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Motivation and Literature Review:

Conventional solution methods for macroeconomic models aren’t
able to tackle the challenge presented by macro-epidemic models:
strong nonlinearity of epidemic process coupled with rich heterogen-
eity of economic agents. Due to this fact, macro-epidemic modeling
is restricted to rather simplistic environments abstracting either from
heterogeneity among households and firms (e.g., Gonzalez-Eiras and
Niepelt, 2020) or/and an uncertainty about aggregate dynamics (e.g.,
Eichenbaum et. al., 2020; Kaplan et. al., 2020). Because of these
limitations of macro-epidemic models, policymakers are forced to rely
on ”mechanistic” SIRD models. Those models preclude analysis how
people react to changing macro-epidemic variables and expectations
about future government policies.

This thesis aims to contribute to macro-epidemic literature in two
main directions. Firstly, it aims to provide an accurate and scalable
solution method for general recursive formulation of macro-epidemic
models that would allow to analyze macro-epidemic dynamics in
realistic environments featuring complex economic system together
with aggregate uncertainty. Secondly, it aims to facilitate optimal
policy computation by leveraging the “manifold-learning” approach
of Duarte (2018) for simultaneously solving the model for all relevant
combination of government policy parameters and hence reducing
the optimal policy computation into a simple optimization problem.
To the best of my knowledge, this thesis would be the first paper,
which applies deep learning based projection method for solving
for competitive equilibria, and optimal policies in macro-epidemic
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models.

Research Question and Contribution:

My thesis would contribute to the macro-epidemic literature in
two directions. Firstly, I will develop an efficient deep learning solu-
tion method for recursive macro-epidemic models. Relative to the
existing literature (e.g., Gonzalez-Eiras and Niepelt, 2020; Garibaldi
and Pissarides, 2020) which rely on closed-form solutions or linear
projection methods in a spirit of Judd (1998), my method would allow
to analyze richer economies featuring more complex epidemic pro-
cesses and economic structure. Secondly, I will utilize deep learning
to accelerate computation of optimal government policies. Instead
of re-solving the model many times for different parameterizations
of government policies, I will use deep learning to approximate a
whole equilibrium manifold indexed by policy parameters. This
pre-computation in a spirit of Duarte (2018) should reduce the run-
time of optimal policy computations by transforming the search for
optimal policy parameters into a standard numerical optimization of
readily-available function.

Methodology:
I will extend the deep learning solution method of Maliar et. al.
(2019) to accommodate peculiarities of macro-epidemic model, spe-
cifically absence of non-degenerate stationary distribution of state
variables, which precludes usage of the ergodic grid method of Maliar
et. al. (2019). Besides that, I will show how the deep learning
method could be used to speed-up optimal policy computations by
treating policy parameters as additional “pseudo-states” included in
the network.

To provide an use case of my method, I will extend the benchmark
macro-epidemic model of Eichenbaum, Rebelo, and Trabandt (2020)
by providing its recursive formulation. Besides solving the basic
model, I will demonstrate broad applicability of my method by solv-
ing a stochastic version of the model featuring stochastic changes in
the epidemic characteristics (mutations) and solving for the optimal
containment policy using the manifold learning approach. Because
of data availability, I will focus the empirical part of my thesis on
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the case of the Czech Republic. For calibration of model parameters
I will use data provided by the Czech Ministry of Health, the Czech
National Bank, and the Czech Statistical Office.

Outline:

1. Introduction

2. Literature

3. Stylized Facts

4. Model

• Private Sector

• Epidemic Dynamics

• Government

• Recursive Equilibrium

• Policy Problem

5. Calibration

6. Numerical Solution

7. Results

8. Conclusion
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Abstract

I develop a novel method for computing globally accurate solutions
to recursive macro-epidemic models featuring aggregate uncertainty
and a potentially large number of state variables. Compared to the
previous literature which either restricts attention to perfect-foresight
economies amendable to sequence-space representation or focuses on
highly simplified, low dimensional models that could can be analyzed
using standard dynamic programming and linear projection tech-
niques, I develop a deep learning-based algorithm that can handle
rich environments featuring both aggregate uncertainty and large
numbers of state variables. In addition to solving for particular
model equilibria, I show how the deep learning method could be ex-
tended to solve for a whole set of models, indexed by the parameters
of government policy. By pre-computing the whole equilibrium set,
my deep learning method greatly simplifies computation of optimal
policies, since it bypasses the need to re-solve the model for many
different values of policy parameters.

Key Words Macro-Epidemic Model, Recursive Equilibrium, Ag-
gregate Risk, Projection, Deep Learning
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Abstrakt

V této práci prezentuji novou metodu pro výpočet globálně
přesných řešeńı rekurzivńıch stochastických makro-epidemických
model̊u s potenciálně vysoko-dimenzionálńım stavovým prostorem. V
porovnáńı s existuj́ıćımi studiemi, které buďto studuj́ı deterministické
ekonomiky pomoćı sekvenčńıch metod, nebo analyzuj́ı stylizované
modely řešitelné standardńımi metodami dynamického programováńı
a lineárńı projekce, v této práci aplikuji algoritmus založený na
hlubokém učeńı, který umožňuje analyzovat komplexńı ekonomiky s
agregátńı nejistotou a velkým počtem stavových proměnných. Kromě
řešeńı modelu v̊uči dané hodnotě parametr̊u prezentuji též rozš́ı̌rený
algoritmus, který umožňuje vyřešit celou množinu model̊u index-
ovanou parametry reakčńı funkce vlády. Tento krok tak výrazně
zjednodušuje výpočet optimálńı reakčńı funkce vlády, jelikož obcháźı
nutnost opakovaného řešeńı modelu pro r̊uzné parametrizace vládńı
reakčńı funkce.

Kĺıčová slova: Makro-epidemický model, rekurzivńı equilibrium,
agregátńı riziko, projekce, hluboké učeńı
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Introduction 1

With the outbreak of SARS-CoV-2 in December 2019, the issue of
integrated macro-epidemic policy became a central topic of mac-
roeconomic debate. Starting with the pioneering contribution of
Eichenbaum, Rebelo and Trabandt (2020), the macroeconomics pro-
fession hurried to develop nascent literature on joint macro-epidemic
dynamics. Important progress has been made both on the side of
the positive analysis of interactions between macroeconomic vari-
ables, government policies, and the state of epidemics, as well as
the normative side of determining welfare-maximizing government
policies during an epidemic.

On the positive side, Kaplan, Moll and Violante (2020) studied
the epidemic health-economy tradeoff in a complex New Keynesian
economy model with heterogeneous agents (HANK) with wealth and
income inequality, liquid and illiquid assets, and occupational and
sectoral heterogeneity, and with limited capacity in intensive care
units. Glover, Heathcote, Krueger and Rıos-Rull (2020) used an
overlapping generations heterogeneous agents economy to study an
inter-generational nexus of epidemic tradeoffs. Guerrieri, Lorenzoni,
Straub and Werning (2020) used the multisectoral incomplete mar-
kets model to show, how epidemic-induced negative supply shocks
might cause shortfalls in aggregate demand and generate a classical
Keynesian recession.

On a normative site, Gonzalez-Eiras and Niepelt (2020) and
Moser and Yared (2020) analyzed the problem of the social planner
in economies during epidemics and derived corresponding optimality
conditions characterizing the first-best allocations. By characteriz-
ing the first-best allocation, these papers quantify the welfare costs
of externalities associated with consumption and labor activities
of private households and provide an upper bound on achievable
welfare gains using Ramsey-style distortionary policy instruments.
The Ramsey problem in epidemics economy was firstly analyzed by
Eichenbaum, Rebelo and Trabandt (2020) who employed numerical

1Previous versions of this paper were submitted to Research Writing II, Labor Economics
I, Public Finance, Combined Skills I and Macro Topics II at CERGE-EI during the Fall and
Spring of 2020/2021. This thesis also utilizes my GAUK submission material from the Fall of
2020.
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optimization to solve the policy problem in sequence space. Finally,
Moser and Yared (2020) explored the role of government commitment
in a simple, three-period model with perfect foresight.

Although this literature has provided many important qualitative
and quantitative insights about tradeoffs faced by a society confronted
with an epidemic outbreak, the scope of their results remains lim-
ited, chiefly due to computational constraints. The dominant strand
of the literature assumes away aggregate uncertainty in order to
solve their models using tractable sequence-space techniques. While
some of these papers analyze quite complex environments featuring
many salient features of the real-world economy, the assumption of
a deterministic aggregate could severely alter the dynamics of their
model economies, and especially their welfare implications 2. Because
the behavior of welfare in the model is tightly linked to the issue
of optimal policies, possible misinterpretation of welfare caused by
the certainty-equivalence assumption could lead to incorrect policy
advice.

To the best of my knowledge, the only paper that analyzes a
macro-epidemic model with aggregate uncertainty using suitable
recursive methods 3 is Gonzalez-Eiras and Niepelt (2020). Gonzalez-
Eiras and Niepelt (2020) solve for the recursive competitive equilibria
and the first-best allocation in a continuous-time economy featuring
stochastic vaccine arrival and mutation risk. However, computational
considerations forced them to simplify their economic environment
a great deal, so they abstract from agent heterogeneity, constraints
on the capacity of intensive care units, etc., so their study cannot
serve as a reliable quantitative laboratory for performing policy ex-
periments.

The aim of this thesis is to develop an efficient and highly scal-
able method for computing potentially high-dimensional recursive

2This fact is has been recognized in the business cycle literature at least since J. Kim and
S.H. Kim (2003). Since the macro-epidemic environment features are significantly nonlinear,
there are reasons to worry about a loss of accuracy caused by the certainty-equivalence
approximation which is implicitly applied by the dominant strand of the macro-epidemics
literature

3Recursive formulation greatly facilitates analysis of environments with aggregate un-
certainty and government commitment issues. However, these methods tend to be much
computationally expensive, complex to implement, and suffer from the curse of dimensionality.
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equilibria, which would bypass the need to make a choice between
rich, but deterministic economies and highly simplified stochastic
”toy models”. My contribution is twofold. Firstly, I develop a
baseline algorithm for computing a globally accurate approximation
to the model equilibria in a spirit of projection methods, à la Judd
et al. (1991), designed to overcome both the curse of dimensional-
ity and the numerical challenges presented by the highly nonlinear
nature of macro-epidemic models. Although the existing quantitative
macroeconomics literature proposes various approaches for solving
high-dimensional recursive models, including the Smolyak interpol-
ation (Krueger and Kubler 2004), adaptive sparse grid methods
(Brumm and Scheidegger 2017,; Eftekhari and Scheidegger 2020),
and deep learning projection (L. Maliar, S. Maliar and Winant 2019;
Azinovic, Gaegauf and Scheidegger 2021), this literature has focused
on business cycles and balanced growth path economies, and hence
is not well suited to deal with highly nonlinear dynamics on non-
hypercubic domains which are ubiquitous features in macro-epidemic
models.

