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ABSTRACT 
 

The study of the short-term forecasting of electricity demand has played a key role in the 
economic optimization of the electric energy industry and is essential for power systems 
planning and operation. In electric energy markets, accurate short-term forecasting of 
electricity demand is necessary mainly for economic operations.  
 
Our focus is directed to the question of electricity demand forecasting in the Czech 
Republic. Firstly, we describe the current structure and organization of the Czech, as well 
as the European, electricity market. Secondly, we provide a complex description of the 
most powerful external factors influencing electricity consumption. The choice of the most 
appropriate model is conditioned by these electricity demand determining factors. Thirdly, 
we build up several types of multivariate forecasting models, both linear and nonlinear. 
These models are, respectively, linear regression models and artificial neural networks. 
Finally, we compare the forecasting power of both kinds of models using several statistical 
accuracy measures. Our results suggest that although the electricity demand forecasting in 
the Czech Republic is for the considered years rather a nonlinear than a linear problem, for 
practical purposes simple linear models with nonlinear inputs can be adequate. This is 
confirmed by the values of the empirical loss function applied to the forecasting results.   
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 1  INTRODUCTION 

 
During the last two decades the electric power industry all over the world significantly 

restructured. In the past, the electricity industry was organized as vertically integrated 

monopolies that were mostly state-owned. The growing ideological and political 

disaffection with vertically integrated monopolies and the liberalization successes in other 

network industries have led to liberalization initiatives in the electricity industry. Vertically 

integrated utilities have been vertically separated or unbundled and barriers to entry in 

generation and supply are being removed to create competition, seen as a vehicle to 

increase the competitiveness of the electricity industry (Meeus et al., 2005).  

 
The original monopolistic situation was replaced by deregulated markets, where consumers 

in principle were free to choose their provider, i.e. the market place for electric power had 

become competitive. To facilitate trading in these new markets, exchanges for electric 

power have been established. Everything from spot contracts to derivatives, like forward 

and futures contracts, are traded. Simonsen et al. (2004) claim that even if a power 

exchange is not a necessity for a deregulated power market, the establishment of such 

exchanges has contributed to high trading activity, promoted competition and created 

liquidity in the market. 

 
New market places add another dimension of complexity to the trading process. Electricity 

has become a commodity traded at power exchanges and off-exchange on an informal 

bilateral basis, i.e. on over-the-counter (OTC) markets at market prices (Strecker and 

Weinhardt, 2001).1  

 
In order to succeed in new electricity market conditions, the electricity utilities have to deal 

with two complex statistical tasks: how to forecast both electricity demand and the 

w holesale spot price of electricity. ―A failure to implement efficient solutions for these two 

                                                 
 

1 Lesourd (2004), however, claims that electricity is a composite good that complies only partially with 
features that can be expected from an internationally traded commodity since electricity does not represent 
a storable commodity, and does not represent capital or running assets in the form of stocks.  
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forecasting problems can directly result in multimillion-dollar losses through uninformed 

trades on the w holesale m arket‖ (S m ith, 2003). P articularly, accurate short-term electricity 

demand (ED) forecasting is essential for a pow er system ’s operation and expansion and 

can help to build up cost effective risk management plans for the companies participating 

in the electricity market. From this point of view, high forecasting accuracy and speed are 

required not only for reliable system operation, but also for adequate market operation. 

Both over- and under-forecasts of ED would result in increased operational costs and loss 

of revenue. Forecasting errors also have considerable implications for profit, market 

shares, even for the shareholder value in the deregulated market. It is relatively easy to get 

a forecast with about a 10% mean absolute percent error; however, an increase of 1% in 

the forecasting error w ould im ply (in 1984) a £10 m illion increase in  operating costs per 

year, to name an often-quoted estimate by Bunn and Farmer (1985). 

 
The time horizon of the ED forecast depends on the way the forecast will be used. 

Generally, there are three types of forecast: short-term, which is usually from one hour to 

one week, medium-term, which is usually from a week to a year, and long-term, which is 

longer than a year. Since the establishment of competitive energy markets, particularly 

short-term forecasts have become extremely important, and during recent years they have 

reached a high level of performance.  

 
Many forecasting models and methods have already been applied to ED forecasting, with 

varying degrees of success. Hippert et al. (2001) in their review of short-term ED 

forecasting classified the forecasting methods used to date into two main groups: time 

series (univariate) models and causal models. In time series models ED is modeled as a 

function of its past observed values. Models like multiplicative autoregressive models 

(Mbamalu and El-Hawary, 1993), dynamic linear (Douglas et al., 1998; Huang, 1997) or 

nonlinear models (Sadownik, and Barbosa, 1999), and methods based on Kalman filtering 

(Infield and Hill, 1998; Al-Hamadi and Soliman, 2006) come also under this group.  

 
In the causal model group ED is modeled as a function of some exogenous factors, 

basically calendar, weather and social variables. Some models of this class are ARMAX 

models (Yang et al., 1996), optimization techniques (Yu, 1996), nonparametric regression 

(Charytoniuk et al., 1998), structural models (Leith et al., 2004), and curve-fitting 



3 

procedures (Taylor and Majithia, 2000). Lotufo and Minussi (1999) categorize all these 

forecasting techniques as statistical or traditional methods.  

 
Despite this large number of different kinds of models, the most popular still remain the 

linear regression ones and models that decompose ED into basic and weather-dependent 

components. They are very attractive because of their relative simplicity of interpretation. 

However, they are basically linear devices, and as we will show below, ED series are 

nonlinear functions of the exogenous variables. 

 
The nonlinear response of ED to some of the exogenous variables was also the reason why 

researchers tried to develop new forecasting techniques that would be more suitable for 

forecasting purposes. In the early 1990s artificial intelligence techniques, above all 

artificial neural networks (ANNs) and fuzzy logic (Papadakis et al, 1998) have been 

applied to the ED forecasting problem. Lotufo and Minussi (1999) classify these two 

techniques as tw o m ore groups of forecasting m ethods. ―H ow ever, the m odels that have 

received the largest share of attention are undoubtedly the artificial neural netw orks‖ 

(Hippert et al., 2001). The principal feature of ANNs is their ability to handle the nonlinear 

relationships and interactions between ED and the factors affecting it, directly from 

historical data without specifying these relations explicitly in advance.  

 
ANNs have been used for all forecasting periods: long-term ED forecasting (Kermanshahi 

and Iwamiya, 2002), short-term, and very short-term ED forecasting where the prediction 

period can be as short as a few minutes (Liu et al., 1996). Particularly, different types of 

ANNs have been applied to short-term ED forecasting: recurrent (Vermaak and Botha, 

1998; Senjyu et al., 2002), functional links (Dash et al., 1997), radial basis (Ranaweera et 

al., 1995), and multilayer feed-forward ANN. By far the most popular remain single 

hidden layer feed-forward ANN models (Hobbs et al., 1998; McMenamin and Monforte, 

1998; Chen et al., 2001). A more comprehensive review of the published research in the 

area of ANN forecasting is in Zhang et al. (1998). 

 
In view of the explanatory factors, Sugianto and Lu (2003) in their survey claim that the 

most important factors for short-term ED forecasting include the day of the week, 
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temperature, seasonal effects, and humidity. In long-term ED forecasting influential factors 

include economic and political aspects, and degree of industrial development.  

 
There are also a number of papers that have contrasted the accuracy of ANNs with more 

traditional forecasting methods with different conclusions. McMenamin and Monforte 

(1998) compared the results of a linear regression model with ANN model results and 

concluded that ―A N N  m odels provide a m odest im provem ent in forecast accuracy relative 

to well-specified regression m odels‖. D arbellay and S lam a (2000) focused on tw o 

forecasting techniques used on Czech data covering the years 1994 and 1995: ANNs and 

linear models of the ARMA type. They found that the forecasting abilities of a linear 

model and a nonlinear model were not very different.  

 
Hobbs et al. (1998) surveyed 19 electric utilities on their uses of ANN forecasts, and 

simulated how improved accuracy lowers the expected generation costs. They found that 

16 electric utilities using A N N  forecasting system s ―significantly reduced errors in daily 

E D  forecasts, w hile only three found otherw ise‖. T he estim ated econom ic value of this 

error reduction was on average 800,000 USD per year per utility for those utilities that 

reported that savings occurred. 

 
As we can see, even after many years of investigation in ED forecasting, the researchers 

are not consistent on the issue, whether sophisticated nonlinear models of the ANN type 

symbolize progress, or whether less complicated linear models are sufficient for 

application in day-to-day practice. ―T he findings as to w hether and w hen A N N s are better 

than classical m ethods rem ains inconclusive‖ (D arbellay and S lam a, 2000). Zhang et al., 

1998 also conclude that ―w hile A N N s have m any desired features w hich m ake them  quite 

suitable for a variety of problem  areas, they w ill never be a panacea‖. 

 

As a result, the central target of this dissertation is to discuss the nature of short-term ED 

forecasts on recent Czech data in the dynamic environment of the liberalized Czech power 

industry. However, this dissertation also is more comprehensive. We start with a brief 

description of the liberalization process in the Czech Republic, and we discuss the 
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organization and operation of the electricity markets, as well as their flaws, and possible 

future advancement.  

 
Afterwards we study ED characteristics, as well as the factors determining ED behavior. 

We describe the forecasting procedures and investigate which approach, linear regression 

or nonlinear ANN, is more appropriate for our data. Although the ANN models are already 

widely applied to short-term ED forecasting, many users often do not entirely understand 

what these models are or how they work. Therefore we present and explain ANN models 

from a statistical and econometrical point of view. We briefly introduce the ANNs, their 

main principles and architecture. Then we describe step by step the designing procedure of 

the ANN forecasting model. The estimation results of the ANN foresting model are 

analyzed in order to understand the model implications. The ANN model results are 

directly compared with the traditional regression approach. In order to find the most 

appropriate forecasting model, we apply various measures of forecast accuracy to our 

forecast results. Our surprising results show that applying only one error measure to the 

forecast values is not sufficient. The common statistical error measures, like Mean 

Absolute Percentage Error and Mean Absolute Deviation, suggest that the ANN approach 

is more suitable to model the Czech ED data. However, the results of the empirical cost 

function that measures the losses in Czech Crowns have shown that the overall cost of the 

ANN forecast errors is higher than the total cost of the linear regression model forecast 

errors. Therefore the empirical loss function clearly gives priority to a simple linear 

regression model with an autoregressive error structure. As a result, the LRM with an 

autoregressive error structure regardless of the poorer out-of-sample statistics, in the end 

outperforms the more sophisticated nonlinear ANN and is considered as sufficient for 

practical purposes. 

 
The dissertation is structured in the following way. Section 2 describes the process of the 

liberalization and deregulation of the electricity markets, focusing on the Czech electricity 

market. We also clarify the structure and organization of the wholesale electricity market 

and explain the importance of accurate demand forecasts. In Section 3 we characterize the 

Czech ED data and give an overview of the factors that affect electricity consumption in 

the Czech Republic. The reasons for preferring the linear regression and artificial neural 
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network models are explained in this section as well. Section 4 compares the performance 

and forecast accuracy of the defined models. Section 5 briefly concludes.  

 

 2  THE DEREGULATED ELECTRICITY MARKET  

 

 2.1  LIBERALIZATION OF THE EU ELECTRICITY MARKET 

 
Until recently, the electricity industry was a monopoly sector but as a result of the 

liberalization process, electricity can now be traded across borders in a competitive market. 

In general, the liberalization process was designed to break up the regulated monopoly and 

introduce competition where feasible, namely in electricity power production and retail 

(K očenda and Č ábelka, 1999; S trecker and W einhardt, 2001), and ―to use the econom ic 

regulation of the wholesale and retail power markets to promote competition and protect 

consumer interests‖ (B acon and B esant-Jones, 2001).  

 
The liberalization reforms began during the 1980s in Chile, England and Wales, and 

Norway and many developed countries started to follow them during the 1990s (Bacon and 

Besant-Jones, 2001). In the Czech Republic the liberalization process started in 2002. The 

Czech electricity market was fully liberalized on 1 January 2006, when the last remaining 

customer category, households, became eligible to choose their supplier. To date, about 70 

developing countries and transition economies have embarked on reforming their power 

markets - some to a considerable extent, others more tentatively (Besant-Jones, 2006). 

 
Generally, there is no unique concept for the electricity market design but the basic 

underlying idea remains the same. The core concept is to firstly separate the natural 

monopoly functions of transmission and generation from the functions of power 

production (also generation) and retail.  Secondly, there must be established a wholesale 

electricity market for generation and a retail market for electricity retailing. Establishment 

of the wholesale electricity market facilitates trading between generators, retailers and 

other financial intermediaries. The trading article is the delivery of electricity both for 

short-term period and for future delivery period. The role of the retail electricity market is 

to provide the end costumers with the possibility to choose their supplier from rival 
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electricity retailers. Although wholesale market reform usually precedes the retail reform, 

it is still possible to have a single electricity generator and functioning retail market.  

 
The market structure of the power sector before the power sector liberalization is 

following: there is a single state-owned national power utility with endowed monopoly and 

a vertically integrated supply chain comprising electricity generation, transmission, 

distribution, and customer services. This structure allows the state to minimize the cost of 

coordination between these functions and the financial expenses of the development of the 

power system. (Bacon and Besant-Jones, 2001) 

 
―A  full-scale power reform program generally consists of the following main elements: (1) 

formation and approval of a power policy by the government, followed by the enactment 

of legislation necessary for implementing this policy; (2) development of a transparent 

regulatory framework for the electricity market; (3) unbundling of the integrated structure 

of power supply and establishing a market in which electricity is traded as a commodity; 

and (4) divestiture of the state’s ow nership at least in m ost of the electricity generation and 

distribution segm ents of the m arket‖ (B acon and B esant-Jones, 2001). These four key 

elements create the core of the power reform program but the actual design of each 

program  depends on each country’s circum stances. H ence, final reform  program s result in 

a variety of, above all, market structures.  

 
Bacon and Besant-Jones (2001) categorize the variety of models of market structures 

according to increasing degrees of competition as follows: 

Model 1 –   Monopoly —  has no competition at all, there is only a monopoly at all levels of 

the supply chain. A single monopolist produces and delivers electricity to the 

users. 

Model 2 –  Purchasing agency —  allows a single buyer or purchasing agency to encourage 

competition between generators by choosing its sources of electricity from a 

number of different electricity producers. The agency on-sells electricity to 

distribution companies and large power users without competition from other 

suppliers. 
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Model 3 –  Wholesale competition —  allows distribution companies to purchase electricity 

directly from generators they choose, transmit this electricity under open access 

arrangements over the transmission system to their service area, and deliver it 

over their local grids to their customers, which brings competition into the 

wholesale supply market but not the retail power market. 

Model 4 –  Retail competition —  allows all customers to choose their electricity supplier, 

which implies full retail competition, under open access for suppliers to the 

transmission and distribution systems.  

A common consecution is to start with model 1 and progress through models 2 or 3, 

eventually reach model 4, the full liberalization of retail market.  

 
In the 1990s the purchasing agency model 2 spread mainly across Asian and Central 

American countries. Model 3 has been widely adopted in South America, while some 

Eastern European countries (e.g. Georgia, Moldova) have implemented alternates of this 

model. Model 4 has been introduced in several U.S. states, and in already more than 60% 

of EU member states.  

 
In the Czech Republic the liberalization process started with the enactment of the so-called 

―E nergy A ct‖ N o. 458/2000 C oll. (hereinafter ―E nergy A ct‖ or ―A ct‖). T he E nergy A ct 

started to come into effect on 28 November 2000 with full effect in 1 January 2001. The 

Act has been important especially from the electricity market point of view. 

 
In accordance with the Energy Act, the first step of opening up the electricity market in the 

Czech Republic began on 1 January 2002. All end users with an annual consumption of 

more than 40 GWh and power producers with an installed electricity capacity greater than 

10 MW were permitted to buy and sell electricity in the electricity marketplace. From 1 

January 2003 the power marketplace was opened to end users with an annual consumption 

greater than 9 GWh, and to all electricity producers. From 1 January 2004, regulated 

access to the grid was offered to end users with continuous metering (except for 

households) and to all electricity producers, from January 2005 forward, to all end users 

and electricity producers but households. From January 2006 the electricity market was 

opened for all end users. All clients were free to buy and sell electricity from any party 
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they chose. From the theoretical point of view, the Czech Republic had finally reached 

model 4, while model 3 was transitional. The particular stages of liberalization are 

summarized in Table 1. 

