

size. Table 3.1 shows the IRS constitutes the most significant position out of all OTC

interest rate derivatives for the reported periods.

18The NPV of a contract under which the fixed-rate interest is received and the interest linked to the

floating rate is paid (Hull (2002), p. 138).
19Source: www.bis.org/statistics/dt21a21b.pdf
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Table 3.1: Notional Amounts of OTC Interest Rate Derivatives by Instruments

Notional Amounts (billions of US dollars)
Dec 2005 Dec 2006 Dec 2007 Dec 2008 Dec 2009 Dec 2010 Dec 2011 Dec 2012 Dec 2013

Total 211,970 291,582 393,138 432,657 449,875 465,260 504,117 489,706 584,364
FRA 14,269 18,668 26,599 41,561 51,779 51,587 50,596 71,353 73,819
IRS 169,106 229,693 309,588 341,128 349,288 364,378 402,611 370,002 461,281
Options 28,596 43,221 56,951 49,968 48,808 49,295 50,911 48,351 49,396

Source: BIS statistics. The data are available at the BIS website (for details consult the references). IRS: interest rate
swaps, FRA: forward rate agreements. The figures have been adjusted for double- counting. Under the interest rate
category BIS reveals solely the single currency swaps, no currency interest rate swaps (CIRs) enter this position. 19

IRS dominance is even more visible in Table 3.2, which presents the shares of each

type of derivatives. In all analyzed periods the interest rate derivatives amount to at

least 76% of the OTC interest rate market in terms of outstanding notional amounts.

Table 3.2: Share in Notionals of Outstanding OTC Interest Rate Derivatives

Share in Notional Amounts
Dec 2005 Dec 2006 Dec 2007 Dec 2008 Dec 2009 Dec 2010 Dec 2011 Dec 2012 Dec 2013

Total 100% 100% 100% 100% 100% 100% 100% 100% 100%
FRA 7% 6% 7% 10% 12% 11% 10% 14% 13%
IRS 80% 79% 79% 79% 78% 78% 80% 76% 79%
Options 13% 15% 14% 11% 10% 11% 10% 10% 8%

Source: Own calculations based on BIS statistics available at the BIS website (for details consult the references). IRS:
interest rate swaps, FRA: forward rate agreements. The figures have been adjusted for double-counting. Under the
interest rate category BIS reveals solely the single currency swaps, no currency interest rate swaps (CIRs) enter this
position.

In addition, BIS International Financial Statistics contain data on gross market value

of the OTC derivatives. Gross market value represents the cost of replacing all open

contracts at the prevailing market prices. Also in this category interest rate swaps outclass

other OTC interest rate derivatives, which is reflected both in the absolute and percentage

values shown respectively in Tables 3.3 and 3.4.

The presented statistics confirm the interest rate swaps’ primacy among the OTC

interest rate derivatives which together with the lack of regulations makes IRS a suitable

candidate to test the impact on interest rate contingent claims of the difference in the

modeling the term structure.

20Source: www.bis.org/statistics/dt21a21b.pdf.

Definition cited from: www.bis.org/statistics/rqa1406notes.pdf
21Source: www.bis.org/statistics/dt21a21b.pdf.
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Table 3.3: Gross Market Value of OTC Interest Rate Derivatives by Instruments

Gross Market Value
Dec 2005 Dec 2006 Dec 2007 Dec 2008 Dec 2009 Dec 2010 Dec 2011 Dec 2012 Dec 2013

Total 5,397 4,826 7,177 20,087 14,020 14,608 20,001 18,833 14,039
FRA 22 32 41 165 80 206 67 47 108
IRS 4,778 4,163 6,183 18,158 12,576 13,001 18,046 17,080 12,758
Options 597 631 953 1,764 1,364 1,401 1,888 1,706 1,174

Source: BIS statistics available at the BIS website (see the references). IRS: interest rate swaps, FRA: forward rate
agreements. Gross market value represents the cost of replacing all open contracts at the prevailing market prices and is
defined as "the sum [. . . ] of the positive market value of all reporters’ contracts and the negative market value of their
contracts with non-reporting counterparties"20

Table 3.4: Share in Gross Market Value of Outstanding OTC Interest Rate Derivatives

Share in Gross Market Values
Dec 2005 Dec 2006 Dec 2007 Dec 2008 Dec 2009 Dec 2010 Dec 2011 Dec 2012 Dec 2013

Total 100% 100% 100% 100% 100% 100% 100% 100% 100%
FRA 0% 1% 1% 1% 1% 1% 0% 0% 1%
IRS 89% 86% 86% 90% 90% 89% 90% 91% 91%
Options 11% 13% 13% 9% 9% 10% 10% 9% 8%

Source: Own calculations based on BIS statistics available at the BIS website (see the references). IRS: interest rate
swaps, FRA: forward rate agreements. Gross market value represents the cost of replacing all open contracts at the
prevailing market prices and is defined as "the sum [. . . ] of the positive market value of all reporters’ contracts and the
negative market value of their contracts with non-reporting counterparties"21

3.4 Estimation and Valuation Methodology

3.4.1 Data Description

This study uses a dataset consisting of yields quoted by Reuters and parameters for

369 interest rate swap agreements (IRS) signed in Polish zlotys. The contracts are real

life transactions concluded in the Polish interbank market between the 1st August 2001

and the 27th June 2007 by banks of similar credit quality. None of the examined deals

incorporates a spread over the money market reference rate. None of the parties involved

were dependent in terms of capital or any other relation. The IRS parameters include

trade date, beginning of contract’s life date, its maturity, principal, currency, floating

and corresponding fix rate. Tables 3.5 – 3.7 and Figures 3.2 – 3.7 present an overview

of the contracts’ characteristics. Figure 3.2 displays the distribution of grouped notional

amounts with the intervals of 5 million euros. Clearly the majority of the notional values

amount to 25 million euros22 and most of them do not exceed 50 million euros. It also

Definition cited from: www.bis.org/statistics/rqa1406notes.pdf
22The exchange rate PLN/EUR is 3.3460 (the average exchange rate quoted by the National Bank of

Poland on the 29th August 2008)
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proves that contracts with principal values oscillating around 15 and 30 million euros

dominate the sample, which is also reflected in the basic descriptive statistics of the

contracts’ notional values shown in Table 3.5.

Table 3.5: Notional Amounts of Sample Interest Rate Swap Contracts

Measure million EUR
Mean 27.4
Median 29.0
Mode 30.0
Standard deviation 21.3
Minimum 1.2
Maximum 224.1

Figure 3.1: Box Plots of Observed Yields from August 2000 to November 2007
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Table 3.6 contains descriptive statistics for sample maturities and indicates that the

examined interest rate swaps were most frequently concluded for a year, but on average

lasted 2 years. The longest contracts in the sample span over 6 years, while the shortest

were signed for 3 months. OTC agreements for 3 and 6 moths as well as 1 and 2 years

are standard in the Polish interbank market.

The frequent occurrence of one-year deals and mean maturity of 2 years are also visible

on Figure 3.3, which depicts the distribution of principals by contracts’ lengths. The chart

shows that one-year contracts span over all range of notional values, but generally amount

to 100 million euros. Shorter deals as well as those over 2 years never surpass 25 million

euros, while two-year agreements come to 100 million euros.
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Figure 3.2: Distribution of Notional Amounts

Table 3.6: Sample Interest Rate Swap Contracts: Descriptive Statistics for Maturities

Measure Maturity, months
Mean 23
Median 24
Mode 12
Standard deviation 12
Minimum 3
Maximum 72

Issuance date matters as much as maturity for valuation of claims. The investigated

transactions were signed between years 2001 and 2007 and expired in years 2007 – 2008.

Such a time structure results from the sampling procedure. Contracts that entered the

sample had to be alive at the data collection time that is in the middle of 2007 year and

be due by mid 2008, which allowed for ex post actual value calculation. The overview of

issuance and due dates indicates that the deals commonly originated in 2005, 2006 and

2007, which corroborate with the most frequent one-year and average two-year maturities.

The payments to be exchanged under interest rate swap agreements are denominated

in Polish zlotys and are calculated based on Warsaw Interbank Offer Rates (WIBOR).

Roughly speaking, the WIBOR rate is a Polish equivalent of the LIBOR rate (for more

details on the reference rates employed in interest rate swaps refer to Section 3). In the

examined sample, the WIBOR rate for 6 months determines payments of 59% of the

sample contracts. It is clear from Figure 3.4 that the next most commonly employed rate
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Figure 3.3: Notional Amounts by Contract Maturities

Table 3.7: Sample Interest Rate Swap Contracts: Issuance and Expiration Dates

Year Issued contracts Expired contracts
2001 1% –
2002 1% –
2003 5% –
2004 5% –
2005 25% –
2006 44% –
2007 19% 50%
2008 – 50%
Total 100% 100%

(40% of deals) is the 3-month WIBOR. Together the two rates cover 99% of the sample

transactions.

Knowing the sample composition with respect to the transaction dates and reference

rates, it is illustrative to verify the ex post evolution of the two base rates for the period

when the sample contracts were originated. Figures 3.6 and 3.5 depict the development

of 3-month and 6-month WIBOR rates for the contracts’ inception times. Figure 3.5

indicates that the 6-month rate experienced a plunge of 1.500 bps in years 2001-2003 and

thereafter remained within the brackets of 5 to 7 percent. Given that over 88 percent

of the 6-month contracts were signed from 2004 to 2006, the vast majority of them orig-

inated in a relatively stable period. Figure 3.6 shows a stable performance of 3-month

rate except from the last three months, when it slightly rose by around 35 basis points.
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Figure 3.4: Sample Data: Composition of Interest Rates

Figure 3.5: 6-month WIBOR Rates from August 2001 to June 2007

Finally, the presentation of the ex-post evolution of the IRS reference rates is com-

pleted with the development of the term structures prevailing in the market at each

transaction date. Figure 3.7 depicts the average input rates for each maturity together

with their standard deviation bands. The daily frequency of observations makes the short

end of the term structure much more volatile than the long end, and thus the bands are

wider for the shorter rates. Figure 3.8 presents the full scope of rate variation for the

entire examined period and all maturities. In the case of the 3- and 6-month WIBOR, the

period 2001 – 2003 of higher rate levels is followed by times of relative rate stabilization.

The augmented rate levels in the initial years should not create a concern, given that

each contract is valued based on the cross-sectional set of rates for available maturities

prevailing in the market at the swap transaction dates.

88



Figure 3.6: 3-month WIBOR Rates from May 2006 to June 2007

Figure 3.7: Evolution of Average Input Rates from August 2000 to November 2007
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Figure 3.8: Evolution of Input Rates from August 2000 to November 2007

3.4.2 Methodology and Models Specification

This study empirically examines whether the five models of the yield curve differ sig-

nificantly in terms of the implications for valuing plain interest rate contingent claims.

Roughly speaking, the idea is to express the model accuracy in terms of how much one

could have gained or lose on average on the set of real life interest rate swaps. The

research strategy can be summarized by the following steps: (1) estimation of the term

structure model, (2) valuation of the set of interest rate swaps using the fitted yields, and

(3) comparison of the performance and predictive accuracy of the fitted yield curves and

"fitted" contract values. The term structure estimations are performed for every trans-

action date in order to generate the fitted curves to value each contract in the sample.

The key measures to assess the ex post forecasts of the term structure models herein are

based on contrasting the ’fitted’ and realized contract values. The realized deal values

are computed based on the interest rate that are quoted by the market at the date of

payment exchange. Those realized rates determine the amounts to be swapped and thus

the effective contract value. The IRS valuation involves calculating the implied forward

rates, swap cash flows, and finally, the swap total values as shown in formulas (3.25) to

(3.27). All computations are done in MATLAB. The Kalman filter algorithm is imple-

mented using Dynare23 for MATLAB.