My solution method is based on the deep learning L2 projection
method of L. Maliar, S. Maliar and Winant (2019). My contribu-
tion with respect to their paper is an adaptation of the algorithm
to accommodate difficulties presented by macro-epidemic models.
Specifically, I show how to improve the neural network approximator
used in the deep learning method by selecting an efficient network
structure and by constructing appropriate boundary conditions which
exploit steady-state convergence of epidemic models to accelerate
the process of computing the optimal approximation. Also, I discuss
various alternatives for generation of the state-space grid on which
the model should be solved.

Secondly, building on the baseline solution algorithm and the
related approach of Duarte (2018a) 4, I develop a novel method
for simplifying optimal policy computations using deep learning.
Instead of solving the model for one particular value of the para-
meter vector, I include a subset of model parameters that index
the government policy as an additional set of state variables, and

4Duarte (2018a), building on the previous contribution of Norets (2012), use related
approach in context of model estimation. To the best of my knowledge, to this date, no paper
used this algorithm for optimal policy computation.
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train the neural network to solve the model on the expanded state
space. This procedure simultaneously solves for a whole set of mod-
els indexed by the selected vector of policy rule parameters. The
process of finding the optimal value of government policy parameters
is then reduced to a simple numerical optimization of a function with
closed-form expression 5, as opposed to a standard procedure in the
spirit of Lippi, Ragni and Trachter (2015), in which the model is
repeatedly solved for many different parameterizations of the policy
rule 6. Since neural networks are well known for their asymptotic
efficiency (Barron 1993) in the representation of complex objects in
high-dimensional spaces, my state-augmentation algorithm offers a
potentially significant speed-up when solving for complex policy rules.

5The extended algorithm approximates all equilibrium objects, including value functions,
as explicit functions of both natural state variables and policy rule parameters. The standard
parametric Ramsey problem amounts to selecting policy parameterization which maximizes the
total weighted welfare of households in the economy. In my framework, the Ramsey problem
could be solved after the algorithm solves for the model set just by fixing the initial state and
then using a numerical optimization algorithm to find a value of policy vector which maximize
the total welfare, subject to some given set of Pareto weights. Because the algorithm solves the
model for a whole set of possible parameterizations of the policy rule, this solution allows for
computing the welfare as a closed-form function of policy parameters and possibly some given
Pareto weights. However, neural networks are highly-nonlinear functions, hence the optimal
value of policy vector had to be found using numerical routine.

6Availability of closed-form expression for welfare in terms of policy parameters became
allow for utilization of both first and second-order optimization methods which are typically
unfeasible if the repeated solution approach is utilized. The key difference is that with closed-
form expression in form of a neural network, both gradient vector and Hessian matrix could be
efficiently obtained using automatic differentiation (backpropagation), whereas finite-difference
computation of gradient using the standard approach requires solving the economy N + 1
times, where N denotes the number of policy rule parameters. Because of this bottleneck, the
optimal policy literature is biased towards derivative-free or at most first-order optimization
methods, because gradient and especially hessian matrix computation are typically far too
costly.
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1 Related Literature

1.1 Macro-Epidemic Modeling

The literature on joint modeling of macroeconomic and epidemic
dynamics is quite a recent one. Presumably, since full-blown epi-
demics of deadly pathogen did not happen in developed countries
for nearly hundred of years, modeling of the interaction between
epidemic dynamics, the behavior of modern industrialized economies
and government policies was totally eclipsed by classical topics of
macroeconomics research, such as business cycles, economic growth,
or optimal fiscal and monetary policies, to name a few. To the best
of my knowledge, the very first paper that merged standard optimiz-
ing general equilibrium macroeconomics framework with dynamic
epidemic model à la Kermack and McKendrick (1927) is Eichenbaum,
Rebelo and Trabandt (2020), which was written few months after
the December 2019 coronavirus epidemics outbreak.

The model of Eichenbaum, Rebelo and Trabandt (2020) is ad-
mittedly a simple one. Yet, it captures main qualitative insights
about the nature of epidemics externality of consumption and work
behavior of households in competitive equilibrium and provides a
basic case for government intervention in form of consumption and
work repression aimed to slow down dynamics of epidemics. It
contributed to the macro-epidemics literature both on the positive
side by building a first competitive equilibrium model of economy-
epidemics interactions, and to the normative side of the literature
by analyzing an optimal policy problem in which government aims
to control epidemic dynamics by imposing restrictive, lockdown-
like measures. Compared to some further papers which used more
advanced techniques to analyze social planner problems (Alvarez,
Argente and Lippi 2020; Gonzalez-Eiras and Niepelt 2020), the value
of Eichenbaum, Rebelo and Trabandt (2020) is that they solved a
Ramsey problem in which the government had access to a limited
set of potentially distortive instruments, whereas the social planner
has access to all possible instruments 7. Extended versions of their
model include state-dependent mortality rate which aims to capture

7Even more than Mirleesian planner, since classical Pareto social planner does not have to
deal with private information and associated incentive constraints.
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health care capacity constraints, uncertain vaccination arrival 8 and
re-infection possibility.

The key shortcoming of the analysis presented by Eichenbaum,
Rebelo and Trabandt (2020), besides relative simplicity of their
economic environment, is the sequence-space formulation which pre-
cludes analysis of environments featuring aggregate risk, such as
stochastic mutations which could change virus transmission rate,
or potentially more complicated optimal policy problems, such as
problems featuring government complex time-consistency problems
(eg. Clymo, Lanteri and Villa 2020). Moreover, computation of
Ramsey-optimal policies in sequence-space is computationally ex-
tremely expensive, since it amounts to running numerical optimiza-
tion algorithm over very highly-dimensional parameter vector 9. For
example, benchmark optimal policy exercise in Eichenbaum, Rebelo
and Trabandt (2020) involves optimization over vector of consump-
tion tax rates with 250 elements. Such an optimization problem is
both highly computationally challenging 10 and also theoretically
challenging, since optimization problems can be ill-conditioned and
potentially non-convex. Recursive methods typically offer away, how
to bypass a large number of aforementioned problems.

Alvarez, Argente and Lippi (2020) and Gonzalez-Eiras and Niepelt
(2020) analyzed the epidemics externality by comparing social welfare
implied by competitive equilibria allocations and Pareto social plan-
ner solutions. Both of these papers employed recursive continuous-
time techniques à la Achdou et al. (2020) and Phelan and Eslami
(2021) to formulate and solve social planner problems in relatively
simple epidemic economies. While Alvarez, Argente and Lippi (2020)
focuses on the deterministic environment, later paper by Gonzalez-
Eiras and Niepelt (2020) analyzes social planner problems in the
economy with aggregate mutation risk and stochastic vaccine arrival.

8Vaccination is modeled as a permanent, one-off event which is hence amenable to analysis
using sequence-space methods employed by Eichenbaum, Rebelo and Trabandt (2020)

9Because government policies in sequence-space are sequences of per-period policies. Fur-
thermore, most macroeconomic models, including epidemic ones, are set in infinite-horizon
environments, and hence had to be approximated using long parameter sequences.

10Because efficient optimization methods typically require computation or at least approxim-
ation of hessian matrix with respect to policy parameters. Hessian computation has typically
quadratic computational complexity, moreover, typically it had to be inverted in each iteration,
and matrix-inversion has cubic complexity.
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While these papers bring important methodological contributions
and some valuable qualitative insights, the generality of their results
is severely restricted by the simplicity of considered environments 11

and also by their focus on the analysis of Pareto planner problems,
whose relevancy to real-world policymaking remains unclear.

Besides the standard Ramsey literature, Moser and Yared (2020)
examined the issue of government commitment for efficiency of
epidemic-containment measures. They found that the government
trying to control the epidemic in a dynamic economy faces a time con-
sistency problem which mirrors similar results appearing in optimal
dynamic taxation literature (Chari and Kehoe 1990; Chang 1998).
The key shortcoming of their analysis is the analytical, three-period
framework which by definition precludes any meaningful quantitative
analysis. Up to this date, a rich quantitative model of the time con-
sistency problem remains one of the key blind spots of the normative
macro-epidemics literature.

Kaplan, Moll and Violante (2020) and Glover, Heathcote, Krueger
and Rıos-Rull (2020) studied macro-epidemic dynamics in heterogen-
eous agent economies without aggregate risk 12. Glover, Heathcote,
Krueger and Rıos-Rull (2020) focused on a continuous-time hetero-
geneous agent economy featuring overlapping generations structure
which allows for analyzing the intergenerational aspects of the epi-
demic crisis. In the second part of their paper, Glover, Heathcote,
Krueger and Rıos-Rull (2020) used numerical optimization to com-
pute optimal containment policies coupled with intergenerational
cash transfers. They found that welfare-maximizing government
policy complements restrictive epidemic containment measures with
large cash transfers from old to young households. The economic
fundament behind these transfers is the fact that young households
tend to be more hurt by restrictive measures, and thanks to their
better health status, they do not have significant welfare gains from
the improved epidemic situation. On the other hand, old households

11They consider even simpler economies than Eichenbaum, Rebelo and Trabandt (2020).
The economy of Eichenbaum, Rebelo and Trabandt (2020) feature three continuous aggregate
state variables, whereas Alvarez, Argente and Lippi (2020) and Gonzalez-Eiras and Niepelt
(2020) consider economies with at most two continuous state variables

12This assumption allows them to solve for aggregate dynamics using sequence-space tech-
niques
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are vulnerable to the disease, and hence restrictive government policy
improves their welfare quite significantly. The government could
use these resource transfers to compensate young households for the
restrictions which hurt the young generation disproportionately more
and make old households to pay 13 for the benefit of improving the
epidemic situation.

Kaplan, Moll and Violante (2020) analyzed macro-epidemic dy-
namics in a rich heterogeneous agents New Keynesian economy with
wealth and income heterogeneity, nominal frictions, multiple sectors,
and incomplete markets. Kaplan, Moll and Violante (2020) used
their quantitative framework is a numerical characterization of the
so-called pandemics possibility frontier which describes the tradeoff
between lost economic welfare and the number of deceased households.
In complementary work, Guerrieri, Lorenzoni, Straub and Werning
(2020) studied effects of epidemics shocks to a complex multisect-
oral economy and showed that multisectoral structure coupled with
incomplete market environment might under realistic calibration
of model parameters lead to a situation in which negative supply
shock counterintuitively cause also negative aggregate demand shock.

1.2 Solving Recursive Models

Since macroeconomic models typically do not possess closed-form
solutions, the system of functional equations 14 which defines recurs-
ive equilibria of the economy of interest had to be approximately
solved using functional approximation techniques. At least since
Magill (1977) and Kydland and Prescott (1982), macroeconomics
literature developed a large number of computational methods for
solving recursive macroeconomic models. In principle, all of these
methods could be used for approximating the solution of macro-
epidemic models. These methods could be broadly classified into
three categories; local perturbation techniques which use implicit
function theorems to build a series approximation around some de-

13This result could be used as an argument for inflationary post-epidemics monetary policy,
which tends to redistribute real resources from relatively wealthy old households who tends to
hold a large amount of nominal financial assets towards younger households who in turn tends
to have large nominal debts, such as mortgage balances.