 
Stage of 
Liberalization 1. 2. 3. 4. 5. 

Date of market 
opening 1.1.2002 1.1.2003 1.1.2004 1.1.2005 1.1.2006 

Entitled 
customers  

Yearly consumption 
greater than 

End users with 
continuous metering 
(except households) 

All end users 
(except 

households) 

All end users  
(no 

exceptions) 40 GWh 9 GWh 
 
Table 1: Stages of Czech electricity market liberalization. 
Source: Kubát and B alcar, 2003 
 
In general, the liberalization process had been applied to electricity power generation and 

supply, while electricity transmission and distribution continue to be natural monopolies. 

T ypical of the C zech R epublic’s open electricity m arket is the fact that there is no m ore 

regulation of activities in which competition is feasible.2 Only the monopoly activities 

remain to be regulated. They are conceived as public services and are provided for 

regulated prices. Figure 1 describes the splitting of the Czech open electricity market into 

competitive and regulated parts. 

 
 

 

 

 

 

 

 

 

                                                 
 
2See ‖T he C zech R epublic’s N ational R eport O n T he  E lectricity A nd G as Industries F or 2005‖ 

Electricity market in the Czech Republic 

Competitive environment Regulated environment 

Electricity 
power 

generation 

Wholesale 
market 

Retail  
market 

 

Cross-
border 
transmission 

 

Electricity 
power 

distribution 

 

System 
services 

 

Figure 1: Competitive and regulated elements of the Czech electricity market. 
S ource: W edochovič, 2003  
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 2.2  SINGLE EUROPEAN ELECTRICITY MARKET 

 
The electricity markets of many EU countries are already fully opened, and the remaining 

countries are in the process of doing so. These developments are mainly due to European 

economic policies that aim at the creation of a single European market for goods and 

services, including electricity (Zachmann, 2005). The integration of European wholesale 

electricity m arkets is the ultim ate goal of the liberalization process. ―M andated by 

Directive 2003/54/EC,3 all EU electricity markets must have been completely opened up 

for competition by 1 July 2007 at the latest‖ (C ocker at al., 2005). T he process of 

integration at the European level should be finalized by 2012. 

 
The main purpose of these liberalization reforms is to stimulate competition and reap 

common gains from international competition. Clearly, competition will increase by 

enlarging the electricity markets geographically since with functional cross-border trade 

the number of active market participants increases.  

In order to reach a functional single EU electricity market, the market should evolve 

through the successful liberalization of national markets, followed by the development of 

regional markets that should finally be linked together to form the internal EU electricity 

market. Thus the full liberalization of the wholesale markets and the growing wholesale 

markets liquidity represent a basic driver for market integration. Strong interlinked 

wholesale markets should result in as large price areas as possible and consequently, if 

possible, in one single European price area. (Cocker et al., 2005) However, as Cocker et al. 

(2005) further claim, this requires liquid day-ahead and forward markets together with 

open intra-day and balancing markets reflected in trustworthy day-ahead prices.  

 
―T he E uropean w holesale m arkets have been dev eloped and organized well in a relatively 

short tim e period‖ (C ocker et al., 2005). W holesale m arkets have been established all over 

Europe with a significant volume traded above all on OTC markets and power exchanges 

(also organized short-term electricity markets). All the major markets already have created 

                                                 
 
3 Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 concerning common 

rules for the internal market in electricity. 
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their national or regional exchanges. (Cocker at al., 2005) The potential strength of 

integrated wholesale markets is evidenced through the convergence of day-ahead prices in 

a number of markets and the steadily growing volume traded on market places. However, 

as is pointed out in Lesourd (2004), Zachmann (2005), Cocker et al. (2005), and in several 

other studies, the development of strong and liquid wholesale markets is an on-going 

process that is not yet completed. Above all, there are still significant differences between 

local electricity prices.  

 
P articularly, Z achm ann (2005) investigates ―the success of the E uropean electricity sector 

reforms by analyzing the development of wholesale prices over tim e‖. H e states that 

―sim ilar electricity prices throughout E urope are evidence‖ of a global E U  electricity 

market. Data on three West European countries (France, Germany, the Netherlands), two 

Central European EU member states (Poland, the Czech Republic) and three North 

European price areas (East Denmark, West Denmark, Sweden) are studied. The conclusion 

is that although a notew orthy ―progress in the efficiency of cross-border electricity trade 

has been made, a single EU electricity market is still far off‖.  

 

 2.3  WHOLESALE ELECTRICITY MARKETS 

 
As we have noted, the trading of electricity in wholesale markets is the core of power 

sector liberalization. Before the European electricity markets were deregulated, electricity 

trading took place only to a limited extent. ―As a consequence of the liberalization process, 

trading procedures, contract designs, and m arket structure are undergoing radical changes‖ 

(Strecker and Weinhardt, 2001). The restructuring and opening of the electricity market 

has resulted in the replacement of the cost minimization paradigm by the profit 

m axim ization paradigm  (C onejo et al., 2005). ―In the profit m axim ization fram ew ork, 

generators, retailers and end customers interact through a market seeking to maximize their 

respective profits‖ (C onejo et al., 2005). Two market structures arise commonly in 

practice: a bilateral contract framework and an organized electricity market (also a pool or 

organized power exchange).  
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Most wholesale trade volume in electricity markets is traded bilaterally in forward and 

OTC types of markets.4 In a bilateral transaction market any given generator agrees with 

suppliers to supply specified amounts of energy during a contract horizon. Suppliers buy 

electricity in advance using long-term and forward contracts to cover their consumption 

portfolio. H ow ever, as R ingel (2003) claim s, electrical pow er is generally ―a low -interest 

hom ogeneous product‖ that is by its nature difficult to store, to keep in stock, or to have 

customers queue for it, and it has to be available on demand. Consequently, real electricity 

dem and is not com pletely predictable, thus ―there is also a need for additional daily and 

even hourly contracts in spot m arkets‖ (M eeus et al., 2005). O n the other hand, as w e have 

emphasized above, both over- and under-forecasts of electricity demand, i.e. forecast 

errors, are very costly and often result in considerable profit loss.   

 
As far as trading on the short-term electricity market is concerned, Conejo et al. (2005) 

explain that in an organized power exchange generators ―subm it to the electricity m arket 

operator (hereinafter ―E M O ‖) production bids that typically consist of a set of energy 

blocks and their corresponding minimum selling prices for every hour of the market 

horizon. Analogously, retailers and large consumers submit to the EMO consumption bids 

that consist of a set of energy blocks and their corresponding maximum buying prices. The 

EMO uses a market-clearing algorithm to clear the market, which results in a market-

clearing price as well as the scheduled production and consumption for every hour of the 

market horizon. The market-clearing price is the price to be paid by retailers and to be 

charged by producers.‖ In the case of the C zech R epublic, an organized short-term 

electricity market coexists with a bilateral contract framework.  

 
The organized electricity market offers, besides the short-term day-ahead market, a lot of 

other products. Particularly, in the Czech Republic common intra-day and balancing 

markets have been recently introduced. Both markets are designed as a continuous trading 

scheme where hourly contracts are traded. The main purpose of these continuous markets 

is to allow for market participants to fine-tune their trading positions on an hourly basis. 

                                                 
 
4 The market participants involved in electricity market operations are described in the section ―D escription 
of E lectricity M arket P articipants‖. 
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The objective of the intra-day market is to minimize differences between market 

participants. The participants of the intra-day market are the balance-responsible parties. In 

the balancing m arket, the T ransm ission S ystem  O perator (hereinafter ―T S O ‖) is the 

counter party to all deals. The aim is for the TSO to purchase electricity in order to reduce 

the volume of ancillary services and thereby minimize the overall cost of imbalances for 

the participants. The introduction of a forward electricity marketplace is also expected. The 

proposed forward market should provide for hedging instruments to offset positions in a 

long-term horizon greater than five months. The main purpose of these markets is to allow 

for approved market participants to "fine-tune" their trading positions on an hourly basis. 

(K ubát and B alcar, 2003) 

 
Cocker et al. (2000) divide the products in electricity markets into two broad categories: 

physical and financial products. ―P hysical products are traded for real physical delivery 

betw een parties‖ (C ocker et al., 2000). T hese products allow a market participant to sell or 

buy electricity at a present price for weeks, months or years ahead. For example, physical 

forwards can be traded on a power exchange or in a bilateral manner through OTC 

transactions. The power exchange traded forwards use standardized contracts that specify a 

single M W  (m ega w att) quantity and a single price. ―T he price of physical forw ard 

contract is quoted daily by the pow er exchange‖ (S kantze and Ilic, 2000). T heir advantage 

is the fixing of transparent prices in relation to which bilateral deals may be defined.  

 
―F inancial products include different electricity pow er derivatives, such as options, 

contracts for differences, and futures, w hich are based on the underlying spot m arket price‖ 

(Cocker et al., 2000). These products are traded on power exchanges (Skantze and Ilic, 

2000). They also allow market participants to buy or sell electric power at the present price 

for weeks or years ahead. However, these products do not usually lead to the physical 

delivery of electricity; rather they are settled financially between involved parties. 

Financial products are mostly used to hedge the risks of power price volatility. (Cocker et 

al, 2000) The basic structure of the wholesale market is shown in Figure 2. 
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Figure 2: Wholesale market structure. 
Source: EURELECTRIC, Cocker et al., 2005 
 

Throughout Europe electricity trading markets are at very different stages of development. 

In many European countries there have been established power exchanges, offering day-

ahead spot markets but only some of them offer also financial products based on the spot 

market. One of the most advanced markets is the Nordic Market, composed of Finland, 

Sweden, Norway, and Denmark. The characteristic feature of this market is the very strong 

role given to the regional power exchange, the Nord Pool that offers both physical and 

financial products. The turnover on the Nord Pool day-ahead market was about 40% of 

electricity consumption in 2004 (Cocker et al., 2005).  

 
In many EU countries, irrespective of the level of achieved market liberalization, bilateral 

OTC transactions are the dominant form of trading. As shown in Figure 2, OTC products 

can be negotiated individually (non-standardized products) but there is also a growing 

trend tow ards the trading of standardized products. ―T he central clearing of bilateral O T C  

contracts is becoming an increasingly important activity of power exchanges. This is 

explained by the fact that the so-called counterparty risk that exists in the OTC markets can 

be largely elim inated by the pow er exchange acting as a central clearing point .― (C ocker et 

al., 2000) 
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In the Czech Republic as well most of the electricity trades (more than 99% of electricity 

consumption) are realized through bilateral contracts. The remaining volume of electricity 

is traded on short-term markets (day-ahead and intra-day markets), which account for less 

than one per cent of the total electricity traded in the Czech Republic.5 The following Table 

2 shows the electricity day-ahead market volume traded in the Czech Republic. 
 

 2002 2003 2004 2005 2006 

Electricity demand 
in TWh6 58.5 59.9 61.5 69.9 71.7* 

Day-ahead market volume in 
TWh 0.4 0.5 0.3 0.4** 0.6** 

Electricity traded (% of total 
electricity consumption)  0.68 0.83 0.49 0.57 0.84 

 
Table 2: Electricity power traded at the Czech day-ahead market.  
S ource: E U R E L E C T R IC , C ocker et al., 2005; *the C zech E nergetický regulačný úřad; **the C zech O perátor 

trhu s elektřinou, a.s. 
 
As can be seen from Table 2, after a considerable decrease of day-ahead market volume in 

2004, the day-ahead market rose by more than 50 per cent in 2006. Even though the Czech 

power exchange attracts a relatively small fraction of the total trade so far, there is a 

growing trend towards trading on this short-term electricity market. This has accelerated 

the demand for more accurate short-term forecasts of the spot price and electricity power 

demand since the imbalances, i.e. the difference between the sum of the agreed electricity 

power supplies and real consumption in a given time period, are very expensive. Moreover, 

as Smith (2003) claim s, electricity dem and forecasting is even m ore im portant ―because 

dem and is a m ajor determ inant of the electricity spot price‖. 

 

  

                                                 
 
5 See ―T he C zech R epublic’s N ational R eport on the E lectricity and G as Industries for 2005‖ . 
6 Tera Watt hour 
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 3  FORECASTING FRAMEWORK 
 

 3.1  ELECTRICITY DEMAND CHARACTERISTICS 

 
―E lectric pow er is generally a low -interest product that is noticed only when it is missing. 

The main reason for this is that consumers perceive electricity as a homogenous product, 

i.e. the supply of kilowatt-hours by one distributor equals that of another‖ (R ingel, 2003). 

Moreover, in contrast with conventional goods, electricity is a product that has to be 

released upon consumer request, thus electricity is to be delivered instantaneously at the 

time the consumer needs it. Furthermore, electricity demand fluctuates every moment since 

it is affected by a broad spectrum of factors such as weather conditions, special events, 

trend effects, random effects like human activities or ED management, and many others. 

All these factors produce considerable uncertainty ex ante over demand and the consequent 

choice of risk of either overproduction or underserving the market (Boffa, 2004). Probably 

the most serious consequence of uncertainty in demand is the occurrence of blackouts— a 

variety of countries have recently been hit by blackouts, including the United States, Italy, 

and even the Czech Republic in 2006. To summarize, since the relatively high volatility of 

electricity dem and is one of the dem and’s m ost striking features, E D  forecasting is a 

difficult, very complex and exceedingly challenging task.  

 
Feinberg and Genethliou (2005) claim that from the mathematical point of view there are 

two important categories of electricity demand models: additive models and multiplicative 

models. An additive model can take the form of predicting ED as the function of the 

following separate components (for example in Chen et al., 2001): 

 

where  stands for the total system electricity demand,  represents the ―norm al‖ part of 

the electricity demand,  corresponds to the weather-sensitive part of the electricity 

demand,  corresponds to the special events that may occur, and  corresponds to the 

random  ―unexplained‖ part. 

T he ―norm al‖ part of E D  represents a standardized E D  shape for each type of day that has 

been found as occurring throughout the year. The weather-sensitive part of ED is tightly 

coupled to the season of the year. The special event part of ED represents the occurrence of 
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an unusual or special event causing a significant deviation from typical ED behavior, e.g. 

state approved holidays, im portant sporting events, etc. T he random  ―unexplained‖ part is 

supposed to behave as zero mean white noise. 

 
A multiplicative model may be of the form: 

 

where  represents the ―norm al‖ part of electricity dem and and correction factors , , 

and  are positive numbers that can increase or decrease overall demand. These 

corrections are related to current weather , special events , and random fluctuation 

. (Feinberg and Genethliou, 2005) Other factors like price or trend aspects may be 

included, too.  

 
In this dissertation, we build several forecasting models of both additive and multiplicative 

types. For developing the forecasting models, we consider the time series of electricity 

demand of the Czech Republic. Data covering the time span from January 2001 to May 

2004 are available on an hourly basis, giving a total of 29,952 observations. The dependent 

variable data is the system of hourly ED of the north and northeast of the Czech Republic. 

All sectors (industrial, commercial, and residential) are included. Figure 3 shows the 

dynamic nature of the investigated ED.  

 

 
Figure 3: Dynamic nature of daily electricity demand with seasonal variations.  
Figure 4: Winter and summer daily electricity consumption through a typical week.  
S ource: A uthor’s ow n computations. Data are scaled between 0 and 1. 
 
On Figure 3 we can observe a seasonal structure with typically higher consumption during 

the w inter period and low er consum ption during sum m er tim e. ―T his structure can be 

attributed to the weather, in particular to outdoor tem peratures‖ (S im onsen et al., 2004). In 
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detail, the differences between the winter and summer electricity consumption during a 

typical week are illustrated in Figure 4. Interestingly, the differences between these two 

data sets are not only in the amount of electricity consumed but also in the electricity 

consumed for each hour of a day. In other words, we can see that the daily peaks are 

shifted. In summer months the peak demand occurs in the morning hours, while in winter 

months the peak moves to the evening hours.   

 
Furthermore, it should be mentioned that the Czech Republic is situated in a moderate 

climate thus there are in reality two relevant high ED consumption extremes: in relatively 

cold winters and in hotter summers. This is in contrast to for instance Nordic countries 

where winters are very cold but summers are less extreme or to California where the 

highest consumption is in the summer months (McMenamin and Monforte, 1998) rather 

than during the winter period.  