23Dynare is a user oriented general program for the simulation of deterministic or stochastic models

that translates into a GAUSS or a MATLAB program. Barillas et al. (2007) provide a good overview of

Dynare implementations.
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The parameters for the Nelson-Siegel framework are determined by running the Or-

dinary Least Squares (OLS) with the fixed decay parameter, τ = 50, on a slightly altered

version of equation (3.21). The equation to be estimated is:

R(m) = β0 + β1
1− e−

m
τ

m
τ

+ β2

(
1− e−

m
τ

m
τ

− e−
m
τ

)
(3.28)

The interpolated curve is fitted using the cubic spline function. The parameters for the

interest rate dynamics proposed by Vasicek (1977) and Cox, Ingersoll, and Ross (1985)

are obtained using the Kalman filter. The algorithm of the Kalman filter and the esti-

mated state-space formulation for the models are discussed in the following section. In

this study there are as many datasets to be filtered by the Kalman algorithm as contracts

to be evaluated. Each dataset consists of time series of yields with daily frequency and 21

maturities ranging from overnight to 10 years. The maturities create the cross-sectional

dimension of each dataset. A standard approach in the literature is to employ a win-

dow of 100 to 200 daily observations to determine the coefficients. Initially, sets with

100, 150 and 200 observations preceding each transaction date were used. Given that all

three cases yield similar output, only the results for the window of 100 observations are

reported. The initial starting values chosen for the parameters of the Vasicek and the

CIR models are κ = 0.15, σ = 0.05, λ = −0.1 and θ = 0.05.

Given the generality of the Heath-Jarrow-Morton model, its implementation requires

a specification of the volatility, σ(t, T ), for 0 ≤ t ≤ T ≤ T ∗. As the same diffusion process

appears in the rate dynamics under the actual and the risk-neutral probability measures,

the historical data may be utilized to determine the volatilities. Next, σ(t, T ) serves to

calculate integral σ∗(t, T ), and to parametrize formula (3.16). The adopted construction

of the HJM model with parametric components follows Wu (2009) and Avellaneda &

Laurence (1999) (see Wu (2009) pp. 94-106, and Avellaneda & Laurence (1999) pp. 239-

247). The HJM model is built using the distributional properties of the time series of

forward rates obtained from the spot yields. When the covariance among the rates is

estimated, the Principal Component Analysis (PCA) is carried out to detect the random

factors that drive the evolution of the rates. Essentially, PCA reduces the number of

factors to the most informative ones. The empirical covariance24 between ∆fn,i and

24The method’s presentation and the notations refer to (Wu 2009) p. 100. For more details, refer to
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∆fn,j is given by:

ĉi,j =
1

K

K∑
k=0

(∆fk,i −∆−fi)(∆fk,j −∆−fj)

where ∆fk,i is a daily change of the forward rates for each maturity Ti, K is the number

of daily observation, here 100, and ∆−fi is the sample mean:

∆−fi =
1

K

K∑
k=0

(∆fk,i)

With the help of eigenvalue decomposition of the covariance matrix, Ĉ, the change of the

forward rates can be further expressed as:

∆fk,i = ∆−fi +
21∑
p=1

√
λpv

(p)
k ξp,k

where λp are the covariance matrix eigenvalues, v(p)k are the covariance matrix eigenvec-

tors, ξp,k are independently distributed with mean 0 and variance equal to 1. The most

informative factors are those associated with eigenvalues that - when ranked - explain

together about 99% of the empirical covariance. The uncovered key factors and their

fitted functional forms are used to express the volatility of the forward rates. The next

steps involve estimating the HJM curves with the Kalman procedure and valuation of

the interest rate swap contracts.

3.4.3 The Kalman Filter

The Kalman filter is an algorithm that makes inferences about the values of unob-

served state variables based on the observed data. As such, it necessitates a state-space

representation of the dynamic system describing the model in question. State-space is

a minimal space of states, which fully describes the system at any point in time. In a

nutshell, the state-space formulation is characterized by the measurement and transition

equations. The transition equation specifies how the state changes over time, while the

measurement equation relates the observable output, possibly a control input at time t,

and the unobservable state. Both equations include error terms. Generally speaking, the

the whole section ((Wu 2009), pp. 94-106).
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state or transition equation takes the form25:

Xt+1 = F Xt +M Wt + ϵt (3.29)

where Xt+1 is a k × 1 vector of the next period state, Xt is the current period state, F

is a k × k transition matrix, Wt is a r × 1 vector of exogenous variables, M is a k × r

coefficient matrix and ϵt+1 is a k × 1 vector of the transition noise. The measurement or

observation equation can be written as:

Yt = H Xt +N Wt + νt (3.30)

where Yt is a n × 1 vector of the observed variables, H is the n × k system matrix, Wt

is a r × 1 vector of exogenous variables, N is a n × r coefficient matrix, νt is a n × 1

vector of the measurement noise, and Xt is the unobserved state from equation (3.29).

The residuals ϵt and νt have mean zero and covariance matrix Q and R respectively.

Cov(ϵt, ϵt) = Q , Cov(νt, νt) = R and Cov(ϵt, νt) = 0

A comprehensive description of the Kalman filter can be found in Harvey (1989). This

section features solely the gist of how the the Kalman filter recursion works. In the

Kalman methodology each observation adds to the information set at each run of the

algorithm. While iterating for each observation data, three steps are performed: predic-

tion, innovation and updating. The prediction stage involves obtaining the estimate for

the next period state, Xt|t−1, based on the current period state value. First, the time

0 value of underlying state process, X0|0, and the covariance matrix of the state vector,

P0|0, are guessed. Using the predicted state value, the predicted output value, Y1|0, is

computed and it serves to calculate the prediction error or innovation. In period t this

stage produces:

Xt|t−1 = F Xt−1|t−1 +M Wt−1

Pt|t−1 = F Pt−1|t−1 F
′ +Q

Yt|t−1 = H Xt|t−1 +N Wt|t−1

25The presentation draws upon Wang (2009), pp. 151-154. The application of the Kalman filter to

the affine term structure models relies on Geyer and Pichler (1999).

93



where Pt|t−1 ≡ V ar(Xt|Ft−1), while Pt|t ≡ V ar(Xt|Ft). Thus, the time 1 state value X1

and output value Y1 are predicted with the help of state and observation equations re-

spectively. The difference between the observation Y1 and its prediction, Y1|0, determines

the so-called one-step prediction error. The goal is to minimize this prediction error based

on the previous observations. The next step consists of updating the prediction for X1 in

the light of the observation Y1. The update phase yields adjusted-predicted state value

(Xt|t) and Kalman gain (Kt). Kalman gain is determined by taking the partial derivative

of the adjusted predicted state variance with respect to the gain so as to minimize the

state value variance based on the Kalman gain. The updating stage in time t produces:

Kt = Pt|t−1H
′(HPt|t−1H

′ +R)−1

Xt|t = Xt|t−1 +Kt(Yt − Yt|t−1)

Pt|t = (I −KtH)Pt|t−1

The adjusted predicted state value, X1|1, serves as an input in the transition equation

in the iteration for the periods from 2 to T . The Kalman filter propagates throughout

the time. A joint likelihood function for all observations can be computed assuming that

observable variables are serially independent and normally distributed. The parameters

to be estimated are chosen such that they maximize the value of the score function. Maxi-

mum likelihood estimation of parameters is performed for each iteration. The parameters

for the next period (iteration) are updated based on the parameters in the previous period.

Following the work of Duan & Simonato (1995), Geyer and Pichler (1999) and Babbs

& Nowman (1999), the technique of (Kalman 1960) gained popularity in the affine term-

structure literature. Geyer and Pichler (1999) obtains a quasi-optimal filter for the non-

Gaussian state-space models. As discussed in Section 2, the building blocks of the theo-

retical interest rate models are state variables, which constitute the source of uncertainty

in the economy, and processes characterizing their evolution. Thus, the state equation

(3.29) corresponds to a discrete time version of the stochastic differential equations cap-

turing the instantaneous interest rate dynamics. For the Vasicek framework the transition

equation is a discretized equation (3.2), while for the CIR methodology a discretized equa-

tion (3.10). In the affine term structure models bond prices are of the affine form. The
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frameworks of Vasicek (1977) and Cox, Ingersoll, and Ross (1985) belong to the affine

term structure models. Furthermore, the yields for this class of model can be expressed

as:

R(t, T ) =
− lnA(t, T ) +B(t, T )r(t)

T − t

where A(t, T ) and B(t, T ) depend on the interest rate dynamics postulated by each model.

Using this affine relationship, the term structure model can be recast in the state-space

form. After the addition of a measurement error, the yield-to-maturity is characterized

by:

Rt(Xt;ψ, T ) = − 1

T − t
ln(A(ψ, t, T )) +

1

T − t
B(ψ, t, T )Xt + νt

where Xt is for both models the instantaneous interest rate, ψ denotes the model param-
eters and νt is an error term with 0 mean and standard deviation σνt . This is equation
(3.30) formulated in the context of the affine term structure models and their notation.
Given that claims with N maturities are traded in the market, the N corresponding yields
give the following representation:


Rt(Xt, ψ, T1)

Rt(Xt, ψ, T2)
...

Rt(Xt, ψ, TN )

 =


− ln(A(ψ, t, T1))/(T1 − t)

− ln(A(ψ, t, T2))/(T2 − t)
...

− ln(A(ψ, t, TN ))/(TN − t)

+


B(ψ, t, T1)/(T1 − t)

B(ψ, t, T2)/(T2 − t)
...

B(ψ, t, TN )/(TN − t)

Xt +


νt,1

νt,2
...

νt,N



In terms of the Vasicek model, the functional forms for A(ψ, t, T ) and B(ψ, t, T ) follow

from equation (3.9) and are given by:

A(ψ, t, T ) = exp

((
θ +

σλ

κ
− σ2

2κ2

)
(B(ψ, t, T )− (T − t))− σ2B2(ψ, t, T )

4κ

)

B(ψ, t, T ) =
1

κ

[
1− e−κ(T−t)

]
For the Cox-Ingersoll-Ross model, A(ψ, t, T ) and B(ψ, t, T ) are stipulated directly in the

equation (C.2.3) as:

A(ψ, t, T ) =

[
2γe(κ+γ+λ)(T−t)/2

(γ + κ+ λ)(eγ(T−t) − 1) + 2γ

]2κθ/σ2

B(ψ, t, T ) =
2(eγ(T−t) − 1)

(γ + κ+ λ)(eγ(T−t) − 1) + 2γ
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γ =
√

(κ+ λ)2 + 2σ2

Given that both models propose the same form for the interest rate drift, for both cases

F and M in the equation (3.29) can be represented as:

M(ψ,∆t) = θ(1− e−κ∆t)

F (ψ,∆t) = e−κ∆t

where ∆t is the length of the discrete time interval. With daily observations and 20

maturities traded, the time interval equals 1 and N is 20. The variance of the transi-

tion residuals is given by the discretized conditional variance of the instantaneous rate.

Therefore, the variance takes the following forms:

V asicek : Q(Xt, ψ,∆t) =
σ2

2κ
(1− e−2κ∆t)

CIR : Q(Xt, ψ,∆t) = Xt
σ2

κ
(e−κ∆t − e−2κ∆t) + θ

σ2

2κ
(1− e−κ∆t)2

Derivations of the conditional moments in the Vasicek and the Cox-Ingersoll- Ross frame-

work are provided in the Appendix. As discussed in Section 2, Cox, Ingersoll, and Ross

(1985) propose a non-Gaussian model. Geyer and Pichler (1999) show how to apply

the Kalman filter to the non-Gaussian statespace representation and obtains the quasi-

maximum likelihood estimates of the model parameters.

3.5 Empirical Results

The estimated term structures are depicted in Figure 3.9 to Figure 3.12. A visual

inspection of the fitted curves suggests a resemblance of the Nelson- Siegel and cubic

spline interpolation outcomes. At the same time, the term structures modeled by the

Vasicek and the Cox-Ingersoll-Ross methodologies differ significantly from the others and

assume a greater variety of shapes through time.