14These equations include; bellman equations in discrete time, or HJB equations in continuous
time, first-order conditions, no-arbitrage conditions, market-clearing conditions, etc.
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generate solution, finite difference methods for solving differential
equation models in continuous time and general projection methods
which use functional analysis ideas to build computable global ap-
proximations to unknown functions.

Perturbation methods approximate the solution of a recursive
model by a series expansion around some fixed point in a state-space.
The key advantage of this approach is computational efficiency. Per-
turbation methods allow for quick solution of large-scale models with
the minimal amount of computational resources (Aruoba, Fernandez-
Villaverde and Rubio-Ramirez 2006). However, perturbation meth-
ods are limited by their local nature: they provide high accuracy
around one point, but the accuracy may deteriorate quickly as the
economy moves further away from approximation point Fernández-
Villaverde and Levintal (2018). Since dynamics of macro-epidemic
models include long transition paths instead of just small fluctu-
ations around a steady-state, application of perturbation methods
on macro-epidemic models leads to unacceptably large numerical
errors.

Finite-difference methods constitute a separate class of solution
methods, distinct from both perturbation methods which are based
on local series expansions, and from projection methods that ad-
opt functional analysis-inspired approach (Judd 1998, Chapter 11).
Finite-difference methods discretize ordinary or partial differential
equations into a finite set of equations by taking some version of
grid-based finite difference approximation to differential operators
present in the differential equation. Various finite difference meth-
ods differ in their choices of finite difference approximation, grid
generation schemes, and algorithms for solving the resulting set
of equations. The most influential finite-difference method used
for solving recursive macroeconomic models is the implicit upwind
scheme introduced into the macroeconomics literature by Achdou
et al. (2020). Since this thesis deals with macro-epidemic models
formulated in a discrete-time framework, finite-difference methods
might seem less relevant compared to perturbation and projection
methods. However, they could be a highly efficient tool for solving
continuous-time versions of these models.
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Projection methods constitute a traditional complement of per-
turbation methods in a toolkit of quantitative macroeconomics
(Fernández-Villaverde, Rubio-Ramırez and Schorfheide 2016). Most
often, they took form of pseudospectral (Boyd 2001) or finite ele-
ment methods (Brenner and Scott 2007). These methods approach
the problem of solving a functional equation by specifying a linear
subspace of basis functions 15 and projecting the unknown function
against the subspace by minimizing some loss function containing
weighted residual of the equation 16. The advantage of the projec-
tion approach is its ability to provide an arbitrarily high degree of
accuracy on the arbitrarily large area of state-space. Also, projection
methods are able to deal with challenging problems such as models
with occasionally binding constraints or non-convexities that induce
kinks and discontinuities into a model solution.

The main obstacle for the application of projection methods to
the solution of macro-epidemic models is the curse of dimension-
ality. The computational complexity of standard tensor product-
based projection methods grows exponentially with dimensionality
of approximated function (Fernández-Villaverde, Rubio-Ramırez and
Schorfheide 2016). This explosive growth of computational com-
plexity precludes the application of standard projection methods
to models whose state-space includes more than 3-4 state variables.
Since a bare-bone SIRD model includes 3 state variables, just a ”toy”
version of the macro-epidemic model pushes the standard projection
approach to its very limit.

During the last two decades, macroeconomic literature developed
several approaches that extend classical projection methods to higher-
dimensional spaces. Those methods are based on sparse grids
(Krueger and Kubler 2004), adaptive sparse grids (Brumm and
Scheidegger 2017) and ergodic set grids (L. Maliar and S. Maliar
2015). While methods developed in this literature constitute an im-
portant contribution to the toolkit of methods available for analysis

15While the subspace of basis functions has a linear structure, basis functions themselves
are arbitrary nonlinear functions.

16Different choices of basis functions and weighting scheme leads to different projection
methods. The most common approach in the macroeconomic literature is Chebyshev collocation
that combines basis composed of Chebyshev orthogonal polynomials with Dirac weighting on
Chebyshev zeros.
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of recursive macroeconomic models, their applicability is still severely
limited by a number of important bottlenecks. Sparse grid methods
are limited to models with fewer than 30 continuous dimensions
and smooth solutions. Ergodic set methods fail in models where
dynamics of the economy is not bounded within a relatively small
region of the state space (Fernández-Villaverde and Levintal 2018).
Adaptive sparse grids allow for non-smooth functions and less regular
dynamics, but they still face limitations when the dimensionality of
the non-smooth model exceeds approximately 20 variables (Brumm
and Scheidegger 2017).

In the last two years, a new strand of computational macroe-
conomic literature emerged. Building on recent groundbreaking
advances in machine learning-based solution methods for highly di-
mensional partial differential equations in the field of computational
physics (Sirignano and Spiliopoulos (2018), Raissi, Perdikaris and
Karniadakis (2019)), starting with papers by Duarte (2018b), Villa
and Valaitis (2019) and L. Maliar, S. Maliar and Winant (2019),
macroeconomic literature began to develop neural networks based
methods for solving recursive models.

Within the class of projection methods, the neural network-based
”deep learning” constitutes an alternative to pseudo-spectral and
finite element methods (Fernández-Villaverde, Nuño, Sorg-Langhans
and Vogler 2020). Instead of approximating the target function as
a linear combination of nonlinear basis functions, the deep neural
network approach rely on a nonlinear combination of nonlinear basis
functions. By building the structure of connected ”hidden” layers
of sigmoid, rectified linear (ReLu) or other suitable basis functions,
these approximators gain unparalleled flexibility in approximation
of complex and high dimensional objects. The empirical success
of neural networks in approximating highly dimensional functions
(Silver et al. 2016) is predicted by a number of theoretical results in
the approximation theory. Hornik, Stinchcombe, White et al. (1989)
proved, that neural networks can approximate any Borel measur-
able function mapping one finitely dimensional space into another
up to an arbitrary degree of accuracy, as the size of the network
grows. Poggio et al. (2017) survey the literature on how deep neural
networks escape the curse of dimensionality for a broad class of
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approximation problems.

Within the nascent macroeconomic literature, Duarte (2018b)
pioneered the application of machine learning techniques for solving
recursive models. His approach has two main limitations. Firstly, he
focuses on continuous-time problems exclusively. While continuous-
time environment offers a large number of significant computational
advantages (Achdou et al. 2020), the majority of macroeconomic
research is conducted in discrete-time environments, and this fact
might limit the applicability of Duarte’s approach. Secondly, the
application of his method requires dynamic programming represent-
ation of the problem of interest. Hence, its applicability outside the
class of planner and partial equilibrium problems is quite limited.

Fernández-Villaverde, Nuño, Sorg-Langhans and Vogler (2020)
developed an interesting extension of the continuous-time dynamic
programming approach. Relative to Duarte (2018b), they exploited
information contained in first-order conditions to accelerate the
convergence of their algorithm. Thank to this improvement, and
application of Itô’s lemma for the elimination of expectation operator,
they were able to solve highly nonlinear dynamic programming prob-
lems up to 75 dimensions. In a related paper, Fernández-Villaverde,
Hurtado and Nuno (2020) developed an extension of the celebrated
method of Krusell and Smith (1998) for computation of Bewley
models with aggregate risk. They replaced linear approximation of
the perceived aggregate law of motion in the macro-finance version of
Krusell-Smith economy with the neural network and demonstrated
that neural network offers superior performance and accuracy in the
highly nonlinear environment of their macro-finance economy.

Villa and Valaitis (2019) contributed to the macro-machine learn-
ing literature by extending the parameterized expectations method
of Den Haan and Marcet (1990) by approximating the conditional ex-
pectations in dynamic equations of recursive macroeconomic models
by shallow 17 neural networks. Their contribution is twofold. Firstly,
they provide quite a general method for solving discrete-time models
that do not rely on straightforward dynamic programming represent-
ation. Secondly, they showed that machine learning could be used to

17Neural network with one hidden layer.
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solve equations characterizing Ramsey-optimal 18 policy in dynamic
stochastic environments. The key shortcoming of their paper is a
technological one. Instead of relying on industry-quality machine
learning libraries, such as TensorFlow or Flux.jl, they build their own
Matlab code that uses outdated shallow networks and trains them
using Levenberg-Marquardt algorithm instead of standard stochastic
gradient descent methods. Because of these technical bottlenecks,
the method of Villa and Valaitis (2019) is not well suited to benefit
from the possibility of massive parallelization on clusters of graphical
processing units (GPUs) or machine learning accelerators such as
Google’s TPUs.

L. Maliar, S. Maliar and Winant (2019) and Azinovic, Gae-
gauf and Scheidegger (2021) presented two related discrete-time
approaches that are closest to the methodology proposed by this pro-
ject. Azinovic, Gaegauf and Scheidegger (2021) developed a highly
parallel deep learning methodology for the solution of large-scale
stochastic overlapping generations models. Their method approaches
the problem of approximating the solution of a recursive model by
directly replacing functions of interest with neural networks and
training these networks on data iteratively simulated from the er-
godic set of the model. They were able to solve a non-smooth
stochastic OLG model up to 292 state variables, an unparalleled
achievement in the computational macroeconomics literature. The
potential downside of this paper is its strong focus on the utilization
of supercomputers available to the authors. While their method was
able to solve problems of impressive complexity, it is not clear, how
these results could be replicated by researchers without access to
supercomputing resources.

The key contribution of L. Maliar, S. Maliar and Winant (2019)
is a very general methodology for formulating traditional 19 recursive
macroeconomics models as objective functions for machine learning
libraries, such as TensorFlow. It offers three distinct objectives: euler
or bellman equation errors minimization and alternative approach
in terms of lifetime discounted utility maximization. Their showcase
is a 1000 agent finite version of Krusell and Smith (1998) economy

18Full commitment
19Models with finitely many agent types, as opposed to Bewley economies featuring a

continuum of heterogeneous agents.
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which leads to state space with 2001 dimensions. Because of the
relatively low degree of nonlinearity of this model, authors were able
to solve it on a standard laptop in a few hours. Moreover, they
provide a user-friendly interface: the Dolo modeling language, that
relieves the end-user from the necessity to deal with low-level pro-
gramming and construction of objective function. While this paper
constitutes a very useful contribution to the toolkit of computational
macroeconomics, it doesn’t provide the right tools necessary for an
analysis of macro-epidemic models. Firstly, it utilizes the ergodic set
approach for the construction of the training grid, and hence, it faces
crucial difficulties when approximating the economy along transition
trajectories characteristic for SIRD-based models. Secondly, this
approach remains silent about optimal policy computations.
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2 Solution Algorithm

2.1 Deep Learning

This thesis utilizes a nonlinear projection algorithm (deep learning)
to develop a new method for solving recursive macro-epidemic mod-
els. The basic structure of deep learning algorithm broadly follows
classical collocation and pseudo-spectral linear projection techniques
à la Judd et al. (1991) and Boyd (2001). The key difference with
respect to those linear projection methods is the choice of projection
basis. Whereas linear projection methods employ a linear combin-
ation of nonlinear basis function, such as orthogonal polynomials
(Chebyshev, Hermite, etc.), deep learning algorithms utilize a nonlin-
ear combination of nonlinear functions, specifically the deep neural
network architecture.