 

 
Figure 5: Weekly cycles of electricity demand. 
Figure 6: Daily cycles of electricity demand. 
S ource: A uthor’s ow n com putations. Data are scaled between 0 and 1. 
 
In fact, the electricity consumption data have at least three types of periodicities: annual 

(seasonal), weekly and daily. The annual effects are depicted in Figure 3. The weekly and 

daily cycles can be observed in Figure 5 and Figure 6. The ED is highly volatile on a day-

to-day basis. The weekly pattern comprised of a daily shape (Monday through Sunday) is 

strongly affected by especially working activities and by weather conditions. The working 

activity effect can be clearly seen in Figure 6 where is depicted a typical ED curve through 

a standard winter week. In general, the electricity consumption pattern on common 

weekdays remains almost constant with small random variations caused by industrial 

activities or weather conditions. The daily ED values are functions above all of the short-
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term historical electricity consumptions and forecast values of weather parameters such as 

temperature, humidity, and others (Khan et al., 2001). Usually the ED on Mondays and 

Fridays is different from that of other workdays. The reason is the extensive ED increase 

on Monday mornings when businesses and industries start work and on Friday evenings 

when consumers are starting the weekend. The ED pattern of Tuesdays, Wednesdays and 

Thursdays is usually very similar. The ED variations on weekends are different when 

compared to other days: people’s activities are distributed through a w eekend day in 

another way. 

 
The shape of the ED curve on Sundays is similar to that on so-called special days. Special 

days may include public holidays and days with major political or sport activities. 

Particularly, electricity consumption during public holidays is generally lower than other 

normal workdays (for instance see January 1st on Figure 5). Moreover, the public holiday 

effect spills into the surrounding days, i.e. the peak ED considerably decreases before and 

after a major public holiday. For this reason the public holidays have to be treated 

separately and very carefully. Since their inclusion is likely to be unhelpful in our forecasts 

modeling, public holidays are not included in the dataset.7 An alternative to this can be to 

smooth the public holidays out (Taylor and Buizza, 2003). 

 
To summarize the basic electricity demand characteristics, we can say that in most 

electricity markets the series of electricity consumption exhibit the following features 

(Conejo et al., 2005):  

1. annual, weekly, and daily seasonality, 

2. high volatility, 

3. calendar effects of holidays and weekends, and 

4. presence of outliers (mostly caused by special day effects).  

Mathematical models suitable for ED forecasting can be developed after these 

characteristics are inspected and understood. In our models seasonalities and calendar 

effects are mostly taken into consideration through the careful choice of explanatory 

                                                 
 
7 The following public holidays are excluded from the data set: January 1st, Easter Monday, May 1st, May 8th, 

July 5th, July 6th, September 28th, October 28th, November 17th, and December 24th, 25th and 26th. 
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variables. The high volatility of electricity consumption is a feature that is inherent to these 

data and cannot be changed. Outliers other than public holidays are not explicitly treated. 

 
In order to build day-ahead hourly forecasts, we have to, in fact, develop 25 models: a 

daily energy model and 24 separate models for each hour in the day (McMenamin and 

Monforte, 2007). However, for the purposes of this dissertation, we focus on a daily 

electricity dem and m odel. ―T he predicted values from  this daily E D  m odel are further used 

as right hand side drivers in the hourly models. The hourly models are then used to shape 

the forecasted daily energy‖ (M cM enam in and M onforte, 2007). Moreover, all the hourly 

models are quite analogous to the daily ED model using similar explanatory variables 

adjusted to the actual hour of the day. The daily energy model is developed for example in 

Peirson and Henley (1994), Ranaweera et al. (1995) or in Pardo et al. (2002). The daily ED 

model is applied to Czech daily electricity demand for 2001–2004, giving 1247 

observations (days), where the ED data of 2001–2003 are used for estimation purposes and 

data of January-May 2004 for test purposes. 

 
The time framework to forecast day-ahead electricity demand is explained and illustrated 

in Figure 7. The ED forecasts for day  are required on day , usually at hour  in the 

morning. However, the most recent usable data concerning the electricity consumption 

known in the morning of day  are the data for day  quantified at hour  of day 

. Therefore, the actual forecasting of the ED for day  can take place between hour 

 and hour  of day . 

 

 
Figure 7: Time framework to forecast electricity demand for day d. 
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 3.2  OVERVIEW OF ELECTRICITY DEMAND DETERMINING FACTORS  

 
Electricity consumption is affected by many factors; however, only a few of them can be 

accounted for in a forecasting model. The majority of previous studies has shown that the 

most important factors to determine the shape of the ED profile are weather variables (in 

particular air temperature) calendar variables, and past electricity consumption itself. 

Based on these studies, five types of variables are used as inputs in our models: a) weather 

related inputs,   b) calendar and sun related inputs, c) historical ED, d) electricity price 

inputs, and d) interactions. 

 

 3.2.1  WEATHER VARIABLES 

Weather conditions are considered one of the most important parameters in ED 

forecasting. ―A  good understanding of the effect of w eather conditions, like tem perature, 

cloud cover, rainfall or wind speed on electricity consumption can significantly improve 

forecast accuracy‖ (S ugianto and L u, 2003). In our m odels, the electricity dem and is 

modeled using two types of weather variables: temperature and illumination variables.  

 
The key weather variable to be included in the daily ED model is air temperature. It has 

been proven by many previous studies (Papalexopoulos, Hao and Peng, 1994; Hippert et 

al., 2001; Pardo et al., 2002; and many others) that outdoor temperature is the most 

important factor affecting electricity consumption. Particularly, Sugianto and Lu (2003) 

claim  that ―the inclusion of tem perature as an input variable reduces forecast errors, since 

electricity consum ption changes are very sensitive to tem perature changes‖.  

 
In order to model the daily electricity demand we use, in the same way as Papalexopoulos 

et al. (1994), four types of temperature variables: a) direct temperature variables, b) 

indirect temperature variables, c) temperature change variables, and d) cooling/heating 

degree day variables. Maximum and minimum past and forecasted temperatures are 

selected as direct temperature inputs.  
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Figure 8: Evolution of electricity consumption and average daily temperature. 
S ource: A uthor’s ow n com putations. E lectricity dem and d ata are scaled between 0 and 1. 
 
Including the average daily temperature variable that belongs to the indirect temperature 

variable group, can significantly improve the performance of the daily energy model. In 

Figure 8 is depicted the relationship between the daily ED and the average daily 

temperature. We can observe that the demand peaks coincide with the highest (summer) 

and lowest (winter) temperatures. 

 
This strong relationship can be even better observed in the following Figure 9 that explains 

the double-extreme electricity consumption mentioned in the previous section. 

Correspondingly to Figure 3 in McMenamin and Monforte (1998), Figure 9 shows a scatter 

plot of daily ED against the daily average temperature. The points are coded with symbols 

that separate weekends from the weekdays in each season. In winter months the ED 

increased due to low temperatures —  the lower the temperature, the higher the electricity 

consumption, i.e. the weather response slope is negative. This probably reflects the use of 

electric heating. On the contrary, ―in sum m er, increased tem perature values appear to be 

positively correlated w ith increased E D ‖ (McMenamin and Monforte, 1998). This situation 

is most likely caused by the extensive use of air conditioning. Finally, during the spring 

months the electricity consumption decreases with the increase of temperature, and vice 

versa in the fall months. Consequently, a combination of positive and negative weather 

response slopes results in a U-shape curve. In other words, the relationship between daily 

ED and the average daily temperature is clearly nonlinear (Figure 9).  
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Figure 9: Electricity demand versus average daily temperature with respect to weekends and 

seasons. 
Figure 10: Cooling and heating demands. 
S ource: A uthor’s ow n com putations. E lectricity dem and  data are scaled between 0 and 1.  
 
In addition, it needs to be pointed out that there is also ―significant variation in daily 

energy for a given temperature, leaving much to be explained by other conditions and input 

calendar variables‖ (McMenamin and Monforte, 1998). 

 
M oreover, since people’s physical sensation of coldness or w arm th usually persists for at 

least one day, the w eighted average of yesterday’s and the day before yesterday’s average 

daily tem peratures m ay have a strong im pact on E D , too. ―T he influence of lagged 

temperatures aims to reflect the delay in the response of heating appliances within 

buildings to changes in external tem peratures‖ (T aylor and B uizza, 2003). T hese variables 

come under indirect temperature inputs. 

 
Generally, ED is very sensitive to tem perature changes. ―T o capture the sensitivity of the 

nonlinear influence of tem perature change on E D ‖ (P apalexopoulos et al., 1994), the 

difference of two consecutive average daily temperatures will be used as a temperature 

change variable. 

 
The nonlinear response of ED to temperature effects suggests using two temperature-

derived functions: cooling and heating degree-day variables. These functions allow us to 

separate the winter and summer data and help us to get better results, above all, in the 

linear forecasting model. The degree-day functions are defined as:  
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heating degree-days (HDD) 

 

and cooling degree-day (CDD) 

 

where CTT is the cooling temperature threshold and HTT stands for the heating 

temperature threshold. The thresholds are based mostly on physical considerations. Since 

there is a neutral zone betw een 13°C  and 18°C  (see F igure 9) w here the dem and is inelastic 

to tem perature changes, the C T T  w as set to 18°C , w hile the H T T  w as set to 13°C . In 

Figure 10 is shown the number and percentage share of three types of days in our data set 

separated by the average daily temperature on cold days, non-sensitive days and hot days. 

―T he cooling degree-day function is zero until the C T T  is reached and then it increases‖ 

(Papalexopoulos et al., 1994) linearly. In other words, below the CTT there is usually no 

need to cool the indoor climate; however, with increasing temperature, a lot of (mainly) 

offices turn on the air conditioning, trying to keep the indoor temperature at a particular 

threshold (Papalexopoulos et al., 1994). The heating degree function works in the same 

form but in the opposite way; in other words, the values of the heating degree function 

increases as the outdoor temperature decreases. 

 
Figure 11: Electricity consumption versus average daily illumination with respect to weekends and  

seasons. 
S ource: A uthor’s ow n com putations. 
 

The next weather variable used in our daily ED models is average daily illumination. This 

factor indicates the hypothetical am ount of sunlight that reaches the earth’s surface and is 

measured in W/m2 (Watts per square meter). The illumination level affects human vision 
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and light sensors, which can lead to switching electric lights on or off. In fact, illumination 

is a complex function of visibility, cloud cover and the amount and type of precipitation 

(Taylor and Buizza, 2003). When it is cloudy and rainy, the level of illumination is very 

small or almost zero. On the contrary, this variable reaches the maximum level during 

sunny days. Our simulations show that this kind of variable affects the level of ED 

significantly. Therefore average daily illumination is included in our explanatory variable 

set. Figure 11 illustrates the nonlinear relationship between daily electricity consumption 

and average illumination with respect to seasons. Although the illumination variable has, 

as our model results show, strong explanatory power, it has been introduced in only a few 

studies, for example in Esp (2001) or in Taylor and Buizza (2003). 

 
In a number of ED forecast studies the authors have experimented with other weather 

variables, such as humidity, wind speed or cloud cover. However, not all weather factors 

are of great consequence. ―Some are typically random during a period of time, such as 

wind-speed or thunderstorms‖, and some factors are interrelated. ―For example, 

temperature is partly controlled by cloud cover, rain and snow. Among all these factors, 

temperature is still the most important because it has a direct influence‖ on electricity 

consumption (Papalexopoulos et al., 1994; Hippert et al., 2001). 

 
Finally, it should be pointed out that ED forecasts require weather forecasts. ―Murphy 

(1993) defined three types of w eather forecast ―goodness‖: consistency, quality and value. 

Consistency refers to the relationship between the forecasts‖ and judgments of the 

forecaster, ―quality refers to the relationship between the forecasts and weather events, and 

value refers to the relationship between the forecasts and the benefits or losses accrued by 

users‖ (B rooks and D ouglas, 1998). A standard practice in ED forecasting is to run ED 

forecast simulations using observed weather values instead of forecasted ones; however, in 

practice the forecasting errors will be larger than those obtained in simulations because of 

the added weather forecast uncertainty (Hippert et al., 2001). Brooks and Douglas (1998) 

examine the relationship between forecast quality and value for the user and claim that 

weather forecasts have the potential to have economic impacts on utility. They found out 

that considering the value of the forecasts for the entire year, the cold day forecasts have a 

lower impact. Thus the value of forecasts is concentrated on the cases when temperatures 
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are high.8 A s a result, w eather inform ation m ay be significant ―enough even on a sm all 

num ber of days to have large econom ic im pact‖. F urther, Brooks and Douglas (1998) 

assert that improvement in 3–5 day forecasts could make a huge difference in value given 

that annual differences between 1–2 day and 3–5 day forecasts are on the order of $5-10 

million.  

 
 3.2.2  CALENDAR VARIABLES 

The other important factor to determine the shape of the ED curve is the calendar day. 

Many previous studies have shown significant seasonal daily variations in electricity 

consumption (the daily variations of the Czech ED data are shown in Figure 6). In order to 

capture them, we introduce a qualitative variable day indicator into our models. The day 

indicator is specified as a dummy variable representing all the days in the week except the 

base day of Sunday.  

Although we have decided not to include the major public holidays into our data set, we 

have to treat an impact on days surrounding a particular holiday. Therefore, following 

Pardo et al. (2002), the following dummy variables have been defined: the day before a 

holiday, the day after a holiday, and a bridge day corresponding to a workday between a 

holiday and weekend days (usually Monday or Friday).  

 
A typical electricity demand curve also exhibits a strong monthly seasonality. Figure 12 

shows the average, minimum and maximum electricity consumption for each month of the 

year. 

 

                                                 
 
8 The percentage shares of cold, non-sensitive and hot days in our data set (see Figure 10) are very similar to 

that of Brooks and Douglas (1998). 
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Figure 12: Average, maximum and minimum monthly electricity consumption for the years  
2001–2003.  

Figure 13: The growing yearly electricity consumption in our data set.  
S ource: A uthor’s ow n com putations. E lectricity dem and d ata are scaled. 
 
The average ED curve represents the usual electricity consumption behavior during a year, 

while the difference between the maximum and minimum ED curves gives an indication of 

deviations from the mean behavior observed. Figure 12 suggests that the highest 

consumption is in January, consumption is lower in spring and fall (in fact, electricity 

demand is very similar for February, November and December, then for March and 

October, April and September, and finally for May, June and August with a relative 

maximum in June), and the lowest is typically in the hottest summer month, July. The drop 

in July is probably caused by summer vacation that has, however, two contrasting effects: 

on the one hand, the vacation causes a reduction in the industrial ED, and on the other hand 

there is an increase in residential and commercial sectors due to tourism (Pardo et al., 

2002). Since the reviewed ED data come from an industrial part of the Czech Republic, the 

former effect is probably stronger than the latter one.9 In order to catch this monthly 

                                                 
 
9 Generally, taking into consideration the whole Czech Republic (not only the industrial parts like the north-
east of the CR), the drop in July is probably because the only temperature-related effect on electricity 
consum ption in the C zech R epublic is w hen it’s cold. A ll w orkplaces and residences are heated, and som e 
portion of heating requires electricity, so when it gets cold in winter electricity use rises (also people are 
inside more, using radios, TVs, lights, etc. more). But when it gets hot in summer, a corresponding increase 
in use does not occur because the number of offices and residences in the Czech Republic that are air-
conditioned is rather small. This would be different with data from another area such as the U.S. Midwest. 
Since air conditioning takes much more electricity than heating, there are problems with electricity provision 
sometimes when it is very hot in the summer (when everyone has their AC on), but never in the winter when 
it is cold.  
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seasonality, we introduce a dummy variable month indicator. This variable represents all 

months in a year taking December as a base month.  

 
Figure 13 illustrates the escalation in the yearly electricity consumption during the 

considered years, 2001–2003. As we can see from the Figure, the 2002 electricity 

consumption increased almost 5% relative to the 2001 consumption. The difference 

between the electricity consumption in 2002 and 2003 is not so significant. To account in 

our models for the yearly growth factor, the dummy variable year indicator is introduced in 

the initial explanatory variable set for the years of 2001 and 2002, taking 2003 as the base 

year.  

 
The next calendar variable that could provide important information is daylight savings. 

Daylight savings is a binary variable representing the change to daylight savings time the 

last weekend in March, as well as the change back in October. 