The variation in the level, the slope and the curvature of the examined term structures,

visible in Figure 3.8, is reflected in the descriptive statistics in Table 3.8 for the estimated

level, slope and curvature parameters. The long-term interest rate implied by the Nelson-

Siegel model is always positive and on average equals 7.13%. However, the median and

mode indicate a lower level of the long end of the term structure, 5.73% and 4.92%
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Figure 3.9: Nelson-Siegel Model: Fitted Yield Curves from August 2000 to November
2007

Figure 3.10: Cubic Interpolation: Fitted Yield Curves from August 2000 to November
2007
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Figure 3.11: Vasicek Model: Fitted Yield Curves from August 2000 to November 2007

Figure 3.12: Cox-Ingersoll-Ross Model: Fitted Yield Curves from August 2000 to
November 2007
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Table 3.8: Summary Statistics for the Nelson-Siegel Estimated Parameters

Measure β0 β1 β2 βshort
Mean 0.0713 0.0036 0.0137 0.0749
Median 0.0573 -0.0012 -0.0021 0.0547
Mode 0.0492 -0.0240 -0.0321 0.0369
Standard deviation 0.0286 0.0198 0.0493 0.0447
Minimum 0.0427 -0.0440 -0.0438 0.0319
Maximum 0.1581 0.0738 0.3288 0.2082

Note: Summary of the Nelson-Siegel model parameters estimated for each working date from August 29, 2000 to
November, 1 2007. Measures computed across all estimations. βshort determined based on β0 and β1 results.

respectively. The average yield curve, that is the curve corresponding to the mean values

of β0, β1 and β2, is increasing (positive β1), but inverted (positive β2). Still, the typical

upward sloping yield curve is implied by the median and mode values of the estimated

parameters. The development of the curvature parameter in Figure 3.13 shows that the

concave curve persisted in the second half of the sample interval. Another stylized fact

about the term structure of interest rates, a higher volatility of the short end than the

long end of the curve, is obtained within the Nelson-Siegel framework by construct. As

shown in the Appendix, the long-term interest rate is captured by β0, while the short

rate by (β0 + β1). Greater short-term volatility follows. What is more, for the examined

sample the estimates of (β0 + β1) are always positive, and so is the short rate. Finally,

Figure 3.13 demonstrates that the estimated curves assume a variety of shapes through

time. The discussion of the models’ goodness of fit is deliberately postponed to the end

of this section.

Table 3.9: Summary of the Vasicek & CIR Estimated Parameters

Model θ κ σ λ
Average Estimated Parameters

Vasicek 0.053 0.005 0.086 -0.133
CIR 0.056 0.006 0.016 -0.009

Share % of Significant Parameters
Vasicek 99.73 100.00 100.00 100.00
CIR 98.92 90.24 85.91 93.50

Note: Summary of the Vasicek & CIR model parameters estimated for each IRS deal time. The average of estimated
parameters and the percent of cases the parameters are significant. The average across transactions.

The parameter estimates obtained with the Vasicek methodology are significant in all

but one case for θ. The Cox-Ingersoll-Ross model also yields mostly significant estimated
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Figure 3.13: Evolution of the Nelson-Siegel Model Parameters

parameters (in over 85% of the cases). The estimation results are summarized in Table

3.9. The average long-term interest rate implied by the Vasicek and the Cox-Ingersoll-

Ross frameworks equal 5.3% and 5.6% respectively. Given that both models propose

the same form for the drift of the interest rate process, those close results for θ are as

expected. By the same token, the average estimates for κ should be and are similar (0.005

and 0.006 respectively). Those results are not encouraging and imply a very slow mean

reversion process. The Vasicek and the CIR methods assume different volatility functions

of the interest rate dynamics, σ versus σ
√
r. The obtained volatility parametric values are

necessarily different (0.086 versus 0.016). Both estimates for volatilities are comparable

in magnitude with the empirical evidence (see, for example, Duan & Simonato (1995)

or Gibbons and Ramaswamy (1993)). Finally, (Vasicek 1977) and Cox, Ingersoll, and

Ross (1985) deviate in the formulation of the market price of risk. The estimated λ

parameters for the Vasicek and the CIR models are −0.133 and −0.009, which implies

positive risk premia. Figures 3.14 and 3.15 display the evolution of the model parameters

across transactions for the Vasicek and the Cox-Ingersoll-Ross method respectively.
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Figure 3.14: Evolution of the Estimated Vasicek Model Parameters Across Transactions

Figure 3.15: Evolution of the Estimated CIR Model Parameters Across Transactions

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Kappa

 

 

0 50 100 150 200 250 300 350 400
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
Lambda

 

 

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5
Sigma

 

 

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1
Theta

 

 

theta
avg

sigma
avg

kappa 
avg

lambda
avg

101



The Principal Component Analysis produced the following volatility components for

the Heath-Jarrow-Morton framework:

σ1(t, T ) = α1

(
1− exp

−(T − t)

β1

)
σ2(t, T ) = α2

(
1− β2 exp

−(T − t)

γ2

)
+ δ2

Their fit is presented in Figure 3.16 and 3.17, respectively. The estimated volatility

parameters equal α1 = −0.33, β1 = 1.36, α2 = −0.33, γ2 = −0.47, δ2 = 0.47 and

β1 = 1.36. The fitted values serve as the initial starting values in the estimation of the

HJM model with the Kalman filter.

Figures 3.18 and 3.19 present the evolution of the model parameters across trans-

actions. The application of the Kalman filter to the two-factor Heath- Jarrow-Morton

model produces statistically insignificant estimates in as many as 98% of the cases. Es-

timating the HJM framework with solely the first principal component driving the rate

volatility yields insignificant parameters in 80% of the cases. The multi-factor model,

which requires more parameter input and adds complexities, generates more noise and

imprecision. Next, I experiment with the GARCH-family of models for the forward rates

selected in Zhou (2002). The results are equally discouraging. Most probably the problem

lies in the numerous approximations necessary to build and calibrate the HJM model.

Other possible explanations and solutions will be considered in the extension of this work.

At this stage, I refrain from calculating and presenting the contract values obtained for

the model of Heath, Jarrow, and Morton (1992).

Table 3.10: Test for the Mean Contract Values Equality

Pairs of means t-statistic Decision
Cubic vs. N-S -7.633 reject H0

Cubic vs. Vasicek 8.627 reject H0

Cubic vs. CIR 1.483 accept H0

N-S vs. Vasicek 9.765 reject H0

N-S vs. CIR 1.761 accept H0

CIR vs. Vasicek -0.088 accept H0

Note: The null hypothesis: equal means of IRS contract value for the two respective yield curve models (paired
samples). The test statistics is distributed with 368 degrees of freedom. The reported decision considers a 5% significance
level.

The fitted curves for the Nelson-Siegel, the Vasicek, the Cox-Ingersoll- Ross and the

cubic spline models are used to compute the values of IRS. The ultimate aim of this
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Figure 3.16: Heath-Jarrow-Morton: Forward Rate Volatility Component
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Figure 3.17: Heath-Jarrow-Morton: Forward Rate Volatility Component
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Figure 3.18: Evolution of the Estimated HJM Model Parameters Across Transactions
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Figure 3.19: Evolution of the Estimated HJM Model Parameters Across Transactions
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study is to evaluate the performance and predictive accuracy of the four interest rate

models, when applied to the interest rate swap agreements. The ex post forecasts of

the term structure models are assessed by contrasting the ’fitted’ and realized contract
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values. First, I determine whether the four term structure methodologies deliver similar

IRS evaluations. The t-test for the equality of mean contract values under the four

different approaches indicates that the mean deal values do not statistically differ for the

pairs of the Cox-Ingersoll-Ross and cubic interpolation, the Nelson-Siegel and the Vasicek

fitted curves respectively. Thus, the CIR approach produces IRS values relatively close

to all other methodologies. At the same time, the term structures generated by the

Vasicek model, cubic interpolation and the Nelson-Siegel methodology yield on average

net present values of swaps statistically different from each other. The corresponding

t-statistics for the test are presented in Table 3.10. The null hypothesis assumes no

difference in the means of IRS values for paired samples. The reported decision considers

a 5% significance level.

Table 3.11: Descriptive Statistics for the Ex-post Accuracy of the Fitted Curves in
Relative Terms

Measure Cubic N-S Vasicek CIR
Mean -0.014 -0.07 0.365 0.127
Median 0.046 0.036 0.100 0.115
Mode 0.047 0.079 -0.242 0.064
Minimum -11.618 -11.254 -13.698 -51.335
Maximum 2.238 2.095 5.738 14.552
Standard deviation 0.877 0.822 1.214 5.138
MAE 0.325 0.299 0.59 2.178
RMSE 0.876 0.824 1.266 5.132

Note: The measures calculated for the differences between the realized contract values and fitted contract values
expressed as % of the contract notionals. The fitted contract values are determined based on the yields from the fitted
term structures.

The remaining question is which of the fitted curves performs better when applied to

the valuation of real-life contracts and whether a more elegant and precise solution for

interest rate modeling proposed by Vasicek (1977) or Cox, Ingersoll, and Ross (1985)

is worth the cost of considerably higher mathematical sophistication. To address this

matter one needs to contrast the evaluation of the sample deals under the four method-

ologies with the realized transaction values. The realized values are computed based on

the interest rate that are quoted by the market at the date of payment exchange. Those

realized rates determine the amounts to be swapped and thus the effective contract value.

By examining the differences between the realized IRS exchanges and the deal amounts

computed under the four approaches, I establish the ex post predictive accuracy of the

four interest rate models. Tables 3.11 and 3.12 show the descriptive statistics for the
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differences in the fitted and realized contract values expressed as a percent of notional

amounts and in thousand of euros respectively.

Table 3.12: Descriptive Statistics for the Ex-post Accuracy of the Fitted Curves in
Absolute Terms

Measure Cubic N-S Vasicek CIR
Mean 10.87 -0.39 72.38 68.96
Median 14.05 9.44 36.86 41.73
Mode 123.76 116.83 -42.03 -118.98
Standard deviation 384.93 350.72 182.01 810.07
Minimum -1,783.15 -1,681.74 -2,046.87 -7,671.16
Maximum 384.93 350.72 994.83 3118.03
RMSE 124.07 116.67 195.65 811.90

Note: The measures calculated for the differences between the realized contract values and fitted contract values in ’000
EUR. The fitted contract values are determined based on the yields from the fitted term structures.

The discrepancies in the fitted and realized contract values amount on average to

less than 0.1 percent of the notional amounts for the cubic spline, Nelson-Siegel and

CIR methodologies. The first two methods generate negative differences between the

realized and fitted deal values and thus they tend to overestimate the fitted values. In

the case of the Vasicek model the mean deal difference is almost 3 times higher than for

the Cox-Ingersoll-Ross case. Both models result in the underestimated fitted contract

values. On the other hand, the mean absolute error (MAE) indicates that, irrespective

of the direction being positive or negative, the CIR model yields the most different IRS

values from the effective deal values. Here the discrepancies do not cancel out and on

average amount to over 2 percent of the notional amounts. This tendency is confirmed

by the most pronounced root mean squared error (5.13%), standard deviation (5.13%),

minimum (−51.33%) and maximum (14.55%) values obtained for the case of CIR versus

realized contract valuation. The Vasicek fitted curves generate more significant minimum

(−13.70%) and maximum (5.74%) differences in contract values than the cubic spline and

the Nelson-Siegel methodology. The Vasicek model also produces more volatile differences

in contract values. The higher volatility corroborates with the unstable evolution of the

Vasicek fitted curves presented on Figure 3.14. Finally, all measures in Tables 3.11 and

3.12, but the mode, indicate that the deal values closest to the realized ones are obtained

under the cubic spline and the Nelson-Siegel model. Tables 3.11 and 3.12 characterize

the performance of the four term structure models for the set of interest rate swaps at
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hand. The true question is whether the sample mean differences between the realized

and fitted interest rate swap values are statistically significant.

Table 3.13: Test for the Mean Equality: Realized vs. Fitted Contract Values

Pairs of sample means t-statistic Decision
Relative to
Notional

Realized vs. cubic -0.307 accept H0

Realized vs. N-S -1.628 accept H0

Realized vs. Vasicek 5.770 reject H0

Realized vs. CIR 0.476 accept H0

Absolute
Terms

Realized vs. cubic 1.687 accept H0

Realized vs. N-S -0.063 accept H0

Realized vs. Vasicek 7.639 reject H0

Realized vs. CIR 1.635 accept H0

Note: The null hypothesis considers equal means of realized and fitted IRS contract values for the paired samples. The
test statistics in the upper module refer to the deal values per notional amounts. The lower module simply presents the
results for the paired mean contract values realized and fitted. The test statistics are distributed with 368 degrees of
freedom. The reported decision relates to a 5% significance level.

Table 3.13 presents the results of the t-test for the equal means of the realized and

fitted IRS contract values. The realized transaction values are calculated based on the

interest rates that are quoted by the market at the date of payment exchange. Those

realized rates determine the amounts to be swapped. The fitted IRS deal values are

computed using the yields generated by each model. The t-statistics indicate that the

fitted mean transaction values do not statistically differ from the mean realized values

under three out of the four methodologies: the cubic interpolation, the Nelson-Siegel and

the Cox-Ingersoll-Ross approach. The term structures generated by the Vasicek model

yield the net present values of interest rate swaps statistically different from the realized

deal amounts. The null hypothesis assumes no difference in the sample means of IRS

fitted and realized deal values. The test statistics in the upper module refer to the deal

values per notional amounts. The relative means show to what extent the values differ

per 1 euro of notional and the t-statistics refer to such notional-weighted means. The

lower module simply presents the results for the realized and fitted mean contract values.