While neural networks came in many different flavors, I focus
on simple fully connected feed-forward neural networks. The basic
building block of a neural network is an artificial neuron, which is
basically a function, which takes a linear combination of input values
and transforms that linear combination using some function. Let θi
denote parameters of linear combination and σ denote a nonlinear
”activation” function. Then, an artificial neuron could be written as.

N (x, θ) = σ

(︄
θ0 +

N∑︂
i=1

θixi

)︄
(1)

The artificial neuron is a mapping from some RN to some possibly
restricted set of R. Artificial neurons are grouped into layers, where
layer represent a mapping from RN to RM

H(X,Θ) =
(︁
N (x, θ(1)), ...,N (x, θ(K))

)︁
(2)

The key idea behind deep neural networks is a composition of multiple
(nonlinear) layers, so the output of one layer serves as the input
of another, so the final output goes through multiple stages of
parameterized nonlinear transformations. This structure gives deep
neural networks immense capacity 20 for approximating complex

20Because the composition of nonlinear functions is a much richer operation than a simple
addition (Fernández-Villaverde, Nuño, Sorg-Langhans and Vogler 2020)
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Figure 1: Simple FFN R3 → R2 with one hidden layer

high-dimensional functions. In general, a deep neural network should
be thought of simply as a parametric function indexed by a coefficient
matrix O.

NN (X,O) = H(H(H(...H(X,Θ(1))...,Θ(L−2)),Θ(L−1)),Θ(L)) (3)

The general idea, how deep neural networks could be used to solve
functional equations, such as recursive equilibria of macroeconomic
models mirrors the linear projection approaches. Let M denote the
set of model equations, X the state-space, F (Xú set of unknown
functions. Because the original problem is a general functional
equation, it is typically an infinitely-dimensional object, which can
not be tackled directly.

M(F (x)) = 0 ∀X ∈ X (4)

To transform it into a computable finitely-dimensional problem, we
had to approximate the unknown function F (X) by some parametric
approximator (ansatz), in this case a deep neural networkNN (X,O).
Plugging the neural network approximator into the set of model
equations form an error function.

E(X,O) = M(NN (X,O)) (5)
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Intuitively, the solution to the functional equation should be a para-
meter matrix O∗ for which E ≈ 0 ∀X ∈ X. However, F (X), in
general, has infinitely many degrees of freedom, and hence can not
be exactly characterized by a finitely-dimensional parametric family.
Instead, the projection approach builds a loss function, which is a
weighted integral of the error function over the state-space.

L(O) =

∫︂
X
W (E(X,O), X) dX (6)

The optimal value of the parameter matrix O is a minimizer of the
loss function.

O∗ = argminO L(O) (7)

While in theory many different loss function structures could be
employed, the deep learning literature typically utilizes a simple
mean squared error (MSE) approach, because the Galerkin type of
scheme is infeasible due to the nonlinear structure of neural networks.
The MSE loss function is simply an average squared residual of model
equations over a large enough sample of states, denoted as X̃. This
sample is typically obtained by means of Monte Carlo simulations.

L2(X̃,O) =
1

N

K∑︂
i=1

E(X̃ i,O)2 (8)

2.2 Loss Function and Grid Sampling

My approach for the construction of the loss function broadly follows
the euler equation method L. Maliar, S. Maliar and Winant (2019)
and the algorithm of Azinovic, Gaegauf and Scheidegger (2021). The
loss function composes of mean squared residuals in the first-order
conditions, bellman equations, and constraint-violation error 21. This
form of loss function allows for directly attacking the model recursive
equilibria without the necessity for engaging in some type of fixed-
point iterative procedure.

L. Maliar, S. Maliar and Winant (2019) and Azinovic, Gaegauf
and Scheidegger (2021) solve their model on random grids which
are sampled from the ergodic distribution implied by approximate
model solutions. L. Maliar, S. Maliar and Winant (2019), building on

21Especially non-negativity errors.
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previous work of L. Maliar and S. Maliar (2015), discussed how those
ergodic set methods help to mitigate the curse of dimensionality.
Unfortunately, macro-epidemic economies in a spirit of Eichenbaum,
Rebelo and Trabandt (2020) feature highly nonlinear dynamics that
do not possess an ergodic steady state, hence the ergodic set method
can not be used. There are two possible responses to this challenge.

Firstly, one might simulate a large number of transition paths
of the economy, and use those transition paths as a projection grid.
However, the wild nonlinearity of macro-epidemic models requires
great care for preventing numerical instabilities during the training
process. Secondly, one might use uniform hypercube sampling and
try to limit the size to the necessary volume. In my algorithm, I use
the second approach, specifically, my method aims to truncate the
size of the hypercube in the direction of state variables which induce
large nonlinearities into the model solution.
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3 Benchmark Implementation

As a benchmark implementation of my method, I select the influ-
ential macro-epidemic model of Eichenbaum, Rebelo and Trabandt
(2020). Although this economy might be considered as quite styl-
ized, even its standard configuration includes 3 continuous state
variables, and to the best of my knowledge, no paper up to this time
solved fully recursive macro-epidemic model with more than two
state variables 22. Moreover, its relative simplicity is useful for a de-
tailed exposition of inner details of the implementation of my method.

In this chapter, I use my algorithm to solve four different modi-
fications of the model of Eichenbaum, Rebelo and Trabandt (2020).
Firstly, I solve the simple laissez-faire version of their model for
which a large part of the equilibrium could be solved in a closed form
and use this result to check results provided by a general algorithm
that numerically approximates whole recursive equilibria of the eco-
nomy. After solving the baseline economy of Eichenbaum, Rebelo
and Trabandt (2020), I use a slightly extended algorithm to solve a
version of their model featuring aggregate stochastic virus mutations.
Finally, I demonstrate the flexibility of my deep learning algorithm
by solving a whole set of model equilibria indexed by parameters
controlling government epidemic containment policies and show, how
this algorithm could be used to simplify the computation of optimal
government policies in macro-epidemic economies 23.

3.1 Economy of Eichenbaum, Rebelo and Trabandt (2020)

3.1.1 Model Economy

Time is discrete and infinite. The economy is populated by a unit
measure of households who are divided into three groups; susceptible
households which haven’t been infected yet, infected households who

22Gonzalez-Eiras and Niepelt (2020) solved epidemic model with stochastic vaccine arrival
and mutation risk, however, they model these variables as discrete Poisson processes. Their
model feature only one continuous state variable. Alvarez, Argente and Lippi (2020) solved a
recursive planner problem in a deterministic epidemics economy with two state variables by
converting the continuous-time problem into a discrete-time and solving the resulting bellman
equation using numerical value function iteration.

23I believe that this method could be also useful for optimal policy computations in the
standard business cycle and growth models.
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can further spread the disease and face the probability of dying to
the disease, and recovered households who survived the disease and
are no longer infectious. Susceptible households are denoted by s
superscript, infected by i superscript and recovered by r superscript.
The aggregate state of the economy consists of population shares
of susceptible, infected, and recovered households 24. Share of sus-
ceptible households at time t is denoted by St, share of infected
households by It, and share of recovered households by Rt. The
residual which represents deceased households is denoted by Dt.

The aggregate state evolves to the following system of ”SIR”
equations, where Tt denote share of newly infected households, Cs

t

and Ci
t denote consumption of susceptible and infected households,

N s
t and N i

t denote labor supply. Parameters {πi}3i=1 determine
relative shares of people infected while ”shopping”, infected at the
workplace, and infected from reasons unrelated to economic activity.
Also, the number of newly infected is increasing both in the share of
susceptible and infected households. Intuitively, a higher number of
susceptible people increase the probability that an infected person
will transmit the disease because she meets more potential victims.
A higher number of infected people obviously imply a higher number
of infection spreaders and hence a higher number of newly infected.

Tt = π1C
s
t StC

i
tIt + π2N

s
t StN

i
t It + π3StIt (1)

Because the model is calibrated to weekly frequency, the share of
new born people is vanishingly small, hence the equation governing
dynamics of the share of susceptible households collapses into a
particularly simple form featuring only outflow of newly infected.

St+1 = St − Tt (2)

The dynamics of the share of infected households include two terms.
Firstly, there is and outflow term which includes newly recovered
and newly deceased households. Intensity of this outflow is governed
by parameters πr and πd which represents probability of recovery
and probability of death respectively. Inflow of newly infected is
governed by equation (1).

It+1 = (1− πr − πd)It + Tt (3)
24Number of deceased households is implied by knowledge of these three shares since the

total population is normalized to unity.
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The dynamics of the share of recovered include only an inflow term,
since recovered households are assumed to receive perfect immunity
and hence there are no re-infections.

Rt+1 = Rt + πrIt (4)

Government in this economy sets path of consumption tax {µt}∞t=τ

and lump-sum transfers {Γt}∞t=τ . Consumption tax serves as a proxy
for lockdowns and other epidemics-containment measures. Govern-
ment is assumed to obey a balanced budget constraint which links
consumption tax revenues to lump-sum transfers.

µt

(︁
Cs

t × St + Ci
t × It + Cr

t ×Rt

)︁
= Γt (St + It +Rt) (5)

Production sector of the economy is competitive in both input and
output markets and composes of unit measure of identical firms.
Without loss of generality, production sector can by summarized
by means of representative firm, which operates a linear production
technology that transforms labor supplied by households into final
output.

Yt = α×Nt = α×
(︁
N s

t St +N i
t It +N r

t Rt

)︁
(6)

This structure of production sector implies constant wage rates 25.

ω = α (7)

All households in the economy have the same period utility func-
tion (henceforth felicity function) over consumption and labor supply.
Felicity function is assumed to take log-quadratic form with labor
dis-utility parameter θ. The log-quadratic form of felicity function
allows for closed-form characterization of steady-state

u(ct, nt) = log ct −
θ

2
n2
t (8)

Following Eichenbaum, Rebelo and Trabandt (2020), I wrote decision
problems of households in terms of recursively described lifetime
utility. However, it should be stressed that Eichenbaum, Rebelo and
Trabandt (2020) formulated and solved the model in the sequence-
space. Although the utility is written in terms of recursion, value

25Hence, wages are independent of aggregate state. This fact greatly simplifies model solution.
In laissez-faire equilibrium it generates block-recursive structure which allows to analyticaly
characterize a large part of the equilibrium dynamics.
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functions are modeled as time-dependent. To made the problem
recursive, a sufficient set of state variables had to be determined,
and all equilibrium objects had to be written such that they solely
depend on those state variables.