 
 3.2.3  LAGGED ELECTRICITY DEMAND 

One of the most powerful factors determining electricity consumption is almost certainly 

the consumption itself. Since the ED series is strongly autocorrelated, lagged EDs are 

powerful explanatory variables for the day-ahead ED forecasting. The time framework to 

forecast day-ahead ED (Figure 7) suggests that the most recent data available for day d 

predictions are the data from two days ago, i.e. from day d-2. Additionally, in order to 

capture the effect of same day electricity consumption, the historical data from seven days 

ago can be a noteworthy factor determining the electricity demand profile. Thus, in our 

day-ahead forecasting models we consider two types of lagged EDs: historical data from 

two and seven days ago. Both of these historical EDs provide the demand shape and 

magnitude reference for the forecasted daily demand (Papalexopoulos et al., 1994). 

 

 3.2.4  ELECTRICITY PRICES  

In the present competitive electricity markets, the price of electricity should be considered 

as another significant influencing factor in short-term ED forecasting (Sugianto and Lu, 

2003). Naturally, price decreases or increases affect consumer preferences and usage of 

energy. Chen et al. (2001) claim that large cost-sensitive industrial consum ers ―can adjust 
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their consumption behavior according to price information and thus achieve maximum 

benefit‖. H ow ever, there are still only several studies that included electricity price into 

their demand forecasting models and very few of them reported more accurate estimates 

using price as an explanatory variable, such as Chen et.al (2001) or McMenamin (1997). 

As far as the Czech energy market is concerned, adding electricity price as a factor 

affecting demand into the forecasting models is at least questionable and needs much more 

research. 

 
In any case, the key condition for adding the electricity price into the forecasting models is 

the price elasticity of consumers. However, Borenstein (2001) states that demand 

insensitiveness to price fluctuation is one of the two fundamental problems with 

deregulated wholesale electricity markets. Unlike markets where consumers can easily 

substitute another product or buy the same product in another location and where demand 

is responsive to price changes, in electricity markets there is very little opportunity for real-

tim e dem and response. ―A s energy dem and increases during daily operation, the clearing 

price goes up until it matches the production cost of the most expensive supply. If there is a 

supply shortage, this process could raise the price enormously, as inelastic demand will 

have to settle for any price bid by suppliers.‖ (K eyhani, 2003)  

 
Figure 14 shows the development of daily electricity prices in the Czech Republic as 

reported by the Czech electricity market operator (EMO), OTE.10 The daily electricity 

price in this figure is, in fact, a simple average of all the day-ahead spot prices for that day. 

By comparing the spot price series in Figure 14 with the daily consumption data in Figure 

15 for the same time period, we can only hardly observe similar cycles for the price and the 

corresponding consumption. 

 

                                                 
 
10 The spot price data are available from www.ote-cr.cz. More information about the Czech electricity market 

operator, O T E , is available in the section below  entitled ―D escriptions of E lectricity M arket P articipants‖. 

http://www.ote-cr.cz/
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Figure 14: Daily average electricity spot price series (CZK/MWh) for 2002–2004.  
Source: www.ote-cr.cz. 

Figure 15: Daily electricity consumption for 2002–2004. 
S ource: A uthor’s ow n com putations. E lectricity dem and d ata are scaled. 
 
This simple data examination might suggest that Czech consumer demand is probably 

quite inelastic with respect to the market price. There are most likely two main reasons for 

such demand-inelastic behavior of consumers. Firstly, the Czech EMO was established at 

the beginning of 2002, thus the electricity short-term market in the considered time period 

2001–2004 had only started to work. Therefore the spot price data are available only for 

the years 2002–2004. Consumers, especially price-elastic consumers such as huge 

industrial companies, just started to take electric energy as a commodity that can be bought 

and sold on the market like other goods. Secondly, in our electricity demand data set are 

included both residential and industrial sectors. Although large industrial companies 

should be sensitive to electricity price changes in the interest of their revenues, the number 

of market participants and day-ahead market volumes were in the considered period still 

quite low. Residential customers, such as households, typically have very low demand 

elasticity with respect to electricity price changes. In the following Figure 16 is shown the 

development of yearly electricity consumer prices (in Czech Crowns per kilowatt hour). 

Having stable electricity consumption, residential customer electricity bills differ only by a 

few hundreds of Crowns from year to year.  
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Figure 16: Relationship between daily electricity consumption and average daily electricity price. 
Source: The Czech Statistical Office. 
 
It could be worth mentioning the other significant problem that occurs in nearly all 

electricity markets —  the relatively high volatility of short-term electricity prices as 

compared to other commodities. Conejo et al. (2005) note that spot price series are more 

volatile than electricity demand series that might be possibly caused by irrational bidding 

behavior by market participants. Borenstein (2001) defines and describes three main 

reasons for electricity prices to be volatile as follows: 

1) The supply side of the electricity market is physically constrained.  

Because of the physical properties of electricity production, as well as transition and 

distribution, there are fairly hard constraints on the amount of electricity that can be 

delivered at any point in time. This means that the supply-demand matching between 

any customer and supplier at any point in time at any location on electricity is 

especially difficult. 

2) Too little flexibility on the demand side of the electricity market. 

Although the technology to meter consumption on an hourly basis is widely available, 

no electricity market in operation today makes substantial use of real-time pricing, i.e. 

to charge a customer time-varying prices that reflect the time-varying cost of 

procuring electricity at the wholesale level.  

3) Electricity generation is very capital intensive. 

Because a significant part of generation costs are fixed, the marginal cost of 

production will be below the average cost for a plant operating below its capacity. So 

long as the m arket price is above a plant’s m arginal operating costs, a competitive firm 

is better off generating than not. As a result, excess capacity in a competitive market 

will cause prices to fall to a level below the average cost of producing electricity, and 

generators will lose money. This capital intensity, implying a high cost of idle 
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capacity, is also the reason that it is very costly for firms to maintain the ability to 

increase electricity production on very short notice. 

 

 
Figure 17: Rightward shift of the demand distribution. 
Source: Borenstein, 2001 

 
The effects of these characteristics of the electricity market are shown in Figure 17. L et’s 

assume that demand is uniformly distributed between  and . ―Now consider a 

relatively small rightward shift of the demand distribution to between  and . This 

small shift replaces hours that were at very law prices, with the hours that are at extremely 

high prices at the right side of the distribution‖ (B orenstein, 2001). E ven this sm all shift 

can cause the average price to increase drastically. 

 
B orenstein (2001) further explains that ―the critical point here is that the electricity m arkets 

are especially vulnerable to these supply-demand mismatches due to the extreme 

inelasticity of supply and demand. In markets where output is storable or capacity 

constraints are more flexible, supply can adjust to such mismatches within extreme price 

movements. In markets where buyers can see time-varying prices and respond to them, 

dem and can adjust to such m ism atches and thus pull dow n the price.‖  

Besides consumer demand inelasticity with respect to prices there is also another important 

aspect that should to be taken into consideration when adding electricity price as a factor 

affecting the demand: the deterministic relation between the price and demand itself. In 

functioning electricity markets the price and corresponding consumption usually have very 

similar cycles, i.e. when consumption is high, the price of electricity is high and vice versa. 

Therefore, one might suspect that the cyclic behavior in the price data is a result of the 

electricity consumption pattern (Simonsen et al., 2004). Indeed, Simonsen et al. (2004), 

using the normalized cross-correlation function, demonstrate that the seasonality that can 
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be observed in the system price can be attributed to the consumption patterns for electricity 

demand. As a result, consumption drives electricity prices. Smith (2003) also claims that 

ED forecasting is even more important than electricity price forecasting because demand is 

a major determinant of the electricity spot price. Conejo et al. (2005) in their electricity 

price forecasting study have considered the demand as the only explicative variable since 

the effects of the temperature and other weather-related variables are usually embodied in 

the demand forecasts. McMenamin et al. (2006) have included in the price determining 

variables besides demand the lagged price data and supply side factors, too. On the other 

hand, as we noticed earlier, there are very few studies that include price as a determining 

factor to the electricity demand forecasting models.   

 

 
Figure 18: Relationship between daily electricity consumption and average daily price. 
S ource: A uthor’s ow n com putations. E lectricity dem and d ata are scaled. 
 
Although the Czech electricity price and corresponding consumption data do not suggest 

that high prices occur in periods of high demand and vice versa (see Figure 14 and 15), the 

scatter plot in Figure 18 shows that there might be a non-linear relationship between price 

and consumption. Figure 18 provides a scatter plot of daily demand versus daily average 

prices, coded by type of day. 

 
Additionally, the market-clearing prices for the day  electricity demand forecast are 

required on day  at hour , at the latest. However, the day-ahead market-cleared 

price data concerning demand forecast for day  are available on day  at hour , 

whereas  < . Therefore, as Figure 19 shows, the most recent available price data for 

the day  demand forecast are the price data for day . 
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Figure 19: Time framework to forecast electricity demand for day d including the market-clearing 

prices.  
 

 3.2.5  INTERACTIONS 

All the calendar, weather, price and historical electricity consumption data are powerful 

tools in the day-ahead ED forecasting process; however, sometimes these factors 

themselves are not enough. Therefore, similarly to McMenamin and Monforte (1998), we 

introduce variable interactions. The most important interactions are the interactions 

between calendar and weather variables and calendar and lagged ED variables 

(McMenamin and Monforte, 1998). 

 Calendar variables and weather variables:  

In F igure 9 it is show n that ―an extra degree of temperature has a different impact on a 

w orkday than on a w eekend day‖ (M cMenamin and Monforte, 2007). Similarly, the 

weekday slopes in spring or fall for a given temperature are different than the weekday 

slopes in summer or winter. This fact suggests that the interactions of the temperature 

variables and day-of-week or season variables may be helpful in ED forecasting.  

 Calendar variables and lagged ED variables: 

―T he relationship betw een yesterday’s and today’s electricity consum ption m ay differ 

significantly across days‖ (M cM enam in and M onforte, 2007). Since one of our 

explanatory variables is two-day lagged ED, on a Monday, the lagged ED will be for a 

Saturday, and therefore the slope is different than on a Wednesday, when the lagged ED 

is for a Monday. Thus in order to estimate the differential influence of lagged ED 

variables across different days, these interactions must be allowed in the model. 
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The following Table 3 summarizes the explanatory variables considered in our daily 
energy models: 
 
WEATHER CALENDAR LAGGED EDs EL. PRICE 
Max Daily Temperature Day Indicator Lagged ED day-2 Lagged Price day-1 

Min Daily Temperature Month/Season Indicator Lagged ED day-7  

Avg Daily Temperature Year Indicator   

Avg Daily Temperature Squared Days near Holidays   

Weighted Avg Daily Temperature Day-light-savings   

Temperature Change    

Cooling/Heating Degree Day    

Average Daily Illumination    

Avg Daily Illumination Squared    

I n t e r a c t i o n s 
 
Table 3: Summary of explanatory variables.  

 

 3.3  FORECASTING PROCEDURES 

 
In order to find the most appropriate forecasting model for our ED data, we estimate a 

series of multivariate models and compare their performance. However, it is difficult to 

find a good standard for comparison in ED forecasting. ―If there is no com parison, the 

reports on the perform ance of a proposed m ethod are difficult to interpret‖ (H ippert et al., 

2001). Only very few papers made any kind of comparison. McMenamin and Monforte 

(1998) used as a point of reference a linear regression model. They estimated this model 

using various combinations of the input variables (including nonlinear inputs) and 

appropriate interactions. Papalexopoulos et al. (1994) presented the development and 

implications of an artificial neural network-based short-term system ED forecasting model 

for the Energy Center of the Pacific Gas and Electric Company (PG&E). Until that time 

P G & E  for its forecasting purposes used ―a pow erful linear regression m odel that utilized 

nonlinear transform ations‖ to effectively capture the ED variations. This linear regression 

model was in this paper also used as a point of reference. Azadeh et al. (2007) use analysis 

of variance (ANOVA) to compare the estimated ED results of the selected ANN, 

regression method and actual data. Hippert et al. (2001) in their review indicate that papers 
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that made any kind of comparison usually reported these comparisons to standard linear 

models.  

 
Based on these previous studies, we also build up both linear and nonlinear models and 

compare their performance. The former type of model is represented by multivariate linear 

regression models. In the class of nonlinear models we consider artificial neural networks. 

The modeling structure is in fact in both classes of models a stepwise scheme, starting with 

the basic simple model and adding new terms, so we are able to evaluate the effects of 

different factors that influence the daily electricity demand. This procedure is similar to 

that used by Pardo et al. (2002).   

 
Regression models are one of the most widely used statistical techniques in ED 

forecasting. The performance of these models has an advantage of clear interpretation and 

is used —  like in other above-mentioned papers —  as a good point of reference. Linear 

regression models model the relationship between electricity consumption and other 

determining factors, such as weather, the calendar, lagged electricity demand, and 

electricity price. Additionally, the significance of autoregressive patterns in error terms is 

also checked.  

 
On the other hand, as we have shown, there exist the complex nonlinear relationships 

between the electricity demand and a series of factors that influence it, particularly 

between the temperature and ED (Figure 9), illumination and ED (Figure 11) and 

electricity prices and ED (Figure 18). However, the traditional regression methods cannot 

properly represent these nonlinear relationships. Ranaweera et al. (1995) define the three 

main theoretical limitations of the most conventional statistical methods as follows: 

 the nonlinear relationships of the input and output variables are difficult to capture; 

 the co-linearity problem of the explanatory input variables limits the number of these 

inputs that can be used in the model; and 

 the models are not very flexible to rapid electricity demand changes. 

As Ranaweera et al. (1995), Chen et al. (2001), and other researchers state, the application 

of ANN technology to power systems has made it possible to overcome some of these 

limitations in the short-term ED forecasting problem. Artificial neural networks have 
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becom e ―a w idely studied electric E D  forecasting technique since 1990‖ (F einberg and 

Genethliou, 2005). They have been well accepted in practice, and they are used by many 

utilities, especially in the areas of forecasting, security assessment, and fault diagnosis. In 

general, besides the application of ANN in engineering, they also began to be used in 

various fields including finance, medicine, military, biology or hydrology. Pulido-Calvo et 

al. (2007), for instance, use linear regressions and neural networks to forecast water 

demand in irrigation districts of southern Spain during two irrigation seasons, 2001–2002 

and 2002–2003.  

 
In recent years, A N N ’s success in form ulating solutions lies m ostly in the area of financial 

problems. Since the 1990s a large number of studies design and use an ANN model for 

financial simulation, financial forecasting and financial evaluation. Dutta et al. (2006) 

model Indian stock market price index data (weekly closing values) using ANN. Panda and 

Narasimhan (2006) compare the performance of ANN with the performance of random 

walk and linear autoregressive models in the forecasting of daily Indian stock market 

returns. The prediction of the volatility of the Korean stock price index is the subject of an 

ANN application in Roh (2007). Zhang et al. (1999) and Yang et al. (1999) present a 

general framework for understanding the role of ANN in business bankruptcy prediction. 

Celik et al. (2007) work on evaluating and forecasting banking crises through ANN 

models. Callen et al. (1996) uses an ANN model to forecast quarterly accounting earnings 

for a sample of 296 corporations trading on the New York Stock Exchange. The objective 

of Tkacz (2001) is to improve the accuracy of the forecasts of Canadian GDP growth by 

using leading indicator ANN models. Pao (2007) adopts multiple linear regressions and 

ANN models to analyze the important determinants of capital structures of high-tech and 

traditional industries in Taiwan. Huang et al. (2004) make a comparative study of the 

application of support vector machine and backpropagation NN to the problem of credit 

rating prediction. V ojtek and K očenda (2006) identify A N N  as one of the m ost com m on 

methods in the process of the credit scoring of applicants for retail loans.  

 
As far as energy systems themselves are concerned, Kalogirou (2000) presents various 

applications of ANN in a wide range of fields for the modeling and prediction of energy 

problems. He claim that ANNs have been commonly used in the field of heating, 
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ventilation and air-conditioning systems, solar radiation, modeling and control of power-

generation system s, refrigeration, as w ell as in prediction of energy consum ption. ―E rrors 

reported w hen using these m odels are w ell w ithin acceptable lim its‖ (K alogirou, 2000) 

which clearly suggests that the application of ANN for energy problems is well-founded 

and ANN can be used for modeling also in other fields of energy-engineering systems.  