The reported decisions relate to a 5% significance level.

The poor results of the Vasicek model raise a question as to whether the outcome is not

driven by a different number of estimated parameters. To check whether this might be

the case, I compute the Akaike information criterion (AIC) for the curves obtained with
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the Nelson-Siegel, the Vasicek and Cox-Ingersoll- Ross models. Additionally, I provide

the root mean square error (RMSE) for the estimated yields. The measures are presented

in Table 3.14. Both measures suggests that the Nelson-Siegel outperforms the Vasicek

model, and AIC suggests that the number of parameters is not the reason for the the

Vasicek underperformance. Contrasting the low and high performance of the Vasicek

and the Nelson-Siegel methodologies can be put in a broader perspective. Within the

Nelson-Siegel exponential framework the entire yield curve is estimated for every time

the interest rate swap contract is initiated. Such an approach centers on accurately

fitting the cross section of interest rates at any given time. In the Vasicek model the

yield curve is estimated at every contract initial time using a window of observation prior

to the contract beginning. The model works with a structure of four parameters fixed

for a window of observations. Therefore, Vasicek’s framework focuses on a time-series

dynamics and imposes a structure across time, which the Nelson- Siegel does not. As the

Vasicek approach is more restrictive and focused on a time-series dynamics, one might

hope that it will deliver better forecasts. However, the test results for the realized versus

fitted contract values indicate the opposite. In this case a current yield curve is more

informative than the historical time series of yields.

Table 3.14: Measures of Fitted Curves Accuracy

Measure N-S Vasicek CIR
AIC -25,145 -11,485 -14,807
RMSE 0.90 2.97 1.35

Note: The measures calculated for the yields observed in the market corresponding to the maturities of claims traded in
the interbank market. By construct, the cubic spline interpolation perfectly fits the traded yields.

Finally, the Cox-Ingersoll-Ross model exhibits a significantly greater ability to capture

the dynamics of the interest rate than the Vasicek framework. This outcome is consistent,

among others, with (Chan et al. 1992), who document that the interest rate volatility is

an increasing function of r(t), as postulated by Cox, Ingersoll, and Ross (1985).

3.6 Conclusions

This chapter determines the usefulness of advanced term structure models in the valu-

ation of plain vanilla interest rate sensitive derivatives. In particular, examines five term
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structure models in order to compare their ability to capture the interest rate dynam-

ics and value the interest rate swaps in the Polish market. I analyze the methodologies

proposed by Nelson and Siegel (1987), Vasicek (1977), Cox, Ingersoll, and Ross (1985)

and Heath, Jarrow, and Morton (1992) as well as the cubic spline curves. A special case

of the Heath-Jarrow-Morton model with the volatility corroborated by the observable

market data produces mostly unreliable fitted curves that are not used for the valuation.

The tentative explanations link the HJM insignificant outcome to the technical issues.

The tests for the equality of mean contract values under the four other approaches in-

dicate that the Cox-Ingersoll-Ross approach produces IRS values relatively close to all

other methodologies. More importantly, the Nelson-Siegel, the cubic interpolation and

the CIR models return fitted transaction values that on average do not differ from the

realized contract values. The ex-post accuracy of the Nelson-Siegel and the cubic spline

values suggests that a current yield curve is highly informative for the future yields.

Furthermore, the Vasicek yield curves generate very different net present values of inter-

est rate swaps which statistically differ from the actually swapped amounts. The solid

performance of the Cox-Ingersoll-Ross methodology, especially as opposed to Vasicek’s

approach, supports the conjecture of the rate-reliant nature of the interest rate volatility.

The Vasicek model’s underperformance emphasizes the role of the cross section of interest

rates, and thus the importance of no-arbitrage argument.

As this study investigates the value added of theoretically-grounded term structure

models in valuation of real life swap contracts, it refers to model risk. Model risk is

typically associated with complex derivatives, however, the choice of a plain interest rate

derivative allows for examination of model risk in the case of a dynamically growing OTC

market, such as the Polish one. In this context, I obtain that the less computationally

demanding approaches to the term structure modeling perform at least as well the more

advanced solutions. Thus, in practice the latter may not always be worth the cost of a

considerably higher mathematical sophistication and should result in smaller exposures

to model risk.
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Appendix

A Appendices to Chapter 1

A.1 Appendix A.I to Chapter 1

Table A1.1: Variables Definition

Variabls Definition
RISK the ratio of risk-weighted assets to total assets, RWATA, reported

under the Basel Capital Accord
CAP the ratio of the bank’ total capital to total assets
LIQ the ratio of liquid assets to total assets, liquid assets defined as a

sum of the bank’s cash, reverse repos, bills and commercial papers
SEC a ratio of the sum of securitization deal values in current year to

the total assets at the end of previous year; deals included asset
backed securities and mortgage backed securities issued based on
the loans granted by the bank

SIZE the logarithm of the bank’s total assets
ROA the bank’s return on assets
LLOSS a ratio of loan loss provisions to the sum of bank’s loans net loan

loans reserves
↑ LOAN a ratio of new loans granted in the current year to the amount

of loans on the bank’s balance sheet at the end of the previous
year; the new lending volume expressed as a difference between
the gross loans at the end of the current and previous year

LTA a ratio of net loans to total assets

Table A1.2: Correlations Between Variables in Levels

Variables RISK CAP LIQ SEC SIZE ROA LLOSS ↑ LOAN
RISK 1.00
CAP 0.67 1.00
LIQ −0.21 −0.01 1.00
SEC −0.04 −0.06 −0.07 1.00
SIZE −0.53 −0.62 −0.19 0.11 1.00
ROA 0.40 0.48 −0.03 −0.04 −0.29 1.00
LLOSS 0.06 0.03 −0.11 −0.00 −0.03 −0.10 1.00
↑ LOAN 0.05 0.05 −0.06 0.03 −0.02 0.13 0.08 1.00
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Table A1.3: Cross-Correlations Between First-Differenced Endogenous Variables

Variables ∆RISK ∆CAP ∆LIQ SEC SIZE ROA LLOSS ↑ LOAN
∆RISK 1.00
∆CAP 0.42 1.00
∆LIQ −0.21 −0.06 1.00
SEC 0.01 −0.01 0.03 1.00
SIZE −0.03 −0.01 −0.01 0.11 1.00
ROA 0.08 0.17 −0.05 −0.04 −0.29 1.00
LLOSS 0.01 −0.08 −0.03 −0.00 −0.03 −0.10 1.00
↑ LOAN −0.05 −0.13 −0.21 0.03 −0.02 0.13 0.08 1.00

Table A1.4: Distribution of Banks Across Years

Year No. of Banks
2000 209
2001 213
2002 201
2003 212
2004 367
2005 423
2006 443
2007 409
Total 2, 477
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A.2 Appendix A.II to Chapter 1

Repullo (2005) models the behavior of a bank facing random withdrawal of deposits
and supervised by the lender of last resort (LLR) that, if needed, decides about providing
the support based on the information on the quality of banks assets. Both agents are
risk neutral. The bank chooses the liquidity buffer that it wants to hold against deposit
withdrawals (λ), a parameter p ∈ [0, 1] linked to the risk of its loan portfolio (1 − p)
and level of capital (k) subject to capital requirements (κ). The bank’s total assets are
normalized to 1. The economy lasts from period 0 to 2. At t = 0 the bank attracts (1−k)
insured deposits and raises (k) equity capital. At the same time, it invests in a safe and
perfectly liquid assets (λ) as well as illiquid and risky assets (1 − λ). It is important
to emphasize that the risk of the illiquid assets (i.e. loan portfolio), denoted above by
1−p, is chosen by the bank. The cost of deposits, the interest rate, is normalized to zero.
Still, the bank’s equity providers demand a return of δ ≥ 0. Since the bank is subject to
capital requirements it must hold that:

k ≥ κ(1− λ) (A.2.1)

As mentioned above, the return on the illiquid asset depends on the level of its risk chosen
by the bank. Specifically, the illiquid asset yields:

R =

{
R1 = R(p), with probability p
R0 = 0, with probability 1− p

(A.2.2)

It is assumed that R′(p) < 0 and R”(p) ≤ 0. In addition, R(1) ≥ 1 and R(1)+R′(1) < 0.
At time t = 1 a fraction ν ∈ [0, 1] of deposits is withdrawn. From the perspective of the
initial date, at time t = 0, ν is a continuous random variable assuming values between 0
and 1 with the cumulative distribution function F (ν). Since the bank has (1−k) deposits,
ν(1− k) is withdrawn at date 1. If ν(1− k) ≤ λ, the bank can repay the deposits using
its liquidity buffer λ. In such a case the bank keeps λ− ν(1− k) in the safe asset and its
payoff in the high-return is given by:

λ− ν · (1− k) + (1− λ) ·R(p)− (1− ν) · (1− k) = (1− λ) · [R(p)− 1] + k (A.2.3)

When the opposite situation happens and ν · (1− k) > λ, the supervisory intervention is
necessary. If the bank obtains the missing part of the funding, that is ν · (1− k)− λ, its
payoff in the high-return state equals:

(1− λ) ·R(p)− (1− ν) · (1− k)− [ν · (1− k)− λ] = (1− λ) · [R(p)− 1] + k (A.2.4)

By limited liability, the bank’s payoff in both low-return states is zero. The LLR de-
cides about providing assistance based on the signal on the bank’s asset quality s. The
information is solely about the high or low return on asset and not about a particular
realization of R(p). Let s1 stand for the good and s0 for the bad supervisory signal.
It is further assumed that the quality of the supervisory information is described by a
parameter q = P (s0|R0) = P (s1|R1) ∈

[
1
2
, 1
]
. Using the fact that P (R1|s) = 1−P (R0|s)

and the Bayes’ rule, the probabilities of high return given the two types of supervisory
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signal can be expressed as:

P (R1|s0) =
p · (1− q)

p · (1− q) + q · (1− p)
(A.2.5)

P (R1|s1) =
p · q

p · q + (1− q) · (1− p)
(A.2.6)

If the LLR decides to provide emergency lending based on the signal s observed at time
1, then at date 2 the supported bank can prove solvent with probability P (R1|s1) or
insolvent with probability P (R0|s1). When solvent, the bank repays ν · (1− k)−λ to the
LLR. Its failure, on the other hand, causes the LLR to incur a social cost c and the loss
of the rented amount, ν · (1 − k) − λ. The lack of funding assistance causes the bank’s
liquidation at time 1, which generates the cost c to the LLR. Therefore, the LLR provides
the assistance as long as:

−[ν · (1− k)− λ+ c]P (R0|s) ≥ −c (A.2.7)

The LLR will support the bank if the liquidity shock, ν, meets:

ν ≤ c · P (R1|s) + λ · P (R0|s)
P (R0|s) · (1− k)

(A.2.8)

Repullo (2005) obtains critical values for the liquidity shocks in the model without the
liquidity buffer and bank equity. Under such conditions, the relations (A.2.7) and (A.2.8)
simplify to:

−[ν + c] · P (R0|s) ≥ −c (A.2.9)

ν ≤ c · P (R1|s)
P (R0|s)

(A.2.10)

Substituting (A.2.5) into (A.2.10) yields the critical value for the liquidity shocks under
a bad signal:

ν ≤ c · P (R1|s0)
P (R0|s0)

=
c · p · (1− q)

(1− p) · q
≡ ν0 (A.2.11)

Under a good signal, combining (A.2.6) and (A.2.10) produces:

ν ≤ c · P (R1|s1)
P (R0|s1)

=
c · p · q

(1− p) · (1− q)
≡ ν1 (A.2.12)

Further, the critical values ν0 and ν1 serve to simplify the expression for the liquidity
shortage triggering the financial assistance in the model with liquidity buffers and bank’s
equity. As a result, formula (A.2.10) in case of a bad signal becomes:

ν ≤ ν0 + λ

1− k
(A.2.13)
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While under a good signal expression (A.2.10) translates into:

ν ≤ ν1 + λ

1− k
(A.2.14)

Finally, the bank’s objective is to maximize the expected shareholder value. Clearly,
the bank’s shareholders obtain zero payoff if the bank does not succeed. The only positive
return is generated by the successful bank under the liquidity shortfall which satisfies
condition (A.2.13) for the bad and (A.2.14) for the good supervisory signal. The bank’s
success yields the payoff derived in equations (A.2.3) and (A.2.4), that is (1−λ) · [R(p)−
1] + k. That happens with either of the following probabilities:

P

(
R1, s0, ν ≤ ν0 + λ

1− k

)
= p · (1− q) · F

(
ν0 + λ

1− k

)
(A.2.15)

P

(
R1, s1, ν ≤ ν1 + λ

1− k

)
= p · q · F

(
ν1 + λ

1− k

)
(A.2.16)

Consequently, the following expression for the bank’s utility function is obtained:

UB = p

[
(1− q)F

(
ν0 + λ

1− k

)
+ qF

(
ν1 + λ

1− k

)]
[(1− λ)(R(p)− 1) + k]− (1 + δ)k (A.2.17)

The game between the bank and the LLR has a Nash equilibrium characterized by
(λ∗, k∗, p∗), which maximizes UB given in (A.2.17) subject to the critical values for the
liquidity shortage triggering the financial assistance under the bad and good signals re-
spectively:

ν∗0 =
c · p∗ · (1− q)

(1− p∗) · q
and ν∗1 =

c · p∗ · q
(1− p∗) · (1− q)

,

as well as the capital requirements:

k ≥ κ(1− λ).