The decision problem of a susceptible household is described by
the following bellman equation. Vt denotes the value function of
susceptible households. Following Lucas Jr and Prescott (1971),
lower case variables (cst , n

s
t) denote individual decision variables of

households. Susceptible households maximize the sum of its fe-
licity flow and discounted continuation value. Compared to the
canonical household problem of dynamics macroeconomics house-
hold doesn’t engage in the consumption-savings decision. There are
no savings in this economy, neither in form of productive capital,
neither bonds. Households are indexed only by their health status.
A susceptible household faces classical static consumption-leisure
modified by health concern summarized by the difference between
continuation value of remaining susceptible (healthy) denoted as
Vt+1, continuation value of getting infected Xt+1 and infection prob-
ability τt. Infection probability mirrors the structure of the aggregate
infection equation. The key difference is the presence of individual de-
cision variables and omission of the share of susceptible households26.

The possibility of getting infected, and the difference between the
continuation value of susceptible versus infected household enters as
a wedge into the otherwise static consumption-leisure problem and
makes it dynamic27. Because of this forward-looking element, the
model can’t be solved as a simple system of equations and had to be
tackled by means of sequence-space or even functional analysis tools.

Vt = maxcst ,n
s
t
{u(cst , ns

t) + β(1− τt)Vt+1 + βτtXt+1}

(1 + µt)c
s
t ≤ ns

tw + Γt

τt = π1c
s
tC

i
tIt + π2n

s
tN

i
t It + π3It

(9)

26Share of susceptible households doesn’t influence the probability that individual susceptible
household get infected. This probability depends only on consumption and labor choices of
susceptible household together with the share and behavior of infected households

27Because current choices became influenced by forward-looking continuation values, together
with current state variables and current decisions.
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In the case of infected households, forward-looking terms enter only
continuation value, but continuation value itself is independent of
current decisions, hence the problem faced by infected households
is the static consumption-leisure problem. Infected households face
twofold penalization. Firstly, they are less productive, and hence their
wage is scaled-down by a factor ϕ ∈ (0, 1). Secondly, they face the
risk of succumbing to disease and dying. The period death probability
is denoted by πd. The continuation value of a deceased person is
parameterized by D, it could be interpreted as the magnitude of
”fear of death” 28. If an infected household survives in period t, it
either remains infected with probability (1− πr − πd) and receives
continuation value of infected household or recovers from disease
with probability πr and receives continuation value of the recovered
household.

Xt = u(cit, n
i
t) + β(1− πr − πd)Xt+1 + βπrWt+1 + βπdD

(1 + µt)c
i
t ≤ ni

twϕ+ Γt

(10)

Recovered households also face a very standard static consumption-
leisure problem, since they face only a static budget constraint.
With the log-quadratic utility, policy functions of both infected and
recovered households could be obtained in closed-form. However,
value functions are more complex objects, since they are inherently
forward-looking. In laissez-faire equilibrium, they could be also ana-
lyzed in closed-form, since both consumption taxes and government
transfers disappear from budget constraint and wages are fixed. Out-
side laissez-faire equilibrium, value functions could not be solved in
closed-form, because they depend on future dynamics of government
policies together with future behavior of susceptible households which
co-determine the size of future government transfers to recovered
and infected households. Hence in the case of active government,
value functions had to be approximated by a projection to a suitable

28This parameter is not present in the original model of Eichenbaum, Rebelo and Trabandt
(2020). Instead, they set it implicitly as zero. My version hence nests their model as a special
case for D = 0. While Eichenbaum, Rebelo and Trabandt (2020) calibrated the model to match
weekly wages in the United States economy in dollar terms, I use normalized consumption
units, where pre-epidemics consumption is calibrated to 1. In contrast with their calibration,
which delivers high nominal consumption and positive continuation values, my normalized
calibration induces a negative continuation value. Hence, setting the continuation value of
the death household to zero would imply counterfactual ”suicidal” behavior of susceptible
households. To prevent this problem, I introduced the D parameter, which could be calibrated
to be negative enough to prevent suicidal behavior of households.
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functional basis 29.

Wt = u(crt , n
r
t ) + βWt+1

(1 + µt)c
r
t ≤ nr

tw + Γt

(11)

3.1.2 Recursive Equilibrium

To solve the model using functional approximation tools and fa-
cilitate further analysis of the model with aggregate uncertainty,
I re-formulate the sequence-space problem into a functional-space
problem by defining a recursive competitive equilibrium (RCE) of
the economy.

The recursive competitive equilibrium of the economy is a:

1. Set of functions V ,X ,W , cs, ci, cr, ns, ni, nr, Cs, Ci, Cr, N s, N i, N r, µ,Γ

2. Such that households value and policy functions solve their
respective optimization problems, taking the rest of the economy
as given

V(Ω) = maxcs,ns{u(cs, ns) + β(1− τ)V(Ω′) + βτX (Ω′)}

(1 + µ(Ω))cs ≤ nsw(Ω) + Γ(Ω)

τ = (π1c
sCi(Ω)I + π2n

sN i(Ω)I + π3I)

X (Ω) = maxci,ni{u(ci, ni) + β((1− πr − πd)X (Ω′)
+πrW(Ω′) + πdD)}

(1 + µ(Ω))ci ≤ niw(Ω)ϕ+ Γ(Ω)

W(Ω) = maxcr,nr{u(cr, nr) + βW(Ω′)}

(1 + µ(Ω))cr ≤ nrw(Ω) + Γ(Ω)

(12)

29Moreover, outside laissez-faire equilibrium, the policy is characterized in closed-form only
as a function of government transfer, which in turn depends on the behavior of susceptible
household. Hence, if policies of infected and recovered households should be characterized as
functions of state variables, they had to be also numerically approximated.
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3. Government policies µ,Γ satisly government budget constraint

µ(Ω)(Cs(Ω)S + Ci(Ω)I + Cr(Ω)R) = Γ(Ω)(S + I +R) (13)

4. State Ω =
(︁
S I R

)︁
evolves according to is law of motion,

described by equations (1−4). Those equations are summarized
by operator H.

Ω′ = H(Ω)
T = π1C

s(Ω)SCi(Ω)I + π2N
s(Ω)SN i(Ω)I + π3SI

S ′ = S − T
I ′ = (1− πr − πd)I + T

R′ = R + πrI

(14)

5. And rational expectations fixed-point condition holds

cs = Cs ci = Ci cr = Cr

ns = Cs ni = N i nr = N r (15)

Besides lifting description of household problems from the space of
sequences to space of functions I transformed the set of government
policies from the space of all feasible 30 tax and transfer sequences
to a space of feasible tax and transfer functions. Those tax and
transfer functions µ : Ω → R and Γ : Ω → R describes possibly
nonlinear mappings from the aggregate state space to actual tax
and transfer quantities. With sufficiently rich functions µ and Γ
this transformation doesn’t lose expressivity given by possibility of
choosing from all feasible policy sequences.

Finally, fixed-point conditions formally encode the structure
of competitive equilibria under rational expectations. Household
chooses their individual policy (functions), denoted by lower-case let-
ters while taking choices of all other agents in the economy, denoted
by upper-case letters, as given. Since all households in each group
are identical, all of them had to choose the same value of control
variables. Hence their policy functions are identical and equal to
the aggregate policy functions 31. Yet, it is crucial to distinguish

30In a sence that they satisfy the government balanced budget constraint.
31Intuitively this concept could be related to the iterative procedure in a spirit of Krusell and

Smith (1998), abstracting from distribution approximation issues. Firstly, households guess
how the rest of the economy behaves, and given that they compute their optimal response to
the behavior of the rest of the economy. In a second step, households update their guess using
the solution of their optimization problem, re-compute their best response and iterate on this
procedure until a fixed-point is reached.
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between individual and aggregate policy functions. Households do
not control aggregate policy functions, and hence they do not take
into account how their behavior will influence aggregate epidemic
dynamics, which gave rise to the negative consumption and labor
externality of susceptible and infected households.

3.1.3 First-Order Conditions and Euler Equation

Since optimization problems of all households are convex 32, their op-
timal behavior could be characterized by a set of first-order conditions
coupled with bellman recursions determining their value functions.
By deriving first-order conditions which determine optimal household
behavior, and applying rational expectations fixed-point condition
the recursive competitive equilibria of the economy get reduced into
a relatively standard 33 set of functional equations that could be
tackled directly using functional approximation tools, such as linear
projection or deep learning.

The key part of the system is the intertemporal euler equation
which describes the consumption-leisure-health decision problem of
susceptible households. The striking difference with respect to the
classical euler equation appearing in the canonical consumption-
savings model in a spirit of Ramsey (1928) is the presence of value
functions in the equation. The reason for this difference is the discrete
nature of the individual state in this economy. Whereas households
in classical consumption-savings problem à la Ramsey (1928) are
indexed by their assets, which is a continuous variable 34, households
in the epidemics economy of Eichenbaum, Rebelo and Trabandt
(2020) are indexed only by their health status; susceptible, infected,
and recovered. Because of this discrete nature of idiosyncratic house-
hold states, there is no envelope formula, which could be used to
substitute-out the value function from the euler equation expression.

32Household utility is strictly concave in all their arguments, and constraint sets are linear in
their choice variables. Also, the government imposes just linear taxes and lump-sum transfers,
neither of them could spoil the convexity of household optimization

33Those equations no longer feature maximum operators. Instead, the maximization behavior
of households is encoded in the structure of both static consumption-leisure conditions and in
the intertemporal euler equation. Those equations feature then only standard mathematical
expressions which could be calculated or approximated directly without relying on fixed-point
iteration procedures which are typically slow and relatively unstable.

34At least in theoretical formulation, before the model is discretized and solved on a computer.
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Hence, value functions had to be solved simultaneously with policy
function as a solution to simultaneous functional equations 35.

The intertemporal euler equation of susceptible households in this
economy features two distinct elements. Firstly, it is the standard
consumption-leisure first-order condition, denoted in red. In the
static problem, the optimality principle would require the household
to equalize marginal utility of consumption with the lost marginal
utility of leisure, and hence, the red expression should sum up to zero.
However, susceptible households face a dynamic problem, because
their consumption and work behavior influence the probability of get-
ting infected, and hence it has a direct impact on continuation value
because the continuation value of remaining healthy is different from
the continuation value of getting infected. This health consideration
manifests itself in the second term present in the intertemporal euler
equation, denoted in blue. It acts efficiently as a wedge in the static
first-order condition. In absence of this health consideration 36, the
wedge term is equal to zero, which implies that the intertemporal
euler equation collapses into a standard static first-order condition.

β × (V(Ω′)−X (Ω′))× (w(Ω)π1C
iI + π2N

iI(1 + µ(Ω)) =
uc(C

s, N s)w(Ω) + un(C
s, N s)(1 + µ(Ω))

V(Ω) = u(Cs, N s) + β × (1− τ)V(Ω′) + τX (Ω′)

(16)

Optimal behavior of recovered households is characterized by a very
simple consumption-leisure first-order conditions, and their value
function solves traditional bellman equation.

uc(C
s, N s)w(Ω) + un(C

s, N s)(1 + µ(Ω)) = 0

W(Ω) = u(Cr, N r) + β ×W(Ω′)
(17)

35In principle, this is a much more complicated problem relative to a standard set-up, for
which envelope conditions allow for characterizing first-order conditions solely in terms of policy
functions. If the only unknown in first-order conditions is the set of policy functions, a block-
recursive approach could be used. One might firstly solve for optimal policies without having
to simultaneously approximate value functions. After computing a reasonable approximation
to the policy function, one might recover value functions relatively easily by simply solving the
set of bellman equations while taking the policy functions computed in the previous step as
given.