 
Particularly, the main advantage of ANN when applied to ED forecasting lies ―in their 

good capability of mapping nonlinear relationships between the demand and demand-

affecting factors‖, their ability to learn nonlinear relationships from  exam ples, and 

enabling the ―easy inclusion of any relevant factors into the m odel‖ (C harytoniuk et al., 

2000). A N N s should be especially useful w hen a researcher ―has a large am ount of data, 

but little a priori know ledge about the law s that govern the system  that generated the data‖ 

(Hippert et al., 2001). Although a lot of studies conclude that A N N s ―are not 

unambiguously superior to other methods, they are frequently the most accurate approach, 

especially w hen dealing w ith nonstationary or discontinuous data series‖ (H obbs et al., 

1998). 

 

 4  MODEL SPECIFICATION, ESTIMATES AND VALIDATION 
 
In this section we look for the most appropriate forecasting model applicable to the Czech 

electricity demand data. We start with multivariate models where the existence of seasonal 

and dynamic effects in the electricity demand series is addressed. We compare the results 

of both linear and nonlinear models. In order to capture the questionable effect of 

electricity price on demand, we develop two groups of models: the first one is linear and 

nonlinear models without price effects, the second one is models where the price factor is 

included.  

 
In the second stage, we turn our attention to models where the dynamics of electricity 

demand is substituted by introducing an autoregressive structure in the error term. We 

again judge both linear regression models and artificial neural networks, with and without 

price factors. 
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 4.1  ARTIFICIAL NEURAL NETWORK SPECIFICATION  

 
In order to better understand how artificial neural networks work, we briefly describe their 

basic principles. Then we develop a neural network model to predict electricity demand.  

Principally, ANNs are a nonlinear optimization tool inspired by how the human brain 

processes information and its natural propensity for storing experimental knowledge and 

making it available for use. There are a number of different types of ANNs; for an 

overview refer to, for instance, Bishop (1995). Valuable reviews of their use in short-term 

electricity demand forecasting provide Zhang et al. (1998) and more recently Hippert et al. 

(2001).  

 
Although various types of network architecture can be used, we are interested in the ANN 

design called multilayer feed-forward ANN that is still the most popular network 

architecture in electricity demand forecasting. The multilayer network consists of several 

nodes (also ―neurons‖) organized in one input, one or more hidden and one or more output 

layers. The way the nodes are organized is called the architecture of the ANN. Feed-

forward ANNs are probably the simplest type of ANNs. The information progresses from 

the input nodes, through the hidden nodes to the output nodes, i.e. in only forward 

direction in this network. The network considered is fully connected; i.e. every node 

belonging to each layer is connected to every node of the neighboring forward layer. In 

feed-forward ANNs there are no cycles or loops. The absence of feedbacks and 

interconnections between the nodes in the layers makes this system a feed-forward system. 

 
Figure 20 shows an example of an multilayer feed-forward ANN with one input layer with 

 input nodes, one hidden layer with  nodes and one output layer with one output node.  
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Figure 20: Example of artificial neural network architecture. 
 
The basic unit of the ANN is the artificial neuron. The neuron receives information 

through a number of input nodes, processes it internally and generates output value that is 

transmitted to the neurons in the subsequent layer. Firstly, the input values are linearly 

combined. In other words, each input node is multiplied by the weight  that 

corresponds to each connection and these products are added together with a constant bias 

term . The result is then passed through a nonlinear activation function . 

Activation functions for the hidden units are needed to introduce nonlinearity into the 

network. Almost any nonlinear function (except for polynomials) can be suitable. The 

activation function must be a non-decreasing and differentiable function. There are a 

number of functional forms, for example step, sign or identity functions, but the most 

common are the bounded sigmoid (s-shaped) functions such as the logistic, the hyperbolic 

tangent and the Gaussian function. The outcome of each node in the hidden layer is called 

the activation of the node 

. 

The activation value for each outgoing connection is then multiplied by the specific weight 

 and transferred to the final output layer  

 

where  is known as transfer function. The transfer function is chosen with respect to the 

required range of output. If the output should take discrete values, the transfer function can 

be chosen to be a threshold, piece-wise linear or a sigmoid function. If the range of the 
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output function is not restricted to a particular interval, then the preferred transfer function 

can be set to the simple identity function. 

 
The estimation of the parameters is called the training or learning of the ANN. From the 

forecaster’s point of view , the real goal is to m ake out-of-sample forecast errors small. In 

this way, the aim is to minimize the overall mean square error between the desired and the 

estim ated output values, i.e. to m inim ize the error (also ―cost‖ or ―loss‖) function  

 

where  is the true observed value of electricity consumption for day ,  denotes the 

estimates demand for day ,  stands for the number of true demands used for training,  

is the number of neurons in the hidden layer and  is number of input data.  

 
There are many optimization methods used to estimate the network parameters, for 

example recursive algorithms, such as back-propagation, optimization algorithms, such as 

the Newton method, or steepest descent and least squared algorithms, such as the 

Levenberg-Marquardt algorithm (McMenamin, 1997). The first and still most widely used 

training algorithm is the error back-propagation optimization procedure. The basic back-

propagation algorithm is similar to the steepest-descent technique; both are based on the 

computation of the gradient (the first derivatives) of the cost function with respect to the 

network parameters.11  

 
Creedy and Martin (1997) claim that the combination of a nonlinear model and a sum of 

squared objective functions suggests for the parameter estimation the use of a standard 

gradient algorithm, or more specifically, a nonlinear least squared procedure like the 

Levenberg-Marquardt (LM) algorithm. The LM algorithm is another widely used 

estimation method. It is a second-order method that blends gradient vector and Hessian 

matrix. Creedy and Martin (1997), McMenamin (1997) and Darbellay and Slama (2000) 

                                                 
 
11 That is the reason why the activation functions must be differentiable. 
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found this method to be superior to the back-propagation approach since the LM algorithm 

is relatively faster and more efficient. Although both of these estimation methods give the 

same results, for the type of forecasting problem focused on in this dissertation, we decided 

to use the LM algorithm, too.  

 
F inally, ―it can be show n that the least squared objective function for a neural network is 

extremely complex with a huge number of local optima, as opposed to a single global 

optim um ‖ (M cM enam in et al., 1998). T o avoid local m inim a, the training is initialized 

from different initial conditions and rerun. The network that achieves the smallest error on 

the estimation set is then used for forecasting. 

 
Since ANN is a complex nonlinear model, finding the appropriate design takes much more 

time and computational effort than building a linear model. In the design-searching 

procedure a number of choices must be made. Generally, before making the first forecasts, 

the designer has to select: the number of input nodes, the number of nodes per output layer, 

the type of activation function, the number of hidden layers and the number of nodes per 

hidden layer. 

 
In designing an ANN forecasting model the number of input variables is the most 

im portant problem  of selection. ―C urrently, there is no suggested system atic w ay to 

determ ine this num ber‖ (Z hang et al., 1998) selection of input variables. However, as the 

short-term ED forecast has been intensively studied for years, there are some studies and 

statistical analysis that can be helpful in determining which variables have significant 

influence on the ED. There are at least two main variables to be included in the 

explanatory data set: the ED itself and the weather variables (Doulai, Cahill, 2001; Chen et 

al., 2001; Papalexopoulos et al., 1994, and others).  

 
Since we want the neural network to produce a one-step-ahead forecast, i.e. a forecast for 

the next day daily electricity demand, we develop an ANN with a one-node output layer. 

For the output layer the linear combination of the activation functions will be the most 

suitable. In fact, at the output level we can use instead of linear combination any other 

nonlinear function. However, for most problems with continuous outcomes, there is no real 

gain from further nonlinearity at this level (McMenamin, 1997).  
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Figure 9 suggests that the relationship between the total daily ED and the average daily 

temperature is clearly nonlinear. For that reason the desired combination of activation 

functions must result in a U-shaped curve. Since the combination of one positively and one 

negatively sloped logistic curves really results in the desired U-shaped curve, it is rational 

to use an S-shaped logistic curve as the activation function in the hidden layer 

. 

Moreover, the exponential we can rewrite as follows 

. 

Since this specification is automatically interactive for each node, it seems likely the most 

appropriate choice, especially if the underlying process has multiplicative interactions.  

 
―T he universal approximation theorem claims that every continuous functions defined on a 

compact set can be arbitrary well approximated with‖ a multi-layer feed-forward ―neural 

netw ork w ith one hidden layer‖ (C sáji, 2001). This result is restrained to a limited classes of 

activation functions, for instance for sigmoid functions. Hippert et al. (2001) also argue 

that it has been shown that one hidden layer is enough to approximate any continuous 

functions. As a result, we also keep the approved ANN guidelines, and develop an ANN 

with one hidden layer. 

 
Deciding for one hidden layer, we face another important question: how many nodes 

should be selected for this hidden layer? Determining the number of these nodes may be 

m ore difficult since there are no hard and fast rules. T he problem  is that ―if there are too 

few, the model is not flexible enough to model the data well; if there are too many, the 

model w ill overfit the data‖ (H ippert et al., 2001). T his m eans that too m any param eters 

aim to explain also very specific events in the sample period but these specialized results 

do not necessarily generalize to out-of-sample conditions. Although there are no generally 

established statistics for deciding on the number of nodes, the following statistics can be 

relevant for this issue: adjusted R-squared, Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC). All of these statistics provides means for evaluating 

the trade off between model parsimony and model fit. The common feature of these 
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statistics is that they im prove w hen the sum  of squared errors reduces, ―but im pose som e 

penalty for the increased num ber of param eters‖. (McMenamin, 1997) 

 
With respect to the details described above, we develop the ANN and repeat its estimation. 

The procedure is similar to that of McMenamin and Monforte (1998). Variables included 

in the model are temperature, illumination, calendar, lagged ED and interactive variables. 

All these variables are included in all nodes. In all nodes the logistic activation functions 

are used. Table 4 shows that the optimal number of nodes appears to be between 2 and 5. 

This table suggests that after adding more parameters the sum of squared errors always 

declines, the adjusted R-squared slowly improves, and the AIC statistic and the in-sample 

Mean Absolute Percentage Error (MAPE) steadily declines. All these statistics indicate 

that ―the im provem ent of m odel fit outw eighs the penalty caused by an increased number 

of coefficients‖ (M cM enam in and M onforte, 1998). O n the other hand, w ith the increasing 

number of input variables, the BIC statistic also declines and the lowest is for 3- and 4-

node specification. However, for the 5-node model it raises again showing that a higher 

number of nodes can cause a possible loss of predictive power.  
 

 1-Node 
ANN 

2-Node 
ANN 

3-Node 
ANN 

4-Node 
ANN 

5-node 
ANN 

Adjusted R-squared 
AIC 
BIC 
In-sample MAPE 
Out-of-sample MAPE 

0.463 
15.912 
16.1 
6.63 
9.38 

0.975 
12.506 
13.263 
1.63 
1.50 

0.984 
12.488 
13.044 
1.43 
1.24 

0.987 
12.316 
13.042 
1.30 
1.60 

0.988 
12.26 
13.199 
1.18 
1.76 

Table 4: Results for the ANN model performance for different numbers of nodes. 

 
Obviously, the in-sample MAPE is lowest for the 5-node model. However, from the 

forecaster’s point of view  the m ost im portant statistic is the out-of-sample MAPE. 

Therefore the out-of-sample MAPE was chosen as the decisive criterion for the final ANN 

specification. Table 4 shows that the minimum BIC statistic as well as the lowest out-of-

sample MAPE corresponds with the 3-node specification. As a result, 3-node ANN was 

chosen as the final specification of our ANN model. 
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To summarize, using the language of (McMenamin and Monforte, 1998), our ANN has the 

following properties: 

 It is a single-output feed-forward artificial neural network. 
 It has one hidden layer with three nodes. 

 It uses a logistic activation function in each node of the hidden layer. 
 It uses a linear activation function at the output layer. 

 

 4.2  MEASURES OF FORECAST ACCURACY  

 
Through past two decades many forecast accuracy measures have been proposed, and 

several authors have made recommendations about their use. Makridakis (1993) claims 

that ―from  the theoretical point of view , there is a problem  as no single accuracy measure 

can be designed as the best‖. In other w ords, the m ost appropriate perform ance m easure 

has to be related to the purpose of the forecasting. From a practical point of view, as 

M akridakis (1993) states further, ―it m ust m ake sense, be easily understood and convey as 

m uch inform ation about accuracy (errors) as possible‖. F inally, it is im portant to 

distinguish between pure academic research focused mainly on evaluating forecasting 

competition and reporting the performance of methods and forecasters, for instance, in 

business (Makridakis, 1993). 

 
Generally, there are a number of measures of accuracy in the forecasting literature and 

each has it advantages and lim itations. C hen and Y ang (2004) assert that ―it is desirable to 

compare different accuracy measures to find out which measures perform better in what 

situations and w hich ones have very serious flaw s and thus should be avoided in practice‖. 

The comparison of different accuracy measures is a very demanding task since there is no 

obvious way how to do it.   

 
Basically, some forecast accuracy measures are useful when comparing different methods 

applied to the same data set (also single or individual time series), but these measures do 

not ought to be an appropriate choice for cross-series comparison (Hyndman and Koehler, 

2006; Chen and Yang, 2004). For studies comparing multiple forecast accuracy measures 

applied to the empirical evaluation of forecasting methods in M-competition (M2- or M3-



46 

competition) refer to, for instance, Makridakis (1993), Tashman (2000), or Chen and Yang 

(2004). Chen and Yang (2004) claim that the most preferred performance measures used in 

M1-competition are MSE (Mean Squared Error), MAPE (Mean Absolute Percentage 

E rror), and T heil’s U -statistics. More measures are used in M3-competition: sMAPE 

(Symmetric Mean Absolute Percentage Error), sMdAPE (Symmetric Median Absolute 

Percentage Error), MdRAE (Median Relative Absolute Error), and Percentage Better.  

 
H ow ever, H yndm an and K oehler (2006) have found out that ―m any of these proposed 

measures of forecast accuracy are not generally applicable since they can be infinite or 

undefined, and can produce m isleading results‖. T he authors have proposed a new  m easure 

MASE (Mean Absolute Scaled Error) for comparing forecast accuracy across multiple 

time series. As Hyndman and Koehler argue, MASE is easy to interpret, is always definite 

and finite, and does not substantially affect the main conclusions about the best-performing 

methods.  

 
Further, Hyndman and Koehler (2006), who discuss and compare measures of the accuracy 

of univariate time series forecasts in their study, divide the accuracy measures into four 

groups: scale-dependent measures, measures based on percentage errors, measures based 

on relative errors, and relative measures. Scale-dependent measures are useful when 

comparing different methods applied to the same set of data. The most commonly used 

scale-dependent measures are based on the absolute error or squared errors, for example 

MSE (Mean Square Error), RMSE (Root Mean Square Error), MAD (Mean Absolute 

Error), and MdAE (Median Absolute Error).  

 
The percentage error measures have the advantage of being scale-independent. The most 

widespread error measure is without a doubt MAPE (Mean Absolute Percentage Error), 

which is the average of the absolute values of the percentage residuals for each day. Other 

frequently used measures are MdAPE (Median Absolute Percentage Error), RMSPE (Root 

Mean Square Percentage Error), and RMdSPE (Root Median Square Percentage Error).   
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The third group of performance measures comprises measures based on relative errors, i.e. 

measures where each error is divided by the error obtained using another standard method 

of forecasting. Usually the benchmark method is the random walk. Hyndman and Koehler 

include in this group MRAE (Mean Relative Absolute Error), MdRAE (Median Relative 

Absolute Error), and GMRAE (Geometric Mean Relative Absolute Error).  

 
Finally, relative measures compare the forecasts to a baseline/naive forecasts, for instance 

random walk, or an average of available forecasts (Chen and Yang, 2004). RelMAE 

(R elative M ean A bsolute E rror), P ercentage B etter, and T heil’s U -statistics come under 

this group.  

 
In electricity demand forecasting the selection of appropriate error measures is always a 

difficult task because, as H ippert et al. (2001) point out, ―no single error m easure could 

possibly be enough to sum m arize‖ the forecasting perform ance. O n the other hand, the use 

of multiple measures makes comparison between forecasting methods difficult and 

unwieldy (Goodwin and Lawton, 1999). Although many error measures have been 

proposed, only some of the existing measures are preferred for the demand forecasting 

problem. Hippert et al. (2001) in their review state that the most reported accuracy measure 

in the demand forecasting problem is MAPE. Few also reported measures based on the 

squared error as they penalize large errors: MSE, RMSE (for example in Armstrong and 

Collopy, 1992), NMSE (Normalized Mean Square Error in Darbellay and Slama, 2000), or 

MSPE (Mean Square Percentage Error). Since utilities usually prefer error measures that 

are easy to understand and are closely related to the needs of decision-makers, measures 

based on absolute errors, for example MAD, are often preferred. MAD as the key error 

measure was reported, for instance, in Papalexopoulos et al. (1994).  