Using the equilibrium choice p∗ of parameter p in the expression for the critical values for
the liquidity shortage, ν∗, reflects the fact that the bank’s choice of risk is unobservable
for the LLR. What follows, these critical values only depend on the equilibrium risk. It
further simplifies the bank’s problem to a maximization of:

p · [(1− λ)(R(p)− 1) + k] (A.2.18)

The first-order condition of this problem with respect to p is given by:

[(1− λ∗)(R(p∗)− 1) + k∗ + p∗ · (1− λ∗) ·R′(p∗)] = 0 (A.2.19)

That yields:

R(p∗) + p∗ ·R′(p∗) = 1− k∗

1− λ∗
(A.2.20)
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Given that R(p∗) + p∗R′(p∗) is a decreasing function of p, higher capital and liquidity
buffers imply lower risk. The first-order condition with respect to k can be obtained solely
when a parametrization of the liquidity shock distribution is introduced. Repullo (2005)
employs a simple type of a beta distribution, namely F (ν) = νη with η ∈ (0, 1). Such a
specification of the distribution function yields the objective function (A.2.17) convex in
k. Consequently, the optimal level of equity can be either 1 or κ(1− λ∗). For k∗ = 1 the
cumulative distribution functions F

(
ν0+λ
1−k

)
and F

(
ν1+λ
1−k

)
equal:

F

(
ν∗0 + λ

1− k

)
= F

(
ν∗1 + λ

1− k

)
= 1 (A.2.21)

Substituting (A.2.21) into (A.2.17) reduces the bank’s objective function to:

p[(1− λ)(R(p)− 1) + k]− (1 + δ)k (A.2.22)

Differentiating A.2.22 with respect to k gives p− (1 + δ), which is less than zero. Thus,
the optimal level of equity can be only k∗ = κ(1− λ∗). Substituting this corner solution
into A.2.20 yields:

R(p∗) + p∗ ·R′(p∗) = 1− κ (A.2.23)

Following Repullo (2005), we refrain from deriving the analytical results for the optimal
liquidity level.
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B Appendices to Chapter 2

B.1 Appendix B.I to Chapter 2

Table B1.1: Definitions of Variables

Variable Definition
Interest ratet−1 Monthly average of euro overnight interest rate for month prior

to loan origination
GDPCRt−1 Rate of change of gross domestic product, chain-linked working

day and seasonally adjusted, quarterly frequency
CPIt Monthly indices of consumer prices
Country riskt Long-term interest rate spread between Czech 10-year maturity

government bond yield and EMU 10-year maturity T-bond yield,
both yields expressed as monthly averages and in per cent

Bank sizet−1 Natural logarithm of bank total assets measured 1 month prior to
loan origination

Liquidity ratiot−1 Amount of bank liquid assets over total assets measured 1 month
prior to loan origination

Bank NPLb - NPLt−1 Difference between bank and other banks’ level of NPLs measured
1 month prior to loan origination

Own funds/total assetst−1 Bank’s equity amount over bank’s total assets measured 1 month
prior to loan origination

Bank typet−1 = 1 if bank is foreign owned
ln(2+ age as borrower)t−1 Natural logarithm of number of years (augmented by 2 and mea-

sured 1 month prior to loan origination) that have elapsed since
first time firm borrowed from bank

Bank relationst−1 Natural logarithm of number of bank relationships of borrower
plus 1 measured prior to loan origination

Bank debtt−1 Natural logarithm of borrower bank debt plus 1 measured prior
to loan origination

Loan sizet Natural logarithm of loan amount
Maturity 0-6 monthst = 1 if loan maturity is less than or equal to 6 months
Maturity 6-12 monthst = 1 if loan maturity is between 6 and 12 months
Maturity 12-18 monthst = 1 if loan maturity is between 1 and 1.5 year
Loan currencyt = 1 if loan is granted in euros, dollars or pounds
Loan purposet = 1 if overdrafts or current account debit
Firm turnover categories Dummy variables created for CNB categories of firm turnover in

CZK million
Firm employment categories Dummy variables created for CNB categories of number of firm

employees
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Table B1.2: Correlations Between Variables

Variable [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
Interest
ratet−1

1.00

Interest
rateT−t−1

0.09 1.00

GDPCRt−1 0.25 0.35 1.00
GDPCRT−t−1 -0.24 0.64 0.23 1.00
CPIt 0.52 -0.11 0.06 -0.34 1.00
Bank
sizet−1

0.10 -0.06 0.02 -0.10 0.14 1.00

Liquidity
ratiot−1

-0.24 0.06 0.11 0.18 -0.26 0.44 1.00

Bank NPLb

- NPLt−1

-0.05 -0.00 0.05 0.01 -0.03 -0.04 0.07 1.00

Own
fundst−1

-0.12 -0.00 0.03 0.07 -0.09 -0.19 0.13 0.16 1.00

ln(2+ age as
borrower)t−1

0.00 -0.01 -0.02 0.02 0.06 0.05 -0.02 -0.01 -0.03 1.00

Bad
historyt−1

0.10 0.01 -0.05 -0.02 0.09 -0.07 -0.18 -0.05 -0.03 0.21 1.00

Bank
relationst−1

-0.09 0.01 -0.04 0.10 -0.12 -0.06 0.06 -0.01 0.06 0.55 0.20 1.00

Bank
debtt−1

-0.10 -0.02 -0.09 0.09 -0.14 -0.06 0.04 -0.02 0.05 0.48 0.16 0.84 1.00

Loan sizet -0.01 -0.01 0.01 0.01 -0.01 -0.05 -0.06 0.01 -0.07 0.27 0.08 0.22 0.26 1.00

Table B1.3: Weak Instrument Robust Tests for IV Probit

Test Statistic p-value
AR χ2

(1) = 165.66 Prob > χ2
(1) = 0.0000

Wald χ2
(1) = 165.31 Prob > χ2

(1) = 0.0000
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Table B1.4: Estimation Results for Probit Model with Clustered Loans

Variable Coefficient Robust Std. Err.
Interest ratet−1 0.079∗∗∗ 0.030
Bank sizet−1 -0.032 0.027
Liquidity ratiot−1 -1.862∗∗∗ 0.199
Bank NPLb - NPLt−1 -0.713∗ 0.377
Own funds/total assetst−1 0.143 0.429
Bank typet−1 0.150∗ 0.081
ln(2+ age as borrower)t−1 0.163∗∗∗ 0.021
Bank relationst−1 0.759∗∗∗ 0.076
Bank debtt−1 -0.015∗∗∗ 0.004
Loan sizet 0.019∗∗ 0.009
Loan currencyt 0.236∗∗∗ 0.064
Maturity 0–3 monthst 0.331∗∗∗ 0.037
Maturity 3–6 monthst 0.241∗∗∗ 0.042
Maturity 6–12 monthst 0.246∗∗∗ 0.037
Loan purposet -0.082∗∗ 0.038
GDPCRt−1 -0.031∗∗∗ 0.008
CPIt 0.006 0.013
Country riskt 0.037 0.072
Time trend 0.014∗∗∗ 0.002
Time trend sq. 0.000∗∗∗ 0.000
Intercept -1.342∗∗∗ 0.334
Collateral dummies yes
Firm turnover categories yes
Firm employment categories yes
Firm regional dummies yes
Firm industry dummies yes
N 205,270
Log-likelihood -98,985.748
χ2
(67) 1,126.521
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B.2 Appendix B.II to Chapter 2

This section describes the steps involved in building the optimal survival and probit
models developed as a robustness check for our probit and loan survival analysis. In the
probit analysis we first evaluate the significance of each potential measure by considering
its univariate probit fit. All covariates with p-values less than 25% along with all those of
known economic importance are initially included in the multivariable model. Following
the fit of the initial model we verify the significance of each variable in the model to iden-
tify those which can be removed. In order to nominate covariates that might be deleted
from the model we use the p-values from the Wald tests of the individual coefficients, and
then examine the p-value of the partial likelihood ratio test to confirm that the deleted
covariate is indeed not significant. Having eliminated all insignificant measures at this
stage, we coarsely classify the discrete characteristics overly rich in their categories, such
as the 72 firm regional affiliations. We fit a hazard model for each category and group the
characteristics with similar parameter estimates and significance levels. Thereafter, we
employ the method of fractional polynomials to suggest transformations of the continu-
ous variables. To ensure the economic validity of the transformed continuous covariates,
we limit our search for proper functional forms to the natural logarithm and powers of
plus and minus one. Moreover, we use the fractional polynomials procedure as a tool for
validating the variables’ significance once the optimal transformations have been incorpo-
rated. Finally, we determine whether our model necessitates interaction terms. We test
the significance at the 5% level of all economically plausible interaction terms formed
from the main effects in our model. As previously, we examine the p-values from the
Wald test and the partial likelihood ratio test.

To select the covariates for the survival analysis we employ essentially the same meth-
ods as those used in the probit regression. We begin with the bivariate analysis of the
association between all plausible variables and the loan survival time. For all potential
predictors we compute the first, fifth, tenth, fifteenth and twentieth percentiles of the
survival times. No estimates of higher survival quantiles are needed, as the loan data are
typically characterized by low default occurrence. In our dataset the default ratio does
not exceed 20% in specific sub-groups and is approximately 2% on average. For descrip-
tive purposes, we break continuous variables into ten and twenty quantiles and compare
the survivorship experience across the groups so defined. We examine the equality of
the survivor functions using a set of available non-parametric tests, but we mostly rely
on the log-rank test. Additionally, we consider the partial likelihood ratio test obtained
in the estimation of each covariate’s group-specific impact on the time to loan failure.
Evidently, the same type of bivariate analysis is performed for categorical predictors. All
variables with log-rank and partial likelihood ratio test p-values less than 20% along with
all those that are economically vital are initially included in the multivariable model.
Thereafter, we repeat all the steps already described for the probit variable selection. We
fit the initial model, remove insignificant covariates, coarsely classify the discrete charac-
teristics and apply the method of fractional polynomials to the multivariable proportional
hazards regression model. Next, we determine whether any economically plausible inter-
action terms need to be added. Finally, we check the model’s validity and its adherence
to the proportionality assumption.