36For example in a steady-state, when the share of infected households is zero and hence the
probability of getting infected is zero, regardless of the individual behavior of the susceptible
household.
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The first-order condition of the infected household mirrors the struc-
ture of the first-order condition which describes the optimal behavior
of the recovered household. Value function of infected household
solves following bellman recursion, maximum operator is omitted,
since the optimizing behavior of household is encoded in the structure
of the first-order condition. Because optimization behavior is already
encoded in the first-order condition, which was derived under the
assumption that individual households can not control aggregate
policy functions, in this step, the rational expectations fixed-point
condition is invoked, and individual policy functions are replaced by
aggregate policy functions.

uc(C
s, N s)w(Ω)ϕ+ un(C

s, N s)(1 + µ(Ω)) = 0

X (Ω) = u(Cr, N r) + β × (1− πr − πd)×X (Ω′)+
(18)

The set of equations (16−18), together with aggregate law of motion
(1 − 4) and government budget constraint (5), given some policy
function µ or 37 Γ fully characterize the recursive equilibria of this
economy. Since it this system no longer features maximum operators,
it could be solved using linear projection or deep learning tools
without the necessity to resolve the maximum operators in each and
every iteration step of some nonlinear solver 38.

3.1.4 Steady-State

Before solving for the full recursive competitive equilibria it is useful
to solve firstly for the model steady-state behavior. The steady-state
of the epidemic economy is simply a state in which the share of infec-
ted households reaches zero. Compared to a standard business cycle
economies with typically a unique ergodic steady-state to which the
economy converges regardless of initial conditions, macro-epidemic

37Transfer function is implied by consumption tax function through government balanced
budget constraint and vice-versa. Hence only one of those functions should be explicitly
specified. Otherwise, great care is required to ensure that government budget constraint will
hold with equality over the whole state-space.

38Presence of maximum operator and the need for iterative re-optimizations becomes
especially costly when first or second-order methods are employed for minimization of the
loss function, since these methods require computation of gradient or even hessian matrix.
When the maximum operator had to be approximated using numerical routine, gradients
or hessian matrices had to be approximated using finite-difference techniques which require
many functional evaluations for computing gradients. This problem is especially severe in
deep learning applications, where neural networks are parameterized by a very large number
of parameters, and are optimized using gradient descent algorithms.
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models feature much complex steady-state behavior. While all those
steady-state values feature a zero share of infected households 39,
different paths of epidemic lead to different final shares of suscept-
ible, infected, recovered, and deceased households. However, the
block-recursive structure of the epidemics economy of Eichenbaum,
Rebelo and Trabandt (2020) imply that the steady-state behavior of
households is the same, regardless final distribution of households
across the health state 40.

Because in the probability of infection vanishes with a share of the
infected household going to zero, in steady-state decision problems
of susceptible household converges to the decision problem of the
recovered household. Household behavior is hence characterized by
a simple static first-order condition.

uc(C,N)αϕ+ un(C,N) = 0 (19)

The first-order condition is coupled with simple budget constraint.

c≤αn (20)

After substituting in the log-utility function, those two equations
could be solved in closed-form for steady state consumption and
labor supply of susceptible and recovered households.

css =
√︂

1
θ

nss = α×
√︂

1
θ

(21)

Those steady state consumption and labor choice imply also steady
state level of utility, which could be then used to solve for steady
state value functions of susceptible and recovered households.

uss = log css − θ
2
n2
ss

Vss =
uss

1−β

(22)

39Since epidemics stops only when the share of infected households drops to zero because
then there is no possibility that remaining susceptible households get infected.

40To guarantee this property I assume that steady-state consumption tax is zero. This
assumption is in line with the underlying economic logic of the economy, since abstracting from
epidemics externality, which is absent in post-epidemic steady-state, this economy is Pareto
efficient, and hence distortive government interventions can not improve welfare. A weaker
assumption about steady-state policy could be used, however, I chose a stronger assumption
for sake of exposition simplicity
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Although the steady-state share of infected households, continuum
definition of agent population allows for a zero-measure set of re-
maining infected households in the steady-state economy 41. In the
steady-state, the decision problem of households, including their
steady-state value functions, could be also characterized in a closed-
form, since they also face a constant aggregate environment. Because
of the log-quadratic specification of the utility function, both infected,
susceptible, and recovered households choose the same steady-state
labor supply. However, steady-state consumption of infected house-
holds is lower, because of their productivity penalty ϕ.

ciss =
√︂

1
θ

niss = ϕ× α×
√︂

1
θ

uiss = log ciss − θ
2
n2
iss

Xiss =
uiss+βπr×Vss+βπd×D

1−β×(1−πr−πd)

(23)

Since the economy converges over time to the steady-state, I exploit
knowledge of the steady-state behavior of the economy to construct a
Dirichlet type of boundary conditions that restrict functions used to
approximate the full dynamic equilibrium functions to be consistent
with the long-run steady-state behavior of the economy.

3.1.5 Calibration

My calibration broadly follows the original approach employed by
Eichenbaum, Rebelo and Trabandt (2020). Model is calibrated un-
der the assumption that one time period lasts for one week. For
calibration of πr and πd parameters, I directly use values suggested
by Eichenbaum, Rebelo and Trabandt (2020). My calibration differs
from Eichenbaum, Rebelo and Trabandt (2020) along two dimensions.
Firstly, instead of calibrating the steady steady-state consumption to
match nominal weekly wage in the economy of interest, I normalize
steady-state consumption to one. Similarly, instead of calibrating
worked hours to match nominal worked hours, I normalized labor
supply to 1

3
, following the broad consensus in macroeconomics liter-

ature. Relative to nominal calibration of Eichenbaum, Rebelo and
Trabandt (2020), my calibration does not guarantee positive utility

41Steady state problem of infected households allows for the convenient derivation of calibra-
tion equation for death disutility parameters D.
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and continuation value of households, which implies that setting
the continuation value of deceased households to zero might induce
them to engage in counterfactual suicidal behavior, where households
would try to get infected.

This issue leads to the second difference of my calibration with
respect to Eichenbaum, Rebelo and Trabandt (2020). To prevent the
suicidal paradox, I introduce an additional parameter D which para-
meterize the continuation value of deceased households. By setting it
to a sufficiently negative value, households get really afraid of getting
infected and possibly dying. For calibration of this parameter, I
exploited the steady-state problem of infected households, which
allows computing a consumption equivalent of the D parameter. In
my calibration strategy 42 I assume, that an infected household can
choose between living in a stationary 43 economy in which it faces
the possibility of succumbing to the disease, and receiving one-off
compensating payment, denoted as consumption multiplier λ, versus
living in a deathless economy but not receiving this compensating
lump-sum transfer. The consumption equivalent is a value of λ which
solves the following equation.

Vss
mortal(λ,Θ) = Vss

deathless(Θ) (24)

Given the rest of the parameters 44 which influence steady-state
objects and policy functions, each value of D implies distinct value
of λ. Conversely, for a given consumption equivalent, equation (24)
could be solved for an implied value of D. In order to exploit this
relationship, I use data provided by Vocelka et al. (2017) and the
Czech Statistical Office to estimate the consumption equivalent of
lost life of the average Czech individual. They estimated the average
valuation of one quality-adjusted year of life (QALY) to 22712 EUR.
Assuming net average monthly wage of 1094 EUR, the average life
expectancy of 79.48 years, the average current age of 42.5 years these

42This thesis focus on the solution method and particular calibration details are of minor
interest. Hence my description of the calibration strategy is heuristic. This calibration should
be understood only as a procedure for obtaining roughly plausible parameter values for which
the model could be solved. For a normal quantitative exercise, a more careful calibration
procedure should be used.

43Steady state economy
44Denoted by Θ. This set includes D
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data implies λ = 3336 45.

3.1.6 Approximating Function and Boundary Conditions

To solve for the recursive competitive equilibria of the macro-epidemic
economy of Eichenbaum, Rebelo and Trabandt (2020), my algorithm
had to approximate six unknown functions. Those are value functions
of susceptible, infected, and recovered households, denoted by V(Ω),
X (Ω) and W(Ω) respectively, and consumption functions denoted as
Cs(Ω), Ci(Ω), and Cr(Ω)

46. All of those unknown functions are rep-
resented using ansatz which combines fully connected feed-forward
neural networks with Dirichlet-type boundary conditions constructed
using steady-state values of value and policy functions.

Resulting approximating functions hence could be written as 47

V̂(Ω|P1) = Vss − (Ω[2])×NN (Ω|P1)

X̂ (Ω|P2) = Xiss − (Ω[2])×NN (Ω|P2)

Ŵ(Ω|P3) = Wss − (Ω[2])×NN (Ω|P3)

Ĉs(Ω|P4) = Css − (Ω[2])×NN (Ω|P4)

Ĉi(Ω|P5) = Ciss − (Ω[2])×NN (Ω|P5)

Ĉr(Ω|P6) = Css − (Ω[2])×NN (Ω|P6)

(25)

All these functions are functions R3 → R. {Pi}6i=1 are parameter
vectors that index approximating neural networks. I use P = {Pi}6i=1

to denote a matrix which stacks together parameters of all networks
used for approximation of the recursive equilibria.

After some experimentation, I settled on feed-forward neural net-
works with four hidden layers and 32 neurons per hidden layer, using
swish (Ramachandran, Zoph and Le 2017) function as activation
which performs nonlinear transformations in the hidden part of the

45Average current age and life expectancy implies, that in case of epidemic-induced death,
average household lose 36.68 years. Using average QALY valuation estimated by Vocelka et al.
(2017), this implies a monetary loss of 839889 EUR. Given an average monthly wage of 1094
this monetary loss is an equivalent of 63.98 net yearly wages or 3336 weekly wages.

46Labor supply functions does not have to be approximated, since given consumption
function, labor supply could be obtained in closed-form by simply inverting budget constraint.

47Where Ω = (S, I,R)). Hence Ω[2] denotes share of infected, and Ω[2]ss = 0, hence
boundary condition encoded in the equation (25) constraints approximating functions to be
consistent with steady state objects.
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network. Since consumption had to be always non-negative 48, the
usual practice in macroeconomic deep learning methods, such as
Azinovic, Gaegauf and Scheidegger (2021), is to endowed output
layers of neural networks which approximate consumption policy
functions with softplus activation functions because those functions
guarantee positive output and hence prevent possible numerical
accidents during the training procedure. However, in this applica-
tion, the structure of boundary conditions precludes this approach,
since the neural network is subtracted from the steady-state value
49, which implies that consumption non-negativity constraints can
not be directly encoded into the approximating functions. For all
neural networks used in approximation functions, I employed linear
activation 50, since it provides the flexibility required for universal
approximation results in a spirit of Hornik, Stinchcombe, White et al.
(1989).