 
On the other hand, Zhang et al. (1998) in their review of forecasting with ANN claim that 

although ―M S E  is the m ost frequently used accuracy m easure in the literature‖, it is not 

―appropriate enough for A N N  building w ith a training sam ple since it ignores im portant 

inform ation about the num ber of param eters‖ the m odel has to estim ate. S im ilarly, 

Hyndman and Koehler (2006) affirm that MSE and RMSE are more sensitive to outliers 

than, for example, MAD.  



48 

Most papers report MAPE as an adequate measure; it has become somewhat of a standard 

in the electricity supply industry. However, several authors argue that the main 

disadvantage of the MAPE error measure is that it treats forecast errors above the actual 

observation differently from those below this value. This observation led Makridakis 

(1993) to propose the use of a so-called ―sym m etric‖ M A P E  (sM A P E ) w hich involves 

dividing the absolute error by the average of the actual observation and the forecast. 

H ow ever, lately G oodw in and L aw ton (1999) show  that this ―sym m etric‖ m easure lacks 

symmetry in that it treats large positive and negative errors very differently. Moreover, 

Hyndman and Koehler (2006) point out that sMAPE ―can take negative values although it 

is m eant to be an absolute percentage error‖. 

 
The performance of the models is measured in several complementary ways in this 

dissertation. We basically consider the error measures that are directly relevant to the 

users. In our case, the decision-makers are particularly interested in the MAD 

 

 

and MAPE 

 

 

measures, where  stands for the number of true demands used for training and  

corresponds to the number of forecasted daily demands. It is needed to note that some 

authors, for example Makridakis (1993), Goodwin and Lawton (1999), Tashman (2000), or 

Chen and Yang (2004) do not recommend to use MAPE as the performance measure since 

it is unstable when the original value is close to zero and is sensitive to outliers. However, 

none of these flaws is the case in our electricity demand time series.  

 
―F orecasters generally agree that forecasting m ethods should be assessed for accuracy 

using out-of-sample tests rather than goodness of fit to past data, i.e. in-sam ple tests‖ 

(T ashm an, 2000). T hus w ith all forecasting m odels, w e im plem ent T heil’s Inequality 
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C oefficient (also T heil’s U - or U1-statistics) as a statistic for the ex-post evaluation 

process. H ow ever, T heil’s Inequality C oefficient is used only very rarely since it is less 

easy to understand and communicate. This statistic is applied to the forecast results, for 

instance, in Stevenson (2002) who in his study models and forecasts the volatile spot 

pricing process for electricity. 

 
T heil’s Inequality C oefficient ―is related to the root m ean square forecast error, scaled such 

that it alw ays falls betw een zero and one‖ (S tevenson, 2002) 

 

For a perfect fit, i.e. for , the value of the statistic is equal to zero, i.e. . If 

, the forecast is as poor as could be since in this case either all  are equal to zero 

and  are nonzero or vice versa. T he value of T heil’s Inequality C oefficient can be 

decomposed into three components, which are defined as follows: 

 

 

 

where  is the mean of the model predicted values over the forecast period,  is the 

mean of the actual data values over the forecast period,  is the standard deviation of the 

dependent variable over the forecast period,  is the standard deviation of the predicted 

values during the forecast period, and  is the correlation coefficient.  

 
The bias proportion, , indicates how the average values of forecasts systematically 

deviates from the actual values. The variance proportion, , is a measure of how the 

forecasts reflect the variability of the actual demand data. Finally, the covariance 
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proportion, , measures unsystematic error which accounts for the remaining error 

after deviation from the average have been incorporated into . (Stevenson, 2002) 

We apply this decomposition to our forecast errors to evaluate the ability of the model to 

capture the mean effects and the variability of the true demand values. As Stevenson 

(2002) further states, for both the  and  a value above 0.1 ―is troubling and 

indicates the need for a revision of the forecasting m odel‖.  

 
In addition, most authors believe that the loss function associated with the forecasting 

errors, if known, should be used in the evaluation of the method. However, this kind of 

accuracy measure is only rarely used in the electricity demand forecasting. Armstrong and 

Fildes (1995) argue that a well-specified loss function, while desirable, cannot be regarded 

as sufficient. Loss functions are typically in currencies and depend on the forecast errors in 

a complex way. Moreover, recent studies show that the loss function in the demand 

forecasting problem  ―is clearly nonlinear‖ and is only rarely available for researchers (see 

Hippert et al., 2001 for a discussion).  

 
To conclude, Bunn and Taylor (2001) state that selecting an appropriate error measure is 

still a controversial area in forecasting research. Similarly, Zhang et al. (1998) also claim 

that ―a suitable perform ance m easure for a given problem  is not universally accepted by 

the forecasting academ icians and practitioners‖. Deciding on the measures depends upon 

the situation involved and needs of the decision-makers. Armstrong and Fildes (1995) 

claim  that the appropriate error m easure should have the follow ing attributes: ―the error 

measure should be reliable, resistant to outliers, and comprehensible to decision-m akers‖. 

Tashman (2000) argues that for a single time series, the desirable characteristics of an out-

of-sample test are adequacy, i.e. enough forecasts at each lead time, and diversity, i.e. 

desensitizing forecast error measures to special events. Having this in mind, in this 

dissertation the performance of the models is measured by four complementary accuracy 

measures: the in- and out-of-sam ple M A D  and M A P E  m easures, T heil’s Inequality 

Coefficient, as well as the very seldom used empirical loss function.  
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 4.3   MODELS WITH SEASONAL AND DYNAMIC EFFECTS 

 
The first issue that must be captured in our models is the existence of seasonal effects. To 

account in the models for seasonal effects not related to weather factors, we use the 

calendar variables, such as day, month and year indicators, days near public holidays, and 

dummy daylight savings variables. The seasonal effects caused by weather are caught by a 

number of temperature and illumination variables, such as average daily temperature and 

illumination, cooling/heating degree day, and other variables (see Table 3: Summary of 

explanatory variables).  

 
Peirson and Henley (1994) claim that in the modeling of short-term electricity demand, it 

is often common to ignore the dynamic specification. Both the studies of Peirson and 

Henley (1994) and Pardo et al. (2002) show the importance of dynamic specification in 

modeling the relationship between electricity demand and temperature. In other words, 

there are factors that suggest the influence of past temperatures in present electricity 

consumption. In order to check this hypothesis on Czech data, we introduce in our models 

a lagged effect of tem perature represented by the w eighted average of yesterday’s and the 

day before yesterday’s average daily temperatures, considering that the lagged effect can 

be relevant only over a short period.  

Incorporating a number of lags on the dependent variable is another method used to 

introduce dynamics into a forecasting model. In our models we consider the historical 

demands from two and seven days ago.  

 
Table 5 presents a brief correlation matrix of these data. As expected, the table shows that 

the daily demand is most highly negatively correlated with average temperature and 

illumination and most highly positively correlated with the heating degree-day variable. As 

can be seen, the demand rises through the weekdays, as well as through the fall and winter 

days, while the weekends, spring and summer days remarkably reduce the electricity 

consumption.  
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 Dt HDD Week- 
day 

Week-
end Spring Sum Fall Winter After 

Hol 
Before 

Hol 
Avg 

Temp 
Avg 
Illum 

Dt 

HDD 

Weekday 

Weekend  

Spring  

Summer  

Fall  

Winter  

After Hol  

Before Hol  

Avg Temp 

Avg  Illum 

1 

0.653 

0.59 

-0.59 

-0.096 

-0.496 

0.109 

0.47 

-0.003 

-0.031 

-0.676 

-0.549 

1 

-0.024 

0.024 

-0.123 

-0.5 

-0.12 

0.72 

-0.017 

-0.081 

-0.963 

-0.623 

1 

-1 

-0.004 

0.002 

0.012 

-0.009 

0.033 

0.076 

0.022 

0.002 

1 

0.004 

-0.002 

-0.012 

0.009 

-0.033 

-0.076 

-0.022 

-0.002 

1 

-0.35 

-0.345 

-0.383 

0 

0.029 

0.038 

0.266 

1 

-0.286 

-0.318 

-0.042 

0.016 

0.643 

0.509 

1 

-0.313 

0.074 

0.027 

0.025 

-0.264 

1 

-0.03 

-0.071 

-0.677 

-0.514 

1 

-0.013 

0.008 

0.006 

1 

0.069 

0.065 

1 

0.693 1 

Table 5: Correlation matrix of fundamental input factors. 

 
Taking into account all the described effects, a generic equation for both the linear and 

nonlinear models can be written as  

. 

 
Letting  represent the daily electricity demand, the linear regression model (LRM) is 

finally given by: 

 

 

where  represents all of the days in the week except the base day of Sunday,  

symbolizes all the months in the year except of base month of December,  corresponds 

to the years of 2001 and 2002,  and  are the days near a holiday,  and  

denote the two- and seven-day lags of demand,  and  stand for all the temperature and 

illumination variables,  is a symbol for all interactive variables used in the 

forecasting models, ,  are the coefficients to be 

estimated, and  is the residual term.   

 
The performance of this model is compared with the neural network model. In the 

following, the ANN consists of an input layer with 38 nodes, one hidden layer with three 

nodes that is the type of ANN chosen as the final specification, and an output layer with a 
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single output node. Our network will be of the following feed-forward type with a logistic 

(sigmoid) activation function in each node of the hidden layer: 

 

where  is the number of input data,  are the coefficients to be 

estimated for the terms considering the different effects, and  represents a set of all input 

variables.  

 
We are interested in daily demand data covering the time span from January 2001 through 

December 2003, for a total of 1053 sample data points. The observations for January 

through May 2004, i.e. 147 sample points, are reserved as a test period for the evaluation 

of forecasting power. The results for the estimation of (4.3.2) and (4.3.3) are summarized 

in Table 6.  

 

 LRM (4.3.2) ANN (4.3.3) 
PANEL A: In-sample performance   

Number of observations 1053 1053 

In-sample MAD 407.81 356.39 

In-sample MAPE 1.70% 1.47% 

Adjusted R-squared 0.979 0.983 

AIC 
BIC 

12.651 
12.820 

12.513 
12.050 

PANEL B: Out-of-sample performance   

Forecast observations 147 147 

Out-of-sample MAD 348.37 309.85 

Out-of-sample MAPE 1.29% 1.15% 

Theil's Inequality Coefficient 0.0087 0.0076 

-- Bias Proportion 
-- Variance Proportion 
-- Covariance Proportion 

10.45% 
0.42% 

89.12% 

10.15% 
  0.75% 
89.10% 

Table 6: Estimation results for models 4.3.2 and 4.3.3.  

 
Panel A of Table 6 summarizes the overall in-sample performance of both models. We can 

see that the ANN model slightly outperforms the regression model. Both models present a 

high predictive power, with an adjusted R-squared of 97.9% and 98.3%; however, there are 
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relatively significant differences in the in-sample mean absolute deviations (MAD) and 

mean absolute percent errors (MAPE) between the models.  

 
 
The results in Panel B show that the ANN specification gives better demand forecasts than 

the regression model. The overall out-of-sample MAPE for the LRM is 1.29%, while the 

ANN model takes the value of 1.15%. Theil's Inequality Coefficient provides another 

means of assessing the forecast errors. The inequality coefficient is an indication of 

systematic bias; a lower value is preferred. Its decomposition shows that 89.12% for the 

LRM and 89.10% for ANN of the coefficient captures the inequality caused by random 

factors. The remaining part is distributed between the inequalities due to the bias (10.45% 

and 10.15%, respectively) and that due to the different variances of the predicted and 

observed values (0.42% and 0.75%, respectively). Overall, these statistics show a high 

agreement between the true observations and forecasted values. Figure 21 and Figure 22 

visualize the predicted power of the models. 

 

 
Figure 21: Out-of-sample performance of model 4.3.2. 
Figure 22: Out-of-sample performance of model 4.3.3. 
 

 4.4  MODELS WITH SEASONAL, DYNAMIC AND PRICE EFFECTS 

 
On 1 January 2002 the electricity market in the Czech Republic started to open up and 

ranked among the world deregulated electricity markets where consumers are supposed to 

be price-sensitive. So far, our econometric models used for forecasting electricity demand 

do not explicitly account for any price effect on demand. Khotanzad et al. (2002) claim 

that short-term  E D  forecasting m odels ―custom ized to price-insensitive historical data from 

a regulated era w ould no longer be able to perform  w ell‖. Therefore we consider the price 
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effect to be valuable and include the ability to adjust for price changes in our current ED 

forecasting models. As a result we develop price-sensitive forecasting models where the 

price variable is factored in the relationship between system electricity demand and the 

influencing factors that capture the seasonal (calendar and weather variables) and dynamic 

(lagged variables) effects:   

. 

 
Since the Czech Market Operator was established at the very beginning of 2002, the 

available electricity prices cover the period of 1 January 2002 through 31 May 2004. 

Accordingly, we consider daily demand data covering the same time span, for a total of 

700 sample data points. The observations for January through May 2004 are kept for test 

purposes.   

 
Average Daily Price:  1 January 2002 to 31 May 2004 

 Mean Std. Dev. Minimum Maximum    

Daily Price 1420.7 1148.6 0.04 3160.0    

    CORRELATION COEFFICIENT     

 Dt HDD Week- 
day 

Week-
end Spring Sum Fall Winter After 

Hol 
Before 

Hol 
Avg 

Temp 
Avg 
Illum 

Daily 
Price 

0.397 0.178 0.259 -0.259 -0.153 0.050 0.113 0.012 -0.019 -0.006 -0.140 -0.106 

 
Table 7: Summary of the average daily price of electricity data. 

 
Table 7 describes a statistical summary of the price variable. The standard deviation of the 

price data is high indicating very volatile data. Conejo et al. (2005) state that price series 

are more volatile than demand series. The electricity prices are the most positively 

correlated with the demand data, although the causality of these two data series is 

questionable. The prices rise through weekdays and fall with on-coming weekends. As can 

be seen, weather data also considerably influences the electricity price. Especially 

decreasing daily temperatures have rising effects on prices. 

 
Including the price effects into the electricity demand specification, the final linear 

regression will be equivalent to the following system:  
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, 

where  corresponds to the one-day lag of average daily electricity price.  

 

The corresponding mathematical model for neural network is expressed as  

), 

where price variable is included in the set of input variables .  

 

 LRM (4.4.2) ANN (4.4.3) 
PANEL A: In-sample performance   

Number of observations 700 700 

In-sample MAD 372.10 294.51 

In-sample MAPE 1.51% 1.20% 

Adjusted R-squared 0.982 0.987 

AIC 
BIC 

12.528 
12.755 

12.267 
13.047 

PANEL B: Out-of-sample performance   
Forecast observations 147 147 

Out-of-sample MAD 387.13 356.38 

Out-of-sample MAPE 1.44% 1.34% 

Theil's Inequality Coefficient 0.0096 0.0085 

-- Bias Proportion 
-- Variance Proportion 
-- Covariance Proportion 

11.97% 
  1.27% 
86.77% 

1.64% 
  2.48% 
95.88% 

 
Table 8: Estimation results for models 4.4.2 and 4.4.3.  

 
Table 8 summarizes the main estimation results for (4.4.2) and (4.4.3). Comparing the 

results of models 4.3.2 and 4.3.3, including the price variable into the input data set 

improved the overall in-sample performance of both models. While the adjusted R-squared 

improved only slightly, the MAD and MAPE statistics decrease notably. However, 

comparing Panel B of Table 6 and Panel B of Table 8 we can see that the predictive power 

of models 4.4.2 and 4.4.3 considerably declined. The out-of-sample MAPE of the LRM 

model is 1.44% against 1.29% for model 4.3.2 and takes a value of 1.34% against 1.15% 
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for the A N N  m odel. T he T heil’s Inequality C oefficient for both m odels is higher than for 

models without price effects suggesting that consumers are not able to adjust their 

consumption to the price information. This behavior is mainly justified by the fact that 

during the considered years of 2002–2004 the Czech electricity market was opening 

stepwise only for large industrial consumers (see Table 1) while our data include both 

industrial and residential consumers.  