The methodology of fractional polynomials due to Royston and Altman (1994) of-
fers an analytical way of determining the scale of the continuous predictors. Royston

130



and Altman (1994) introduce a family of curves called fractional polynomials with power
terms limited to a small predefined set of values and show how to find the best powers
yielding the best-fitting and parsimonious model. In a single covariate case, a fractional
polynomial of degree m is defined as:

ϕm(X; ξ, p) = ξ0 +
m∑
j=1

ξjX
pj (B.2.1)

where m is a positive integer, p = (p1,...,pm) is a vector of powers with p1 <...<pm, ξ =
(ξ0, ξ1,..,ξm) are coefficients and Xpj signifies:

Xpj =

{
Xpj if pj ̸=0

ln(X) if pj=0
(B.2.2)

Expressions B.2.1 and B.2.2 combined and generalized can be rewritten into:

ϕm(X; ξ, p) =
m∑
j=0

ξjHj(X) (B.2.3)

Hj(X) =

{
Xpj if pj ̸=pj−1

Hj−1(X) ln(X) if pj=pj−1

(B.2.4)

Royston and Altman (1994) advocate that p={−2, −1, −0.5, 0, 0.5, 1, 2, 3} is a
set of powers sufficiently rich to handle many practical cases. The best model is the
one with the largest log likelihood. We use the fractional polynomials routine extended
for multivariable specifications and implemented in STATA. An iterative search of scale
within multivariable models involves checking for the scale of each covariate. To briefly
illustrate the process, let’s consider m = 2. For each variable the routine tests the best
J = 2 model versus the linear model, the best J = 2 versus the best J = 1 fractional
polynomial model and the linear model versus the model excluding the tested covariate.
Having checked each predictor, the procedure repeats for each variable using the outcome
of the first cycle for all covariates other than the one currently being tested in the second
cycle. The reiteration aims to ascertain whether changing the functional form of one
covariate alters the transformation of the other covariates. The routine runs until no
further transformation is suggested. Table B2.1 contains the definitions of the optimally
chosen covariates, while tables B2.2–B2.4 present their descriptive statistics.
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Table B2.1: Robust Specification: Definitions of Variables

Variable Definition
Deposit ratiot−1 Amount of bank’s deposits over bank’s total assets measured 1

month prior to loan origination
Bank typet−1 = 1 if bank is branch in CZ (as opposed to headquarters in CZ or

branch abroad)
Probit: Maturity 2–3.5 year = 1 if loan maturity is between 2 and 3.5 years
Probit: Maturity 4–8 years = 1 if loan maturity is between 4 and 8 years but not 5.5 years
Probit: Maturity 5.5 year = 1 if loan maturity is 5.5 years
Probit: Maturity 8.5–10 years = 1 if loan maturity is between 8.5 and 10 years
1st collateral: [1] = 1 if none or 3rd party real estate
1st collateral: [2] = 1 if guarantee deposits or real estate
1st collateral: [3] = 1 if movable property with ownership transfer
1st collateral: [4] = 1 if pledged securities
2nd collateral: [1] = 1 if real estate or movable property without ownership transfer
2nd collateral: [2] = 1 if movable property with ownership transfer
2nd collateral: [3] = 1 if pledged securities
2nd collateral: [4] = 1 if state guarantee
2nd collateral: [5] = 1 if other collateral
3rd collateral: [1] = 1 if real estate or movable property without ownership or guar-

antee deposit
3rd collateral: [2] = 1 if pledged assets or ensuring notes or other
3rd collateral: [3] = 1 if guarantee (incl. bank guarantee) or blockage of premium
Loan purpose: [1] = 1 if temporary shortage of resources or residential property
Loan purpose: [2] = 1 if residential property for business purposes, overdrafts or

debit, other investment loans
Loan purpose: [3] = 1 if residential property without state aid
Loan purpose: [4] = 1 if purchase of securities
Loan purpose: [5] = 1 if seasonal costs or subordinated loans
Loan currency = 1 if loan granted in Czech or Slovak koruna or Japanese yen

Table B2.2: Robust Probit Model: Data Descriptive Statistics

Variable Unit Mean Std. Dev. Max Min
Interest ratet−1 % 2.74 0.88 4.30 0.35
GDPCRt−1 % 4.77 2.58 7.70 -4.70
CPIt % 2.59 1.85 7.50 -0.40
Country riskt % 0.13 0.34 1.26 -0.38
Bank relationst−1 # 0.32 0.41 1.80 0.00
ln(2+ age as borrower)t−1 # 2.17 1.06 4.00 1.00
Bad historyt−1 0|1 0.08 0.27 1.00 0.00
Bank sizet−1 CZK 12.45 1.16 13.59 5.33
Liquidity ratiot−1 % 0.32 0.13 0.71 0.00
Bank NPLb - NPLt−1 % 0.02 0.07 6.40 -0.12
Own funds/total assetst−1 % 0.09 0.05 0.61 -0.08
Deposit ratiot−1 % 0.66 0.11 0.98 0.00
Bank typet−1 0|1 0.67 0.47 1.00 0.00
Loan sizet CZK 14.55 2.00 22.69 0.00
Maturity 2–3.5 year 0|1 0.17 0.38 1.00 0.00
Maturity 4–8 years 0|1 0.25 0.43 1.00 0.00
Maturity 5.5 year 0|1 0.02 0.13 1.00 0.00
Maturity 8.5–10 years 0|1 0.04 0.20 1.00 0.00
Loan currencyt 0|1 0.95 0.22 1.00 0.00
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Table B2.3: Robust Survival Model: Data Descriptive Statistics

Variable Unit Mean Std. Dev. Max Min
Interest ratet−1 % 2.74 0.88 4.30 0.35
Interest rateT−t−1 % 2.39 1.34 4.30 0.34
GDPCRt−1 % 4.77 2.58 7.70 -4.70
GDPCRT−t−1 % 2.55 3.86 7.70 -4.70
CPIt % 2.59 1.85 7.50 -0.40
Country riskt % 0.13 0.34 1.26 -0.38
Bank sizet−1 CZK 12.45 1.16 13.59 5.33
Liquidity ratiot−1 % 0.32 0.13 0.71 0.00
Own funds to total assetst−1 % 0.09 0.05 0.61 -0.08
CARt−1 % 12.36 7.56 147.14 0.00
CAR−1

t−1 % 0.08 0.02 0.12 0.01
Bank profitt−1 CZK 0.48 0.55 12.22 -4.68
Bank typet−1 0|1 0.67 0.47 1.00 0.00
ln(2+ age as borrower)t−1 # 2.17 1.06 4.00 1.00
Bad historyt−1 0|1 0.08 0.27 1.00 0.00
Loan sizet CZK 14.55 2.00 22.69 0.00
Maturity 0–6 monthst 0|1 0.04 0.19 1.00 0.00
Maturity 6–12 monthst 0|1 0.06 0.23 1.00 0.00
Maturity 12–18 monthst 0|1 0.22 0.41 1.00 0.00
Loan purposet 0|1 0.30 0.46 1.00 0.00
Herfindahl-Hirschman indext # 0.48 1.07 6.40 0.00

Table B2.4: Robust Models: Correlations Between Variables

Variable [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]
Interest
ratet−1

1.00

Interest
rateT−t−1

0.07 1.00

GDPt−1 0.23 0.36 1.00
GDPT−t−1 -0.27 0.64 0.23 1.00
CPIt 0.52 -0.13 0.05 -0.37 1.00
Country
riskt

-0.42 -0.20 -0.44 -0.09 0.28 1.00

Bank
sizet−1

0.09 -0.08 0.00 -0.15 0.17 0.01 1.00

Liquidity
ratiot−1

-0.29 0.05 0.09 0.19 -0.29 -0.02 0.37 1.00

Own
fundst−1

-0.12 -0.02 -0.01 0.05 -0.07 0.01 -0.46 0.05 1.00

CARt−1 -0.15 -0.02 -0.14 0.08 -0.18 0.04 -0.47 0.21 0.78 1.00
Loan sizet -0.02 -0.01 0.01 0.01 -0.02 0.02 -0.01 -0.06 -0.04 -0.02 1.00
Bad
historyt−1

0.04 0.01 -0.01 0.03 0.00 -0.02 -0.02 -0.03 0.05 0.02 0.10 1.00

Borrower
aget−1

0.00 -0.01 -0.01 0.02 0.06 0.04 0.10 -0.02 -0.00 -0.05 0.28 0.29 1.00

Bank
profitt−1

0.00 -0.07 0.00 -0.07 0.11 0.04 0.46 0.24 -0.07 -0.10 -0.00 -0.00 0.09 1.00
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Table B2.5: Estimation Results for Robust Probit Model with Clustered Loans

Variable Coefficient Robust Std. Err.
Interest ratet−1 0.237∗∗∗ 0.048
ln(2+ age as borrower)t−1 0.402∗∗∗ 0.032
Bank relationst−1 1.438∗∗∗ 0.089
Bank sizet−1 -0.042 0.041
Liquidity ratiot−1 -0.981∗∗∗ 0.291
Bank NPLb - NPLt−1 -1.424 0.935
Own funds/total assetst−1 -0.550 0.727
Deposit ratiot−1 1.285∗∗∗ 0.387
Bank typet−1 -0.237∗∗∗ 0.068
Maturity 2–3.5 yearst -0.072 0.060
Maturity 4–8 yearst -0.296∗∗∗ 0.074
Maturity 5.5 yearst 0.355∗ 0.200
Maturity 8.5–10 yearst -0.166 0.154
Loan currencyt -0.159∗ 0.093
GDPCRt−1 -0.019 0.012
CPIt -0.089∗∗∗ 0.021
Country riskt 0.161 0.116
Time trend 0.011∗∗∗ 0.004
Time trend sq. 0.000∗∗ 0.000
Intercept -3.275∗∗∗ 0.416
Collateral yes
Loan purpose yes
Firm turnover categories yes
Firm employment categories yes
Firm regional dummies yes
Firm industry dummies yes
N 207,352
Log-likelihood -37,066.548
χ2
(67) 1,475.642

Table B2.6: Robust Probit Results for Firm Turnover Controls

Firm turnover in CZK millions Coefficient Robust Std. Err.
<0.2 or ≥1500 -0.911∗∗∗ 0.126
⟨0.2, 0.5),⟨10, 30),⟨200, 300) -0.595∗∗∗ 0.098
⟨0.5, 1), ⟨30, 60) -0.657∗∗∗ 0.121
⟨500, 1000) -0.114 0.074
⟨100, 200), ⟨1000, 1500) -0.074 0.077

Table B2.7: Robust Probit Results for Firm Employment Controls

Firm employment Coefficient Robust Std. Err.
⟨1500, 1999) -1.186∗∗∗ 0.271
⟨6, 9), ⟨50, 99), ⟨250, 499) -0.379∗∗∗ 0.093
⟨1, 5), ⟨10, 19), ⟨25, 49) -0.260∗∗∗ 0.086
⟨20, 24), ⟨100, 199) -0.354∗∗∗ 0.103
⟨500, 999) 0.284∗∗ 0.125
⟨1000, 499) 1.008∗∗ 0.507
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Table B2.8: Robust Probit Estimation Results for Loan Collateral Types

Variable Coefficient Robust Std. Err.
1st collateral
None or 3rd party real estate -0.153∗∗∗ 0.057
Guarantee deposits or real estate -0.412∗∗∗ 0.081
Movable property with ownership transfer -0.960∗∗∗ 0.326
Securities 1.074∗∗ 0.493
2nd collateral
Real estate or movable property w/o ownership transfer -0.255∗∗∗ 0.093
Movable property with ownership transfer 0.769∗∗ 0.312
Securities -0.159∗∗ 0.062
State guarantee -1.117∗∗∗ 0.405
Other collateral -0.479∗∗∗ 0.141
3rd collateral
Real estate or movable property w/o ownership or deposit 0.495∗∗∗ 0.169
Assets or ensuring notes or other 0.197 0.133
Guarantee (incl. bank guarantee) or blockage of premium 0.226 0.199

Table B2.9: Robust Probit Estimation Results for Loan Purpose

Loan purpose Coefficient Robust Std. Err.
Temporary shortage of resources or residential
property

-0.591∗∗∗ 0.201

Residential property for business purposes,
overdrafts or debit, other investment loans

-0.104∗ 0.057

Residential property w/o state aid 0.331∗ 0.198
Purchase of securities 1.031∗∗ 0.434
Seasonal costs or subordinated loans 0.960∗∗∗ 0.285
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C Appendices to Chapter 3

C.1 The Vasicek Model

Recall that Vasicek (1977) defines the short-term rate process as:

dr(t) = κ (θ − r(t)) dt+ σdW (t) (C.1.1)

where κ, θ and σ are positive constants and W (t) denotes a standard Wiener process
associated with filtration Ft. The solution to the stochastic differential equation (C.1.1)
is given by:

r(t) = θ + (r(s)− θ) e−κ(t−s) + σ

t∫
s

e−κ(t−u)dW (u) (C.1.2)

And for s = 0 we have:

r(t) = r0e
−κt + θ

(
1− e−κt

)
+ σe−κt

t∫
0

eκsdW (s)

To verify 26 the solution to equation (C.1.1), I first compute the term:

d

r(t) · exp
 t∫

0

κ ds

 = exp

 t∫
0

κ ds

 dr(t) + r(t) · exp

 t∫
0

κ ds

 · κ dt =

= exp

 t∫
0

κ ds

 · κ · θ dt+ exp

 t∫
0

κ ds

 · σ dW (t)

From the above one obtains:

r(t)− r(0) =

t∫
0

eκuκθ du+

t∫
0

eκuσ dW (u) = θ
(
eκt − 1

)
+

t∫
0

eκuσ dW (u)