Swish(x) = x× σ(x) = x
1−exp−x

Softplus(x) = log(1 + exp x)
(26)

Besides the swish function, which is a linearly scaled cumulative
distribution function of the logistic distribution, the gelu 51 or the
tanh 52 function could be also used very efficiently.

Gelu = x× Φ(x)
Tanh = expx−exp−x

expx+exp−x

(27)

While some influential papers on deep learning solution methods in
macroeconomics (eg.L. Maliar, S. Maliar and Winant 2019; Azinovic,
Gaegauf and Scheidegger 2021) recommend using simple rectified-
linear (ReLU) activation functions, I found their performance to be
inferior relative to tanh or scaled cumulative distribution activations,
even in some applications beyond problems analyzed in this thesis.

48As implied by logarithmic utility of consumption.
49Because epidemics consumption, labor supply, as well as continuation values, are lower

than their steady-state counterparts
50Also known as linear activation
51Gelu is a linearly scaled cumulative distribution function of the normal distribution. In

general, I found scaled cumulative distributions as particularly efficient activation functions,
especially for unbounded problems.

52Tanh activation is mentioned by Fernández-Villaverde, Nuño, Sorg-Langhans and Vogler
(2020) and Gopalakrishna (2021) as particularly efficient activation function for challenging
macroeconomic applications. However, I found scaled cumulative distributions, and especially
the swish function as more convenient.
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However, relative to L. Maliar, S. Maliar and Winant (2019) and
especially Azinovic, Gaegauf and Scheidegger (2021) who analyzed
very large scale problems using high-performance computation units
with large clusters of graphical processing units (GPUs), where ReLU
activations could be efficient due to their simplicity, which allows for
efficient utilization of massively parallel GPU processing cores 53.

ReLU = max{0, x} (28)

3.1.7 Loss Function

The loss function defines the least-squares projection condition. Us-
ing notation from Chapter 2, the loss function is defined as a weighted
sum of model residuals indexed by the set of parameters which char-
acterize approximating neural networks 54. For sake of tractable
notation, I directly restrict attention to least-squares loss function
where M denotes the set of model equations, G set of approximating
neural networks, P matrix of parameters that index neural networks
of interest and {xi}Ni=1 denotes a sample of states used as a possibly
randomized projection grid 55.

L(P) =
∑︁N

i=1M (G(xi,P))M (G(xi,P))T (29)

In the first exercise, I solve the recursive equilibrium of the Eichen-
baum, Rebelo and Trabandt (2020) economy. Firstly, I solve the
laissez-faire economy, in which the absence of government interven-
tion generates a block-recursive structure that could be used for
analytical characterization of a large part of the recursive equilibria.

53Those ReLU-related efficiency gains could be even more pronounced when using tensor
processing units (TPUs), which use even more specialized architecture which is aggressively
optimized to perform massively parallel linear algebra operations at cost of sacrificing some
accuracy and ability to efficiently perform more complex computational tasks, which are needed
for example for computation of more complicated activation functions.

54Following Fernández-Villaverde, Hurtado and Nuno (2020) this set of neural networks
could be for thought off as one network with multiple outputs.

55In my implementation, I employ a uniform hypercubic sampling scheme which rule-of-
thumb policy simulations to bound the relevant region of share of an infected household. This
restriction is extremely important for numerical stability of the training process since the high
nonlinearity of the macro-epidemics model tends to generate extremely challenging behavior
of the model equilibrium outside economically reasonable part of the state space. In this
application, the simple rule-of-thumb method was sufficient to ensure fast convergence of the
training algorithm. However, in more challenging environments, an iterative procedure might
be necessary. One might firstly guess an upper bound, solve the model, and then check whether
the simulated dynamics of the economy stays with this bound.
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The only component of the laissez-faire economy which had to be
approximated using deep learning is the value and policy function
of susceptible household, which face genuinely dynamic decision
problem, due to the interaction of their forward-looking continuation
value with their consumption-leisure margin. In this very simple
economy, the M equation set composes only from the euler and
bellman equation described in the equation (16) 56. The rest of
equilibrium objects is available in closed form, and hence does not
have to been approximated.

Secondly, I solve the general economy in which government could
set non-zero consumption tax. For exposition simplicity, I assume
that the government policy rule takes a form of a simple linear
function of the current share of infected households parameterized
by a coefficient φ ≥ 0.

µ(Ω) = φ× Ω[2] = φ× I (30)

In case of φ > 0 the block-recursive structure of the laissez-faire
equilibria is lost, because non-zero consumption taxes implies non-
zero transfers, and since transfers depend jointly on both on the
state-dependent consumption tax rate and state-dependent beha-
vior of susceptible behavior, value and policy functions of infected
and recovered households became quite complex dynamic objects
which had to be also approximated. The M equation set in this
case includes 3 bellman equations and 3 euler equations described in
equations (16−18). However, for φ = 0 results of both deep learning
problems should coincide, up to some numerical errors.

As mentioned in the Chapter 2 optimal value of parameter matrix
P which indexes the set of approximating neural network is pinned-
down by minimizing the loss function using adaptive stochastic
gradient descent algorithm known as ADAM (Kingma and Ba 2014).
While the machine learning literature developed a plethora of com-
peting network optimization algorithms, ADAM is widely considered
to be a good default optimizer that is simple to implement, compu-
tationally efficient, and offers fast and relatively stable convergence
properties. In all presented problems, ADAM delivered a reason-

56Subject to the aggregate law of motion defined by the SIR model described by equations
(1− 4)
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able performance, so there was no reason for using some alternative
method for network optimization.

3.1.8 Results

Since the general model economy nests, the laissez-faire economy
as a special case for ϕ = 0, the comparison of results obtained by
numerical approximation of the laissez-faire economy with the general
economy under φ = 0 could serve as a basic test of the accuracy
of my solution method. Figures 1 and Figure 2 show, that both
algorithms generated indistinguishable economic dynamics, which
fact speaks in favor of accuracy of my method 57.

Figure 1: Consumption path of susceptible households in the laissez-faire economy

57Both algorithms also converged to the required loss function threshold.
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Figure 2: Consumption path of susceptible households in the general economy
with φ = 0

3.2 Stochastic Economy

In this exercise, I focus on competitive equilibria of the Eichen-
baum, Rebelo and Trabandt (2020) economy with aggregate shocks.
Compared to the vanilla Eichenbaum, Rebelo and Trabandt (2020),
who work in an environment with deterministic aggregates, I extend
the set of epidemic SIR equations with mutation risk that changes
virulence of the epidemics.

Tt = π1C
s
t StC

i
tIt + π2N

s
t StN

i
t It + π3StIt (1)

St+1 = St − Tt × Et (2)

It+1 = (1− πr − πd)It + Tt × Et (3)

Rt+1 = Rt + πrIt (4)

For the stochastic economy, I use the same calibration procedure
as for the baseline economy 58. Compared to the original Eichenbaum,

58Parameters governing the mutation Markov chain governing the virulency of epidemics,
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Rebelo and Trabandt (2020) paper, I assume that number of infected
doesn’t depend just on the original set of state variables Ωt =
(St, It, Rt) and household choices, I introduce a Et element which
represents mutation of the virus. I assume that there is a low-
virulency, standard, and high-virulency mutation 59.

E ∈ {0.5, 1.0, 1.5} (5)

I assume that these mutations follow an exogeneous markov process
with transition matrix

M =

⎡⎣ 0.9 0.1 0
0.05 0.9 0.05
0 0.1 0.9

⎤⎦ (6)

The problem of susceptible household could be written as 60

Vt = max{cst ,cnt } {u(c
s
t , n

s
t) + β(1− τt)Et [Vt+1] + βτtEt [Xt+1]}

(1 + µt)c
s
t ≤ ns

tw + Γt

τt = (π1c
s
tC

i
tIt + π2n

s
tN

i
t It + π3It)× Et

(7)

Infected household

Xt = max{cit,cit} {u(c
i
t, n

i
t) + β(1− πr − πd)Et [Xt+1] + βπrEt [Wt+1] + βπdD}

(1 + µt)c
i
t ≤ ni

twϕ+ Γt

(8)
Recovered household

Wt = max{crt ,crt } {u(c
r
t , n

r
t ) + βEt [Wt+1]}

(1 + µt)c
r
t ≤ nr

tw + Γt

(9)

The recursive equilibria in the stochastic economy is defined as
follows

which were not present in the baseline economy are calibrated to ”plausible” values which
could be used for testing of the algorithm.

59While I didn’t calibrate those parameters formally, they serve as a proof of concept for a
”non-zero” aggregate risk case.

60Et denotes a conditional expectations operator formed using information set available at
period t.
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1. Set of functions V ,X ,W , cs, ci, cr, ns, ni, nr, Cs, Ci, Cr, N s, N i, N r, µ,Γ

2. Such that households value and policy functions solve their
respective optimization problems, taking the rest of the economy
as given

V(Ω) = maxcs,ns{u(cs, ns) + β(1− τ)E [V(Ω′)] + βτE [X (Ω′)}]

(1 + µ(Ω))cs ≤ nsw(Ω) + Γ(Ω)

τ = (π1c
sCi(Ω)I + π2n

sN i(Ω)I + π3I)× Et

X (Ω) = maxci,ni{u(ci, ni) + β((1− πr − πd)E [X (Ω′)]
+πrE [W(Ω′)] + πdD)}

(1 + µ(Ω))ci ≤ niw(Ω)ϕ+ Γ(Ω)

W(Ω) = maxcr,nr{u(cr, nr) + βE [W(Ω′)]}

(1 + µ(Ω))cr ≤ nrw(Ω) + Γ(Ω)

(10)

3. Government policies µ,Γ satisly government budget constraint

µ(Ω)(Cs(Ω)S + Ci(Ω)I + Cr(Ω)R) = Γ(Ω)(S + I +R) (11)

4. State Ω =
(︁
S I R E

)︁
evolves according to is law of motion,

where F denotes the Markov chain distribution described by
equations (5) and (6)

Ω′ = H(Ω)
T = π1C

s(Ω)SCi(Ω)I + π2N
s(Ω)SN i(Ω)I + π3SI

S ′ = S − T × Et
I ′ = (1− πr − πd)I + T × E

R′ = R + πrI
E ′ = F(E)

(12)

5. And rational expectations fixed-point condition holds

cs = Cs ci = Ci cr = Cr

ns = Cs ni = N i nr = N r (13)
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As in the deterministic economy, optimization problems of households
are fully characterized by a set of necessary and sufficient first-order
conditions. The core of the equilibrium system is the following
inter-temporal euler equation and associated bellman recursion.

β × EΩ[(V(Ω′)−X (Ω′))]× (w(Ω)π1C
iI + π2N

iI(1 + µ(Ω)) =
uc(C

s, N s)w(Ω) + un(C
s, N s)(1 + µ(Ω))

V(Ω) = u(Cs, N s) + β × EΩ[(1− τ)V(Ω′) + τX (Ω′)]
(14)

The rest of FOCs is trivial 61. They are also coupled by bellman
recursions for value functions of infected and recovered households
62, as well as the law of motion of the state and government budget
constraint 63.