 
In addition, the following Table 9 shows the significance of the price variable in the model 

estimation. The values of T-statistics and their P-values suggest that in none of the models 

is the price variable significant except node 3 in the ANN model specification. 

 
 Coefficient T-Stat P-value 
LRM (4.4.2)    

DailyPricet-1 

DailyPricet-1*WkEnd 

0.100 
-0.119 

1.234 
0.765 

21.75% 
44.43% 

ANN (4.4.3)    

Node1: DailyPricet-1 

Node1: DailyPricet-1*WkEnd 
Node2: DailyPricet-1 

Node2: DailyPricet-1*WkEnd 
Node3: DailyPricet-1 

Node3: DailyPricet-1*WkEnd 

0.010 
0.015 
0.027 
0.041 
0.355 
2.507 

1.235 
0.278 
0.798 
0.141 
-3.293 
0.935 

21.73% 
78.13% 
42.52% 
88.75% 
0.11% 
0.75% 

 
Table 9: Significance of the price variable in the LRM and ANN specifications.  

 
Overall, comparing the results of (4.4.2) and (4.4.3), the ANN model again appears to be 

slightly superior to the linear regression model despite the effort to include the nonlinear 

inputs and interactions in the regression model. On Figures 23 and 24 are depicted the 

observed and forecasted values of both of the estimated models 
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Figure 23: Out-of-sample performance of model 4.4.2. 
Figure 24: Out-of-sample performance of model 4.4.3. 
 
An econometrically tractable nonlinear extension of the linear autoregressive model is the 

threshold autoregressive model with exogenous variables (TARX). TAR models are 

especially ―suited for tim e-series processes that are subject to periodic shifts due to regime 

changes‖ (E nders et al., 2007). These models are quite popular in the nonlinear time series 

literature since they are relatively simple to specify, estimate and interpret. Hansen (1997) 

developed a distribution theory for least squares estimates of the threshold in TAR models 

and applied this theory to the U.S. unemployment rate. He found statistically significant 

threshold effects. Johansson (2001) investigated the usefulness of TAR models for 

modeling real exchange rate dynamics. His conclusion is that ―the pow er of the tests for 

T A R  behavior can be very low  for realistic param eter settings‖. T eräsvirta et al. (2005) 

examined the forecast accuracy of linear autoregressive (AR), smooth transition 

autoregressive (STAR),12 and neural network (NN) time series models for 47 monthly 

macroeconomic variables of the G7 economies. Their point forecast results have indicated 

that the STAR model generally outperformed the linear AR model. Enders et al. (2007) 

applied the TAR process to real U.S. GDP growth, and constructed confidence intervals for 

the parameter estimates. However, since the confidence intervals were too wide, they 

concluded that it is problematic to assert that there are different degrees of persistence in 

positive versus negative growth regimes.  

 

                                                 
 
12 If the discontinuity of the threshold is replaced by a smooth transition function, the TAR model can be 
generalized to the smooth transition autoregressive (STAR) model (Hansen, 1996). 

0,50

0,70

0,90

1,10

1.1.2004 1.2.2004 1.3.2004 1.4.2004 1.5.2004

Model 4.4.2

Predicted

Actual

0,50

0,70

0,90

1,10

1.1.2004 1.2.2004 1.3.2004 1.4.2004 1.5.2004

Model 4.4.3

Predicted

Actual



59 

There is a sizeable literature on the performance of the TAR models in the area of 

electricity spot price forecasting. For example, Stevenson (2002) applied the linear AR 

model and TAR model to electricity price series for the Australian state of New Wales. He 

concluded that ―m odels from the TAR class produce forecasts that best appear to capture 

the m ean and the variance com ponents‖ of the price data. T he short-term forecasting 

powers of AR and TAR models in the Nord Pool electricity spot market are compared also 

in the paper of Weron and Misiorek (2006). They found that nonlinear regime-switching 

models outperform the linear AR models especially during volatile weeks.  

 
Next we examine whether a model from the TARX class produces better forecasts of the 

electricity demand than the one-regime linear equivalent given by (4.4.2). The linear AR 

model is often taken as the typical linear benchmark, for instance in Stevenson (2002) or 

Khmaladze (1998).  

 
For our purposes we consider a two-regime threshold autoregressive model with electricity 

price as a critical variable. What determines whether the forecasted electricity demand 

belongs to one regime or another is whether the change in electricity price is positive or 

negative. It follows that the threshold level is equal to zero. Namely, the specification of 

the TARX model is given by: 

 

where  is the threshold variable. We have decided to use two kinds of threshold 

variables. For the first TARX specification (TARX_1) we use a  equal to the difference 

in average daily prices for yesterday and eight days ago, i.e. . The reason 

for employing this one-week price difference is to compare the electricity prices according 

to the same day in the week. For the next TARX model (TARX_2) we have decided to set 

 equal to the difference in average daily prices for yesterday and the day before 
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yesterday, i.e. , in order to capture the latest day-to-day change in the 

electricity price. 

 
The following Table 10 contains statistics for the estimation and forecasting results for 

both kinds of TARX models. The performance of both the TARX models are very similar, 

independent on the threshold level demonstrating again the demand inelasticity of 

consumers with respect to market price. On the whole, the performance of both the models 

are comparable with the LRM models developed above, as well as the non-linear ANN 

models. In comparison with the LRM models, applying TARX models to our data results 

in an overall slight improvement of in-sample statistics while all out-of-sample statistics 

noticeably worsen. The forecasting results of the ANN models suggest that the ANN 

model is more appropriate for electricity demand data modeling than the TARX model. 

Overall, while it may seem tempting to analyze the electricity demand data using TARX 

models with the electricity price as the threshold variable, attempts are likely to founder on 

the very low price elasticity of consumers. Consequently, the simpler LRM and ANN 

models remain the more suitable candidates for modeling the electricity demand data. 

 
 TARX_1 TARX_2 

PANEL A: In-sample performance   

Number of observations 700 700 

In-sample MAD 352.48 359.25 

In-sample MAPE 1.43% 1.46% 

Adjusted R-squared 0.982 0.981 

AIC 
BIC 

12.492 
12.934 

12.558 
13.020 

PANEL B: Out-of-sample performance   
Forecast observations 147 147 

Out-of-sample MAD 412.31 406.62 

Out-of-sample MAPE 1.54% 1.53% 

Theil's Inequality Coefficient 0.0100 0.0100 

-- Bias Proportion 
-- Variance Proportion 
-- Covariance Proportion 

13.92% 
  1.91% 
84.17% 

14.27% 
  0.25% 
85.48% 

 
Table 10: Estimation results for TARX_1 and TARX_2 models.  
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 4.5  MODELS WITH AUTOREGRESSIVE SPECIFICATION 

 
In order to account for dynamic effects in our models, we introduce the two- and seven-day 

historical values of electricity consumption into the input variable set. However, there are 

two possible problems with this procedure. Firstly, in the presence of other explanatory 

variables, the introduction of the lagged dependent variable into the m odel w ould ―im pose 

a common dynamic autoregressive structure on the remaining variables‖ including w eather 

variables. (Pardo et al., 2002) With daily data the degree of autocorrelation may extend 

beyond the first order. Secondly, it may appear that the lagged dependent variables may 

serve to model the data rather than represent actual dynamic behavior. Therefore, Peirson 

and Henley (1994) developed an ED forecasting model where the dynamic behavior of the 

data is captured through the error process, without the inclusion of lagged dependent or 

lagged explanatory variables.  

 
The introduction of the autoregressive error structure in the forecasting model specification 

is a quite common approach; see for instance Ramanathan et al. (1997) or McNelis (2005). 

Moreover, Ramanathan et al. (1997) developed a short-run hourly forecasting model 

system using simple multiple regression models, one for each hour of the day with a 

dynamic error structure. Their results show that this very straightforward forecasting 

strategy has performed extremely well in tightly controlled experiments against a wide 

range of alternative models. However, the results of Peirson and Henley (1994) and 

subsequently also Pardo et al. (2002) demonstrate that capturing dynamic effects only 

through an autoregressive specification of the error structure will result in an over-

prediction of the effect of a change in temperature on demand by up to 100%. The authors 

conclude that the electricity demand is affected by both the autoregressive error 

specification and by the dynamic components of weather variables.  

 
As a result, with respect to the findings of these studies, next we develop models where the 

dynamic effects are captured both through the lagged weather variables and through an 

autoregressive representation of the error structure, i.e. without the inclusion of a lagged 

dependent variable. Since the demand, weather and price data are typically of a daily 

frequency, the autoregressive specification AR(i) would require  to be at least seven. 
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The general estimating equation takes the following form 

 

 

                                                        

where  is the error term,  is white noise and  is a polynomial function of the 

backshift operator .  and  is the number of 

polynomial coefficients.  

 
In order to be able to compare the estimation results of particular models, we present two 

groups of models. Firstly we develop a multiple regression and neural network model with 

seasonal and dynamic effects and with an AR specification of error terms. After that we 

turn our attention to models that capture seasonal, dynamic and price effects and include 

lagged errors.  

 
Specifically, the linear regression model of the first group of models is specified by 

introducing a six-order autoregressive process in the error term: 

 

               

 

The disturbance term  consists of a current period white-noise shock  in addition to 

six lagged values of this shock, weighted by the vector   

 
The corresponding neural network model with a four-order autoregressive error structure is 

given by: 

 

, 

where lagged demand values are not included in the input data set .  
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The multiple regression model that comprises seasonal, dynamic and price effects with a 

seven-order autoregressive process in the error term is given as follows: 

 

 

 

 

Finally, adding the price effect in ANN model where the errors are assumed to follow an 

autoregressive specification leads to the following system of equations:  

 

 

where price variable is a part of the set of input variables .  

 
The results of estimating all four equations (4.5.2)-(4.5.5) are reported in Table 11. As can 

be seen, including the price variable into the input factors improves the overall in-sample 

performance of both the linear and nonlinear models with the AR error structure. While the 

R-squared statistics are comparable for all models, the MAD and MAPE values are the 

best for the ANN model given by (4.5.5). On the other hand, the price variable in the 

models with the AR error structure heavily worsens the out-of-sample performance, 

suggesting that this variable brings no additional information for the forecasters. The 

simple regression model provides the best out-of-sample performance (4.5.2) with the 

lowest MAD and MAPE value of 329.8 MW and 1.24%, respectively. The decomposition 

of the inequality coefficient of the model (4.5.2) shows that the greatest part of the 

coefficient 97.3% captures the inequality caused by random factors. 
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Data range 

Models with seasonal and dynamic 
effects and AR structure in the error 

term 
1 January 2001 –  31 May 2004 

Models with seasonal, dynamic and 
price effects and AR structure in the 

error term 
1 January 2002 –  31 May 2004 

 LRM (4.5.2) ANN (4.5.3) LRM (4.5.4) ANN (4.5.5) 

PANEL A: In-sample 
performance     

Number of observations 1047 1049 693 694 

In-sample MAD 373.27 378.05 346.86 332.75 

In-sample MAPE 1.55% 1.57% 1.40% 1.35% 

Adjusted R-squared 0.982 0.976 0.984 0.983 

AIC 
BIC 

12.506 
12.691 

12.879 
13.385 

12.379 
12.634 

12.524 
13.251 

PANEL B: Out-of-sample 
performance     

Forecast observations 147 147 147 147 

Out-of-sample MAD 329.77 354.33 391.93 422.35 

Out-of-sample MAPE 1.24% 1.42% 1.46% 1.70% 

Theil's Inequality 
Coefficient 0.0089 0.0104 0.0105 0.0137 

-- Bias Proportion 
-- Variance Proportion 
-- Covariance Proportion 

1.56% 
1.14% 

97.30% 

1.77% 
1.72% 

96.51% 

1.22% 
0.07% 

98.71% 

3.82% 
3.10% 

93.08% 
 
Table 11: Estimation results for models with an autoregressive specification in the error terms.  

 

 4.6  SUMMARY OF MODELS PERFORMANCE 

 
Summarizing the performance of all eight models, we can say that the price of electricity 

as an explanatory factor significantly affected the in-sample performance of the models. 

The neural network model (4.4.3), i.e. the model incorporating the seasonal, dynamic and 

price effects without lagged errors, provides the best values for almost all the chosen in-

sample statistics. On the contrary, the price variable overly decreases the forecasting power 

of both the models with and without a dynamic error structure. The neural network model 

(4.5.5) with a six-order error structure and price effects shows the worst out-of-sample 

performance. Its mean absolute deviation is more than 422 MW, MAPE statistics takes the 

value of 1.70%  and the T heil’s Inequality C oefficient has the highest value of 0.0137. 

 



65 

Including the dynamic error structure into the models significantly improves the in-sample 

performance of the linear models. The LRM (4.5.4) incorporating both the price effects 

and lagged errors presents the best MAPE value of 1.40%. Also the out-of-sample statistics 

of both the LRMs with lagged residuals are slightly better or at least comparable with the 

LRMs without a lagged AR error structure. The LRM (4.3.2), i.e. the simple regression 

model without price effects and lagged errors, gives among the all linear models the worst 

in-sample statistics with a MAPE value of 1.70% and MAD 407.8 MW.  

 
Adding in the dynamic error structure into the neural network specification has the 

opposite effect. Both the in- and out-of-sample performance of this nonlinear type of 

model considerably worsens. Among the ANN types, model (4.5.3), i.e. the model with 

AR error structure presents the worst in-sample performance. The ANN model (4.4.3) has 

the best in-sample statistics, demonstrating again that the price factor helps to improve in-

sample performance. The simplest ANN model (4.3.3) without price effects and dynamic 

error structure provides us with the overall best forecasting power with MAPE statistics of 

1.15%, MAD statistics 309.9 MW and an inequality coefficient of 0.0076.  

 
To conclude, from the forecaster’s point of view , the forecasting abilities of the best linear 

model (4.5.2) and the best neural network model (4.3.3) are not very different. However, 

while the LRM needs for the improvement of its performance to incorporate a dynamic 

error structure, the ANN model gives the best forecasts in its simplest specification. 

Further, the price factor reveals to be not significant for demand forecasting. This fact 

demonstrates that at least during the considered time period consumers were not price-

elastic enough to react promptly to the changing electricity price conditions.  
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 ANN (4.3.3) LRM (4.5.2) 

DAY-TYPE Abs Error  
(MW) 

Out-of-sample 
MAPE (%) 

Abs Error  
(MW) 

Out-of-sample 
MAPE (%) 

Monday 220.4 0.8 334.2 1.22 
Tuesday 411.2 1.44 359.8 1.26 

Wednesday 432 1.57 249 0.87 
Thursday 336.4 1.20 273.5 0.96 

Friday 308.7 1.10 336.8 1.20 
Saturday 191.4 0.84 329.5 1.50 
Sunday 237.8 1.06 376.2 1.65 
Average 305.4 1.15 322.7 1.24  

Table 12a: Forecast comparison results for each day-type for the period 1 January 2004 to 31 May 
2004. 

 
In Table 12a is compared the forecast accuracy of both models according to day-types for 

the period 1 January 2004 to 31 May 2004. As can be seen, with the ANN model the 

average absolute ED forecast error was slightly reduced from 322.7 MW to 305.4 MW. 