Rearranging and using the fact that r(0) = r0 gives:

r(t) = θ + (r0 − θ) e−κt + σ

t∫
0

e−κ(t−u) dW (u)

The solution for s = 0 can be generalized for any s < t, which yields equation (C.1.2).
Thus, the process r(t) defined by equation (C.1.2) solves the stochastic differential equa-

26I follow the proof of Proposition 3.7 in Nielsen (1999) (Nielsen (1999), pp. 103-104).
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tion given by (C.1.1). It follows that r(t) is a Gaussian random variable with conditional
moments equal to:

E (r(t)|F0) = θ + (r0 − θ) e−κt

Var (r(t)|F0) = Var

σ t∫
0

e−κ(t−s) dW (s)

 = σ2

t∫
0

e−2κ(t−s) ds =
σ2

2κ

(
1− e−2κt

)
The term structure of interest rates is characterized by the yields to maturity. Generally,
the continuously compounded yield at time s of bond maturing at t is defined by:

R(s, t) = − ln P (s, t)

t− s
(C.1.3)

Vasicek (1977) determines the yields from the prices of discount bonds. To ensure that
the bond prices satisfy the no-arbitrage condition one needs to redefine the diffusion
process for the instantaneous interest rate under the risk neutral probability measure27.
It follows from Girsanov’s theorem that a new Brownian motion under a risk-adjusted
measure Q is defined as:

W̃ (t) = W (t) +

t∫
0

λ ds = W (t) + λt

In Vasicek’s model λ denotes a market price of risk and is assumed to be constant.
Equation (C.1.1) can be restated using process W̃ (t) in the following manner:

dr(t) = κ (θ − r(t)) dt+ σ
[
dW̃ (t)− λ dt

]
= κ

(
θ − λσ

κ
− r(t)

)
dt+ σ dW̃ (t) =

= κ
(
θ̃ − r(t)

)
dt+ σ dW̃ (t)

As a result, we arrive at the risk-neutral diffusion process for the instantaneous interest
rate:

dr(t) = κ
(
θ̃ − r(t)

)
dt+ σ dW̃ (t) (C.1.4)

where θ̃ = θ − λσ
κ

. The solution to the above stochastic differential equation is given by:

r(t) = θ̃ +
(
r(s)− θ̃

)
e−κ(t−s) + σ

t∫
s

e−κ(t−u)dW̃ (u) (C.1.5)

Given the character of the spot rate process r(t) under the market efficiency assumption,
Vasicek (1977) derives prices for discount bonds. Under the risk-neutral probability

27Rigorously speaking, it is required that the diffusion process for the bond prices has the martingale
property. For the full treatment of risk-neutral pricing refer for example to Karatzas and Shreve (1998).
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measure Q the price at time 0 of a discount bond maturing at time t is given by:

P (0, t) = EQ

exp

−
t∫

0

r(u) du

 |F0

 (C.1.6)

By the property of the log-normal random variable equation (C.1.6) can expressed as:

P (0, t) = exp

EQ
−

t∫
0

r(u) du

+
1

2
· VarQ

−
t∫

0

r(u) du


Next, equation (C.1.5) is used to compute

t∫
0

r(u)du:

t∫
0

r(u) du = θ̃ · t+
t∫

0

(
r0 − θ̃

)−κ·u
du+

t∫
0

u∫
0

σ · e−κ·(u−s)dW̃ (s) du

The order of integration can be changed by Fubnini’s theorem, which yields:

t∫
0

r(u) du = θ̃ · t+ 1− e−κ·t

κ
·
(
r0 − θ̃

)
+ σ ·

t∫
0

eκ·s

 t∫
s

e−κ·u du

 dW̃ (s) =

= θ̃ · t+ 1− e−κ·t

κ
·
(
r0 − θ̃

)
+
σ

κ
·

t∫
0

(
1− e−κ·(t−s)

)
dW̃ (s)

Then, the moments are given by:

E

−
t∫

0

r(u)du

 =
(
θ̃ − r0

)
· 1− e−κ·t

κ
− θ̃ · t

and

Var

−
t∫

0

r(u) du

 =
σ2

κ2
·

t∫
0

(
1− e−κ·(t−s)

)2
ds =

σ2

2 · κ3
(
4 · e−κ·t − e−2·κ·t + 2 · κ · t− 3

)
Plugging the expressions for both moments into equation (C.1.6) produces:

P (0, t) = exp

[(
θ̃ − r0

)
· 1− e−κ·t

κ
− θ̃ · t+ σ2

4 · κ3
(
4 · e−κ·t − e−2·κ·t + 2 · κ · t− 3

)]
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More generally, for any 0 ≤ s ≤ t the Vasicek model postulates the following bond prices
and yields:

P (s, t) = exp

[(
θ̃ − r(s)

) 1− e−κ(t−s)

κ
− θ̃(t− s) +

σ2

4κ3

(
4e−κ(t−s) − e−2κ(t−s) + 2κ(t− s)− 3

)]

Finally, the yield is given by:

R(s, t) = − 1

t− s

[(
θ − λσ

κ
− r(s)

)
1− e−κ(t−s)

κ
−
(
θ − λσ

κ

)
(t− s)

+
σ2

4κ3
(
4e−κ(t−s) − e−2κ(t−s) + 2κ(t− s)− 3

) ]

Rearranging results in:

R(s, t) = − 1

t− s

[
1

κ

(
e−(t−s)κ − 1

)
r(s) +

σ2

4κ3
(
1− e−2(t−s)κ)

+
1

κ

(
θ − λσ

κ
− σ2

κ2

)(
1− e−(t−s)κ)− (θ − λσ

κ
− σ2

κ2

)
(t− s)

]

where κ, θ and σ are the same positive constants as in equation (C.1.1), the parameter
λ is the risk premium introduced by the risk-neutral pricing and r(s) is the current
period instantaneous interest rate driven by the stochastic differential equation (C.1.1).
In addition, the term θ − λσ

κ
− σ2

2κ2
represents the infinite maturity interest rate:

R(s,∞) ≡ lim
t→∞

R(s, t) = θ − λσ

κ
− σ2

2κ2

C.2 The Cox-Ingresoll-Ross Model

Using the assumption about the factor and production dynamics Cox, Ingersoll, and
Ross (1985) arrive at the following diffusion process for the risk-free rate of interest:

dr(t) = κ (θ − r(t)) dt+ σ
√
r(t)dW (t) (C.2.1)

where κ, θ and σ are positive constants and W (t) denotes a standard Wiener process. A
unique positive solution to equation (C.2.1) is given by:

r(t) = θ + (r(s)− θ) e−κ(t−s) + σe−κ(t−s)
t∫

s

eκ(u−s)
√
r(u)dW (u) (C.2.2)

Let us also denote by r̄(t) the solution of (C.2.1) starting at r̄. To derive28 equation
(C.2.2) we first employ Itô’s formula to compute d (eκtr(t)).

d
(
eκtr(t)

)
= κeκtr(t)dt+ eκtdr(t) = eκt

[
κr(t)dt+ κ(θ − r(t))dt+ σ

√
r(t)dW (t)

]
=

28The derivations follow an example in Karatzas and Shreve (1998), pp. 152-53.
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= eκt
(
κθdt+ σ

√
r(t)dW (t)

)
Next, we integrate both sides:

r(t)eκt = r(0) + θ

t∫
0

κeκudu+ σ

t∫
0

eκu
√
r(u)dW (u)

Rearranging yields:

r(t) = r(0)e−κt + θ(1− e−κt) + σ

t∫
0

e−κ(t−u)
√
r(u)dW (u)

The solution for s = 0 can be generalized for any s < t, which gives equation (C.2.2).
Since the expectation of an Itô integral is 0, the conditional mean of r(t) has the same
form as in the Vasicek model.

E (r(t)|F0) = E
(
r(0)e−κt + θ

(
1− e−κt

)
|F0

)
= θ + (r0 − θ)e−κt

To compute the conditional variance of r(t), the expression E (r2(t)e2κt|F0) can be used
to find E (r2(t)|F0). By Itô’s lemma one has:

d
([
eκtr(t)

]2)
= 2eκtr(t)d

(
eκtr(t)

)
+ d

(
eκtr(t)

)
d
(
eκtr(t)

)
=

= e2κt(2κθ + σ2)r(t)dt+ 2σe2κtr
3
2 (t)dW (t)

Integrating both sides and taking expectations yields:

r2(t)e2κt = r2(0) + (2κθ + σ2)

t∫
0

e2κur(u)du+ 2σ

t∫
0

e2κur
3
2 (u)dW (u)

E
(
r2(t)e2κt

)
= r2(0) + (2κθ + σ2)

t∫
0

e2κuE(r(u))du

Next, the expected value of r(u) is plugged to obtain:

E
(
r2(t)e2κt

)
= r2(0) + (2κθ + σ2)

t∫
0

e2κu
(
r(0)eκu + θ(e2κu − eκu)

)
du =

= r2(0) + r(0)
2κθ + σ2

κ

(
eκt − 1

)
+
θ(2κθ + σ2)

2κ

(
e2κt − 2eκt + 1

)
Rearranging gives:

E(r2(t)) = r2(0)e−2κt +
2κθ + σ2

κ
r(0)

(
e−κt − e−2κt

)
+
θ(2κθ + σ2)

2κ

(
1− 2e−κt + e−2κt

)
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And finally, the conditional variance of r(t) equals:

Var(r(t)) = E(r2(t))− [E(r(t))]2 =
σ2

κ
r(0)

(
e−κt − e−2κt

)
+
σ2θ

2κ

(
1− 2e−κt + e−2κt

)
Key to any pricing within the Cox-Ingersoll-Ross model is the characterization of the law

of the pair of the random variables
(
r̄(t),

t∫
0

r̄(u)du

)
. Their joint law is characterized by

the following theorem. Recall that by r̄(t) we denote the solution of (C.2.1) starting at
r̄.

Theorem29 For any λ > 0 and µ > 0, we have:

E

(
e−λr̄(t)e

−µ
t∫
0

r̄(u)du

)
= e−κθϕλ,µ(t)e−r̄ψλ,µ(t),

where

ϕλ,µ(t) = − 2

σ2
ln

(
2γet(κ+γ)/2

σ2λ(eγt − 1) + γ − κ+ eγt(γ + κ)

)
,

ψλ,µ(t) =
λ(γ + κ) + eγt(γ − κ) + 2µ(eγt − 1)

σ2λ(eγt − 1) + γ − κ+ eγt(γ + κ)
,

γ =
√
κ2 + 2σ2µ .

Applying the theorem with µ = 0, Lamberton and Lapeyre (2007) show how to obtain
the price of a zero-coupon bond in the Cox-Ingersoll-Ross framework. The price of the
bond with maturity T at time 0 is characterized by:

P (0, T ) = E∗

e− T∫
0

r(s)ds

 = e−κθϕ(T )−r(0)ψ(T )

where the functions ϕ and ψ are given by:

ϕ(t) = − 2

σ2
ln

(
2γ∗e

t(γ∗+κ∗)
2

γ∗ − κ∗ + eγ∗t(γ∗ + κ∗)

)
and

ψ(t) =
2
(
eγ

∗t − 1
)

γ∗ − κ∗ + eγ∗t(γ∗ + κ∗)

with κ∗ = κ+ λ and γ∗ =
√
(κ∗)2 + 2σ2. The price at time t becomes:

P (t, T ) = exp (−κθϕ(T − t)− r(t)ψ(T − t))

29This is Theorem 9.6.4 in Elliott & Kopp (1998) or Proposition 6.2.4 in Lamberton and Lapeyre
(2007). Its proof and the derivations of the bond prices under the Cox-Ingersoll- Ross model are provided
in Elliott & Kopp (1998), pp. 273-276, and in Lamberton and Lapeyre (2007) pp. 162-164.
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or equivalently
P (t, T ) = A(t, T )e−B(t,T )r(t) (C.2.3)

where

A(t, T ) =

[
2γe(κ+γ+λ)(T−t)/2

(γ + κ+ λ)(eγ(T−t) − 1) + 2γ

]2κθ/σ2

B(t, T ) =
2
(
eγ(T−t) − 1

)
(γ + κ+ λ)(eγ(T−t) − 1) + 2γ

γ =
√

(κ+ λ)2 + 2σ2

where κ, θ and σ are the same positive constants as in equation (C.2.1), the parameter
λ is introduced by the risk-neutral pricing and r(t) is the current period instantaneous
interest rate driven by the stochastic differential equation (3.11). Using the equation
(3.3), the continuously compounded yield for discount bonds in the CIR model can be
expressed as:

R(t, T ) =
− lnA(T, t) +B(t, T )r(t)

T − t

where A(t, T ) and B(t, T ) are defined as in formula (C.2.3). Alternatively, the CIR
bond price and yield may be obtained by solving the partial differential equation for
P (t, T ) = f(t, r(t)). Shreve (2004) propose a way to find the PDE for the function
f(t, r(t)) that characterizes the bond prices30. First, they suggest a martingale

D(t)f(t, R(t)) = P (t, T ) exp

−
t∫

0

r(u)du


and differentiate it to get:

d(D(t)f(t, r(t))) = f(t, r(t))dD(t) +D(t)df(t, r(t)) =

= D(t)

[
−rfdt+ ftdt+ frdr +

1

2
frrdrdr

]
=

= D(t)

[
ft(t, r) + (κθ − κr)fr(t, r) +

1

2
σ2rfrr(t, r)− rf(t, r)

]
dt+D(t)σ

√
rfrdW̃ .