To solve for the recursive equilibrium of this economy, I used just
a slight modification of the original algorithm. Since the mutation
shock is represented using the N-state Markov chain, I approxim-
ate all equilibrium objects using N-output networks, where the i-th
output of the network represents the function of interest in the i-th
mutation state. This approach requires just a relatively limited
change of the codebase when going from the deterministic to the
deterministic economy. Also, networks with the same number of hid-
den layers as in a deterministic economy are typically sufficiently rich
for representing shock-dependent functions in the stochastic economy.

Because in this application I assumed just a three-state Markov
chain, I used a tensor-product approach for generating a training
grid. I simply took the random sample from the Ω domain and
evaluated all those points for all possible values of the Markov chain.
This approach is efficient with such a simple exogenous state, how-
ever, this tensor-product approach will become infeasible when the
dimensionality of the shock process increase. In that case, typical

61Static first-order conditions are identical to their counterparts in the deterministic economy.
62The key difference with respect to their structure in the deterministic economy is the

presence of conditional expectations operator in continuation value expressions. Because
uncertainty takes for of a discrete-state Markov chain, those conditional expectations could
be computed as simple weighted sums without need for integral approximation techniques
required in case of continuous-state uncertainty.

63While my code includes government budget constraint and simple linear policy, in this
numerical experiment, I switched government off, so these are competitive equilibrium results.
However, the same code could be used to solve for policy-distorted competitive equilibria.
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set simulations in a style of (L. Maliar, S. Maliar and Winant 2019)
might be employed to break the curse of dimensionality.

Figure 3: Consumption path of susceptible households in the stochastic economy.
When the epidemics switch to the less aggressive mutation denoted by State1,
susceptible household tends to work and consume more, because the risk of
getting infected is lower compared to the situation under some more aggressive
mutation.

3.3 Parametric Set Method

Finally, I present the extended algorithm which aims to approximate
a whole set of model equilibria 64 indexed by a vector of policy rule
parameters in order to simplify parametric Ramsey-style optimal
policy computations which were historically plagued by the necessity
for repeated solving of the model equilibria for a huge number of
possible parameterizations of the policy rule. The only change with
respect to the baseline algorithm which solves for the model equilib-
rium given one particular value of the parameter vector is that this
extended algorithm treats the selected subset of model parameters
as additional state variables. While those pseudo-states follow an
identity law of motion, otherwise they are treated in the same way

64In this exercise, I solve the deterministic version of Eichenbaum, Rebelo and Trabandt
(2020) economy.
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as natural state variables of the problem.

The code used for solving the parameterized set of models differs
from the code that implements the baseline economy only in a few
minor details. Firstly, when there are N natural state variables
and M parameters of interest, the model had to be solved over a
N +M dimensional state space. Hence neural networks used in the
approximation had to have N +M inputs. Secondly, the grid gener-
ating scheme had to be updated to sample from the whole extended
state space. Naturally, training of networks that approximate the
whole parametric model set is more computationally demanding than
solving a single model, however, I did not experience any particular
problems with the convergence of ADAM gradient descent when
solving the model set problem. Convergence took required a bigger
number of iterations but it was quite stable.

To check the accuracy of the model set solution algorithm, I
created a plot (Figure 3)mirroring figures 1 and 2. It depicts the
consumption path of susceptible households over the epidemic path
generated by the very same initial conditions as in the case of figures
1 and 2. To generate it, I iterated the dynamic system generated by
the model law of motion and computed policy functions. Figures
1 and 2 are created using simple policy functions. Figure 4 was
constructed using generalized policy rule, which depends both on
natural state variables and parameter pseudo-state whose value was
fixed during the transition path to φ = 0. For this pseudo-state value,
the transition path generated by generalized policy functions should
be indistinguishable from transition paths generated by solving the
laissez-faire and standard tax-distorted equilibria. Figure 4 shows,
that the model set algorithm converged to an approximately correct
solution since the transition path is indistinguishable from transition
paths generated by previously discussed solution algorithms.
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Figure 4: Consumption path of susceptible households in the model set economy
with φ = 0

As a second check, I plotted transition paths of susceptible house-
holds for different values of the policy rule parameter φ one can see
that economies with more aggressive government containment policy
feature a sharper decline in consumption of susceptible households
because their consumption is during the epidemics repressed by the
increase of consumption tax implied by the aggressive policy rule.
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Figure 5: Consumption path of susceptible households in the model set economy
with φ = 0

Finally, I used the approximated parametric model set to find the
optimal value of the policy response parameter φ. To do so, I assume
that government is utilitarian 65 and constructed a simple social
welfare function which aggregates welfare of susceptible, infected,
and recovered households by their relative population shares 66.

SWF(S, I, R, φ) = S × V (S, I, R|φ)+
+I ×X (S, I, R|φ) +R×W (S, I, R|φ)

(15)

Since the model set algorithm solves for all of those value func-
tions over both natural states and the policy parameter, the social
welfare function could be also written as a function of state vari-
ables and φ. To solve for the optimal 67 value of φ, I maximized
the social welfare function with respect to φ for initial condition of
Ω = (0.9999, 0.0001, 0). This amounts to the standard approach in
the Ramsey policy literature, where optimal policy is typically found

65Hence it aggregates utilities of all agents using constant weights. For convenience, I
normalized those weights to one. Since utility and hence also social welfare is an ordinal
concept, I could perform this normalization without loss of generality.

66Since utilitarian government weights all households exactly the same, effective Pareto
weights in the social welfare function are equal to their respective population shares.

67Social welfare-maximizing.
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by numerical maximization of the social welfare function for some
given initial condition 68.

Figure 6: Social welfare for the initial state Ω = (0.9999, 0.0001, 0) as a function
of φ While the social welfare function features a peak, it looks very sensitive to
numerical errors. This problem is expected to disappear in case of more efficient
policy rules

The key difference relative to standard policy optimization meth-
ods à la Dyrda and Pedroni (2018) is that the social welfare function
generated by the model set method is a relatively simple function
with closed-form expression as opposed to function which is implicitly
given by the unknown solution to the model equilibrium. Since the
policy rule in my version of the Eichenbaum, Rebelo and Trabandt
(2020) economy involves only one parameter, the resulting optimiz-
ation is just one dimensional, and hence I used the derivative-free
Brent optimization algorithm Press, Flannery, Teukolsky, Vetterling
et al. (1989). However, in the case of multidimensional problems,
Newton or quasi-Newton methods are commonly utilized, and in
that case gradients or even hessian matrices of the social welfare,
function had to be computed. Thanks to machine learning libraries,
such as Flux.jl (Innes et al. 2018), PyTorch (Paszke et al. 2019), or
TensorFlow (Abadi et al. 2016), which are used for construction and

68The resulting optimal policy system crucially depends on the initial condition, because of
ubiquitous time-consistency problems.
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training of neural networks, those gradients, and Hessian matrices
could be obtained in nearly automatic fashion at low computational
costs.

3.3.1 Computer Implementation

I implemented all presented problems in Julia programming language
69 (Bezanson, Edelman, Karpinski and Shah 2017) using Flux.jl ma-
chine learning framework (Innes et al. 2018). All computations were
run on a standard laptop computer 70 with runtime not exceeding one
hour for any of the presented algorithms. For this application, I did
not employ GPU acceleration, because from my experience possible
speed gains implied by massively parallel computations facilitated by
GPU are overshadowed by CPU-GPU communication overheads for
neural networks featuring layers with less than approximately 200
neurons. However, for large-scale networks, GPUs or TPUs might
provide immense speed gains relative to CPUs because those ma-
chine learning accelerators excel in handling massive linear algebra
operations involved in neural network computations.

69All codes utilized to obtain results presented in this thesis could are available at the
following GitHub repository: https://github.com/Honza9723/ThesisCode or at request.

70Acer Aspire 7 (A715-72G) station with Intel Core i7-8750H (2.2GHz, TB 4.1GHz) and 32
GB of RAM memory
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4 Conclusion

In this thesis , I develop a new method for solving recursive macro-
epidemic models and computing optimal government policies in
epidemic economies using a deep learning algorithm. My contribu-
tion is twofold. Firstly, I provide an efficient and easy-to-use method
for solving potentially high-dimensional recursive macro-epidemic
models. While the existing quantitative macroeconomics literature
proposes multiple different approaches for solving high-dimensional
recursive models, such as the Smolyak interpolation (Krueger and
Kubler 2004), adaptive sparse grid methods (Brumm and Scheidegger
2017,; Eftekhari and Scheidegger 2020), and deep learning projec-
tion (L. Maliar, S. Maliar and Winant 2019; Azinovic, Gaegauf and
Scheidegger 2021), this literature has focused on business cycle and
balanced growth path economies, and therefore is not well suited
to deal with highly nonlinear dynamics on non-hypercubic domains,
which are ubiquitous features in macro-epidemic models. Compared
to the existing literature on solving recursive macroeconomic models
using deep learning, I show how to tackle these peculiarities of macro-
epidemic models using customization of training grid sampling and
construction of appropriate boundary conditions.

Secondly, I extend the baseline solution algorithm with the para-
metric model set approach in the spirit of Duarte (2018a). Instead
of solving the model for one particular parametric vector, I include a
subset of model parameters that parameterize government policy as
an additional state variable and train the neural network to solve the
model on the expanded state space. This procedure simultaneously
solves for a whole set of models indexed by the selected vector of
policy rule parameters. The process of finding optimal values of gov-
ernment policy parameters is then reduced to the simple numerical
optimization of a function with closed-form expression as opposed
to a standard procedure in the spirit of Lippi, Ragni and Trachter
(2015), in which the model is repeatedly solved for many different
parameterizations of the policy rule. Since neural networks are well
known for their asymptotic efficiency in the representation of complex
objects in very high- dimensional spaces, my state-augmentation
algorithm offers potentially significant speed-up when solving for
complex policy rules.
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To provide an example of my method, I applied it to the bench-
mark macro-epidemic model of Eichenbaum, Rebelo and Trabandt
(2020), calibrated to replicate relevant properties of the Czech eco-
nomy. After solving the benchmark model and checking the accuracy
of the approximation, I used a modified version of my algorithm
to solve the model with aggregate uncertainty in the form of virus
mutation risk. Finally, I used my state-augmentation algorithm to
solve for a set of model equilibria under different parameterizations
of the government epidemic -containment policy rule. While the
baseline model of Eichenbaum, Rebelo and Trabandt (2020) is quite
stylized for capturing real-world epidemic dynamics, it presents an
ideal benchmark for building confidence in my algorithm, since it
features key numerical difficulties presented by macro-epidemic mod-
els.

48



Bibliography

References

Abadi, Martın, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard
et al. (2016). ‘Tensorflow: A system for large-scale machine learning’. In:
12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16), pp. 265–283.

Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions and Ben-
jamin Moll (2020). Income and Wealth Distribution in Macroeconomics: A
Continuous-Time Approach. Tech. rep.

Alvarez, Fernando E, David Argente and Francesco Lippi (2020). A simple plan-
ning problem for covid-19 lockdown. Tech. rep. National Bureau of Economic
Research.
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