While the linear model has significantly higher foresting power especially for Tuesday, 

Wednesday and Thursday, it provides relatively poor forecasts for weekend days. Using 

the average electricity price of CZK per MWh as given by the Czech Market Operator, the 

reduction in forecast errors may result in financial savings of tens of thousands of CZK. 
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  ANN (4.3.3) LRM (4.5.2) 
MONTH-TYPE DAY-TYPE Abs Error  

(MW) 
Out-of-sample 

MAPE (%) 
Abs Error  

(MW) 
Out-of-sample 

MAPE (%) 
PANEL A   (2001-2003)  (2001-2003)  (2001-2003)  (2001-2003) 

WINTER MONTH 
(January, February, 
November, 
December)  

Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
Sunday 
AVERAGE 

357.6 
335.3 
338.9 
363.7 
384.9 
382.3 
353.2 
359.4 

1.34 
1.22 
1.24 
1.28 
1.35 
1.55 
1.52 
1.36 

356.1 
338.5 
302.0 
323.4 
364.7 
393.0 
321.7 
342.7 

1.37 
1.25 
1.11 
1.16 
1.33 
1.65 
1.38 
1.32 

SUMMER MONTHS 
(Jun, July, August) 

Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
Sunday 
AVERAGE 

452.5 
418.3 
342.0 
397.9 
392.9 
319.9 
287.3 
373.0 

2.05 
1.85 
1.48 
1.77 
1.83 
1.81 
1.68 
1.78 

484.2 
429.4 
416.0 
431.0 
378.9 
269.8 
331.6 
391.6 

2.21 
1.90 
1.84 
1.95 
1.77 
1.54 
1.92 
1.88 

    
PANEL B   (Jan-May 2004)   (Jan-May 2004)  (Jan-May 2004)  (Jan-May 2004) 

WINTER MONTHS  
(January, February) 
 

Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
Sunday 
AVERAGE 

348.6 
446.1 
129.3 
206.0 
267.1 
271.1 
262.6 
275.8 

1.15 
1.45 
0.42 
0.67 
0.86 
1.04 
1.05 
0.94 

553.2 
291.0 
166.6 
163.1 
359.6 
578.7 
433.4 
363.6 

1.82 
0.94 
0.54 
0.53 
1.16 
2.34 
1.72 
1.29 

SPRING MONTHS  
(March, April, May) 

Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
Sunday 
AVERAGE 

147.9 
396.3 
634.3 
415.1 
328.6 
148.7 
215.6 
326.6 

0.61 
1.47 
2.35 
1.51 
1.23 
0.66 
1.04 
1.27 

208.9 
406.9 
301.3 
354.5 
316.6 
148.3 
336.2 
296.1 

0.88 
1.49 
1.09 
1.28 
1.20 
0.66 
1.60 
1.17 

Table 12b: Comparison of estimation and forecast results for the day-type with respect to winter 
and spring months. 

 
Going into more in detail, Table 12b sums up the comparison of estimation (Panel A) and 

forecast (Panel B) results with respect to the day-type divided into winter and spring or 

winter and summer months, respectively. The results are mixed. During the estimation 

period 2001–2003 the linear model shows higher predictive power in the winter months, 
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hile for the ANN model better results are obtained in the summer months. Conversely, 

throughout the forecasting period January to May 2004 the ANN model generally yields 

better point forecasts in the cold months and unambiguously works more accurately during 

the weekends. On the other hand, the linear model overall yields very small deviations 

from the nonlinear model for each day in the week except Sunday, thus LRM is preferred 

for the spring months. Generally, the results of both of the models are comparable. 

However, with respect to the average values, the ANN model is slightly preferable to the 

LRM model.   

 
Table 13 shows the overall in-sample and out-of-sample forecasting ability of both the 

linear and nonlinear models with respect to month-type. Generally, the ANN as given by 

(4.3.3) performs better than or comparably to the LRM as defined by (4.5.2) for almost all 

month-types. The most significant difference in forecasting error occurs in the out-of-

sample January month-type where the neural network MAPE statistics take the value of 

0.88% while the LRM out-of-sample MAPE has the value 1.75%. On the whole, 

considering all the linear and nonlinear model statistics, the neural network specification 

appears to be slightly superior to the regression model. 

 
 

 
Table 13: Estimation and forecast comparison results for each month-type. 

 

 ANN (4.3.3) LRM (4.5.2) 

MONTH-TYPE 
In-sample  

MAPE (%) 
(2001-2003) 

Out-of-sample  
MAPE (%) 

(2004) 

In-sample  
MAPE (%) 
(2001-2003) 

Out-of-sample  
MAPE (%) 

(2004) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Average 

1.10 
1.06 
1.14 
1.29 
1.29 
1.42 
2.64 
1.32 
1.48 
1.66 
1.30 
1.90 
1.47 

0.88 
1.04 
1.03 
1.59 
1.20 

 
 
 
 
 
 
 

1.15 

1.18 
1.20 
1.31 
1.77 
1.38 
1.31 
2.75 
1.60 
1.63 
1.53 
1.20 
1.72 
1.55 

1.75 
0.96 
1.00 
1.20 
1.31 

 
 
 
 
 
 
 

1.24 
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Makridakis and Hibon (2000) state that the criterion of forecast evaluation is the degree of 

accuracy of the forecast. From the economic point of view, the performance of both the 

neural network and linear regression models could be judged through the financial losses 

of inaccurate dem and forecasts. ―T he relationship betw een the size of a forecast error and 

the cost to an organization or the user of the forecast has often been referred to as a loss 

function‖ or an error cost function (L aw rence and O Ć onnor, 2005). A n unbalanced loss or 

cost function is often denoted as an asymmetric loss or cost function. ―In addition to 

sym m etry/asym m etry, the cost function m ay exhibit a linear or nonlinear shape‖ 

(L aw rence and O Ć onnor, 2005). A s L aw rence and O Ć onnor (2005) further claim , ―in a 

perfect world the minimization of error will also minimize cost and m axim ize benefit‖. In 

the asymmetry condition, where the errors are predictable, the cost of under-forecasting 

may not be equivalent to the cost of over-forecasting. Particularly, in the world of 

electricity demand forecasting, overestimating the future demand results in unused 

spinning reserves that are ―burnt‖ for nothing (D arbellay and S lam a, 2000). 

Underestimating the future demand is probably even more harmful since buying at the last 

minute from other suppliers is obviously very expensive. Altalo and Smith (2001) also 

assert that the costs associated with over-forecast errors are less costly than the under-

forecasted demand, since system stability, reliability and reputation are not at stake. In 

Figure 25 is depicted the average monthly market price of electricity together with the 

average price of positive and negative imbalances13 associated with the over- and under-

forecasts as reported by the Czech Market Operator. Evidently, in this asymmetrical 

condition, a unit of cost of an under-forecast error is much higher than a unit of cost of an 

over-forecasted error, although it is also high. For instance, in March 2004 the average 

market price was 658 CZK per MWh, the price of positive imbalance fell to almost 0 CZK 

per MWh while the price of an additional purchased MWh escalated to 1220 CZK per 

MWh. 

 

                                                 
 
13 Imbalance is the difference between the actual and the agreed electricity power consumption. 
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Figure 25: Average price of positive and negative imbalances and average market price of 

electricity through the months of 2004.  
Source: www.ote-cr.cz. 
 
Now we turn our attention again to the out-of sample performance of the neural network 

model (4.3.3) and linear regression model (4.5.2). Both of the models have a tendency to 

underestimate the future electricity demand; while the number of neural network under-

forecasts was 92 out of a total 147 forecasts, the number of linear regression 

underestimated values was 84 of 147 forecasts. Taking the average price of positive and 

negative imbalances, we computed the cost curves for under- and over-forecasting for both 

of the models, see Figure 26. 

 

 
 
Figure 26: Cost curves for the ANN model (4.3.3) and for the LRM (4.5.2) for under- and over-

forecasting, showing asymmetry.  
 
Obviously, both of the curves are of nonlinear shape and clearly show asymmetry. As can 

be seen from the figure, the ANN model provides a lower number of overestimated values. 

The left-hand part of its cost curve lies under the cost curve of the LRM indicating that the 

overall cost of the over-forecasts of the ANN model is generally lower. On the other hand, 
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the financial losses caused by the under-prediction of future demands by both models 

amount to billions of Czech Crowns. Surprisingly, although the overall out-of-sample 

performance of the ANN model suggests that the nonlinear model has higher forecast 

power and provides more reliable demand forecasts, the right-hand part of the ANN cost 

curve lies evidently over the cost curve of the linear regression model. In other words, the 

total loss of the ANN under-forecasts seems to be slightly higher than the LRM under-

forecasts loss. Using again the average imbalance prices, the cost of under-forecasts for the 

whole forecasted period add up to more than 42 billion CZK for the ANN model as 

specified in (4.3.3) and more than 36 billion CZK for the linear regression model given by 

(4.5.2). Finally, the overall cost of forecast errors come to more than 46 billion CZK in the 

case of the ANN model and to more than 44 billion CZK for the linear model. As a result, 

the simple linear regression model with autoregressive error structure despite a slightly 

poorer out-of-sample statistics finally outperforms the ANN model and can be considered 

as more effective and reliable. 

 

 5  CONCLUSION  
 
In this dissertation we have tried to take the reader over the whole problem of electricity 

demand forecasting in the Czech environment. We started with a brief description of the 

current stage and structure of the Czech, as well as the European, electricity market. We 

have depicted the importance of an accurate ED forecast. We show that an ED forecasting 

model is becoming a principal decision–support tool for effective functioning of an electric 

pow er system . T his forecasting device is ―im portant not only for system  operators, but also 

for m arket operators‖ (C hen et al., 2001). P articipants in the electricity m arket need to 

have accurate forecasting tools to optimize their buying and selling decisions. The main 

reason why the market operators call for high accuracy and speed of ED forecasts is 

especially because both over- and under-forecasts of the ED are costly and result in loss of 

revenue. As we have shown on the case of Czech data, this loss can be measured in 

hundreds of thousands, even millions, of CZK. 

 
To date there have been developed hundreds of demand forecasting models, both linear 

and nonlinear. The choice of the most appropriate model is conditioned by the underlying 
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factors that determine electricity consumption. Our results show that the most influential 

external factors are temperature and calendar variables. However, unlike Darbellay and 

Slama (2000) who argue that the relationship between electricity consumption and 

temperature is linear in the Czech Republic, we demonstrate that the relationship is, 

especially in recent years, nonlinear. We illustrate that also the relationship between 

illumination and price variables and electricity demand is nonlinear.  

 
We build several types of multivariate forecasting models, both linear and nonlinear. These 

models are, respectively, linear regression models and artificial neural network models. 

Although artificial neural networks are not the only nonlinear modeling tool, many studies 

show that they are they well suited to short-term electricity demand forecasting since they 

are able to capture nonlinearities and handle the co-linearity problem of the explanatory 

variables. In order to provide a comparison with standard regression models, we tried to 

find the best forecasting results for both the linear regression model with nonlinear inputs 

and the ANN model.  

 
These models were evaluated and compared using a variety of standard model statistics, 

such as R-squared, MAD or MAPE values, as well as an empirical loss function. Our 

results are quite surprising. Based on the most frequently used accuracy measures— out-of-

sample MAPE and MAD— we chose a linear model incorporating seasonal and dynamic 

effects and the six-order autoregressive error structure, and an ANN with seasonal and 

dynamic factors. The preferred ANN model appeared to be slightly superior to the LRM. 

However, the empirical loss function showed that the overall cost of the ANN forecast 

errors is higher than the total cost of the LRM forecast errors. As a result, the LRM with an 

autoregressive error structure regardless of the poorer out-of-sample statistics finally 

outperforms the more sophisticated nonlinear ANN.  

 
The MAPE and MAD accuracy measures are reported in most electricity demand 

forecasting studies as the key error measures since they are directly relevant to the users. 

The empirical loss function is not used at all or is used very rarely. This is quite 

remarkable, as the values of the empirical loss function are typically expressed in a 

currency, which speaks a very clear language to the users. In any case, our results show the 
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empirical loss function can be a powerful accuracy measure in electricity demand 

forecasting.  

 
The main point of this dissertation is the following: although we found that the electricity 

demand forecasting in the Czech Republic is for the considered years rather a nonlinear 

problem than a linear problem, for practical purposes simple linear models with nonlinear 

inputs can be adequate. Of course, the intensity of the factors influencing the demand can 

vary with time (summers can become ever hotter, electricity prices are supposed to have a 

much stronger effect on Czech electricity consumption, etc.). In these changing conditions 

nonlinear models such as neural networks could be particularly valuable.  
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DESCRIPTIONS OF ELECTRICITY MARKET PARTICIPANTS  

 
All the following terms are taken from Energy Act No. 458/2000 Coll: 
 
THE GENERATOR OF ELECTRICTY POWER (hereinafter ―generator‖) is any individual or 

legal entity generating electricity and holding an electricity generation license. He has a 

right to supply electricity through the transmission system or distribution network. The 

generator also has the right to offer electricity it produces on the short-term electricity 

trading marketplace.  

 
The reliable flow and development of the whole transmission system and the distribution 

of electricity on contractual bases is provided by the cross-border TRANSMISSION 

SYSTEM OPERATOR (hereinafter ―T S O ‖). In the C zech R epublic the m ain T S O  provider 

is Č eská přenosová společnost (Č E P S ). T he T S O  m anages the electricity flow  in the 

transmission system with respect to the electricity flow among the systems of other 

countries and in cooperation with the electricity distribution company. The TSO cannot be 

a license holder for electricity trading, electricity production and distribution.  

 
The succeeding distribution of electricity to end customers, such as industrial factories and 

households, as well as the flow and development of the electricity distribution network is 

arranged by electricity DISTRIBUTION SYSTEM OPERATORS (hereinafter ―D S O s‖).  

 
The END CUSTOMER is a natural or juridical person who takes electricity for his own use. 

There are two basic categories of end customers:  

A PROTECTED CUSTOMER has the right to be linked to the distribution network and the 

right to be supplied with electricity in a given quality and for regulated prices.  

AN ELIGIBLE CUSTOMER is according to Energy Act No. 458/2000 Coll. defined as a 

person who has the right to be linked to a distribution network as well as to the 

transmission system. He has also the right to buy electricity directly from the electricity 

production licensees and from the electricity trading licensees. Finally, he is entitled to buy 

electricity directly on the short-term electricity trading marketplace. 
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THE ELECTRICITY MARKET OPERATOR (hereinafter ―E M O ‖) organizes the short-term 

electricity market and processes electricity trading balances. In conformity with the energy 

law and the liberalization of the energy sector the O perátor trhu s elektřinou (O T E ), a stock 

state-owned company, was established in the Czech Republic in 2002 to introduce an 

organized short-term  electricity trading m arketplace. O ne of the E M O ’s activities is to 

evaluate the deviations of individual settlement entities, i.e. differences between actual 

(metered) and contracted electricity volumes.14  

 
The role of the ELECTRICITY TRADER (hereinafter ―trader‖) is to buy electricity from  the 

electricity production licensees and from the electricity trading licensees, and to sell it to 

end customers 

. 

 

  

                                                 
 

14 Source of information: www.ote-cr.cz. 

http://slovnik.seznam.cz/search.py?lg=en_cz&wd=in%20conformity%20with%20the%20law
http://slovnik.seznam.cz/search.py?lg=en_cz&wd=in%20conformity%20with%20the%20law
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LIST OF ABBREVIATIONS 

AIC Akaike Information Criterion 
ANN Artificial neural network 
ARMA model Autoregressive Moving Average model 
ARMAX model Autoregressive Moving Average model with exogenous inputs 
BIC Bayesian Information Criterion 
CDD Cooling degree-day 
CTT Cooling temperature threshold 
CZK Czech Crown 
ED Electricity demand 
EMO Electricity market operator 
GMRAE Geometric Mean Relative Absolute Error 
GWh Giga Watt hour 
HDD Heating degree-day 
HTT Heating temperature threshold 
LRM Linear regression model 
MAD Mean Absolute Deviation 
MAPE Mean Absolute Percentage Error 
MASE Mean Absolute Scaled Error 
MdAE Median Absolute Error 
MdAPE Median Absolute Percentage Error 
MdRAE Median Relative Absolute Error 
MRAE Mean Relative Absolute Error 
MSE Mean Squared Error 
MSPE Mean Square Percentage Error 
MW Mega watt 
NMSE Normalized Mean Square Error 
OTC  Over-the-counter 
OTE O perátor trhu s elektřinou  
PX Power exchange 
RelMAE Relative Mean Absolute Error 
RMdSPE Root Median Square Percentage Error 
RMSE Root Mean Square Error 
RMSPE Root Mean Square Percentage Error 
sMAPE Symmetric Mean Absolute Percentage Error 
sMdAPE Symmetric Median Absolute Percentage Error 
TAR model Threshold autoregressive model 
TARX model Threshold autoregressive model with exogenous inputs 
TSO Transmission system operator 
TWh Tera Watt hour 
 
Dt Daily electricity demand at time t 
Dt-2 Two-day lags of electricity demand 
Dt-7 Seven-day lags of electricity demand 
Ht+1 Day after holiday 
Ht-1 Day before holiday 
InterVt Interactive variables 
It Illumination 
Mi i-th Month 
Pt-1 One-day lag of average daily electricity price 
Tt Temperature 
Wi i-th day in the week 
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