The partial differential equation for the function f(t, r(t)) is then obtained by setting the
dt term equal to zero.

ft(t, r) + (κθ − κr)fr(t, r) +
1

2
σ2rfrr(t, r) = rf(t, r) (C.2.4)

The terminal condition reads:

f(T, r) = 1 for all r
30See Shreve (2004), pp. 273-276.
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At this stage, the solution to the above PDE can be guessed to have a form typical for
the affine term structure models, namely:

P (t, T ) = A(t, T )e−B(t,T )r(t) = e−A
∗(t,T )−B(t,T )r(t)

In such a case, partial differential equation (C.2.4) becomes:

f(t, r)

[(
−B′(t, T ) + κB(t, T ) +

1

2
σ2B2(t, T )− 1

)
r − A∗′(t, T )− κθB(t, T )

]
= 0

Since the term: (
−B′(t, T ) + κB(t, T ) +

1

2
σ2B2(t, T )− 1

)
must be 0, the remaining term must also equal 0, which in turn implies the following
ODEs:

B′(t, T ) = κB(t, T ) +
1

2
σ2B2(t, T )− 1

A∗′(t, T ) = −κθB(t, T )

Under the terminal conditions A∗(T, T ) = B(T, T ) = 0 the solutions are given by:

B(t, T ) =
sinh(γ(T − t))

γ cosh(γ(T − t)) + 1
2
κ sinh(γ(T − t))

,

A(t, T ) =

[
γe

1
2
κ(T−t)

γ cosh(γ(T − t)) + 1
2
κ sinh(γ(T − t))

,

]− 2κθ
σ2

where
γ =

1

2

√
κ2 + 2σ2, sinhu =

eu − e−u

2
and coshu =

eu + e−u

2

Rearranging and using relation (3.3) gives the expression for the yield in the CIR model:

R(t, T ) =
− lnA(t, T ) +B(t, T )r(t)

T − t

where A(t, T ) and B(t, T ) are defined as in formula (C.2.3).

C.3 The Heath-Jarrow-Morton Model

To exclude arbitrage from bond trading, the existence of a martingale measure for all
maturities needs to be established. Shreve (2004) present a fairly short way to find such a
martingale measure31. They examine the discounted bond price for T ∈ [0, T ∗] and seek
the risk-adjusted probability measure, under which the discounted price is a martingale.

31See Shreve (2004), pp. 425-428
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The differential of the discounted bond price is given by:

d

(
P (t, T ) exp

(
−

t∫
0

r(u)du

))
= (C.3.1)

= (−r(t)P (t, T )dt+ dP (t, T )) exp

−
t∫

0

r(u)du


Given the character of the instantaneous and continuously compounded forward rate,
f(t, T ), the price of a discount bond at time t with maturity T ≤ T ∗ is given as:

P (t, T ) = exp

−
T∫
t

f(t, u)du

 (C.3.2)

Applying the Itô lemma to the bond price dynamics implies:

dP (t, T ) = P (t, T )

d
−

T∫
t

f(t, u)du

+
1

2

d
−

T∫
t

f(t, u)du

2
 (C.3.3)

The differential of the discounting term equals:

d

−
T∫
t

f(t, u)du

 = f(t, t)dt−
T∫
t

df(t, u)du

Plugging the dynamics for the forward rate, f(t, T ), recalling that f(t, t) = r(t), and then
changing the order of integration yields:

d

−
T∫
t

f(t, u)du

 = r(t)dt−
T∫
t

[α(t, u)dt+ σ(t, u)dW (t)] du =

= r(t)dt−
T∫
t

α(t, u)dtdu−
T∫
t

σ(t, u)dW (t)du =

= r(t)dt− α∗(t, T )dt− σ∗(t, T )dW (t)

where

α∗(t, T )dt =

T∫
t

α(t, u)dudt and σ∗(t, T )dW (t) =

T∫
t

σ(t, u)dudW (t)
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Inserting the obtained expression for the differential of the discounting term into equation
(C.3.1) produces:

dP (t, T ) exp

−
t∫

0

r(u)du

 = (C.3.4)

= P (t, T ) exp

−
t∫

0

r(u)du

[(−α∗(t, T ) +
1

2
(σ∗(t, T ))2

)
dt− σ∗(t, T )dW (t)

]

For the discounted bond price to be a martingale relation (C.3.5) needs to be rewritten
using a new Brownian motion under a risk-adjusted measure Q defined as:

W̃ (t) = W (t) +

t∫
0

λ(s)ds =W (t) + λ(t)t

What follows, it must hold that:[(
−α∗(t, T ) +

1

2
(σ∗(t, T ))2

)
dt− σ∗(t, T )dW (t)

]
= −σ∗(t, T )λ(t)dt− σ∗(t, T )dW (t)

Clearly, it implies:

−α∗(t, T ) +
1

2
(α∗(t, T ))2 = −σ∗(t, T )λ(t)

Differentiating both sides with respect to T gives:

α(t, T ) = σ(t, T ) [σ∗(t, T ) + λ(t)]

Since
∂

∂T
α∗(t, T ) = α(t, T ) and

∂

∂T
σ∗(t, T ) = σ(t, T )

Substituting for σ∗(t, T ) yields the no-arbitrage drift condition (3.15):

α(t, T ) = σ(t, T )

 T∫
t

σ(t, u)du+ λ(t)

 , ∀t ∈ [0, T ], T ∈ [0, T ∗]

Using the no-arbitrage drift restriction, the forward-rate process in (3.13) can be formu-
lated under the risk-neutral probability measure Q as:

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t) =

σ(t, T ) T∫
t

σ(t, u)du

 dt+

+σ(t, T )(λ(t) + dW (t)) =

σ(t, T ) T∫
t

σ(t, u)du

 dt+ σ(t, T )dW̃ (t) (C.3.5)
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where W̃ (t) is the Wiener process under the martingale measure Q, λ(t) denotes a market
price of risk and 0 ≤ t ≤ T ≤ T ∗. In an integral form, the dynamics for the instantaneous
forward rate (C.3.5) is given as:

f(t, T ) = f(0, T ) +

t∫
0

σ(v, T )σ∗(v, T )dv +

t∫
0

σ(v, T )dW̃v (C.3.6)

From equation (C.3.6), the yields on contingent claims for every fixed maturity T ≤ T ∗

can be written as:

R(t, T ) =

T∫
t

f(t, u)du

T − t
(C.3.7)

Combining equations (C.3.6) and (C.3.7) gives formula (3.19) for the yield in the Heath-
Jarrow-Morton framework32. To simplify, term R̄(t, T ) = (T−t)R(t, T ) is first considered.
From equations (C.3.6) and (C.3.7), it follows that R̄(t, T ) must satisfy:

R̄(t, T ) =

T∫
t

f(0, u)du+

T∫
t

t∫
0

σ(v, u)σ∗(v, u)dv du+

T∫
t

t∫
0

σ(v, u)dW̃v du

Applying Fubini’s theorem and rearranging gives:

R̄(t, T ) =

T∫
0

f(0, u)du+

t∫
0

T∫
v

σ(v, u)σ∗(v, u)du dv +

t∫
0

T∫
v

σ(v, u)du dW̃v

−
t∫

0

f(0, u)du−
t∫

0

t∫
v

σ(v, u)σ∗(v, u)du dv −
t∫

0

t∫
v

σ(v, u)du dW̃v

The instantaneous interest rate can be expresses as:

ru = f(u, u) = f(0, u) +

u∫
0

σ(v, u)σ∗(v, u)dv +

u∫
0

σ(v, u)dW̃v

From the above it follows that:

R̄(t, T ) = R̄0 −
t∫

0

rudu+

t∫
0

T∫
u

σ(u, v)σ∗(u, v)dv du+

t∫
0

T∫
u

σ(u, v)dv dW̃u

or equivalently

R̄(t, T ) = R̄0 −
t∫

0

rudu+
1

2

t∫
0

(σ∗(u, T ))2du+

t∫
0

σ∗(u, T )dW̃u

32The derivations are loosely based on Musiela and Rutkowski (2005), pp. 420-421
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Consequently, the yields on the contingent claims are charaterized by relation (3.19):

R(t, T ) = R(0, T ) +

1
2

t∫
0

(
T∫
u

σ(u, s)ds

)2

du

T − t
−

t∫
0

r(u)du

T − t

+

t∫
0

T∫
u

σ(u, s)ds dW̃ (u)

T − t

C.4 The Nelson-Siegel Model

One of the specifications postulated in (Nelson and Siegel 1987) describes the instan-
taneous forward rate for maturity m by the following exponential equation with equal
roots33:

r(m) = β0 + β1 exp
−m
τ

+ β2

(
m

τ
exp

−m
τ

)
(C.4.1)

where τ is a time constant that determines the rate at which the regressors decay to zero
and β0, β1, β2 are the coefficients to be estimated. Generally, the yield to maturity m
equals:

R(m) =
1

m

m∫
0

r(x)dx (C.4.2)

Integrating r(m) over time from 0 to m, as in expression (C.4.2), gives:

m∫
0

r(x)dx =

m∫
0

(
β0 + β1 · e−

x
τ + β2 ·

x

τ
e−

x
τ

)
dx =

= [β0 · x]m0 + β1 ·
m∫
0

e−
x
τ dx+ β2 ·

m∫
0

x

τ
· e−

x
τ dx = β0 ·m+ β1 · I1 + β2 · I2

I1 =

m∫
0

e−
x
τ dx = −τ

m∫
0

−1

τ
e−

x
τ dx = −τ ·

m∫
0

d
(
e−

x
τ

)
= −τ ·

[
e−

x
τ

]m
0
= τ ·

(
1− e−

m
τ

)

I2 =

m∫
0

x

τ
· e−

x
τ dx =

[
−x · e−

x
τ

]m
0
+

m∫
0

e−
x
τ dx = −m · e−

m
τ +

m∫
0

e−
x
τ dx = −m · e−

m
τ + I1 =

= −m · e−
m
τ + τ ·

(
1− e−

m
τ

)
Substituting for I1 and I2 gives:

m∫
0

r(x)dx = β0 ·m+ (β1 + β2) · τ ·
(
1− e−

m
τ

)
− β2 ·m · e−

m
τ

33I follow the notation of (Nelson and Siegel 1987)
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Next, plugging the above expression into (C.4.2) produces:

1

m
·
m∫
0

r(x)dx = β0 + (β1 + β2) ·
(
1− e−

m
τ

)
· τ
m

− β2 · e−
m
τ

Finally, rearranging yields the expression for the yield34:

R(m) = β0 + β1
1− e−

m
τ

m
τ

− β2e
−m

τ (C.4.3)

where parameters τ , β0, β1 and β2 are defined as in expression (C.4.1). By construct, β0
is the limiting value of the yield for large maturities. The limit of the yield for maturity
approaching infinity equals:

lim
m→∞

R(m) = β0 + (β1 + β2) · lim
m→∞

(
1− e−

m
τ

m
· τ
)
− β2 · lim

m→∞
e−

m
τ = β0

It can be also shown that for maturities close to 0 the yield approaches (β0 + β1).

lim
m→0

R(m) = β0 + (β1 + β2) · lim
m→0

(
1− e−

m
τ

m
· τ
)
· τ
m

− β2 · lim
m→0

e−
m
τ =

= β0 − β2 + (β1 + β2) · lim
m→0

1− e−
m
τ

m
τ

= β0 + β1

34It is a slightly altered formulation of the one presented in formula (2) in Nelson and Siegel (1987),
p. 475.
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